WO2017051057A1 - Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero - Google Patents

Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero Download PDF

Info

Publication number
WO2017051057A1
WO2017051057A1 PCT/ES2016/070713 ES2016070713W WO2017051057A1 WO 2017051057 A1 WO2017051057 A1 WO 2017051057A1 ES 2016070713 W ES2016070713 W ES 2016070713W WO 2017051057 A1 WO2017051057 A1 WO 2017051057A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
receptacle
cameras
light
refueling
Prior art date
Application number
PCT/ES2016/070713
Other languages
English (en)
French (fr)
Inventor
Alberto Adarve Lozano
Original Assignee
Defensya Ingeniería Internacional, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Defensya Ingeniería Internacional, S.L. filed Critical Defensya Ingeniería Internacional, S.L.
Priority to CN201680070154.5A priority Critical patent/CN108369423A/zh
Priority to AU2016328886A priority patent/AU2016328886B2/en
Priority to US15/767,134 priority patent/US11414207B2/en
Priority to EP16848198.4A priority patent/EP3361346B1/en
Publication of WO2017051057A1 publication Critical patent/WO2017051057A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • B64D39/06Connecting hose to aircraft; Disconnecting hose therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/002Transmission of position information to remote stations for traffic control, mobile tracking, guidance, surveillance or anti-collision
    • G01S2205/005Transmission of position information to remote stations for traffic control, mobile tracking, guidance, surveillance or anti-collision for aircraft positioning relative to other aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30212Military

Definitions

  • the System part in the receiver will be able to obtain the position of the tanker for its approach and the part of the System inside the tanker will be able to determine exactly the location and inclination of the receptacle in which the Boom should be introduced as well as the position and inclination of the end of the latter, so that the operation will be reduced to develop appropriate control laws that allow such contact.
  • the present invention characterizes the fact that it makes it possible to reach the refueling operation of a receiving ship from a mothership in a semi-automatic and even automatic way.
  • the "boomer" of the tanker or refueling operator can accurately determine the location and inclination of the receptacle in which the Boom must be introduced as well as the position and inclination from the end of the latter for the purpose of aid to the operation.
  • an automated system that is based on the information obtained by this invention is completely viable.
  • the invention consists of means for locating the position of the tanker from the receiver, means for locating the location of the receiver from the tanker, that is, where exactly in the space the receiver is placed, and on the other hand location means of the end of the boom that allow the exact determination of their positions and relative inclinations.
  • the object of the present invention is a System for approaching and locating the tanker from the receiver, based on the previous system that conveniently complemented, allows the process of approaching the receiver to the tanker to be carried out semi-automatically or automatically. which derives in an automation of the entire refueling process in flight. Therefore, the present invention is circumscribed within the scope of refueling systems in flight, and particularly among those related to boom positioning systems in the aircraft receptacle to be refueling.
  • Patent US6966525B1 is known in the state of the art, which describes a Flight Refueling System, the Alignment System, and the method are provided to substantially automate the positioning and engagement of a Flight Refueling System made by a first aircraft with respect to a refueling receptacle supported by a second aircraft in order to facilitate the refueling operation between the first and the second aircraft. More specifically, this patent provides means for aligning the refueling pole in flight with the refueling receptacle such that an extendable nozzle can extend from the extendable refueling arm in flight and engage the refill receptacle to initiate a refill. refueling operation in flight.
  • US6752357 Another state-of-the-art patent related to the invention is US6752357, which describes an Aircraft Distance Measurement System that analyzes the images of at least one camera using the known length of extensible refueling arm, the location of the nozzle for Identify a distance between the pen nozzle and a refueling receptacle of the receiving aircraft. In other words, what is sought is to know the distance between the nozzle of the pen and the reception receptacle for refueling the aircraft.
  • the main part of the invention of the Location System comprises Means of Location of the Position of the Receiver, to determine where and how exactly in the space the receiver is placed, and on the other hand some Location Means of the Boom end that allow the exact determination of their positions and inclinations with respect to a common coordinate system and therefore the possibility of approach by automatic means if the laws that control both, that is, Boom and receiving ship are properly designed and based on this information provided by this invention for your final approach and contact.
  • This basic system for locating the end of the boom end and the refueling receptacle in a full-flight refueling operation from a tanker provided with a boom (15) to a receiving ship comprises: - Means for Locating the Position of the Receiver in the receiving ship comprising at least one Vision Subsystem arranged on the tanker.
  • Means for locating the position of the tip of the Boom comprising light emitters, placed on the tip of the boom, in combination with the Vision Subsystem arranged on the tanker.
  • the Means of Locating the Position of the Receiver can be several:
  • Receptacle Device In a first embodiment, which we will call Receptacle Device, it consists of a series of LEDs or lasers, or light emitters arranged on the receiving ship in combination with the cameras placed on the tanker plane.
  • a TOF camera which placed on the tanker plane allows to know the position of the receiver without the need to place any means on the receiving ship.
  • Said TOF camera also called flight time consists of lighting elements and a matrix sensor that measures the time it takes for the light to return once emitted. That information will give us the distances from this new camera to the receiver and will be incorporated into the Vision Subsystem to replace the Receptacle Device.
  • the Receiver Position Location Means consist of a laser emitter or illuminator, placed in the tank, to which a DOE or diffraction lens generating a structured illumination that generates a known light pattern has been added on the surface of the receiver and that with a processing subsystem and any of the two cameras of the Vision Subsystem, it will be possible to obtain, by basic telemetry, the distances to them from any of those two cameras. From that matrix distance information, either by a recognition or by comparison between the matrix points and the same points in an image of a 3D model of the receiver itself, a position information equivalent to that obtained by means of the Receptacle device and thus supply the functionality that it provided, being able to replace it, eliminating its need.
  • the Localization Means of the tip of the Boom comprise light emitters, which may be preferably, but not limited to, LEDs, laser emitters or the ends of light-conducting optical fibers of any of the foregoing and terminated in lenses or diffuser elements, placed on the tip of the boom, in combination with the cameras arranged on the tanker (of the Vision Subsystem).
  • light emitters which may be preferably, but not limited to, LEDs, laser emitters or the ends of light-conducting optical fibers of any of the foregoing and terminated in lenses or diffuser elements, placed on the tip of the boom, in combination with the cameras arranged on the tanker (of the Vision Subsystem).
  • the Processing Means comprise a control electronics that will govern on and off the light emitters of the Boom Device. They also have a video signal processing electronics to calculate the distance information to light emitters of other devices. It also contains enough computing power to analyze point clouds, recognize certain patterns in them and compare them with other point clouds.
  • the Location System seeks to produce fundamental information that forms the basis of the invention. This information consists of: - The spatial location of the end of the boom that is represented by the "nozzle” or nozzle that dispenses the fuel, as well as the inclination of the fuel, which will be materialized by a point (x, y, z) in the space together with a vector (Vx, Vy, Vz) parallel to the direction of the removable part of the boom where said nozzle is located.
  • a third information in the case of the approach and location system is the location of the tanker with respect to the receiver, as well as the relative inclination between the two. This would serve as an approximation tool in the initial phase of the contact.
  • references regarding the location of the boom end and the fuel inlet are represented, as already mentioned, by a set of six coordinates each, refer to a coordinate axis in solidarity with the tanker aircraft and for ease, the origin of said axes will be placed in one of the two cameras that are used in this invention to obtain the indicated locations.
  • the origin O therefore, will be in the center of the sensor of said chamber and its z-axis will be perpendicular to the surface of the sensor, therefore the OX and OY axes are parallel to the plane of said sensor, the positive Y axis upwards and horizontal to the right the axis of increasing Xs.
  • Said information is obtained based on the data obtained by the Vision Subsystem that is part of the invention, both in the complete and reduced versions and which consists mainly of two cameras and other electronic elements that will be detailed below.
  • This subsystem of cameras captures the light emitted by two devices that, as already said, are placed respectively on the tip of the Boom and on the receptacle of the receiving ship. Additionally and as will be discussed, the information corresponding to each device will be stored in order to facilitate future and subsequent contact between the two.
  • the simplified invention related to the location of the end of the boom and the mouth of the receptacle, is composed of three elements a Receptacle Device, a Boom Device and a Vision Subsystem that is formed by a set of at least two cameras, where the cameras and boom device are electrically connected to each other and placed in the tank, while communication with the receptacle device, which is located on the surface of the receiver, is based on a communication by emitted light and a sensor that receives it.
  • This communication is duplex, that is, it works both ways: From the receiving ship the emission is by means of a light emitted by an active element and the reception is by the cameras of the tanker plane.
  • Receptacle device that is disposed on the receiving ship, in a preferred implementation, consists of a semi-hollow steel band of high shock resistance that includes at least four transparent areas of also high strength material such as graphene, oxide aluminum or similar, within which are embedded at least three elements that provide light and a fourth element consisting of a sensor that receives and detects light from another device.
  • this device can have two small cameras, embedded in it. This will allow you to "see” the light emitted by another device similar to the one now described that will be placed in the tanker and thus determine the relative situation of the same with respect to this receiver.
  • the device will be attached to the receiving plane by gluing, screwing, riveting or similar procedure.
  • This device is placed on the receptacle of the receiving ship. Its case consists of a shock resistant frame that can be made of steel, titanium, Teflon, kevlar or other high strength material and with a wide range of operating temperatures.
  • the light emitters and the sensor mentioned above are embedded in this frame. These emitters must be able to emit light with sufficient intensity so that the tanker's cameras can "see” them in daylight and will emit with their light the position information that the cameras need to properly locate them.
  • Each camera will "see” each transmitter in a position (x, y) of its range of positions that the pixel matrix of its image sensor will provide. That pair (x, y) corresponds to a line placed in space and referred to coordinate axes defined by the camera itself.
  • L is the length in bits of the data with up to 8 bits for L which leads to a maximum of 255 bits of data.
  • CRC is a 16-bit cyclic redundancy code.
  • the data may include a synchronization clock between the subsystem and the device. If the information to be transmitted is voice, it will be digitized, compressed and sent with some simple error correction code and longer frames.
  • the subsystem will be powered by a connection to the receiver's power supply that will also include a control thread that will act as a permit for the issuance of the code stored from inside said receiving aircraft.
  • the procedure used in this invention is to use two At the same time, it gives very good practical results: Firstly, the emitted light is limited to a band of the spectrum in a very narrow wavelength range and high temporal coherence. With an equally narrow bandpass optical filter, placed in front of the camera lenses, the rest of the wavelengths are eliminated. This gives us a relative value of the light emitted against the much improved ambient light. At the same time, as a second aid, the emitted light makes it blink with a defined pattern.
  • the Receptacle Device also has a sensor whose input signal is filtered and optically amplified and also accompanied by a certain pattern for a "zero" and another pattern with a "one".
  • the light signals coming from the other device or Boom Device will arrive without difficulty to this sensor when the contact between nozzle and receptacle has been made or is close to doing so and therefore they are very close between them.
  • This procedure will allow 48Kbaud communications which means that a spoken conversation could easily be transmitted by this link and method.
  • the device consists of an electronics whose function is to extract the voice or data signal where appropriate or to generate the pulses of its light emitters in the appropriate instants. In a more advanced version of this device two additional cameras will be included as well as a processing electronics similar to that of the Vision Subsystem.
  • This second device consists of a protection and support box that protects light emitters on the tip of the boom.
  • the Boom Device consists of a box that houses the electronics and light emitters necessary for the required functionality.
  • This box must have a means of gripping the boom. It may be a ring or similar element that meets the above conditions. In a preferred implementation the box has two semi-rings that grip it to the anterior nozzle area of the boom. Inside this box are the drivers of the LEDs used in this implementation, which provide them with the necessary power to turn them on and off according to the established guidelines.
  • This electronics must also include the necessary protections for the rest of the electronics as well as a voltage adapter to convert the voltage supplied by the aircraft to that required by the drivers and other electronics to operate.
  • the LEDs are arranged so that one of them is as close as possible to the center of the Vision Subsystem cameras and the other two of these LEDs are symmetrically placed with respect to this minimum distance to within the cameras. That is a minimum configuration and other additional LEDs can be placed to obtain additional redundancy at the cost of a more intense calculation.
  • the lighting duration of the LEDs will be the same as the frame time of the cameras when said lighting occurs and will be synchronized with them both for switching on and off.
  • the proposed box will be made of aluminum and its shape and size will be compatible with the geometry of the boom to avoid geometric interference that lead to friction or collisions with other parts of the plane or the boom itself.
  • this device can include cameras that would see the receiver from a privileged situation at the time of contact.
  • Both previous devices will emit diffused light that will be captured by the Vision Subsystem that when processed will obtain the relative position between both elements and from there through a Control system, the ability to make contact with little or no human intervention.
  • these cameras are prepared to see the light emitted by the emitters placed in the other devices of this invention at working distances. That will imply requirements such as a good resolution, 1080 in our case, without prejudice to other resolutions.
  • An acquisition frequency of at least thirty frames per second and a working spectrum that includes infrared.
  • An electrical connection will be in charge of synchronizing the lighting of the LEDs as preferred emitters of the Boom Tip Device, with the acquisition of the image frame by the image sensors of the cameras.
  • the essence of the proposed System lies in the simplicity with which active light emitters in a narrow range of the spectrum and with a wide angle of diffusion can easily be seen from a large area, at distances of tens of meters, necessary in this type of operations and in all kinds of ambient light conditions, with the use of cameras with their corresponding filter and using pulse coding techniques.
  • the additional functionality of initial approach between receiver and tanker is covered, by the same techniques and same type of devices: adding a Vision Subsystem in the receiving plane and light emitters next to the Subsystem of Vision of the tanker plane.
  • the System comprises three Locating Devices for Refueling, one arranged on the receiving ship, another on the tanker and another on the tip of the boom.
  • Each of the Refueling Devices comprises:
  • Each light emitter will be powered by its respective driver, and all commanded by a control electronics.
  • At least two high-speed vision cameras (> 30fps), with their respective narrow-band optical lenses and filters, tuned to the light emitted by another collaborating device
  • the cameras will have high-speed electronics of the type fpga or similar to determine in real time the coordinates of the points of light emitted by another Collaborating Locator Device.
  • a light sensor with its respective lens capable of detecting the light of another Collaborating Locator Device when it is nearby.
  • the positional contact information will also be stored in a memory for this purpose to facilitate it in future occasions.
  • the electronics will perform at least the following functions:
  • the cameras of any vision subsystem can have a controllable and variable approach, they can also have Iris and / or controllable and variable zoom.
  • Boom's location means can be integrated into the boom itself.
  • the receptacle can be configured so that the receptacle locating means themselves are integrated into the receptacle itself.
  • some of the elements or parts that constitute it can be replaced by similar elements currently existing in the aircraft and to which they have been provided with the new specific functionality included in this invention by adding either new elements or new functionalities with in order to obtain the same described for the whole of the present invention, thus saving the installation in the aircraft of new devices as far as possible.
  • FIG. 3 An alternative embodiment of the Location System proposed in Figure 1 is shown in Figure 3.
  • Figures 4A, 4B and 4C represent the three different devices or subsystems that make up this invention.
  • Figure 5A represents in more detail the first of the devices of this invention shown in Figure 4A.
  • Figure 5B shows a cross section of the Receptacle Device.
  • Figure 5C represents a cross section of that part of the receiver.
  • Figure 5D is a Cartesian representation of the elements of Figure 5C.
  • Figure 6 represents a receiving ship at the moment when the boom (15) will make contact.
  • Figure 7 represents the image obtained from the boom when the Vision Subsystem is placed in the Belly Fairing located in the belly of the tanker plane.
  • Figure 8 shows a view of the tanker plane as well as its deployed boom.
  • Figure 9 is a Cartesian and schematic representation of the locations of the most important elements that are part of the Boom Device.
  • Figure 10 is a Cartesian representation of the Vision Subsystem.
  • Figure 1 1 shows the architecture of the Vision Subsystem.
  • Figure 12 represents a box in which the elements that are part of the Boom Device are included.
  • Figure 13 describes the composition of the Receptacle Device.
  • Figure 14 shows a representation of the Locator Device for refueling. PREFERRED EMBODIMENT OF THE INVENTION.
  • Figure 1 shows a mothership or tanker (40) provided with a boom (15) that has an extensible part (13), at the end of which there are first light emitters (12), while on the receiving ship there are a few second light emitters (2), which additionally and in a complementary manner can have a reception sensor (22), on the other hand, also on the tank there are cameras (26).
  • Figure 2 shows an embodiment corresponding to the Approach and Location System of the boom end and the receptacle mouth, which comprises locating devices (41) arranged on the tip of the boom (15), another on the receptacle and another on the tank (40), where each locator device (41) comprises
  • a light sensor with its respective lens Figure 3 shows an alternative embodiment to that proposed in Figure 1, where the means for locating the receptacle used consisting of light emitters (21), have been replaced by the use of some of the following means, which also serve to locate the receptacle (a TOF camera (42), a laser emitter (43), and a DOE pattern (44))
  • Figures 4A, 4B and 4C represent the three different elements or Subsystems that make up the Location System of the boom end and the mouth of the receptacle.
  • FIG 4A we can see an element (5) that is attached to the receiving ship just above the fuel receptacle.
  • Named Receptacle Device it has an inverted "U” or “V” shape and provided with a structure (5) in which at least three lights (2) are disposed that are contained on its surface.
  • This element has a connection cable (7) terminated in a connector with which it joins the control part of the aircraft.
  • Figure 4B shows the so-called Boom Device, located at the end of the boom (20), consisting essentially of a clamping and protection ring (19) and light emitters (12) for its location.
  • FIG 4C we can see a set of two cameras (26) that placed in a suitable position of the tanker will allow the visualization and location of the other devices of this invention and that constitutes the so-called Vision Subsystem.
  • the two cameras are joined and fixed by means of a support (28), each camera being provided with their respective lenses (25) and filtering element (24).
  • Figure 5A represents in more detail the Receptacle Device in which a reception sensor (22) placed on the structure (5) can be seen and which allows to receive information in the form of light from the Boom Tip Device when the tip of the boom and receptacle have come close.
  • the Receptacle Device has a series of light emitters (21), both elements (21) and (22) being embedded in a transparent or translucent material (23).
  • FIG. 5B A cross section of the receptacle device is shown in Figure 5B, where the structure (5), a transparent or translucent material (3) that protects the light emitter (2) placed on a printed circuit (4) in the that there is the rest of the electronics that accompanies it.
  • Figure 5C represents a cross-sectional view of that part of the receiver, where the structure (5) of the receptacle device provided with an inclination similar to that which it would present in a cut of the receiving ship through the receptacle area, is also appreciated the light emitters or reflectors (21) and the end (6) of the mouth of the receptacle, where the segment (b) represents the distance from the center of the closure to the middle of the segment that joins the two light emitters that they are located in the middle area of the device, while (a) the distance from the same center point of the mouth of the receptacle to the upper light (21) of the device on an axis orthogonal to the axis of the same receptacle.
  • Figure 5D is a Cartesian representation of the elements and described above.
  • the axes are referred to a local origin O "and should later refer to the origin O located in the center of the image sensor of the left chamber as shown in Figure 7.
  • P ' is the midpoint between lights P2 and P3 yu 0 , v 0 and w 0 are verses (module vectors the unit) in the directions of the different axes.
  • the axis 0 "P ' is the same axis of the receptacle tube.
  • Figure 6 represents a receiving ship at the moment when the boom (15) will make contact with the mouth of the receptacle (8).
  • the view represents the image when the Vision Subsystem is located in the preferred position in this invention placed in the tail cone, it can be seen: Boom flap (14), extensible part (13) of the boom, device lights ( 12a) of the boom end of this invention placed at the top of the extensible pole for this preferred implementation. You can also see the nozzle or nozzle (1 1) and the ramp (10) of the receptacle on which the nozzle usually slides before contact.
  • Figure 7 represents the image obtained from the boom when the Vision System is placed in the Belly Fairing located in the belly of the tanker plane.
  • the nozzle or nozzle (1 1) the extensible part (13) of the boom, the fin of the boom (14) and the fixed part (15) of the boom seen from the bottom of the tanker aircraft, in addition
  • the location (12b) of the lighting ring of this invention is shown when the Vision System is placed as discussed above. Both points of view generate images of the contact and each with its own drawbacks and advantages.
  • the device of the Boom could contain six or more light emitters and in this way allow the Vision Subsystem to be in the two indicated locations (Tail Cone and Belly Fairing) with which complementary images would be obtained that could well generate an interesting redundancy, very useful in this type of Systems.
  • Figure 8 shows a view of the tanker plane as well as its deployed boom, to indicate the two positions in which the Vision Subsystem can be located.
  • a first situation corresponds to its (preferred) placement in the tail cone (18a), while a second situation corresponds to its situation under the Belly Fairing (18b), the belly of the tanker.
  • These locations correspond as already mentioned different implementations of the boom lighting ring, which can be arranged either in the rear (12a) or in the front (12b) corresponding to the locations (18a) and (18b) of the cameras.
  • Each of the cameras according to their positioning in the tail cone (18a) or in the belly of the plane (18b) defines fields of vision (16) and (17) respectively according to the specific location.
  • Figure 9 is a Cartesian and schematic representation of the locations of the most important elements that are part of the boom device that basically consists of a metal ring or similar support element, in which at least three P1 light emitters are embedded. P2 and P3, placed forming a triangle. The point P 'is the midpoint between the outermost light emitters P2 and P3. O 'is the local coordinate origin chosen. Again there must be a translation to be able to refer any point to the global origin placed in the center of the image sensor of one of the cameras; u 0 , v 0 and w 0 are verses (module vectors the unit) in the directions of the different axes.
  • d2 is the distance from the center of the fuel nozzle of the boom nozzle to the local origin O 'that can be determined by knowing the distance P'O' measured in the device will have a value d1.
  • v 0 is a version in the direction of the Boom axis.
  • Figure 10 is a Cartesian representation of the Vision Subsystem. In this drawing, both cameras can be seen as well as what they would see when pointing to a point P of space. Each camera will see the point with different local coordinates (X1, Y1) and (X2, Y2) where the point will appear as point P1 and P2 respectively.
  • the Z coordinate in each of the local representations can be calculated from the angle 12 corresponding to half of the FOV (Field Of View) or field of view of each camera that will depend on the optics and resolution of the same as well as the size of your sensor
  • FOV Field Of View
  • the Z, X and Y of the point will be obtained with respect to a predetermined reference origin.
  • the center or origin O that we have placed, without loss of generality, is in the center of the left chamber sensor, as shown in the figure. This will give us the coordinates of any point observed by both cameras with respect to the same coordinate axes and therefore the real relative coordinates between them.
  • Figure 1 1 shows the architecture of the Vision Subsystem, which includes the main components that make up its architecture.
  • a preferably metallic aluminum outer case includes two chambers separated by a distance of about half a meter (the greater the distance, the better spatial resolution on the z axis).
  • Each camera (26) has a sensor and an electronic adaptation and reading of the same to which a lens (25) and a filter (24) must be placed to eliminate wavelengths different from those emitted by Boom devices and of Receptacle. It includes a special electronics (32) based on FPGA in order to obtain results in real time where certain processing and image recognition and local coordinate extraction xi, yi of the points of light of the indicated devices are performed.
  • the coordinate information of both cameras passes to a Processing System (33) where finally the X, Y, Z coordinates of each light emitter, is obtained with respect to a coordinate axis whose origin has been taken at the center of the sensor of the left chamber for greater ease, without prejudice to being able to choose any other.
  • Figure 12 represents a box in which the elements that are part of the Boom Device are included. Essentially it is composed of light emitters (38), LEDs in this preferred implementation, at least three, powered by their respective drivers (37) which are in turn driven by a microcontroller (36) which in turn connects with the Subsystem Vision through a control bus with its respective communications electronics (34). The control bus will be synchronized with the Vision Subsystem to facilitate achieving the position of the light emitters.
  • Figure 13 describes the composition of the Receptacle Device. In it, in this preferred implementation, a set of LEDs (LED1, LED 2, LED3, ... LEDn) (38) at least 3, are powered by their respective drivers (37) and these activated and deactivated by a microcontroller ( 36) that will be remotely controlled.
  • This device can be turned on or off from the console of the receiving ship. Additionally, a sensor (35) will receive light through its corresponding filter (29) to after a signal adapter element (39) provide the microcontroller (36) with the information of pulses received therein and from the boom device. The device may store the information received in a non-volatile memory. The microcontroller, with a processing algorithm not only controls the lighting of the LEDs but also in addition to the information received from the light sensor (35) can extract both information on the position of the device with respect to the boom device and audio information that could be inserted into the pulse sequence emitted by the latter. Finally, a communications bus allows this device to be controlled from the receiving plane, as already mentioned.
  • FIG 14 shows the structure of a Location Device (41).
  • the device is enclosed in a box (0) and consists of a set of at least three light emitters (2) with their respective diffusers (23) powered by their corresponding drivers (37).
  • the cameras have their own electronics for the calculation in real time of the coordinates of the points of light coming from another Location Device.
  • the device communicates with the outside through a communications bus (34) and is powered by an airplane power source not shown in the drawing.
  • the receptacle (fig.6.10) placed on the surface of the fuel receiving ship is in a position to be seen by the two-chamber subsystem (fig.4C) placed in a favorable position of the tanker (such as the cone of tail (fig.8-18a) or belly fairing (fig.8-18b)), then also cameras placed in the Receptacle Device and looking in the opposite direction, you can see the tanker and more specifically the vision system of the same .
  • the light emitters of the tanker have been placed that will emit from that position their corresponding pattern that will be visualized by the cameras next to the Receptacle Device. That way the receiver can locate the tanker and approach him to get into the refueling position. (This is one of the functionalities pursued by this invention).
  • the lights placed on the device that go over said receptacle, or distributed in another alternative implementation, on the surface of the receiving plane, begin to flash with a cadence corresponding to a certain code.
  • This flickering has two modes of operation or two particular functionalities, the first is a flicker at a fixed frequency that matches the frame rate of the cameras and the second is a different frequency of about 48KHz as the preferred value and that allows information to be sent Voice coded to the Boom Device which, with a suitable optical filter in front of its sensor (fig. 14-29) manages to eliminate the information light outside the device from the received signal.
  • the narrower the bandpass filter is and the more coherent the light emitted from (fig. 13-38), the easier it will be to eliminate the part of the inadmissible light.
  • the pattern sent by the light emitters allows additional help to discriminate which pixels of the images obtained by the Vision Subsystem cameras placed in the tank correspond to the lighting generated by the light sources of the receptacle device.
  • the image processor (fig.1 1 -32) placed behind the cameras, within the Vision Subsystem, will make a subtraction of the images of successive frames of the video to obtain the differences between one image and the next and thus be able to put more clearly, those points that from one table to the next have undergone variation.
  • the information about the position of the lights is exactly as desired in the contact and it is very interesting to be able to store it, something that this invention carries out thanks to a communication that is established between the device of the receptacle of the receiving plane and the Tankman's Vision Subsystem.
  • the receiver uses the light of its emitters as a carrier to send encoded digital information to the Vision Subsystem itself.
  • the Boom device can send information, not only to the Vision Subsystem, but also to the receptacle device where the light sensor placed therein will allow the communication loop between both planes to be closed.
  • the receiving aircraft may store the situation information in the contact and other relevant auxiliary information that could be interesting for the tanker in relation to it.
  • the tanker may indicate to the tanker what position the receptacle should be in order for the exact connection to occur.
  • Another important functionality of the invention is the possibility of performing a duplex voice communication between receiver and tanker. That is, between the Receptacle Device and the Boom Device. Both have two ways to turn on their respective light emitters. One to send the position and another to send and receive a signal of several tens of khz, enough to carry a voice signal. And this in both directions if both devices are equipped with the respective light sensors.
  • the stages that take place for the proper functioning of the System are: Visualization from the cameras of the Receptacle Device of the lights placed in the flashing tank generating fixed patterns at the frame rate of these cameras.
  • the chamber assembly (which will preferably be placed in the lower part of the tail cone of the tanker, although it could also be placed in the lower part of its main body Belly Fairing or distributed in these and more parts of the plane), you will be able to see the set of lights of the device object of this invention from the shortest possible distance (which is the moment of contact), mainly the Receptacle device that is placed on the surface of the plane receiver. Said device may have the form presented here as a preferred implementation but could also be distributed in several pieces arranged on the surface of the receiver.
  • This device could even be replaced by a System that obtains the position of the receptacle by alternative methods.
  • the first task of this invention is to obtain the position of the point that is in the mouth of the receptacle together with a vector perpendicular to it. So, based on the information collected by the Vision Subsystem on the position of light emitters or alternative methods and elements, it is these six parameters that we must obtain. Therefore, at the moment of contact it is a safe moment in which we truly know the relative position between the information obtained from the Receptacle Device, in any of its implementations, and the mouth of the receptacle and its orthogonal vector.
  • the cameras can determine with maximum accuracy where the nozzle should be placed with respect to that set of lights or other elements, and from this determine with the same precision the location of the receptacle with respect to them.
  • This information is essential and will allow the calibration of the entire System. Therefore, at that moment of contact, the information of the location in which the receptacle is has total precision and must pass from the tanker to the receiving plane that will store it to be provided to other tankers. Receiving location information
  • the receiver can receive the information obtained in the tanker at the time of contact and store it to be sent by its active element or elements in a next contact when another tanker so requests.
  • the same tanker can store this information for future contacts, since it is small in volume and can be kept in a small database for all those recipients with whom contact has been made. Not only can contact data be stored, but the receptacle can also transmit other fuel data to the tank, etc. to be stored in said database.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Sistema de localización que comprende unos Medios de Localización de la posición del Receptor, y por otro lado unos Medios de Localización del extremo del Boom que permiten la exacta determinación de sus posiciones e inclinaciones respecto a un sistema de coordenadas común y por ende la posibilidad de acercamiento por medios automáticos si las leyes que controlan a ambos, esto es, Boom y nave receptora son diseñadas apropiadamente y basadas en esta información suministrada por esta invención para su acercamiento final y contacto. Los medios de localización de la posición del receptor pueden consistir en una serie de LEDs, láseres o emisores de luz dispuestos sobre la nave receptora en combinación con las cámaras colocadas sobre el avión tanquero, o en una cámara TOF, o en un iluminador láser con una lente DOE. También es objeto de la invención un dispositivo localizador que comprende unos emisores de luz, al menos dos cámaras, un sensor de luz y una electrónica, de manera que colocados los primeros (emisores) sobre el tanquero y los demás sobre el receptor, permiten además de la localización, el acercamiento del receptor al tanquero.

Description

SISTEMA DE LOCALIZACIÓN DEL EXTREMO DEL BOOM. DE LA BOCA DEL
RECEPTÁCULO DE REPOSTAJE Y DEL TANQUERO
DESCRIPCION
OBJETO DE LA INVENCION
Es objeto de la presente invención, tal y como el título de la invención establece, un Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del propio tanquero, entendiendo por boom la pértiga o percha de reabastecimiento en vuelo formada por un tubo rígido telescópico con superficies de control de vuelo móviles que un operario del avión cisterna o tanquero extiende e inserta en un receptáculo de la aeronave receptora.
En una operación de repostaje se pueden distinguir tres momentos importantes: El acercamiento inicial del receptor al tanquero, la colocación del receptor en una posición óptima para el repostaje y el contacto de la boquilla o nozzle del boom con el receptáculo del receptor para comenzar a suministrar combustible. El Sistema o conjunto de elementos que aquí se describen permiten realizar estas operaciones de acercamiento, posicionamiento y contacto previos al reabastecimiento que actualmente son manuales, de una forma semiautomática e incluso automática con gran seguridad, precisión y robustez e incluso ayudar en el momento de suministro de combustible a que el receptor mantenga su posición con mayor facilidad. Gracias a estos dispositivos, la parte del Sistema en el receptor podrá obtener la posición del tanquero para su aproximación y la parte del Sistema dentro del tanquero podrá determinar con exactitud la ubicación y la inclinación del receptáculo en el que el Boom debe ser introducido así como la posición e inclinación del extremo de este último, con lo que la operación se reducirá a desarrollar unas leyes de control adecuadas que permitan dicho contacto.
Por lo tanto, caracteriza a la presente invención el hecho de que permite llegar a la operación de reabastecimiento de una nave receptora desde una nave nodriza de una forma semiautomática e incluso automática.
Gracias a la colaboración conjunta de los medios con los que cuenta el Sistema, el "boomer" del tanquero u operador de reabastecimiento puede determinar con exactitud la ubicación y la inclinación del receptáculo en el que el Boom debe ser introducido así como la posición e inclinación del extremo de este último para fines de ayuda a la operación. También un sistema automatizado que se base en la información obtenida por esta invención es completamente viable. La invención consiste en unos medios de localización de la posición del tanquero desde el receptor, unos medios de localización de localización del receptor desde el tanquero, es decir, dónde exactamente en el espacio está colocado el receptor, y por otro lado unos medios de localización del extremo del boom que permiten la exacta determinación de sus posiciones e inclinaciones relativas. Todas respecto a un sistema de coordenadas común y por ende la posibilidad de acercamiento por medios automáticos si las leyes que controlan a ambos, esto es, Boom y nave receptora son diseñadas apropiadamente y basadas en esta información suministrada por esta invención para su acercamiento final y contacto. El Sistema que aquí se presenta tiene varias versiones claramente diferenciables en función de la forma de obtener la posición del receptáculo del receptor, cada una con ventajas diferentes según la implementación elegida. Ambas obtienen la posición del extremo del boom, en particular de la boquilla o nozzle, a partir de la localización de determinados puntos de luz colocados sobre el extremo del boom, en las imágenes obtenidas de un conjunto de dos cámaras colocadas estratégicamente en el tanquero. Obtienen la posición de la boca del receptáculo del avión receptor a partir de medios de localización de la posición del receptor, empleándose o bien una serie de LEDs, láseres, o emisores de luz dispuestos sobre la nave receptora en combinación con las cámaras colocadas sobre el avión tanquero, o una cámara TOF (Time-of-flight) o un emisor láser con un patrón DOE también en conjunción de las cámaras colocadas bajo (sobre el fuselaje o superficie exterior del tanquero pero debajo del mismo, como pueden ser la zona inferior del cono de cola o la belly-fairing en la panza del avión) el tanquero.
También como se ha indicado, es objeto de la presente invención un Sistema de acercamiento y localización del tanquero desde el receptor, basado en el sistema anterior que convenientemente complementado permite realizar además de manera semiautomática o automática el proceso de acercamiento del receptor al tanquero, lo cual deriva en una automatización de todo el proceso de repostaje en pleno vuelo. Por lo tanto, la presente invención se circunscribe dentro del ámbito de los sistemas de reabastecimiento en vuelo, y particularmente de entre los relativos a los sistemas de posicionamiento del boom en el receptáculo del avión a repostar.
ANTECEDENTES DE LA INVENCIÓN
El repostaje en vuelo se realiza actualmente de dos formas diferentes. Con manguera y cestas o con Boom. En el caso de que se realice con Boom, el extremo o nozzle (boquilla de salida del combustible) de un Boom debe embocar en un receptáculo que se encuentra en la superficie de la nave que va a recibir el combustible. Toda esta operación se realiza actualmente de manera manual y depende de la pericia del operador o "boomer".
En el estado de la técnica se conoce la patente US6966525B1 , que describe un Sistema de repostaje en vuelo, el Sistema de alineación, y el método se proporcionan para automatizar sustancialmente el posicionamiento y el compromiso de un Sistema de repostaje en vuelo realizado por un primer avión con respecto a un receptáculo de reaprovisionamiento soportado por un segundo avión a fin de facilitar la operación de repostaje entre la primera y la segunda aeronave. Más específicamente, esta patente proporciona medios para la alineación de la pértiga de repostaje en vuelo con el receptáculo de reabastecimiento de combustible de tal manera que una boquilla extensible puede extenderse desde el brazo extensible de reaprovisionamiento en vuelo y enganchar el receptáculo de reabastecimiento para iniciar una operación de repostaje en vuelo. Otra patente del estado de la técnica relacionada con la invención es la patente US6752357, que describe un Sistema de medición de distancia aeronaves que analiza las imágenes de al menos una cámara utilizando la longitud conocida de brazo extensible de reaprovisionamiento, la ubicación de la boquilla para identificar una distancia entre la boquilla de la pluma y un receptáculo de reabastecimiento del avión receptor. Es decir lo que se busca es conocer la distancia entre la boquilla de la pluma y el receptáculo de recepción para el reabastecimiento del avión.
En algunos otros Sistemas se divulgan medios para la localización de la posición del receptor, pero en ninguno se emplean medios de localización de la punta del BOOM y tampoco se divulgan de manera conjunta el empleo de ambos medios de localización del receptáculo y de la punta del boom.
Todos los anteriores Sistemas están limitados en su ejecución por la pericia del operador o boomer, ya que al final son operaciones manuales.
Por lo tanto, es objeto de la presente invención desarrollar un Sistema que permita un repostaje semiautomático o automático que no dependa de la pericia del operador para realizar el correcto posicionamiento del extremo del boom en el receptáculo que se encuentra en la superficie de la nave, desarrollando un Sistema como el que a continuación se describe y queda recogido en su esencialidad en la reivindicación primera permitiendo un repostaje de manera semiautomática e incluso automática.
DESCRIPCIÓN DE LA INVENCIÓN La parte principal de la invención del Sistema de Localización comprende unos Medios de Localización de la Posición del Receptor, para determinar dónde y cómo exactamente en el espacio está colocado el receptor, y por otro lado unos Medios de Localización del extremo del Boom que permiten la exacta determinación de sus posiciones e inclinaciones respecto a un sistema de coordenadas común y por ende la posibilidad de acercamiento por medios automáticos si las leyes que controlan a ambos, esto es, Boom y nave receptora son diseñadas apropiadamente y basadas en esta información suministrada por esta invención para su acercamiento final y contacto.
Este Sistema básico de localización del extremo del extremo del boom y del receptáculo de repostaje en una operación de repostaje en pleno vuelo desde un tanquero provisto de un boom (15) hacia una nave receptora comprende: - Unos Medios de Localización de la Posición del Receptor en la nave receptora que comprenden al menos un Subsistema de Visión dispuesto sobre el tanquero.
Unos Medios de Localización de la Posición de la punta del Boom que comprenden unos emisores de luz, colocados sobre la punta del boom, en combinación con el Subsistema de Visión dispuesto sobre el tanquero.
- Unos Medios de Procesamiento en los que, mediante las imágenes obtenidas de los medios de localización permiten la exacta determinación de sus posiciones e inclinaciones respecto a un sistema de coordenadas común.
Los Medios de Localización de la Posición del Receptor pueden ser varios:
En una primera realización, que denominaremos Dispositivo del Receptáculo, consiste en una serie de LEDs o láseres, o emisores de luz dispuestos sobre la nave receptora en combinación con las cámaras colocadas sobre el avión tanquero.
En una segunda realización pueden consistir en una cámara TOF, que colocada sobre el avión tanquero permite conocer la posición del receptor sin necesidad de colocar medio alguno sobre la nave receptora. Dicha cámara TOF también denominada de tiempo de vuelo consta de unos elementos de iluminación y un sensor matricial que mide el tiempo que tarda la luz en volver una vez emitida. Esa información nos dará las distancias desde esta nueva cámara al receptor y será incorporada en el Subsistema de Visión para sustituir al Dispositivo del Receptáculo. Con las distancias al receptor que la cámara de tiempo de vuelo nos proporcione se obtendrán un conjunto de puntos de la superficie del avión receptor que junto con un algoritmo bien de reconocimiento, bien de comparación con la superficie del mismo avión receptor previamente digitalizada y almacenada, proporcionará la ubicación de la boca receptáculo de forma alternativa a la proporcionada por el Dispositivo del Receptáculo y permitiendo por tanto sustituir este dispositivo por el uso de la cámara TOF señalada.
En una tercera realización los Medios de Localización de la Posición del Receptor consisten en un emisor láser o iluminador, colocado en el tanquero, al que se le ha añadido una DOE o lente de difracción generadora de una iluminación estructurada que genera un patrón de luz conocido sobre la superficie del receptor y que con un subsistema de procesamiento y cualquiera de las dos cámaras del Subsistema de Visión, permitirá obtener por telemetría básica, las distancias a los mismos desde cualquiera de esas dos cámaras. A partir de esa información matricial de distancias, bien mediante un reconocimiento bien por comparación entre los puntos de la matriz y los mismos puntos en una imagen de un modelo 3D del propio receptor, se puede obtener una información de posición equivalente a aquella obtenida mediante el Dispositivo del Receptáculo y así suplir la funcionalidad que este proporcionaba pudiendo sustituirlo, eliminando la necesidad de aquel. Los Medios de Localización de la punta del Boom comprenden unos emisores de luz, que pueden ser preferentemente, pero no de manera limitativa, unos LEDs, unos emisores láser o los extremos de unas fibras ópticas conductoras de la luz de cualquiera de los anteriores y terminadas en lentes o elementos difusores, colocados sobre la punta del boom, en combinación con las cámaras dispuestas sobre el tanquero (del Subsistema de Visión).
Los Medios de Procesamiento comprenden una electrónica de control que gobernará en encendido y apagado de los emisores de luz del Dispositivo del Boom. También tienen una electrónica de tratamiento de señal de vídeo para calcular la información de distancias a emisores de luz de otros dispositivos. También contiene la potencia de cálculo suficiente para analizar nubes de puntos, reconocer ciertos patrones en ellas y compararlas con otras nubes de puntos.
El Sistema de Localización busca producir una información fundamental que constituye la base de la invención. Esta información consiste en: - La ubicación espacial del extremo del boom que viene representada por la "nozzle" o boquilla que dispensa el combustible, así como la inclinación de ésta, que vendrán materializadas por un punto (x, y, z) en el espacio junto con un vector (Vx, Vy, Vz) paralelo a la dirección de la parte extraíble del boom donde dicha boquilla se encuentra.
La ubicación espacial de la boca de entrada de combustible que está en el interior del receptáculo, que como se ha comentado, se encuentra en la superficie superior de la nave receptora, junto con la inclinación del tubo que desemboca en ella. Ambas igualmente representadas por un punto de tres coordenadas y un vector de tres componentes paralelo al mencionado tubo
Una tercera información para el caso del Sistema de aproximación y localización es la ubicación del tanquero respecto a receptor, así como la inclinación relativa entre ambos. Esto serviría como herramienta de aproximación en la fase inicial del contacto.
Las referencias relativas a la ubicación del extremo del boom y la boca de entrada de combustible están representadas, como ya se ha comentado, por un conjunto de seis coordenadas cada una, se refieren a un eje de coordenadas solidario al avión tanquero y por facilidad, el origen de dichos ejes se colocará en una de las dos cámaras que se utilizan en esta invención para obtener las ubicaciones señaladas. El origen O, por tanto, estará en el centro del sensor de dicha cámara y su eje z será perpendicular a la superficie del sensor, estando por consiguiente los ejes OX y OY paralelos al plano de dicho sensor, hacia arriba el eje Y positivo y horizontal hacia la derecha el eje de las Xs crecientes.
Dichas informaciones se obtienen en base a los datos obtenidos por el Subsistema de Visión que forma parte de la invención, tanto en las versiones completa y reducida y que está constituido principalmente por dos cámaras y otros elementos electrónicos que se detallarán más adelante. Este subsistema de cámaras capta la luz emitida por dos dispositivos que, como ya se ha dicho, van colocados respectivamente en la punta del Boom y sobre el receptáculo de la nave receptora. Adicionalmente y como se comentará, la información correspondiente a cada dispositivo será almacenada con el fin de facilitar un futuro y posterior contacto entre ambos.
Para futuras referencias a los elementos que componen la versión reducida de esta invención, en este documento, hablaremos de "Dispositivo del Receptáculo", de "Dispositivo de Punta de Boom" y de "Subsistema de Visión", al referirnos a los tres Dispositivos de Localización simplificados que constituyen esta invención dejando solamente la posibilidad de contemplar el acercamiento inicial del receptor al tanquero para la versión completa de la invención como ya se ha comentado.
La invención simplificada, relativa a la localización del extremo del boom y de la boca del receptáculo, está compuesta por tres elementos un Dispositivo de Receptáculo, un Dispositivo de Boom y un Subsistema de Visión que está formado por un conjunto de al menos dos cámaras, donde las cámaras y el dispositivo de boom están conectados eléctricamente entre sí y colocados en el tanquero, mientras que la comunicación con el dispositivo del receptáculo, que se halla sobre la superficie del receptor, se basa en una comunicación por luz emitida y un sensor que la recibe. Esta comunicación es dúplex, o sea que funciona en ambos sentidos: Desde la nave receptora la emisión es mediante una luz emitida por un elemento activo y la recepción es por las cámaras del avión tanquero. Mientras que desde el tanquero la emisión es también por un elemento de luz activo colocado en el boom y la recepción es mediante un sensor de imagen no necesariamente matricial en la nave receptora de combustible. Esta última comunicación se produce casi exclusivamente en el momento del contacto entre las dos naves cuando se produce el teórico transvase de combustible y la situación y distancia relativa entre ambas es óptima. A continuación se describen dichos elementos o partes fundamentales con mayor detalle:
Dispositivo del Receptáculo que se dispone sobre la nave receptora, en una implementación preferida, consiste en una banda de acero semi-hueca de alta resistencia a los golpes que incluye al menos cuatro zonas transparentes de material también de alta resistencia como un grafeno, óxido de aluminio o similar, dentro de las cuales van embutidos al menos tres elementos que proporcionan luz y un cuarto elemento consistente en un sensor que recibe y detecta luz de otro dispositivo. Opcionalmente este dispositivo puede disponer de dos cámaras de reducido tamaño, embutidas en él. Esto le permitirá "ver" la luz emitida por otro dispositivo similar al que ahora se describe que se colocará en el tanquero y así determinar la situación relativa del mismo respecto a este receptor. El dispositivo irá fijado al avión receptor mediante pegado, atornillado, remachado o procedimiento similar.
Este dispositivo se coloca sobre el receptáculo de la nave receptora. Su caja consiste en un armazón resistente a golpes que puede estar fabricado en acero, titanio, teflón, kevlar u otro material de alta resistencia y con amplio rango de temperaturas de funcionamiento. En este armazón van embutidos los emisores de luz y el sensor que se han comentado más arriba. Esos emisores deben ser capaces de emitir luz con suficiente intensidad como para que las cámaras del tanquero puedan "verlas" a la luz del día y emitirán con su luz la información de posición que las cámaras necesitan para ubicarlas adecuadamente. Cada cámara "verá" cada emisor en una posición (x,y) de su rango de posiciones que la matriz de pixeles de su sensor de imagen le proporcionará. Ese par (x, y) corresponde a una recta colocada en el espacio y referida a unos ejes de coordenadas definidos por la propia cámara. El empleo de dos cámaras así como el modo de disposición de las mismas nos permite, mediante el empleo de la geometría, determinar el punto intersección de ambas rectas y por ende la situación de la luz vista por ambas cámaras respecto a un eje de coordenadas solidario a estas mismas. Estas luces consistirán en un emisor LED o LÁSER que al encenderse enviará mediante un código binario y redundante, según se detalla a continuación, información de control y otra información como puede ser una señal de voz comprimida y digitalizada apropiadamente. Este envío de información se realiza simplemente mediante un conjunto de pulsos consecutivos con un cierto patrón de cadencia cuando lo que se envíe sea la información de ubicación del receptáculo o bien la información digitalizada propiamente dicha cuando la misma no sea información de control. A título de ejemplo, la información cuando no sea de ubicación se podrá enviar con el formato siguiente: Cabecera+L+Datos+CRC16. Donde la cabecera es una ristra de 16 bits para indicar el comienzo de un mensaje, L es la longitud en bits de los datos con hasta 8 bits para L lo que conduce a un máximo de 255 bits de datos. CRC es un código de redundancia cíclica de 16 bits. Los datos podrán incluir un reloj de sincronización entre el subsistema y el dispositivo. Si la información a transmitir es de voz, esta se digitalizará, se comprimirá y se enviará con algún código corrector de errores simple y con tramas de mayor longitud.
El subsistema se alimentará mediante una conexión a la alimentación del receptor que además incluirá un hilo de control que actuará como permiso para la emisión del código almacenado desde el interior de dicho avión receptor.
Para conseguir que los emisores de luz puedan verse adecuadamente, incluso en condiciones de alta luminosidad ambiente procedente del sol y para evitar la confusión con otras fuentes de luz desde tierra o desde otros aviones, el procedimiento que se emplea en esta invención consiste en utilizar dos ayudas de forma simultánea que da unos resultados prácticos muy buenos: En primer lugar la luz emitida se circunscribe a una banda del espectro en un margen de longitudes de onda muy estrecho y de alta coherencia temporal. Con un filtro óptico paso banda igualmente estrecho, colocado delante de las lentes de las cámaras, se elimina el resto de las longitudes de onda. Esto nos da un valor relativo de la luz emitida frente a la luz ambiente muy mejorado. Al mismo tiempo, como segunda ayuda, la luz emitida la hacemos parpadear con un patrón definido. De esta forma, para un pixel recibido como consecuencia del reflejo de la luz emitida con ese patrón en un punto de nuestra imagen, obtenemos valores que deben seguir ese mismo patrón. Así, si empleamos una frecuencia igual a la empleada en la cámara (número de cuadros por segundo), podremos tomar los valores de los píxeles en cuadros consecutivos y realizar una correlación con el patrón de luz emitido. Aquellos píxeles cuyo valor de correlación superior a un determinado umbral, nos estarán diciendo que los mismos han sido iluminados por nuestros emisores. La unión de ambos métodos nos permite conseguir "ver" con claridad suficiente aquellos emisores de luz de nuestra imagen con nuestro Subsistema de Visión con la precisión que la resolución de estas cámaras nos permita y teniendo en cuenta que las distancias de trabajo son relativamente bajas, se podrá alcanzar una resolución subcentimétrica y con todas las garantías sin demasiada dificultad. El Dispositivo del Receptáculo posee además un sensor cuya señal de entrada es filtrada y ópticamente amplificada y asimismo acompañada de un cierto patrón para un "cero" y otro patrón con un "uno". Las señales luminosas provenientes del otro dispositivo o Dispositivo de Boom llegarán sin dificultad a este sensor cuando el contacto entre nozzle y receptáculo se haya realizado o esté próximo a hacerlo y por tanto estén muy cerca entre ellos. Este procedimiento permitirá comunicaciones de 48Kbaudios lo que significa que una conversación hablada podría transmitirse fácilmente por este enlace y método. Finalmente el dispositivo consta de una electrónica cuya función es extraer la señal de voz o datos en su caso o bien generar los pulsos de sus emisores de luz en los instantes adecuados. En una versión más avanzada de este dispositivo se incluirán dos cámaras adicionales así como una electrónica de procesamiento similar a la del Subsiste3ma de Visión.
Dispositivo del Boom:
Este segundo dispositivo consiste en una caja de protección y soporte que protege a unos emisores de luz sobre la punta del boom. El Dispositivo del Boom consiste en una caja que alberga la electrónica y emisores de luz necesarios para la funcionalidad requerida. Esta caja debe tener un medio de agarre al boom. Puede tratarse de un anillo o elemento similar que cumpla con las condiciones anteriores. En una implementación preferida la caja dispone de dos semi-anillos que la agarran a la zona anterior de la nozzle del boom. Dentro de esta caja se encuentran los drivers de los leds empleados en esta implementación, que les suministran la corriente necesaria para su encendido y apagado de acuerdo a las pautas establecidas. También debe incluir esta electrónica las protecciones necesarias para el resto de la electrónica así como un adaptador de tensión para convertir la tensión suministrada por el avión a la necesaria por los drivers y demás electrónica para funcionar. En la superficie exterior de la caja, en un plano ortogonal al eje del boom se disponen los leds de forma que uno de ellos esté lo más próximo posible al centro de las cámaras del Subsistema de Visión y los otros dos de estos leds queden simétricamente colocados con respecto a esta distancia mínima al dentro de las cámaras. Esa es una configuración mínima y pueden colocarse otros leds adicionales para obtener una redundancia adicional a costa de un cálculo más intenso. La duración de encendido de los leds será el mismo que el tiempo de cuadro de las cámaras cuando dicho encendido se produzca y estará sincronizado con éstas tanto para su encendido como para su apagado. La caja propuesta será de aluminio y su forma y tamaño serán compatibles con la geometría del boom para evitar interferencias geométricas que den lugar a roces o colisiones con otras partes del avión o del propio boom.
En una versión más completa, este dispositivo puede incluir unas cámaras que verían al receptor desde una situación privilegiada en el momento del contacto.
Ambos dispositivos anteriores emitirán luz difusa que será captada por el Subsistema de Visión que al procesarla obtendrá la posición relativa entre ambos elementos y de ahí mediante un Sistema de control, la capacidad para realizar un contacto con poca o ninguna intervención humana.
Subsistema de Visión:
Está compuesto principalmente por un conjunto de cámaras, al menos dos, cuya función es observar el escenario de la operación en el que los otros dispositivos indicados ejercen su rol fundamental de señalizar la posición de sus respectivas ubicaciones de las que se deducirán aquellas informaciones que nos permitirán un contacto entre nozzle y receptáculo con todas las garantías. En una implementación preferida, estas cámaras están preparadas para ver la luz emitida por los emisores colocados en los otros dispositivos de esta invención a las distancias de trabajo. Eso implicará requisitos como una buena resolución, 1080 en nuestro caso, sin perjuicio de otras resoluciones. Una frecuencia de adquisición de al menos treinta cuadros por segundo y un espectro de trabajo que incluya el infrarrojo. Una conexión eléctrica se encargará de sincronizar el encendido de los leds como emisores preferidos del Dispositivo de punta de Boom, con la adquisición del cuadro de imagen por parte de los sensores de imagen de las cámaras.
La esencia del Sistema propuesto radica en la sencillez con la que emisores activos de luz en un estrecho margen del espectro y con un gran ángulo de difusión pueden verse fácilmente desde una extensa zona, a distancias de decenas de metros, necesarias en este tipo de operaciones y en toda suerte de condiciones de luz ambiental, con el uso de cámaras con su correspondiente filtro y empleando técnicas de codificación de pulsos. En el Sistema completo también objeto de esta invención, se abarca la funcionalidad adicional de acercamiento inicial entre receptor y tanquero, mediante las mismas técnicas y mismo tipo de dispositivos: añadiendo un Subsistema de Visión en el avión receptor y unos emisores de luz junto al Subsistema de Visión del avión tanquero.
En el caso más amplio de tratarse de un Sistema de acercamiento y localización, el Sistema comprende tres Dispositivos Localizadores para Repostaje, uno dispuesto sobre la nave receptora, otro sobre el tanquero y otro sobre la punta del boom.
Cada uno de los Dispositivos de Repostaje comprende:
Al menos tres emisores de luz de tipo LED, o Láser, o bien una combinación de ambos, cada uno con un difusor de amplio ángulo de difusión para difundir la luz que emiten. Cada emisor de luz estará alimentado por su respectivo driver, y todos comandados por una electrónica de control.
Al menos dos cámaras de visión de alta velocidad (>30fps), con sus respectivas lentes y filtros ópticos de paso banda estrecha, sintonizados con la luz emitida por otro dispositivo colaborador. Las cámaras dispondrán de una electrónica de alta velocidad del tipo fpga o similar para determinar en tiempo real las coordenadas de los puntos de luz emitidos por otro Dispositivo Localizador colaborador.
Un sensor de luz con su respectiva lente capaz de detectar la luz de otro Dispositivo Localizador colaborador cuando se halla cerca.
Una electrónica de procesamiento de las coordenadas proporcionadas por ambas cámaras para obtener las coordenadas relativas de cada emisor respecto a una de las cámaras. Además con el fin de proporcionar esta información al resto del avión para su uso en ayudar al repostaje existirá un bus de comunicación de toda la electrónica tanto de control como de reconocimiento/procesamiento con el exterior del dispositivo.
También se almacenará la información posicional de contacto en una memoria al efecto para facilitar el mismo en futuras ocasiones.
La electrónica realizará al menos las siguientes funciones:
- Cálculo de x, y de cada emisor de luz visualizado por cada cámara.
Cálculo de X, Y, Z de Cada punto de luz visualizado simultáneamente por ambas cámaras.
Cálculo del Xp, Yp, Zp así como Vpx, Vpy, Vpz del punto relevante unido rígidamente a los anteriores así como un vector perpendicular a la superficie relevante unida a él. - Almacenamiento de la información anterior.
Envío de la información anterior al exterior.
Encendido y apagado de los emisores de luz.
Reconocimiento por correlación de los píxeles de cuadros consecutivos de las secuencias correspondientes a los emisores de luz de otro Dispositivo Localizador colaborador.
Extracción de los datos de la señal luminosa de alta velocidad.
Las cámaras de cualquier subsistema de visión pueden disponer de enfoque controlable y variable, también pueden disponer de Iris y/o zoom controlable y variable.
En una posible realización los medios de localización de Boom pueden quedar integrados en el propio boom.
También, en una posible forma de realización el receptáculo puede estar configurado de manera que queden integrados los propios medios de localización de receptáculo en el propio receptáculo. En las realizaciones anteriormente mostradas algunos de los elementos o partes que la constituyen pueden ser sustituidos por elementos similares actualmente existentes en el avión y a los que se les ha dotado de la nueva funcionalidad específica recogida en esta invención al añadir bien elementos nuevos o nuevas funcionalidades con el fin de obtener las mismas descritas para la totalidad de la presente invención, ahorrando así la instalación en el avión de nuevos dispositivos en la medida de lo posible.
Salvo que se indique lo contrario, todos los elementos técnicos y científicos usados en la presente memoria poseen el significado que habitualmente entiende el experto normal en la técnica a la que pertenece esta invención. En la práctica de la presente invención se pueden usar procedimientos y materiales similares o equivalentes a los descritos en la memoria.
A lo largo de la descripción y de las reivindicaciones las palabras "comprende", "consiste" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
EXPLICACION DE LAS FIGURAS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente.
En la figura 1 , podemos observar una representación simplificada en una primera realización del Sistema de localización del extremo del Boom y de la boca del Receptáculo.
En la figura 2, podemos observar una representación simplificada del Sistema de Acercamiento y Localización del extremo del Boom y de la boca del Receptáculo.
En la figura 3 se muestra una realización alternativa del Sistema de Localización propuesto en la figura 1 . Las figuras 4A, 4B y 4C, representan los tres distintos dispositivos o subsistemas que componen esta invención. La figura 5A representa con más detalle el primero de los dispositivos de esta invención mostrado en la figura 4A.
La figura 5B se muestra un corte transversal del Dispositivo del Receptáculo.
La figura 5C representa un corte transversal de esa parte del receptor.
La figura 5D es una representación cartesiana de los elementos de la figura 5C. La figura 6 representa una nave receptora en el momento en que el boom (15) va a realizar contacto.
La figura 7 representa la imagen que se obtiene del boom cuando el Subsistema de Visión es colocado en la Belly Fairing ubicada en la panza del avión tanquero.
La figura 8 muestra una vista del avión tanquero así como de su boom desplegado.
La figura 9 es una representación cartesiana y esquemática de las ubicaciones de los elementos más importantes que forman parte del Dispositivo del Boom.
La figura 10 es una representación cartesiana del Subsistema de Visión.
En la figura 1 1 viene representada la arquitectura del Subsistema de Visión. La figura 12 representa una caja en la que van incluidos los elementos que forman parte del Dispositivo del Boom.
En la figura 13 se describe la composición del Dispositivo del Receptáculo. En la figura 14 se muestra una representación del Dispositivo Localizador para repostaje. REALIZACIÓN PREFERENTE DE LA INVENCIÓN.
A la vista de las figuras se describe seguidamente un modo de realización preferente de la invención propuesta.
En la figura 1 se muestra una nave nodriza o tanquero (40) provista de un boom (15) que cuenta con una parte extensible (13), en cuyo extremo hay unos primeros emisores de luz (12), mientras que sobre la nave receptora hay dispuestas unos segundos emisores de luz (2), que adicionalmente y de manera complementaria puede contar con un sensor de recepción (22), por otro lado, también sobre el tanquero se disponen unas cámaras (26). En la figura 2 se muestra una realización correspondiente al Sistema de acercamiento y localización del extremo del boom y de la boca de receptáculo, que comprende unos dispositivos localizadores (41) dispuestos sobre la punta del boom (15), otro sobre el receptáculo y otro sobre el tanquero (40), donde cada dispositivo de localizador (41) comprende
- Al menos tres emisores de luz de tipo LED, o Láser
Al menos dos cámaras de visión de alta velocidad
Una electrónica de procesamiento de las coordenadas
Un sensor de luz con su respectiva lente La figura 3 muestra una realización alternativa a la planteada en la figura 1 , donde los medios para la localización del receptáculo empleados consistentes en unos emisores de luz (21), han sido reemplazados por el empleo de alguno de los entre los siguientes medios, que también sirven para la localización del receptáculo (una cámara TOF (42), un emisor láser (43), y un patrón DOE (44))
Las figuras 4A, 4B y 4C representan los tres distintos elementos o Subsistemas que componen el Sistema de localización del extremo del boom y de la boca del receptáculo.
En la figura 4A podemos observar un elemento (5) que se agarra a la nave receptora justamente encima del receptáculo de combustible. Denominado Dispositivo de Receptáculo, tiene forma de "U" ó "V" invertida y provista de una estructura (5) en la se disponen al menos tres luces (2) que están contenidas en su superficie. Este elemento cuenta con un cable de conexión (7) terminado en un conector con el que se une a la parte de control del avión. En la figura 4B se muestra el denominado Dispositivo de Boom, localizado en el extremo del boom (20), consistente esencialmente en un anillo (19) de sujeción y protección y emisores de luz (12) para su localización.
En la figura 4C podemos observar un conjunto de dos cámaras (26) que colocadas en una posición adecuada del tanquero permitirá la visualización y localización de los otros dispositivos de esta invención y que constituye el denominado Subsistema de Visión. Las dos cámaras queda unidas y fijadas mediante un soporte (28), estando provistas cada cámara con sus respectivas lentes (25) y elemento de filtrado (24). La figura 5A representa con más detalle el Dispositivo del Receptáculo en el que puede apreciarse un sensor de recepción (22) colocado sobre la estructura (5) y que permite recibir información en forma de luz procedente del Dispositivo de punta de Boom cuando la punta del boom y el receptáculo se hayan se hayan próximos. Además el Dispositivo del Receptáculo cuenta con una serie de emisores de luz (21), quedando ambos elementos (21) y (22) embutidos en un material transparente o translúcido (23). Bajo el dispositivo del receptáculo se muestra la boca (8) del receptáculo (9) y en la que debe embocar la nozzle del boom (9). En la figura 5B se muestra un corte transversal del dispositivo del receptáculo, donde se aprecia la estructura (5), un material transparente o translúcido (3) que protege al emisor de luz (2) colocada sobre un circuito impreso (4) en el que se haya el resto de la electrónica que lo acompaña. La figura 5C representa una vista transversal de esa parte del receptor, donde se aprecia la estructura (5) del dispositivo del receptáculo provisto con una inclinación similar a la que presentaría en un corte de la nave receptora por la zona del receptáculo, también se aprecian los emisores o reflectores de luz (21) y el extremo (6) de la boca del receptáculo, donde el segmento (b) representa la distancia desde el centro del cierre de esta al puto medio del segmento que une los dos emisores de luz que se encuentran en la zona media del dispositivo, mientras que (a) la distancia del mismo punto central de la boca del receptáculo a la luz superior (21) del dispositivo en un eje ortogonal al eje del mismo receptáculo. Finalmente es el ángulo entre ambos segmentos descritos anteriormente, (a) y (b). La figura 5D es una representación cartesiana de los elementos y descritos más arriba. Los ejes están referidos a un origen local O" y deberán más tarde referirse al origen O localizado en el centro del sensor de imagen de la cámara izquierda como aparece representado en la figura 7. P' es el punto medio entre las luces P2 y P3 y u0, v0 y w0 son versores (vectores de modulo la unidad) en la direcciones de los distintos ejes. El eje 0"P' es el mismo eje del tubo del receptáculo.
La figura 6 representa una nave receptora en el momento en que el boom (15) va a realizar contacto con la boca del receptáculo (8). La vista representa la imagen cuando el Subsistema de Visión está situado en la posición preferida en esta invención colocada en el cono de cola, en ella pueden verse: Aleta del boom (14), parte extensible (13) del boom, luces del dispositivo (12a) del extremo del boom de esta invención colocadas en la parte superior de la pértiga extensible para esta implementación preferida. También puede observarse la boquilla o nozzle (1 1) y la rampa (10) del receptáculo sobre la cual la nozzle se suele deslizar previamente al contacto.
La figura 7 representa la imagen que se obtiene del boom cuando el Sistema de Visión es colocado en la Belly Fairing ubicada en la panza del avión tanquero. En la figura puede apreciarse la boquilla o nozzle (1 1), la parte extensible (13) del boom, la aleta del boom (14) y la parte fija (15) del boom vista desde el a parte inferior del avión tanquero, además se muestra la ubicación (12b) del anillo de iluminación de esta invención cuando el Sistema de Visión es colocado como se ha comentado anteriormente. Ambos puntos de vista, generan imágenes del contacto y cada una con sus propios inconvenientes y ventajas. El dispositivo del Boom podría contener seis o más emisores de luz y de esta forma permitir que el Subsistema de Visión pudiera estar en las dos ubicaciones indicadas (Cono de cola y Belly Fairing) con lo que se obtendrían imágenes complementarias que bien podrían generar una interesante redundancia, muy útil en este tipo de Sistemas.
La figura 8 muestra una vista del avión tanquero así como de su boom desplegado, para indicar las dos posiciones en las que el Subsistema de Visión puede ubicarse. Una primera situación se corresponde a su colocación (preferida) en el cono de cola (18a), mientras que una segunda situación se corresponde a su situación bajo la Belly Fairing (18b), la panza del tanquero. A dichas ubicaciones corresponden como ya se ha comentado distintas implementaciones del anillo de iluminación del boom, que puede disponerse bien en la parte trasera (12a) o bien en la parte delantera (12b) correspondientes a las ubicaciones (18a) y (18b) de las cámaras. Cada una de las cámaras según sea su posicionamiento en el cono de cola (18a) o en la panza del avión (18b) definen unos campos de visión (16) y (17) respectivamente de acuerdo a la ubicación específica.
La figura 9 es una representación cartesiana y esquemática de las ubicaciones de los elementos más importantes que forman parte del dispositivo del boom que consta básicamente de un anillo metálico o elemento de soporte similar, en el que van embutidos al menos tres emisores de luz P1 , P2 y P3, colocados formando un triángulo. El punto P' es el punto medio entre los emisores de luz más exteriores P2 y P3. O' es el origen local de coordenadas elegido. De nuevo deberá haber una traslación para poder referir cualquier punto al origen global colocado en el centro del sensor de imagen de una de las cámaras; u0, v0 y w0 son versores (vectores de modulo la unidad) en la direcciones de los distintos ejes. d2 es la distancia desde el centro de la boca de salida de combustible de la nozzle del boom hasta el origen local O' que se puede determinar conociendo la distancia P'O' que medida en el dispositivo tendrá un valor d1 . v0 es un versor en la dirección del eje del Boom. La figura 10 es una representación cartesiana del Subsistema de Visión. En este dibujo, pueden verse ambas cámaras así como lo que las mismas verían al apuntar a un punto P de espacio. Cada cámara verá el punto con unas coordenadas locales distintas (X1 , Y1 ) y (X2, Y2) en las que el punto aparecerá como punto P1 y P2 respectivamente. La coordenada Z en cada una de las representaciones locales podrá calcularse a partir del ángulo 12 correspondiente a la mitad del FOV (Field Of View) o campo de visión de cada cámara que dependerá de la óptica y resolución de la misma así como del tamaño de su sensor. Hallados los Z1 y Z2, locales del punto para cada cámara se obtendrá la Z, la X y la Y del punto con respecto a un origen de referencia predeterminado. En nuestro caso el centro u origen O que hemos colocado, sin pérdida de generalidad, está en el centro del sensor de la cámara izquierda, tal y como se representa en la figura. Esto nos dará las coordenadas de cualquier punto observado por ambas cámaras respecto a los mismos ejes coordenados y por lo tanto las coordenadas relativas reales entre ellos. En la figura 1 1 viene representada la arquitectura del Subsistema de Visión en la que se incluyen los componentes principales que componen su arquitectura. Una caja exterior preferentemente metálica de aluminio incluye dos cámaras separadas por una distancia de alrededor de medio metro (a mayor distancia, mejor resolución espacial en el eje z). Cada cámara (26) dispone de un sensor y una electrónica de adaptación y lectura del mismo al que se debe anteponer una lente (25) y un filtro (24) para eliminar las longitudes de onda diferentes a aquellas emitidas por los dispositivos de Boom y de Receptáculo. Incluye una electrónica especial (32) basada en FPGA con el fin de obtener resultados en tiempo real donde se realiza un cierto procesado y reconocimiento de imagen y extracción de coordenadas locales xi, yi de los puntos de luz de los dispositivos señalados.
La información de coordenadas de ambas cámaras pasan a un Sistema de Procesamiento (33) donde finalmente las coordenadas X, Y, Z de cada emisor de luz, es obtenida con respecto a un eje de coordenadas cuyo origen se ha tomado en el centro del sensor de la cámara izquierda para mayor facilidad , sin perjuicio de poder elegir cualquier otro.
La figura 12 representa una caja en la que van incluidos los elementos que forman parte del Dispositivo del Boom. Esencialmente está compuesto de unos emisores de luz (38), LEDs en esta implementación preferida, al menos tres, alimentados por sus respectivos drivers (37) que están a su vez manejados por un microcontrolador (36) que a su vez conecta con el Subsistema de Visión a través de un bus de control con su respectiva electrónica de comunicaciones (34). El bus de control estará sincronizado con el Subsistema de Visión para facilitar conseguir la posición de los emisores de luz del mismo. En la figura 13 se describe la composición del Dispositivo del Receptáculo. En él, en esta implementación preferida, un conjunto de LEDs (LED1 , LED 2, LED3, ... LEDn) (38) al menos 3, son alimentados por sus respectivos drivers (37) y estos activados y desactivados por un microcontrolador (36) que será remotamente controlado. Este dispositivo podrá ser encendido o apagado desde la consola de la nave receptora. Adicionalmente un sensor (35) recibirá luz a través de su correspondiente filtro (29) para tras un elemento adaptador de señal (39) proporcionar al microcontrolador (36) la información de pulsos recibidos en el mismo y procedentes del dispositivo del boom. El dispositivo podrá almacenar la información recibida en una memoria no volátil. El microcontrolador, con un algoritmo de procesamiento no solamente controla el encendido de los LEDs sino que además de la información recibida desde el sensor de luz (35) podrá extraer tanto información de la posición del dispositivo respecto al dispositivo del boom como de información de audio que pudiera insertarse en la secuencia de pulsos emitida por este último. Finalmente un bus de comunicaciones permite controlar este dispositivo desde el avión receptor, como ya se ha comentado.
La figura 14 muestra la estructura de un Dispositivo de Localización (41). El dispositivo está encerrado en una caja (0) y consta de un conjunto de al menos tres emisores de luz (2) con sus respectivos difusores (23) alimentados por sus correspondientes drivers (37). Un par de cámaras (26) con sus correspondientes lentes (25) y filtros ópticos de paso banda estrecho (24). Tanto cámaras (26) como emisores de luz son controlados por una electrónica de control y la información de las primeras (26) así como la procedente de un sensor de luz (35) provisto de su filtro óptico paso banda (29) es procesada por una unidad de procesamiento en tiempo real basada en FPGA o electrónica semejante (33, 36, 39). Las cámaras poseen su propia electrónica para el cálculo en tiempo real de las coordenadas de los puntos de luz procedentes de otro Dispositivo de Localización. El dispositivo se comunica con el exterior a través de un bus de comunicaciones (34) y es alimentado por una fuente de energía del avión no representada en el dibujo.
El funcionamiento detallado del Sistema es el siguiente:
Cuando el receptáculo (fig.6.10) colocado en la superficie de la nave receptora de combustible se encuentra en posición de ser vista por el subsistema de dos cámaras (fig.4C) colocado en una posición favorable del tanquero (como puede ser el cono de cola (fig.8-18a) o la belly fairing (fig.8-18b)), entonces también unas cámaras colocadas en el Dispositivo del Receptáculo y mirando en sentido inverso, podrán ver al tanquero y más concretamente al sistema de visión del mismo. Junto a este se han colocado los emisores de luz del tanquero que emitirán desde esa posición su correspondiente patrón que será visualizado por las cámaras junto al Dispositivo del Receptáculo. De esa forma el receptor podrá ubicar al tanquero y acercarse a él para colocarse en la posición de repostaje. (Esta es una de las funcionalidades perseguidas por esta invención).
Antes incluso de alcanzar esa colocación en la posición de repostaje, las luces colocadas en el dispositivo (fig.4A.5) que van sobre dicho receptáculo, o bien distribuidas en otra implementación alternativa, sobre la superficie del avión receptor, empiezan a parpadear con una cadencia correspondiente a un código determinado. Este parpadeo tiene dos modos de funcionamiento o dos funcionalidades particulares, la primera es un parpadeo a una frecuencia fija que coincide con la frecuencia de cuadro de las cámaras y la segunda es una frecuencia diferente de unos 48KHz como valor preferido y que permite envío de información codificada de voz al Dispositivo de Boom el cual, con un filtro óptico adecuado delante de su sensor (fig. 14- 29) consigue eliminar de la señal recibida la luz de información ajena al dispositivo. Es obvio que cuanto más estrecho sea el filtro paso banda y más coherente la luz emitida desde (fig .13- 38) más fácil será eliminar la parte de luz improcedente. El patrón enviado por los emisores de luz permite una ayuda adicional para discriminar qué píxeles de las imágenes obtenidas por las cámaras del Subsistema de Visión colocado en el tanquero corresponden a la iluminación generada por las fuentes de luz del dispositivo del receptáculo. El procesador de imagen (fig.1 1 -32) colocado tras las cámaras, dentro del Subsistema de Visión, realizará una resta de las imágenes de cuadros sucesivos del vídeo para obtener las diferencias entre una imagen y la siguiente y de esta forma poder poner de manifiesto con mayor claridad aquellos puntos que de un cuadro al siguiente han sufrido variación. Estas diferencias se correlacionarán con el código empleado en el parpadeo de las luces para de esa forma facilitar aún más la labor de detección de cada una de las luces colocadas sobre el dispositivo así como para identificar cada una de ellas en ambas cámaras. Recibida la luz procedente de los emisores del dispositivo del receptáculo como ciertas coordenadas en las cámaras del Subsistema de Visión se procederá a calcular las coordenadas de estos emisores mediante una matemática sencilla que permite incluirla en una electrónica y recalcularla en tiempo de cuadro de imagen en (fig.1 1 -33).
De esa manera, a partir de las coordenadas de las luces se obtendrá la ubicación de la boca del receptáculo (fig.5B-5) y del vector ortogonal a esta respecto a unos ejes coordenados referidos al tanquero y más concretamente respecto a una de sus cámaras. (Esta es la segunda funcionalidad importante que se persigue con esta invención).
Al mismo tiempo, las luces colocadas sobre el boom, cercanas a la nozzle (fig.4B-12) ó (fig .6- 12a) ó (fig.8-12b) se harán parpadear de forma similar, aunque no idéntica, a las del dispositivo del receptáculo y por un procedimiento completamente análogo se podrá determinar la posición de las mismas respecto al mismo Sistema de coordenadas del tanquero. A partir de esa posición podremos determinar con exactitud las coordenadas del extremo de la nozzle por la que sale el combustible así como del vector ortogonal a la sección de salida de la misma. (Esta es la tercera funcionalidad importante que persigue esta invención).
Teníamos en un principio la posición del tanquero desde el receptor y ahora tenemos la posición relativa de la boca del receptáculo y de la salida por punta de boom y ambos referidos a los mismos ejes de referencia del tanquero. Mediante unas leyes de control que bien gobiernen o bien ayuden en el movimiento tanto del boom por un lado como también del propio avión receptor, se podrá implementar un guiado semiautomático o incluso automático que mejore la operativa de la operación. Cuando la conexión se produzca, ambos conjuntos de coordenadas deberán coincidir y será el momento de realizar los ajustes que se consideren oportunos ya que en otras implementaciones de esta invención, el cálculo de la posición de la boca del receptáculo pudiera no ser tan obvia como la correspondiente a la implementación preferida de esta ya que los emisores de luz podrían distribuirse a lo largo de la superficie del receptor. Esto pudiera revestir otro tipo de ventajas. En ese momento de contacto real la información de la posición de las luces es exactamente la deseada en el contacto y es muy interesante poder almacenarla, cosa que esta invención realiza gracias a una comunicación que se establece entre el dispositivo del receptáculo del avión receptor y el Subsistema de Visión del tanquero. El receptor emplea la luz de sus emisores como portadora para enviar al propio Subsistema de Visión información digital codificada. Al mismo tiempo, el dispositivo del Boom puede enviar información, no solamente al Subsistema de Visión, sino también al dispositivo del receptáculo donde el sensor de luz colocado en el mismo permitirá cerrar el lazo de comunicación entre ambos aviones. El avión receptor podrá almacenar la información de situación en el contacto y otras informaciones relevantes auxiliares que pudieran ser interesantes para el tanquero en relación con el mismo.
Una vez almacenada esa posición, y en una futura conexión entre tanquero y el mismo receptor, este último podrá indicarle al tanquero cual es la posición en que debiera estar el receptáculo para que se produzca la conexión exacta. Además de ese intercambio de información de ubicación ese canal puede emplearse para comunicaciones habladas evitando así cualquier señal de radio que pudiera detectarse con más facilidad que una señal óptica. Otra funcionalidad importante de la invención es la posibilidad de realizar una comunicación de voz dúplex entre receptor y tanquero. O sea entre el Dispositivo del Receptáculo y el Dispositivo del Boom. Ambos tienen dos modos de encender sus respectivos emisores de luz. Una para enviar la posición y otra para enviar y recibir una señal de varias decenas de khz, suficiente para portar una señal de voz. Y esto en ambas direcciones si ambos dispositivos se dotan de los respectivos sensores de luz.
Por lo tanto, las etapas que tienen lugar para el correcto funcionamiento del Sistema son: Visualización desde las cámaras del Dispositivo del Receptáculo de las luces colocadas en el tanquero que parpadean generando patrones fijos a la frecuencia de cuadro de estas cámaras.
Determinación de la posición del tanquero respecto a las cámaras del Dispositivo del Receptáculo para facilitar el acercamiento del avión receptor.
Posicionamiento, de la nave receptora respecto de la tanquera en una posición para repostaje. En esta posición el receptor puede ser visto por las cámaras del tanquero. Parpadeo de las luces dispuestas sobre el Dispositivo Receptor con una cadencia determinada que presenta dos modos de funcionamiento, el primero es un parpadeo a una frecuencia fija, que coincide con la frecuencia de cuadro de las cámaras con la que realiza una emisión de patrones y la segunda es una frecuencia diferente de unos 48KHz como valor preferido y que permite envío de información codificada de voz al Dispositivo del Boom.
Determinación de la posición de la boca del Receptáculo respecto al tanquero:
o Eliminación en las cámaras de la imagen de cuadro de la luz ajena al dispositivo por medio de los filtros ópticos con los que cuentan las cámaras, o Resta de las imágenes de cuadros sucesivos del vídeo por parte de un procesador de imágenes para obtener las diferencias entre una imagen y la siguiente y de esta forma poder poner de manifiesto con mayor claridad aquellos puntos que de un cuadro al siguiente han sufrido variación
o Correlación de las diferencias con el código o patrón empleado en el parpadeo de las luces para determinar las luces que son pertinentes,
o Cálculo de las coordenadas de estos emisores mediante una matemática sencilla que permite incluirla en una electrónica y recalcularla en tiempo real. Al mismo tiempo que tienen lugar las operaciones anteriores, las luces colocadas sobre el boom, cercanas a la nozzle se harán parpadear de forma similar y con un tratamiento similar al anterior para el Dispositivo del Receptáculo. Con esto podrán emitir igualmente información no sólo de posición sino también de voz.
Determinación de la posición de las luces del boom respecto al mismo Sistema de coordenadas del tanquero.
Determinar con exactitud las coordenadas del extremo de la nozzle respecto al tanquero.
Determinación de las posiciones relativas entre ambos puntos significativos: Punta de Boom Y Boca de Receptáculo así como de los vectores ortogonales a sus superficies.
Calibración : Determinación de la posición relativa de contacto y almacenamiento de la misma En el momento del contacto entre la nozzle del boom y el receptáculo, el conjunto de cámaras (que estará colocado preferentemente en la parte inferior del cono de cola del tanquero, aunque también podría colocarse en la parte inferior de su cuerpo principal Belly Fairing o distribuido en estas y más partes del avión), podrá ver al conjunto de luces del dispositivo objeto de esta invención desde la distancia más corta posible (que es la del momento del contacto), principalmente el dispositivo del Receptáculo que se coloca sobre la superficie del avión receptor. Dicho dispositivo puede tener la forma aquí presentada como implementación preferente pero también podría distribuirse en varias piezas dispuestas sobre la superficie del receptor. Incluso podría sustituirse dicho dispositivo por un Sistema que obtenga la posición del receptáculo por métodos alternativos. La primera tarea de esta invención es obtener la posición del punto que se halla en la boca del receptáculo junto con un vector perpendicular a la misma. De modo que a partir de la información recabada por el Subsistema de Visión sobre posición de emisores de luz o métodos y elementos alternativos, son esos seis parámetros los que debemos obtener. Por lo tanto, en el momento de contacto es un instante seguro en el que verdaderamente conocemos la posición relativa entre la información obtenida del Dispositivo del Receptáculo, en cualquiera de sus implementaciones, y la boca del receptáculo y su vector ortogonal. En ese momento las cámaras podrán determinar con la máxima exactitud dónde debe estar colocada la nozzle respecto a ese conjunto de luces u otros elementos, y de esto determinar con la misma precisión la ubicación del receptáculo respecto de las mismas. Esta información es fundamental y permitirá el calibrado de todo el Sistema. Por eso en ese momento de contacto, la información de la ubicación en la que está el receptáculo tiene total precisión y debe pasar desde el tanquero al avión receptor que la almacenará para proporcionársela a otros tanqueros. Recepción de la información de ubicación
En el momento del contacto, como ya se ha comentado, se produce una situación muy favorable de distancia entre la punta del boom y el receptáculo del avión receptor.
En el dispositivo objeto de esta invención que se coloca junto a dicho receptáculo hay al menos un sensor receptor de luz que recibirá la información que desde la nozzle del boom se enviará en forma de luz en una implementación preferida. De esta forma el receptor podrá recibir la información obtenida en el tanquero en el momento del contacto y almacenarla para ser enviada por su elemento o elementos activos en un próximo contacto cuando otro tanquero así se la solicite. Además el mismo tanquero puede almacenar esa información para futuros contactos, ya que por ser de poco volumen puede mantenerse en una pequeña base de datos para todos aquellos receptores con los que se haya realizado contacto. No sólo se pueden almacenar los datos de contacto sino que el receptáculo puede transmitirle también al tanquero otros datos de combustible, etc. para ser almacenados en dicha base de datos. Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, se hace constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a título de ejemplo, y a las cuales alcanzará igualmente la protección que se recaba, siempre que no altere, cambie o modifique su principio fundamental.

Claims

REIVINDICACIONES
1 . - Sistema de localización del extremo del boom y del receptáculo de repostaje en una operación de repostaje en pleno vuelo desde un tanquero provisto de un boom (15) y una nave receptora caracterizado por que comprende:
Unos Medios de Localización de la posición de la boca de entrada del combustible que está en el interior receptáculo dispuesto en la nave receptora que comprenden al menos un Subsistema de Visión dispuesto sobre el tanquero.
- Unos Medios de Localización de la posición de la punta del boom que comprenden unos emisores de luz, colocados sobre la punta del boom, en combinación con el Subsistema de Visión dispuesto sobre el tanquero.
Unos Medios de Procesamiento en los que a partir de las imágenes obtenidas de los Medios de Localización permiten la exacta determinación de sus posiciones e inclinaciones respecto a un sistema de coordenadas común.
2. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 1 caracterizado por que los Medios de Localización de la posición de la boca de entrada del combustible consisten en una serie de LEDs, láseres o emisores de luz dispuestos sobre la nave receptora alojados en el Dispositivo del Receptáculo en combinación con u nas cámaras colocadas sobre el avión tanquero,
3. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 2 caracterizado por que el Dispositivo de Receptáculo consiste en una banda de acero o titanio o teflón o kevlar, semi-hueca que incluye al menos cuatro zonas transparentes de material como un grafeno, óxido de aluminio o similar, dentro de las cuales van embutidas elementos que proporcionan luz.
4. - Sistema de Localización del extremo del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 3 caracterizado por que en una de las zonas transparentes se aloja un sensor que recibe y detecta luz de otro dispositivo.
5. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 1 caracterizado por que los Medios de Localización de la posición del Receptor consisten en una cámara TOF localizada en el tanquero, que consta de unos medios de iluminación y un sensor que mide el tiempo que tarda la luz en volver una vez emitida, junto con un sistema de procesamiento para bien reconocer la posición del receptáculo bien para realizar una comparación con un modelo 3D del receptor y así igualmente determinar la posición de la entrada del receptáculo.
6. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 1 caracterizado por que los Medios de Localización de la posición del Receptor consisten en un emisor láser colocado sobe el tanquero con una lente DOE o lente de difracción que genera un patrón conocido de luz estructurada sobre la superficie del receptor y que con un Sistema de Procesamiento permitirá determinar la correspondencia entre los puntos de la matriz y los mismos puntos en la imagen obtenida por las cámaras para por medios de telemetría básica obtener igualmente las distancias y con estas realizar un reconocimiento de imagen o comparar con un modelo 3D del propio receptor para obtener una información equivalente a aquella obtenida mediante el Dispositivo del Receptáculo
7. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 1 caracterizado por que los Medios de Localización de la posición del boom consisten en un Dispositivo de Boom que comprende una caja que mediante una abrazadera o similar, va sujeto a la pértiga o barra extensible del boom, dicha caja alberga emisores de luz de estrecho rango de longitudes de onda, al menos tres, de pequeño tamaño como son los leds e incluyen cada uno su difusor donde dichos emisores de luz están alimentados por sus respectivos drivers que están conectados a una fuente de alimentación mediante una electrónica de control y todo el Sistema se controla remotamente y para generar unos patrones de luz.
8. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según la reivindicación 3 y 7 caracterizado por que el Subsistema de Visión comprende al menos, dos cámaras sensibles a la longitud de onda emitida por los Dispositivos de Boom y Receptáculo, colocadas en un soporte rígido que las mantiene a una distancia fija y cuentan con un filtro óptico paso banda y su respectiva lente de enfoque tras el filtro y la electrónica para el procesado y extracción de, tanto de la imagen como de la información relativa a las coordenadas (x,y) de cada punto de luz emitido por cada dispositivo de los anteriores.
9. - Sistema de localización como el descrito en las reivindicaciones precedentes, caracterizado por que los emisores de luz son los extremos terminales de una fibra óptica que transporta la luz desde unos leds, láseres o emisores en general, separados del extremo emisor de luz de la fibra óptica.
10. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según cualquiera de las reivindicaciones anteriores caracterizado por que el al menos subsistema de Visión dispone de cámaras de enfoque controlable y variable.
1 1 . - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según cualquiera de las reivindicaciones anteriores 1 -9 caracterizado por que el al menos subsistema de Visión comprende cámaras de Iris controlable y variable.
12. - Sistema de Localización del extremo del Boom y del Receptáculo de repostaje, según cualquiera de las reivindicaciones anteriores 1 -9 caracterizado por que el al menos subsistema de Visión comprende cámaras de zoom controlable y variable.
13. - Un Boom o dispositivo de repostaje para el sistema de localización según cualquiera de las reivindicaciones 1 - 1 2 caracterizado po r que el Dispositivo de Localización de Boom ha sido integrado en el propio boom.
14. - Un Receptáculo para un avión receptor para el sistema de localización según cualquiera de las reivindicaciones anteriores 1 -12 caracterizado por que el Dispositivo de local ización de boom o dispositivo de repostaje ha sido integrado en el propio receptáculo..
15. - Sistema de Acercamiento y Localización del extremo del Boom y del Receptáculo de repostaje en una operación de repostaje en pleno vuelo desde una nave receptora hacia un tanquero provisto de un boom (15) caracterizado por que comprende tres Dispositivos Localizadores uno dispuesto sobre la nave receptora, otro bajo el tanquero y otro sobre la punta del boom, donde cada dispositivo de localización comprende:
Al menos tres emisores de luz de tipo LED, o Láser, o bien una combinación de ambos, cada uno con un difusor. Cada emisor de luz estará alimentado por su respectivo driver, y todos comandados por una electrónica de control.
- Al menos dos cámaras de visión de alta velocidad (>30fps), con sus respectivas lentes y filtros ópticos de paso banda estrecha, sintonizados con la luz emitida por otro dispositivo colaborador. Las cámaras dispondrán de una electrónica de alta velocidad del tipo FPGA o similar para determinar en tiempo real las coordenadas de los puntos de luz emitidos por otro Dispositivo Localizador colaborador.
Un sensor de luz con su respectiva lente capaz de detectar la luz de otro Dispositivo Localizador colaborador cuando se halla cerca.
Una electrónica de procesamiento y guarda de las coordenadas proporcionadas por ambas cámaras para obtener las coordenadas relativas de cada emisor respecto a una de las cámaras. Además con el fin de proporcionar esta información al resto del avión para su uso en ayudar al repostaje existirá un bus de comunicación de toda la electrónica tanto de control como de reconocimiento/procesamiento/almacenamientodeldispositivo.
16.- Procedimiento de Acercamiento y Localización del extremo del Boom y de la boca de Receptáculo de repostaje en una operación de repostaje en pleno vuelo desde un tanquero provisto de un boom (15) a una nave receptora según el sistema de la reivindicación 15 caracterizado por que comprende las etapas de:
Visualización desde las cámaras del Dispositivo del Receptáculo de las luces colocadas en el tanquero que parpadean generando patrones fijos a la frecuencia de cuadro de estas cámaras.
- Determinación de la posición del tanquero respecto a las cámaras del
Dispositivo del Receptáculo para facilitar el acercamiento del avión receptor.
Posicionamiento, de la nave receptora respecto de la tanquera en una posición para repostaje. En esta posición el receptor puede ser visto por las cámaras del tanquero. Parpadeo de las luces dispuestas sobre el Dispositivo Receptor con una cadencia determinada que presenta dos modos de funcionamiento, el primero es un parpadeo a una frecuencia fija, que coincide con la frecuencia de cuadro de las cámaras con la que realiza una emisión de patrones y la segunda es una frecuencia diferente de unos 48KHz como valor preferido y que permite envío de información codificada de voz al Dispositivo del Boom.
- Determinación de la posición de la boca del Receptáculo respecto al tanquero:
o Eliminación en las cámaras de la imagen de cuadro de la luz ajena al dispositivo por medio de los filtros ópticos con los que cuentan las cámaras.
o Resta de las imágenes de cuadros sucesivos del vídeo por parte de un procesador de imágenes para obtener las diferencias entre una imagen y la siguiente y de esta forma poder poner de manifiesto con mayor claridad aquellos puntos que de un cuadro al siguiente han sufrido variación
o Correlación de las diferencias con el código o patrón empleado en el parpadeo de las luces para determinar las luces que son pertinentes.
o Cálculo de las coordenadas de estos emisores mediante una matemática sencilla que permite incluirla en una electrónica y recalcularla en tiempo real. Al mismo tiempo que tienen lugar las operaciones anteriores, las luces colocadas sobre el boom, cercanas a la nozzle se harán parpadear de forma similar y con un tratamiento similar al anterior para el Dispositivo del Receptáculo. Con esto podrán emitir igualmente Información no sólo de posición sino también de voz. Determinación de la posición de las luces del boom respecto al mismo Sistema de coordenadas del tanquero.
Determinar con exactitud las coordenadas del extremo de la nozzle respecto al tanquero.
Determinación de las posiciones relativas entre ambos puntos significativos: Punta de Boom Y Boca de Receptáculo así como de los vectores ortogonales a sus superficies.
PCT/ES2016/070713 2015-10-09 2016-10-06 Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero WO2017051057A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680070154.5A CN108369423A (zh) 2015-10-09 2016-10-06 用于将飞桁端部、加油容器口及加油机的位置进行定位的系统
AU2016328886A AU2016328886B2 (en) 2015-10-09 2016-10-06 System for locating the position of the end of the boom, the mouth of the refuelling vessel and the tanker
US15/767,134 US11414207B2 (en) 2015-10-09 2016-10-06 System for locating the position of the end of the boom, the mouth of the refuelling vessel and the tanker
EP16848198.4A EP3361346B1 (en) 2015-10-09 2016-10-06 System for locating the position of the end of the boom, the mouth of the refuelling vessel and the tanker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531460A ES2584231B2 (es) 2015-10-09 2015-10-09 Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero
ES201531460 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017051057A1 true WO2017051057A1 (es) 2017-03-30

Family

ID=56940479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070713 WO2017051057A1 (es) 2015-10-09 2016-10-06 Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero

Country Status (7)

Country Link
US (1) US11414207B2 (es)
EP (1) EP3361346B1 (es)
CN (1) CN108369423A (es)
AU (1) AU2016328886B2 (es)
ES (1) ES2584231B2 (es)
SA (1) SA518391360B1 (es)
WO (1) WO2017051057A1 (es)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2584554B2 (es) * 2015-11-30 2017-06-13 Defensya Ingeniería Internacional, S.L. Sistema de detección de punta de la pértiga y boca de receptáculo, automatización progresiva del repostaje aéreo con botalón y procedimiento de repostaje
ES2603430B2 (es) * 2016-04-18 2017-10-11 Defensya Ingeniería Internacional, S.L. Sistema de detección y procedimiento de contacto de punta del botalón volador y boca del receptáculo para operaciones de repostaje aéreo con botalón
US11505330B2 (en) * 2016-08-20 2022-11-22 Modern Technology Solutions, Inc. Refueling system and systems with end effectors
US11745894B2 (en) * 2016-08-20 2023-09-05 Modern Technology Solutions, Inc. Vehicle refueling and recharging
JP6904208B2 (ja) * 2017-10-10 2021-07-14 トヨタ自動車株式会社 軸ずれ判定装置
US10632622B2 (en) * 2017-12-27 2020-04-28 National Chung Shan Institute Of Science And Technology Error compensation device and error compensation method
ES2728787B2 (es) * 2018-04-25 2021-02-09 Defensya Ingenieria Int S L Sistema y procedimiento para crear, modular y detectar sombras en sistemas con control basado en un sistema de visualizacion remota
JP2022150929A (ja) * 2021-03-26 2022-10-07 本田技研工業株式会社 軸ずれ推定装置
US12077314B1 (en) 2021-04-08 2024-09-03 Onstation Corporation Transforming aircraft using low-cost attritable aircraft modified with adaptive suites
US12077313B1 (en) 2021-05-28 2024-09-03 Onstation Corporation Low-cost attritable aircraft modified with adaptive suites

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025193A (en) * 1974-02-11 1977-05-24 The Boeing Company Apparatus suitable for use in orienting aircraft in-flight for refueling or other purposes
US5530650A (en) * 1992-10-28 1996-06-25 Mcdonnell Douglas Corp. Computer imaging system and method for remote in-flight aircraft refueling
WO2001002875A2 (en) * 1999-06-21 2001-01-11 Lockheed Martin Corporation System and method for locating and maintaining objects in free space
US20030205643A1 (en) * 2002-05-01 2003-11-06 Von Thal German Boom load alleviation using visual means
US20030209633A1 (en) * 2002-05-10 2003-11-13 Thal German Von Distance measuring using passive visual means
US6966525B1 (en) * 2004-06-28 2005-11-22 The Boeing Company In-flight refueling system, alignment system, and method for automatic alignment and engagement of an in-flight refueling boom
US20120261516A1 (en) * 2011-04-15 2012-10-18 Patrick Gilliland Ladar sensor for landing, docking and approach
EP2879312A1 (en) * 2013-11-29 2015-06-03 EADS Construcciones Aeronauticas S.A. A communication system for managing a flying operation involving two or more aircraft

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1605307A (es) * 1964-06-23 1974-08-02
GB2237251A (en) * 1989-10-27 1991-05-01 Plessey Co Plc In-flight refueling apparatus
FR2705082B1 (fr) * 1993-05-12 1995-08-04 Aerospatiale Système de ravitaillement en vol.
US5906336A (en) * 1997-11-14 1999-05-25 Eckstein; Donald Method and apparatus for temporarily interconnecting an unmanned aerial vehicle
US6604711B1 (en) * 2000-11-20 2003-08-12 Sargent Fletcher, Inc. Autonomous system for the aerial refueling or decontamination of unmanned airborne vehicles
CA2373669A1 (en) * 2002-02-27 2003-08-27 Indal Technologies Inc. Imaging system for a passenger bridge of the like for docking automatically with an aircraft
US6926049B1 (en) * 2002-08-23 2005-08-09 Uav Refueling Inc. Hose-and-drogue in-flight refueling system
US7427758B2 (en) * 2003-05-28 2008-09-23 Opto-Knowledge Systems, Inc. Cryogenically cooled adjustable apertures for infra-red cameras
US7301510B2 (en) * 2003-07-16 2007-11-27 The Boeing Company Methods and apparatus for reducing frame violations in a stereoscopic display
US7562847B2 (en) * 2004-07-12 2009-07-21 Parker-Hannifin Corporation Autonomous in-flight refueling system
US6889941B1 (en) * 2004-07-15 2005-05-10 Rockwell Collins Aircraft formation/refueling guidance system
US7097139B2 (en) * 2004-07-22 2006-08-29 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
EP1789315A2 (en) * 2004-07-29 2007-05-30 Charles W. Bernard System and method for remote control of interdiction aircraft
US7137598B2 (en) * 2004-08-26 2006-11-21 The Boeing Company In-flight refueling system, sensor system and method for damping oscillations in in-flight refueling system components
US7681839B2 (en) * 2005-02-25 2010-03-23 Smiths Aerospace Llc Optical tracking system for refueling
US7188807B2 (en) * 2005-03-11 2007-03-13 The Boeing Company Refueling booms with multiple couplings and associated methods and systems
US20060238441A1 (en) * 2005-04-25 2006-10-26 The Boeing Company Method and apparatus for displaying a stereoscopic image
US7533850B2 (en) * 2005-06-09 2009-05-19 The Boeing Company Fittings with redundant seals for aircraft fuel lines, fuel tanks, and other systems
US7219857B2 (en) * 2005-06-20 2007-05-22 The Boeing Company Controllable refueling drogues and associated systems and methods
US9090354B2 (en) * 2006-03-02 2015-07-28 The Boeing Company System and method for identifying a receiving aircraft during airborne fueling
WO2008083701A1 (de) * 2006-12-22 2008-07-17 Kulicke & Soffa Die Bonding Gmbh Verfahren zum kalibrieren der x-y positionierung eines positionierwerkzeugs, sowie vorrichtung mit einem derartigen positionierwerkzeug
US7850121B2 (en) * 2007-10-12 2010-12-14 The Boeing Company Enhanced ruddevator for improved air refueling boom flight control
EP2216247A4 (en) * 2007-11-19 2013-08-14 Eads Constr Aeronauticas Sa RETRACTABLE FUEL SUPPLY PIPE HAVING REINFORCING LIFTING MEANS
US7980512B1 (en) * 2008-06-13 2011-07-19 The Boeing Company System and method for displaying aerial refueling symbology
US8567723B2 (en) * 2009-04-08 2013-10-29 The Boeing Company Automated receiver aircraft identification (ARAI) for in-flight refueling
CN101863308A (zh) * 2010-03-15 2010-10-20 王雪松 空中加油装置
EP2570841B1 (en) * 2010-04-20 2016-04-13 Airbus Defence and Space SA System for night vision from distant observation places
US20110261188A1 (en) * 2010-04-23 2011-10-27 Adarve Lozano Alberto System for providing night vision at low visibility conditions
US8579233B2 (en) * 2010-08-26 2013-11-12 The Boeing Company Pivotable aerial refueling boom and method therefor
US9881432B2 (en) * 2010-10-18 2018-01-30 Zonar Systems, Inc. Method and apparatus for an automated fuel authorization program for fuel terminals using a camera as part of the authorization process
DE102011102279A1 (de) * 2011-05-23 2013-08-29 Airbus Operations Gmbh Flugzeug mit einer Betankungseinrichtung sowie Verfahren zur Bahnführung eines Flugzeugs bei der Betankung desselben
US9150311B2 (en) * 2012-01-04 2015-10-06 Israel Aerospace Industries Ltd. Systems and methods for air vehicles
SG2013039482A (en) * 2013-05-21 2014-12-30 Singapore Tech Aerospace Ltd A system and method for transferring fuel in flight from a tanker aircraft to multiple receiver aircraft
US9284061B2 (en) * 2013-08-06 2016-03-15 The Boeing Company Multipurpose flying boom
CN103557792B (zh) * 2013-11-12 2015-10-28 中国科学院自动化研究所 一种空中加油锥套目标的视觉跟踪与位置测量方法
US20150206439A1 (en) * 2014-01-20 2015-07-23 Gulfstream Aerospace Corporation Ground vehicle warning to indicate presence of an obstacle near an aircraft
CN104133480B (zh) * 2014-04-17 2017-02-15 中国航空工业集团公司沈阳飞机设计研究所 一种基于机器视觉的空中受油引导控制方法
CN103995538B (zh) * 2014-05-12 2017-01-11 中国航空工业集团公司沈阳飞机设计研究所 一种基于图像识别的空中受油控制方法
CN104180808B (zh) * 2014-08-05 2017-02-15 南京航空航天大学 一种用于自主空中加油的圆形锥套视觉位姿解算方法
US9878777B2 (en) * 2016-05-27 2018-01-30 The Boeing Company Methods of dynamically controlling airflow behind a carrier aircraft to redirect air flow during an in-flight recovery of an unmanned aerial vehicle and an apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025193A (en) * 1974-02-11 1977-05-24 The Boeing Company Apparatus suitable for use in orienting aircraft in-flight for refueling or other purposes
US5530650A (en) * 1992-10-28 1996-06-25 Mcdonnell Douglas Corp. Computer imaging system and method for remote in-flight aircraft refueling
WO2001002875A2 (en) * 1999-06-21 2001-01-11 Lockheed Martin Corporation System and method for locating and maintaining objects in free space
US20030205643A1 (en) * 2002-05-01 2003-11-06 Von Thal German Boom load alleviation using visual means
US20030209633A1 (en) * 2002-05-10 2003-11-13 Thal German Von Distance measuring using passive visual means
US6966525B1 (en) * 2004-06-28 2005-11-22 The Boeing Company In-flight refueling system, alignment system, and method for automatic alignment and engagement of an in-flight refueling boom
US20120261516A1 (en) * 2011-04-15 2012-10-18 Patrick Gilliland Ladar sensor for landing, docking and approach
EP2879312A1 (en) * 2013-11-29 2015-06-03 EADS Construcciones Aeronauticas S.A. A communication system for managing a flying operation involving two or more aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3361346A4 *

Also Published As

Publication number Publication date
ES2584231B2 (es) 2017-06-02
US11414207B2 (en) 2022-08-16
US20190071188A1 (en) 2019-03-07
EP3361346A1 (en) 2018-08-15
EP3361346A4 (en) 2019-04-24
ES2584231A1 (es) 2016-09-26
SA518391360B1 (ar) 2021-10-02
EP3361346B1 (en) 2021-04-07
AU2016328886A1 (en) 2018-04-19
AU2016328886B2 (en) 2020-08-06
CN108369423A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2017051057A1 (es) Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero
ES2584554B2 (es) Sistema de detección de punta de la pértiga y boca de receptáculo, automatización progresiva del repostaje aéreo con botalón y procedimiento de repostaje
ES2627017T3 (es) Procedimiento y sistema para facilitar el aterrizaje autónomo de vehículos aéreos sobre una superficie
JP5775354B2 (ja) 離着陸ターゲット装置及び自動離着陸システム
ES2879685T3 (es) Pantalla de marcador láser dinámico para dispositivo de puntería
ES2786748T3 (es) Método para llevar a cabo al menos un proceso de suministro de energía entre una unidad de suministro de energía y al menos un automóvil al que se va a suministrar energía
ES2646169T3 (es) Aparato de ayuda a la conducción para vehículo
ES2603430B2 (es) Sistema de detección y procedimiento de contacto de punta del botalón volador y boca del receptáculo para operaciones de repostaje aéreo con botalón
ES2601082T3 (es) Sistema y método de pilotaje automático para repostaje en vuelo de un avión, y avión que incluye dicho sistema
ES2975079T3 (es) Dispositivo visual para la designación de objetivos y procedimiento de designación de objetivo usando dicho dispositivo
KR102013943B1 (ko) 등명기
ES2848078T3 (es) Dispositivo de visión nocturna
KR101914179B1 (ko) 무인비행체의 충전위치 탐지 장치
GB2529442A (en) Illumination system
ES2580012T3 (es) Medidor de desviación con imágenes de infrarrojos y sistema de puntería y de seguimiento automático de blanco
CN101726845A (zh) 一种多模式观察潜望镜
ES2806391T3 (es) Procedimiento para la determinación de los datos de posición de un objeto objetivo en un sistema de referencia y procedimiento para el guiado de una aeronave configurada preferentemente como misil
CN204341408U (zh) 一种可同步测量高度的航拍装置
ES2326064B1 (es) Dispositivo visor accesorio para armas de fuego.
ES2396751T3 (es) Sistema de iluminación para operaciones de repostaje en vuelo
KR20200037539A (ko) 레저 활동 보조용 수중 드론 시스템
WO2017178683A1 (es) Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d
KR20150011387A (ko) 광원을 조절하기 위한 방법 및 상기 방법을 실시하기 위한 장치
ES1204716U (es) Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3D
JP2008290652A (ja) 機体移動用監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016328886

Country of ref document: AU

Date of ref document: 20161006

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016848198

Country of ref document: EP