WO2017050229A1 - 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法 - Google Patents

一种利用余热的无缝钢管在线淬火冷却工艺及制造方法 Download PDF

Info

Publication number
WO2017050229A1
WO2017050229A1 PCT/CN2016/099563 CN2016099563W WO2017050229A1 WO 2017050229 A1 WO2017050229 A1 WO 2017050229A1 CN 2016099563 W CN2016099563 W CN 2016099563W WO 2017050229 A1 WO2017050229 A1 WO 2017050229A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless steel
steel pipe
manufacturing
line quenching
cooling process
Prior art date
Application number
PCT/CN2016/099563
Other languages
English (en)
French (fr)
Inventor
张忠铧
刘耀恒
许轲
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510615737.9A external-priority patent/CN105154765A/zh
Priority claimed from CN201610265674.3A external-priority patent/CN105907937A/zh
Priority claimed from CN201610776283.8A external-priority patent/CN106555045A/zh
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP16848110.9A priority Critical patent/EP3354757A4/en
Priority to JP2018515861A priority patent/JP6829717B2/ja
Priority to US15/762,912 priority patent/US11293072B2/en
Publication of WO2017050229A1 publication Critical patent/WO2017050229A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the invention relates to a steel pipe cooling process and a manufacturing method thereof, in particular to a cooling process of a seamless steel pipe and a manufacturing method thereof.
  • the hot-rolled seamless steel pipe can only rely on the addition of alloying elements and off-line heat treatment after rolling to improve product performance.
  • 555 MPa 80 Ksi
  • the above grades of steel pipes need to rely on the addition of a large amount of alloying elements, and this production method will greatly increase the manufacturing cost.
  • an off-line quenching and tempering method can be used to produce steel pipes of 555 MPa (80 Ksi) or higher.
  • the so-called offline heat treatment means that the hot-rolled seamless steel pipe is air-cooled to room temperature after rolling, into the pipe stock, and then according to Heat treatment is required.
  • this method causes waste of waste heat after rolling of the steel pipe, because the temperature of the steel pipe after rolling is usually above 900 ° C, which also brings about complication of the process and an increase in cost.
  • offline heat treatment can not be used to strengthen the induced phase transformation effect after deformation of the material.
  • the steel is directly subjected to in-line quenching after deformation, and its performance is significantly higher than that after cooling and then reheating and quenching.
  • One of the objects of the present invention is to provide an in-line quenching and cooling process for a seamless steel pipe utilizing waste heat, which can obtain a seamless steel pipe with better performance by adding less alloying elements, and can effectively prevent seamless steel pipe Cracking.
  • the present invention provides an in-line quenching and cooling process for seamless steel tubes utilizing waste heat, which comprises the steps of:
  • T Ms - 95 ° C
  • Ms represents the martensitic transformation temperature
  • E1 20 ⁇ (0.5 - C) + 15 ⁇ (3.2 - Mn) - 8 ⁇ Cr - 28 ⁇ Mo-4 ⁇ Ni-2800 ⁇ B
  • E2 96 ⁇ (0.45-C)+12 ⁇ (4.6-Mn)
  • C, Mn, Cr, Ni, B and Mo in each formula represent the mass percentage of the corresponding elements in the seamless steel pipe, respectively .
  • the above technical formula defines that the above formula does not mean that the seamless steel pipe must contain several elements such as C, Mn, Cr, Ni, B and Mo, and the formula can be used for quenching by the method.
  • the general formula of the seamless steel pipe so when one or some of the elements involved in the formula are not included, the zero value is substituted into the formula.
  • the inventor of the present invention effectively controls the matching relationship between the steel pipe material and the quenching process parameters, especially the quenching start cooling temperature, the final cooling temperature and the cooling rate.
  • the seamless steel tube is quenched and cracked, and a higher proportion of martensite phase is obtained after quenching, thereby achieving stable control of the final performance of the seamless steel tube.
  • the cooling rate is controlled to E1 °C / s ⁇ E2 ° C / s, because when the cooling rate is less than E1, it is difficult to obtain a sufficient proportion of martensite phase after quenching, and thus the final performance cannot be guaranteed, and when the cooling rate is greater than E2 At °C/s, the seamless steel tube will cause quenching and cracking due to the large internal stress after deformation.
  • the waste pipe temperature needs to be higher than the Ar3 temperature. This is because when the waste pipe starts the in-line quenching and cooling process of the seamless steel pipe at a temperature lower than Ar3, some pro-eutectoid ferrite is formed in the seamless steel pipe. There is no guarantee that a large amount of martensite structure will be obtained after quenching.
  • Ar3 temperature and the Ms temperature are known to those skilled in the art or can be obtained by technical conditions, for example, by consulting the manual or by thermal simulation experiments.
  • C, Mn, Cr, Ni, B, and Mo in the above formulas respectively represent the mass percentage of the corresponding elements in the seamless steel pipe, that is, C, Mn, Cr, Ni, B, and Mo in the formula.
  • the substituted value is the value before the percent sign. For example, in the embodiment where the C mass percentage is 0.17%, the substitution value of C when substituted into the formula is 0.17 instead of 0.0017. Substitution of other elements with this class Push, no longer repeat.
  • the mass percentage of the total alloy content of the seamless steel pipe is ⁇ 5%, wherein the alloy includes C, Mn, Cr, Mo, Ni, B, Cu, V. At least one of Nb and Ti.
  • the martensite transformation can be carried out under air cooling conditions without applying the method.
  • the alloy element types of the seamless steel pipe in the present technical solution are not limited to C, Mn, Cr, Mo, Ni, B, Cu, V, Nb, and Ti, and may further contain other types. alloy element.
  • the mass percentage of the total alloy content of the seamless steel pipe is 0.2 to 5%.
  • the comparative example of martensite obtained is ⁇ 90%. Compared with the martensite microstructure of ⁇ 90%, the seamless steel pipe has high toughness and stable performance fluctuation.
  • microstructure obtained after the in-line quenching and cooling process of the seamless steel pipe according to the present invention may further contain bainite, ferrite and carbide.
  • the seamless quenching and cooling process of the seamless steel pipe according to the present invention utilizes residual heat to induce an induced phase change effect after deformation of the steel material, and thus does not require excessive addition of alloying elements.
  • the technical solution does not specifically limit the distribution ratio of the seamless steel pipe, and the present invention can be implemented as long as it satisfies the technical features defined by the technical solution. The technical effect to be achieved by the technical solution.
  • Another object of the present invention is to provide a method for manufacturing a seamless steel pipe using waste heat, which comprises the steps of:
  • the method for manufacturing the tube blank may be that the molten steel after the smelting is directly cast into a round tube blank, or the cast slab may be forged or rolled into a tube blank by first pouring.
  • the tempering temperature is ⁇ 400 ° C
  • the tempering time is 30 min or more to ensure that the martensite can be sufficiently decomposed to obtain Tempering the sorbite to obtain a seamless steel pipe with better performance.
  • the tube blank in the step (2), is heated to 1100 to 1300 ° C for 1 to 4 hours, and then subjected to perforation, continuous rolling, and tension reduction. Or sizing into a waste pipe.
  • the hardness thereof is higher than (58 ⁇ C + 27) HRC, wherein C represents the mass percentage of carbon elements in the seamless steel pipe.
  • the in-line quenching cooling process and the manufacturing method of the seamless steel pipe according to the present invention can fully utilize the residual heat after the hot rolling of the seamless steel pipe, and the austenitizing of the seamless steel pipe without reheating, thus, compared with Conventional off-line quenching products in the prior art have shorter production processes and lower costs;
  • the seamless quenching and cooling process and manufacturing method of the seamless steel pipe according to the present invention can avoid the cracking phenomenon of the seamless steel pipe which cannot be controlled in the prior art, thereby ensuring the qualified rate of the product;
  • the in-line quenching and cooling process of the seamless steel pipe according to the present invention can obtain a seamless steel pipe mainly composed of martensite, thereby ensuring the toughness and performance stability requirements of the steel pipe.
  • the tube blank is made into a waste pipe: the tube blank is heated to 1100-1300 ° C for 1 to 4 hours, and then the waste pipe is made by perforation, continuous rolling, tension reduction or sizing.
  • Tempering wherein the tempering temperature is ⁇ 400 °C, and the tempering time is above 30 minutes.
  • the comparative steps B1-B5 adopt the same process steps as in the embodiment in the process of manufacturing the tube blank and the waste pipe, and the quenching process adopts the protection range outside the technical solution.
  • the process parameters, in addition to the bare tube in the comparative example, are not in-line quenching, but are completely cooled to room temperature and then heated to Ar3 before quenching.
  • Table 1 lists the mass ratios of the chemical elements of the seamless steel pipes of Examples A1 to A7 and Comparative Examples B1 to B5.
  • Table 2 lists the specific process parameters of the manufacturing method in the seamless steel pipes of Examples A1 to A7 and Comparative Examples B1 to B5.
  • each of the seamless steel pipes of Examples A1 to A7 and Comparative Examples B1 to B5 was subjected to various performance tests, and the obtained data are shown in Table 3.
  • the yield strength data is obtained by processing the seamless steel tubes of Examples A1-A7 and Comparative Examples B1-B5 into API arc-shaped samples, and taking the average according to the API standard; the impact sample is the embodiment A1-
  • the seamless steel tubes of A7 and Comparative Examples B1-B5 were processed into standard impact specimens of 10 mm*10 mm*55 mm size and V-notch, which were inspected at 0 °C.
  • the hardness of each of the examples and the comparative examples after quenching and cooling was measured by a Rockwell hardness tester.
  • Table 3 lists the seamless steel pipe performance data for each of the examples and the respective comparative examples.
  • the seamless steel tubes of Examples A1 to A7 were all ⁇ 90% in the comparative example of martensite after in-line quenching. It can be seen from Table 3 that the yield strength of the seamless steel tubes of Examples A1 to A7 is higher than The full-scale impact energy of 492MPa and 0°C is higher than 106J, and the HRC hardness after quenching is higher than 39, and there is no cracking.
  • the strength of the seam steel pipe; the cooling rate of the comparative example B2 is lower than the cooling rate range defined in the present case, and the final cooling temperature of the comparative example B3 is higher than the T °C defined in the present case, thus making the seamless steel pipes of the comparative examples B2 and B3 A high proportion of martensite microstructure cannot be obtained after quenching, which in turn affects its properties. Further, the cooling rates of Comparative Example B4 and Comparative Example B5 were higher than the cooling rate range defined in the present case, and thus cracking of the steel pipe occurred, and a suitable steel pipe product could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种利用余热的无缝钢管在线淬火冷却工艺、无缝钢管的生产方法和无缝钢管,在线淬火冷却工艺包括步骤:在荒管温度高于Ar 3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T℃以下,冷却速度控制为E1℃/s~E2℃/s,获得马氏体为主的微观组织,其中T=Ms-95℃,Ms表示马氏体相变温度,E1=20×(0.5-C)+15×(3.2-Mn)-8×Cr-28×Mo-4×Ni-2800×B,E2=96×(0.45-C)+12×(4.6-Mn),各式中的C、Mn、Cr、Ni、B和Mo分别表示无缝钢管中相应元素的质量百分比。

Description

一种利用余热的无缝钢管在线淬火冷却工艺及制造方法 技术领域
本发明涉及一种钢管冷却工艺及其制造方法,尤其涉及一种无缝钢管的冷却工艺及其制造方法。
背景技术
现有技术中,热轧无缝钢管由于产品形态和制造方法的限制,长期以来仅能依靠添加合金元素和轧制后的离线热处理来提升产品性能,以油井管为例,要得到555MPa(80Ksi)以上级别的钢管需要依靠添加大量合金元素,而采用这种生产方式会大幅增加制造成本。或者也可以采用离线调质处理的方法来生产555MPa(80Ksi)以上级别的钢管,此处所谓的离线热处理是指,热轧无缝钢管在轧制后空冷到室温,入管料库,然后再根据需要进行热处理。然而,采用这种方式造成了钢管轧后余热的浪费,因为通常轧后钢管温度都在900℃以上,同时也带来了工序的复杂化和成本的增加。此外,采用离线热处理也无法利用材料形变后的诱导相变效应来进行强化,根据研究,钢材变形后直接进行在线淬火,其性能会明显高于冷却后再重新加热淬火工艺。
如上文所述的,既然本领域内技术人员已经知晓采用在线淬火可以使得无缝钢管获得更好的性能,为何现有技术仍然不采用在线淬火呢?这是因为,无缝钢管由于其特殊的断面形状,相较于板材,其内应力状态更为复杂,因此若采用在线淬火工艺,一方面很难稳定控制其性能,另一方面容易造成钢管开裂。
发明内容
本发明的目的之一在于提供一种利用余热的无缝钢管在线淬火冷却工艺,采用该工艺能够在添加较少合金元素的情况下获得性能较优的无缝钢管,而且能有效防止无缝钢管开裂。
基于上述发明目的,本发明提供了一种利用余热的无缝钢管在线淬火冷却工艺,其包括步骤:
在荒管温度高于Ar3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T℃以下,冷却速度控制为E1℃/s~E2℃/s,获得马氏体为主的微观组织,其中T=Ms-95℃,Ms表示马氏体相变温度,E1=20×(0.5-C)+15×(3.2-Mn)-8×Cr-28×Mo-4×Ni-2800×B,E2=96×(0.45-C)+12×(4.6-Mn),各式中的C、Mn、Cr、Ni、B和Mo分别表示无缝钢管中相应元素的质量百分比。
需要说明的是,本技术方案限定了上述公式并不表示该无缝钢管中一定同时含有C、Mn、Cr、Ni、B和Mo这几种元素,该公式是可以针对采用本方法进行淬火的无缝钢管的通用公式,因此当不含有公式中涉及的某一种或某几种元素时,则将零值对应代入该公式中。
在本发明所述的利用余热的无缝钢管在线淬火冷却工艺中,本案发明人通过控制钢管材料与淬火工艺参数的匹配关系,尤其是淬火开始冷却温度、终冷温度和冷却速度,来有效控制无缝钢管淬火开裂倾向,并在淬火后得到较高比例的的马氏体相,从而实现无缝钢管最终性能的稳定控制。
进一步地具体来说,发明人经过大量研究,创造性提出了:将荒管连续冷却至T℃以下,冷却速度控制为E1℃/s~E2℃/s,其中T=Ms-95℃,Ms表示马氏体相变温度,E1=20×(0.5-C)+15×(3.2-Mn)-8×Cr-28×Mo-4×Ni-2800×B,E2=96×(0.45-C)+12×(4.6-Mn),各式中的C、Mn、Cr、Ni、B和Mo分别表示无缝钢管中相应元素的质量百分比。将冷却速度控制为E1℃/s~E2℃/s,是因为当冷却速度小于E1时,在淬火后难以获得足够比例的马氏体相,进而无法保证最终的性能,而当冷却速度大于E2℃/s时,会导致无缝钢管由于变形后内应力较大引起淬火开裂。
此外,荒管温度需要高于Ar3温度以上,这是因为荒管在低于Ar3温度开始进行无缝钢管在线淬火冷却工艺时,将会使得无缝钢管中有部分先共析铁素体生成,无法保证淬火后得到大量的马氏体组织。
需要说明的是,Ar3温度以及Ms温度对于本领域内技术人员是已知的或者是可以由技术条件获得的,例如通过查阅手册或是用热模拟实验测得。
另外需要说明的是,上述各公式中的C、Mn、Cr、Ni、B和Mo分别表示无缝钢管中相应元素的质量百分比,也就是说公式中C、Mn、Cr、Ni、B和Mo代入的数值是百分号前的数值,例如C质量百分比为0.17%的实施例中,代入公式时C的代入数值是0.17,而不是0.0017。其他元素的代入情况以此类 推,不再赘述。
进一步地,在本发明所述的无缝钢管在线淬火冷却工艺中,无缝钢管的总合金含量的质量百分比≤5%,其中合金包括C、Mn、Cr、Mo、Ni、B、Cu、V、Nb和Ti的至少其中之一。超过5%合金含量的钢,其马氏体转变可以在空冷条件下进行,无须应用本方法。另外需要说明的是,本技术方案中的无缝钢管的合金元素种类并不限于C、Mn、Cr、Mo、Ni、B、Cu、V、Nb和Ti这几种,其也可以进一步含有其他合金元素。
更进一步地,在本发明所述的无缝钢管在线淬火冷却工艺中,无缝钢管的总合金含量的质量百分比为0.2~5%。
进一步地,在本发明所述的无缝钢管在线淬火冷却工艺中,获得的马氏体的相比例≥90%。相比例≥90%的马氏体微观组织使无缝钢管具备较高的强韧性和稳定的性能波动。
更进一步地,在本发明所述的无缝钢管在线淬火冷却工艺后获得的微观组织还可以含有贝氏体、铁素体和碳化物。
相较于现有技术,本发明所述的无缝钢管在线淬火冷却工艺其利用了余热进行钢材料形变后的诱导相变效应,因而,并不需要过多添加合金元素。此外,由于本技术方案提出的公式具有很高的适用性,因此本技术方案并没有对无缝钢管的成分配比进行具体限制,只要是满足本技术方案所限定的技术特征,均可以实现本技术方案所要实现的技术效果。
相应地,本发明的另一目的在于提供一种利用余热的无缝钢管制造方法,其包括步骤:
(1)制造管坯;
(2)将管坯制成荒管;
(3)采用如上文所述的无缝钢管在线淬火冷却工艺;
(4)回火。
需要说明的是,在步骤(1)中,管坯的制造方法可以采用将冶炼后的钢水直接浇注为圆管坯,也可以采用先浇注再将其铸坯锻造或轧制成管坯。
进一步地,在本发明所述的无缝钢管制造方法中,在所述步骤(4)中,回火温度≥400℃,回火时间在30min以上,以保证马氏体能够得到充分分解,得到回火索氏体,从而获得性能较佳的无缝钢管。
进一步地,在本发明所述的无缝钢管制造方法中,在所述步骤(2)中,将管坯加热到1100~1300℃,保持1~4h,然后经穿孔、连轧、张力减径或定径制成荒管。
此外,本发明的又一目的在于提供一种无缝钢管,其采用上述的无缝钢管制造方法制得。
进一步地,在本发明所述的无缝钢管中,其硬度高于(58×C+27)HRC,其中C表示无缝钢管中碳元素的质量百分比。
本发明所述的利用余热的无缝钢管在线淬火冷却工艺和制造方法具有以下优点及有益效果:
(1)采用本发明所述的无缝钢管在线淬火冷却工艺和制造方法能充分利用无缝钢管热轧轧制后的余热,无须重新加热使无缝钢管奥氏体化,因而,相较于现有技术中的常规离线淬火产品生产流程更短,成本更低;
(2)采用本发明所述的无缝钢管在线淬火冷却工艺和制造方法,在获得同等性能无缝钢管的前提下,可以大大降低合金元素的添加量;
(3)采用本发明所述的无缝钢管在线淬火冷却工艺和制造方法,可以避免现有技术中无法控制的无缝钢管开裂现象,从而保证了产品的合格率;
(4)采用本发明所述的无缝钢管在线淬火冷却工艺可以获得微观组织以马氏体为主的无缝钢管,进而保证钢管的强韧性和性能稳定性要求。
具体实施方式
下面将结合具体的实施例对本发明所述利用余热的无缝钢管在线淬火冷却工艺和制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A1-A7和对比例B1-B5
实施例A1-A7的无缝钢管采用下述步骤制得:
(1)制造管坯:按照表1所列的各化学元素的质量百分比冶炼,将其浇铸成锭,并将铸锭锻造成管坯。
(2)将管坯制成荒管:将管坯加热到1100~1300℃,保持1~4h,然后经穿孔、连轧、张力减径或定径制成荒管。
(3)采用利用余热的无缝钢管在线淬火冷却工艺:在荒管温度高于Ar3 时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T℃以下,冷却速度控制为E1℃/s~E2℃/s,获得马氏体为主的微观组织,其中T=Ms-95℃,Ms表示马氏体相变温度,E1=20×(0.5-C)+15×(3.2-Mn)-8×Cr-28×Mo-4×Ni-2800×B,E2=96×(0.45-C)+12×(4.6-Mn),各式中的C、Mn、Cr、Ni、B和Mo分别表示无缝钢管中相应元素的质量百分比。
(4)回火,其中,回火温度≥400℃,回火时间在30min以上。
为了显示本案在线淬火冷却工艺对本案实施效果的影响,对比例B1-B5在制造管坯和荒管步骤采用了与实施例相同的工艺步骤,而淬火工艺则采用了本技术方案保护范围以外的工艺参数,此外对比例中的荒管采用的并不是在线淬火,而是完全冷却至室温后再加热至Ar3后再开始进行淬火的。
表1列出了实施例A1-A7以及对比例B1-B5的无缝钢管的各化学元素的质量百分配比。
表1.(wt%,余量为Fe和其他不可避免的其他杂质元素)
序号 钢型号 C Mn Cr Mo B Ni
A1 16Mn 0.17 1.65 - - -  
A2 20Mn2 0.2 1.6 - - -  
A3 20Mn2 0.2 1.6 - - -  
A4 30CrMo 0.3 0.45 1.05 0.23 -  
A5 30CrMo 0.3 0.45 1.05 0.23 -  
A6 20Mn2B 0.21 1.64 - - 0.0025  
A7 20CrNi 0.2 0.55 0.9 - - 1.05
B1 20Mn2 0.2 1.6 - - -  
B2 20Mn2 0.2 1.6 - - -  
B3 20Mn2 0.2 1.6 - - -  
B4 20Mn2 0.2 1.6 - - -  
B5 30CrMo 0.3 0.45 1.05 0.23 -  
表2列出了实施例A1-A7以及对比例B1-B5的无缝钢管中制造方法的具体工艺参数。
表2
Figure PCTCN2016099563-appb-000001
Figure PCTCN2016099563-appb-000002
对实施例A1-A7以及对比例B1-B5的无缝钢管进行各项性能测试,所得数据列于表3。其中,屈服强度数据是将实施例A1-A7以及对比例B1-B5的无缝钢管加工成API弧形试样,按API标准检验后取平均数得出;冲击试样是将实施例A1-A7以及对比例B1-B5的无缝钢管加工成10mm*10mm*55mm尺寸、V型缺口的标准冲击试样,在0℃下检验得出。另外,各实施例和对比例淬火冷却后硬度采用洛氏硬度计测得。
表3列出了各实施例和各对比例的无缝钢管性能数据。
Figure PCTCN2016099563-appb-000003
由表2可以看出,实施例A1-A7的无缝钢管在在线淬火以后马氏体的相比例均≥90%。从表3可以看出,实施例A1-A7的无缝钢管的屈服强度均高于 492MPa,0℃全尺寸冲击功均高于106J,且其淬火后的HRC硬度均高于39,均无开裂。
结合表2及表1可以看出,各实施例与各对比例间的各化学元素的组分配比没有区别,然而各实施例和对比例的制造方法中有着显著的区别,因而,使实施例A1-A7的无缝钢管的各性能综合而言优于对比例B1-B5。此外,结合表2和表3可以看出,对比例B1的开冷温度低于Ar3温度,使得对比例B1析出先共析铁素体,降低了其淬火后的硬度,并且也影响了其无缝钢管的强度;对比例B2的冷却速度低于本案所限定的冷却速度范围,而对比例B3的终冷温度高于了本案所限定的T℃,因而使得对比例B2和B3的无缝钢管在淬火后无法获得高比例的马氏体微观组织,进而影响了其性能。另外,对比例B4和对比例B5的冷却速度高于了本案所限定的冷却速度范围,因而发生了钢管开裂,无法得到合适的钢管产品。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (9)

  1. 一种利用余热的无缝钢管在线淬火冷却工艺,其特征在于,其包括步骤:
    在荒管温度高于Ar3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T℃以下,冷却速度控制为E1℃/s~E2℃/s,获得马氏体为主的微观组织,其中T=Ms-95℃,Ms表示马氏体相变温度,E1=20×(0.5-C)+15×(3.2-Mn)-8×Cr-28×Mo-4×Ni-2800×B,E2=96×(0.45-C)+12×(4.6-Mn),各式中的C、Mn、Cr、Ni、B和Mo分别表示无缝钢管中相应元素的质量百分比。
  2. 如权利要求1所述的无缝钢管在线淬火冷却工艺,其特征在于,无缝钢管的总合金含量的质量百分比≤5%,其中合金包括C、Mn、Cr、Mo、Ni、B、Cu、V、Nb和Ti的至少其中之一。
  3. 如权利要求2所述的无缝钢管在线淬火冷却工艺,其特征在于,无缝钢管的总合金含量的质量百分比为0.2-5%。
  4. 如权利要求1所述的无缝钢管在线淬火冷却工艺,其特征在于,获得的马氏体的相比例≥90%。
  5. 一种利用余热的无缝钢管制造方法,其包括步骤:
    (1)制造管坯;
    (2)将管坯制成荒管;
    (3)采用如权利要求1-4中任意一项所述的无缝钢管在线淬火冷却工艺;
    (4)回火。
  6. 如权利要求5所述的无缝钢管制造方法,其特征在于,在所述步骤(4)中,回火温度≥400℃,回火时间在30min以上。
  7. 如权利要求5所述的无缝钢管制造方法,其特征在于,在所述步骤(2)中,将管坯加热到1100~1300℃,保持1~4h,然后经穿孔、连轧、张力减径或定径制成荒管。
  8. 一种无缝钢管,其采用如权利要求5-7中任意一项所述的无缝钢管制造方法制得。
  9. 如权利要求8所述的无缝钢管,其特征在于,其硬度高于(58×C+27)HRC, 其中C表示无缝钢管中碳元素的质量百分比。
PCT/CN2016/099563 2015-09-24 2016-09-21 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法 WO2017050229A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16848110.9A EP3354757A4 (en) 2015-09-24 2016-09-21 SOLDER-FREE STEEL TUBE LINE TEMPERING METHOD USING LOST HEAT, AND METHOD OF MANUFACTURE
JP2018515861A JP6829717B2 (ja) 2015-09-24 2016-09-21 残留熱を利用する継目無鋼管のオンライン焼入れ冷却方法および製造方法
US15/762,912 US11293072B2 (en) 2015-09-24 2016-09-21 Process for on-line quenching of seamless steel tube using residual heat and manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510615737.9A CN105154765A (zh) 2015-09-24 2015-09-24 一种高强韧性无缝钢管及其制造方法
CN201510615737.9 2015-09-24
CN201610265674.3A CN105907937A (zh) 2016-04-26 2016-04-26 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN201610265674.3 2016-04-26
CN201610776283.8 2016-08-30
CN201610776283.8A CN106555045A (zh) 2015-09-24 2016-08-30 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法

Publications (1)

Publication Number Publication Date
WO2017050229A1 true WO2017050229A1 (zh) 2017-03-30

Family

ID=58385697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099563 WO2017050229A1 (zh) 2015-09-24 2016-09-21 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法

Country Status (1)

Country Link
WO (1) WO2017050229A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350923A (zh) * 2021-12-03 2022-04-15 包头钢铁(集团)有限责任公司 一种采用环形炉加热含稀土5Cr低碳中合金钢圆管坯的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031756A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
CN101928889A (zh) * 2009-06-23 2010-12-29 宝山钢铁股份有限公司 一种抗硫化物腐蚀用钢及其制造方法
CN102618791A (zh) * 2012-04-23 2012-08-01 天津商业大学 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
CN105039863A (zh) * 2015-09-02 2015-11-11 山西太钢不锈钢股份有限公司 一种油井用马氏体不锈钢无缝管制造方法
CN105154765A (zh) * 2015-09-24 2015-12-16 宝山钢铁股份有限公司 一种高强韧性无缝钢管及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031756A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
CN101928889A (zh) * 2009-06-23 2010-12-29 宝山钢铁股份有限公司 一种抗硫化物腐蚀用钢及其制造方法
CN102618791A (zh) * 2012-04-23 2012-08-01 天津商业大学 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
CN105039863A (zh) * 2015-09-02 2015-11-11 山西太钢不锈钢股份有限公司 一种油井用马氏体不锈钢无缝管制造方法
CN105154765A (zh) * 2015-09-24 2015-12-16 宝山钢铁股份有限公司 一种高强韧性无缝钢管及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG, XUEJUN ET AL.: "Heat Treatment Technology of On-Line Water Quenching and Tempering for Steel Tube", TIANJIN METALLURGY, 31 December 2005 (2005-12-31), pages 44 - 46, XP009509149 *
See also references of EP3354757A4 *
TAO, XUEZHI ET AL.: "On-Line Heat Treatment Process for Steel Pipe with Water Quenching", STEEL PIPE, vol. 35, no. 2, 30 April 2006 (2006-04-30), XP009509114 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350923A (zh) * 2021-12-03 2022-04-15 包头钢铁(集团)有限责任公司 一种采用环形炉加热含稀土5Cr低碳中合金钢圆管坯的方法

Similar Documents

Publication Publication Date Title
JP6829717B2 (ja) 残留熱を利用する継目無鋼管のオンライン焼入れ冷却方法および製造方法
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
WO2019128286A1 (zh) 一种耐磨钢低成本短生产周期制备方法
WO2012127811A1 (ja) 鋼管の焼入方法
JP4894855B2 (ja) 継目無管の製造方法
WO2016035316A1 (ja) 厚肉油井用鋼管及びその製造方法
CN105154765A (zh) 一种高强韧性无缝钢管及其制造方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
TWI595101B (zh) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
JP6805639B2 (ja) ステンレス鋼管の製造方法
WO2015005119A1 (ja) 高Cr鋼管の製造方法
WO2017050230A1 (zh) 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
WO2017050229A1 (zh) 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法
CN102936695A (zh) 一种高强度低温压力容器钢板及其生产方法
CN113699337B (zh) 一种9Cr系耐热钢连铸大圆坯热处理工艺
CN107779744B (zh) 一种贝氏体型x100级无缝管线管及其制造方法
JP4975343B2 (ja) 冷間鍛造加工性に優れた鋼管およびその製造方法
CN109023118A (zh) 一种高性能r4系泊链钢及其制备方法
WO2017050228A1 (zh) 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN104630624A (zh) 一种高频焊j55套管用钢、套管及其制造方法
JPS62263924A (ja) 強靭鋼管の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515861

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848110

Country of ref document: EP