WO2017049777A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2017049777A1
WO2017049777A1 PCT/CN2015/097465 CN2015097465W WO2017049777A1 WO 2017049777 A1 WO2017049777 A1 WO 2017049777A1 CN 2015097465 W CN2015097465 W CN 2015097465W WO 2017049777 A1 WO2017049777 A1 WO 2017049777A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
vibration
block
vibration motor
weight
Prior art date
Application number
PCT/CN2015/097465
Other languages
English (en)
French (fr)
Inventor
祖峰磊
刘春发
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/762,055 priority Critical patent/US10666121B2/en
Publication of WO2017049777A1 publication Critical patent/WO2017049777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements

Definitions

  • the present invention relates to the field of consumer electronics, and more particularly to a linear vibration motor for use in portable consumer electronics.
  • micro-vibration motors are generally used for system feedback, such as incoming call prompts of mobile phones, vibration feedback of game machines, and the like.
  • system feedback such as incoming call prompts of mobile phones, vibration feedback of game machines, and the like.
  • various internal components also need to adapt to this trend, and micro-vibration motors are no exception.
  • the existing micro-vibration motor generally includes an upper cover, a lower cover that forms a vibration space with the upper cover, a vibrator (including a weight and a permanent magnet) that linearly reciprocates in the vibration space, connects the upper cover, and makes the vibrator An elastic support member that reciprocates and a coil that is located at a distance below the vibrator.
  • the permanent magnet and the coil are placed perpendicular to each other, that is, the magnetization direction of the permanent magnet is parallel to the axial direction of the coil, so that the magnetic lines of the permanent magnet can pass vertically through the coil as much as possible.
  • the ground magnetic field of the permanent magnet is utilized.
  • the micro-vibration motor of the above structure the vibrator and the stator occupy a relatively large space, which is disadvantageous to the miniaturization of the motor; and the magnetic lines generated by the permanent magnet itself in the vibrator are relatively dispersed, and the generated magnetic lines still do not exist.
  • the relative magnetic flux passing through the coil will be relatively small, and the generated force will be relatively small, affecting the vibratory effect; when moving to both ends, the magnetic flux that is erected through the coil is also very high. Less, thus affecting the vibration of the electronic product, the linear vibration response speed is slower and the vibration is small.
  • an object of the present invention is to provide a linear vibration motor which is a horizontally magnetized motor in which the vibrator and the stator are arranged in parallel, and the electromagnet in the stator is energized to change the direction of the magnetic lines of force to generate mutual interaction with the permanent magnets in the vibrator.
  • the push-pull force of the action thereby pushing the vibrator to be level with the stator Reciprocating in a direction parallel to the face.
  • a linear vibration motor provided by the present invention includes a vibrator and a stator disposed in parallel with the vibrator, the vibrator including a weight and a vibration block embedded in the weight, wherein the vibration block
  • the permanent magnet and the electromagnet in the stator generate an interactive push-pull force; the electromagnet in the stator generates a varying magnetic field after being energized, and the vibrator is driven along the plane of the stator by changing the direction of the magnetic field lines of the magnetic field. Reciprocating in parallel directions.
  • a relief structure for escaping the stator is disposed in a middle portion of the weight; and a recess for accommodating the vibration block is disposed at a center of the relief structure on the weight.
  • the vibrating block comprises three adjacent permanent magnets and a guiding yoke disposed between adjacent permanent magnets, and adjacent ones of the two permanent magnets have the same polarity
  • the stator includes two coils disposed corresponding to the vibrator and a magnetic conductive core respectively disposed in the two coils, the axial direction of the coil being perpendicular to the magnetization direction of the permanent magnet.
  • the vibration block includes at least two adjacent permanent magnets and a yoke disposed between adjacent permanent magnets;
  • the electromagnet in the stator includes a coil and a magnetic core located in the middle of the coil;
  • the yoke and the magnetic core are misaligned.
  • a vibration guiding shaft, a limiting spring and a limiting block are respectively disposed at two ends of the weighting block, and the limiting spring is sleeved on the vibration guiding shaft and is limited to the weighting block and the limiting block.
  • a guiding hole for reciprocating the vibration guiding shaft is disposed in the limiting block, and a sleeve is sleeved on one end of the vibration guiding shaft and deep into the guiding hole.
  • the preferred solution further comprises: a housing; the vibration guiding shaft is fixedly connected with the weight, and the limiting block is fixedly connected with the housing; or the vibration guiding shaft is fixedly connected with the housing, and the limiting block is fixedly connected with the weight.
  • the weight is a tungsten steel block, a nickel steel block or a nickel tungsten alloy block.
  • a preferred solution is that the housing and the flexible circuit board are further included; the stator is fixedly connected to the outer casing through the flexible circuit board; and the leads of the coil are connected to the external circuit through the circuit on the flexible circuit board.
  • the linear vibration motor according to the present invention jumps out of the existing motor design idea of placing the permanent magnets and the coils perpendicularly to each other, and places the permanent magnets of the vibrators in parallel with the stator, and changes the direction of the magnetic lines by changing the energizing direction of the electromagnets in the stator. Therefore, the vibrator is reciprocated in a direction parallel to the plane of the stator, which effectively reduces the volume of the motor, and is more conducive to miniaturization of the motor.
  • FIG. 1 is a schematic view showing an overall exploded structure of a linear vibration motor according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a combined structure of a linear vibration motor according to an embodiment of the present invention
  • 3a and 3b are schematic diagrams showing a combined structure of a vibrating block and a stator according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a working principle according to an embodiment of the present invention.
  • 5a and 5b are respectively schematic views of a combined structure of a vibrating block and a stator according to another embodiment of the present invention.
  • upper case 1 rear cover 2, weight 31, permanent magnets 32a, 32b, 32c, 32a', 32b', yokes 33a, 33b, 33a', coils 41a, 41b, 41', magnetically
  • weights used in the description of the specific embodiments described below may also be referred to as “mass masses”, both of which refer to high quality, high density metal blocks that are fixed with vibrating permanent magnets to enhance vibration balance.
  • the linear vibration motor provided by the present invention places the vibrator and the stator in parallel, so that the electromagnet in the stator is energized and then drives the vibrator in a direction parallel to the plane of the stator by changing the direction of the magnetic field lines of the magnetic field. Do reciprocating.
  • FIGS. 1 and 2 respectively show an overall exploded structure and combined structure of a linear vibration motor according to an embodiment of the present invention.
  • the linear vibration motor of the present embodiment mainly includes a casing, a vibrator, and a stator, and the stator and the vibrator are arranged in a vertical direction.
  • the outer casing includes an upper casing 1 and a rear cover 2;
  • the vibrator includes a weight 31 and a vibration block embedded in the weight 31, and the vibration block includes a permanent magnet and a yoke coupled between the permanent magnets.
  • the permanent magnet in the vibration block and the electromagnet in the stator After the electromagnet in the stator is energized, the permanent magnet in the vibration block and the electromagnet in the stator generate an interaction push-pull force, and the direction of the magnetic field line generated by the stator is changed by changing the direction of the current of the electromagnet in the stator, thereby driving The vibrator reciprocates in a direction parallel to the plane of the stator.
  • the magnetization direction of the permanent magnet is perpendicular to the axial direction of the coil, and the vibration direction of the vibrator is also parallel to the plane of the stator, so that the vibration space of the vibrator can be ensured.
  • the thickness of the motor is effectively reduced, which facilitates the miniaturization of the motor.
  • the vibrating block is composed of three permanent magnets 32a, 32b, 32c disposed adjacently and a yoke 33a respectively disposed between adjacent permanent magnets.
  • the composition of 33b; the electromagnet in the stator includes two coils 41a, 41b disposed corresponding to the vibrator and magnetic cores 42a, 42b respectively disposed in the coil.
  • the magnetic yoke and the magnetic core are staggered, and each of the magnetic cores is located at a position away from the center of the vibrator corresponding to the magnetic yoke.
  • the "corresponding" refers to a magnetic core/magnetic yoke that can influence each other and change the direction of the magnetic flux. .
  • the staggered arrangement order of the yoke and the magnetic core is: a magnetic core 42a, a yoke 33a, a yoke 33b, and a core 42b, wherein the core 42a and the yoke 33a
  • the yoke 33b corresponds to the magnetic core 42b.
  • the combined structure of the vibrating block and the stator is shown in Figures 3a and 3b.
  • the adjacent ends of each permanent magnet and the adjacent permanent magnet have the same polarity, that is, in the order of SN, NS, SN (as shown in FIG. 3a) or NS, SN.
  • the NS sequence (shown in FIG. 3b) is arranged such that the yoke is disposed between adjacent permanent magnets, and the magnetization direction of the permanent magnet is perpendicular to the axial direction of the coil of the stator.
  • the axial direction of the coil is the direction in which the central axis of the coil and the magnetic core therein is located.
  • the magnetization direction of the magnet is horizontal, and the axis direction of the coil is vertical. Straight direction.
  • the magnetic lines of the permanent magnets can be concentrated through the yoke between the two adjacent permanent magnets and
  • the coil under the vibration block is designed in such a way that the magnetic flux passing through the coil can be increased as much as possible while minimizing the space occupied by the stator and the vibrator.
  • FIG. 4 The working principle of the linear vibration motor of the present invention will be briefly described below using FIG. 4 as an example.
  • the left-hand rule that determines the direction of the force of the energized conductor in the magnetic field, extend the left hand so that the thumb is perpendicular to the other four fingers, and both are in the same plane as the palm; let the magnetic line enter from the palm and point the four fingers
  • the direction of the current, in which the direction of the thumb is the direction of the ampere force of the energized conductor in the magnetic field.
  • the current direction is in the vertical direction of the face, marked as The current direction is the vertical view facing outward, assuming the first coil is " with "The second coil must also be” with "The coil will be forced to the right F, because the coil is fixed, based on the relationship between the force and the reaction force, the permanent magnet is forced to the left F'.
  • the permanent magnet that is driven by the left is driven.
  • the weights are moved together to the left to squeeze the spring on the right side of the weight and stretch the spring on the right side of the weight.
  • the magnetic field is subjected to the coil according to the left-hand rule.
  • the direction of the force F is to the left.
  • the permanent magnet receives the force of F' opposite to the F direction and the same magnitude, and the permanent magnet that is pushed to the right drives the weight together to the right.
  • the translational movement causes the springs at both ends of the weight to continue to be stretched/extruded from the extruded/stretched state.
  • the above movements alternate, making the vibration block and the weight of the permanent magnet and the yoke
  • the formed vibrator reciprocates in a direction parallel to the mounting plane of the stator.
  • the vibration block includes three permanent magnets, but in the specific application process, it is not limited to the above structure, and the number of permanent magnets constituting the vibration block may be appropriately selected according to the magnitude of the vibration force required for the application product. .
  • a permanent magnet or a combined structure of a vibrating block and a stator composed of two permanent magnets as shown in Figs. 5a and 5b, respectively.
  • the vibrating block includes two adjacent permanent magnets 32a', 32b', the abutting ends of the two permanent magnets having the same polarity, and the two permanent magnets 32a', 32b'
  • a magnetic yoke 33a' is disposed therebetween, and a stator composed of a coil 41' and a magnetic core 42' disposed in the coil 41' is disposed under the vibration block, and the magnetic yoke 33a' and the magnetic core 42' are arranged in a staggered manner.
  • the vibrating block is embedded and fixed in the weight to drive the counterweight to vibrate horizontally.
  • a relief structure for escaping the stator is disposed in a middle portion of the weight, and a recess for accommodating the vibration block is disposed at a center of the weight on which the relief structure is disposed.
  • the permanent magnets and the yokes constituting the vibration block may be fixed together, and then the vibration block is integrally fixed in the groove by gluing or laser welding.
  • the linear vibration motor of the present invention further includes two vibration guiding shafts 51a and 51b disposed at both ends of the weight 31, limit springs 52a and 52b, and limit blocks 53a and 53b.
  • the limit spring is sleeved on the vibration guide shaft. 51a, 51b.
  • the limiting blocks 53a, 53b are respectively fixed on the upper casing 1
  • the two vibration guiding shafts 51a, 51b are respectively fixed at the two ends of the weighting block 31, in the limiting block.
  • Guide holes 56a for reciprocating the vibration guide shaft are also provided on the 53a, 53b.
  • the vibrating block drives the weight 31 and the vibration guide shafts 51a and 51b fixed to both ends of the weight 31 to vibrate within a limited range of the guide hole 56a by the magnetic field generated after the stator is energized.
  • the upper limit springs 52a, 52b respectively disposed on the vibration guide shafts 51a, 51b are respectively defined between the weight 31 and the corresponding limit blocks 53a, 53b to provide an elastic restoring force for the vibration of the vibrator.
  • the sleeves 54a, 54b may be sleeved on one end of the vibration guiding shafts 51a, 51b deep into the guiding holes 56a.
  • the contact faces of the sleeves 54a, 54b and the guide holes 56a are smooth and wear resistant.
  • the increase of the sleeves 54a, 54b reduces the contact area of the vibration guide shafts 51a, 51b with the guide holes 56a, and the sleeves 54a, 54b can be made of a material having a high density and a smooth surface and wear resistance, which can be based on no cost increase.
  • the friction between the vibration guide shafts 51a, 51b and the guide holes 56a is reduced as much as possible to improve the degree of lubrication.
  • the limiting blocks 53a, 53b may be respectively fixed at the two ends of the weight 31, or the weight 31 and the limiting blocks 53a, 53b may be designed as an integral structure, at the limit.
  • the blocks 53a, 53b are provided with guide holes 56a for reciprocating the vibration guide shafts 51a, 51b, and the two vibration guide shafts 51a, 51b are respectively fixed to the upper casing 1, and the sleeves 54a, 54b are sleeved on the vibration guide shaft.
  • One end of the 51a, 51b acting with the guide hole 56a here, the end close to the weight 31).
  • the vibrating block drives the weight 31 and the limiting blocks 53a, 53b fixed at both ends of the weight 31 along the vibration guiding shaft 51a, 51b within a limited range of the guiding hole 56a under the action of the magnetic field generated after the stator is energized. vibration.
  • the amplitude of the vibrator vibration determines the depth of the vibrating guide shafts 51a, 51b deep into the guide hole 56a, the depth of the vibrating guide shafts 51a, 51b deep into the end of the guide hole 56a from the bottom end of the guide hole 56a, and the edge of the escape structure from the outer edge of the stator The width.
  • the horizontal distance between the yoke and the magnetic core corresponding to the yoke is horizontally In the range of values from 0.1 mm to 0.3 mm, that is, the center line of each of the yokes is from 0.1 to 0.3 mm from the center line of the corresponding (ie nearest) stator core of the stator, then
  • the depth of the corresponding vibration guiding shafts 51a, 51b penetrates the guiding hole 56a, the depth of the vibration guiding shafts 51a, 51b deep into the guiding hole 56a is greater than the depth of the bottom end of the guiding hole 56a, and the edge of the avoiding structure is wider than the outer edge of the stator. More than 0.2mm.
  • the weight 31 can be made of a high-density metal material such as a tungsten steel block or a nickel steel block or a nickel-tungsten alloy to increase the vibration force and make the vibration of the electronic product stronger.
  • the linear vibration motor provided by the present invention further comprises a flexible circuit board (PFCB) 7, the stator is fixed on the flexible circuit board 7, and the coil leads of the stator are connected to the external circuit through the circuit on the flexible circuit board 7, the flexible circuit board 7 and The upper case 1 is fixed, and the rear cover 2 can be fixed to the flexible circuit board 7 by means of a snap.
  • PFCB flexible circuit board
  • a magnetic balance guiding mechanism may be further provided in the present invention, including a pair of balance magnets 61a, 61b respectively disposed on the vertical side walls of the weights 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种线性振动马达,包括振子和与振子平行设置的定子,振子包括配重块(31)和嵌设固定在配重块(31)中的振动块,其中,振动块中的永磁铁(32a、32b、32c、32a'、32b')和定子中的电磁铁产生相互作用的推挽力;定子中的电磁铁通电后产生变化的磁场,通过改变磁场磁力线的走向来驱动振子沿与定子所在平面平行的方向上做往复运动。该线性振动马达借助永磁铁(32a、32b、32c、32a'、32b')极性相同的两端之间的排斥力量,使永磁铁(32a、32b、32c、32a'、32b')的磁力线能够集中穿过线圈(41a、41b、41'),从而获得更大的磁通量和更强的振感效果。

Description

线性振动马达 技术领域
本发明涉及消费电子技术领域,更为具体地,涉及一种应用于便携式消费电子产品的线性振动马达。
背景技术
随着通信技术的发展,便携式电子产品,如手机、掌上游戏机或者掌上多媒体娱乐设备等进入人们的生活。在这些便携式电子产品中,一般会用微型振动马达来做系统反馈,例如手机的来电提示、游戏机的振动反馈等。然而,随着电子产品的轻薄化发展趋势,其内部的各种元器件也需适应这种趋势,微型振动马达也不例外。
现有的微型振动马达,一般包括上盖、和与上盖形成振动空间的下盖、在振动空间内做直线往复振动的振子(包括配重块和永磁铁)、连接上盖并使振子做往复振动的弹性支撑件、以及位于振子下方一段距离的线圈。
在上述这种结构的微型振动马达中,永磁铁和线圈都是互相垂直放置的,即永磁铁的充磁方向与线圈的轴线方向平行,以便永磁铁的磁力线能够垂直穿过线圈,尽可能充分地利用永磁铁的磁场。然而,上述这种结构的微型振动马达,振子和定子所占用的空间比较大,不利于马达的小型化;并且,振子中的永磁铁本身所产生的磁力线比较分散,所产生的磁力线仍旧得不到充分地利用,相对的穿过线圈的磁通量也会比较小,产生的作用力会比较小,影响振感效果;在运动到两端时,竖起的充磁方式穿过线圈的磁通量也很少,从而影响到电子产品的振感,直线振动响应速度较慢、振感小。
发明内容
鉴于上述问题,本发明的目的是提供一种线性振动马达,为水平向充磁马达,使振子和定子平行设置,利用定子中的电磁铁通电改变磁力线的方向来与振子中的永磁铁产生相互作用的推挽力,从而推动振子在与定子所在平 面平行的方向上做往复运动。
本发明提供的线性振动马达,包括振子和与所述振子平行设置的定子,所述振子包括配重块和嵌设固定在所述配重块中的振动块,其中,所述振动块中的永磁铁和所述定子中的电磁铁产生相互作用的推挽力;所述定子中的电磁铁通电后产生变化的磁场,通过改变磁场磁力线的走向来驱动所述振子沿与所述定子所在平面平行的方向上做往复运动。
其中,优选的方案是,在配重块的中部设置有避让所述定子的避让结构;在配重块上避让结构的中心位置设置有容纳振动块的凹槽。
其中,优选的方案是,振动块包括三块相邻接设置的永磁铁和设置在相邻接的永磁铁之间的导磁轭,相邻接设置的两块永磁铁的邻接端极性相同;并且,定子包括与振子相对应设置的两个线圈和分别设置在两个线圈中的导磁芯,线圈的轴线方向与永磁铁的充磁方向垂直。
其中,优选的方案是,
振动块包括至少两块相邻接设置的永磁铁以及设置在相邻接的永磁铁之间的导磁轭;所定子中的电磁铁包括线圈和位于所述线圈中间的导磁芯;导磁轭与导磁芯错位排列。
其中,优选的方案是,在配重块的两端分别设置有振动导向轴、限位弹簧和限位块,限位弹簧套设在振动导向轴上并限位在配重块和限位块之间;并且,在限位块内设置有供振动导向轴往复运动的导向孔,在振动导向轴上深入导向孔的一端套设有轴套。
其中,优选的方案是,还包括外壳;振动导向轴与配重块固定连接,限位块与外壳固定连接;或者,振动导向轴与外壳固定连接,限位块与配重块固定连接。
其中,优选的方案是,配重块为钨钢块、镍钢块或镍钨合金块。
其中,优选的方案是,还包括外壳和柔性线路板;定子通过柔性线路板与外壳固定连接;线圈的引线通过柔性线路板上的电路与外部电路连通。
上述根据本发明的线性振动马达,跳出了现有的互相垂直放置永磁铁和线圈的马达设计思路,将振子的永磁铁与定子平行放置,通过改变定子中电磁铁的通电方向来改变磁力线的方向,从而推动振子在与定子所在平面平行的方向上做往复运动,有效缩小了马达的体积,更利于马达的小型化应用。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明的实施例的线性振动马达的整体爆炸结构示意图;
图2为根据本发明的实施例的线性振动马达的组合结构示意图;
图3a和图3b分别为根据本发明实施例的振动块和定子组合结构示意图;
图4为根据本发明实施例的工作原理示意图;
图5a和图5b分别为根据本实用新型另一实施例的振动块和定子组合结构示意图。
图中:上壳1,后盖2,配重块31,永磁铁32a、32b、32c、32a’、32b’,导磁轭33a、33b、33a’,线圈41a、41b、41’,导磁芯42a、42b、42’,振动导向轴51a、51b,限位弹簧52a、52b,限位块53a、53b,导向孔56a,轴套54a、54b,平衡磁铁61a、61b,柔性线路板7。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。
在下述具体实施方式的描述中所用到的“配重块”也可以称作“质量块”,均指与产生振动的永磁铁固定以加强振动平衡的高质量、高密度金属块。
以下将结合附图对本发明的具体实施例进行详细描述。
为了解决现有的微型振动马达结构中由于永磁铁和线圈互相垂直放置所 导致不便于马达小型化的问题,本发明提供的线性振动马达,将振子和定子平行放置,使定子中的电磁铁通电后通过改变磁场磁力线的走向来驱动振子沿与定子所在平面平行的方向上做往复运动。
具体地,图1和图2分别示出了根据本发明的实施例的线性振动马达的整体爆炸结构和组合结构。
如图1和图2共同所示,本实施例的线性振动马达主要包括外壳、振子和定子,定子与振子在竖直方向上排布。其中,外壳包括上壳1和后盖2;振子包括配重块31和嵌设固定在配重块31中的振动块,振动块包括永磁铁和结合于永磁铁之间的导磁轭。定子中的电磁铁通电后,振动块中的永磁铁和定子中的电磁铁产生相互作用的推挽力,通过改变定子中电磁铁的电流方向改变定子所产生的磁场磁力线的走向,从而来驱动振子沿与定子所在平面平行的方向做往复运动。
由图示可以看出,由于定子和振子平行设置,永磁铁的充磁方向与线圈的轴线方向垂直,并振子的振动方向也和定子所在平面平行,这样就能够在保障振子振动空间的基础上有效降低了马达的厚度,便于马达的小型化应用。
具体地,在图1和图2所示的实施例中,振动块由相邻接设置的三块永磁铁32a、32b、32c以及分别设置在相邻接的永磁铁之间的导磁轭33a、33b组成;定子中的电磁铁包括与振子相对应设置的两个线圈41a、41b和分别设置在线圈中的导磁芯42a、42b。导磁轭与导磁芯交错排布,每个导磁芯均位于与其对应的导磁轭远离振子中心的位置,该“对应”指能够互相影响并改变磁力线走向的导磁芯/导磁轭。在图示中,导磁轭与导磁芯的交错排布顺序为:导磁芯42a、导磁轭33a、导磁轭33b、导磁芯42b,其中,导磁芯42a与导磁轭33a对应,导磁轭33b与导磁芯42b对应。
其中,振动块和定子的组合结构如图3a和图3b所示。在相邻接设置的三块永磁铁中,每个永磁铁与相邻接的永磁铁的邻接端的极性都相同,即呈S-N、N-S、S-N顺序(如图3a所示)或者N-S、S-N、N-S顺序(如图3b所示)排列,导磁轭设置在相邻接的永磁铁之间,并且永磁铁的充磁方向与定子的线圈的轴线方向垂直。此处,线圈的轴线方向为线圈及其中的导磁芯的中心轴线所在的方向,在图3a和图3b所示的实施例中,磁铁的充磁方向为水平方向,线圈的轴线方向为竖直方向。
由于两个永磁铁相邻接的极性相同的两端之间会产生相斥的力量,因此,永磁铁的磁力线能够集中通过相邻接的两个永磁铁之间的导磁轭以及设置在振动块下方的线圈,这种结构设计方式在尽可能缩小定子和振子占用空间的基础上,也能够尽可能增大穿过线圈的磁通量。
下面将以图4为例简单说明本发明线性振动马达的工作原理。根据判定通电导体在磁场中受力方向的左手定则,伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。假设线圈内的电流方向,图中标示为
Figure PCTCN2015097465-appb-000001
电流方向为垂直图面向里,标示为
Figure PCTCN2015097465-appb-000002
电流方向为垂直图面向外,假设第一个线圈是“
Figure PCTCN2015097465-appb-000003
Figure PCTCN2015097465-appb-000004
”,第二个线圈必须也是“
Figure PCTCN2015097465-appb-000005
Figure PCTCN2015097465-appb-000006
”,这样线圈才会均受力向右F,由于线圈固定不动,基于作用力与反作用力的关系,则永磁铁受力向左F’。如此,受到向左推动力的永磁铁就带动配重块一起做向左的平移运动,从而挤压配重块右侧的弹簧,拉伸配重块右侧的弹簧。同理,当电流方向改变时,按照左手定则,线圈受到的磁场力F的方向为向左。但是由于线圈固定不动,则永磁铁受到与F方向相反且大小相同的F′的作用力,受到向右推动力的永磁铁就带动配重块一起做向右的平移运动,同时使配重块两端的弹簧从挤压/拉伸状态恢复原状后继续被拉伸/挤压。上述运动交替进行,使永磁铁和导磁轭组成的振动块与配重块形成的振子在平行于定子的安装平面的方向做往复运动。
在上述实施例中,振动块包括三块永磁铁,但在具体的应用过程中也并不局限于上述结构,也可以根据应用产品所需振动力的大小适当选择组成振动块的永磁铁的数量。如更多的永磁铁或者图5a和图5b分别示出的由两块永磁铁组成的振动块和定子的组合结构。
如图5a和图5b所示,振动块包括两块相邻接设置的永磁铁32a’、32b’,这两块永磁铁邻接端的极性相同,并且在该两块永磁铁32a’、32b’之间设置有导磁轭33a’,由线圈41’和设置在线圈41’中的导磁芯42’组成的定子设置在振动块的下方,导磁轭33a’与导磁芯42’错位排列。
在图1和图2所示的实施例中,振动块嵌设固定在配重块中,以带动配重块水平振动。具体地,在配重块的中部设置有避让定子的避让结构,在配重块上设置有避让结构的中心位置设置有容纳振动块的凹槽。在具体的装配 过程中,可以先将组成振动块的永磁铁和导磁轭固定在一起,然后以涂胶或者激光电焊等方式将振动块整体固定在凹槽中。
另外,本发明的线性振动马达还包括设置在配重块31两端的两根振动导向轴51a、51b、限位弹簧52a、52b和限位块53a、53b,限位弹簧套设在振动导向轴51a、51b上。在图1、图2所示的实施例中,限位块53a、53b分别固定在上壳1上,两根振动导向轴51a、51b分别固定在配重块31的两端,在限位块53a、53b上还设置有供振动导向轴往复运动的导向孔56a。这样,振动块在定子通电后产生的磁场的作用下,带动配重块31以及固定在配重块31两端的振动导向轴51a、51b在导向孔56a的限定范围内振动。
其中,分别套设在振动导向轴51a、51b上限位弹簧52a、52b分别被限定在配重块31和对应的限位块53a、53b之间,为振子的振动提供弹性恢复力。
另外,为了尽量减小振动导向轴51a、51b与导向孔56a之间的摩擦力,提高产品质量,还可以在振动导向轴51a、51b深入导向孔56a的一端上套设轴套54a、54b,轴套54a、54b与导向孔56a的接触面光滑耐磨。轴套54a、54b的增加减小了振动导向轴51a、51b与导向孔56a的接触面积,并且可以采用密度高、表面光滑耐磨的材料制作轴套54a、54b,能够在不增加成本的基础上尽可能减少振动导向轴51a、51b与导向孔56a之间的摩擦力,提高润滑程度。
作为本发明的另一个实施方式,也可以将限位块53a、53b分别固定在配重块31的两端,或者将配重块31和限位块53a、53b设计为一体结构,在限位块53a、53b上设置供振动导向轴51a、51b往复运动的导向孔56a,而将两根振动导向轴51a、51b分别固定在上壳1上,将轴套54a、54b套设在振动导向轴51a、51b上与导向孔56a作用的一端(在此为靠近配重块31的一端)。这样,振动块在定子通电后产生的磁场的作用下,带动配重块31以及固定在配重块31两端的限位块53a、53b在导向孔56a的限定范围内沿振动导向轴51a、51b振动。
显然,振子振动的幅度决定了振动导向轴51a、51b深入导向孔56a的深度、振动导向轴51a、51b深入导向孔56a的末端距离导向孔56a的底端的深度以及避让结构的边缘距离定子外边缘的宽度。在图1、图2以及图3a、图3b所示的实施例中,导磁轭和与导磁轭对应的导磁芯之间水平方向的距离位 于0.1mm~0.3mm的数值范围内,也就是说,每个导磁轭的中心线距离相应的(也即最近的)定子的导磁芯的中心线的水平距离为0.1~0.3mm,那么,相应的振动导向轴51a、51b深入导向孔56a的深度、振动导向轴51a、51b深入导向孔56a的末端距离导向孔56a的底端的深度以及避让结构的边缘距离定子外边缘的宽度均应略大于0.2mm。
配重块31可以采用钨钢块或镍钢块或者镍钨合金等高密度金属材料制成,以加大振动力,使电子产品的振动更强烈。
另外,本发明提供的线性振动马达还包括柔性线路板(PFCB)7,定子固定在柔性线路板7上,定子的线圈引线通过柔性线路板7上的电路与外部电路连通,柔性线路板7与上壳1固定,后盖2可以通过卡扣的方式与柔性线路板7固定。
为了给马达提供稳定的磁平衡导向,本发明中还可以进一步设置有磁平衡导向机构,包括在配重块31的两端竖直侧壁上分别设置的一对平衡磁铁61a、61b。
如上参照附图以示例的方式描述根据本发明的线性振动马达。但是,本领域技术人员应当理解,对于上述本发明所提出的线性振动马达,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (10)

  1. 一种线性振动马达,包括振子和定子,其特征在于,所述振子与所述定子平行设置,所述振子包括配重块和嵌设固定在所述配重块中的振动块,其中,
    所述振动块中的永磁铁和所述定子中的电磁铁产生相互作用的推挽力;
    所述定子中的电磁铁通电后产生变化的磁场,通过改变磁场磁力线的走向来驱动所述振子沿与所述定子所在平面平行的方向上做往复运动。
  2. 如权利要求1所述的线性振动马达,其特征在于,所述振动块包括至少两块相邻接设置的永磁铁以及设置在相邻接的永磁铁之间的导磁轭;所述定子中的电磁铁包括线圈和位于所述线圈中间的导磁芯;
    所述导磁轭与所述导磁芯错位排列。
  3. 如权利要求2所述的线性振动马达,其特征在于,所述导磁轭和与所述导磁轭对应的所述导磁芯之间水平方向的距离位于0.1mm~0.3mm的数值范围内。
  4. 如权利要求2所述的线性振动马达,其特征在于,所述振动块包括三块相邻接设置的永磁铁和设置在相邻接的永磁铁之间的两块导磁轭,相邻接设置的两块永磁铁的邻接端极性相同;并且,
    所述定子包括与所述振子相对应设置的两个线圈和分别设置在所述两个线圈中的导磁芯,所述线圈的轴线方向与所述永磁铁的充磁方向垂直。
  5. 如权利要求2-4中任一项所述的线性振动马达,其特征在于,所述定子与所述振子在竖直方向上排布,所述振子的振动方向平行于所述定子的安装平面。
  6. 如权利要求5所述的线性振动马达,其特征在于,
    在所述配重块的两端分别设置有振动导向轴、限位弹簧和限位块,所述 限位弹簧套设在所述振动导向轴上并限位在所述配重块和所述限位块之间;并且,
    在所述限位块内设置有供所述振动导向轴往复运动的导向孔;
    在所述振动导向轴上深入所述导向孔的一端套设有轴套。
  7. 如权利要求6所述的线性振动马达,其特征在于,
    还包括外壳;
    所述振动导向轴与所述配重块固定连接,所述限位块与所述外壳固定连接;或者,
    所述振动导向轴与所述外壳固定连接,所述限位块与所述配重块固定连接。
  8. 如权利要求5所述的线性振动马达,其特征在于,
    在所述配重块的中部设置有避让所述定子的避让结构;
    在所述配重块上避让结构的中心位置设置有容纳所述振动块的凹槽;
    所述永磁铁和所述导磁轭一体固定后,以涂胶或者激光电焊的方式固定在所述凹槽中。
  9. 如权利要求5所述的线形振动马达,其特征在于,所述配重块为钨钢块、镍钢块或镍钨合金块。
  10. 如权利要求5所述的线性振动马达,其特征在于,
    还包括外壳和柔性线路板;
    所述定子通过所述柔性线路板与所述外壳固定连接;以及,
    所述线圈的引线通过所述柔性线路板上的电路与外部电路连通。
PCT/CN2015/097465 2015-09-23 2015-12-15 线性振动马达 WO2017049777A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/762,055 US10666121B2 (en) 2015-09-23 2015-12-15 Linear vibration motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510613787.3A CN105207441B (zh) 2015-09-23 2015-09-23 线性振动马达
CN201510613787.3 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017049777A1 true WO2017049777A1 (zh) 2017-03-30

Family

ID=54954941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097465 WO2017049777A1 (zh) 2015-09-23 2015-12-15 线性振动马达

Country Status (3)

Country Link
US (1) US10666121B2 (zh)
CN (1) CN105207441B (zh)
WO (1) WO2017049777A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994398A (zh) * 2021-03-04 2021-06-18 湖北工业大学 强力电磁振动器
CN113281398A (zh) * 2021-05-21 2021-08-20 华中科技大学 一种针式磁斥聚焦的检测传感器及检测系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156411B2 (ja) * 2019-02-05 2022-10-19 株式会社村田製作所 振動子支持構造、振動モータおよび電子機器
CN114252182B (zh) * 2021-12-14 2024-06-18 苏州索迩电子技术有限公司 一种测力装置
CN115037111A (zh) * 2022-05-16 2022-09-09 浙江省东阳市东磁诚基电子有限公司 一种高寿命柱状振动电机及其实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488697A (zh) * 2009-02-20 2009-07-22 瑞声声学科技(深圳)有限公司 扁平线性振动电机
CN201789399U (zh) * 2010-09-01 2011-04-06 歌尔声学股份有限公司 扁平线性振动器
CN102570764A (zh) * 2010-12-31 2012-07-11 三星电机株式会社 线性振动电机
CN102684445A (zh) * 2011-03-07 2012-09-19 德昌电机(深圳)有限公司 电动剪切工具及其驱动器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483959B2 (ja) * 1994-10-14 2004-01-06 Tdk株式会社 磁石可動型リニアアクチュエータ及びポンプ
DE19839464C2 (de) * 1998-08-29 2001-07-05 Contitech Formteile Gmbh Elektrodynamischer Aktuator mit schwingendem Feder-Masse-System
JP4603316B2 (ja) * 2003-08-27 2010-12-22 山洋電気株式会社 シリンダ型リニアモータ用可動子
US8157604B2 (en) * 2007-07-30 2012-04-17 Oleg Kotlyar Electrical linear motor for propulsion of marine vessel
CN201577016U (zh) * 2009-11-16 2010-09-08 瑞声声学科技(深圳)有限公司 振动电机
KR101004879B1 (ko) * 2010-05-25 2010-12-28 삼성전기주식회사 선형 진동자
CN202334238U (zh) * 2011-11-26 2012-07-11 歌尔声学股份有限公司 线性振动电机
CN104079088B (zh) * 2013-03-25 2016-06-29 东昌电机(深圳)有限公司 微型电机转子支架
JP6396129B2 (ja) * 2014-09-05 2018-09-26 日本電産コパル株式会社 リニア振動モータの製造方法
CN204947868U (zh) * 2015-09-23 2016-01-06 歌尔声学股份有限公司 线性振动马达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488697A (zh) * 2009-02-20 2009-07-22 瑞声声学科技(深圳)有限公司 扁平线性振动电机
CN201789399U (zh) * 2010-09-01 2011-04-06 歌尔声学股份有限公司 扁平线性振动器
CN102570764A (zh) * 2010-12-31 2012-07-11 三星电机株式会社 线性振动电机
CN102684445A (zh) * 2011-03-07 2012-09-19 德昌电机(深圳)有限公司 电动剪切工具及其驱动器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994398A (zh) * 2021-03-04 2021-06-18 湖北工业大学 强力电磁振动器
CN113281398A (zh) * 2021-05-21 2021-08-20 华中科技大学 一种针式磁斥聚焦的检测传感器及检测系统
CN113281398B (zh) * 2021-05-21 2023-09-01 华中科技大学 一种针式磁斥聚焦的检测传感器及检测系统

Also Published As

Publication number Publication date
US20180287476A1 (en) 2018-10-04
CN105207441A (zh) 2015-12-30
CN105207441B (zh) 2017-11-21
US10666121B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
CN105207440B (zh) 磁平衡导向线性振动马达
WO2017049777A1 (zh) 线性振动马达
CN110875680B (zh) 振动促动器以及具备该振动促动器的便携式电子设备
WO2017088367A1 (zh) 线性振动马达
WO2017088359A1 (zh) 线性振动马达
CN105703593B (zh) 线性振动马达
CN105356712B (zh) 线性振动马达
CN105322752B (zh) 自适应控制微型马达
CN105281529B (zh) 线性振动马达
WO2017088421A1 (zh) 线性振动马达
WO2017133132A1 (zh) 线性振动马达
WO2017049778A1 (zh) 线性振动马达
CN204967588U (zh) 线性振动马达
CN204967593U (zh) 自适应控制微型马达
CN204947868U (zh) 线性振动马达
CN205092752U (zh) 线性振动马达
CN205847046U (zh) 线性振动马达
CN204967589U (zh) 线性振动马达
CN204967592U (zh) 线性振动马达
CN204947875U (zh) 线性振动马达
CN205092751U (zh) 线性振动马达
CN205092749U (zh) 线性振动马达
CN205092754U (zh) 线性振动马达
JP2022056733A (ja) 振動アクチュエーター及び電子機器
CN205509818U (zh) 线性振动马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904652

Country of ref document: EP

Kind code of ref document: A1