WO2017050640A1 - Verfahren zur raildruckregelung eines einspritzsystems - Google Patents

Verfahren zur raildruckregelung eines einspritzsystems Download PDF

Info

Publication number
WO2017050640A1
WO2017050640A1 PCT/EP2016/071896 EP2016071896W WO2017050640A1 WO 2017050640 A1 WO2017050640 A1 WO 2017050640A1 EP 2016071896 W EP2016071896 W EP 2016071896W WO 2017050640 A1 WO2017050640 A1 WO 2017050640A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
top dead
dead center
tdc
digital
Prior art date
Application number
PCT/EP2016/071896
Other languages
English (en)
French (fr)
Inventor
Andreas Bodensteiner
Thomas Kraft
Walter Sassler
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN201680055815.7A priority Critical patent/CN108026857B/zh
Priority to KR1020187008268A priority patent/KR102024490B1/ko
Publication of WO2017050640A1 publication Critical patent/WO2017050640A1/de
Priority to US15/928,612 priority patent/US20180209371A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • a process for the rail pressure control of an injection system The present invention relates to a process for ⁇ rail pressure control of an injection system of a motor vehicle by operation of a valve provided with a digital high-pressure pump inlet.
  • the fuel pressure is always regulated to the target pressure.
  • certain engine-pump ratios should always be selected for control quality reasons. These include translations of z.
  • As a single piston pump (2 pieces cam) to the engine of 1: 1 (one working cycle pump one cycle engine) or asynchronous settings, but for the pump (conveying and suction stroke) is exactly 720 ° CRK (crank ⁇ shaft angle, two Motor cycles).
  • Np: Nm 1: 2, 2: 1, 3: 2 depending on the number of pump cam (here, for example, two).
  • the present invention has for its object to provide a method of the type described above, which allows a particularly accurate rail pressure control despite an asynchronous transmission ratio between the pump and engine.
  • Np pump speed
  • Nm engine speed
  • the digital intake valve in an engine start phase, is closed with a specific pulse at specific time intervals. Since neither the top dead center of the pump stroke (pump TDC) nor the top dead center of the engine (motor TDC) are known at this time, this reactive current must be performed. This causes the digital inlet valve to be closed again and again. In a piston upward movement in which the digital intake valve has just been electrically closed, there is a pressure build-up in the piston chamber and then in the rail. The digital A ⁇ outlet valve can not rise during the piston upward movement (pressure build-up phase) because it is locked hydraulically. This type of energization is carried out until a successful detection of the top dead centers of the pump stroke (pump TDCs).
  • the signal from the rail during the blank current is recorded, preferably high-resolution with, for example, a sampling rate of 1 ms.
  • the respective top dead centers of the pump stroke can be detected in the respective engine segment.
  • a corresponding crankshaft position (CRK value) is obtained.
  • the top dead center of the pump stroke (pump TDC) is detected.
  • the top dead center of the pump stroke (pump TDC) can be assigned exactly one Kurbelwel ⁇ lenposition.
  • the correct reference between the top dead center of the pump stroke (pump TDC) and the top dead center of the motor (motor TDC) can be selected from the physically possible matching TDCs. Furthermore, a switching reduction is performed by selecting only those active top dead centers of the pump stroke (pump TDCs) that correspond to the selected correct reference. Finally, a synchronous actuation of the digital intake valve is performed only on the basis of the selected top dead centers of the pump stroke (pump TDCs) with completion of the dummy energization.
  • the switching reduction carried out according to the invention for example, only every third delivery pulse is carried out. In this case, only that delivery pulse remains, in which the drive pulse runs suitably for the mechanical pump movement. Due to the switching reduction, now also the released times can be attributed to the actual leftover pulse. Thus, the remaining pulse can use the full physical cam shape to deliver all flow rates (from full to low) for the high pressure system.
  • the inventive method thus enables a pressure ⁇ control valves with digital ratios for Examplessver- in which the pump does not have exactly a crank angle of 720 ° (CRK) is a multiple of conveying and suction phases available.
  • CNK crank angle of 720 °
  • the selected correct reference is checked for plausibility in at least one subsequent engine segment, and is then changed to a matching phy ical pumps ⁇ movement control of the digital intake valve. The Blindbestromung will then be sent ⁇ .
  • the number of possible delivery pulses of the digital intake valve is increased until one of the resulting top dead centers of the pump stroke (pump TDCs) meets the physical top dead center of the pump stroke (pump TDC).
  • the inventive method will be explained on an exemplary embodiment.
  • the sole figure shows at the top (a) the pressure curve in the rail, in the middle (b) an internal software variable for
  • the engine control unit From the time ti, the engine control unit has detected "synchronously" and thus knows which engine segment is in.
  • An engine segment change (t 2 or t3) now has a fixed crankshaft reference to top dead center cylinder (TDC cylinder 0) of the injection
  • TDC cylinder 0 top dead center cylinder
  • the pressure signal is recorded high resolution, for example, with a sampling rate of 1 ms in this pressure signal can in each engine segment between ti and t the top dead center of the pumping stroke (pump TDC) ß be detected. This is shown in the upper part (a) of the figure.
  • the pump TDC is detected after each delivery phase as soon as the pressure for, for example, 40 ° CRK no longer rises.
  • the correct angle can now be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Es wird ein Verfahren zur Raildruckregelung eines Einspritzsystems eines Kraftfahrzeuges beschrieben. Zur Raildruckregelung wird eine mit einem digitalen Einlassventil versehene Hochdruckpumpe betätigt, wobei das digitale Einlassventil so angesteuert wird, dass es passend zur physikalisch vorliegenden Förder- und Saugphase ist. Auf diese Weise kann eine Druckregelung mit einem digitalen Ventil auch für Übersetzungsverhältnisse erreicht werden, bei denen die Pumpe nicht genau ein Vielfaches an Förder- und Saugphasen während zwei Motorzyklen (720°) zur Verfügung hat.

Description

Beschreibung
Verfahren zur Raildruckregelung eines Einspritzsystems Die vorliegende Erfindung betrifft ein Verfahren zur Rail¬ druckregelung eines Einspritzsystems eines Kraftfahrzeuges durch Betätigung einer mit einem digitalen Einlassventil versehenen Hochdruckpumpe. Bei einem Hochdruckeinspritzsystem wird der Kraftstoffdruck immer auf den Solldruck geregelt. Für die Regelung des Drucks mit digitalen Einlassventilen sollten aus Gründen der Regelqualität immer bestimmte Übersetzungen zwischen Motor und Pumpe gewählt werden. Hierzu zählen Übersetzungen von z. B. einer Ein- kolbenpumpe (2er Nocken) zu Motor von 1:1 (ein Arbeitspiel Pumpe = ein Arbeitsspiel Motor) oder asynchrone Einstellungen, die aber für die Pumpe (Förder- und Saughub) genau 720° CRK (Kurbel¬ wellenwinkel, zwei Motorzyklen) entsprechen. Beispielsweise Np:Nm = 1:2, 2:1, 3:2, abhängig von der Anzahl der Pumpennocken (hier z.B. zwei) .
Übersetzungen, die aber für die Pumpenbewegung nicht innerhalb von 720° CRK ein Vielfaches von Förder- und Saugphasen vollziehen können, können aber aktuell nicht ohne Performanceverluste mit digitalen Ventilen geregelt werden (z.B. Np:Nm = 2:3) . Hier realisiert die Einkolbenpumpe bei 720° CRK nur 480° bei einem 2er Nocken. Die Förder- und Saugphasen der Pumpe gehen nicht genau auf. Die Referenz (der Abstand) zwischen Pumpen-TDC (oberer Totpunkt Pumpe) und Motor-TDC (oberer Totpunkt Motor) wandert (z.B. 135° CRK im zweiten Arbeitsspiel) .
Dieses Problem kann aktuell bei einer Einkolbenpumpe durch einen 3er Nocken (je nach Übersetzung Pumpe:Motor) gelöst werden. Dies bedeutet jedoch eine Hardwareänderung an der Pumpe. Eine andere Maßnahme besteht in einer Änderung der Übersetzung zwischen Pumpe und Motor, führt aber unter Umständen zu größeren kostspieligen Änderungen am Motor. Auch könnte ein zusätzlicher Sensor an der Pumpe vorgesehen werden, was jedoch mit zusätzlichen Kosten verbunden ist.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art zur Verfügung zu stellen, das trotz eines asynchronen Übersetzungsverhältnisses zwischen Pumpe und Motor eine besonders exakte Raildruckregelung ermöglicht .
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der angegeben Art gelöst, das die folgenden Schritte umfasst:
Durchführen einer Blindbestromung des digitalen Einlassventils zum Öffnen und Schließen desselben;
Aufzeichnen des Drucksignals vom Rail während der Blindbe- Strömung und Ermitteln eines oberen Totpunktes des Pumpenhubes (Pumpen-TDC) hieraus;
Näherungsweise Bestimmen einer Kurbelwellenposition für den ermittelten oberen Totpunkt des Pumpenhubes (Pumpen-TDC) ;
Mit der näherungsweise bestimmten Kurbelwellenposition der Pumpe Auswählen der richtigen Referenz (Abstand) zwischen dem oberen Totpunkt des Pumpenhubes (Pumpen-TDC) und dem oberen Totpunkt des Motors (Motor-TDC) entsprechend dem aus der Übersetzung Np:Nm sich ergebenden exakten physikalischen Bezug;
Durchführen einer Schaltreduktion durch Auswählen von nur denjenigen aktiven oberen Totpunkten des Pumpenhubes (Pum- pen-TDCs) , die der ausgewählten richtigen Referenz entsprechen; und
Ausführen einer Ansteuerung des digitalen Einlassventils nur auf der Basis der ausgewählten oberen Totpunkte des Pumpenhubes ( Pumpen-TDCs ) unter Beendigung der Blindbestromung .
Hierin bedeuten: Np = Drehzahl Pumpe
Nm = Drehzahl Motor.
Bei dem erfindungsgemäßen Verfahren wird in einer Motorstartphase das digitale Einlassventil mit einem bestimmten Puls in bestimmten Zeitabständen geschlossen. Da zu diesem Zeitpunkt weder der obere Totpunkt des Pumpenhubes (Pumpen-TDC) noch der obere Totpunkt des Motors (Motor-TDC) bekannt sind, muss diese Blindbestromung ausgeführt werden. Diese bewirkt, dass das digitale Einlassventil immer wieder geschlossen wird. In einer Kolbenaufwärtsbewegung, in der das digitale Einlassventil gerade elektrisch geschlossen wurde, kommt es zu einem Druckaufbau im Kolbenraum und anschließend auch im Rail. Das digitale Ein¬ lassventil kann während der Kolbenaufwärtsbewegung (Druckaufbauphase) nicht mehr aufgehen, da es hydraulisch zugehalten wird. Diese Art von Bestromung wird bis zu einem erfolgreichen Erkennen der oberen Totpunkte des Pumpenhubes (Pumpen-TDCs) durchgeführt.
Dabei wird das Signal vom Rail während der Blindbestromung aufgezeichnet, vorzugsweise hoch aufgelöst mit beispielsweise einer Abtastrate von 1 ms . In diesem Drucksignal können die jeweiligen oberen Totpunkte des Pumpenhubes (Pumpen-TDCs) im jeweiligen Motorsegment erkannt werden. Zu diesem Drucksignal wird auch eine entsprechende Kurbelwellenposition (CRK-Wert) erhalten. Nach jeder Förderphase, sobald der Druck für beispielsweise 40° CRK nicht mehr ansteigt, wird der obere Totpunkt des Pumpenhubes (Pumpen-TDC) erkannt. Somit kann dem oberen Totpunkt des Pumpenhubes (Pumpen-TDC) genau eine Kurbelwel¬ lenposition zugeordnet werden. Es kann jetzt die richtige Referenz zwischen dem oberen Totpunkt des Pumpenhubes (Pumpen-TDC) und dem oberen Totpunkt des Motors (Motor-TDC) aus den physikalisch möglichen passenden TDCs ausgewählt werden. Des Weiteren wird eine Schaltreduktion durchgeführt, indem nur diejenigen aktiven oberen Totpunkte des Pumpenhubes (Pum- pen-TDCs) ausgewählt werden, die der ausgewählten richtigen Referenz entsprechen. Schließlich wird eine synchrone An- steuerung des digitalen Einlassventils nur auf der Basis der ausgewählten oberen Totpunkte des Pumpenhubes ( Pumpen-TDCs ) unter Beendigung der Blindbestromung ausgeführt.
Bei der erfindungsgemäß durchgeführten Schaltreduktion wird beispielsweise nur jeder dritte Förderpuls durchgeführt. Es bleibt dabei nur noch derjenige Förderpuls übrig, bei dem der Ansteuerpuls passend zur mechanischen Pumpenbewegung läuft. Durch die Schaltreduktion können jetzt auch die freigewordenen Zeiten dem eigentlichen übriggebliebenen Puls zugeschrieben werden. Somit kann der übriggebliebene Puls die volle physi- kaiische Nockenform nutzen, um alle Fördermengen (von voll bis klein) für das Hochdrucksystem liefern zu können.
Das erfindungsgemäße Verfahren ermöglicht somit eine Druck¬ regelung mit digitalen Ventilen auch für Übersetzungsver- hältnisse, bei denen die Pumpe nicht genau auf einen Kurbelwinkel von 720° (CRK) ein Vielfaches an Förder- und Saugphasen zur Verfügung hat. Mit dem erfindungsgemäßen Verfahren kann auf kostspielige Hardwareänderungen (Motor, Pumpe, Sensor) verzichtet werden. In Weiterbildung des erfindungsgemäßen Verfahrens wird die ausgewählte richtige Referenz in mindestens einem nachfolgenden Motorsegment plausibilisiert und wird dann auf eine zur phy¬ sikalischen Pumpenbewegung passende Ansteuerung des digitalen Einlassventils gewechselt. Die Blindbestromung wird dann be¬ endet .
Die Anzahl der möglichen Förderpulse des digitalen Einlassventils wird so erhöht, bis einer der sich ergebenden oberen Totpunkte des Pumpenhubes ( Pumpen-TDCs ) auf den physikalischen oberen Totpunkt des Pumpenhubes (Pumpen-TDC) trifft.
Das erfindungsgemäße Verfahren sei an einem Ausführungsbeispiel erläutert. Die einzige Figur zeigt oben (a) den Druckverlauf im Rail, in der Mitte (b) eine interne Softwarevariable für
Motorsynchronität und unten (c) den Stromverlauf am digitalen Einlassventil.
Bei dem hier dargestellten Ausführungsbeispiel geht es um ein Verfahren zur Raildruckregelung eines Einspritzsystems eines Kraftfahrzeuges durch Betätigung einer mit einem digitalen Einlassventil versehenen Hochdruckpumpe. In einer Motorstart¬ phase wird ab Zeitpunkt to das digitale Einlassventil mit mehreren Pulsen geschlossen. Diese Blindbestromung wird bis zu einem erfolgreichen Erkennen der oberen Totpunkte des Pumpenhubes (Pumpen-TDCs) durchgeführt (Zeitpunkt t6) ·
Ab dem Zeitpunkt ti hat das Motorsteuergerät „synchron" erkannt und weiß somit, in welchem Motorsegment man sich befindet. Ein Motorsegmentwechsel (t2 oder t3) hat nun eine feste Kurbel¬ wellenreferenz zum oberen Totpunkt Zylinder (TDC Zyl 0) der Einspritzung. Zwischen to und te wird das Drucksignal hoch aufgelöst aufgezeichnet, beispielsweise mit einer Abtastrate von 1 ms . In diesem Drucksignal kann im jeweiligen Motorsegment zwischen ti und tß der obere Totpunkt des Pumpenhubes (Pumpen-TDC) erkannt werden. Dies ist im oberen Teil (a) der Figur dargestellt. Ab ti wird nach jeder Förderphase der Pumpen-TDC erkannt, sobald der Druck für beispielsweise 40° CRK nicht mehr ansteigt. Somit kann dem Pumpen-TDC genau eine Kurbelwellenposition zugeordnet werden. Da entsprechende Referenzwinkel zur Verfügung stehen, kann nun der richtige Winkel festgestellt werden.
Diese Erkennung kann auch im Nachfolgesegment noch
plausibilisisert werden (ab t4, Segment 3) . Nach erfolgreicher Plausibilisierung kann ab te komplett auf eine zur physikalischen Pumpenbewegung passende Ansteuerung des digitalen Einlassventils gewechselt werden. Die Blindbestromung wird beendet. In der Figur haben folgende Zeitpunkte folgende Bedeutung: to = Motorstart
ti = Motor synchron
t2 und t4 = Motorsegmentwechsel
t3 und ts = Pumpen-TDCs im Drucksignal erkennbar
te = Umschaltung segmentsynchrone Ansteuerung.

Claims

Patentansprüche
1. Verfahren zur Raildruckregelung eines Einspritzsystems eines Kraftfahrzeuges durch Betätigung einer mit einem digitalen Einlassventil versehenen Hochdruckpumpe mit den folgenden Schritten:
Durchführen einer Blindbestromung des digitalen Einlassventils zum Öffnen und Schließen desselben;
Aufzeichnen des Drucksignals vom Rail während der Blindbestromung und Ermitteln eines oberen Totpunktes des Pumpenhubes (Pumpen-TDC) hieraus; Näherungsweise Bestimmen einer Kurbelwellenposition für den ermittelten oberen Totpunkt des Pumpenhubes (Pumpen-TDC) ;
Mit der näherungsweise bestimmten Kurbelwellenposition der Pumpe Auswählen der richtigen Referenz (Abstand) zwischen dem oberen Totpunkt des Pumpenhubes (Pum¬ pen-TDC) und dem oberen Totpunkt des Motors (Motor-TDC) entsprechend dem aus der Übersetzung Np:Nm sich ergebenden exakten physikalischen Bezug;
Durchführen einer Schaltreduktion durch Auswählen von nur denjenigen aktiven oberen Totpunkten des Pumpenhubes ( Pumpen-TDCs ) , die der ausgewählten richtigen Referenz entsprechen; und
Ausführen einer Ansteuerung des digitalen Einlassventils nur auf der Basis der ausgewählten oberen Totpunkte des Pumpenhubes (Pumpen-TDCs) unter Beendigung der Blindbestromung . Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die ausgewählte richtige Referenz in mindestens einem nachfolgenden Motorsegment plausibilisiert und dann auf eine auf eine zur physikalischen Pumpenbewegung passende Ansteuerung des digitalen Einlassventils gewechselt wird .
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl der möglichen Förderpulse des digitalen Einlassventils so erhöht wird, bis einer der sich er¬ gebenden oberen Totpunkte des Pumpenhubes ( Pumpen-TDCs ) auf einen physikalischen oberen Totpunkt des Pumpenhubes trifft.
PCT/EP2016/071896 2015-09-23 2016-09-15 Verfahren zur raildruckregelung eines einspritzsystems WO2017050640A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680055815.7A CN108026857B (zh) 2015-09-23 2016-09-15 用于控制喷射系统中的轨道压力的方法
KR1020187008268A KR102024490B1 (ko) 2015-09-23 2016-09-15 분사 시스템에서 레일의 압력을 제어하는 방법
US15/928,612 US20180209371A1 (en) 2015-09-23 2018-03-22 Method for controlling the rail pressure in an injection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015218258.4A DE102015218258B4 (de) 2015-09-23 2015-09-23 Verfahren zur Raildruckregelung eines Einspritzsystems
DE102015218258.4 2015-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/928,612 Continuation US20180209371A1 (en) 2015-09-23 2018-03-22 Method for controlling the rail pressure in an injection system

Publications (1)

Publication Number Publication Date
WO2017050640A1 true WO2017050640A1 (de) 2017-03-30

Family

ID=56958914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/071896 WO2017050640A1 (de) 2015-09-23 2016-09-15 Verfahren zur raildruckregelung eines einspritzsystems

Country Status (5)

Country Link
US (1) US20180209371A1 (de)
KR (1) KR102024490B1 (de)
CN (1) CN108026857B (de)
DE (1) DE102015218258B4 (de)
WO (1) WO2017050640A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218426B3 (de) * 2016-09-26 2018-02-01 Continental Automotive Gmbh Verfahren zum Betreiben einer Hochdruckpumpe eines Hochdruckeinspritzsystems eines Kraftfahrzeugs sowie Steuervorrichtung und Kraftfahrzeug
JP7120132B2 (ja) * 2019-04-10 2022-08-17 トヨタ自動車株式会社 内燃機関の制御装置
DE102019209796A1 (de) * 2019-07-03 2021-01-07 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Druckregelung bei einem Kraftstoffhochdruckeinspritzsystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086131A1 (de) * 2000-05-12 2001-11-15 Robert Bosch Gmbh Verfahren zum bestimmen der position eines kolbens einer 1-zylinder-hochdruckpumpe eines kraftstoffzumesssystems einer direkteinspritzenden brennkraftmaschine
WO2008003550A1 (de) * 2006-07-07 2008-01-10 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
EP2039920A1 (de) * 2007-09-21 2009-03-25 MAGNETI MARELLI POWERTRAIN S.p.A. Steuerverfahren für ein direktes Einspritzsystem für öffentliche Kraftstoffleitungen mit einem Absperrventil zur Steuerung des Flusses einer Hochdruckbrennstoffpumpe
DE102010030447A1 (de) * 2010-06-23 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung der Lage eines oberen Totpunkts bei einer Kolben-Hochdruckpumpe in einer Kraftstoffversorgung eines Verbrennungsmotors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201865A (ja) * 2001-12-28 2003-07-18 Denso Corp 蓄圧式燃料噴射装置
JP4228799B2 (ja) * 2003-06-26 2009-02-25 トヨタ自動車株式会社 ノック判定装置付き内燃機関
EP2042720B1 (de) * 2007-09-26 2010-03-10 Magneti Marelli S.p.A. Verfahren zur Steuerung eines Common-Rail-Direkteinspritzungsystems mit einer Hochdruckkraftstoffpumpe
DE102008036120B4 (de) * 2008-08-01 2010-04-08 Continental Automotive Gmbh Verfahren zur Steuerung einer Hochdruck-Kraftstoffpumpe
US8091530B2 (en) * 2008-12-08 2012-01-10 Ford Global Technologies, Llc High pressure fuel pump control for idle tick reduction
DE102009002132A1 (de) * 2009-04-02 2010-10-07 Robert Bosch Gmbh Hochdruckpumpe
JP2010248997A (ja) * 2009-04-15 2010-11-04 Denso Corp 燃料ポンプの制御装置
JP5556209B2 (ja) 2010-02-05 2014-07-23 株式会社デンソー 高圧燃料ポンプの基準時期算出装置
DE102011003265A1 (de) * 2011-01-27 2012-08-02 Continental Automotive Gmbh Hochdruckpumpe
JP5892649B2 (ja) * 2012-02-15 2016-03-23 ボッシュ株式会社 高圧燃料ポンプ基準点検出方法及びコモンレール式燃料噴射制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086131A1 (de) * 2000-05-12 2001-11-15 Robert Bosch Gmbh Verfahren zum bestimmen der position eines kolbens einer 1-zylinder-hochdruckpumpe eines kraftstoffzumesssystems einer direkteinspritzenden brennkraftmaschine
WO2008003550A1 (de) * 2006-07-07 2008-01-10 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
EP2039920A1 (de) * 2007-09-21 2009-03-25 MAGNETI MARELLI POWERTRAIN S.p.A. Steuerverfahren für ein direktes Einspritzsystem für öffentliche Kraftstoffleitungen mit einem Absperrventil zur Steuerung des Flusses einer Hochdruckbrennstoffpumpe
DE102010030447A1 (de) * 2010-06-23 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung der Lage eines oberen Totpunkts bei einer Kolben-Hochdruckpumpe in einer Kraftstoffversorgung eines Verbrennungsmotors

Also Published As

Publication number Publication date
KR102024490B1 (ko) 2019-09-23
US20180209371A1 (en) 2018-07-26
CN108026857A (zh) 2018-05-11
CN108026857B (zh) 2021-04-20
DE102015218258B4 (de) 2017-08-24
DE102015218258A1 (de) 2017-03-23
KR20180042389A (ko) 2018-04-25

Similar Documents

Publication Publication Date Title
DE69920549T2 (de) Steuereinrichtung für eine Flüssigkeitspumpe und Verfahren
DE19708152C2 (de) Kraftstoffeinspritzsystem
WO2017050640A1 (de) Verfahren zur raildruckregelung eines einspritzsystems
WO2015074939A2 (de) Verfahren zum betreiben von injektoren eines einspritzsystems
WO2009132897A1 (de) Verfahren zur bestimmung des raildruckes in einem common-rail-system und common-rail-einspritzsystem
EP1741912A2 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffeinspritzsystems für eine Brennkraftmaschine eines Fahrzeugs
DE102007000175A1 (de) Kraftstoffeinspritzsteuergerät
EP2142785A1 (de) Verfahren und steuergerät zur steuerung der einspritzung bei einer brennkraftmaschine
EP2877717B1 (de) Verfahren zum betrieb einer brennkraftmaschine mit elektrohydraulischer ventilsteuerung
DE102014211314A1 (de) Verfahren zum Korrigieren einer pumpenverursachten Abweichung einer Ist-Einspritzmenge von einer Soll-Einspritzmenge
DE112007000138T5 (de) System und Verfahren zum Auflösen von verwechselten elektrischen Leitungen
DE102017200238A1 (de) Verfahren zum Ermitteln einer Ungleichförderung bei einer Hochdruckpumpe
DE102016212537A1 (de) Vorhersageverfahren zum Vorhersagen eines winkelabhängigen Druckverlaufes in einem Hochdruckrail und Ansteuerungsverfahren zum Ansteuern eines Injektors
DE102014006995A1 (de) Common Rail-System mit mechanischen Pumpeneinheiten
EP3714162A1 (de) Verfahren zum betreiben eines kolbenverdichters und kolbenverdichter
DE102008005154A1 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
DE10360332A1 (de) Verfahren und Vorrichtung zum Bestimmen eines Förderintervalls einer Hochdruckpumpe
DE10323877A1 (de) Vorrichtung zur hydraulischen Ventilhubumschaltung
DE102006006823B3 (de) Verfahren und Vorrichtung zum Einspritzen von Kraftstoff
EP1529948B1 (de) Verfahren zum Vorsteuern einer Hub Kolben Kraftstoffpumpe einer Brennkraftmaschine
EP3212914B1 (de) Verfahren zum kalibrieren einer fluidpumpenanordnung
DE102016216978A1 (de) Verfahren zur Ansteuerung einer Hochdruckpumpe für die Kraftstoffeinspritzung in einen Verbrennungsmotor
DE102015219036A1 (de) Verfahren und Vorrichtung zum Betreiben einer Hochdruckpumpe für einen Brennkraftmotor
DE102015221912A1 (de) Verfahren zum Ermitteln eines Anbaulagewinkels einer Hochdruckpumpe
DE102005056704B4 (de) Verfahren zur Erzielung einer vorgesehenen Einspritzmenge von Kraftstoff in einen Verbrennungsmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187008268

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767237

Country of ref document: EP

Kind code of ref document: A1