WO2017049579A1 - 一种能改变移轴中心的光学防抖音圈马达及其装配方法 - Google Patents

一种能改变移轴中心的光学防抖音圈马达及其装配方法 Download PDF

Info

Publication number
WO2017049579A1
WO2017049579A1 PCT/CN2015/090693 CN2015090693W WO2017049579A1 WO 2017049579 A1 WO2017049579 A1 WO 2017049579A1 CN 2015090693 W CN2015090693 W CN 2015090693W WO 2017049579 A1 WO2017049579 A1 WO 2017049579A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic piece
magnet
lens carrier
base
center
Prior art date
Application number
PCT/CN2015/090693
Other languages
English (en)
French (fr)
Inventor
麦练智
卢伟光
Original Assignee
爱佩仪光电技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱佩仪光电技术(深圳)有限公司 filed Critical 爱佩仪光电技术(深圳)有限公司
Priority to PCT/CN2015/090693 priority Critical patent/WO2017049579A1/zh
Publication of WO2017049579A1 publication Critical patent/WO2017049579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the invention belongs to the technical field of optical anti-shake devices, and in particular relates to an optical anti-shake voice coil motor capable of changing a center of a shift axis and an assembly method thereof.
  • the technology of the miniature optical anti-shake voice coil motor has been widely used in high-end mobile phones, which can effectively reduce the chance of taking blurred photos in low light conditions and reduce the disturbing jitter in the film.
  • the design of the anti-shake voice coil motor is complicated, the production yield and efficiency are low, and the cost is high. Therefore, the technology has not been popularized to mid-range and low-end mobile phones, and most mobile phone users still fail to enjoy the benefits of the technology.
  • Micro optical anti-shake voice coil motors can be divided into three categories: camera module shift-axis voice coil motor, lens shifting voice coil motor and lens shift-axis voice coil motor. Wherein, in the camera module shift-axis voice coil motor, the voice coil motor controls the lens and the image sensor to rotate together; in the lens shifting voice coil motor, the voice coil motor controls the lens to shift, and the image sensor does not move; In the voice coil motor, the voice coil motor controls the lens to rotate while the image sensor does not move.
  • the camera module shift-axis voice coil motor has the advantages of optical image stabilization and image quality.
  • the disadvantage is that the moving parts have the highest weight and the power consumption is the largest.
  • the advantage of the lens shifting type voice coil motor is that the structure is relatively simple and advantageous for production, and the disadvantage is that the resolution of the image edge may be degraded during optical image stabilization.
  • the structural complexity of the lens-translating voice coil motor and the image edge resolution are between the camera module shift-axis voice coil motor and the lens-shifting voice coil motor, which can be accepted by the manufacturer and the user, and the power consumption can be accepted. range. Therefore, the lens shifting voice coil motor becomes the mainstream component in mobile terminals such as mobile phone anti-shake solutions.
  • the current lens shifting optical anti-shake voice coil motor structure comprises a housing, a base, at least one set of elastic materials, at least three sets of magnets, at least three independent coils, and a lens carrier.
  • the outer casing and the base form a fixed structure; the elastic material is connected with the movable structure including the lens carrier, and the fixed structure forms a multi-degree-of-freedom spring vibration subsystem, so that the lens can be deflected in two directions (for optical image stabilization) And a displacement along the optical axis (for autofocus).
  • the lens shifting type optical anti-shake voice coil motor can be divided into two categories.
  • the coils and magnets in the first type of lens-shifting optical anti-shake voice coil motor are respectively located in the movable and movable structure, and the motor does not contain the energized elastic material, and only includes one to two sets of elastic materials, and the connection includes the lens.
  • the carrier and the active structure of the magnet Since the active structure in this type of motor does not require an electrical connection, it is more advantageous for production.
  • the magnets of the first type of motor are located in the movable structure, their performance may be disturbed when other external strong magnetic fields approach them.
  • the coils and magnets in the second type of motor are located in the movable and non-moving structures, respectively. Since the magnets of the second type of motor are located in a stationary structure, their ability to withstand external magnetic fields is high. Therefore, the second type of motor has become the mainstream shift-axis optical image stabilization motor.
  • the direction of the electromagnetic force acting on each coil or each group of magnets is substantially parallel to the optical axis. Therefore, their center of the shift axis (that is, the center of rotation of the lens optical axis at the time of optical image stabilization) and the center of the spring (that is, the applied center of rotation of the moving structure when the moving structure of the lens is included) are substantially at the same position.
  • the center of the shift axis needs to be as far as possible from the optical center of the lens and close to the image sensor. Therefore, the spring constant of the lower elastic piece is adjusted to be much higher than the upper elastic piece so that the center of the spring and the center of the displacement axis are as close as possible to the center of the lower elastic piece.
  • this can lead to two problems: first, the center of the shift axis will still be very close to the optical center, so that the optical anti-shake effect still needs to be improved; second, the center of the spring and the center of gravity of the moving structure There is a certain distance.
  • the technical problem to be solved by the present invention is to provide an optical anti-vibration voice coil motor capable of changing the center of the shift axis and an assembly method thereof, aiming at not only having the advantages of simple structure, high reliability, low production cost, but also optical support. Anti-shake, auto focus, and compensation of the tilt of the optical axis during autofocus to enhance image resolution and diamagnetic interference.
  • an optical anti-shake voice coil motor capable of changing a center of a shifting shaft, comprising: a base, at least one elastic piece, a lens carrier, at least three magnet sets, and an outer casing; wherein the base, the outer casing And the magnet groups are coupled together to form a stationary structure; the at least three magnet groups are disposed on an inner wall of the outer casing; the lens carrier includes a body and a coil disposed on the body; the coil and the The bodies are connected together to form a movable structure; the number of the coils is the same as the number of the magnet groups; the coils are disposed opposite to the magnet group, and the coils are provided with a first line end and a second line end
  • the at least one elastic piece connects the lens carrier and the magnet group to form a multi-degree-of-freedom spring vibration subsystem, the multi-degree-of-freedom spring vibration subsystem includes a spring center; and the spring piece is provided with at least three a conductive path, the first line end and the second line
  • each of the foregoing magnet groups includes a first magnet and a second magnet; the first magnet is disposed on the base; the second magnet is stacked on the first magnet, the first magnet And the second magnet is different in size or shape, and the magnetic fields of the first magnet and the second magnet are opposite in direction.
  • the foregoing base is formed with a positioning portion; the lens carrier further includes a positioning groove formed on the body; the positioning portion is engaged with the positioning groove.
  • the at least one elastic piece includes a first elastic piece, a part of the first elastic piece is connected to the base and a bottom of the body; and another part of the first elastic piece is opposite to the first magnet Connect at the bottom.
  • the at least one elastic piece includes a first elastic piece and a second elastic piece, a part of the first elastic piece is connected to a top of the base, and another part of the first elastic piece is connected to a bottom of the first magnet;
  • the second elastic piece is coupled above the lens carrier, and the second elastic piece is coupled to the top of the second magnet and the outer casing.
  • the aforementioned optical anti-vibration voice coil motor capable of changing the center of the shift axis further includes a pressure ring; the pressure ring is disposed between the base and the first elastic piece; the pressure ring will be the first elastic piece Pressing under the lens carrier and connecting with the first elastic piece.
  • the aforementioned pressure ring includes an annular base body and a plurality of extension portions formed on the base body; the base body presses the elastic piece under the lens carrier and is coupled to the elastic piece;
  • the lens carrier further includes a plurality of notches formed on the body; the substrate is formed with a through hole; the base further includes a step portion extending inward from an inner surface of the substrate; the plurality of extensions along The base body is circumferentially spaced apart on the inner surface of the base body; each extension portion includes a first extension portion and a second extension portion; the first extension portion extends from the base body toward the lens carrier And extending into a corresponding notch on the lens carrier; the second extension extends from the base toward the base and extends into contact with the step on the base.
  • the aforementioned lens carrier further includes a plurality of third extensions formed on the body; the notches and the third extensions are alternately disposed along a circumferential direction of the body; the third extension The body extends from the step toward the step portion and is in contact with the step portion.
  • the aforementioned second extension portion and the third extension portion are alternately disposed along a circumferential direction of the body and are in continuous contact with the step portion along a circumferential direction of the body.
  • the invention also provides an assembly method of the above diamagnetic interference translating optical anti-shake voice coil motor, comprising:
  • the first elastic piece is placed on the base, the first elastic piece is mechanically connected to the base, and the first elastic piece is electrically connected to the conductive portion on the base;
  • the present invention has the beneficial effects that the optical anti-vibration voice coil motor capable of changing the center of the shift axis and the assembling method thereof provided by the embodiment of the present invention can be changed by setting the magnet group in the non-moving structure.
  • the performance of the optical anti-shake voice coil motor at the center of the shaft is not easily affected by the external magnetic field, and thus has a certain anti-magnetic interference performance; at the same time, by stacking the first magnet and the second magnet with the opposite magnetic field directions on the base, The directions of the electromagnetic resultant forces of the coils are neither facing nor facing the center of the spring and are not parallel to the optical axis; when a moment is applied to the spring oscillator subsystem, the spring oscillator subsystem will rotate around the center of the spring
  • the optical anti-shake voice coil motor not only supports optical image stabilization, autofocus, but also compensates for the tilt of the optical axis during autofocus to maintain good image edge resolution. Simple, easy to produce and help improve reliability and reduce costs.
  • FIG. 1 is a schematic structural view of an optical anti-vibration voice coil motor capable of changing a shift center according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the optical anti-shake voice coil motor of FIG. 1 capable of changing the center of the shift axis.
  • FIG. 3 is an enlarged schematic view showing another angle of the lens carrier, the first elastic piece and the pressure ring of the optical anti-shake voice coil motor capable of changing the center of the shift axis in FIG.
  • FIG. 4 is a schematic view showing the connection relationship between the lens carrier, the pressure ring and the base of the optical anti-shake voice coil motor capable of changing the center of the shift axis in FIG. 2.
  • Fig. 5a is a structural schematic view of the shifting axis center, the spring center and the optical axis of the optical anti-shake voice coil motor of Fig. 1 before the shifting axis can be changed.
  • FIG. 5b is a schematic structural view of the shifting axis center, the spring center and the optical axis of the optical anti-shake voice coil motor of FIG. 1 after shifting the axis.
  • FIG. 5c is a schematic diagram showing the relationship between the center of the shift axis of the optical anti-shake voice coil motor of FIG. 1 and the center of the spring before and after the shifting of the optical anti-shake voice coil motor.
  • Fig. 6a is a schematic view showing the anti-shake effect of the shifting axis center of the optical anti-shake voice coil motor of Fig. 1 at the center of the optical axis.
  • FIG. 6b is a schematic diagram of the anti-shake effect of the shifting axis center of the optical anti-shake voice coil motor of FIG. 1 in the center of the image sensor.
  • Fig. 7 is a plan view of the optical anti-shake voice coil motor of Fig. 1 in which the center of the shifting axis can be changed before the shifting axis.
  • Figure 8 is a cross-sectional view of the optical anti-shake voice coil motor of Figure 7 before the shifting axis can be changed.
  • Figure 9 is a plan view of the optical anti-shake voice coil motor of Figure 1 after shifting the axis.
  • Figure 10 is a cross-sectional view of the optical anti-shake voice coil motor of Figure 9 after shifting the axis.
  • Fig. 11 is a structural schematic view showing the movement structure of the optical anti-vibration voice coil motor of Fig. 1 in which the center of the shift axis can be changed by gravity.
  • FIG. 12 is a schematic structural view of an optical anti-vibration voice coil motor capable of changing a shift center according to a second embodiment of the present invention.
  • FIG. 13 is a schematic flow chart of a method for assembling an optical anti-vibration voice coil motor capable of changing a shift axis center according to an embodiment of the present invention.
  • the optical anti-vibration voice coil motor 100 capable of changing the center of the shifting shaft provided by the first embodiment of the present invention includes a base 110, a pressure ring 120, a first elastic piece 130, a lens carrier 140, and a magnet group. 150.
  • the pressure ring 120, the first elastic piece 130, the lens carrier 140, the second elastic piece 131, and the magnet group 150 are all located in a casing formed by the base 110 and the outer casing 160. .
  • the base 110 includes a substrate 112, a positioning portion 114 formed on the substrate 112, and a step portion 118 extending inward from an inner surface of the substrate 112.
  • the positioning portion 114 includes a plurality of convex structures (not labeled) protruding from the substrate 112 toward the lens carrier 140 for use with the lens carrier 140.
  • the positioning slots 147 (shown in Figure 4) cooperate to provide positioning and/or limiting (described further below).
  • a through hole 116 is formed in a middle portion of the substrate 112.
  • the step portion 118 is an annular step structure in the through hole 116, and can be used to cooperate with the pressure ring 120 and the lens carrier 140 to protect against dust. And so on (more on this later).
  • the base 110 also has a conductive portion electrically connected to an external component such as a printed circuit board.
  • the pressure ring 120 is disposed between the base 110 and the first elastic piece 130.
  • the pressure ring 120 includes an annular base body 122 and an extension portion 124 formed on the base body 122.
  • the base body 122 presses the first elastic piece 130 under the lens carrier 140, and can be connected to the elastic piece 130 by mechanical connection such as using glue or the like.
  • the thickness of the base 122 is relatively thick relative to the thinner first elastic piece 130, and the thinned first elastic piece 130 can be effectively protected to enhance the fall resistance of the first elastic piece 130.
  • the base body 122 can ensure that the first elastic piece 130 is flattened under the lens carrier 140, which can reduce problems such as tilting of the focus movement and initial current error caused by the unevenness of the first elastic piece 130, and increase The consistency of the voice coil motor 100 and the production yield.
  • the plurality of extensions 124 are disposed on the inner surface of the base 122 at intervals along the circumferential direction of the base 122.
  • Each extension 124 includes a first extension 1241 and a second extension 1243.
  • the first extending portion 1241 extends upward from the base 122 to the upper side of the base 122, that is, toward the lens carrier 140 and extends to a corresponding notch 148 on the lens carrier 140 (as shown in FIG. 4).
  • the second extension 1243 extends downward from the base 122 to below the base 122, that is, toward the base 110 and extends into contact with the step 118 on the base 110.
  • first extending portion 1241 and the second extending portion 1243 are respectively engaged with the notch 148 and the step portion 118, thereby effectively reducing the gap between the lens carrier 140 and the base 110.
  • the lens carrier 140 includes a body 141, a boss 143, an upper bobbin and a lower bobbin (not labeled), a coil 145, a third extension 149, and the positioning groove 147 and the notch 148 described above.
  • the body 141 is a hollow annular structure, and the inner wall of the body 141 can be closely connected with the lens, so that the lens can perform multi-degree of freedom to achieve auto focus and optical image stabilization.
  • the boss 143 is formed on an outer surface of the body 141.
  • the upper bobbin and the lower bobbin are formed at upper and lower ends of the body 141.
  • the plurality of independent coils 145 may be three, four or more.
  • the coils 145 are three, and the three coils 145 are respectively disposed on the outer wall of the body 141 and respectively correspond to one magnet group 150, and are connected with the body 141 to form an activity. structure.
  • the coil 145 is wound by an energizing wire, and each coil 145 has a first wire end and a second wire end.
  • the positioning groove 147 is formed on an outer surface of the body 141 and is disposed in one-to-one correspondence with the positioning portion 114.
  • the positioning portion 114 cooperates with the corresponding positioning slot 147 to perform positioning and/or limiting functions for convenient assembly and positioning.
  • the notch 148 and the third extending portion 149 are formed on an inner surface of the body 141, and the notch 148 and the third extending portion 149 are alternately disposed along a circumferential direction of the body 141.
  • the third extension portion 149 extends from the body 141 toward the step portion 118 and is in contact with the step portion 118.
  • the first extension portion 1241 is engaged with the notch 148, and the same
  • the second extension portion 1243 and the third extension portion 149 are alternately disposed along the circumferential direction of the body 141 and continuously contact the step portion 118 along the circumferential direction of the body 141, thereby effectively
  • the gap between the lens carrier 140 and the base 110 is reduced, and external dust can be prevented from entering the lens carrier 140 from the gap between the lens carrier 140 and the base 110 to contaminate the lens carrier.
  • a filter or image sensor below 140 enhances the reliability of the camera module.
  • the first elastic piece 130 is disposed below the lens carrier 140 (as shown in FIGS. 2 and 5-9). A portion of the first elastic piece 130 is mechanically coupled to a top surface of the base 110 and electrically connected to a conductive portion of the base 110; another portion of the first elastic piece 130 is mechanically coupled to a bottom of the magnet set 150 .
  • the first elastic piece 130 is provided with at least three conductive paths, and the first wire end and the second wire end of the coil 145 are respectively electrically connected to both ends of the conductive path.
  • the first elastic piece 130 directly or indirectly connects the coil 145 and the conductive portion in the base 110 on the circuit.
  • the second elastic piece 131 is disposed above the lens carrier 140 (as shown in FIGS. 2 and 7-8).
  • the second elastic piece 131 is mechanically coupled to the top of the magnet group 150.
  • the second elastic piece 131 is provided with a conductive path, and the first wire end and the second wire end of the coil 145 are respectively electrically connected to both ends of the conductive path.
  • the magnet group 150 is fixed on an inner wall of the outer casing 160, and the magnet group 150, the outer casing 160 and the base 110 are coupled together to form a stationary structure.
  • the number of the magnet groups 150 is the same as the number of the coils 145, and each magnet group 150 is disposed opposite to one coil 145.
  • the number of the magnet groups 150 may be three, four or more. In the present embodiment, the number of the magnet groups 150 is three.
  • Each magnet set 150 includes a first magnet 152 and a second magnet 154. The first magnet 152 and the second magnet 154 are stacked in a direction substantially perpendicular to the base 110.
  • the first magnet 152 is disposed on the base 110
  • the second magnet 154 is disposed on the first magnet 152 and is in contact with the outer casing 160.
  • the magnetic fields of the first magnet 152 and the second magnet 154 are opposite in direction, that is, the magnetic field direction of one of the first magnet 152 and the second magnet 154 faces the lens carrier 140, and the other faces away.
  • the lens carrier 140 is described.
  • the first The shape and size of the magnet 152 and the second magnet 154 can be adjusted according to actual needs, and can be the same or different to meet different needs.
  • the first magnet 152 and the second magnet 154 may be magnets.
  • the first elastic piece 130 is connected to the bottom surface of the first magnet 152
  • the second elastic piece 131 is connected to the top surface of the second magnet 154.
  • the coil 145 and the body 141 of the lens carrier 140 are coupled together to form a movable structure; the magnet group 150, the outer casing 160 and the base 110 are coupled together to form a stationary structure; The first elastic piece 130 and the second elastic piece 131 are connected to the lens carrier 140 and the fixed structure to form a multi-degree-of-freedom spring vibration subsystem.
  • the inner wall of the lens carrier 140 in the movable structure can be closely connected with the lens, so that the lens can perform multi-degree of freedom to achieve auto focus and optical anti-shake function; the lens includes at least one lens.
  • the multi-degree-of-freedom spring oscillator system includes a spring center of rotation 170 (hereinafter referred to as the center of the spring) that rotates around the center of the spring 170 when a torque is applied to the system; Adjusting the spring constant of the first elastic piece 130 and the second elastic piece 131 in the spring vibration system can adjust the position of the spring center 170.
  • the center of the spring By adjusting the position and size of the coil 145, and the position and size of the first magnet 152 and the second magnet 154, the position and direction of the electromagnetic force of each coil 145 after energization can be adjusted.
  • the direction of the electromagnetic force of each coil 145 after being energized is adjusted to be inclined upward (as shown in FIG. 5a). And an example in 5b) or tilt down, and the optical axis is not parallel. In addition, the direction of the electromagnetic resultant force of each of the coils 145 does not face or face away from the spring center 170.
  • the magnitude and direction of the resultant force can be adjusted to achieve focusing (movement of the moving structure to the z direction; the direction of the z-axis and the optical axis are uniform) and optical image stabilization (R x and The effect of tilting the optical axis in the R y direction, hereinafter referred to as shifting the axis).
  • the moving structure including the lens When autofocus is turned off and optical image stabilization is turned on, the moving structure including the lens will be as follows: 1) The moving structure will hardly be displaced in the z direction, only tilting in the R x and R y directions; 2) because all The total combined force of the electromagnetic force can include the components in the x and y directions, so that the center of the spring can be displaced in the x and y directions; 3) the total force will be the moment acting on the moving structure to achieve the moving structure including the lens Rotating around the center of the spring; 4) After the displacement and rotation (in the case of points 2 and 3) are integrated, the moving structure and the optical axis of the lens actually rotate around a point called the center of the shift axis.
  • the spring coefficient of the vibrator spring system in the x and y directions ie, k x and k y
  • the spring constants in the R x and R y directions ie, ⁇ x and ⁇ y
  • the position of the center of the shift axis Referring to Figure 5c, assume that the total electromagnetic force of all coils is f; the x-direction component of f is f x ; f is the ⁇ y for the R y direction of the center of the spring.
  • Adjusting the direction of the electromagnetic force of each coil can change the relationship between f x and ⁇ y ; adjusting the design of each piece of shrapnel can change the relationship between ⁇ y and k x .
  • equation (3) by adjusting f x , ⁇ y , k x and ⁇ y , that is, adjusting the direction of the resultant force and the design of the shrapnel, the position of the shift axis center relative to the center of the spring (related to D z ) can be adjusted. .
  • Figure 6a is a diagram showing the anti-shake effect of the center of the shift axis at the optical center.
  • the image Before the jitter, the image is at the center of the image sensor; after the jitter, the image deviates from the center of the image sensor; after the axis is shifted (that is, the optical axis rotates around the optical center), because the optical center and imaging do not move, it cannot The image shift made by compensating for the jitter does not achieve the anti-shake effect.
  • Figure 6b depicts the anti-shake effect when the center of the shift axis is at the center of the image sensor. After shifting the axis, the image can return to the position before the jitter (that is, the center of the image sensor), so the anti-shake effect can be achieved.
  • the position of the shift axis center and the anti-shake effect have a great relationship, and the center of the shift axis is close to the optical center, which is not conducive to the anti-shake effect. Therefore, the center of the shift axis is preferably remote from the optical center.
  • the anti-magnetic interference optical anti-vibration voice coil motor of the embodiment has at least three sets of magnets and at least three coils, and can simultaneously support the functions of three-dimensional autofocus and optical anti-shake.
  • the center of the lens is assumed to be the center, and the lens is viewed upwards.
  • the three sets of magnets and the three sets of coils are distributed in the 0, 120, and 240 degrees directions, respectively.
  • the force directions of the three coils are upward and the same size
  • the lens is displaced along the optical axis.
  • the force of the coil at 0 degrees becomes small, and the remaining force becomes large.
  • the force of the coil at 240 degrees becomes large, and the remaining force becomes small.
  • the resultant force of each coil 145 is very close, the components of the resultant force of each coil 145 in the x and y directions cancel each other, and the direction of the total resultant force of all the coils 145 is parallel to the optical axis, so that the lens carrier 140 Displace along the optical axis to achieve the effect of autofocus.
  • the resultant force f 1 and the resultant force f 3 are inclined upward, facing the optical axis. But not facing or facing away from the spring center 170. Additionally, the spring center 170 is approximately at the center of the lens carrier 140.
  • the voice coil motor 100 is shown during the working stroke and after the shifting of the shaft (that is, when the optical image stabilization is turned on), two resultant forces (f 1 and f 3 ), and the spring center 170. And the position of the shifting axis center 180. In this case, the resultant force f 3 becomes large, the resultant force f 1 becomes small, and the magnitude of the remaining resultant forces does not change. Therefore, the spring center 170 is displaced in the positive x direction, and the optical axis is deflected.
  • the lens carrier 140 and the optical axis are rotated about the shift axis center 180, the shift axis center 180 is changed below the spring center 170, and beyond the first elastic piece 130 and the second The position of the elastic piece 131 is close to the position of the image sensor.
  • the spring center 170 is shown to be close to the benefits of the center of gravity 182 of the lens moving structure.
  • the movable structure 182 and the center of gravity position of the center of the spring 170 is very close to the moment of gravity acting f g is formed at the center of the spring 170 is very small, causes the axis 181 The resulting tilt is also very small. Therefore, the influence of gravity f g on the image edge resolution can be neglected, which can effectively improve the image edge resolution under different directions.
  • FIG. 12 is a schematic structural diagram of an optical anti-vibration voice coil motor capable of changing a shift center according to a second embodiment of the present invention.
  • the structure of the voice coil motor 100a in this embodiment is the same as that in the first embodiment.
  • the structure of the voice coil motor 100 is similar, except that the voice coil motor 100a in this embodiment is provided only with the first elastic piece 130a located below the lens carrier 140a, and at other positions of the lens carrier 140a.
  • a shrapnel structure is provided to reduce production difficulty and cost.
  • Other structures in this embodiment are the same as those in the first embodiment, and details are not described herein again.
  • the pressure ring may also be omitted.
  • a displacement sensor such as a Hall effect sensor, may be further added to allow the use of a closed loop control to drive an optical anti-shake voice coil motor that can change the center of the shift axis to achieve an auto focus or optical image stabilization effect.
  • the assembly method includes:
  • Step S200 winding a wire 145 on the bobbin and the boss 143 of the lens carrier 140;
  • Step S202 placing the first elastic piece 130 under the lens carrier 140, and passing the winding post below the lens carrier 140 through the hole on the first elastic piece 130;
  • Step S204 mechanically connecting the first elastic piece 130 and the lens carrier 140;
  • Step S206 circuit-connecting the first elastic piece 130 to the power-on line
  • Step S208 placing the pressure ring 120 under the first elastic piece 130 and performing mechanical connection
  • Step S210 placing the first elastic piece 130 above the base 110, then mechanically connecting the first elastic piece 130 with the base 110, and then electrically conducting the first elastic piece 130 and the base 110. Electrical connection
  • Step S212 fixing the magnet group 150 on the inner wall of the outer casing 160, placing the lens carrier 140 inside the outer casing 160, and ensuring that each coil 145 is opposed to a magnet group 150;
  • Step S214 mechanically connecting the first elastic piece 130 with the bottom of the first magnet 152;
  • Step S216 placing the second elastic piece 131 above the lens carrier 140, and making the lens
  • the bobbin above the carrier 140 passes through a hole in the second elastic piece 131, mechanically connects the second elastic piece 131 and the lens carrier 140, and electrically connects the second elastic piece 131 to the electric line.
  • the optical anti-shake voice coil motor 100 capable of changing the center of the shift axis can simultaneously support autofocus and optical image stabilization;
  • the magnet group 150 is located in the stationary structure, so the performance of the optical anti-shake voice coil motor 100 capable of changing the center of the shift axis is not easily affected by the external magnetic field;
  • the optical anti-shake voice coil motor 100 capable of changing the center of the shift axis adopts a lens shifting mode to achieve an optical anti-shake effect and reduce the influence on the image edge resolution;
  • the thickness of the base 122 is relatively thick with respect to the thin elastic piece 130, which can effectively protect the thin elastic piece 130 from increasing the anti-dropping force; moreover, the pressing ring 120 can ensure that the elastic piece 130 is pressed.
  • Flattening under the lens carrier 140 problems such as tilting of the focus movement and initial current error caused by the unevenness of the elastic piece 130 can be reduced, and the consistency and production yield of the optical anti-shake voice coil motor 100 capable of changing the center of the shift axis can be increased;
  • the structure is simple, which can improve the reliability of the motor and reduce the production difficulty and cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

一种能改变移轴中心的光学防抖音圈马达(100),其包括底座(110)、至少一个弹片(130、131)、镜头载体(140)、至少三个磁体组(150)和外壳(160);底座、外壳及磁体组连接在一起组成不动结构,磁体组设置在外壳内,镜头载体包括本体(141)及设置在本体上的线圈(145),线圈的数目与磁体组的数目相同,线圈与磁体组一一相对设置,弹片连接镜头载体及磁体组而组成一个具有弹簧中心(170)的多自由度的弹簧振子系统;弹片与线圈电连接;每个线圈的电磁合力方向既不面向也不背向弹簧中心,并和光轴不平行;通过调整每个合力的大小,可以控制镜头移轴倾斜及沿光轴移动,达至光学防抖及自动对焦功能;这种光学防抖音圈马达具有结构简单、可靠性高、降低生产成本的性能,而且能维持良好的影像解像度及抗磁干扰。

Description

一种能改变移轴中心的光学防抖音圈马达及其装配方法 技术领域
本发明属于光学防抖装置技术领域,尤其涉及一种能改变移轴中心的光学防抖音圈马达及其装配方法。
背景技术
现今微型光学防抖音圈马达的技述已被广泛应用在高端的手机,能有效地降低在低光环境下拍出模糊照片的机率,以及减少影片中令人困扰的抖动。但是,相对于一般自动对焦马达,防抖音圈马达的设计比较复杂,生产良率及效率较低,造价成本较高。因此,所述技术还未普及到中端及低端手机,大部份的手机用家仍未能享受到该技术所带来的好处。
微型光学防抖音圈马达可分为三类:相机模块移轴式音圈马达、镜头平移式音圈马达和镜头移轴式音圈马达。其中,在相机模块移轴式音圈马达中,音圈马达控制镜头和影像传感器一起转动;在镜头平移式音圈马达中,音圈马达控制镜头平移,而影像传感器不动;在镜头移轴式音圈马达中,音圈马达控制镜头转动,而影像传感器不动。
上述三种音圈马达各有优点及缺点。例如,相机模块移轴式音圈马达的优点是光学防抖效果及影像质素最佳,缺点是移动部件重量最高、功耗因此最大。镜头移轴式音圈马达的优点是结构相对简单、有利于生产,缺点是在光学防抖时影像边缘的解像度有可能下降。镜头平移式音圈马达的结构复杂性及影像边缘解像度介乎相机模块移轴式音圈马达及镜头移轴式音圈马达之间,可以被生产业者及用户接受,功耗亦能达到可接受范围。因此,镜头平移式音圈马达成为移动终端如手机防抖方案中的主流组件。
现今的镜头移轴式光学防抖音圈马达结构,包含一个外壳、一个底座、至少一组弹性材料、至少三组磁石、至少三个独立线圈、及一个镜头载体。外壳及底座组成不动结构;弹性材料连接包含镜头载体的活动结构,以及不动的结构,组成一个多自由度的弹簧振子系统,让镜头能作两个方向的偏转(供光学防抖用),及一个沿光轴方向的位移(供自动对焦用)。根据线圈和磁石的位置,可以把镜头移轴式光学防抖音圈马达分成两类。第一类镜头移轴式光学防抖音圈马达中的线圈和磁石,分别位于不动及活动结构,且此类马达中不包含通电弹性材料,只包括一至两组弹性材料,并连接包含镜头载体及磁石的活动结构。由于该类马达中的活动结构不需要电连接,因此更有利于生产。但是,由于第一类马达的磁石位于活动结构,当有其他外来强力磁场接近它们,其表现可能受到干扰。
第二类马达中的线圈和磁石,分别位于活动及不动结构。由于第二类马达的磁石位于不动结构,它们抗外来磁场干扰的能力较高。因此,第二类马达成为了主流的移轴式光学防抖马达。该类马达中,作用在每个线圈或每组磁石的电磁力方向,大致和光轴平行。因此,它们的移轴中心(即是镜头光轴在光学防抖时的旋转中心)和弹簧中心(即是应用力矩在包含镜头的移动结构时,移动结构的旋转中心)大致在相同位置。为了达到良好的防抖效果,移轴中心需要尽量远离镜头的光学中心以及靠近影像传感器。因此,下弹片的弹簧系数(Spring Constant)被调节成远比上弹片高,以便使所述弹簧中心及所述移轴中心尽可能地接近所述下弹片的中心。但是,这会导致出现两个问题:第一,所述移轴中心仍会非常接近所述光学中心,从而导致光学防抖效果仍需改善;第二,所述弹簧中心和移动结构的重心之间存在一定距离,当镜头朝向水平方向时,作用在移动结构(包含镜头)的重力会使所述弹簧中心发生移轴倾斜,导致影像边缘的解像度降低。因此,此类音圈马达需要使用额外的控制方式去补偿重力造成的移轴倾斜,从而增加控制系统的复杂性及成本。
因此,设计一种新的改变移轴中心的光学防抖音圈马达以解决上述问题就 显得尤为必要。
发明内容
本发明所要解决的技术问题在于提供一种能改变移轴中心的光学防抖音圈马达及其装配方法,旨在其不仅具有结构简单、可靠性高、降低生产成本的性能,而且能支持光学防抖、自动对焦以及补偿自动对焦时的光轴倾斜以提升影像解像度及抗磁干扰。
本发明是这样实现的,一种能改变移轴中心的光学防抖音圈马达,其包括底座、至少一个弹片、镜头载体、至少三个磁体组和外壳;其中,所述底座、所述外壳及所述磁体组连接在一起组成不动结构;所述至少三个磁体组设置在所述外壳的内壁上;所述镜头载体包括本体及设置在所述本体上的线圈;所述线圈和所述本体连接在一起,组成活动结构;所述线圈的数目与所述磁体组的数目相同;所述线圈与所述磁体组一一相对设置,所述线圈设置有第一线端及第二线端;所述至少一个弹片连接所述镜头载体及所述磁体组而组成一个多自由度的弹簧振子系统,所述多自由度的弹簧振子系统包含一个弹簧中心;所述弹片上设置有至少三个导电通路,所述第一线端及所述第二线端分别与所述导电通路的两端电连接;所述至少一个弹片在电路上直接或间接连接所述线圈及所述底座中的导电材料;每个线圈的电磁合力的方向既不面向也不背向所述弹簧中心。
进一步地,前述的每个磁体组包括第一磁体和第二磁体;所述第一磁体设置在所述底座上;所述第二磁体叠设在所述第一磁体上,所述第一磁体和所述第二磁体的尺寸或形状不同,且所述第一磁体和所述第二磁体的磁场方向相反。
进一步地,前述的底座上形成有定位部;所述镜头载体还包括形成在所述本体上的定位槽;所述定位部与所述定位槽配合。
进一步地,前述的至少一个弹片包括第一弹片,所述第一弹片的一部分与所述底座和所述本体的底部连接;所述第一弹片的另一部分与所述第一磁体的 底部连接。
进一步地,前述的至少一个弹片包括第一弹片及第二弹片,所述第一弹片的一部分与所述底座的顶部连接,所述第一弹片的另一部分与所述第一磁体的底部连接;所述第二弹片连接在所述镜头载体的上方,且所述第二弹片与所述第二磁体的顶部及所述外壳连接。
进一步地,前述的能改变移轴中心的光学防抖音圈马达还包括压环;所述压环设置在所述底座与所述第一弹片之间;所述压环将所述第一弹片压在所述镜头载体的下方,并与所述第一弹片连接。
进一步地,前述的压环包括环状的基体和形成在所述基体上的多个延伸部;所述基体将所述弹片压在所述镜头载体的下方,并与所述弹片连接;所述镜头载体还包括形成在所述本体上的多个缺口;所述基板上形成有通孔;所述底座还包括自所述基板的内表面向内延伸的台阶部;所述多个延伸部沿着所述基体的周向间隔地设置在所述基体的内表面上;每个延伸部包括第一延伸部和第二延伸部;所述第一延伸部自所述基体朝向所述镜头载体延伸并延伸至所述镜头载体上对应的缺口中;所述第二延伸部自所述基体朝向所述底座延伸并延伸至与所述底座上的所述台阶部接触。
进一步地,前述的镜头载体还包括形成在所述本体上的多个第三延伸部;所述缺口和所述第三延伸部沿着所述本体的周向交替设置;所述第三延伸部自所述本体朝向所述台阶部延伸并与所述台阶部接触。
进一步地,前述的第二延伸部和所述第三延伸部沿着所述本体的周向交替设置并沿着所述本体的周向与所述台阶部连续接触。
本发明还提供一种上述抗磁干扰平移式光学防抖音圈马达的装配方法,包括:
将通电线绕在所述镜头载体上的绕线柱及凸台上形成所述线圈;
将所述第一弹片放在所述镜头载体下方,且令所述镜头载体下方的绕线柱穿过所述第一弹片上的洞;
将所述第一弹片及所述镜头载体机械连接;
将所述第一弹片和所述通电线进行电路连接;
将所述压环放在所述第一弹片下方,并进行机械连接;
将所述第一弹片放在所述底座上方,将所述第一弹片与所述底座进行机械连接,再将所述第一弹片与所述底座上的导电部电连接;
将所述磁体组固定在所述外壳的内壁上,将所述镜头载体置于所述外壳内部,并确保每个线圈均与一磁体组相对;
将所述第一弹片与所述第一磁体的底部进行机械连接;
将所述第二弹片放在所述镜头载体的上方,且令所述镜头载体上方的绕线柱穿过所述第二弹片上的洞,将所述第二弹片及所述镜头载体机械连接的同时将所述第一弹片和所述通电线进行电路连接。
本发明与现有技术相比,有益效果在于:本发明实施方式提供的能改变移轴中心的光学防抖音圈马达及其装配方法,通过将磁体组设于不动结构中,能改变移轴中心的光学防抖音圈马达的性能不容易受外来磁场影响,因而具有一定的抗磁干扰性能;同时,通过将磁场方向相反的第一磁体和第二磁体叠设在底座上,使得每个线圈的电磁合力的方向既不面向也不背向所述弹簧中心,并和光轴不平行;当有一个力矩应用在所述弹簧振子系统时,所述弹簧振子系统会环绕所述弹簧中心转动;通过调整每个合力的大小,可以控制镜头移轴倾斜及沿光轴移动,达至光学防抖及自动对焦功能;因此,在光学防抖被打开或自动对焦时,能改变移轴中心的光学防抖音圈马达不仅支持光学防抖、自动对焦以及补偿自动对焦时的光轴倾斜以维持良好的影像边缘解像度,结构简单,便于生产且有利于提高可靠性及降低成本。
附图说明
图1是本发明第一实施例提供的能改变移轴中心的光学防抖音圈马达的结构示意图。
图2是图1中的能改变移轴中心的光学防抖音圈马达的分解示意图。
图3为图2中能改变移轴中心的光学防抖音圈马达的镜头载体、第一弹片及压环的另一角度的放大示意图。
图4为图2中能改变移轴中心的光学防抖音圈马达的镜头载体、压环及底座的连接关系示意图。
图5a是图1中的能改变移轴中心的光学防抖音圈马达在移轴前的移轴中心、弹簧中心及光轴的结构示意图。
图5b是图1中的能改变移轴中心的光学防抖音圈马达在移轴后的移轴中心、弹簧中心及光轴的结构示意图。
图5c是图1中的能改变移轴中心的光学防抖音圈马达在移轴前及移轴后的移轴中心与弹簧中心的关系示意图。
图6a是图1中的能改变移轴中心的光学防抖音圈马达的移轴中心在光学中心时的防抖效果示意图。
图6b是图1中的能改变移轴中心的光学防抖音圈马达的移轴中心在影像传感器中心时的防抖效果示意图。
图7是图1中的能改变移轴中心的光学防抖音圈马达在移轴前的俯视图。
图8是图7中的能改变移轴中心的光学防抖音圈马达在移轴前的剖视图。
图9是图1中的能改变移轴中心的光学防抖音圈马达在移轴后的俯视图。
图10是图9中的能改变移轴中心的光学防抖音圈马达在移轴后的剖视图。
图11是图1中的能改变移轴中心的光学防抖音圈马达的移动结构受重力影响的结构示意图。
图12是本发明第二实施例提供的能改变移轴中心的光学防抖音圈马达的结构示意图。
图13是本发明实施例提供的能改变移轴中心的光学防抖音圈马达的装配方法的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1到图4所示,本发明第一实施例提供的能改变移轴中心的光学防抖音圈马达100包括底座110、压环120、第一弹片130、镜头载体140、磁体组150、第二弹片131及外壳160。其中,所述压环120、所述第一弹片130、所述镜头载体140、所述第二弹片131及所述磁体组150均位于由所述底座110及所述外壳160形成的盒体中。
具体地,所述底座110包括基板112、形成在所述基板112上的定位部114,以及自所述基板112的内表面向内延伸的台阶部118。在图2所示的实施例中,所述定位部114包括多个自所述基板112朝向所述镜头载体140凸出的凸起结构(未标号),用于与所述镜头载体140上的定位槽147(如图4所示)配合起到定位和/或限位作用(下文中将作进一步说明)。所述基板112的中部形成有通孔116,所述台阶部118为位于所述通孔116中的环状台阶结构,可用于与所述压环120及所述镜头载体140配合起到防尘等作用(下文中将作进一步说明)。另外,所述底座110还具有与外部组件如印刷电路板等电性连接的导电部。
所述压环120设置在所述底座110与所述第一弹片130之间。所述压环120包括环状的基体122和形成在所述基体122上的延伸部124。所述基体122将所述第一弹片130压在所述镜头载体140的下方,并可通过机械连接方式如利用胶水等与弹片130连接。相对于较薄的所述第一弹片130而言,所述基体122的厚度较厚,可有效地保护较薄的所述第一弹片130以增强所述第一弹片130的抗跌力。而且,所述基体122能保证所述第一弹片130被压平在所述镜头载体140下方,可减少因所述第一弹片130不平而导致的对焦移动倾斜及起始电流误差等问题,增加所述音圈马达100的一致性及生产良率。
所述多个延伸部124沿着所述基体122的周向间隔地设置在所述基体122的内表面上。每个延伸部124包括第一延伸部1241和第二延伸部1243。所述第一延伸部1241自所述基体122向上延伸至所述基体122的上方,即朝向所述镜头载体140延伸并延伸至所述镜头载体140上对应的缺口148(如图4所示)中;所述第二延伸部1243自所述基体122向下延伸至所述基体122的下方,即朝向所述底座110延伸并延伸至与所述底座110上的台阶部118接触。这样,所述第一延伸部1241及所述第二延伸部1243分别与所述缺口148及所述台阶部118配合,从而有效地降低了所述镜头载体140与所述底座110之间的间隙,可防止外部尘埃从所述镜头载体140与所述底座110之间的间隙进入所述镜头载体140下方而污染所述镜头载体140下方的滤光片或影像传感器,进而增强所述相机模块的可靠性。
所述镜头载体140包括本体141、凸台143、上绕线柱和下绕线柱(未标号)、线圈145、第三延伸部149以及上述的定位槽147和缺口148。其中,所述本体141为中空环状结构,其内壁可以和镜头紧密连接,让镜头能作多自由度的活动,以达致自动对焦及光学防抖功能。所述凸台143形成在所述本体141的外表面。上绕线柱和下绕线柱形成在所述本体141的上、下两端。所述多个独立线圈145可以为3个、4个或更多个。在本实施例中,所述线圈145为三个,所述三个线圈145分别设置在所述本体141的外壁上并分别对应一个磁体组150,并与所述本体141连接在一起而组成活动结构。所述线圈145由通电线绕成,每个线圈145具有第一线端以及第二线端。
所述定位槽147形成在所述本体141的外表面,并与所述定位部114一一对应设置。所述定位部114与相应的所述定位槽147配合,起到定位和/或限位作用,方便组装及定位。所述缺口148及所述第三延伸部149形成在所述本体141的内表面,且所述缺口148和所述第三延伸部149沿着所述本体141的周向交替设置。所述第三延伸部149自所述本体141朝向所述台阶部118延伸并与所述台阶部118接触。这样,所述第一延伸部1241与所述缺口148配合,同 时,所述第二延伸部1243和所述第三延伸部149沿着所述本体141的周向交替设置并沿着所述本体141的周向与所述台阶部118连续接触,从而有效地降低了所述镜头载体140与所述底座110之间的间隙,可防止外部尘埃从所述镜头载体140与所述底座110之间的间隙进入所述镜头载体140的下方而污染所述镜头载体140下方的滤光片或影像传感器,进而增强所述相机模块的可靠性。
所述第一弹片130设置于所述镜头载体140的下方(如图2和图5-9所示)。所述第一弹片130的一部分与所述底座110的顶面机械连接,并与所述底座110的导电部电连接;所述第一弹片130的另一部分与所述磁体组150的底部机械连接。所述第一弹片130上设置有至少三个导电通路,所述线圈145上的所述第一线端、所述第二线端分别与所述导电通路的两端电连接。这样,所述第一弹片130在电路上直接或间接地将所述线圈145及所述底座110中的导电部连接。
所述第二弹片131设置于所述镜头载体140的上方(如图2和图7-8所示)。所述第二弹片131与所述磁体组150的顶部机械连接。所述第二弹片131上设置有导电通路,所述线圈145上的所述第一线端、所述第二线端分别与所述导电通路的两端电连接。
所述磁体组150固定在所述外壳160的内壁上,且所述磁体组150、所述外壳160及所述底座110连接在一起组成不动结构。所述磁体组150的数目与所述线圈145的数目相同,且每个磁体组150均与一个线圈145相对设置。所述磁体组150的数目可以为3个、4个或更多个。在本实施例中,所述磁体组150的数目为3个。每个磁体组150包括第一磁体152和第二磁体154。所述第一磁体152及所述第二磁体154在大致垂直于所述底座110的方向上叠设。在本实施例中,所述第一磁体152设置在所述底座110上,所述第二磁体154设置在所述第一磁体152上并与所述外壳160接触。所述第一磁体152和所述第二磁体154的磁场方向相反,即所述第一磁体152和所述第二磁体154中一个的磁场方向是面向所述镜头载体140,另一个背向所述镜头载体140。所述第一 磁体152和所述第二磁体154的形状、大小可根据实际需要进行调整,可以相同也可以不同以满足不同的需求。所述第一磁体152和所述第二磁体154可以为磁石。所述第一弹片130与所述第一磁体152的底面连接,所述第二弹片131与所述第二磁体154的顶面连接。
请参图5a至图6b所示,下面简述音圈马达100的工作原理。
如上所述,所述线圈145和所述镜头载体140的本体141连接在一起,组成活动结构;所述磁体组150、所述外壳160及所述底座110连接在一起组成不动结构;所述第一弹片130、所述第二弹片131连接所述镜头载体140及不动结构,可组成一个多自由度的弹簧振子系统。所述活动结构内的所述镜头载体140的内壁可以和镜头紧密连接,让镜头能作多自由度的活动,以达到自动对焦及光学防抖功能;所述镜头包含至少一片透镜。如图5a-6b所示,多自由度的弹簧振子系统包含一个弹簧旋转中心170(后称弹簧中心),当有一个力矩应用在所述系统时,所述系统会环绕弹簧中心170转动;通过调弹簧振子系统中所述第一弹片130及所述第二弹片131的弹簧系数,可以调整所述弹簧中心170的位置。通过调整所述线圈145的位置和大小形状,以及所述第一磁体152和所述第二磁体154的位置及大小形状,可以调整每个线圈145在通电后的电磁合力的位置及方向。
所述音圈马达100在工作行程中(对焦目标在无限远至微距)及马达的光轴向上时,每个线圈145在通电后的电磁合力方向被调节成倾斜向上(如附图5a及5b中的一个例子)或倾斜向下,和光轴不平行。另外,所述的每个线圈145的电磁合力的方向不会面向或背向所述弹簧中心170。通过调整各个线圈145的电流大小及方向,可以调整所述合力的大小及方向,达到对焦(移动结构往z方向的位移;z轴和光轴的方向是一致的)以及光学防抖(Rx及Ry方向的光轴倾斜,后称移轴)的效果。
在自动对焦被关闭及光学防抖被打开时,包含镜头的移动结构会出现以下情况:1)移动结构几乎不会向z方向位移,只会向Rx及Ry方向倾斜;2)因为所 有电磁合力的总合力可以包含x及y方向的分量,所以能达致弹簧中心往x及y方向位移;3)所述总合力会做成作用在移动结构的力矩,达致包含镜头的移动结构围绕弹簧中心旋转;4)把所述位移及旋转(第2及第3点的情况)整合后,移动结构及镜头光轴实际上会围绕一个点旋转,该点称为移轴中心。通过调整各线圈电磁合力的方向,振子弹簧系统的x及y方向弹簧系数(即是kx及ky),以及Rx及Ry方向弹簧系数(即是κx及κy),可以调整移轴中心的位置。请参图5c所示,假设所有线圈的总电磁合力是f;f的x方向分量是fx;f对于弹簧中心做成的Ry方向力矩是τy。所述弹簧中心往x方向的位移(dx)、fx和kx的关系是:dx=fx/kx  (1);y-移轴角度(θy)、τx和κy的关系是:θy=τyy(2);移轴中心及弹簧中心之间的距离(Dz)是:Dz=dx/tanθy≈dxy(因为θy很小,一般小于3度)=fxκy/kxτy(代入方程式(1)及(2))  (3)。
调整各线圈电磁合力的方向,可以改变fx及τy的关系;调整各块弹片的设计,可以改变κy和kx的关系。根据方程式(3),通过调整fx、κy、kx及τy,即是调整所述合力的方向及弹片的设计,可以调整移轴中心相对于弹簧中心的位置(和Dz有关)。
附图6a是描述移轴中心在光学中心时的防抖效果。在抖动前,成像在影像传感器的中心;在抖动后,成像偏离了影像传感器的中心;在移轴后(即是光轴围绕光学中心旋转),因为光学中心及成像并没有因此移动,所以无法补偿抖动做成的成像偏移,未能达致防抖效果。附图6b描述当移轴中心在影像传感器中心时的防抖效果。在移轴后,成像能返回抖动前的位置(即是影像传感器中心),因此能达到防抖效果。所以,移轴中心位置和防抖效果是有很大关系,移轴中心接近光学中心不利于防抖效果。因此,移轴中心最好能远离光学中心。
本实施例的抗磁干扰光学防抖音圈马达,具备至少三组磁石以及至少三个线圈,即可同时支持三维自动对焦及光学防抖的功能。例如,当线圈及磁石组的数量均为三个时,假设镜头中心为正中心,镜头向上看,三组磁石、三组线圈分别分布于0、120和240度方向。当三个线圈的受力方向向上,大小相同时, 镜头沿光轴位移时。当镜头需要向0度方向倾斜时,位于0度的线圈的力变小,其余的力则变大。当镜头需要向60度方向倾斜,位于240度的线圈的力变大,其余的力则变小。
请图7及图8,展示所述音圈马达100在工作行程时及移轴前(即是光学防抖被关闭时),由四个(两组)磁石作用在所述线圈145的电磁力组成两个合力(f1和f3)以及所述弹簧中心170的位置。通过控制四个所述线圈145电流的大小及方向,可以独立控制各线圈145中合力的大小及方向,从而控制镜头作出两个方向的移轴(x及y方向,供光学防抖用),及一个沿光轴的位移(z方向,供自动对焦用)。因为每个线圈145的合力大小非常接近,所以每个线圈145的合力在x及y方向上的分量互相抵消,所有线圈145的总合力的方向与所述光轴平行,使所述镜头载体140沿所述光轴位移,达到自动对焦的效果。在以上的实施例中,通过调整所述第一磁体152及所述第二磁体154的大小及所述线圈145的位置,从而使合力f1及合力f3倾斜向上,面向所述光轴,但不是面向或背向所述弹簧中心170。另外,所述弹簧中心170大约在所述镜头载体140的中心。
请参图9及图10,展示所述音圈马达100在工作行程时及移轴后(即是光学防抖被打开时),两个合力(f1及f3)、所述弹簧中心170及所述移轴中心180的位置。在此种情况下,所述合力f3变大,所述合力f1变小,其余合力的大小不变。因此,所述弹簧中心170向x正方向位移,且所述光轴出现偏转。从而使所述镜头载体140及所述光轴围绕所述移轴中心180旋转,所述移轴中心180变至所述弹簧中心170的下方,且超出所述第一弹片130及所述第二弹片131的位置而接近所述影像传感器的位置。
请参图11,展示所述弹簧中心170接近包含镜头移动结构重心182的好处。在此情况下,当镜头朝向水平方向时,移动结构重心182与所述弹簧中心170的位置非常接近,重力fg作用在所述弹簧中心170处形成的力矩非常小,导致所述光轴181产生的倾斜亦非常小。因此,重力fg对影像边缘解像度的影响可 以被忽略,从而能有效提升在不同方向拍照下的影像边缘解像度。
请参图12所示,为本发明第二实施例提供的能改变移轴中心的光学防抖音圈马达的结构示意图,本实施例中的音圈马达100a的结构与第一实施例中的音圈马达100的结构类似,不同之处在于:本实施例中的音圈马达100a仅设置了位于所述镜头载体140a的下方的第一弹片130a,而在所述镜头载体140a的其他位置并设有设置弹片结构,以降低生产难度及成本。本实施例中的其他结构与第一实施例中的结构相同,在此不再赘述。
此外,在其它实施例中,也可将压环省略。在其它实施例中,可进一步增加位移传感器,例如霍尔效应传感器,容许使用闭环控制方式驱动能改变移轴中心的光学防抖音圈马达,达致自动对焦或光学防抖效果。
请参图13所示,为本发明实施例提供的能改变移轴中心的光学防抖音圈马达的一种装配方法。该装配方法包括:
步骤S200:将通电线绕在镜头载体140上的绕线柱及凸台143上形成线圈145;
步骤S202:将第一弹片130放在所述镜头载体140下方,且令所述镜头载体140下方的绕线柱穿过所述第一弹片130上的洞;
步骤S204:将所述第一弹片130及所述镜头载体140机械连接;
步骤S206:将所述第一弹片130与通电线进行电路连接;
步骤S208:将压环120放在第一弹片130的下方,并进行机械连接;
步骤S210:将所述第一弹片130放在底座110的上方,然后将所述第一弹片130与所述底座110进行机械连接,再将所述第一弹片130与所述底座110上的导电部电连接;
步骤S212:将磁体组150固定在外壳160的内壁上,将所述镜头载体140置于所述外壳160内部,并确保每个线圈145均与一磁体组150相对;
步骤S214:将所述第一弹片130与第一磁体152的底部进行机械连接;
步骤S216:将第二弹片131放在所述镜头载体140的上方,且令所述镜头 载体140上方的绕线柱穿过所述第二弹片131上的洞,将所述第二弹片131及所述镜头载体140机械连接,再将所述第二弹片131与通电线进行电路连接。
本发明实施例中的能改变移轴中心的光学防抖音圈马达及其装配方法至少具有下述几点有益效果:
(1)通过控制四个所述线圈145中电流的大小及方向,可以独立控制各线圈145中合力的大小及方向,从而控制镜头能作两个方向的平移(x及y方向,供光学防抖用),及一个沿光轴180的位移(z方向,供自动对焦用),因此,能改变移轴中心的光学防抖音圈马达100可同时支持自动对焦及光学防抖;
(2)磁体组150位于不动结构中,所以能改变移轴中心的光学防抖音圈马达100的性能不容易受外来磁场影响;
(3)能改变移轴中心的光学防抖音圈马达100采用镜头平移方式,可达致光学防抖效果,并减低对影像边缘解像度的影响;
(4)通过设置压环120,相对于较薄的弹片130而言,基体122的厚度较厚,可有效地保护较薄的弹片130增强抗跌力;而且,压环120能保证弹片130被压平在镜头载体140下方,可减少因弹片130不平而导致的对焦移动倾斜及起始电流误差等问题,增加能改变移轴中心的光学防抖音圈马达100的一致性及生产良率;
(5)通过令第一延伸部1241与缺口148配合,同时令第二延伸部1243和第三延伸部149沿着本体141的周向交替设置并沿着本体141的周向与台阶部118连续接触,从而有效地降低了镜头载体140与底座110之间的间隙,可防止外部尘埃从镜头载体140与底座110之间的间隙进入镜头载体140下方污染镜头载体140下方的滤光片或影像传感器,进而增强所述相机模块的可靠性;
(6)结构简单,可提高马达可靠性及减低生产难度及成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种能改变移轴中心的光学防抖音圈马达,其特征在于:包括底座、至少一个弹片、镜头载体、至少三个磁体组和外壳;每个磁体组至少包含一个磁体;其中,所述底座、所述外壳及所述磁体组连接在一起组成不动结构;所述至少三个磁体组设置在所述外壳的内壁上;所述镜头载体包括本体及设置在所述本体上的线圈;所述线圈和所述本体连接在一起,组成活动结构;所述线圈的数目与所述磁体组的数目相同;所述线圈与所述磁体组一一相对设置,所述线圈设置有第一线端及第二线端;所述至少一个弹片连接所述镜头载体及所述磁体组而组成一个多自由度的弹簧振子系统,所述多自由度的弹簧振子系统包含一个弹簧中心;所述弹片上设置有至少三个导电通路,所述第一线端及所述第二线端分别与所述导电通路的两端电连接;所述至少一个弹片在电路上直接或间接连接所述线圈及所述底座中的导电材料;每个线圈的电磁合力的方向既不面向也不背向所述弹簧中心,并和镜头光轴不平行;在光学防抖过程中,镜头载体围绕移轴中心转动,所述移轴中心和弹簧中心是在不同位置。
  2. 如权利要求1所述的能改变移轴中心的光学防抖音圈马达,其特征在于,每个磁体组包括第一磁体和第二磁体;所述第一磁体设置在所述底座上;所述第二磁体叠设在所述第一磁体上,所述第一磁体和所述第二磁体的尺寸或形状不同,且所述第一磁体和所述第二磁体的磁场方向相反。
  3. 如权利要求1所述的能改变移轴中心的光学防抖音圈马达,其特征在于,所述底座上形成有定位部;所述镜头载体还包括形成在所述本体上的定位槽;所述定位部与所述定位槽配合。
  4. 如权利要求2所述的能改变移轴中心的光学防抖音圈马达,其特征在于,所述至少一个弹片包括第一弹片,所述第一弹片的一部分与所述底座和所述本体的底部连接;所述第一弹片的另一部分与所述第一磁体的底部连接。
  5. 如权利要求2所述的能改变移轴中心的光学防抖音圈马达,其特征在于,所述至少一个弹片包括第一弹片及第二弹片,所述第一弹片的一部分与所述底 座的顶部连接,所述第一弹片的另一部分与所述第一磁体的底部连接;所述第二弹片连接在所述镜头载体的上方,且所述第二弹片与所述第二磁体的顶部及所述外壳连接。
  6. 如权利要求5所述的能改变移轴中心的光学防抖音圈马达,其特征在于,还包括压环;所述压环设置在所述底座与所述第一弹片之间;所述压环将所述第一弹片压在所述镜头载体的下方,并与所述第一弹片连接。
  7. 如权利要求6所述的能改变移轴中心的光学防抖音圈马达,其特征在于,所述压环包括环状的基体和形成在所述基体上的多个延伸部;所述基体将所述弹片压在所述镜头载体的下方,并与所述弹片连接;所述镜头载体还包括形成在所述本体上的多个缺口;所述基板上形成有通孔;所述底座还包括自所述基板的内表面向内延伸的台阶部;所述多个延伸部沿着所述基体的周向间隔地设置在所述基体的内表面上;每个延伸部包括第一延伸部和第二延伸部;所述第一延伸部自所述基体朝向所述镜头载体延伸并延伸至所述镜头载体上对应的缺口中;所述第二延伸部自所述基体朝向所述底座延伸并延伸至与所述底座上的所述台阶部接触。
  8. 如权利要求7所述的能改变移轴中心的光学防抖音圈马达,其特征在于,所述镜头载体还包括形成在所述本体上的多个第三延伸部;所述缺口和所述第三延伸部沿着所述本体的周向交替设置;所述第三延伸部自所述本体朝向所述台阶部延伸并与所述台阶部接触。
  9. 如权利要求8所述的能改变移轴中心的光学防抖音圈马达,其特征在于,所述第二延伸部和所述第三延伸部沿着所述本体的周向交替设置并沿着所述本体的周向与所述台阶部连续接触。
  10. 一种如权利要求6-9中任何一项所述的能改变移轴中心的光学防抖音圈马达的装配方法,包括:
    将通电线绕在所述镜头载体上的绕线柱及凸台上形成所述线圈;
    将所述第一弹片放在所述镜头载体下方,且令所述镜头载体下方的绕线柱穿过所述第一弹片上的洞;
    将所述第一弹片及所述镜头载体机械连接;
    将所述第一弹片和所述通电线进行电路连接;
    将所述压环放在所述第一弹片下方,并进行机械连接;
    将所述第一弹片放在所述底座上方,将所述第一弹片与所述底座进行机械连接,再将所述第一弹片与所述底座上的导电部电连接;
    将所述磁体组固定在所述外壳的内壁上,将所述镜头载体置于所述外壳内部,并确保每个线圈均与一磁体组相对;
    将所述第一弹片与所述第一磁体的底部进行机械连接;
    将所述第二弹片放在所述镜头载体的上方,且令所述镜头载体上方的绕线柱穿过所述第二弹片上的洞,将所述第二弹片及所述镜头载体机械连接的同时将所述第一弹片和所述通电线进行电路连接。
PCT/CN2015/090693 2015-09-25 2015-09-25 一种能改变移轴中心的光学防抖音圈马达及其装配方法 WO2017049579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090693 WO2017049579A1 (zh) 2015-09-25 2015-09-25 一种能改变移轴中心的光学防抖音圈马达及其装配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090693 WO2017049579A1 (zh) 2015-09-25 2015-09-25 一种能改变移轴中心的光学防抖音圈马达及其装配方法

Publications (1)

Publication Number Publication Date
WO2017049579A1 true WO2017049579A1 (zh) 2017-03-30

Family

ID=58385721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090693 WO2017049579A1 (zh) 2015-09-25 2015-09-25 一种能改变移轴中心的光学防抖音圈马达及其装配方法

Country Status (1)

Country Link
WO (1) WO2017049579A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233084A (zh) * 2017-07-12 2017-10-10 上海坤浩信息科技有限公司 一种弹簧振子式脉象复现仪
CN108174104A (zh) * 2018-01-31 2018-06-15 上海信迈电子科技有限公司 防抖结构、防抖系统及具有其的摄像装置
CN108667262A (zh) * 2018-04-20 2018-10-16 深圳市丘钛微电子科技有限公司 音圈马达的制造方法及音圈马达
CN109922239A (zh) * 2019-03-06 2019-06-21 昆山丘钛微电子科技有限公司 相机模组
CN110045479A (zh) * 2019-04-25 2019-07-23 上海比路电子股份有限公司 马达结构及摄像装置
CN110261986A (zh) * 2019-06-01 2019-09-20 瑞声科技(新加坡)有限公司 自动对焦镜头组件
CN110492713A (zh) * 2019-07-24 2019-11-22 河南省皓泽电子有限公司 一种三轴记忆合金组合马达
CN110855052A (zh) * 2019-11-29 2020-02-28 株洲联信金属有限公司 一种球磨机用电机保护装置
CN111146919A (zh) * 2020-01-16 2020-05-12 成都易迅光电科技有限公司 一种具有ois功能的闭环音圈马达
CN111342592A (zh) * 2020-04-02 2020-06-26 新思考电机有限公司 一种马达防抖装置、照相装置及电子产品
CN111679189A (zh) * 2020-06-23 2020-09-18 武汉当代华路光电技术有限公司 一种用于vcm马达性能测试结构及测试方法
CN111796471A (zh) * 2019-04-09 2020-10-20 格科微电子(上海)有限公司 自动对焦马达及其装配方法
CN112612099A (zh) * 2019-09-18 2021-04-06 华为技术有限公司 一种对焦驱动装置及包括该装置的电子设备
CN113014769A (zh) * 2021-02-24 2021-06-22 维沃移动通信有限公司 拍摄装置及电子设备
CN113114896A (zh) * 2021-04-13 2021-07-13 维沃移动通信有限公司 摄像头组件和电子设备
US20220035122A1 (en) * 2020-08-03 2022-02-03 Apple Inc. Actuator Arrangement for Camera Size Reduction
CN114731363A (zh) * 2019-12-04 2022-07-08 华为技术有限公司 一种音圈马达、摄像模组及电子设备
CN115914807A (zh) * 2021-09-30 2023-04-04 江西晶浩光学有限公司 防抖机构、摄像模组及电子设备
CN117614213A (zh) * 2023-12-07 2024-02-27 包头江馨微电机科技有限公司 一种音圈马达载体上装配单面磁体的装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205674A1 (en) * 2006-03-02 2007-09-06 Yu-Kuang Tseng Voice coil motor and method of using the same for displacement control
CN101384954A (zh) * 2007-08-29 2009-03-11 香港应用科技研究院有限公司 具有直线运动和倾斜运动的致动器
CN102798959A (zh) * 2012-08-20 2012-11-28 爱佩仪光电技术(深圳)有限公司 一种可实现镜头可控倾斜的音圈马达结构
CN203896166U (zh) * 2014-05-29 2014-10-22 深圳市世尊科技有限公司 五线圈控制镜头倾斜运动的三轴音圈马达
US20140355145A1 (en) * 2011-11-16 2014-12-04 Lg Innotek Co., Ltd. Voice coil motor
CN104317032A (zh) * 2014-11-05 2015-01-28 爱佩仪光电技术(深圳)有限公司 一种有利于生产的微型移轴式光学防抖音圈马达结构及装配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205674A1 (en) * 2006-03-02 2007-09-06 Yu-Kuang Tseng Voice coil motor and method of using the same for displacement control
CN101384954A (zh) * 2007-08-29 2009-03-11 香港应用科技研究院有限公司 具有直线运动和倾斜运动的致动器
US20140355145A1 (en) * 2011-11-16 2014-12-04 Lg Innotek Co., Ltd. Voice coil motor
CN102798959A (zh) * 2012-08-20 2012-11-28 爱佩仪光电技术(深圳)有限公司 一种可实现镜头可控倾斜的音圈马达结构
CN203896166U (zh) * 2014-05-29 2014-10-22 深圳市世尊科技有限公司 五线圈控制镜头倾斜运动的三轴音圈马达
CN104317032A (zh) * 2014-11-05 2015-01-28 爱佩仪光电技术(深圳)有限公司 一种有利于生产的微型移轴式光学防抖音圈马达结构及装配方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233084A (zh) * 2017-07-12 2017-10-10 上海坤浩信息科技有限公司 一种弹簧振子式脉象复现仪
CN107233084B (zh) * 2017-07-12 2024-03-12 上海坤浩信息科技有限公司 一种弹簧振子式脉象复现仪
CN108174104A (zh) * 2018-01-31 2018-06-15 上海信迈电子科技有限公司 防抖结构、防抖系统及具有其的摄像装置
CN108667262B (zh) * 2018-04-20 2024-04-19 深圳市丘钛微电子科技有限公司 音圈马达的制造方法及音圈马达
CN108667262A (zh) * 2018-04-20 2018-10-16 深圳市丘钛微电子科技有限公司 音圈马达的制造方法及音圈马达
CN109922239A (zh) * 2019-03-06 2019-06-21 昆山丘钛微电子科技有限公司 相机模组
CN109922239B (zh) * 2019-03-06 2024-05-28 昆山丘钛微电子科技有限公司 相机模组
CN111796471A (zh) * 2019-04-09 2020-10-20 格科微电子(上海)有限公司 自动对焦马达及其装配方法
CN110045479B (zh) * 2019-04-25 2024-04-16 上海比路电子股份有限公司 马达结构及摄像装置
CN110045479A (zh) * 2019-04-25 2019-07-23 上海比路电子股份有限公司 马达结构及摄像装置
CN110261986A (zh) * 2019-06-01 2019-09-20 瑞声科技(新加坡)有限公司 自动对焦镜头组件
CN110492713A (zh) * 2019-07-24 2019-11-22 河南省皓泽电子有限公司 一种三轴记忆合金组合马达
CN110492713B (zh) * 2019-07-24 2024-03-22 河南皓泽电子股份有限公司 一种三轴记忆合金组合马达
CN112612099A (zh) * 2019-09-18 2021-04-06 华为技术有限公司 一种对焦驱动装置及包括该装置的电子设备
CN110855052A (zh) * 2019-11-29 2020-02-28 株洲联信金属有限公司 一种球磨机用电机保护装置
CN114731363A (zh) * 2019-12-04 2022-07-08 华为技术有限公司 一种音圈马达、摄像模组及电子设备
CN111146919A (zh) * 2020-01-16 2020-05-12 成都易迅光电科技有限公司 一种具有ois功能的闭环音圈马达
CN111342592A (zh) * 2020-04-02 2020-06-26 新思考电机有限公司 一种马达防抖装置、照相装置及电子产品
CN111342592B (zh) * 2020-04-02 2024-05-28 新思考电机有限公司 一种马达防抖装置、照相装置及电子产品
CN111679189A (zh) * 2020-06-23 2020-09-18 武汉当代华路光电技术有限公司 一种用于vcm马达性能测试结构及测试方法
US20220035122A1 (en) * 2020-08-03 2022-02-03 Apple Inc. Actuator Arrangement for Camera Size Reduction
CN113014769A (zh) * 2021-02-24 2021-06-22 维沃移动通信有限公司 拍摄装置及电子设备
CN113114896A (zh) * 2021-04-13 2021-07-13 维沃移动通信有限公司 摄像头组件和电子设备
WO2022218225A1 (zh) * 2021-04-13 2022-10-20 维沃移动通信有限公司 摄像头组件和电子设备
CN115914807A (zh) * 2021-09-30 2023-04-04 江西晶浩光学有限公司 防抖机构、摄像模组及电子设备
CN117614213A (zh) * 2023-12-07 2024-02-27 包头江馨微电机科技有限公司 一种音圈马达载体上装配单面磁体的装置及系统

Similar Documents

Publication Publication Date Title
WO2017049579A1 (zh) 一种能改变移轴中心的光学防抖音圈马达及其装配方法
US9723211B2 (en) Camera module with image stabilization by moving imaging lens
TWI693463B (zh) 帶防抖功能的透鏡驅動裝置
TWI581029B (zh) 攝影模組以及包含該模組的可攜式電子裝置
US7702233B2 (en) Image photographing apparatus
US9632280B2 (en) Lens actuator having autofocus function and hand-shake correction function
JP5606819B2 (ja) カメラモジュール
JP5327478B2 (ja) レンズ駆動装置
KR101308621B1 (ko) 소형 카메라용 액츄에이터
JP2020530137A (ja) レンズ駆動装置、カメラモジュール及び光学機器
KR20110008478U (ko) 카메라 모듈용 베이스 및 이를 포함하는 렌즈 액츄에이터
US10225475B2 (en) Magnetic interference-resistant optical image stabilization voice coil motor and its method of manufacturing
WO2018082061A1 (zh) 基于镜头倾斜可控马达和快速对焦传感器的摄像模组及控制方法
US11215786B2 (en) Lens driving device
US10690996B2 (en) Magnetic interference-resistant translation-type optical image stabilization voice coil motor and its method of assembling
JP2010197826A (ja) レンズ駆動装置
WO2016206077A1 (zh) 一种抗磁干扰光学防抖音圈马达
CN210666282U (zh) 防抖结构、防抖系统及摄像装置
CN110716368A (zh) 防抖结构、防抖系统及摄像装置
CN113890978A (zh) 驱动结构、摄像模组及电子设备
JP5760116B2 (ja) カメラモジュール
JP3132575U (ja) オートフォーカスレンズモジュール
JP2012113141A (ja) レンズ駆動装置
WO2022095751A1 (zh) 光学防抖摄像模组
JP2015165334A (ja) カメラモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904455

Country of ref document: EP

Kind code of ref document: A1