WO2017049889A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2017049889A1
WO2017049889A1 PCT/CN2016/077339 CN2016077339W WO2017049889A1 WO 2017049889 A1 WO2017049889 A1 WO 2017049889A1 CN 2016077339 W CN2016077339 W CN 2016077339W WO 2017049889 A1 WO2017049889 A1 WO 2017049889A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
blue light
display panel
backlight module
light
Prior art date
Application number
PCT/CN2016/077339
Other languages
English (en)
French (fr)
Inventor
高剑
武延兵
李颖祎
刘恺然
朱琳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/511,493 priority Critical patent/US10534118B2/en
Publication of WO2017049889A1 publication Critical patent/WO2017049889A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133624Illuminating devices characterised by their spectral emissions

Definitions

  • the present invention relates to the field of display technologies, and relates to a display device, and in particular to a display device capable of preventing high-energy short-wave blue light from harming a human eye.
  • High-energy short-wave blue light (hereinafter referred to simply as blue light) refers to light having a wavelength between 410 and 470 nm. Among them, the light with a wavelength between 435 and 440 nm is the most harmful to the human eye, and the light with the wavelength near the two sides of the wavelength range is degraded to the human eye.
  • blue light since people spend a long time watching various display devices in daily life, the influence of blue light emitted by the display device on the human eye is increased. If various methods can be used to reduce the blue light incident from the display device into the human eye, the damage of the blue light to the human eye when the display device is viewed for a long time can be eliminated, and the incidence of macular lesions can be reduced.
  • the user wears the anti-blue light glasses, which can reduce the damage of the blue light to the human eye to a certain extent.
  • the anti-blue light glasses have the following disadvantages: the structure of the film layer is complicated and the processing is difficult; the wavelength range of the absorbed blue light is large, which affects the visual effect; not only shields the blue-violet light harmful to the human eye, but also shields the blue which is beneficial to the human body. Green light; wearing anti-Blu-ray glasses will affect the visual experience of the human eye and can only be used by a single person, and the viewing experience is poor;
  • an anti-blue layer is added to the display device.
  • an anti-blue layer 7 is disposed on the first polarizer 2 located above the display panel (ie, the light-emitting side of the display panel), wherein the display panel includes the color filter substrate 3, the liquid crystal layer 4, and the array substrate. 5.
  • a second polarizer 6 is disposed under the display panel (ie, the light incident side of the display panel), and a backlight module 1 is disposed below the second polarizer 6. This way can greatly reduce the blue light from the backlight module 1.
  • blue light (such as blue light emitted by LED illumination lamps) is also present in the external environment, and the anti-blue light layer 7 has optical reflection characteristics, which directly reflect blue light in the external environment, and cannot absorb blue light in the external environment. Therefore, when the user uses such a display device, the blue light reflected by the anti-blue layer 7 enters the human eye, causing secondary damage to the human eye, and the original display image may cause a color shift problem.
  • the problem that the high-energy short-wave blue light causes secondary damage to the human eye is caused by the high-energy short-wave blue light being applied to the upper surface of the display panel (ie, the light-emitting side), and the present invention provides a high-energy short-wave avoidance.
  • a display device that causes damage to the human eye by blue light is provided.
  • An aspect of the present invention provides a display device including a display panel, a blue light prevention layer, and a backlight module, the blue light prevention layer being located between the display panel and the backlight module, and the blue light shielding layer is reflected from High-energy short-wave blue light incident in the direction of the backlight module and incident from the direction of the display panel.
  • the blue light blocking layer reflects blue light having a wavelength between 435 and 440 nm.
  • the anti-blue layer is disposed on a surface of one side of the display panel with a microlens array provided with a concave-convex structure.
  • a first polarizer is disposed on a side of the display panel away from the backlight module
  • a second polarizer is disposed on a side of the display panel adjacent to the backlight module
  • the anti-blue light is The layer is located between the second polarizer and the backlight module.
  • the anti-blue layer is attached to the second polarizer near the backlight mode On the surface of one side of the group.
  • a first polarizer is disposed on a side of the display panel away from the backlight module
  • a second polarizer is disposed on a side of the display panel adjacent to the backlight module
  • the anti-blue light is A layer is between the second polarizer and the display panel.
  • the blue light-proof layer is attached on a surface of a side of the second polarizer adjacent to the display panel.
  • a light diffusion layer is further disposed on a side of the second polarizer adjacent to the backlight module, and the blue light prevention layer is located between the light diffusion layer and the backlight module.
  • the blue light-proof layer is pasted on a surface of the light diffusion layer adjacent to the backlight module, or the light diffusion layer and the blue light-proof layer form a composite layer.
  • the blue light blocking layer has a multilayer structure formed by overlapping at least two different refractive index materials.
  • the blue light-proof layer has a thickness of between 10 and 200 ⁇ m.
  • the anti-blue layer is located between the display panel and the backlight module, and on the one hand, the high-energy short-wave blue light in the light emitted by the backlight module is reflected back to the backlight module, and the light of other wavelengths is transmitted. Therefore, the intensity of the high-energy short-wave blue light emitted by the backlight module is reduced without affecting the display effect; on the other hand, for the new display device, after the ambient light enters the display panel, the high-energy short-wave blue light passes through the display panel.
  • the structure (array substrate, liquid crystal layer, color film substrate, etc.) is effectively attenuated after absorption, and the attenuated high-energy short-wave blue light is incident on the surface of the anti-blue layer, is reflected by the anti-blue layer, and the reflected high-energy short-wave blue light enters the display panel again, and It is absorbed by the multi-layer structure in the display panel, so that high-energy short-wave blue light or little is not present in the light emitted from the display panel (including both the reflected ambient light and the light emitted by the backlight module).
  • the display device of the embodiment can eliminate the high-energy short-wave in the ambient light reflected by the anti-blue layer, compared to the display device with the anti-blue layer disposed on the side of the display panel away from the backlight module.
  • FIG. 1 is a schematic structural view of a conventional display device
  • FIG. 2 is a schematic structural diagram of a display device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a display device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a display device according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a display device according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device according to Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic structural diagram of a display device according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural diagram of a display device according to Embodiment 9 of the present invention.
  • the embodiment provides a display device including a display panel, an anti-blue layer and a backlight module.
  • the anti-blue layer is located between the display panel and the backlight module, and the anti-blue layer can reflect the high energy incident from the backlight module.
  • Short-wave blue light (which comes from the backlight module) reflects high-energy short-wave blue light incident from the display panel (which comes from the outside environment).
  • the blue light-proof layer can reflect light having a wavelength between 410 and 470 nm. Further, the blue light-proof layer can mainly reflect light having a wavelength between 435 and 440 nm, which is advantageous for ensuring the color effect of the displayed image.
  • the display device provided in this embodiment has a blue light-proof layer disposed between the display panel and the backlight module.
  • the high-energy short-wave blue light in the light emitted by the backlight module is reflected back to the backlight module, and the light of other wavelengths is transmitted. Therefore, the intensity of the high-energy short-wave blue light emitted by the backlight module is reduced; on the other hand, for the new display device, after the ambient light enters the display panel, the high-energy short-wave blue light passes through the multi-layer structure in the display panel (array substrate) The liquid crystal layer, the color filter substrate, etc.
  • the display device of the embodiment can eliminate the high-energy short-wave in the ambient light reflected by the anti-blue layer, compared to the display device with the anti-blue layer disposed on the side of the display panel away from the backlight module.
  • the second damage of blue light to the human eye is effectively attenuated after absorption, and the attenuated high-energy short-wave blue light is incident on the surface of the anti-blue layer, is reflected by the anti-blue layer, and the reflected high-energy short-wave blue light enters the display panel again and is displayed in the display panel.
  • the multi-layer structure absorbs light emitted from the display panel (including both the reflected ambient light and the backlight module) There is no high-energy short-wave blue light or very little in the light. Therefore, the display device of the embodiment can eliminate the high-energy short-wave in the ambient light reflected by the anti-blue layer, compared to the display device with the anti-blue layer disposed on the side of the display panel away from the backlight module. The
  • the present embodiment provides a display device including a display panel, an anti-blue layer 7 and a backlight module 1 .
  • the anti-blue layer 7 is located on the light-incident side of the display panel and the light-emitting side of the backlight module 1 .
  • the anti-blue light layer 7 is capable of reflecting high-energy short-wave blue light incident from the direction of the backlight module 1 and high-energy short-wave blue light incident from the direction of the display panel.
  • the display panel includes: a color filter substrate 3, a liquid crystal layer 4, and an array substrate 5.
  • the array substrate 5 is located on the light incident side of the display panel, that is, the side close to the backlight module 1, and the anti-blue light layer 7 is located in the array of the display panel. Between the substrate 5 and the backlight module 1. Generally, polarizers are provided on both sides of the display panel.
  • the blue light-proof layer 7 can reflect light having a wavelength between 410 and 470 nm. Further, the blue light-proof layer can mainly reflect light having a wavelength between 435 and 440 nm, which is advantageous for ensuring the color effect of the displayed image.
  • the anti-blue light layer 7 is adjacent to the surface of one side of the display panel and is provided with a microlens array having a concave-convex structure.
  • the anti-blue layer 7 is disposed on the surface of the display panel on the side of the display panel, and the microlens array is provided with the concave-convex structure, so that the anti-blue layer and the polarizer disposed on the light-incident side of the display panel are prevented from being adsorbed at the display end.
  • the phenomenon of Newton's ring generated, at the same time, can also reduce the dispersion effect of the anti-blue layer 7 on other wavelengths of light, and improve the display effect.
  • the blue light blocking layer 7 comprises a multilayer structure formed by overlapping at least two different refractive index materials.
  • the blue light-proof layer 7 has a thickness of between 10 and 200 ⁇ m.
  • the thickness of the anti-blue layer 7 is not limited thereto, as long as the high-energy short-wave blue light can be effectively reflected, and details are not described herein again.
  • the anti-blue layer 7 is composed of at least two materials of different refractive indices, and the anti-blue layer 7 of different structures and thicknesses can be applied to backlight modules of different specifications.
  • the display device provided in this embodiment has the anti-blue layer 7 disposed between the light-incident side of the display panel and the light-emitting side of the backlight module 1.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 is reflected back to the backlight.
  • the module 1 transmits light of other wavelengths, thereby reducing the intensity of the high-energy short-wave blue light emitted by the backlight module 1.
  • the ambient light enters the display panel, and the high-energy short-wave is included therein.
  • the blue light is effectively attenuated after being absorbed by the multilayer structure (the array substrate 5, the liquid crystal layer 4, the color filter substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is reflected by the blue-proof layer 7.
  • the reflected high-energy short-wave blue light enters the display panel again and is absorbed by the multi-layer structure in the display panel, so that the light emitted from the display panel (including both the reflected ambient light and the backlight module) does not There is high energy short-wave blue light or very little.
  • the display device of the embodiment can eliminate the high energy in the ambient light reflected by the anti-blue layer 7 compared to the display device in which the anti-blue layer is disposed on the side of the display panel away from the backlight module in the prior art. Short-wave blue light damages the human eye twice.
  • the present embodiment provides a display device including a display panel, a blue light-proof layer 7 and a backlight module 1.
  • the anti-blue layer 7 is located on the light-incident side of the display panel and the light-emitting side of the backlight module 1.
  • the anti-blue light layer 7 is capable of reflecting high-energy short-wave blue light incident from the direction of the backlight module 1 and high-energy short-wave blue light incident from the direction of the display panel.
  • the display panel includes a color filter substrate 3, a liquid crystal layer 4, and an array substrate 5.
  • the array substrate 5 is located on the light incident side of the display panel, that is, on a side close to the backlight module 1.
  • the blue light blocking layer can reflect light having a wavelength between 410 and 470 nm.
  • the blue light-proof layer can mainly reflect light having a wavelength between 435 and 440 nm, which is advantageous for ensuring the color effect of the displayed image.
  • a side of the display panel away from the backlight module 1 is provided with a first polarizer 2
  • a side of the display panel adjacent to the backlight module 1 is provided with a second polarized light.
  • the sheet 6 and the anti-blue layer 7 are located between the second polarizer 6 and the backlight module 1.
  • the first polarizer 2 is disposed above the color filter substrate 3, and the second polarizer 6 is disposed at Below the array substrate 5.
  • the blue light blocking layer 7 comprises a multilayer structure formed by overlapping at least two different refractive index materials.
  • the blue light-proof layer 7 has a thickness of between 10 and 200 ⁇ m.
  • the thickness of the anti-blue layer 7 is not limited thereto, as long as the high-energy short-wave blue light can be effectively reflected, and details are not described herein again.
  • the anti-blue layer 7 is composed of at least two materials of different refractive indices, and the anti-blue layer 7 of different structures and thicknesses can be applied to backlight modules of different specifications.
  • the display device provided in this embodiment has the anti-blue layer 7 disposed between the light-incident side of the second polarizer 6 and the light-emitting side of the backlight module 1.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 can be Reflecting back to the backlight module 1 and transmitting light of other wavelengths, thereby reducing the intensity of the high-energy short-wave blue light emitted by the backlight module 1; on the other hand, for the new display device, the ambient light enters the display panel, wherein
  • the high-energy short-wave blue light is effectively attenuated after being absorbed by the multilayer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is protected by the blue light layer.
  • the display device of the embodiment can eliminate the high energy in the ambient light reflected by the anti-blue layer 7 compared to the display device in which the anti-blue layer is disposed on the side of the display panel away from the backlight module in the prior art. Short-wave blue light damages the human eye twice.
  • a microlens array having a concavo-convex structure may be disposed on a surface of the anti-blue light layer 7 on the side close to the display panel.
  • the present embodiment provides a display device having a structure similar to that of the display device of Embodiment 3, except that the blue-proof layer 7 is directly attached to the second polarizer 6.
  • the surface ie, the surface near the side of the backlight module
  • the light sheet 6 and the display panel are integrally formed, thereby reducing the number of process steps and increasing the flexibility of the use of the blue light blocking layer 7.
  • the display device provided in this embodiment has the anti-blue layer 7 disposed between the light-incident side of the second polarizer 6 and the light-emitting side of the backlight module 1.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 can be Reflecting back to the backlight module 1 and transmitting light of other wavelengths, thereby reducing the intensity of the high-energy short-wave blue light emitted by the backlight module 1; on the other hand, for the new display device, the ambient light enters the display panel, wherein
  • the high-energy short-wave blue light is effectively attenuated after being absorbed by the multilayer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is protected by the blue light layer.
  • the display device of the embodiment can eliminate the high energy in the ambient light reflected by the anti-blue layer 7 compared to the display device in which the anti-blue layer is disposed on the side of the display panel away from the backlight module in the prior art.
  • the anti-blue layer 7 is directly attached on the lower surface of the second polarizer 6, and forms a whole with the second polarizer 6 and the display panel, thereby reducing the number of process steps and increasing The flexibility of the anti-blue layer 7 is used.
  • a microlens array having a concavo-convex structure may be disposed on a surface of the anti-blue light layer 7 on the side close to the display panel.
  • the present embodiment provides a display device including a display panel, a blue light-proof layer 7 and a backlight module 1.
  • the anti-blue layer 7 is located on the light-incident side of the display panel and the light-emitting side of the backlight module 1.
  • the anti-blue light layer 7 is capable of reflecting high-energy short-wave blue light incident from the direction of the backlight module 1 and high-energy short-wave blue light incident from the direction of the display panel.
  • the display panel includes a color filter substrate 3, a liquid crystal layer 4, and an array substrate 5.
  • the array substrate 5 is located on the light incident side of the display panel, that is, on a side close to the backlight module 1.
  • the blue light blocking layer can reflect light having a wavelength between 410 and 470 nm.
  • the anti-blue layer can mainly reflect light having a wavelength between 435 and 440 nm, which is advantageous for ensuring the color effect of the displayed image.
  • the side of the display panel away from the backlight module 1 (ie, the light exiting side) is provided with a first polarizer 2, and the anti-blue layer 7 is located on the light incident side of the array substrate 5 of the display panel (ie, close to the backlight module 1).
  • a second polarizer 6 is disposed, that is, the anti-blue layer 7 is located between the second polarizer 6 and the display panel.
  • the first polarizer 2 is disposed above the color filter substrate 3, and the second polarizer 6 is disposed under the blue light preventing layer 7.
  • the blue light blocking layer 7 comprises a multilayer structure formed by overlapping at least two different refractive index materials.
  • the blue light-proof layer 7 has a thickness of between 10 and 200 ⁇ m.
  • the thickness of the anti-blue layer 7 is not limited thereto, as long as the high-energy short-wave blue light can be effectively reflected, and details are not described herein again.
  • the anti-blue layer 7 is composed of at least two materials of different refractive indices, and the anti-blue layer 7 of different structures and thicknesses can be applied to backlight modules of different specifications.
  • the display device provided in this embodiment has the blue light-proof layer 7 disposed between the light-emitting side of the second polarizer 6 and the light-incident side of the display panel.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 can be reflected back.
  • the backlight module 1 transmits light of other wavelengths, thereby reducing the intensity of the high-energy short-wave blue light emitted by the backlight module 1.
  • the ambient light enters the display panel, and the high energy therein
  • the short-wave blue light is effectively attenuated after being absorbed by the multilayer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is reflected by the blue-proof layer 7
  • the reflected high-energy short-wave blue light enters the display panel again and is absorbed by the multi-layer structure in the display panel, so that the light emitted from the display panel (including both the reflected ambient light and the light emitted by the backlight module) There is no high-energy short-wave blue light or very little.
  • the display device of the embodiment can completely eliminate the ambient light reflected by the anti-blue layer 7 compared to the display device with the anti-blue layer disposed on the side of the display panel away from the backlight module in the prior art.
  • High-energy short-wave blue light damages the human eye twice.
  • the display device of the present embodiment can also undergo many changes.
  • the present embodiment provides a display device having a structure similar to that of the display device of Embodiment 3, except that the blue light-proof layer 7 is directly attached to the second polarizer 6.
  • the surface ie, the surface away from the side of the backlight module
  • the display device provided in this embodiment has the anti-blue layer 7 disposed between the surface of the light-emitting side of the second polarizer 6 (ie, the side close to the display panel) and the light-incident side of the display panel.
  • the high-energy short-wave blue light in the emitted light is reflected back to the backlight module 1 and transmits light of other wavelengths, thereby reducing the intensity of the high-energy short-wave blue light emitted by the backlight module 1; on the other hand, for the new display device, After the ambient light enters the display panel, the high-energy short-wave blue light is effectively absorbed by the multi-layer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the high-energy short-wave blue light is attenuated.
  • the surface of the blue layer 7 is reflected by the blue-proof layer 7, and the reflected high-energy short-wave blue light enters the display panel again and is absorbed by the multi-layer structure in the display panel, so that the light emitted from the display panel (including the reflected ambient light) There is also no high-energy short-wave blue light or very little in the light emitted by the backlight module. Therefore, the display device of the embodiment can eliminate the high energy in the ambient light reflected by the anti-blue layer 7 compared to the display device in which the anti-blue layer is disposed on the side of the display panel away from the backlight module in the prior art.
  • the anti-blue layer 7 is directly attached on the upper surface of the second polarizer 6, and forms a whole with the second polarizer 6 and the display panel, thereby reducing the number of process steps and increasing The flexibility of the anti-blue layer 7 is used.
  • a microlens array having a concavo-convex structure may be disposed on a surface of the anti-blue light layer 7 on the side close to the display panel.
  • the present embodiment provides a display device including a display panel, a blue light-proof layer 7 and a backlight module 1 .
  • the anti-blue light layer 7 is located on the light-incident side of the display panel and the light-emitting side of the backlight module 1 .
  • the anti-blue light layer 7 is capable of reflecting high-energy short-wave blue light incident from the direction of the backlight module and high-energy short-wave blue light incident from the direction of the display panel.
  • the display panel includes a color filter substrate 3, a liquid crystal layer 4, and an array substrate 5.
  • the array substrate 5 is located on the light incident side of the display panel, that is, on a side close to the backlight module 1.
  • the blue light blocking layer can reflect light having a wavelength between 410 and 470 nm.
  • the blue light-proof layer can mainly reflect light having a wavelength between 435 and 440 nm, which is advantageous for ensuring the color effect of the displayed image.
  • a side of the display panel away from the backlight module 1 is provided with a first polarizer 2
  • a side of the display panel adjacent to the backlight module 1 is provided with a second polarized light
  • the film 6 is disposed on the side of the second polarizer 6 adjacent to the backlight module 1 and is further provided with a light diffusion layer 8 between the light diffusion layer 8 and the backlight module 1 .
  • the blue light blocking layer 7 comprises a multilayer structure formed by overlapping at least two different refractive index materials.
  • the blue light-proof layer 7 has a thickness of between 10 and 200 ⁇ m.
  • the thickness of the anti-blue layer 7 is not limited thereto, as long as the high-energy short-wave blue light can be effectively reflected, and details are not described herein again.
  • the anti-blue layer 7 is composed of at least two different refractive materials, and the anti-blue layer 7 of different structures and thicknesses can be applied to backlight modules of different specifications.
  • the display device provided in this embodiment has the anti-blue layer 7 disposed between the light-incident side of the light-diffusing layer 8 and the light-emitting side of the backlight module 1.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 can be reflected.
  • the ambient light enters the display panel, and the high energy therein
  • the short-wave blue light is effectively attenuated after being absorbed by the multilayer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is reflected by the blue-proof layer 7
  • the reflected high-energy short-wave blue light enters the display panel again and is absorbed by the multi-layer structure in the display panel, so that the light emitted from the display panel (including both the reflected ambient light and the light emitted by the backlight module) There is no high-energy short-wave blue light or very little.
  • the side of the display panel away from the backlight module The display device with the anti-blue layer is disposed on the display device, and the display device of the embodiment can eliminate the secondary damage of the high-energy short-wave blue light in the ambient light reflected by the anti-blue layer 7 to the human eye.
  • a microlens array having a concavo-convex structure may be disposed on a surface of the anti-blue light layer 7 on the side close to the display panel.
  • the present embodiment provides a display device having a structure similar to that of the display device of Embodiment 7, except that the blue light-proof layer 7 is directly attached to the lower surface of the light diffusion layer 8. (i.e., the surface near the side of the backlight module) is integrated with the light diffusion layer 8 and the display panel, thereby reducing the number of process steps and increasing the flexibility of the use of the blue light prevention layer 7.
  • the display device provided in this embodiment has the anti-blue layer 7 disposed between the light-incident side of the light-diffusing layer 8 and the light-emitting side of the backlight module 1.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 can be reflected.
  • the ambient light enters the display panel, wherein
  • the high-energy short-wave blue light is effectively attenuated after being absorbed by the multilayer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is protected by the blue-ray layer 7
  • the reflected and reflected high-energy short-wave blue light enters the display panel again and is absorbed by the multi-layer structure in the display panel, so that the light emitted from the display panel (including both the reflected ambient light and the backlight module) There is no high-energy short-wave blue light or very little.
  • the display device of the embodiment can completely eliminate the ambient light reflected by the anti-blue layer 7 compared to the display device with the anti-blue layer disposed on the side of the display panel away from the backlight module in the prior art.
  • the high-energy short-wave blue light has secondary damage to the human eye; at the same time, the anti-blue light layer 7 is directly attached on the lower surface of the light diffusion layer 8, and is integrated with the light diffusion layer 8 and the display panel, thereby reducing the number of process steps and increasing the defense
  • the flexibility of the blue layer 7 is used.
  • the display device of the present embodiment can also undergo many changes.
  • a microlens having a concave-convex structure may be disposed on a surface of the anti-blue layer 7 near the side of the display panel. Array.
  • the present embodiment provides a display device having a structure similar to that of the display device of Embodiment 8, except that the light diffusion layer 8 and the blue light-proof layer 7 form a composite layer 9.
  • the light diffusion layer 8 and the blue light prevention layer 7 are combined to form the composite layer 9, thereby reducing the overall thickness of the display device.
  • the display device provided in the embodiment provides the composite layer 9 between the light-incident side of the second polarizer 6 and the light-emitting side of the backlight module 1.
  • the high-energy short-wave blue light in the light emitted by the backlight module 1 can be reflected.
  • the ambient light enters the display panel, wherein
  • the high-energy short-wave blue light is effectively attenuated after being absorbed by the multilayer structure (array substrate 5, liquid crystal layer 4, color film substrate 3, etc.) in the display panel, and the attenuated high-energy short-wave blue light is incident on the surface of the blue-proof layer 7 and is protected by the blue-ray layer 7
  • the reflected and reflected high-energy short-wave blue light enters the display panel again and is absorbed by the multi-layer structure in the display panel, so that the light emitted from the display panel (including both the reflected ambient light and the backlight module) There is no high-energy short-wave blue light or very little.
  • the display device of the embodiment can completely eliminate the ambient light reflected by the anti-blue layer 7 compared to the display device with the anti-blue layer disposed on the side of the display panel away from the backlight module in the prior art.
  • the high-energy short-wave blue light damages the human eye twice; at the same time, the light-diffusing layer 8 forms a composite layer 9 with the anti-blue light layer 7, thereby reducing the overall thickness of the display device.
  • a microlens array having a concavo-convex structure may be disposed on a surface of the anti-blue light layer 7 on the side close to the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种显示装置,属于显示技术领域,其可解决现有的防蓝光显示装置中的防蓝光层(7)会导致高能短波蓝光对人眼造成二次伤害的问题。该显示装置包括显示面板、防蓝光层(7)和背光模组(1),所述防蓝光层(7)位于所述显示面板和所述背光模组(1)之间,所述防蓝光层(7)能够反射从背光模组(1)方向入射的和从显示面板方向入射的高能短波蓝光。

Description

显示装置 技术领域
本发明属于显示技术领域,涉及一种显示装置,具体地涉及一种可防止高能短波蓝光对人眼的伤害的显示装置。
背景技术
随着各种显示设备的日益普及,人类进入了一个全新的“屏时代”。然而,我们日常接触的手机、电视、笔记本电脑等各种电子产品在为我们带来便利的同时,也让我们的眼睛在无形之中遭受到大量的高能短波蓝光的伤害。
近年来,越来越多的研究显示,高能短波蓝光会对人眼造成伤害,导致视网膜受损,甚至会引发人眼黄斑部病变。高能短波蓝光(下文中简称为蓝光)是指波长在410~470nm之间的光线。其中,波长在435~440nm之间的光线对人眼伤害最大,而波长处于该波长范围两侧附近的光线对人眼的伤害则递减。当前,由于人们在日常生活中观看各种显示设备的时间很长,因此,显示设备所发出的蓝光对人眼的影响增大。如果能利用各种方法减少从显示设备入射到人眼中的蓝光,那么就能消除长时间观看显示设备时蓝光对人眼的伤害,降低黄斑病变的发生几率。
现有技术方案中,一般采用以下两种方式来降低蓝光对人眼的伤害。
在第一种方式中,用户佩戴防蓝光眼镜,可以在一定程度上减少蓝光对人眼的伤害。但防蓝光眼镜存在如下不足:膜层结构复杂,加工难度高;吸收的蓝光的波长范围较大,影响视觉效果;不仅屏蔽了对人眼有害的蓝紫光,同时还屏蔽了对人体有益的蓝绿光;佩戴防蓝光眼镜会影响人眼的视觉体验且只能单人使用,观赏感觉较差;
在第二种方式中,在显示设备中添加防蓝光层。如图1所示,在位于显示面板上方(即显示面板的出光侧)的第一偏光片2上设置防蓝光层7,其中,显示面板包括彩膜基板3、液晶层4和阵列基板 5,在显示面板的下方(即显示面板的入光侧)设置有第二偏光片6,在第二偏光片6的下方设置有背光模组1。这种方式可以在很大程度上减少来自背光模组1的蓝光。然而,外界环境中也存在蓝光(如LED照明灯等发出的蓝光),并且防蓝光层7具有光学反射特性,其会直接对外界环境中的蓝光进行反射,而无法吸收外界环境中的蓝光,因此,当用户使用这样的显示设备时,被防蓝光层7反射的蓝光会进入人眼中,对人眼造成二次伤害,且原有的显示画面会因此而产生色偏问题。
可见,在现有技术中,无论采用上述哪种方式均无法有效减少蓝光对人眼的伤害,使得消费者在使用过程中存在诸多不便,比如导致产品透光率降低,增加维护成本,或影响用户使用体验。特别是采用上述第二种方式时,由于防蓝光层7的光学反射特性,人眼容易受到二次伤害。
发明内容
针对现有的防蓝光显示装置中,在显示面板的上表面(即出光侧面)贴覆防蓝光层会导致高能短波蓝光对人眼造成二次伤害的问题,本发明提供一种能够避免高能短波蓝光对人眼造成伤害的显示装置。
本发明的一个方面提供一种显示装置,其包括显示面板、防蓝光层和背光模组,所述防蓝光层位于所述显示面板和所述背光模组之间,所述防蓝光层反射从背光模组方向入射的和从显示面板方向入射的高能短波蓝光。
可选地,所述防蓝光层反射波长在435~440nm之间的蓝光。
可选地,所述防蓝光层靠近显示面板的一侧的表面上设置有凹凸结构的微透镜阵列。
可选地,所述显示面板远离所述背光模组的一侧设置有第一偏光片,所述显示面板靠近所述背光模组的一侧设置有第二偏光片,并且其中所述防蓝光层位于所述第二偏光片和所述背光模组之间。
可选地,所述防蓝光层贴覆在所述第二偏光片靠近所述背光模 组的一侧的表面上。
可选地,所述显示面板远离所述背光模组的一侧设置有第一偏光片,所述显示面板靠近所述背光模组的一侧设置有第二偏光片,并且其中所述防蓝光层位于所述第二偏光片和所述显示面板之间。
可选地,所述防蓝光层贴覆在所述第二偏光片靠近所述显示面板的一侧的表面上。
可选地,所述第二偏光片靠近所述背光模组的一侧还设置有光扩散层,所述防蓝光层位于所述光扩散层和所述背光模组之间。
可选地,所述防蓝光层贴覆在所述光扩散层的靠近所述背光模组一侧的表面上,或者,所述光扩散层与所述防蓝光层形成复合层。
可选地,所述防蓝光层具有由至少两种不同折射率材料交叠形成的多层结构。
可选地,所述防蓝光层的厚度在10~200μm之间。
本发明提供的显示装置中,防蓝光层位于显示面板和背光模组之间,一方面可以使背光模组发出的光线中高能短波蓝光反射回背光模组,并使其它波长的光线透过,从而在不影响显示效果的同时降低背光模组发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板、液晶层、彩膜基板等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层表面,被防蓝光层反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层反射的外界环境光中的高能短波蓝光对人眼的二次伤害。
附图说明
图1为现有的显示装置的结构示意图;
图2为本发明的实施例2提供的显示装置的结构示意图;
图3为本发明的实施例3提供的显示装置的结构示意图;
图4为本发明的实施例4提供的显示装置的结构示意图;
图5为本发明的实施例5提供的显示装置的结构示意图;
图6为本发明的实施例6提供的显示装置的结构示意图;
图7为本发明的实施例7提供的显示装置的结构示意图;
图8为本发明的实施例8提供的显示装置的结构示意图;以及
图9为本发明的实施例9提供的显示装置的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1:
本实施例提供一种显示装置,其包括显示面板、防蓝光层和背光模组,防蓝光层位于显示面板和背光模组之间,且防蓝光层既能反射从背光模组方向入射的高能短波蓝光(其来自于背光模组),又能反射从显示面板方向入射的高能短波蓝光(其来自于外界环境)。防蓝光层可以反射波长在410~470nm之间的光线。进一步地,防蓝光层可以主要反射波长在435~440nm之间的光线,这样有利于保证所显示的图像的色彩效果。
本实施例提供的显示装置将防蓝光层设置于显示面板和背光模组之间,一方面可以使背光模组发出的光线中的高能短波蓝光反射回背光模组,并使其它波长的光线透过,从而降低了背光模组发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板、液晶层、彩膜基板等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层表面,被防蓝光层反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发 出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层反射的外界环境光中的高能短波蓝光对人眼的二次伤害。
下面将通过实施例2~实施例9详细描述本发明所述显示装置的具体结构。
实施例2:
如图2所示,本实施例提供一种显示装置,其包括显示面板、防蓝光层7和背光模组1,防蓝光层7位于显示面板的入光侧和背光模组1的出光侧之间,且防蓝光层7能够反射从背光模组1方向入射的高能短波蓝光和从显示面板方向入射的高能短波蓝光。
其中,显示面板包括:彩膜基板3、液晶层4和阵列基板5,阵列基板5位于显示面板的入光侧,即靠近背光模组1的一侧,而防蓝光层7位于显示面板的阵列基板5和背光模组1之间。一般地,显示面板的两侧都会设置偏光片。
防蓝光层7可以反射波长在410~470nm之间的光线。进一步地,防蓝光层可以主要反射波长在435~440nm之间的光线,这样有利于保证所显示的图像的色彩效果。
可选地,防蓝光层7靠近显示面板一侧的表面上设置有凹凸结构的微透镜阵列。
本实施例中,防蓝光层7靠近显示面板一侧的表面上设置有凹凸结构的微透镜阵列,可以防止因防蓝光层和设置在显示面板入光侧的偏光片发生吸附而导致在显示端产生的牛顿环现象,同时,还可以减弱防蓝光层7对其他波长光线的色散作用,提高显示效果。
可选地,防蓝光层7包括由至少两种不同折射率材料交叠形成的多层结构。
可选地,防蓝光层7的厚度在10~200μm之间。当然,防蓝光层7的厚度不局限于此,只要能对高能短波蓝光进行有效反射即可,此处不再赘述。
本实施例中,防蓝光层7由至少二种不同折射率的材料交叠构成,不同结构、不同厚度的防蓝光层7可适用于不同规格的背光模组。
本实施例提供的显示装置将防蓝光层7设置于显示面板的入光侧和背光模组1的出光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害。
实施例3:
如图3所示,本实施例提供一种显示装置,其包括显示面板、防蓝光层7和背光模组1,防蓝光层7位于显示面板的入光侧和背光模组1的出光侧之间,且防蓝光层7能够反射从背光模组1方向入射的高能短波蓝光和从显示面板方向入射的高能短波蓝光。
其中,显示面板包括:彩膜基板3、液晶层4和阵列基板5,阵列基板5位于显示面板的入光侧,即靠近背光模组1的一侧。
可选地,防蓝光层可以反射波长在410~470nm之间的光线。进一步地,防蓝光层可以主要反射波长在435~440nm之间的光线,这样有利于保证所显示的图像的色彩效果。
可选地,显示面板的远离背光模组1的一侧(即出光侧)设置有第一偏光片2,显示面板的靠近背光模组1的一侧(即入光侧)设置有第二偏光片6,防蓝光层7位于第二偏光片6和背光模组1之间。换言之,第一偏光片2设置在彩膜基板3之上,第二偏光片6设置在 阵列基板5之下。
可选地,防蓝光层7包括由至少两种不同折射率材料交叠形成的多层结构。
可选地,防蓝光层7的厚度在10~200μm之间。当然,防蓝光层7的厚度不局限于此,只要能对高能短波蓝光进行有效反射即可,此处不再赘述。
本实施例中,防蓝光层7由至少二种不同折射率的材料交叠构成,不同结构、不同厚度的防蓝光层7可适用于不同规格的背光模组。
本实施例提供的显示装置将防蓝光层7设置于第二偏光片6的入光侧和背光模组1的出光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害。
显然,本实施例的显示装置还可进行许多变化。例如:可以在防蓝光层7靠近显示面板一侧的表面上设置具有凹凸结构的微透镜阵列。
实施例4:
如图4所示,本实施例提供一种显示装置,其具有与实施例3所述的显示装置类似的结构,而区别仅在于,防蓝光层7直接贴覆在第二偏光片6的下表面(即靠近背光模组一侧的表面)上,与第二偏 光片6及显示面板形成一个整体,从而减少了工艺步骤,增加了防蓝光层7使用的灵活性。
本实施例提供的显示装置将防蓝光层7设置于第二偏光片6的入光侧和背光模组1的出光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害;同时,防蓝光层7直接贴覆在第二偏光片6的下表面上,与第二偏光片6及显示面板形成一个整体,从而减少了工艺步骤,增加了防蓝光层7使用的灵活性。
显然,本实施例的显示装置还可进行许多变化。例如:可以在防蓝光层7靠近显示面板一侧的表面上设置具有凹凸结构的微透镜阵列。
实施例5:
如图5所示,本实施例提供一种显示装置,其包括显示面板、防蓝光层7和背光模组1,防蓝光层7位于显示面板的入光侧和背光模组1的出光侧之间,且防蓝光层7能够反射从背光模组1方向入射的高能短波蓝光和从显示面板方向入射的高能短波蓝光。
其中,显示面板包括:彩膜基板3、液晶层4和阵列基板5,阵列基板5位于显示面板的入光侧,即靠近背光模组1的一侧。
可选地,防蓝光层可以反射波长在410~470nm之间的光线。进 一步地,防蓝光层可以主要反射波长在435~440nm之间的光线,这样有利于保证所显示的图像的色彩效果。
可选地,显示面板的远离背光模组1的一侧(即出光侧)设置有第一偏光片2,防蓝光层7位于显示面板的阵列基板5的入光侧(即靠近背光模组1的一侧),而防蓝光层7的靠近背光模组1的一侧设置有第二偏光片6,即防蓝光层7位于第二偏光片6和显示面板之间。换言之,第一偏光片2设置在彩膜基板3之上,第二偏光片6设置在防蓝光层7之下。
可选地,防蓝光层7包括由至少两种不同折射率材料交叠形成的多层结构。
可选地,防蓝光层7的厚度在10~200μm之间。当然,防蓝光层7的厚度不局限于此,只要能对高能短波蓝光进行有效反射即可,此处不再赘述。
本实施例中,防蓝光层7由至少二种不同折射率的材料交叠构成,不同结构、不同厚度的防蓝光层7可适用于不同规格的背光模组。
本实施例提供的显示装置将防蓝光层7设置于第二偏光片6的出光侧和显示面板的入光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够完全消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害。
显然,本实施例的显示装置还可进行许多变化。例如:可以在 防蓝光层7靠近显示面板一侧的表面上设置局有凹凸结构的微透镜阵列。
实施例6:
如图6所示,本实施例提供一种显示装置,其具有与实施例3所述的显示装置类似的结构,而区别仅在于,防蓝光层7直接贴覆在第二偏光片6的上表面(即远离背光模组一侧的表面)上,与第二偏光片6及显示面板形成一个整体,从而减少了工艺步骤,增加了防蓝光层7使用的灵活性。
本实施例提供的显示装置将防蓝光层7设置于第二偏光片6的出光侧(即靠近显示面板的一侧)的表面和显示面板的入光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害;同时,防蓝光层7直接贴覆在第二偏光片6的上表面上,与第二偏光片6及显示面板形成一个整体,从而减少了工艺步骤,增加了防蓝光层7使用的灵活性。
显然,本实施例的显示装置还可进行许多变化。例如:可以在防蓝光层7靠近显示面板一侧的表面上设置具有凹凸结构的微透镜阵列。
实施例7:
如图7所示,本实施例提供一种显示装置,其包括显示面板、防蓝光层7和背光模组1,防蓝光层7位于显示面板的入光侧和背光模组1的出光侧之间,且防蓝光层7能够反射从背光模组方向入射的高能短波蓝光和从显示面板方向入射的高能短波蓝光。
其中,显示面板包括:彩膜基板3、液晶层4和阵列基板5,阵列基板5位于显示面板的入光侧,即靠近背光模组1的一侧。
可选地,防蓝光层可以反射波长在410~470nm之间的光线。进一步地,防蓝光层可以主要反射波长在435~440nm之间的光线,这样有利于保证所显示的图像的色彩效果。
可选地,显示面板的远离背光模组1的一侧(即出光侧)设置有第一偏光片2,显示面板的靠近背光模组1的一侧(即入光侧)设置有第二偏光片6,而第二偏光片6靠近背光模组1的一侧还设置有光扩散层8,防蓝光层7位于光扩散层8和背光模组1之间。
可选地,防蓝光层7包括由至少两种不同折射率材料交叠形成的多层结构。可选地,防蓝光层7的厚度在10~200μm之间。当然,防蓝光层7的厚度不局限于此,只要能对高能短波蓝光进行有效反射即可,此处不再赘述。
本实施例中,防蓝光层7由至少二种不同折射材料交叠构成,不同结构、不同厚度的防蓝光层7可适用于不同规格的背光模组。
本实施例提供的显示装置将防蓝光层7设置于光扩散层8的入光侧和背光模组1的出光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧 上设置防蓝光层的显示装置,本实施例所述显示装置能够消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害。
显然,本实施例的显示装置还可进行许多变化。例如:可以在防蓝光层7靠近显示面板一侧的表面上设置具有凹凸结构的微透镜阵列。
实施例8:
如图8所示,本实施例提供一种显示装置,其具有与实施例7所述的显示装置类似的结构,而区别仅在于,防蓝光层7直接贴覆在光扩散层8的下表面(即,靠近背光模组一侧的表面)上,与光扩散层8及显示面板形成一个整体,从而减少了工艺步骤,增加了防蓝光层7使用的灵活性。
本实施例提供的显示装置将防蓝光层7设置于光扩散层8的入光侧和背光模组1的出光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够完全消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害;同时防蓝光层7直接贴覆在光扩散层8的下表面上,与光扩散层8及显示面板形成一个整体,从而减少了工艺步骤,增加了防蓝光层7使用的灵活性。
显然,本实施例的显示装置还可进行许多变化。例如:可以在防蓝光层7靠近显示面板一侧的表面上设置具有凹凸结构的微透镜 阵列。
实施例9:
如图9所示,本实施例提供一种显示装置,其具有与实施例8所述的显示装置类似的结构,而区别仅在于,光扩散层8与防蓝光层7形成复合层9。换言之,将光扩散层8与防蓝光层7复合在一起形成复合层9,从而减小显示装置的整体厚度。
本实施例提供的显示装置将复合层9设置于第二偏光片6的入光侧和背光模组1的出光侧之间,一方面可以使背光模组1发出的光线中的高能短波蓝光反射回背光模组1,并使其它波长的光线透过,从而降低背光模组1发出的高能短波蓝光的强度;另一方面,对于这种新型显示装置,外界环境光进入显示面板后,其中的高能短波蓝光经过显示面板中多层结构(阵列基板5、液晶层4、彩膜基板3等)吸收后得到有效衰减,衰减后的高能短波蓝光入射至防蓝光层7表面,被防蓝光层7反射,反射出去的高能短波蓝光再次进入显示面板,并被显示面板中多层结构吸收,使得从显示面板射出去的光(既包括被反射的外界环境光,也包括背光模组发出的光)中不存在高能短波蓝光或很少。因此,相比于现有技术中在显示面板远离背光模组的一侧上设置防蓝光层的显示装置,本实施例所述显示装置能够完全消除由防蓝光层7反射的外界环境光中的高能短波蓝光对人眼的二次伤害;同时,光扩散层8与防蓝光层7形成复合层9,从而减小显示装置的整体厚度。
显然,本实施例的显示装置还可进行许多变化。例如:可以在防蓝光层7靠近显示面板一侧的表面上设置具有凹凸结构的微透镜阵列。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种显示装置,包括显示面板、防蓝光层和背光模组,所述防蓝光层位于所述显示面板和所述背光模组之间,所述防蓝光层能够反射从背光模组方向入射的和从显示面板方向入射的高能短波蓝光。
  2. 根据权利要求1所述的显示装置,其中,所述防蓝光层反射波长在435~440nm之间的蓝光。
  3. 根据权利要求1所述的显示装置,其中,所述防蓝光层靠近显示面板的一侧的表面上设置有凹凸结构的微透镜阵列。
  4. 根据权利要求1所述的显示装置,其中,所述显示面板远离所述背光模组的一侧设置有第一偏光片,所述显示面板靠近所述背光模组的一侧设置有第二偏光片,并且
    其中,所述防蓝光层位于所述第二偏光片和所述背光模组之间。
  5. 根据权利要求4所述的显示装置,其中,所述防蓝光层贴覆在所述第二偏光片靠近所述背光模组的一侧的表面上。
  6. 根据权利要求1所述的显示装置,其中,所述显示面板远离所述背光模组的一侧设置有第一偏光片,所述显示面板靠近所述背光模组的一侧设置有第二偏光片,并且
    其中,所述防蓝光层位于所述第二偏光片和所述显示面板之间。
  7. 根据权利要求6所述的显示装置,其中,所述防蓝光层贴覆在所述第二偏光片靠近所述显示面板的一侧的表面上。
  8. 根据权利要求4所述的显示装置,其中,所述第二偏光片靠近所述背光模组的一侧还设置有光扩散层,并且
    其中,所述防蓝光层位于所述光扩散层和所述背光模组之间。
  9. 根据权利要求8所述的显示装置,其中,所述防蓝光层贴覆在所述光扩散层的靠近所述背光模组一侧的表面上。
  10. 根据权利要求8所述的显示装置,其中,所述光扩散层与所述防蓝光层形成复合层。
  11. 根据权利要求1所述的显示装置,其中,所述防蓝光层具有由至少两种不同折射率材料交叠形成的多层结构。
  12. 根据权利要求10所述的显示装置,其中,所述防蓝光层的厚度在10~200μm之间。
PCT/CN2016/077339 2015-09-23 2016-03-25 显示装置 WO2017049889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/511,493 US10534118B2 (en) 2015-09-23 2016-03-25 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520743672.1 2015-09-23
CN201520743672.1U CN204964945U (zh) 2015-09-23 2015-09-23 一种显示装置

Publications (1)

Publication Number Publication Date
WO2017049889A1 true WO2017049889A1 (zh) 2017-03-30

Family

ID=55059999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077339 WO2017049889A1 (zh) 2015-09-23 2016-03-25 显示装置

Country Status (3)

Country Link
US (1) US10534118B2 (zh)
CN (1) CN204964945U (zh)
WO (1) WO2017049889A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111367119A (zh) * 2018-12-26 2020-07-03 海信视像科技股份有限公司 直下式背光灯条、背光模组及显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204964945U (zh) 2015-09-23 2016-01-13 京东方科技集团股份有限公司 一种显示装置
CN106405921B (zh) 2016-09-23 2018-06-05 京东方科技集团股份有限公司 一种显示装置
CN106773312A (zh) * 2017-01-11 2017-05-31 京东方科技集团股份有限公司 一种显示面板和显示装置
CN107817637B (zh) * 2017-12-15 2020-09-22 合肥京东方光电科技有限公司 防蓝光结构、显示装置以及防蓝光调节方法
CN108614376A (zh) * 2018-03-28 2018-10-02 宁波江北激智新材料有限公司 一种可反射蓝光的高效率量子点薄膜及其制备方法和应用
CN108572479B (zh) * 2018-04-17 2021-01-15 昆山龙腾光电股份有限公司 显示装置
CN108919389B (zh) * 2018-07-16 2021-09-10 中山驰马灯饰照明设计工程有限公司 一种防蓝光复合灯罩
CN110082955A (zh) * 2019-03-18 2019-08-02 东莞市托普莱斯光电技术有限公司 一种抗蓝光的背光模组
TWI703385B (zh) * 2019-07-29 2020-09-01 瑞儀光電股份有限公司 調光膜片、背光模組及顯示裝置
CN111552114A (zh) 2020-03-24 2020-08-18 京东方科技集团股份有限公司 背光模组及显示装置
CN114217470A (zh) * 2021-12-15 2022-03-22 惠州Tcl移动通信有限公司 显示装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395498B1 (ko) * 2014-01-15 2014-05-14 안병운 블루라이트 차단 글라스
TWM494919U (zh) * 2014-10-14 2015-02-01 shi-jie Zhuo 抗藍光保護貼之結構
CN104406099A (zh) * 2014-12-03 2015-03-11 福建捷联电子有限公司 降低蓝光危害的显示背光结构
CN104849904A (zh) * 2015-05-14 2015-08-19 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置
CN204964945U (zh) * 2015-09-23 2016-01-13 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686979A (en) * 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
JP4412441B2 (ja) * 2000-07-11 2010-02-10 日本電気株式会社 液晶表示装置
JP4747053B2 (ja) * 2006-08-15 2011-08-10 Nec液晶テクノロジー株式会社 液晶表示素子及びこれを搭載した電子機器
KR100989311B1 (ko) * 2008-05-15 2010-10-25 제일모직주식회사 휘도향상을 위한 광학적층 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395498B1 (ko) * 2014-01-15 2014-05-14 안병운 블루라이트 차단 글라스
TWM494919U (zh) * 2014-10-14 2015-02-01 shi-jie Zhuo 抗藍光保護貼之結構
CN104406099A (zh) * 2014-12-03 2015-03-11 福建捷联电子有限公司 降低蓝光危害的显示背光结构
CN104849904A (zh) * 2015-05-14 2015-08-19 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置
CN204964945U (zh) * 2015-09-23 2016-01-13 京东方科技集团股份有限公司 一种显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111367119A (zh) * 2018-12-26 2020-07-03 海信视像科技股份有限公司 直下式背光灯条、背光模组及显示装置

Also Published As

Publication number Publication date
CN204964945U (zh) 2016-01-13
US10534118B2 (en) 2020-01-14
US20170293057A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
WO2017049889A1 (zh) 显示装置
US10495795B2 (en) Light emission reducing compounds for electronic devices
KR101915334B1 (ko) 뉴턴링들에 대한 줄어든 민감도를 가지는 전기 장치들 및/또는 그 제조방법
WO2016107084A1 (zh) 光学模组和反射型显示装置
TW557371B (en) Semi-transparent-semi-reflectivity film, semi- transparent-semi-reflectivity polarized film, polarized light device using these films, and liquid crystal display device using these films
US9411168B2 (en) Optical module and optically functional film applied for optical device
TW200535467A (en) Mirror with built-in display
WO2016045379A1 (zh) 一种反射型显示装置
WO2018161488A1 (zh) 显示面板及其制造方法
US11126033B2 (en) Backlight unit with emission modification
KR20120056508A (ko) 액정 표시 장치 및 그 제조방법
TWI485466B (zh) 液晶顯示裝置
US11592701B2 (en) Backlight unit with emission modification
TW201915982A (zh) 拼接顯示裝置
WO2018120712A1 (zh) 有机发光二极管及显示器件
JPH05158034A (ja) 液晶表示装置
CN111584756A (zh) 显示面板、显示装置及显示面板的封装方法
CN105388662A (zh) 显示面板及偏振片
WO2016119404A1 (zh) 显示装置及其制造方法
US10338426B2 (en) Light diffusion member, base material for light diffusion member production, display device using same and method for producing light diffusion member
US20220066222A1 (en) Total reflection based compact near-eye display device with large field of view
US20210055461A1 (en) Camera device
TW201535020A (zh) 鏡面顯示器
US20110037923A1 (en) Light condensing film, backlight module and liquid crystal display
TW201510580A (zh) 具濾波功能的背光模組及包含其之顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15511493

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847771

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16847771

Country of ref document: EP

Kind code of ref document: A1