WO2017049982A1 - 一种表面具有复合微形貌的发动机缸孔 - Google Patents

一种表面具有复合微形貌的发动机缸孔 Download PDF

Info

Publication number
WO2017049982A1
WO2017049982A1 PCT/CN2016/088059 CN2016088059W WO2017049982A1 WO 2017049982 A1 WO2017049982 A1 WO 2017049982A1 CN 2016088059 W CN2016088059 W CN 2016088059W WO 2017049982 A1 WO2017049982 A1 WO 2017049982A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
cylinder bore
circular
composite
cavities
Prior art date
Application number
PCT/CN2016/088059
Other languages
English (en)
French (fr)
Inventor
康正阳
符永宏
华希俊
王浩
纪敬虎
符昊
郑峰
邹国文
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2017049982A1 publication Critical patent/WO2017049982A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication

Definitions

  • the invention belongs to the field of internal combustion engines, and in particular relates to an engine cylinder bore having a composite micro-morphology on its surface.
  • the cylinder bore-piston ring friction pair is one of the typical friction pairs in the engine, which determines the performance and life of the engine, and the texture of the cylinder bore surface is closely related to the engine emission performance.
  • the mechanical honing process was generally used in engine cylinder bore machining. By reducing the cylinder bore roughness, cross-platform mesh was formed to improve the lubrication between the cylinder bore-piston ring friction pair.
  • the cylinder hole laser texture technology has emerged. It has the advantages of energy saving, high efficiency processing, no tool loss and environmental friendliness, and has received industry attention.
  • CN200510116292 discloses a laser honing tool for processing a microgrooved structure on a workpiece subjected to a frictional load surface.
  • This patent does not propose the surface requirement of the cylinder bore before machining, but it is actually very critical, and the selection of the laser processing position of the patent does not take into account the wear distribution of the cylinder bore surface, and the pertinence is insufficient.
  • the microgroove structure in this patent is too large in size to form a micro-dynamic lubrication effect.
  • the cylinder hole laser texture technique is to process a large number of circular microcavity arrays with precise controllability of density, distribution and depth on the cylinder bore surface.
  • CN201310266008 discloses a cylinder bore machining method comprising pretreatment, surface texture, post treatment and detection. The patent performs laser micro-texturing processing on the surface of the cylinder bore. However, its micro-texture has a single shape and is a rectangular array, and the uniformity of the surface micro-morphology is poor.
  • the invention performs a cavity-short groove phase composite micro-morphology processing on the cylinder bore surface.
  • the distribution rule of the concave cavity and the short groove the concave cavity is a rectangular array, that is, the center of gravity of the four adjacent concave cavities is rectangular, and inside the rectangular array, there is a short groove, and the center of gravity of the short groove The centers of the rectangles coincide.
  • the cavity exerts a lubricating effect
  • the short groove stores lubricating oil, which makes the micro-morphology distribution more uniform, and forms a uniform and continuous lubricating oil film and dynamic pressure lubrication effect during the working process of the cylinder bore-piston ring friction pair. .
  • the purpose of the invention is to solve the deficiencies in the prior art, and to provide an engine cylinder bore having a composite micro-morphology on the surface, and to solve the micro-cavity array anti-friction technology of the engine cylinder bore surface, the processing efficiency is low and easy to appear due to The problem of poor wear and discharge performance caused by a decrease in surface support rate.
  • the technical solution of the present invention is: an engine cylinder bore having a composite micro-morphology on the surface, the cylinder bore surface having a composite micro-morphology array, the composite micro-morphology comprising a cavity A and a cavity B;
  • the lines connecting the four centers of gravity of the adjacent cavity A are rectangular;
  • the inside of the rectangle has a cavity B, and the center of gravity of the cavity B coincides with the center of the rectangle.
  • the distribution density of the composite micromorphology is [5, 25]%
  • the distribution density [concave A contour area + cavity B contour area] / [circumferential spacing M * axial spacing N].
  • the contour of the cavity A is circular, the diameter of the cavity A is [10,300] ⁇ m, and the depth of the cavity A is [2, 20] ⁇ m;
  • the contour of the cavity B is also circular, the diameter of the cavity B is the same as the diameter of the cavity A, and the depth of the cavity B is 1-4 times the depth of the cavity A.
  • the contour of the cavity A is circular, the diameter of the cavity A is [10,300] ⁇ m, the depth of the cavity A is [2, 20] ⁇ m; the contour of the cavity B a short groove obtained by overlapping processing of a plurality of circular cavities having a length L ⁇ [50, 1000] ⁇ m, a width W of the cavity B and the cavity A Equal in diameter.
  • the contour of the cavity A is a short groove
  • the length of the cavity A is W ⁇ [50, 300] ⁇ m
  • the depth of the cavity A is ⁇ [2, 10] ⁇ m
  • the cavity A is The width L is equal to the diameter of the cavity B;
  • the contour of the cavity B is circular, the diameter of the cavity B is [10, 100] ⁇ m, and the depth of the cavity B is [6, 20] ⁇ m.
  • the circular cavity A and the cavity B are ablated by one or more laser pulses acting on the same surface of the cylinder bore; the short groove-shaped cavity A and the cavity B are multiple The circular cavity overlaps the envelope formed by the machining.
  • the latter circular cavity has an overlapping area with the previous circular cavity
  • the ratio of the area of the overlap region to the contour area of the latter circular cavity is a repetition factor, the repetition coefficient ⁇ [0.5, 0.9].
  • the cavity A and the cavity B are processed by a high-energy laser beam on the surface of the cylinder bore;
  • the high-energy laser beam is a pulsed laser with a single pulse energy of 0.5-10 mJ.
  • the cavity A and the cavity B are obtained by processing a YAG laser with a wavelength of 1064 nm, an average output power of 150 W, a single pulse energy of 0.5-2.5 mJ, and an acousto-optic Q-switched Q.
  • the invention has the following beneficial effects:
  • the contours of the cavity A and the cavity B are circular or short grooves; the surface of the cylinder bore having the composite micro-topography has better lubrication performance, because the short groove has a larger lubricating oil storage space, and the friction
  • the sub-surface is equivalent to a node, which is more conducive to the formation of a continuous lubricating oil film, thereby exerting the fretting pressure lubrication effect of the surrounding cavity.
  • the slot direction of the short slot is perpendicular to the direction of relative movement of the cylinder bore-piston ring friction pair, and can also form a dynamic pressure lubrication effect.
  • the reduction of the void volume on the surface of the cylinder bore greatly increases the surface support ratio, reducing the pressure on the cylinder bore surface and the piston ring contact surface, thereby reducing the cylinder bore wear.
  • the short groove is formed by overlapping multiple circular cavities. Therefore, the same processing method is adopted for both, that is, the switching process and the laser light source are not required, and the processing efficiency is little affected.
  • the invention significantly improves the tribological performance of the cylinder bore-piston ring friction pair and improves the wear resistance of the cylinder bore surface.
  • the fuel consumption is reduced by about 4 to 5%, and the engine oil consumption is reduced by 30 to 50. %about.
  • FIG. 1 is a partial schematic view showing the surface of a cylinder bore according to a first embodiment of the present invention.
  • Fig. 2 is a partial schematic view showing the surface of a cylinder bore according to a second embodiment of the present invention.
  • Fig. 3 is a partial schematic view showing the surface of a cylinder bore according to a third embodiment of the present invention.
  • Fig. 4 is a schematic view showing the principle of short groove processing in the present invention.
  • the invention adopts a high-energy laser beam to process a regularly distributed composite micro-morphology array on the surface of the engine cylinder bore, and the composite micro-morphology array comprises two shapes of a cavity A3 and a cavity B4.
  • the cavity A3 and the cavity B4 are obtained by processing the same high-energy laser beam on the surface of the cylinder bore.
  • a YAG laser with a wavelength of 1064 nm, an average output power of 150 W, and an acousto-optic Q-switching is selected, and the single-pulse energy is 0.5-2.5 mJ.
  • Other pulsed lasers, with a single pulse energy of 0.5-10 mJ, can achieve the same technical effect.
  • the contour of the cavity A3 and the cavity B4 is a circular or short groove.
  • the circular cavity is ablated by one or more laser pulses acting on the same surface of the cylinder bore;
  • the short groove is obtained by overlapping a plurality of circular cavities, and the short groove is a plurality of circular cavity overlapping processing.
  • the repetition coefficient ⁇ [0.5, 0.9], as shown in Figure 4.
  • the composite micromorphology includes a cavity A3 and a cavity B4.
  • the concave cavity A3 has a rectangular array, and the rectangular array is a rectangular array of four adjacent centers of the concave cavity A3; the rectangular inner portion has one concave cavity B4, and the concave cavity B4 The center of gravity coincides with the center of the rectangle.
  • the pitch of the recesses in the circumferential direction 1 of the cylinder bore is defined as the circumferential spacing M, and the spacing of the recesses in the axial direction 2 of the cylinder bore is the axial spacing N.
  • Defining the distribution density of the composite micro-morphology of the cylinder bore surface is the product of the sum of the contour area of the cavity A3 and the cavity B4 than the upper circumferential distance M and the axial distance N, and the distribution of the surface composite micro-morphology Density ⁇ [5,25]%.
  • the contour of the cavity A3 is circular, the diameter of the cavity A3 is [10,300] ⁇ m, the depth of the cavity A3 is [2, 20] ⁇ m; the contour of the cavity B4 is also circular.
  • the diameter of the cavity B4 is the same as the diameter of the cavity A3, and the depth of the cavity B4 is 1-4 times the depth of the cavity A3.
  • the second embodiment is different from the first embodiment in that the contour of the cavity B4 is a short groove, and the length of the cavity B is L ⁇ [50,1000] ⁇ m, and the width W of the cavity B is W. It is equal to the diameter of the cavity A3.
  • the third embodiment is different from the first embodiment in that the contour of the cavity A3 is a short groove, the contour of the cavity B4 is circular; the width W of the cavity A is The diameters of the cavities B4 are equal, the length of the cavity A is L ⁇ [50,300] ⁇ m, the depth of the cavity A3 is ⁇ [2,10] ⁇ m; the diameter of the cavity B4 is 10[10,100] ⁇ m, the concave The depth of the cavity B4 is [6, 20] ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

提供了一种表面具有复合微形貌的发动机缸孔,缸孔表面具有复合微形貌阵列,复合微形貌包括凹腔A(3)和凹腔B(4);四个临近的凹腔A(3)重心的连线呈矩形;矩形内部有一个凹腔B(4),凹腔B(4)重心与矩形的中心重合,凹腔A(3)和凹腔B(4)的形貌轮廓为圆形或短槽,凹腔发挥润滑效应,短沟槽储存润滑油,两者使得微形貌分布更加均匀,并且在缸孔-活塞环摩擦副工作过程中形成均匀、连续的润滑油膜和动压润滑效应,从而改善了缸孔-活塞环摩擦副的摩擦学性能,提高了缸孔表面耐磨性,对于发动机整机而言,燃油耗降低4~5%左右,机油耗降低30~50%左右。

Description

一种表面具有复合微形貌的发动机缸孔 技术领域
本发明属于内燃机领域,具体涉及一种表面具有复合微形貌的发动机缸孔。
背景技术
缸孔-活塞环摩擦副是发动机中典型的摩擦副之一,决定了发动机的使用性能和寿命,而缸孔表面的纹理结构又与发动机排放性能息息相关。以往,发动机缸孔加工普遍采用机械珩磨工艺,通过降低缸孔粗糙度,形成交叉平台网纹,改善缸孔-活塞环摩擦副间的润滑状况。近年来,随着特种加工,特别是高能激光加工技术的进步,出现了缸孔激光织构技术。它具有节能减排、高效加工、无刀具损耗和环境友好等优点,得到产业界关注。
CN200510116292公开了一种在工件承受摩擦负载面加工微槽结构的激光珩磨工具。该专利未提出加工前缸孔的表面要求,而事实上是非常关键的,且该专利激光加工位置的选取并没有考虑缸孔表面的磨损分布,针对性不足。此外,该专利中的微槽结构尺寸过大,无法形成微动压润滑效应。
不同于上述激光中提及的激光珩磨技术,缸孔激光织构技术是在缸孔表面加工大量密度、分布和深度都精确可控的圆形微凹腔阵列。CN201310266008公开了一种缸孔加工方法,该方法包括前处理、表面织构、后处理和检测。该专利在缸孔表面进行分区域的激光微织构加工,然而,其微织构形貌单一,并且为矩形阵列,表面微形貌的均匀性较差。
本发明根据缸孔-活塞环摩擦副的工作状态,在缸孔表面进行凹腔-短沟槽相复合的微形貌加工。所述凹腔和短槽的分布规则:凹腔为矩形阵列,即四个相邻凹腔的重心连线呈矩形,在矩形阵列内部,均有一个短槽,所述短槽的重心与所述矩形的中心重合。其中,凹腔发挥润滑效应,而短沟槽储存润滑油,两者使得微形貌分布更加均匀,并且在缸孔-活塞环摩擦副工作过程中形成均匀、连续的润滑油膜和动压润滑效应。
发明内容
本发明的目的是为了解决现有技术中的不足,而提供一种表面具有复合微形貌的发动机缸孔,解决发动机缸孔表面微凹腔阵列减摩技术中,加工效率低、易于出现由于表面支撑率下降导致的磨损、排放性能差的问题。
本发明的技术方案是:一种表面具有复合微形貌的发动机缸孔,所述缸孔表面具有复合微形貌阵列,所述复合微形貌包括凹腔A和凹腔B;
四个临近的所述凹腔A重心的连线呈矩形;
所述矩形内部有一个所述凹腔B,所述凹腔B的重心与所述矩形的中心重合。
上述方案中,所述复合微形貌的分布密度∈[5,25]%;
所述分布密度=[凹腔A轮廓面积+凹腔B轮廓面积]/[周向间距M*轴向间距N]。
上述方案中,所述凹腔A的轮廓为圆形,所述凹腔A的直径∈[10,300]μm,所述凹腔A的深度∈[2,20]μm;
所述凹腔B的轮廓也为圆形,所述凹腔B的直径与所述凹腔A的直径相同,所述凹腔B的深度为所述凹腔A深度的1-4倍。
上述方案中,所述凹腔A的轮廓为圆形,所述凹腔A的直径∈[10,300]μm,所述凹腔A的深度∈[2,20]μm;所述凹腔B的轮廓为短槽,所述短槽由多个圆形凹腔重叠加工获得,所述凹腔B的长度L∈[50,1000]μm,所述凹腔B的宽度W与所述凹腔A的直径相等。
上述方案中,所述凹腔A的轮廓为短槽,所述凹腔A的长度W∈[50,300]μm,所述凹腔A的深度∈[2,10]μm,所述凹腔A的宽度L与所述凹腔B的直径相等;
所述凹腔B的轮廓为圆形,所述凹腔B的直径∈[10,100]μm,所述凹腔B的深度∈[6,20]μm。
上述方案中,所述圆形的凹腔A和凹腔B由一个或多个激光脉冲作用在所述缸孔表面相同位置烧蚀产生;短槽状的凹腔A和凹腔B是多个圆形凹腔重叠加工形成的包络线。
进一步的,形成所述短槽的多个圆形凹腔中,后一个圆形凹腔与前一个圆形凹腔具有重叠区域;
所述重叠区域面积与后一个圆形凹腔的轮廓面积的比值为重复系数,所述重复系数∈[0.5,0.9]。
上述方案中,所述凹腔A和所述凹腔B由高能激光束在所述缸孔表面加工获得;
所述高能激光束为脉冲激光,单脉冲能量为0.5-10mJ。
进一步的,所述凹腔A和所述凹腔B由波长1064nm,平均输出功率150W,单脉冲能量为0.5-2.5mJ,声光调Q的YAG激光器加工获得。
本发明与现有技术相比具有以下有益效果:
1、通过高能激光束,在缸孔表面加工规则分布的所述凹腔A和所述凹腔B微形貌, 所述凹腔A和所述凹腔B的轮廓为圆形或者短槽;具有复合微形貌的缸孔表面润滑性能更优,这是由于短槽具有更大的润滑油储存空间,在摩擦副表面相当于节点,更利于形成连续的润滑油膜,进而发挥周围凹腔的微动压润滑效应。
2、短槽的槽向与缸孔-活塞环摩擦副相对运动方向垂直,也能形成动压润滑效应。
3、由于存在中心短槽的增益效果,在缸孔表面加工的空体体积进一步减少,从而缸孔表面的机油蒸发减少,最终提升发动机整机排放性能。
4、缸孔表面空体体积的减少,使其表面支撑率大幅上升,减少缸孔表面和活塞环接触面的压强,从而降低缸孔磨损。
5、短槽是多个圆形凹腔重叠加工形成的,因此两者采用了相同的加工方法,即不需要切换工艺和激光光源,对加工效率影响甚微。
6、本发明显著改善了缸孔-活塞环摩擦副的摩擦学性能,提高了缸孔表面耐磨性,对于发动机整机而言,燃油耗降低4~5%左右,机油耗降低30~50%左右。
附图说明
图1是本发明实施例一的缸孔表面局部示意图。
图2是本发明实施例二的缸孔表面局部示意图。
图3是本发明实施例三的缸孔表面局部示意图。
图4是本发明中短槽加工原理示意图。
图中,1、缸孔周向;2、缸孔轴向;3、凹腔A;4、凹腔B;5、重叠区域。
具体实施方式
下面结合附图具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于此。
本发明采用高能激光束在发动机缸孔表面加工规则均匀分布的复合微形貌阵列,所述复合微形貌阵列包括凹腔A3和凹腔B4两种形貌。
所述凹腔A3和所述凹腔B4由相同的高能激光束在所述缸孔表面加工获得。具体实施过程,选用波长1064nm,平均输出功率150W,声光调Q的YAG激光器,单脉冲能量为0.5-2.5mJ。其它脉冲激光器,单脉冲能量0.5-10mJ均能够实现相同的技术效果。
所述凹腔A3和所述凹腔B4的形貌轮廓为圆形或短槽。
其中,圆形凹腔由一个或多个激光脉冲作用在所述缸孔表面相同位置烧蚀产生;短槽由多个圆形凹腔重叠加工获得,短槽是多个圆形凹腔重叠加工形成的包络线;在加工 所述短槽的多个圆形凹腔中,后一个圆形凹腔与前一个圆形凹腔具有重叠区域5,定义重叠区域5面积与后一个圆形凹腔轮廓面积的比值为重复系数,重复系数∈[0.5,0.9],如图4所示。
实施例一。
如图1所示为本发明所述表面具有复合微形貌的发动机缸孔的一种实施方式,所述缸孔位于发动机缸体上,所述缸孔表面具有复合微形貌阵列,所述复合微形貌包括凹腔A3和凹腔B4。
所述凹腔A3呈矩形阵列,所述矩形阵列为四个临近的所述凹腔A3重心的连线呈矩形的阵列;所述矩形内部有一个所述凹腔B4,所述凹腔B4的重心与所述矩形的中心重合。
定义凹腔在缸孔周向1的间距为周向间距M,凹腔在缸孔轴向2的间距为轴向间距N。
定义缸孔表面复合微形貌的分布密度为所述凹腔A3与所述凹腔B4轮廓面积之和比上周向间距M与轴向间距N之积,所述表面复合微形貌的分布密度∈[5,25]%。
所述凹腔A3的轮廓为圆形,所述凹腔A3的直径∈[10,300]μm,所述凹腔A3的深度∈[2,20]μm;所述凹腔B4的轮廓也为圆形,所述凹腔B4的直径与所述凹腔A3的直径相同,所述凹腔B4的深度为所述凹腔A3深度的1-4倍。
实施例二。
如图2所示,实施例二与实施例一的不同之处在于,所述凹腔B4的轮廓为短槽,凹腔B的长度L∈[50,1000]μm,凹腔B的宽度W与所述凹腔A3的直径相等。
实施例三。
如图3所示,实施例三与实施例一的不同之处在于,所述凹腔A3的轮廓为短槽,所述凹腔B4的轮廓为圆形;凹腔A的宽度W与所述凹腔B4的直径相等,凹腔A的长度L∈[50,300]μm,所述凹腔A3的深度∈[2,10]μm;所述凹腔B4的直径∈[10,100]μm,所述凹腔B4的深度∈[6,20]μm。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种表面具有复合微形貌的发动机缸孔,其特征在于,所述缸孔表面具有复合微形貌阵列,所述复合微形貌包括凹腔A(3)和凹腔B(4);
    四个临近的所述凹腔A(3)重心的连线呈矩形;
    所述矩形内部有一个所述凹腔B(4),所述凹腔B(4)的重心与所述矩形的中心重合。
  2. 根据权利要求1所述的表面具有复合微形貌的发动机缸孔,其特征在于,所述复合微形貌的分布密度∈[5,25]%;
    所述分布密度=[凹腔A(3)轮廓面积+凹腔B(4)轮廓面积]/[周向间距M*轴向间距N]。
  3. 根据权利要求1所述的表面具有复合微形貌的发动机缸孔,其特征在于,所述凹腔A(3)的轮廓为圆形,所述凹腔A(3)的直径∈[10,300]μm,所述凹腔A(3)的深度∈[2,20]μm;
    所述凹腔B(4)的轮廓也为圆形,所述凹腔B(4)的直径与所述凹腔A(3)的直径相同,所述凹腔B(4)的深度为所述凹腔A(3)深度的1-4倍。
  4. 根据权利要求1所述的表面具有复合微形貌的发动机缸孔,其特征在于,所述凹腔A(3)的轮廓为圆形,所述凹腔A(3)的直径∈[10,300]μm,所述凹腔A(3)的深度∈[2,20]μm;
    所述凹腔B(4)的轮廓为短槽,所述短槽由多个圆形凹腔重叠加工获得,所述凹腔B(4)的长度L∈[50,1000]μm,所述凹腔B(4)的宽度W与所述凹腔A(3)的直径相等。
  5. 根据权利要求1所述的表面具有复合微形貌的发动机缸孔,其特征在于,所述凹腔A(3)的轮廓为短槽,所述凹腔A(3)的长度W∈[50,300]μm,所述凹腔A(3)的深度∈[2,10]μm,所述凹腔A(3)的宽度L与所述凹腔B(4)的直径相等;
    所述凹腔B(4)的轮廓为圆形,所述凹腔B(4)的直径∈[10,100]μm,所述凹腔B(4)的深度∈[6,20]μm。
  6. 根据权利要求3、4或5中任意一项所述的表面具有复合微形貌的发动机缸孔,其特征在于,圆形的凹腔A(3)和凹腔B(4)由一个或多个激光脉冲作用在所述缸孔表面相同位置烧蚀产生;短槽状的凹腔A(3)和凹腔B(4)是多个圆形凹腔重叠加工形成的 包络线。
  7. 根据权利要求6所述的表面具有复合微形貌的发动机缸孔,其特征在于,形成所述短槽的多个圆形凹腔中,后一个圆形凹腔与前一个圆形凹腔具有重叠区域(5);
    所述重叠区域(5)面积与后一个圆形凹腔的轮廓面积的比值为重复系数,所述重复系数∈[0.5,0.9]。
  8. 根据权利要求1所述的表面具有复合微形貌的发动机缸孔,其特征在于,所述凹腔A(3)和所述凹腔B(4)由高能激光束在所述缸孔表面加工获得;
    所述高能激光束为脉冲激光,单脉冲能量为0.5-10mJ。
  9. 根据权利要求8所述的表面具有复合微形貌的发动机缸孔,其特征在于,所述凹腔A(3)和所述凹腔B(4)由波长1064nm,平均输出功率150W,单脉冲能量为0.5-2.5mJ,声光调Q的YAG激光器加工获得。
PCT/CN2016/088059 2015-09-22 2016-07-01 一种表面具有复合微形貌的发动机缸孔 WO2017049982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510609479.3A CN105221287A (zh) 2015-09-22 2015-09-22 一种表面具有复合微形貌的发动机缸孔
CN201510609479.3 2015-09-22

Publications (1)

Publication Number Publication Date
WO2017049982A1 true WO2017049982A1 (zh) 2017-03-30

Family

ID=54990491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088059 WO2017049982A1 (zh) 2015-09-22 2016-07-01 一种表面具有复合微形貌的发动机缸孔

Country Status (2)

Country Link
CN (1) CN105221287A (zh)
WO (1) WO2017049982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280115A (zh) * 2021-06-24 2021-08-20 青岛理工大学 一种微织构活塞环及加工方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221287A (zh) * 2015-09-22 2016-01-06 江苏大学 一种表面具有复合微形貌的发动机缸孔
CN106593673A (zh) * 2017-01-17 2017-04-26 中原内配集团股份有限公司 一种超微造型的气缸套及其制备方法
CN107165819A (zh) * 2017-07-12 2017-09-15 安徽理工大学 基于微造型的卧式煤矿高压大流量水液压泵的缸套摩擦副
CN107642429A (zh) * 2017-10-13 2018-01-30 潍柴动力股份有限公司 无缸套缸体及发动机
CN110761912B (zh) * 2019-12-26 2020-05-26 潍柴动力股份有限公司 缸套的设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268848A (ja) * 1985-05-22 1986-11-28 Mitsubishi Heavy Ind Ltd シリンダの製造方法
DE10339606A1 (de) * 2003-08-28 2005-04-07 Joachim Kieselbach Photochemisches Behandlungsverfahren zur Erzeugung von Rillenstrukturen auf zylindrischen Gleitflächen
EP1818530A1 (en) * 2004-12-03 2007-08-15 Daihatsu Motor Co., Ltd. Lubrication device for cylinder inner wall in two-stroke cycle internal combustion engine
JP2010275915A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd 内燃機関の冷却装置
CN105221287A (zh) * 2015-09-22 2016-01-06 江苏大学 一种表面具有复合微形貌的发动机缸孔

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297384B2 (ja) * 2007-10-05 2013-09-25 日本ピストンリング株式会社 シリンダ
CN201354682Y (zh) * 2008-12-18 2009-12-02 五邑大学 一种摩托车气缸套激光表面微造型构造
EP2678546B1 (en) * 2011-02-22 2022-04-13 The George Washington University Friction reduction for engine components
CN103597193B (zh) * 2011-03-14 2016-05-18 沃尔沃技术公司 内燃机、用于内燃机的气缸和用于内燃机的气缸套
CN102179629A (zh) * 2011-03-21 2011-09-14 中国科学院力学研究所 内燃机缸套内壁激光刻蚀系统及加工方法
CN104668780A (zh) * 2015-01-28 2015-06-03 中国科学院力学研究所 一种激光毛化刻蚀形貌方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268848A (ja) * 1985-05-22 1986-11-28 Mitsubishi Heavy Ind Ltd シリンダの製造方法
DE10339606A1 (de) * 2003-08-28 2005-04-07 Joachim Kieselbach Photochemisches Behandlungsverfahren zur Erzeugung von Rillenstrukturen auf zylindrischen Gleitflächen
EP1818530A1 (en) * 2004-12-03 2007-08-15 Daihatsu Motor Co., Ltd. Lubrication device for cylinder inner wall in two-stroke cycle internal combustion engine
JP2010275915A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd 内燃機関の冷却装置
CN105221287A (zh) * 2015-09-22 2016-01-06 江苏大学 一种表面具有复合微形貌的发动机缸孔

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280115A (zh) * 2021-06-24 2021-08-20 青岛理工大学 一种微织构活塞环及加工方法

Also Published As

Publication number Publication date
CN105221287A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017049982A1 (zh) 一种表面具有复合微形貌的发动机缸孔
US9759325B2 (en) Cylinder device having improved wear resistance through optimal arrangement of fine textures
CN112228236B (zh) 一种内燃机缸套及其加工方法
CN109740290B (zh) 一种考虑二阶运动的渐变型微织构化活塞裙部设计方法
JP2017057817A (ja) ピストン
CN105221283B (zh) 一种发动机缸孔及其加工方法
CN103410626B (zh) 一种带有表面织构形态的内燃机活塞
JP2013510991A (ja) スカートがオイルフロースロットを有するピストン、およびその構築方法
CN105118531A (zh) 一种子弹形凹坑织构化表面
CN103894732A (zh) 一种活塞环激光微织构方法
CN105240405A (zh) 六油腔静压滑动轴承
KR20180028159A (ko) 전단저항 감소 패턴을 갖는 엔진
CN109538626B (zh) 一种复合微织构平面扇形瓦块推力轴承及其加工方法
CN102537066B (zh) 一种具有表面微孔结构的轴瓦及加工方法
JP2014169696A (ja) 金属製中空弁
CN214384176U (zh) 一种复合润滑结构的内燃机缸套
CN205260149U (zh) 内燃机缸套
CN208138463U (zh) 一种活塞销
CN202451605U (zh) 一种具有表面微孔结构的轴瓦
US10648561B2 (en) Piston ring
CN213574386U (zh) 一种沟槽式散热结构冷却油腔的钢活塞
CN205190749U (zh) 经过激光表面织构的涡轮增压器密封环
CN202006339U (zh) 一种经过激光微造型处理的活塞裙部
CN203308598U (zh) 一种带有表面织构形态的内燃机活塞
KR20110026739A (ko) 내벽면에 요철이 형성된 실린더

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847864

Country of ref document: EP

Kind code of ref document: A1