WO2017178683A1 - Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d - Google Patents

Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d Download PDF

Info

Publication number
WO2017178683A1
WO2017178683A1 PCT/ES2017/070226 ES2017070226W WO2017178683A1 WO 2017178683 A1 WO2017178683 A1 WO 2017178683A1 ES 2017070226 W ES2017070226 W ES 2017070226W WO 2017178683 A1 WO2017178683 A1 WO 2017178683A1
Authority
WO
WIPO (PCT)
Prior art keywords
cameras
pair
interest
support
images
Prior art date
Application number
PCT/ES2017/070226
Other languages
English (en)
French (fr)
Inventor
Alberto Adarve Lozano
Original Assignee
Defensya Ingeniería Internacional, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Defensya Ingeniería Internacional, S.L. filed Critical Defensya Ingeniería Internacional, S.L.
Publication of WO2017178683A1 publication Critical patent/WO2017178683A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight

Definitions

  • the object of the present invention is, on the one hand, a system of double set of 3D cameras to obtain an enlarged image of the sector of interest of the work scene, and, on the other hand, the procedure to obtain said augmented image, being of application in control operations based on 3D images, and more particularly in control operations for in-flight refueling with flying boom.
  • Air refueling operations can be classified essentially into two main types that are: 1 .- With hose and basket and 2. - With flying boom, called “flying Boom” in the English literature.
  • a boom is defined as that part of the refueling device, consisting of a ball-and-socket joint, from which hangs a hollow, elongated and rigid casing and from which a pole or internal part can be extracted or retracted, also rigid, at the end of which is the nozzle.
  • This nozzle is the one that finally dispenses the fuel, after connecting to the intake receptacle, which is in the receiving plane, after opening the gate that closes the fuel passage.
  • 3D systems consist of a simple pair of cameras, called left and right, that could be equipped or not, with an optical zoom, which allows them to improve the resolution of the image obtained.
  • this could result in the point of interest of the operation being outside the vision area.
  • they are provided with a mechanism of vertical and horizontal movement for their aiming, the result may be that when making said zoom and pointing, you lose sight of the area of interest, because the objects, when moving, are have left that area.
  • the object of the present invention solves that problem while providing a new ability to illuminate the area of interest, with sufficient intensity to eliminate shadows, since the light diffusion amplitude of the focus used can be reduced depending on the field of vision of the cameras and by virtue of the aiming of the same ones, from which this focus also benefits.
  • the intensity per unit of surface increases, which allows it to compete with the light emitted by the sun (or the moon) in certain wavelengths.
  • the fact of being able to eliminate the shadows of the scene of interest allows a treatment of the images more simple and more robust and safe. At the same time, this system allows the entire work scenario to be monitored without ever losing the overall vision of it.
  • CN10255591 1.
  • three-dimensional closed-circuit vision is described which can be used for remote viewing in front of a motor vehicle (a steam mast or an aerodynamic profile of the airplane), so that the occurrence of accidents is reduced.
  • an elevation-positioning method and intelligent elevation vision system comprising two video cameras (C1, C2) mounted on each side of the boom of the crane, respectively, with co-operation marks (P1). , P2) arranged on the hook and the object to be hoisted respectively.
  • the invention allows to reduce the work force of the operator to a great extent and improves the working efficiency.
  • JPH01272908 discloses a system to ensure the safety of workers and to take an accurate measurement in a short period of time by analyzing stereoscopic photographs that are taken by two cameras installed in fixed positions at sea by a drawing device analytic connected to a computer.
  • the 3D system object of this invention is composed of two pairs of cameras, paired two by two in terms of their lenses, fields of vision, focal length, pointing, etc.
  • the cameras of the first pair point to the center of the work scenario, where the operation will take place.
  • the cameras of the second pair have the capacity to move horizontally and vertically thanks to mechanical actuators that move them, keeping the same aiming in both.
  • This pointing is determined and controlled by the result of a processing of the images obtained by the first pair.
  • the consequence is that we have two 3D views of the work area: A general one, which covers the entire area of possible work and a partial one with a reduced field of view that after a processing of the images of the first, points to the core of maximum interest of the operation, with improved resolution, lighting and quality.
  • the object of this invention comprises all these capabilities and by means of an actuator mechanism it manages to move two of the cameras to point at a certain point, as well as a light source associated with them. It provides, in short, a 3D view of the entire work scenario and another 3D view of the part of this scenario that is of the highest interest, with increased quality and improved lighting.
  • the system comprises:
  • a first support which can fulfill the protection function of the elements it houses, as a box.
  • a first pair of cameras for a 3D vision which point to the same point of our work scenario, at a certain distance between them with a fixed focus optics and a variable iris without loss of generality, as well as optical filters that complement them .
  • a second pair of cameras for a 3D vision at a distance between them lower than that between the previous ones with a also fixed optics and variable iris that can be moved by means of actuators, which in this preferred implementation can be piezoelectric. Also both with their respective optical filters.
  • the first pair of cameras is arranged on a first support, while the second pair of cameras is disposed on a second support which, by means of mechanical actuators, allows a relative displacement of the second support with respect to the first support in a vertical and horizontal direction.
  • the system also has an electronic system that includes control, processing and communication subsystems and the electronics are distributed among the different elements of the system.
  • optical filters can be added, related to the wavelengths of the light emitters to improve the visibility thereof.
  • the system can also have a light-emitting light integral with the second pair of cameras and pointing to the same place you are. This focus can be one per camera or simply one for the pair.
  • the cameras can be monochrome or have a color filter on your sensor, such as the Bayer filter.
  • the first pair of cameras provides a 3D global view of the work scenario with a wide field of view, which allows you to cover it completely. From the images obtained by that first pair of cameras a processing system, which would be outside the limits of this invention, will obtain the main point of interest, around which the main activity is developed. That point P and P 'in each of the cameras of the pair, which corresponds to the same point in reality, is supplied to the actuators of the second pair of cameras so that they proceed to a pointing of the same. The cameras of this second pair, with a reduced angle of vision, are made to point both to that point P of the space, providing a better image quality, by virtue of that smaller field of vision for the same resolution of their sensor.
  • This second pair of cameras provides, therefore, a detailed 3D image of the main sector of our scenario.
  • the focus or light bulbs which are in solidarity with the cameras of the second pair, will point, while these, to the same sector, illuminating it in certain wavelengths, in which the shadows are eliminated while a better luminosity improves the quality of the obtained image.
  • Figure 1 shows a general representation of the double 3D system object of the invention.
  • Figure 2 shows the two fields of vision of each pair of cameras.
  • Figure 1 shows a first support (1), which is fixed, and on which is installed a first pair of fixed cameras (2a) and (2b) that constitute a first 3D pair. Between both chambers a movable frame linked to said first support is provided by vertical axes that allow a horizontal movement of the frame with respect to the first support (1) thanks to actuators (7). On said frame there is a second support (3), which is subject to the previous frame by means of a horizontal axis that allows a vertical movement of the second support (3) with respect to the frame, thereof carried out by actuators (6). In this second support (3) there is a second pair of cameras (4a) and (4b) and a pair of light bulbs (5a) V (5b).
  • the previous system has an electronics that includes control, processing and communication subsystems, where said electronics can be distributed among the different elements that make up this invention.
  • Figure 2 represents the fields of vision of both pairs of 3D cameras.
  • the horizontal field of view (14) and the vertical field of view (15) of the cameras of the first pair (2a) (2b) can be observed.
  • the horizontal field of view (8) and its vertical field of view (9) of any of the cameras of the second pair of cameras (4a) (4b) can be represented.
  • the viewing area of the second pair (4a) (4b) can move horizontally to the left (13) or to the right (12) while it can be operated up (10) or down (1 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

En las operaciones en las que se requiere una vista 3D y que necesitan de una vista global de la zona de trabajo al tiempo que les conviene disponer de una vista ampliada de un parte de la misma, el tener dos pares de cámaras, donde un par es de tipo fijo y otro móvil, estando este último configurado con un campo de visión reducido pero con igual resolución, soluciona de manera eficaz el problema planteado. Si además se instala un emisor de luz junto al segundo par de cámaras móvil, podrá obtenerse un efecto muy interesante consistente en la eliminación de gran parte de las sombras sobre la zona de interés ampliada, lo cual facilita el tratamiento de las imágenes obtenidas por ese segundo par de cámaras. Esta solución es el objeto de la presente invención.

Description

DESCRIPCIÓN
SISTEMA DOBLE 3D Y PROCEDIMIENTO PARA OBTENER UNA IMAGEN AUMENTADA DEL SECTOR DE INTERÉS DE LA ESCENA DE TRABAJO EN LAS OPERACIONES DE CONTROL BASADAS EN IMÁGENES 3D
OBJETO DE LA INVENCIÓN
Es objeto de la presente invención, por un lado, un sistema de doble juego de cámaras 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo, y, por otro lado el procedimiento para obtener dicha imagen aumentada, siendo de aplicación en operaciones de control basadas en imágenes 3D, y de manera más particular en operaciones de control para repostaje en vuelo con botalón volador.
En determinadas operaciones de control es necesario el empleo de una vista 3D del escenario de trabajo en la que la información de profundidad es importante para obtener una información completa de las distancias involucradas en dichas operaciones.
Ejemplos claros de las anteriores serían el control de grúas, el manejo de brazos robot y algunas operaciones de repostaje en vuelo, en las que nos vamos a centrar como caso claro de aplicación de esta invención y sin perjuicio de las demás aplicaciones de la misma.
Las operaciones de repostaje aéreo se pueden clasificar esencialmente en dos tipos principales que son: 1 .- Con manguera y cesta y 2.- Con botalón volador, denominado "flying Boom" en la literatura anglosajona.
Se define botalón ("Boom") como aquella parte del dispositivo de repostaje, consistente en una rótula de sujeción al avión, de la que pende una carcasa hueca, alargada y rígida y de la que puede extraerse o retraerse una pértiga o parte interna, también rígida, en cuyo extremo se halla la boquilla. Esta boquilla es la que finalmente dispensa el combustible, tras conectarse al receptáculo de admisión, que se halla en el avión receptor, tras abrirse la compuerta que cierra el paso de combustible. ANTECEDENTES DE LA INVENCIÓN
En las operaciones de repostaje en vuelo con botalón volador y más concretamente en aquellas en las que se desea automatizar la operación de contacto y repostaje, es necesario conocer la posición de la punta del botalón del avión tanquero, que suministra el combustible y la de la boca del receptáculo de admisión de combustible del avión receptor. Un procedimiento para obtener ambos puntos, es emplear un sistema 3D en el que simultáneamente, dos cámaras obtienen diferentes vistas de esos objetos. Mediante un procesado de imagen, consistente en una segmentación y un registro de objetos, se pueden determinar las ubicaciones de esos puntos en ambas vistas. Una vez obtenido esto, por triangulación, (ya que se conoce la distancia entre las cámaras y la distancia focal de cada una de ellas), pueden obtenerse las coordenadas 3D de dichos puntos respecto a unos ejes de coordenadas situados en algún punto del tanquero solidario con dichas cámaras. Para realizar lo anterior, es necesario disponer de una vista global del escenario de trabajo al tiempo que, es muy conveniente, tener una vista aumentada de la zona en la que se va a llevar a cabo el contacto o la operación de máximo interés, con el fin de mejorar la resolución y calidad de los datos obtenidos.
Generalmente, los sistemas 3D constan de un simple par de cámaras, denominadas izquierda y derecha, que podrían estar dotadas o no, de un zoom óptico, que les permita mejorar la resolución de la imagen obtenida. Sin embargo, en este caso, al realizar la operación de zoom, al no cambiar el lugar de apuntamiento de las mismas, esto podría dar lugar a que el punto de interés de la operación quedase fuera de la zona de visión. Si para evitar eso, se las dota de un mecanismo de movimiento vertical y horizontal para su apuntamiento, el resultado puede ser que al realizar dicho zoom y apuntamiento, se pierda de vista, la zona de interés, porque los objetos, al moverse, se hayan salido de dicha zona. La consecuencia es que perdemos de vista los elementos que permiten el acercamiento automático y por ende la propia capacidad de un repostaje automático seguro, ya que este requiere que, en todo momento, el sistema "vea" los puntos de interés del escenario de trabajo.
El objeto de la presente invención soluciona ese problema al tiempo que proporciona una nueva capacidad de iluminar la zona de interés, con una intensidad suficiente para eliminar las sombras, ya que la amplitud de difusión de luz del foco empleado se puede reducir en función del campo de visión de las cámaras y en virtud del apuntamiento de las mismas, del que también se beneficia dicho foco. Al reducirse la amplitud referida, la intensidad por unidad de superficie aumenta, lo que le permite competir con la luz emitida por el sol (o la luna) en determinadas longitudes de onda. El hecho de poder eliminar las sombras de la escena de interés permite un tratamiento de las imágenes más sencillo y más robusto y seguro. Al mismo tiempo, este sistema, permite que todo el escenario de trabajo pueda ser monitorizado sin perder nunca la visión global del mismo.
En el estado de la técnica se conocen sistemas que cuentan con un único par de cámaras para conseguir una visión tridimensional 3D, algunos de los sistemas conocidos son:
CN10255591 1 . En esta patente se describe circuito cerrado de visión tridimensional que se puede utilizar para la visualizacion remota situaciones delante en un vehículo automóvil (un mástil buque de vapor o un perfil aerodinámico del avión), de manera que la ocurrencia de accidentes se disminuye.
WO2010009570. En esta patente se divulga un método de elevación- posicionamiento y sistema de visión de elevación inteligente que comprende dos cámaras de vídeo (C1 , C2) montadas en cada lado de la pluma de la grúa, respectivamente, contando con unas marcas de cooperación (P1 , P2) dispuestos en el gancho y el objeto a ser izado respectivamente. La invención permite disminuir la fuerza de trabajo del operador en gran medida y se mejora la eficiencia de trabajo.
JPH01272908. En esta patente se divulga un sistema para garantizar la seguridad de los trabajadores y para tomar una medición exacta en un corto período de tiempo mediante el análisis de fotografías estereoscópicas que son tomadas por dos cámaras instaladas en posiciones fijas en el mar por un dispositivo de dibujo analítico conectado a un ordenador.
Todas las anteriores patentes consta de un simple par de cámaras lo que les permite mejorar la resolución de la imagen tomada, sin embargo no solucionan el problema planteado de pérdida del punto de interés de la operación al realizar un zoom y quedase fuera de la zona de visión.
DESCRIPCIÓN DE LA INVENCIÓN
El sistema 3D objeto de esta invención está compuesto por dos pares de cámaras, emparejadas dos a dos en cuanto a sus lentes, campos de visión, distancia focal, apuntamiento, etc. Las cámaras del primer par apuntan al centro del escenario de trabajo, donde la operación va a tener lugar. Las cámaras del segundo par tienen capacidad de movimiento en horizontal y vertical gracias a unos accionadores mecánicos que las mueven, manteniendo en ambas el mismo apuntamiento. Este apuntamiento es determinado y controlado por el resultado de un procesamiento de las imágenes obtenidas por el primer par. La consecuencia es que tenemos dos vistas 3D de la zona de trabajo: Una general, que abarca toda la zona de posible trabajo y otra parcial con un campo de visión reducido que tras un procesado de las imágenes de la primera, apunta al núcleo de máximo interés de la operación, con una resolución, iluminación y calidad mejoradas.
En los sistemas 3D empleados para el reconocimiento y detección de determinados elementos o aspectos de un cierto escenario de trabajo, es importante disponer de una visión 3D global de dicho escenario al tiempo que se obtiene una visión 3D más detallada de una determinada parte de la escena anterior. Esto permite una mayor precisión del reconocimiento y de los resultados que se obtienen de este. Durante el día es muy conveniente poder además, eliminar las sombras que aparecen sobre la imagen consecuencia de la interposición de objetos entre la zona de interés y el sol que la ilumina. También durante la noche o en situaciones de baja luminosidad, es conveniente poder intensificar la iluminación de la zona de interés. El objeto de esta invención comprende todas esas capacidades y mediante un mecanismo de accionadores consigue mover dos de las cámaras para apuntar a un punto determinado las mismas, así como un foco de luz asociado a ellas. Proporciona así, en definitiva, una visión 3D de todo el escenario de trabajo y otra vista 3D de la parte de dicho escenario que reviste el máximo interés, con una calidad aumentada y una iluminación mejorada.
El sistema comprende:
Un primer soporte, que puede cumplir la función de protección de los elementos que alberga, a modo de caja.
Un primer par de cámaras para una visión 3D, que apuntan un mismo punto de nuestro escenario de trabajo, a una distancia determinada entre ellas con una óptica fija de enfoque y un iris variable sin pérdida de generalidad, así como unos filtros ópticos que las complementan. Un segundo par de cámaras para una visión 3D, a una distancia entre ellas inferior a la que hay entre las anteriores con una óptica también fija e iris variable que pueden moverse mediante unos accionadores, que en esta implementación preferida pueden ser piezoeléctricos. También ambas con sus respectivos filtros ópticos.
El primer par de cámaras se dispone sobre un primer soporte, mientras que el segundo par de cámaras se dispone sobre un segundo soporte que por medio de unos actuadores mecánicos permite un desplazamiento relativo del segundo soporte respecto del primer soporte en sentido vertical y horizontal.
Además el sistema cuenta con una electrónica que incluye unos subsistemas de control, procesamiento y comunicaciones y la electrónica está distribuida entre los distintos elementos del sistema.
De manera complementaria al segundo par de cámaras se le pueden añadir unas lentes de enfoque automático y/o unas lentes de zoom controladas por la electrónica.
Por otro lado, también en cualquiera de los dos pares de cámaras o a los dos pares de cámaras se pueden añadir unos filtros ópticos, relacionados con las longitudes de onda de los emisores de luz para mejorar la visibilidad de las mismas.
El sistema también puede contar con un foco emisor de luz solidario con el segundo par de cámaras y que apunta al mismo lugar que estas. Este foco puede ser uno por cámara o simplemente uno para el par.
Las cámaras, idénticas dos a dos, pueden ser monocromas o bien disponer de un filtro de color sobre su sensor, como puede ser el filtro Bayer.
El funcionamiento del sistema es el siguiente:
El primer par de cámaras proporciona una visión global 3D del escenario de trabajo con un campo de visión amplio, que le permite abarcarlo completamente. A partir de las imágenes obtenidas por ese primer par de cámaras un sistema de procesamiento, que estaría fuera de los límites de esta invención, obtendrá el punto de interés principal, alrededor del cual se desarrolla la actividad principal. Ese punto P y P' en cada una de las cámaras del par, que corresponde a un mismo punto en la realidad, es suministrado a los accionadores del segundo par de cámaras para que procedan a un apuntamiento de las mismas. Las cámaras de este segundo par, con un ángulo de visión reducido, se hacen apuntar ambas a ese punto P del espacio, proporcionando una mejor calidad de imagen, en virtud de ese más reducido campo de visión para la misma resolución de su sensor.
Este segundo par de cámaras proporciona, por tanto, una imagen 3D detallada del sector principal de nuestro escenario.
Además, el foco o focos de luz, que son solidarios con las cámaras del segundo par, apuntarán, al tiempo que éstas, al mismo sector, iluminándolo en unas determinadas longitudes de onda, en las que las sombras se eliminan al tiempo que una mejor luminosidad mejora la calidad de la imagen obtenida.
Unos filtros ópticos apropiados en las cámaras, ayudarán a obtener una mejora substancial en las imágenes obtenidas en las mismas.
Salvo que se indique lo contrario, todos los elementos técnicos y científicos usados en la presente memoria poseen el significado que habitualmente entiende un experto normal en la técnica a la que pertenece esta invención. En la práctica de la presente invención se pueden usar procedimientos y materiales similares o equivalentes a los descritos en la memoria.
A lo largo de la descripción y de las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
EXPLICACIÓN DE LAS FIGURAS
Con el fin de ilustrar el objeto de la presente patente se presentan los dibujos o figuras siguientes, en los que se ha procurado, sin pérdida de generalidad, reflejar una implementación posible o versión del sistema que constituye la presente invención y es objeto del presente documento.
La figura 1 muestra una representación general del sistema doble 3D objeto de la invención.
La figura 2 muestra los dos campos de visión de cada par de cámaras.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras se describe seguidamente un modo de realización preferente de la invención propuesta.
La figura 1 se puede observar un primer soporte (1 ), que es fijo, y sobre el que se ha instalado un primer par de cámaras fijas (2a) y (2b) que constituyen un primer par 3D. Entre ambas cámaras se ha dispuesto un marco móvil vinculado a dicho primer soporte mediante unos ejes verticales que les permiten un movimiento horizontal del marco respecto del primer soporte (1 ) gracias a unos accionadores (7). Sobre dicho marco se encuentra un segundo soporte (3), que está sujeto al marco anterior mediante un eje horizontal que permite un movimiento vertical del segundo soporte (3) respecto del marco, del mismo llevado a cabo por unos accionadores (6). En este segundo soporte (3) se encuentra un segundo par de cámaras (4a) y (4b) y un par de focos de luz (5a) V (5b).
El anterior sistema cuenta con una electrónica que incluye unos subsistemas de control, procesamiento y comunicaciones, donde dicha electrónica puede estar distribuida entre los distintos elementos que componen esta invención.
La figura 2 representa los campos de visión de ambos pares de cámaras 3D. Se puede observar el campo de visión horizontal (14) y el campo de visión vertical (15) de las cámaras del primer par (2a) (2b). Así mismo, se puede ha representado el campo de visión horizontal (8) y su campo de visión (9) vertical de cualquiera de las cámaras del segundo par de cámaras (4a) (4b). La zona de visión del segundo par (4a) (4b) puede moverse horizontalmente hacia la izquierda (13) o a la derecha (12) al tiempo que puede accionarse hacia arriba (10) o hacia abajo (1 1 ). Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, se hace constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a título de ejemplo, y a las cuales alcanzará igualmente la protección que se recaba, siempre que no altere, cambie o modifique su principio fundamental.

Claims

REIVINDICACIONES
1 . - Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, compuesto por un primer (1 ) soporte sobre el que se instalan: a. - Un primer par de cámaras (2a) (2b) con sus respectivas lentes que apuntan al centro de una escena global.
b. - Un segundo soporte (3) sobre el que se instalan:
b1 .- Un segundo par de cámaras (4A) (4b) con sus respectivas lente y que tienen con un campo de visión reducido respecto del primera par de cámaras
b2.- Un conjunto de actuadores mecánicos que permiten un movimiento relativo del segundo soporte (3) respecto del primer soporte (1 ) en sentido vertical y horizontal
c- Una electrónica que incluye unos subsistemas de control, procesamiento y comunicaciones.
2. - Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, de acuerdo a la reivindicación 1 , caracterizado porque el movimiento relativo del segundo soporte (3) respecto del primer soporte (1 ) en sentido vertical y horizontal se consigue mediante un marco móvil vinculado a dicho primer soporte (1 ) mediante unos ejes verticales que les permiten un movimiento horizontal del marco respecto del primer soporte (1 ) gracias a unos accionadores (7), mientras que sobre dicho marco se encuentra el segundo soporte (3), que está sujeto al marco anterior mediante un eje horizontal que permite un movimiento vertical del segundo soporte (3) respecto del marco, del mismo llevado a cabo por unos accionadores (6)
3.- Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, de acuerdo a la reivindicación 1 ó 2, en el que además se han añadido unas lentes de enfoque automático del segundo par de cámaras (4a) (4b).
4.- Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, según cualquiera de las reivindicaciones anteriores, en el sistema en el segundo soporte (3) cuenta un par de focos de luz (5a) y (5b) que ilumina a la zona a la que se hace apuntar el segundo par de cámaras.
5.- Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, según cualquiera de las reivindicaciones anteriores, caracterizado en que a cualquiera de los dos pares de cámaras o a los dos se han añadido unos filtros ópticos, relacionados con las longitudes de onda de los emisores de luz para mejorar la visibilidad de las mismas.
6.- Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, según cualquiera de las reivindicaciones anteriores, caracterizado por que al segundo par de cámaras (4a) (4b) cuenta con unas lentes de zoom controladas por la electrónica.
7. - Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en operaciones de control basadas en imágenes 3D, según cualquiera de las reivindicaciones anteriores, caracterizado por que la electrónica está distribuida entre los distintos elementos del sistema.
8. - Procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3D que emplea el sistema doble 3D según cualquiera de las reivindicaciones 1 -6, caracterizado porque comprende las etapas de:
- Determinar la posición de un mismo punto de interés mediante un procesamiento de las imágenes obtenidas en el primer par de cámaras,
- Calcular la posición de dicho punto de interés para ambas cámaras y determinar las órdenes a enviar a los actuadores que controlan el apuntamiento del segundo par de cámaras, junto con el emisor de luz solidario con ellas.
- Envío de comandos de control a los actuadores mecánicos de posicionamiento (6) y (7) para hacer mover el segundo soporte (3) sobre el que se encuentra el segundo par de cámaras (4a) (4b) para que estas apunten hacia ese punto, y así mismo los emisores de luz cuya emisión y zonas de iluminación coinciden con los campos de visión de las cámaras del segundo par. - Analizar la imagen de las cámaras del segundo par para controlar su zoom y enfoque automático si fuera necesario.
9.- Uso del sistema doble 3D según cualquiera de las reivindicaciones 1 a 7 caracterizado porque se emplea para facilitar la obtención de información de la escena de trabajo en las operaciones de repostaje en vuelo con botalón volador.
PCT/ES2017/070226 2016-04-14 2017-04-11 Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d WO2017178683A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201630468A ES2593730A1 (es) 2016-04-14 2016-04-14 Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d
ES201630468 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017178683A1 true WO2017178683A1 (es) 2017-10-19

Family

ID=57472177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070226 WO2017178683A1 (es) 2016-04-14 2017-04-11 Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d

Country Status (2)

Country Link
ES (1) ES2593730A1 (es)
WO (1) WO2017178683A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2728787A1 (es) * 2018-04-25 2019-10-28 Defensya Ingenieria Int S L Sistema y procedimiento para crear, modular y detectar sombras en sistemas con control basado en un sistema de visualizacion remota

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084179A1 (en) * 2003-09-04 2005-04-21 Keith Hanna Method and apparatus for performing iris recognition from an image
US20110147529A1 (en) * 2009-12-18 2011-06-23 Eads Construcciones Aeronauticas, S.A.. Method and system for enhanced vision in aerial refuelling operations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084179A1 (en) * 2003-09-04 2005-04-21 Keith Hanna Method and apparatus for performing iris recognition from an image
US20110147529A1 (en) * 2009-12-18 2011-06-23 Eads Construcciones Aeronauticas, S.A.. Method and system for enhanced vision in aerial refuelling operations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2728787A1 (es) * 2018-04-25 2019-10-28 Defensya Ingenieria Int S L Sistema y procedimiento para crear, modular y detectar sombras en sistemas con control basado en un sistema de visualizacion remota
WO2019207189A1 (es) * 2018-04-25 2019-10-31 Defensya Ingeniería Internacional, S.L. Sistema y procedimiento para crear, modular y detectar sombras en sistemas con control basado en un sistema de visualización remota

Also Published As

Publication number Publication date
ES2593730A1 (es) 2016-12-12

Similar Documents

Publication Publication Date Title
US10499040B2 (en) Device and method for optically scanning and measuring an environment and a method of control
GB2545145B (en) A device and method for optically scanning and measuring an environment
US9671221B2 (en) Portable device for optically measuring three-dimensional coordinates
US7315241B1 (en) Enhanced perception lighting
ES2375261T3 (es) Dispositivo de iluminación con control remoto mejorado.
ES2505340T3 (es) Aparato de visualización
US11505109B2 (en) Close-in illumination module
ES2847523T3 (es) Robot de limpieza de piscinas y método para representar la imagen de una piscina
EP2674325A1 (en) Near infrared illuminator for driving support systems facilitating adjustment of its optical axis
DE102016013510B4 (de) Scheinwerfer-System für Fahrzeuge aller Art, mit mindestens einem Leuchtmittel und eine Kamera für die Fahrbahn-Erfassung
RU2655997C1 (ru) Устройство ночного видения
CN103477278A (zh) 用于观察远距离处的对象、尤其是用于在夜晚、烟雾、灰尘或雨中监视目标对象的相机系统和方法
ES2705431T3 (es) Método y dispositivo para detectar un cable elevado desde una aeronave
WO2017093584A1 (es) Sistema de detección de punta de la pértiga y boca de receptáculo, automatización progresiva del repostaje aéreo con botalón y procedimiento de repostaje
WO2017051057A1 (es) Sistema de localización del extremo del boom, de la boca del receptáculo de repostaje y del tanquero
CN101726845A (zh) 一种多模式观察潜望镜
WO2017178683A1 (es) Sistema doble 3d y procedimiento para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3d
CN206399422U (zh) 多功能视觉传感器及移动机器人
US20190009704A1 (en) Vehicle lighting system
ES1204716U (es) Sistema doble 3D para obtener una imagen aumentada del sector de interés de la escena de trabajo en las operaciones de control basadas en imágenes 3D
WO2017182686A1 (es) Sistema de detección y procedimiento de contacto de punta del botalón volador y boca del receptáculo para operaciones de repostaje aéreo con botalón
US10391933B2 (en) Illumination apparatus, vehicle component and vehicle
JP2009036517A (ja) ヘッドモーショントラッカ装置
ES2870625T3 (es) Conjunto y procedimiento de escaneo por láser, y vehículo subacuático que comprende un conjunto correspondiente
ES2943155T3 (es) Un vehículo autopropulsado

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781979

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781979

Country of ref document: EP

Kind code of ref document: A1