WO2017047968A1 - Novel lactobacillus having various functions, and use thereof - Google Patents

Novel lactobacillus having various functions, and use thereof Download PDF

Info

Publication number
WO2017047968A1
WO2017047968A1 PCT/KR2016/009994 KR2016009994W WO2017047968A1 WO 2017047968 A1 WO2017047968 A1 WO 2017047968A1 KR 2016009994 W KR2016009994 W KR 2016009994W WO 2017047968 A1 WO2017047968 A1 WO 2017047968A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactobacillus
bifidobacterium
lactic acid
rdna
acid bacteria
Prior art date
Application number
PCT/KR2016/009994
Other languages
French (fr)
Korean (ko)
Inventor
김동현
한명주
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160005018A external-priority patent/KR20170032816A/en
Priority to CN201680066778.XA priority Critical patent/CN108473944B/en
Priority to AU2016322617A priority patent/AU2016322617B2/en
Priority to EP16846789.2A priority patent/EP3351617A4/en
Priority to RU2018113245A priority patent/RU2734031C2/en
Priority to MX2018003230A priority patent/MX2018003230A/en
Priority to SG11201802144TA priority patent/SG11201802144TA/en
Priority to JP2018513778A priority patent/JP6608047B2/en
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to CA2998841A priority patent/CA2998841C/en
Priority to US15/759,915 priority patent/US11202811B2/en
Priority to BR112018005195-0A priority patent/BR112018005195A2/en
Priority to CN202210200178.5A priority patent/CN114410548B/en
Publication of WO2017047968A1 publication Critical patent/WO2017047968A1/en
Priority to PH12018500566A priority patent/PH12018500566A1/en
Priority to AU2020202144A priority patent/AU2020202144B2/en
Priority to US17/455,328 priority patent/US11771725B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/745Bifidobacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/24Lactobacillus brevis

Definitions

  • the present invention relates to novel lactic acid bacteria, and more particularly, it is isolated from kimchi or human feces, antioxidant activity, beta-glucuronidase ( ⁇ -glucuronidase) inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity Or it relates to a novel lactic acid bacteria or a new mixed lactic acid bacteria having a variety of physiological activities such as tight junction protein expression inducing activity.
  • the present invention also relates to various food and pharmaceutical uses of the novel lactic acid bacteria or new mixed lactic acid bacteria.
  • the digestive tract of our body is composed of mucus and villi, which efficiently absorb nutrients and prevent the absorption of high molecular weight pathogens and their toxins.
  • our body has an immune system that can protect against high molecular weight foreign antigens invading the body.
  • the intestinal bacterial flora is disturbed by infections of many hospital microorganisms or toxins, excessive stress, food intake such as high-fat diets that can multiply harmful bacteria in the digestive tract, excessive alcohol intake, and abuse of drugs (eg antibiotics).
  • drugs eg antibiotics
  • Intestinal Permeability Syndrome (Leaky Gut Syndrome) is a leaky gut syndrome, and the tightly connected defense system of the epithelial cells that make up the gastrointestinal tract is not working well. It is a condition that continues to flow into the blood.
  • intestinal leak syndrome When intestinal leak syndrome occurs, external antigens that are not absorbed into the body generally enter the body, so ulcerative colitis, Crohn's disease, liver damage, liver dysfunction, allergic diseases (including asthma), atopy, autoimmune diseases, lipodiasis, Digestive absorption disorders, acne, aging, endotoxins, intestinal infections, eczema, hypersensitivity syndrome, chronic fatigue syndrome, psoriasis, rheumatoid arthritis, pancreatic insufficiency, inflammatory joint disease, etc.
  • salazosulpapyridine which is frequently used as an aminosalicylic acid agent, has been reported to have side effects such as nausea, vomiting, anorexia, rash, headache, liver injury, white blood cell reduction, abnormal red blood cells, proteinuria, and diarrhea.
  • corticosteroids are generally used for oral administration of prednisolone, enemas, suppositories, and intravenous injections, but side effects such as femoral head necrosis due to gastric ulcer and long-term use are strong.
  • these drugs cannot be used continuously.
  • IBS Irritable bowel syndrome
  • liver plays a role in energy metabolism (nutrient treatment, storage and waste excretion), toxin detoxification, synthesis of serum proteins, and smooth absorption of fat from the intestine through bile excretion. And vitamins are also important.
  • liver diseases such as hepatitis, fatty liver or cirrhosis occur due to hepatitis virus infection and excessive intake of alcohol or high lipid diet.
  • liver disease may also be caused by drugs (TB, aspirin, antibiotics, anesthetics, antihypertensives, oral contraceptives), congenital metabolic disorders, heart failure, and shock.
  • TB aspirin
  • antibiotics antibiotics
  • anesthetics antihypertensives
  • oral contraceptives congenital metabolic disorders
  • heart failure and shock.
  • Liver disease can develop from chronic hepatitis to acute hepatitis with fatigue, vomiting, diarrhea, loss of appetite, jaundice, right upper abdominal pain, fever, and muscle pain.
  • allergic patients The complexity of society, the development of industry and civilization increase environmental pollution, stress, and dietary changes, increasing the number of allergic patients every year. In 1980, less than 1% of allergic patients, such as atopy, anaphylaxis, and asthma, increased to more than 5% in the 2000s, and more than 10% of potential patients were estimated.
  • the cause of allergic disease is excessive immune response of the living body resulting from antigen antibody reaction, and allergic disease is generally classified into type 1-4 hypersensitivity reaction according to reaction time and presence of complement involvement.
  • Type 1 hypersensitivity reactions include atopy, anaphylaxis shock, bronchial asthma, urticaria, hay fever, and type 2 hypersensitivity reactions include inadequate transfusion, autoimmune hemolytic anemia, hemolytic anemia by medications, granulocytopenia, thrombocytopenic purpura, etc.
  • Type III hypersensitivity reactions include erythema, lymphadenopathy, arthralgia, arthritis, nephritis, acute glomerulonephritis after streptococcal infection, and type 4 hypersensitivity reactions include chronic inflammation. In order to improve allergic diseases, you should take a shower or bath to remove allergens (house dust, mites, etc.) on your skin, and do not eat allergens.
  • drugs such as steroids, antihistamines, and immunosuppressants are used, such as skin atrophy, vasodilation, discoloration, purpura (steroid preparation), drowsiness (antihitamin), and kidney failure ( Side effects such as immunosuppressants) are likely to occur. None of the drugs that have been developed so far can cure allergies, and the symptoms are expected to improve, but side effects are large.
  • Obesity is a metabolic disease caused by an imbalance between calorie intake and consumption and is morphologically caused by hypertrophy or hyperplasia of fat cells in the body. Obesity is not only the most common malnutrition in Western society, but the importance of treatment and prevention has been highlighted in recent years in Korea, as the frequency of obesity is rapidly increasing due to the improvement of dietary life and the westernization of lifestyle. have. Obesity is an important factor that not only psychologically diminishes individuals but also increases the risk of developing various adult diseases.
  • Obesity is known to be directly related to the increased prevalence of various adult diseases, such as type 2 diabetes, hypertension, hyperlipidemia, and heart disease (Cell 87: 377, 1999), and the combination of obesity-related disorders together with metabolic syndrome or insulin resistance It is called syndrome (insulin resistance syndrome), and these have been found to be the cause of atherosclerosis and cardiovascular disease.
  • Known obesity treatments such as Xenical (Roche Pharmaceuticals, Switzerland), Reductil (Eboth, USA), Exolise (Atopama, France), etc.
  • most anti-obesity agents are appetite suppressants that suppress appetite by regulating neurotransmitters associated with the hypothalamus.
  • conventional treatments have low side effects such as heart disease, respiratory disease, and neurological disease, and thus have low sustainability. Therefore, development of an improved obesity treatment agent is needed, and currently developed products have satisfactory treatment effects without side effects. Since there are few therapeutic agents, development of new obesity agents is required.
  • probiotics In the gastrointestinal tract of animals including humans, living organisms that improve the host's intestinal microbial environment and have beneficial effects on the health of the host are collectively called probiotics. In order to be effective as a probiotic, when ingested orally, most of them must reach the small intestine and adhere to the intestinal surface. Therefore, the resistance to acid, bile and intestinal epithelial cells should be excellent. Lactic acid bacteria are used as probiotics because they play a role in breaking down fiber and complex proteins into important nutrients while living in the digestive system of the human body.
  • Lactobacillus has been reported to show the effects of maintaining normal intestinal flora, improving intestinal flora, antidiabetic and antihyperlipidemic effects, inhibiting carcinogenesis, inhibiting colitis, and nonspecific activity of the host's immune system.
  • the strain Lactobacillus is a major member of the normal microbial community in the intestine of the human body, which has long been known to be important for maintaining a healthy digestive system and the vaginal environment, and the US Public Health Service (US Public Health Service). guidelines) are currently classified as 'Bio-safty Level 1', where none of the Lactobacillus strains currently deposited with the American Strain Deposit Organization (ATCC) is known about the potential risk of causing disease in humans or animals.
  • ATCC American Strain Deposit Organization
  • kimchi lactic acid bacteria are reported to have the effect of immuno-enhancing, anti-microbial, antioxidant, anti-cancer, anti-obesity, hypertension or constipation as a lactic acid bacteria involved in kimchi fermentation [Hivak P, Odrska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z .: One-year application of Probiotic strain Enterococcus facium M-74 decreases Serum cholesterol levels. Bratisl lek Listy 2005; 106 (2); 67-72; Agerholm-Larsen L. Bell ML. Grunwald GK.
  • Astrup A The effect of a probiotic milk product on plasma cholesterol: a metaanalysis of short-term intervention studies; Eur J Clin Nutr. 2000; 54 (11) 856-860; Renato Sousa, Jaroslava Helper, Jian Zhang, Strephen J Lewis and Wani O Li; Effect of Lactobacillus acidophilus supernants on body weight and leptin expression in rats; BMC complementary and alternative medicine. 2008; 8 (5) 1-8].
  • Korean Laid-open Patent Publication No. 10-2009-0116051 discloses Lactobacillus brevis HY7401, which has the effect of treating and preventing colitis.
  • Korean Patent Publication No. 10-2006-0119045 discloses Leuconostoc citreum) KACC91035, flow may Pocono stock mesen teroyi des subspecies mesen teroyi des (Leuconostoc mesenteroides subsp.
  • the KCTC 3100 and Lactobacillus brevis (Lactobacillus brevis) atopic lactic acid bacteria for dermatitis treatment or prevention, selected from the group consisting of KCTC 3498 discloses .
  • Korean Patent Laid-Open No. 10-2013-0092182 discloses a health functional food for preventing or hangover of alcoholic liver disease, which contains Lactobacillus brevis HD-01 [Accession No .: KACC91701P], which has excellent alcohol resolution. Is disclosed.
  • 10-2010-0010015 discloses Lactobacillus johnsonii HFI 108 strain (KCTC 11356BP) having blood cholesterol concentration lowering and anti-obesity activity.
  • Korean Unexamined Patent Publication No. 10-2014-0006509 describes obesity including strain Bifidobacterium longum CGB-C11 (Accession No. KCTC 11979BP), which produces conjugated linoleic acid, as an active ingredient.
  • Prophylactic or therapeutic compositions are disclosed.
  • the present invention has been derived under such a conventional technical background, and an object of the present invention is to provide a novel lactic acid bacterium having various physiological activities or functions required as probiotics and a medicinal use thereof.
  • Another object of the present invention to provide a novel lactic acid bacteria mixture and its pharmaceutical use that can maximize a variety of physiological activity or functionality.
  • the inventors of the present invention screen a myriad lactic acid bacteria from kimchi or human feces, the specific Lactobacillus strains, certain Bifidobacterium strains or mixed lactic acid bacteria thereof, liver damage such as intestinal leak syndrome, fatty liver and the like, The present invention was completed by confirming that it has an excellent improvement effect on allergic diseases such as atopic dermatitis, inflammatory diseases such as colitis, or obesity.
  • Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence described in SEQ ID NO: 1 as 16S rDNA, comprising the nucleotide sequence described in SEQ ID NO: 3 as 16S rDNA Bifidobacterium longum , Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA, Lactobacillus plantarum , Lactobacillus planta comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA Lactobacillus plantarum or Lactobacillus is selected from Bifidobacterium longum ( Bifidobacterium longum ) comprising the nucleotide sequence of SEQ ID NO: 7 in 16S rDNA.
  • the Lactobacillus brevis Lactobacillus brevis
  • Lactobacillus plantarum Lactobacillus plantarum
  • Bifidobacterium long gum Bifidobacterium longum
  • one embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) lactic acid bacteria selected from, lactic acid bacteria cultures, lysates of lactic acid bacteria or extracts of the lactic acid bacteria as an active ingredient, and for preventing
  • one embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) lactic acid bacteria, the culture of the lactic acid bacteria, lactic acid bacteria lysate or extract of the lactic acid bacteria as an active ingredient, and for preventing or
  • one example of the present invention is Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA Bifidobacterium longum , Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA, Lactobacillus plantarum , Lactobacillus planta comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA
  • a mixed lactic acid bacteria selected from the group consisting of Bifidobacterium longum ( Lactobacillus plantarum ) and Bifidobacterium longum comprising the nucleotide sequence of SEQ ID NO: 7 in 16S rDNA.
  • the mixed lactic acid bacteria have antioxidant activity, beta-glucuronidase ( ⁇ -glucuronidase) inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity or tight junction protein expression inducing activity.
  • Lactobacillus brevis Lactobacillus brevis
  • Bifidobacterium long gum Bifidobacterium
  • SEQ ID NO: 3 the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum
  • Lactobacillus Planta room (Lactobacillus plantarum)
  • Lactobacillus Planta room Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA
  • containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S BP gambling comprising the nucleotide sequence set forth in
  • Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum), Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) comprises a mixed lactic acid bacteria selected from the group consisting of two or more, the culture of the mixed lactic acid bacteria, the shredded product of the mixed
  • Lactobacillus strains or specific Bifidobacterium strains according to the present invention are isolated from kimchi or human feces, high safety, antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide ( lipopolysaccharide (LPS) production inhibitory activity or tight junction protein (tight junction protein) expression inducing activity and the like have a variety of physiological activities. Accordingly, certain Lactobacillus strains, certain Bifidobacterium strains or mixed lactic acid bacteria thereof according to the present invention are useful in preventing, ameliorating or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity. It can be used as a food and pharmaceutical material.
  • FIG. 1 is a graph showing changes in GOT values when lactic acid bacteria are administered to a model animal induced by liver damage by D-galactosamine in the first experiment of the present invention
  • FIG. In the first experiment when the lactic acid bacteria were administered to the model animal induced liver damage by D-galactosamine (D-Galactosamine) is a graph showing the change in the GPT value
  • Figure 3 in the first experiment of the present invention D -It is a graph showing the change of MDA value when lactic acid bacteria were administered to a model animal in which liver damage was induced by galactosamine (D-Galactosamine).
  • 4 is a graph showing the effect of lactic acid bacteria selected in the first experiment of the present invention on the inflammatory response of dendritic cells induced by LPS (lipopolysaccharide). 4 is a graph showing the effect of lactic acid bacteria on cells not treated with LPS (lipopolysaccharide), and the graph on the right is a graph showing the effect of lactic acid bacteria on cells treated with LPS (lipopolysaccharide).
  • FIG. 5 is a graph showing the effect of Bifidobacterium longum CH57 on the inflammatory response of macrophage induced by LPS (lipopolysaccharide) in the first experiment of the present invention.
  • FIG. 6 shows the effect of Lactobacillus brevis CH23 on the differentiation of T cells isolated from the spleen into Th17 cells or Treg cells in the first experiment of the present invention using a Fluorescence-activated cell sorting (FACS) device.
  • FACS Fluorescence-activated cell sorting
  • FIG. 8 shows Bifidobacterium longgum for a model animal induced by acute colitis by TNBS in a first experiment of the present invention.
  • longum shows the effect of CH57 on the appearance of the large intestine or myeloperoxidase (MPO) activity, etc.
  • Figure 9 is a non-gambling for the model animal induced acute colitis by TNBS in the first experiment of the present invention
  • Te Solarium ronggeom shows the effect of CH57 in the histological picture of the colon
  • Figure 10 shows the Bifidobacterium longum CH57 in a model animal induced by acute colitis by TNBS in the first experiment of the present invention The effect is indicated by inflammation related cytokines and the like.
  • FIG. 11 illustrates the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis by TNBS in the first experiment of the present invention, such as the appearance of colon or myeloperoxidase (MPO) activity.
  • 12 is a histological picture of the large intestine showing the effect of Lactobacillus brevis CH23 on a model animal induced by acute colitis by TNBS in the first experiment of the present invention.
  • the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis induced by TNBS is shown as a differentiation aspect of T cells
  • FIG. 14 is a first experiment of the present invention.
  • Lactobacillus brevis for an animal model of acute colitis is induced by TNBS (Lactobacillus brevis) influence on the CH23 It shows the inflammatory cytokines and the like.
  • ronggeom Bifidobacterium (Bifidobacterium for an animal model of acute colitis is induced by the primary experiment according to the present invention, TNBS longum )
  • the effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by the appearance of colon or myeloperoxidase (MPO) activity
  • MPO myeloperoxidase
  • Bifidobacterium long gum ( Bifidobacterium) on model animals induced by acute colitis longum ) shows the effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 in the histological picture of the large intestine
  • Figure 17 shows in a model animal induced by acute colitis by TNBS in the first experiment of the present invention.
  • ronggeom for Bifidobacterium (Bifidobacterium longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by cytokines related to inflammation.
  • FIG. 18 shows the Bifidobacterium long gum for obesity-induced model animals in the first experiment of the present invention.
  • longum CH57 and Lactobacillus brevis (Lactobacillus brevis) will represented by such weight the effect of mixing lactic acid bacteria on the CH23 variation
  • Figure 19 is Bifidobacterium ronggeom for the primary test of the invention, the obesity induction model animal (Bifidobacterium longum )
  • the effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown in the appearance of the large intestine, myeloperoxidase (MPO) activity, histological picture of the large intestine, and FIG.
  • MPO myeloperoxidase
  • FIG. 22 shows the effect of lactic acid bacteria on the differentiation of T cells into Th17 cells in a model animal induced by acute colitis by TNBS in a second experiment of the present invention
  • FIG. 23 is a second experiment of the present invention.
  • the effect of lactic acid bacteria on TNBS-induced acute colitis is shown as a differentiation pattern of T cells into Treg cells.
  • FIG. 24 shows the effects of lactic acid bacteria on the model animals induced by acute colitis by TNBS in the second experiment of the present invention as inflammatory response indicators.
  • FIG. 25 is a photograph showing the effect of lactic acid bacteria on the gastric mucosa of the mouse induced by gastric ulcers in the second experiment of the present invention.
  • FIG. 26 is a second experiment of the present invention.
  • the effect of lactic acid bacteria on the gastric mucosa of the gastric ulcer induced by the gastric ulcer is shown by the gross gastric lesion score (Gross gastric lesion score)
  • Figure 27 is a gastric ulcer by ethanol in the second experiment of the present invention
  • the effect of lactic acid bacteria on the gastric mucosa of the induced mice is shown by the ulcer index (ulcer index)
  • Figure 28 in the second experiment of the present invention, gastric mucosa of the mice induced gastric ulcer by ethanol (Histological activity index) shows the effect of lactic acid bacteria on (stomach mucosa).
  • FIG. 29 shows the effect of lactic acid bacteria on the gastric mucosa of the mice induced by gastric ulcer in ethanol in the second experiment of the present invention as myeloperoxidase (MPO) activity.
  • MPO myeloperoxidase
  • FIG. 30 shows the effect of lactic acid bacteria on the gastric mucosa of the mice induced by gastric ulcers in the second experiment of the present invention by expression level of CXCL4, and FIG. 31 is a second experiment of the present invention.
  • the effect of lactic acid bacteria on the gastric mucosa (stomach mucosa) of the gastric ulcer induced by ethanol is expressed as the expression level of TNF- ⁇ .
  • culture means a product obtained by culturing a microorganism in a known liquid medium or a solid medium, and is a concept in which a microorganism is included.
  • pharmaceutically acceptable and “food acceptable” means that they do not significantly stimulate the organism and do not inhibit the biological activity and properties of the administered active substance.
  • prevention means any action that inhibits the symptoms or delays the progression of a particular disease by administration of a composition of the present invention.
  • treatment means any action that improves or beneficially alters the symptoms of a particular disease by administration of a composition of the present invention.
  • improvement refers to any action that at least reduces the parameters associated with the condition being treated, for example, the extent of symptoms.
  • the term "administration" means providing a subject with a composition of the present invention in any suitable manner.
  • the subject refers to all animals, such as humans, monkeys, dogs, goats, pigs or mice having a disease that can improve the symptoms of a particular disease by administering the composition of the present invention.
  • the term "pharmaceutically effective amount” refers to an amount sufficient to treat a disease at a reasonable benefit or risk ratio applicable to medical treatment, which refers to the type of disease, the severity, the activity of the drug, the drug, and the like. Sensitivity, time of administration, route of administration and rate of excretion, duration of treatment, factors including drug used concurrently, and other factors well known in the medical arts.
  • One aspect of the present invention relates to a novel lactic acid bacteria having a variety of physiological activity or a novel mixed lactic acid bacteria that can increase the biological activity.
  • the novel lactic acid bacteria according to an embodiment of the present invention is Lactobacillus brevis (16S rDNA) comprising the nucleotide sequence of SEQ ID NO: 1 Lactobacillus brevis ), Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA ( Bifidobacterium longum ), Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA ( Lactobacillus plantarum ), Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA ( Lactobacillus plantarum Or Bifidobacterium longgum comprising the nucleotide sequence of SEQ ID NO: 7 as 16S rDNA ( Bifidobacterium longum ) Has antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide (LPS) production inhibitory
  • Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA ( Lactobacillus brevis ) Is an anaerobic bacillus isolated from kimchi, shows positive in Gram staining, can survive in a wide temperature range, low pH, high salt concentration, and produces glucosidase.
  • Lactobacillus brevis containing the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA Is the carbon source of D-ribose, D-xylose, D-glucose, D-fructose, Esculin, Salicin, Maltose, Melibiose, 5-keto-gluconate (5 -keto-gluconate).
  • Lactobacillus brevis containing the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA Is preferably Lactobacillus brevis ( Lactobacillus brevis ) CH23 (accession number: KCCM 11762P).
  • Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as the 16S rDNA ( Bifidobacterium longum ) Is an anaerobic bacillus isolated from human feces, positive in Gram staining, and produces glucosidase.
  • Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as the 16S rDNA ( Bifidobacterium longum ) Uses D-galactose, D-glucose, D-fructose as a carbon source.
  • Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as the 16S rDNA ( Bifidobacterium longum ) Is preferably Bifidobacterium long gum ( Bifidobacterium longum ) CH57 (Accession No .: KCCM 11764P).
  • Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as the 16S rDNA ( Lactobacillus plantarum ) Is an anaerobic bacillus isolated from Kimchi and shows positive gram staining.
  • Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as the 16S rDNA ( Lactobacillus plantarum ) Is the carbon source of D-ribose, D-galactose, D-glucose, D-fructose, D-mannose, mannitol, sorbitol, N-acetyl-glucosamine, amigdaline, arbutin, esculin, salicycin, Cellobiose, maltose, melibiose, sucrose, trehalose, melezitose and the like are used.
  • Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as the 16S rDNA ( Lactobacillus plantarum ) Is preferably Lactobacillus plantarum ( Lactobacillus plantarum ) LC5 (Accession No .: KCCM 11800P).
  • Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as the 16S rDNA ( Lactobacillus plantarum ) Is an anaerobic bacillus isolated from Kimchi and shows positive gram staining.
  • Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as the 16S rDNA ( Lactobacillus plantarum ) Is the carbon source of L-arabinose, D-ribose, D-glucose, D-fructose, D-mannose, mannitol, sorbitol, N-acetyl-glucosamine, amigdaline, arbutin, esculin, salicycin , Cellobiose, maltose, lactose, melibiose, sucrose, trehalose, melezitose and the like.
  • Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as the 16S rDNA ( Lactobacillus plantarum ) Is preferably Lactobacillus plantarum ( Lactobacillus plantarum ) LC27 (Accession No .: KCCM 11801P).
  • Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 7 as the 16S rDNA ( Bifidobacterium longum ) Is an anaerobic bacillus isolated from human feces and shows positive gram staining.
  • Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 7 as the 16S rDNA ( Bifidobacterium longum )
  • Bifidobacterium longum Uses L-arabinose, D-xylose, D-glucose, D-fructose, esculin, maltose, lactose, melibios, sucrose and the like as carbon sources.
  • Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 7 as the 16S rDNA ( Bifidobacterium longum ) Is preferably Bifidobacterium long gum ( Bifidobacterium longum ) LC67 (Accession No .: KCCM 11802P).
  • Lactobacillus brevis Lactobacillus brevis
  • Lactobacillus brevis Bifidobacterium long gum (SEQ ID NO: 3) Bifidobacterium longum
  • Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA
  • Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA)
  • Bifidobacterium longgum comprising the nucleotide sequence of SEQ ID NO: 7 as 16S rDNA It is selected from the group consisting of two or more kinds longum).
  • Lactobacillus brevis Lactobacillus brevis
  • SEQ ID NO: 1 as 16S rDNA
  • SEQ ID NO: 3 as 16S rDNA It consists of a combination of Bifidobacterium longum containing sequences.
  • the mixed lactic acid bacteria when considering the synergistic action of the lactic acid bacteria, preferably in Lactobacillus plantarum ( Lactobacillus plantarum ) or 16S rDNA comprising the nucleotide sequence of SEQ ID NO: 4 in 16S rDNA
  • Lactobacillus plantarum Lactobacillus plantarum
  • 16S rDNA comprising the nucleotide sequence of SEQ ID NO: 4 in 16S rDNA
  • Bifidobacterium longum comprising the nucleotide sequence set forth in SEQ ID NO: 7 as 16S rDNA.
  • the mixed lactic acid bacteria have a higher antioxidant activity, a beta-glucuronidase inhibitory activity than a single lactic acid bacterium by synergistic action of a specific Lactobacillus strain and a specific Bifidobacterium strain, and a lipopolysaccharide (LPS).
  • A) has a production inhibitory activity or a tight junction protein expression inducing activity, and is more useful in terms of functional food and pharmaceutical materials.
  • Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA in the mixed lactic acid bacteria according to an embodiment of the present invention is Lactobacillus brevis CH23 (Accession Number: KCCM 11762P), 16S rDNA as Bifidobacterium ronggeom comprising the nucleotide sequence set forth in SEQ ID NO: 3 (Bifidobacterium longum) is ronggeom Bifidobacterium (Bifidobacterium longum ) CH57 (Accession No .: KCCM 11764P), Lactobacillus plantarum ( Lactobacillus plantarum ) LC5 (Accession No .: KCCM) containing the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA Lactobacillus plantarum Lactobacillus plantarum LC27 (Accession No
  • the present invention is Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) comprising a lactic acid bacteria, its culture, its crush or its extract as an active ingredient, and provides a composition for use in
  • the present invention is Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA Long Gum ( Bifidobacterium) longum), Lactobacillus Planta room (Lactobacillus plantarum), Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) containing two or more selected lactic acid bacteria, its culture, its lysate or its extract as an active ingredient, and prevents, improves or treats intestinal damage, liver
  • Lactobacillus brevis Lactobacillus brevis
  • Lactobacillus plantarum Lactobacillus plantarum
  • Bifidobacterium long gum Bifidobacterium in the composition of the present invention longum
  • the intestinal damage refers to a condition in which the function of the intestine (particularly the small intestine or the large intestine) is not normal due to disturbance of the intestinal bacterial flora, and preferably intestinal leak syndrome.
  • the liver damage refers to a condition in which liver function is not normal due to external factors or internal factors, and is preferably selected from hepatitis, fatty liver, or liver cirrhosis.
  • the hepatitis includes both nonalcoholic hepatitis and alcoholic hepatitis.
  • the fatty liver includes both non-alcoholic fatty liver and alcoholic fatty liver.
  • the allergic disease is not limited in kind as long as it is caused by an excessive immune response of the living body, and is preferably selected from atopic dermatitis, asthma, sore throat or chronic dermatitis.
  • the inflammatory disease is a disease caused by an inflammatory response
  • the type thereof is not particularly limited and is preferably selected from gastritis, gastric ulcer, arthritis or colitis.
  • the arthritis includes rheumatoid arthritis.
  • the colitis refers to a condition in which the intestine is inflamed due to bacterial infection or pathological fermentation of the intestinal contents, and is a concept including infective colitis and non-infectious colitis. Specific examples of colitis include inflammatory bowel disease or irritable colitis syndrome. Inflammatory bowel disease also includes ulcerative colitis, Crohn's disease, and the like.
  • the culture of lactic acid bacteria or the culture of mixed lactic acid bacteria is a product obtained by culturing a predetermined strain or mixed strain in a medium
  • the medium may be selected from a known liquid medium or a solid medium, for example, MRS Liquid medium, MRS agar medium, BL agar medium.
  • the composition may be embodied as a pharmaceutical composition, a food additive, a food composition (particularly a functional food composition), a feed additive, and the like according to the purpose or aspect of use.
  • the content of the lactic acid bacteria or mixed lactic acid bacteria as an active ingredient may also be adjusted in various ranges according to the specific form of the composition, purpose of use, and aspects.
  • the content of the novel lactic acid bacteria, new mixed lactic acid bacteria, its culture, its lysate or its extract is not particularly limited, for example, 0.01 to 99% by weight, based on the total weight of the composition, preferably Preferably 0.5 to 50% by weight, more preferably 1 to 30% by weight.
  • the pharmaceutical composition according to the present invention may further include an additive such as a pharmaceutically acceptable carrier, excipient or diluent in addition to the active ingredient.
  • Carriers, excipients and diluents that may be included in the pharmaceutical compositions of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate , Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the pharmaceutical composition of the present invention in addition to the novel lactic acid bacteria, new mixed lactic acid bacteria, cultures thereof, crushed products or extracts thereof, known active ingredients having the effect of preventing or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases or obesity It may contain 1 or more types.
  • the pharmaceutical composition of the present invention may be formulated into a formulation for oral administration or a parenteral administration by a conventional method, and when formulated, such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. Diluents or excipients may be used.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations contain at least one excipient such as starch, calcium carbonate, sucrose in active ingredients. ), Lactose (Lactose) or gelatin can be prepared by mixing. In addition to simple excipients, lubricants such as magnesium styrate talc may also be used.
  • Liquid preparations for oral administration include suspensions, solutions, emulsions, and syrups, and various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents, water and liquid paraffin. have.
  • Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally to mammals including humans according to a desired method, and parenteral administration methods include external skin, intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, muscle Intra-injection or intrathoracic injection;
  • the dosage of the pharmaceutical composition of the present invention is not particularly limited as long as it is a pharmaceutically effective amount, and the range thereof depends on the weight, age, sex, health condition, diet, time of administration, method of administration, excretion rate and severity of the disease. Varies.
  • Typical daily dosages of the pharmaceutical compositions of the present invention are not particularly limited but are preferably 0.1 to 3000 mg / kg, more preferably 1 to 2000 mg / kg, once daily based on the active ingredient. Or divided into several doses.
  • the content of the novel lactic acid bacteria, new mixed lactic acid bacteria, its culture, its lysate or extract thereof as an active ingredient in the food composition according to the present invention is 0.01 to 99% by weight, preferably 0.1 to 50% by weight, based on the total weight of the composition. %, More preferably 0.5 to 25% by weight, but is not limited thereto.
  • the food composition of the present invention includes the form of pills, powders, granules, acupuncture, tablets, capsules, or liquids, and examples of specific foods include meat, sausage, bread, chocolate, candy, snacks, confectionary, pizza, ramen, Other noodles, gums, dairy products, including ice cream, various soups, beverages, tea, functional water, drinks, alcoholic beverages and vitamin complexes, and includes all of the health food in the usual sense.
  • the food composition of the present invention may contain, as an additional component, a food acceptable carrier, various flavors, or natural carbohydrates.
  • the food composition of the present invention is a variety of nutrients, vitamins, electrolytes, flavors, colorants, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH regulators, stabilizers, preservatives, glycerin, alcohols And carbonation agents used in carbonated beverages.
  • the food composition of the present invention may contain a flesh for preparing natural fruit juice, fruit juice beverage and vegetable beverage. These components can be used independently or in combination.
  • the above-mentioned natural carbohydrates are glucose, monosaccharides such as fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, sugar alcohols such as xylitol, sorbitol and erythritol.
  • natural flavoring agents such as taumartin, stevia extract, synthetic flavoring agents such as saccharin, aspartame, etc. may be used.
  • GAM liquid medium GAM broth; Nissui Pharmaceutical, Japan. Subsequently, the supernatant was taken and transplanted into BL agar medium (Nissui Pharmaceutical, Japan) and incubated anaerobicly at 37 ° C. for about 48 hours, after which colony-forming Bifidobacterium sp. .) Strains were isolated.
  • Table 1 shows the control numbers and strain names of lactic acid bacteria isolated from Chinese cabbage kimchi, radish kimchi, green onion kimchi and human feces.
  • Control Number Strain name Control Number Strain name One Lactobacillus acidophilus CH1 31 Lactobacillus sakei CH31 2 Lactobacillus acidophilus CH2 32 Lactobacillus johnsonii CH32 3 Lactobacillus acidophilus CH3 33 Lactobacillus sakei CH33 4 Lactobacillus brevis CH4 34 Lactobacillus sakei CH34 5 Lactobacillus curvatus CH5 35 Lactobacillus plantarum CH35 6 Lactobacillus brevis CH6 36 Lactobacillus sanfranciscensis CH36 7 Lactobacillus casei CH7 37 Bifidobacterium pseudocatenulatum CH37 8 Lactobacillus planantrum CH8 38 Bifidobacterium pseudocatenulatum CH38 9 Lactobacillus sakei CH9 39 Bifidobacterium adolescentis CH39 10 Lactobacillus curvatus CH10 40 Bifidobacterium adol
  • Lactobacillus brevis CH23 is an anaerobic bacilli that show positive gram staining, and shows viability even under aerobic conditions without forming spores.
  • Lactobacillus brevis CH23 survived at 10-42 ° C. and was a stable acid resistant strain at pH 2 for 2 hours.
  • Lactobacillus brevis CH23 survived in 2% sodium chloride solution and actively produced glucosidase.
  • 16S rDNA was measured by the chemical classification of Lactobacillus brevis CH23, and as a result, it was found to have the nucleotide sequence of SEQ ID NO: 1.
  • the 16S rDNA sequence of Lactobacillus brevis CH23 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). As a result, Lactobacillus brevis ( Lactobacillus brevis ) having the same 16S rDNA sequence was identified. Lactobacillus brevis strain was not detected and showed 99% homology with the 16S rDNA subsequence of Lactobacillus brevis strain FJ004.
  • Lactobacillus johnsonii CH32 is an anaerobic bacilli that show positive gram staining, and shows viability even under aerobic conditions without forming spores.
  • Lactobacillus johnsonii CH32 survived stably up to 45 °C, was a stable acid resistant strain for 2 hours in H 2.
  • Lactobacillus johnsonii CH32 actively produced glucosidase, but did not produce beta-glucuronidase.
  • 16S rDNA was determined by the chemical classification of Lactobacillus johnsonii CH32, and as a result, it was found to have the nucleotide sequence of SEQ ID NO: 2.
  • Lactobacillus johnsonii CH32 16S rDNA sequence was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/), and the Lactobacillus zone having the same 16S rDNA sequence was found.
  • the Sony ( Lactobacillus johnsonii ) strain was not detected and showed 99% homology with the 16S rDNA subsequence of Lactobacillus johnsonii strain JCM 2012.
  • Bifidobacterium longum ( Bifidobacterium longum ) CH57 is an anaerobic bacilli that show positive gram staining, and did not form spores and had very low viability under aerobic conditions.
  • Bifidobacterium longum CH57 was unstable to heat.
  • Bifidobacterium longum CH57 actively produced glucosidase, but did not produce beta-glucuronidase.
  • ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA was determined by chemical classification of CH57, and the result was found to have the nucleotide sequence of SEQ ID NO: 3.
  • Ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA nucleotide sequence of CH57 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/) and Bifidobacterium long gum having the same 16S rDNA sequence longum ) was not detected and Bifidobacterium longgum longum ) showed 99% homology with the 16S rDNA subsequence of strain CBT-6.
  • Lactobacillus brevis CH23 shows the physiological characteristics of Lactobacillus brevis CH23, Lactobacillus johnsonii CH32, and Bifidobacterium longum CH57.
  • Table 2 shows the carbon source availability results of Lactobacillus brevis CH23
  • Table 3 shows the carbon source availability results of Lactobacillus johnsonii CH32
  • Table 4 shows the Bifidobacterium long gum. ( Bifidobacterium longum ) shows the results of carbon source availability of CH57.
  • Lactobacillus brevis CH23, Lactobacillus johnsonii CH32 and Bifidobacterium long gum ( Bifidobacterium ) as shown in Tables 2, 3 and 4 below longum ) CH57 has different availability to some carbon sources than strains of the same species.
  • the inventors of the present invention deposited the Lactobacillus brevis CH23 on September 1, 2015 to the Korea Microorganism Conservation Center (address: Yurim Building, 45, 2 Ga-gil, Hongje-si, Seodaemun-gu, Seoul, Korea) on September 1, 2015 and consigned KCCM 11762P. I am assigned a number.
  • the inventors of the present invention patented Lactobacillus johnsonii CH32 to the Korea Microorganism Conservation Center (Address: 45 Yurim Building, 45, 2ga-gil, Hongdae, Seodaemun-gu, Seoul, Korea) on September 1, 2015 KCCM You have been assigned an accession number of 11763P.
  • DPPH (2,2-Diphenyl-1-picrylhydrazyl) was dissolved in ethanol to a concentration of 0.2 mM to prepare a DPPH solution.
  • 0.1 mL of the DPPH solution was added to lactic acid bacteria suspension (1 ⁇ 10 8 CFU / mL) or vitamin C solution (1 g / mL) and incubated at 37 ° C. for 20 minutes.
  • the culture was centrifuged at 3000 rpm for 5 minutes to obtain a supernatant. Thereafter, the absorbance of the supernatant was measured at 517 nm, and the antioxidant activity of the lactic acid bacteria was calculated.
  • 0.1 g of fresh human feces were suspended in 0.9 ml of sterile saline solution and diluted 100-fold with normal anaerobic medium to prepare fecal suspension.
  • 0.1 ml of the fecal suspension and 0.1 ml of lactic acid bacteria (1 ⁇ 10 4 or 1 ⁇ 10 5 CFU) were implanted into 9.8 ml of sterile general anaerobic medium (Nissui Pharmaceutical, Japan) and incubated anaerobicly for 24 hours. Thereafter, the culture solution was sonicated for about 1 hour to destroy the outer membrane of bacteria, and centrifuged at 5000 ⁇ g to obtain a supernatant.
  • the content of the representative endotoxin LPS (lipopolysaccharide) present in the supernatant was measured by LAL (Limulus Amoebocyte Lysate) assay kit (manufacturer: Cape Cod Inc., USA).
  • LAL Limulus Amoebocyte Lysate
  • the culture solution obtained through the same experiment was diluted 1000 times and 100,000 times, and cultured in DHL medium, and the number of E. coli was measured.
  • Caco2 cells cultured in the Korean Cell Line Bank were incubated for 48 hours in RPMI 1640 medium, and then Caco2 cell cultures were dispensed in 12-well plates at an amount of 2 ⁇ 10 6 cells per well. Thereafter, each well was treated with 1 ⁇ g of LPS (lipopolysaccharide) alone or 1 ⁇ g of LPS (lipopolysaccharide) and 1 ⁇ 10 3 CFU were incubated together for 24 hours. Then, cells cultured from each well were scraped, and the expression level of tight junction protein ZO-1 was measured by immunoblotting.
  • LPS lipopolysaccharide
  • LPS lipopolysaccharide
  • Lactobacillus ku Yerba As seen in Table 6 tooth (Lactobacillus curvatus) CH5, Lactobacillus four K (Lactobacillus sakei) CH11, Lactobacillus brevis (Lactobacillus brevis) CH23, Lactobacillus zone Sony (Lactobacillus johnsonii) CH32, Bifidobacterium Bifidobacterium pseudocatenulatum) CH38 ronggeom and Bifidobacterium (Bifidobacterium longum ) CH57 lactic acid bacteria have excellent antioxidant activity, strongly inhibited lipopolysaccharide (LPS) production and beta-glucuronidase activity, and strongly induced tight junction protein expression.
  • LPS lipopolysaccharide
  • the lactic acid bacteria have an excellent inhibitory effect on the enzymatic activity of the enterobacteriaceae bacteria related to the antioxidant effect, inflammation and carcinogenesis, and also inhibit the production of endotoxin LPS (lipopolysaccharide) produced by the harmful bacteria of the intestinal flora, as well as tightly coupled proteins ( Induction of tight junction protein may improve intestinal permeability.
  • endotoxin LPS lipopolysaccharide
  • Beta-glucuronidase inhibitory activity LPS production inhibitory activity Induced activity of tight junction protein expression 31 Lactobacillus sakei CH31 - + - + 32 Lactobacillus johnsonii CH32 +++ + ++ ++ 33 Lactobacillus sakei CH33 + + - + 34 Lactobacillus sakei CH34 + + - + 35 Lactobacillus plantarum CH35 + + + + 36 Lactobacillus sanfranciscensis CH36 + + + + + + + 37 Bifidobacterium pseudocatenulatum CH37 - + - + 38 Bifidobacterium pseudocatenulatum CH38 +++ + ++ ++ ++ 39 Bifidobacterium adolescentis CH39 - + - + 40 Bifidobacterium adolescentis CH40 - + +++ + 41 Bifidobacterium adolescentis CH41 + + - + 42 Bifid
  • Lactobacillus curvatus CH5 Lactobacillus sakei CH11, Lactobacillus fermentum CH15, Lactobacillus , Lactobacillus curvatus CH5, Lactobacillus curvatus CH5, Lactobacillus fermentum CH15 Lactobacillus brevis CH23, Lactobacillus johnsonii CH32, Bifidobacterium pseudocatenulatum CH38 and Bifidobacterium longum CH57 were selected and these alone or mixed lactic acid bacteria The liver damage improvement effect was evaluated using various liver damage model animals.
  • mice C57BL / 6, male were used as a group, and liver damage was induced by intraperitoneal administration of D-galactosamine at a dose of 800 mg / kg to the experimental animals except the normal group. It was. D-galactosamine was intraperitoneally administered and 2 hours later, lactic acid bacteria were orally administered to the experimental animals of the group except for the normal group and the negative control group in an amount of 1 ⁇ 10 9 CFU once a day for 3 days. In addition, the experimental animals of the positive control group was orally administered silymarin (silymarin) once daily for 3 days in an amount of 100 mg / kg instead of lactic acid bacteria. Six hours after the last dose of the drug, the heart was bled.
  • silymarin silymarin
  • GPT glutamic pyruvate transaminase
  • GOT glutamic oxalacetic transaminase
  • liver tissue of the experimental animal was removed and the amount of malondialdehyde (MDA) present in the liver tissue was measured.
  • Malondialdehyde is an indicator of lipid peroxidation. Specifically, 16 g of RIPA solution (0.21 M Mannitol, 0.1 M EDTA-2Na, 0.07 M Sucrose, 0.01 M Trizma base) was added to 0.5 g of the liver tissue, and then homogenized using a homogenizer. . The homogenate was again centrifuged at 3,000 rpm for 10 minutes to obtain liver homogenate. 0.4 ml of 10% SDS was added to 0.5 ml of liver homogenate, incubated at 37 ° C.
  • FIG. 1 is a graph showing the change in GOT value when lactic acid bacteria are administered to a model animal induced liver damage by D-galactosamine (D-Galactosamine)
  • Figure 2 is a D-galactosamine (D-Galactosamine) It is a graph showing the change of GPT value when the lactic acid bacteria were administered to a model animal that caused liver damage
  • FIG. 3 is an MDA when lactic acid bacteria were administered to a model animal induced by liver damage by D-galactosamine.
  • “Nor” on the X axis represents a normal group
  • “Con” represents a negative control group that is not administered a separate drug to a model animal in which liver damage is induced by D-galactosamine.
  • “Ch11” represents the Lactobacillus sakei CH11 administration group
  • "ch15” represents the Lactobacillus fermentum CH15 administration group
  • “ch23” represents the Lactobacillus brevis CH23 administration group.
  • “Ch32” represents Lactobacillus johnsonii CH32 administration group
  • “ch38” represents Bifidobacterium pseudocatenulatum ( Bifidobacterium).
  • pseudocatenulatum represents a group CH38
  • "ch57” is ronggeom Bifidobacterium (Bifidobacterium longum) denotes a group CH57
  • "ch57 + ch11” is ronggeom Bifidobacterium (Bifidobacterium longum )
  • "ch57 + ch32” is a mixture made by mixing the same amount of Bifidobacterium longum CH57 and Lactobacillus johnsonii CH32
  • the group showing the administration of lactic acid bacteria "SM” represents a positive control group administered silymarin (silymarin
  • Lactobacillus brevis Lactobacillus brevis CH23, Lactobacillus zone Sony (Lactobacillus johnsonii) CH32 and Bifidobacterium ronggeom (Bifidobacterium longum ) CH57 improved liver damage, especially Bifidobacterium long lum) Lactobacillus brevis CH23 mixed lactic acid bacteria or Bifidobacterium longum CH57 and Lactobacillus johnsonii CH32 when mixed lactic acid bacteria significantly improved liver damage.
  • lactic acid bacteria or mixed lactic acid bacteria selected from them had better liver damage improvement effect than silymarin (silymarin) used as a drug for treating liver damage. From the above results, it can be seen that the specific lactic acid bacteria or mixed lactic acid bacteria selected therefrom are useful materials for improving fatty liver induced by alcohol and high fat diet or liver disease resulting from oxidative stress.
  • tert-butylperoxide was dosed at a dose of 2.5 mmol / kg to experimental animals of the other groups except the normal group for liver damage. Induced.
  • lactic acid bacteria were orally administered to the experimental animals of the group except the normal group and the negative control group once a day for 3 days in an amount of 2 ⁇ 10 9 CFU.
  • the experimental animals of the positive control group was orally administered silymarin (silymarin) once daily for 3 days in an amount of 100 mg / kg instead of lactic acid bacteria.
  • the heart was bled.
  • GPT glutamic pyruvate transaminase
  • GOT glutamic oxalacetic transaminase
  • Table 7 shows the changes in GOT and GPT values when lactic acid bacteria were administered to a model animal induced by liver damage by Tert-butylperoxide.
  • Lactobacillus brevis CH23, Lactobacillus johnsonii CH32, and Bifidobacterium longum CH57 showed better liver damage improvement effect than silymarin, ronggeom Bifidobacterium (Bifidobacterium longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) mixing lactic acid bacteria or Bifidobacterium ronggeom of CH23 (Bifidobacterium longum) mixing lactic acid bacteria and Lactobacillus CH57 John Sony (Lactobacillus johnsonii) CH32 was better improve liver damage effects.
  • CH23 is Lactobacillus brevis (Lactobacillus brevis) show a CH23
  • "CH32” is Lactobacillus zone Sony (Lactobacillus johnsonii) represents a CH32
  • "CH57” is ronggeom Bifidobacterium (Bifidobacterium longum) represents a CH57
  • "CH57 CH23 +” is ronggeom Bifidobacterium (Bifidobacterium longum ) Lactic acid bacteria prepared by mixing the same amount of CH57 and Lactobacillus brevis CH23 Represents
  • "CH57 + CH32” is ronggeom Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacterium prepared by mixing the same amount of CH57 and Lactobacillus johnsonii CH32.
  • RBL-2H3 cell line (rat mast cell line, Korea Cell Line Bank, Cat. No. 22256) was prepared using DMEM (Dulbeccos' modified Eagle's medium, Sigma, 22256) containing 10% FBS (fetal bovine serum) and L-glutamine. Incubated in a 37 ° C., humidified 5% CO 2 incubator. Cells contained in the culture were suspended using trypsin-EDTA solution, separated and recovered and used for the experiment. The recovered RBL-2H3 cells were aliquoted to a volume of 5 ⁇ 10 5 cells per well in a 24-well plate, and then sensitized with 0.5 ⁇ g / ml of mouse monoclonal IgE and incubated for 12 hours.
  • DMEM Dulbeccos' modified Eagle's medium, Sigma, 22256
  • FBS fetal bovine serum
  • L-glutamine fetal bovine serum
  • the sensitized cells were washed with 0.5 ml of siraganian buffer (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl 2 , 25 mM PIPES, 40 mM NaOH, pH 7.2) and then again with 0.16 ml of Shiraganian buffer (5.6). mM glucose, 1 mM CaCl 2 , 0.1% BSA was added) and incubated at 37 ° C. for 10 minutes.
  • siraganian buffer 119 mM NaCl, 5 mM KCl, 0.4 mM MgCl 2 , 25 mM PIPES, 40 mM NaOH, pH 7.2
  • lactic acid bacteria as a test drug were added to the cell culture to a concentration of 1 ⁇ 10 4 CFU / mL, or 0.04 mL of DSCG (disodium cromoglycate) as a control drug was added, and then 0.02 mL of antigen (DNP-BSA) was added after 20 minutes.
  • Cells were activated at 37 ° C. for 10 minutes. Thereafter, the cell culture was centrifuged at 2000 rpm for 10 minutes to obtain a supernatant.
  • 0.025 ml of the supernatant obtained was transferred to a 96-well plate, and 1 mM p-NAG (substrate solution, in which p-nitrophenyl-N-acetyl- ⁇ -D-glucoamide) was dissolved in 0.1 M citrate buffer to pH 4.5). After adding 0.025 ml, the mixture was reacted at 37 ° C. for 60 minutes. Thereafter, 0.2 ml of 0.1 M Na 2 CO 3 / NaHCO 3 was added to the reaction solution to stop the reaction, and the absorbance was measured by an ELISA analyzer at 405 nm.
  • mice Five groups of BALB / c mice were used as a group, and the test drug lactic acid bacterium was orally administered once a day for 3 days in a quantity of 1 ⁇ 10 9 CFU to the control group except the control group and the control group, or DSCG (disodium cromoglycate) as a control drug.
  • DSCG sodium cromoglycate
  • Azelastine was orally administered once every 3 days in an amount of 0.2 mg / mouse.
  • the mice were left in the observation box (24cm ⁇ 22cm ⁇ 24cm) for 10 minutes to purify the environment, and the hairs on the back of the head (back of the neck) were removed.
  • mice normal mice were injected with saline, and other experimental mice were injected with a pruritic inducer (50 ⁇ g of compound 48/80; Sigma, USA) using a 29 gauge needle. Thereafter, mice were immediately isolated into observation boxes one by one and recorded for 1 hour with an 8-mm video camera (SV-K80, Samsung) under unmanned conditions to observe the behavior. It was admitted that scratching the injection site with the hind paw was not permitted.
  • a pruritic inducer 50 ⁇ g of compound 48/80; Sigma, USA
  • % Inhibition ⁇ 1- [absorbance at sites treated with drug and pruritus-absorbance at sites not treated with antipruritic] / [absorbance at sites treated with antipruritic-absorbance at sites not treated with antipruritic] ⁇ ⁇ 100
  • Table 8 is a result of measuring the degranulation inhibition rate, pruritus inhibition rate and capillary permeability inhibition rate of lactic acid bacteria.
  • "CH5" represents Lactobacillus curvatus CH5
  • "CH11” represents Lactobacillus sakei CH11
  • "CH15” represents Lactobacillus fermentum CH15.
  • "CH23” represents Lactobacillus brevis CH23
  • "CH32” represents Lactobacillus johnsonii CH32
  • “CH38” represents Bifidobacterium pseudocatenulatum ( Bifidobacterium pseudocatenulatum ).
  • Lactobacillus curvatus CH5 Lactobacillus brevis CH23
  • Lactobacillus johnsonii CH32 Lactobacillus johnsonii CH32
  • Bifidobacterium longum CH57 were dephilized Bifidobacterium longum (CH57) inhibited pruritus and capillary permeability very strongly.
  • lactic acid bacteria alone rather than a mixture of these lactic acid bacteria especially Bifidobacterium ronggeom (Bifidobacterium longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) CH23 mixing lactic acid bacteria or Bifidobacterium ronggeom (Bifidobacterium of longum ) showed higher degranulation inhibition, pruritus inhibition and capillary permeability inhibition in the mixed lactic acid bacteria of CH57 and Lactobacillus johnsonii CH32.
  • the lactic acid bacteria or lactic acid bacteria mixture can very effectively improve atopic dermatitis, asthma, sore throat or chronic dermatitis caused by allergy.
  • Treatment medication % Inhibition Degranulation Pruritic reaction Capillary permeability none 0 2 One CH5 53 46 45 CH11 47 46 45 CH15 48 42 42 CH23 54 47 47 CH32 52 45 46 CH38 44 45 42 CH57 55 55 52 CH57 + CH11 59 56 54 CH57 + CH23 63 62 61 CH57 + CH32 61 58 56 DSCo (disodium cromoglycate) 62 25 37 Azelastine - 65 68
  • Immune cells were isolated from the bone marrow of C57BL / 6 mice (male, 20-23 g) using RPMI 1640 containing 10% FBS, 1% antibiotics, 1% glutamax, and 0.1% mercaptoethanol, and treated with RBC lysis buffer. After washing, each well of the 24-well-plate was dispensed and treated with GM-CSF and IL-4 in a ratio of 1: 1000 and incubated. The culture medium was replaced with fresh medium on the fifth day of culture, and collected on the eighth day, and used as dendritic cells.
  • the dendritic cells were laid in a 24-well plate at a number of 0.5 ⁇ 10 6 per well, and the supernatant and the cells were obtained after treating the test substance lactic acid bacteria and the inflammatory response inducing substance LPS (lipopolysaccharide) for 2 hours or 24 hours. It was. The expression levels of IL-10 and IL-12 were measured from the obtained supernatant by immunoblotting.
  • Figure 4 is a graph showing the effect of the lactic acid bacteria selected in the present invention on the inflammatory response of dendritic cells induced by LPS (lipopolysaccharide). 4 is a graph showing the effect of lactic acid bacteria on cells not treated with LPS (lipopolysaccharide), and the graph on the right is a graph showing the effect of lactic acid bacteria on cells treated with LPS (lipopolysaccharide).
  • LPS lipopolysaccharide
  • Nor on the X-axis represents a case in which the test substance is not treated with lactic acid bacteria and an inflammatory response inducing substance LPS (lipopolysaccharide), and "LPS” is treated with an inflammatory response inducing substance LPS (lipopolysaccharide).
  • LPS lipopolysaccharide
  • Ch11 represents the Lactobacillus sakei CH11 treatment group
  • ch15 represents the Lactobacillus fermentum CH15 treatment group
  • ch23 represents the Lactobacillus brevis .
  • Lactobacillus sakei CH11, Lactobacillus brevis CH23, and Lactobacillus johnsonii CH32 induced IL-10 production of dendritic cells differentiated and differentiated from bone marrow It effectively inhibited the production of IL-12 induced by lipopolysaccharide (LPS), and Bifidobacterium longgum ( Bifidobacterium) longum )
  • LPS lipopolysaccharide
  • Bifidobacterium longgum Bifidobacterium longum
  • the mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 had the best inhibitory effect on inflammatory response. Since regulating dendritic cells can effectively control Treg cells (Regulatory T cells), the lactic acid bacteria selected in the present invention can effectively improve chronic inflammatory diseases such as colitis, autoimmune diseases such as rheumatoid arthritis, etc. have.
  • mice Six-week-old C57BL / 6J male mice (20-23 g) were purchased from Roundbio. 2 ml of sterile 4% thioglycolate was injected into the abdominal cavity of the mouse, anesthetized the mouse after 96 hours, and again 8 ml of RPMI 1640 medium was injected into the abdominal cavity of the mouse, and 5 to 10 minutes later, RPMI medium in the mouse abdominal cavity (large Phagocytic cells) were extracted again, centrifuged at 1000 rpm for 10 minutes, and washed twice with RPMI 1640 medium.
  • Macrophages were placed in a 24-well plate at a number of 0.5 ⁇ 10 6 per well, and supernatants and cells were obtained after treatment with lactic acid bacteria, a test substance, and LPS (lipopolysaccharide), an inflammatory response-inducing substance, for 2 hours or 24 hours.
  • the obtained cells were placed in a buffer (Gibco) and homogenized. From the obtained supernatant, the expression levels of cytokines such as TNF- ⁇ and IL-1 ⁇ were measured by ELISA kit.
  • the expression levels of p65 (NF-kappa B), p-p65 (phosphor-NF-kappa B) and ⁇ -actin from the obtained cells were measured by immunoblotting.
  • the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel.
  • the electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa.
  • the sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100.
  • the reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, and developed after fluorescence.
  • Bifidobacterium long gum ( Bifidobacterium) longum
  • Bifidobacterium longum
  • LPS lipopolysaccharide
  • CD4 T cell isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). Separated CD4 T cells were dispensed in 12-well plates at 5 ⁇ 10 5 cells per well, containing anti-CD3 (1 ⁇ g / ml, Miltenyi Biotec, Bergisch Gladbach, Germany) and anti-CD28 (1 ⁇ g / ml, Miltenyi Biotec).
  • the cells of the culture were stained with anti-FoxP3 or anti-IL-17A antibody, and the distribution of Th17 and Tregs using a Fluorescence-activated cell sorting (FACS) device (C6 Flow Cytometer® System, San Jose, CA, USA). was analyzed.
  • FACS Fluorescence-activated cell sorting
  • Lactobacillus brevis CH23 is a result of analyzing the effect of Lactobacillus brevis CH23 on the differentiation of T cells isolated from the spleen into Th17 cells or Treg cells with a Fluorescence-activated cell sorting (FACS) device. As shown in FIG. 6, Lactobacillus brevis CH23 inhibited the differentiation of T cells into Th17 cells (T helper 17 cells) and promoted the differentiation into Treg cells. Based on the above results, Lactobacillus brevis CH23 can effectively improve inflammatory diseases such as colitis and arthritis.
  • FACS Fluorescence-activated cell sorting
  • Caco2 cells cultured in the Korean Cell Line Bank were incubated for 48 hours in RPMI 1640 medium, and then Caco2 cell cultures were dispensed in 12-well plates at an amount of 2 ⁇ 10 6 cells per well. Then, each well was treated with 1 ⁇ g of LPS (lipopolysaccharide) alone or 1 ⁇ g of LPS (lipopolysaccharide) and lactic acid bacteria 1 ⁇ 10 3 CFU or 1 ⁇ 10 5 CFU and then incubated for 24 hours. Then, cells cultured from each well were scraped, and the expression level of tight junction protein ZO-1 was measured by immunoblotting.
  • LPS lipopolysaccharide
  • lactic acid bacteria 1 ⁇ 10 3 CFU or 1 ⁇ 10 5 CFU
  • FIG. 7 is a result of analyzing the effect of Lactobacillus brevis CH23, Bifidobacterium longum CH57 or their mixed lactic acid bacteria on the expression of ZO-1 protein of CaCO2 cells.
  • CH23 represents Lactobacillus brevis CH23
  • CH57 represents Bifidobacterium longum CH57
  • mix represents Bifidobacterium longum CH57
  • Lactobacillus johnsonii represents a mixed lactic acid bacterium prepared by mixing the same amount of CH32.
  • Lactobacillus brevis Lactobacillus brevis CH23 and Bifidobacterium long gum ( Bifidobacterium longum ) CH57 increased the expression of tight junction protein ZO-1 and treated with mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus johnsonii CH32.
  • the expression of tight junction protein ZO-1 increased synergistically. Increasing the expression of tight junction proteins can block the entry of toxic substances into the body, preventing colitis, arthritis, and exacerbation of liver damage.
  • mice Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ⁇ 10%, temperature 25 ⁇ 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
  • TNBS 2,4,6-trinitrobenzenesulfonic acid
  • the animal was lightly anesthetized with ether, and 2.5 g of TNBS (2,4,6-Trinitrobenzene sulfonic acid) solution was mixed with 100 ml of 50% ethanol. Inoculated into the large intestine by 0.1ml and maintained vertically for 30 seconds to cause inflammation.
  • the normal group was orally administered 0.1 ml of saline. Afterwards, the test sample was suspended in physiological saline once a day for 3 days from the next day, orally in the amount of 2.0 ⁇ 10 9 CFU.
  • the animal was smothered with carbon dioxide and killed. A large intestine from the middle caecum to the area immediately before the anus was extracted and used. In addition, only normal saline was administered orally to physiological saline instead of lactic acid bacteria. In addition, the experimental animals of the negative control group was orally administered only saline instead of lactic acid bacteria after induction of colitis caused by TNBS. In addition, the experimental animals of the positive control group were orally administered sulfasalazine (sulfasalazine), a colitis treatment drug, in an amount of 50 mg / kg instead of lactic acid bacteria.
  • sulfasalazine sulfasalazine
  • the length and appearance of the extracted colon were observed and analyzed by appearance according to the criteria of Table 9 below (Hollenbach et al., 2005 criteria for colitis).
  • the colon tissues were removed from the colon contents, washed in physiological saline, and some were fixed with 4% formaldehyde fixative for use as pathological samples, and the rest were frozen and stored at minus 80 ° C for molecular biological analysis. It was.
  • MPO Myeloperoxidase
  • Western blotting was used to measure inflammatory response markers such as p-p65, p65, iNOS, COX-2, and ⁇ -actin. Specifically, the supernatant was obtained in the same manner as the myeloperoxidase (MPO) activity measurement experiment. Then, 50 ⁇ g of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa.
  • MPO myeloperoxidase
  • the sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, and developed after fluorescence.
  • inflammation-related cytokines such as TNF- ⁇ and IL-1 ⁇ were measured using an ELISA kit.
  • FIG. 8 shows Bifidobacterium longgum for model animals in which acute colitis is induced by TNBS.
  • Bifidobacterium longum The effect of CH57 is shown by the appearance of colon or myeloperoxidase (MPO) activity, etc.
  • FIG. 9 shows Bifidobacterium longgum for a model animal induced by acute colitis by TNBS.
  • Bifidobacterium longum The effect of CH57 is shown in the histological picture of the large intestine.
  • Bifidobacterium longum The effects of CH57 are shown on cytokines related to inflammation.
  • NOR represents a normal group
  • TNBS represents a negative control
  • CH57 represents a Bifidobacterium long gum ( Bifidobacterium longum ) CH57 administration group
  • SS50 represents a sulfasalazine administration group.
  • Bifidobacterium long gum Bifidobacterium longum CH57 has been shown to effectively improve colitis based on the body weight, colitis index, colon length, myeloperoxidase (MPO) activity of model animals induced by acute colitis induced by TNBS, and more effective than sulfasalazine. Found to be excellent.
  • MPO myeloperoxidase
  • Bifidobacterium longgum Bifidobacterium longum CH57 inhibited inflammatory cytokine production and increased the production of the anti-inflammatory cytokine IL-10 in model animals in which acute colitis was induced by TNBS.
  • FIG. 11 illustrates the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis induced by TNBS by the appearance of colon or myeloperoxidase (MPO) activity
  • FIG. 12 shows TNBS.
  • the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis is shown by histological picture of the intestine.
  • FIG. 13 shows Lactobacillus brevis (T. Lactobacillus brevis ) shows the effect of CH23 on the differentiation of T cells
  • Figure 14 shows the effect of Lactobacillus brevis (CH23) on model animals induced by acute colitis induced by TNBS to inflammation-related cytokines and the like. It is shown.
  • N represents a normal group
  • TNBS represents a negative control group
  • CH23 represents a Lactobacillus brevis CH23 administration group
  • SS represents a sulfasalazine administration group.
  • Lactobacillus brevis CH23 is based on body weight, colitis index, colon length, myeloperoxidase (MPO) activity, etc. of a model animal induced by acute colitis by TNBS. It has been shown to effectively improve colitis and is better than sulfasalazine.
  • Lactobacillus brevis CH23 inhibited the differentiation of T cells into Th17 cells and induced the differentiation into Treg cells in model animals in which acute colitis was induced by TNBS. In addition, Lactobacillus brevis CH23 inhibited inflammatory cytokine production and increased production of the anti-inflammatory cytokine IL-10 in model animals induced by acute colitis by TNBS.
  • FIG. 15 shows the effect of mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 in acute colitis induced by TNBS in the appearance of colon or myeloperoxidase (Myeloperoxidase) , MPO) activity
  • FIG. 16 shows Bifidobacterium longgum ( Bifidobacterium) for a model animal induced by acute colitis by TNBS.
  • NOR represents a normal group
  • TNBS represents a negative control
  • BL is Bifidobacterium long gum ( Bifidobacterium longum ) represents the administration group of the mixed lactic acid bacteria prepared by mixing the same amount of CH57 and Lactobacillus brevis CH23
  • SS50 represents a sulfasalazine administration group.
  • Bifidobacterium long gum as shown in FIGS. 15 to 17 longum Lactobacillus brevis CH23 mixed lactobacillus was observed in reduced weight, increased colitis index, shortened colon length, and increased myeloperoxidase (MPO) activity in model animals induced by acute colitis induced by TNBS.
  • MPO myeloperoxidase
  • C57BL6 / J mice were purchased from Round Bio Co., Ltd. and a total of 24 mice were acclimated for one week with a chow diet (Purina) under conditions of temperature 20 ⁇ 2 ° C., humidity 50 ⁇ 10%, and 12 hr light / 12 hr dark cycle. Thereafter, the experimental animals were divided into three groups (LFD, HFD, HFD + BL) by eight animals, and the LFD group was fed a normal diet (LFD, 10% of calories from fat; Research, NJ, USA) for 4 weeks, and the HFD group. And HFD + BL group was fed high-fat diet (HFD, 60% of calories from; Research, NJ, USA) for 4 weeks.
  • HFD high-fat diet
  • the LFD group was then fed orally with PBS for 4 weeks.
  • the HFD group was fed oral PBS at the same time as a high-fat diet for 4 weeks.
  • the HFD + BL group was fed a high-fat diet for 4 weeks, and the mixed lactic acid bacteria were suspended in PBS orally administered in an amount of 2 ⁇ 10 9 CFU.
  • Mixing lactic acid bacteria Bifidobacterium ronggeom (Bifidobacterium longum ) CH57 and Lactobacillus brevis CH23 are prepared by mixing the same amount.
  • the anti-obesity effect of mixed lactose was analyzed by weight change.
  • the anti-inflammatory effect of the mixed lactic acid bacteria was analyzed using the same method as measured in the model animal experiments in which acute colitis was induced by TNBS.
  • FIG. 18 illustrates the effects of the mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 on the obesity-induced model animal by weight change amount
  • FIG. 19 ronggeom for Bifidobacterium (Bifidobacterium longum )
  • the effect of the mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by the appearance of the large intestine, myeloperoxidase (MPO) activity, histological picture of the large intestine, and FIG.
  • MPO myeloperoxidase
  • the effect of mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 is shown in relation to inflammation-related cytokines and the like.
  • FIGS. 18 to 21 show Bifidobacterium on obesity-induced model animals. Long Gum ( Bifidobacterium) longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown as an indicator of inflammatory response. As shown in FIGS. 18 to 21, obesity induced by high fat diet increased body weight, increased colitis index, and increased myeloperoxidase (Myeloperoxidase (MPO)) activity and inhibited the occurrence of colitis. In addition, mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 significantly inhibited the production of inflammatory cytokines and reduced anti-inflammatory cytokines in obese model animals induced by high fat diet. Increased the production of phosphorus IL-10.
  • GAM liquid medium GAM broth; Nissui Pharmaceutical, Japan. Subsequently, the supernatant was taken, transplanted into BL agar medium (Nissui Pharmaceutical, Japan), and incubated anaerobicly at 37 ° C. for about 48 hours, and then colony-forming Bifidobacterium longum ( Bifidobacterium longum) ) Strains were isolated.
  • Table 10 shows the control numbers and strain names of lactic acid bacteria isolated from Chinese cabbage kimchi, radish kimchi and leek kimchi
  • Table 11 shows the control numbers and strain names of lactic acid bacteria isolated from feces.
  • Lactobacillus plantarum LC1 Control Number Strain name Control Number Strain name One Lactobacillus plantarum LC1 26 Lactobacillus plantarum LC26 2 Lactobacillus plantarum LC2 27 Lactobacillus plantarum LC27 3 Lactobacillus plantarum LC3 28 Lactobacillus plantarum LC28 4 Lactobacillus plantarum LC4 29 Lactobacillus plantarum LC29 5 Lactobacillus plantarum LC5 30 Lactobacillus plantarum LC30 6 Lactobacillus plantarum LC6 31 Lactobacillus plantarum LC31 7 Lactobacillus plantarum LC7 32 Lactobacillus plantarum LC32 8 Lactobacillus plantarum LC8 33 Lactobacillus plantarum LC33 9 Lactobacillus plantarum LC9 34 Lactobacillus plantarum LC34 10 Lactobacillus plantarum LC10 35 Lactobacill
  • Control Number Strain name Control Number Strain name 51 Bifidobacterium longum LC51 76 Bifidobacterium longum LC76 52 Bifidobacterium longum LC52 77 Bifidobacterium longum LC77 53 Bifidobacterium longum LC53 78 Bifidobacterium longum LC78 54 Bifidobacterium longum LC54 79 Bifidobacterium longum LC79 55 Bifidobacterium longum LC55 80 Bifidobacterium longum LC80 56 Bifidobacterium longum LC56 81 Bifidobacterium longum LC81 57 Bifidobacterium longum LC57 82 Bifidobacterium longum LC82 58 Bifidobacterium longum LC58 83 Bifidobacterium longum LC83 59 Bifidobacterium longum LC59 84 Bifidobacterium longum LC
  • Lactobacillus plantarum LC5 shown in Table 10 is an anaerobic bacillus showing positive in Gram staining, and its 16S rDNA was shown to have the nucleotide sequence of SEQ ID NO: 4.
  • the 16S rDNA sequence of Lactobacillus plantarum LC5 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). As a result, Lactobacillus having the same 16S rDNA sequence Lactobacillus plantarum strain was not detected and showed 99% homology with the 16S rDNA sequence of Lactobacillus plantarum strain KF9.
  • Lactobacillus plantarum LC27 shown in Table 10 is an anaerobic bacillus showing positive upon Gram staining, and its 16S rDNA was shown to have the nucleotide sequence of SEQ ID NO: 5.
  • 16S rDNA sequencing of Lactobacillus plantarum LC27 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). Lactobacillus plantarum strain was not detected and showed 99% homology with the 16S rDNA sequence of Lactobacillus plantarum strain JL18.
  • Lactobacillus plantarum LC28 shown in Table 10 is an anaerobic bacillus that shows positive upon Gram staining, and its 16S rDNA was shown to have a nucleotide sequence of SEQ ID NO: 6.
  • the 16S rDNA sequence of Lactobacillus plantarum LC28 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). As a result, Lactobacillus having the same 16S rDNA sequence Lactobacillus plantarum strain was not detected and showed 99% homology with the 16S rDNA sequence of Lactobacillus plantarum strain USIM01.
  • LC67 is an anaerobic bacilli that show positive gram staining, and its 16S rDNA was found to have the nucleotide sequence of SEQ ID NO: 7.
  • Ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA sequence of LC67 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/), and Bifidobacterium longum having the same 16S rDNA sequence was obtained. No strain was detected, Bifidobacterium It showed 99% homology with the 16S rDNA sequence of longum strain CBT-6.
  • Bifidobacterium long gum shown in Table 11 longum LC68 is an anaerobic bacilli that show positive gram staining, and its 16S rDNA was found to have the nucleotide sequence of SEQ ID NO: 8.
  • Ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA nucleotide sequence of LC68 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/) and Bifidobacterium long gum having the same 16S rDNA sequence was identified. longum ) strain was not detected and Bifidobacterium 99% homology with the 16S rDNA sequence of longum strain IMAUFB067.
  • Lactobacillus Planta Room (Lactobacillus plantarum) LC5
  • Lactobacillus Planta Room (Lactobacillus plantarum) LC27
  • ronggeom Bifidobacterium (Bifidobacterium longum)
  • LC67 ronggeom and Bifidobacterium (Bifidobacterium longum )
  • Carbon source availability among the physiological characteristics of LC68 was analyzed by sugar fermentation test by API Kit (Model: API 50 CHL; Manufacturer: BioMerieux's, USA).
  • Table 12 is a Lactobacillus Planta room (Lactobacillus plantarum) LC5 and Lactobacillus Planta room (Lactobacillus plantarum) will showing the results of carbon source utilization LC27, Table 13 ronggeom Bifidobacterium (Bifidobacterium longum ) Carbon source availability results of LC67 and Bifidobacterium longum LC68 are shown.
  • "+” represents a case where the carbon source availability is positive
  • "-" represents a case where the carbon source availability is negative
  • “ ⁇ " represents a case where the availability of the carbon source is ambiguous.
  • Lactobacillus plantarum LC5 Lactobacillus plantarum LC27
  • Bifidobacterium longum LC67 Bifidobacterium longgum ( Bifidobacterium longgum) longum ) LC68 showed different availability to known strains of the same species for some carbon sources.
  • Carbon source Strain name Carbon source Strain name B. longum LC67 B. longum LC68 B. longum LC67 B. longum LC68 glycerol - - salicin - - erythritol - - cellobiose - - D-arabinose - - maltose + + L-arabinose + + lactose + + D-ribose - - melibiose + + D-xylose + ⁇ sucrose + ⁇ L-xylose - - trehalose - ⁇ D-adonitol - - inulin - - methyl- ⁇ -D-xylopyranoside - - melezitose - + D-galactose ⁇ + raffinose + + D-glucose + + starch - - D-fructose + + glycogen - - D-mannose - - xylito
  • the inventors of the present invention patented Lactobacillus plantarum LC5 to the Korea Microbiological Conservation Center (Address: 45 Yurim Building, 45, Honggae, Hongje, Seodaemun-gu, Seoul, Korea) on January 11, 2016 KCCM 11800P was given an accession number.
  • the inventors of the present invention patented Lactobacillus plantarum LC27 to the Korea Microbiological Conservation Center (Address: 45 Yurim Building, 45, 2ga-gil, Hongdae, Seodaemun-gu, Seoul, Korea) on January 11, 2016.
  • the accession number of KCCM 11801P is given.
  • DPPH (2,2-Diphenyl-1-picrylhydrazyl) was dissolved in ethanol to a concentration of 0.2 mM to prepare a DPPH solution.
  • 0.1 mL of the DPPH solution was added to lactic acid bacteria suspension (1 ⁇ 10 8 CFU / mL) or vitamin C solution (1 g / mL) and incubated at 37 ° C. for 20 minutes.
  • the culture was centrifuged at 3000 rpm for 5 minutes to obtain a supernatant. Thereafter, the absorbance of the supernatant was measured at 517 nm, and the antioxidant activity of the lactic acid bacteria was calculated.
  • 0.1 g of fresh human feces were suspended in 0.9 ml of sterile saline solution and diluted 100-fold with normal anaerobic medium to prepare fecal suspension.
  • 0.1 ml of the fecal suspension and 0.1 ml of lactic acid bacteria (1 ⁇ 10 4 or 1 ⁇ 10 5 CFU) were implanted into 9.8 ml of sterile general anaerobic medium (Nissui Pharmaceutical, Japan) and incubated anaerobicly for 24 hours. Thereafter, the culture solution was sonicated for about 1 hour to destroy the outer membrane of bacteria, and centrifuged at 5000 ⁇ g to obtain a supernatant.
  • the content of the representative endotoxin LPS (lipopolysaccharide) present in the supernatant was measured by LAL (Limulus Amoebocyte Lysate) assay kit (manufacturer: Cape Cod Inc., USA).
  • LAL Limulus Amoebocyte Lysate
  • the culture solution obtained through the same experiment was diluted 1000 times and 100,000 times, and cultured in DHL medium, and the number of E. coli was measured.
  • Caco2 cells cultured in the Korean Cell Line Bank were incubated for 48 hours in RPMI 1640 medium, and then Caco2 cell cultures were dispensed in 12-well plates at an amount of 2 ⁇ 10 6 cells per well. Thereafter, each well was treated with 1 ⁇ g of LPS (lipopolysaccharide) alone or 1 ⁇ g of LPS (lipopolysaccharide) and 1 ⁇ 10 3 CFU were incubated together for 24 hours. Then, cells cultured from each well were scraped, and the expression level of tight junction protein ZO-1 was measured by immunoblotting.
  • LPS lipopolysaccharide
  • LPS lipopolysaccharide
  • Lactobacillus Planta room (Lactobacillus plantarum), as shown in Table 16 LC5, Lactobacillus Planta room (Lactobacillus plantarum) LC15, Lactobacillus Planta room (Lactobacillus plantarum) LC17, Lactobacillus Planta room (Lactobacillus plantarum) LC25, Lactobacillus Planta Room (Lactobacillus plantarum) LC27, Lactobacillus Planta Room (Lactobacillus plantarum) LC28, ronggeom Bifidobacterium (Bifidobacterium longum) LC55, ronggeom Bifidobacterium (Bifidobacterium longum ) LC65, Bifidobacterium longum ) LC67 and Bifidobacterium longum LC68 lactic acid bacteria have excellent antioxidant activity, strongly inhibited lipopolysaccharide (LPS)
  • Tight junction protein expression was strongly induced.
  • ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 was the best inducing activity of tight junction protein expression.
  • the lactic acid bacteria have an excellent inhibitory effect on the enzymatic activity of the enterobacteriaceae bacteria related to the antioxidant effect, inflammation and carcinogenesis, and also inhibit the production of endotoxin LPS (lipopolysaccharide) produced by the harmful bacteria of the intestinal flora, as well as tightly coupled proteins ( Induction of tight junction protein may improve intestinal permeability.
  • Beta-glucuronidase inhibitory activity LPS production inhibitory activity Induced activity of tight junction protein expression 71 Bifidobacterium longum LC71 ++ + - + 72 Bifidobacterium longum LC72 +++ ++ - + 73 Bifidobacterium longum LC73 ++ ++ + - 74 Bifidobacterium longum LC74 ++ +++ + - 75 Bifidobacterium longum LC75 +++ + - + 76 Bifidobacterium longum LC76 ++ + - + 77 Bifidobacterium longum LC77 ++ ++ + + 78 Bifidobacterium longum LC78 ++ + + + + 79 Bifidobacterium longum LC79 +++ + + + + 80 Bifidobacterium longum LC80 ++ + + + + + 81 Bifidobacterium longum LC81 ++ + + + + 82 Bifi
  • Lactobacillus plantarum LC5 Lactobacillus plantarum LC15, Lactobacillus plantarum LC17 Lactobacillus Planta Room (Lactobacillus plantarum) LC25, Lactobacillus Planta Room (Lactobacillus plantarum) LC27, Lactobacillus Planta Room (Lactobacillus plantarum) LC28, ronggeom Bifidobacterium (Bifidobacterium longum) LC55, ronggeom Bifidobacterium (Bifidobacterium longum ) LC65, Bifidobacterium longum LC67 and Bifidobacterium longum LC68 were selected. Thereafter, the liver damage improvement effect of the selected lactic acid bacteria alone or mixed lactic acid bacteria was evaluated using a model animal in which liver damage was induced by Tert-butylperoxide.
  • tert-butylperoxide was dosed at a dose of 2.5 mmol / kg to experimental animals of the other groups except the normal group for liver damage. Induced.
  • lactic acid bacteria were orally administered to the experimental animals of the group except the normal group and the negative control group once a day for 3 days in an amount of 2 ⁇ 10 9 CFU.
  • the experimental animals of the positive control group was orally administered silymarin (silymarin) once daily for 3 days in an amount of 100 mg / kg instead of lactic acid bacteria.
  • the heart was bled.
  • the collected blood was left at room temperature for 60 minutes and centrifuged at 3,000 rpm for 15 minutes to separate serum.
  • GPT glutamic pyruvate transaminase
  • GOT glutamic oxalacetic transaminase
  • Table 17 shows the change in GOT, GPT, TNF- ⁇ values when lactic acid bacteria were administered to a model animal induced by liver damage caused by Tert-butylperoxide (Tert-butylperoxide).
  • Tet-butylperoxide Tert-butylperoxide
  • LC5 represents Lactobacillus plantarum LC5
  • LC15 represents Lactobacillus plantarum LC15
  • LC17 represents Lactobacillus plantarum.
  • LC25 is Lactobacillus Planta Room (Lactobacillus plantarum) represents the LC25
  • LC27 represents the Lactobacillus Planta Room (Lactobacillus plantarum)
  • LC28 is Lactobacillus Planta Room (Lactobacillus plantarum) represents the LC28
  • LC55 is ronggeom Bifidobacterium (Bifidobacterium longum) represents an LC55
  • LC65 is ronggeom Bifidobacterium (Bifidobacterium longum )
  • LC67 refers to Bifidobacterium longum
  • LC68 refers to Bifidobacterium longum
  • LC27 + LC67 indicates Lactobacillus plantarum LC27 and Bifidobacterium longgum ( Bifidobacterium) longum ) mixed lactic acid bacteria prepared by mixing the same amount of LC67 "LC27 + LC68" denotes Lactobacillus plantarum LC27 and Bifidobacterium longgum ( Bifidobacterium) longum ) mixed lactic acid bacteria prepared by mixing the same amount of LC67 "LC28 + LC67” indicates a mixed lactic acid bacterium prepared by mixing Lactobacillus plantarum LC28 and Bifidobacterium longum LC67 in the same amount. Indicates. The same symbols were used for single lactic acid bacteria or mixed lactic acid bacteria in the tables showing the experimental results below.
  • RBL-2H3 cell line (rat mast cell line, Korea Cell Line Bank, Cat. No. 22256) was prepared using DMEM (Dulbeccos' modified Eagle's medium, Sigma, 22256) containing 10% FBS (fetal bovine serum) and L-glutamine. Incubated in a 37 ° C., humidified 5% CO 2 incubator. Cells contained in the culture were suspended using trypsin-EDTA solution, separated and recovered and used for the experiment. The recovered RBL-2H3 cells were aliquoted to a volume of 5 ⁇ 10 5 cells per well in a 24-well plate, and then sensitized with 0.5 ⁇ g / ml of mouse monoclonal IgE and incubated for 12 hours.
  • DMEM Dulbeccos' modified Eagle's medium, Sigma, 22256
  • FBS fetal bovine serum
  • L-glutamine fetal bovine serum
  • the sensitized cells were washed with 0.5 ml of siraganian buffer (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl 2 , 25 mM PIPES, 40 mM NaOH, pH 7.2) and then again with 0.16 ml of Shiraganian buffer (5.6). mM glucose, 1 mM CaCl 2 , 0.1% BSA was added) and incubated at 37 ° C. for 10 minutes.
  • siraganian buffer 119 mM NaCl, 5 mM KCl, 0.4 mM MgCl 2 , 25 mM PIPES, 40 mM NaOH, pH 7.2
  • lactic acid bacteria as a test drug were added to the cell culture to a concentration of 1 ⁇ 10 4 CFU / mL, or 0.04 mL of DSCG (disodium cromoglycate) as a control drug was added, and then 0.02 mL of antigen (DNP-BSA) was added after 20 minutes.
  • Cells were activated at 37 ° C. for 10 minutes. Thereafter, the cell culture was centrifuged at 2000 rpm for 10 minutes to obtain a supernatant.
  • 0.025 ml of the supernatant obtained was transferred to a 96-well plate, and 1 mM p-NAG (substrate solution, in which p-nitrophenyl-N-acetyl- ⁇ -D-glucoamide) was dissolved in 0.1 M citrate buffer to pH 4.5). After adding 0.025 ml, the mixture was reacted at 37 ° C. for 60 minutes. Thereafter, 0.2 ml of 0.1 M Na 2 CO 3 / NaHCO 3 was added to the reaction solution to stop the reaction, and the absorbance was measured by an ELISA analyzer at 405 nm.
  • Table 18 shows the results of measuring the degranulation inhibition rate of lactic acid bacteria.
  • Lactobacillus plantarum LC5 Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium longgum ( Bifidobacterium) longum ) LC67, Bifidobacterium longum ) LC68 and their mixed lactic acid bacteria effectively inhibited degranulation of basophils.
  • the lactic acid bacteria or lactic acid bacteria mixture can very effectively improve atopic dermatitis, asthma, sore throat or chronic dermatitis caused by allergy.
  • mice Six-week-old C57BL / 6J male mice (20-23 g) were purchased from Roundbio. 2 ml of sterile 4% thioglycolate was injected into the abdominal cavity of the mouse, anesthetized the mouse after 96 hours, and again 8 ml of RPMI 1640 medium was injected into the abdominal cavity of the mouse, and 5 to 10 minutes later, RPMI medium in the mouse abdominal cavity (large Phagocytic cells) were extracted again, centrifuged at 1000 rpm for 10 minutes, and washed twice with RPMI 1640 medium.
  • Macrophages were placed in a 24-well plate at a number of 0.5 ⁇ 10 6 per well, and supernatants and cells were obtained after treatment with lactic acid bacteria, a test substance, and LPS (lipopolysaccharide), an inflammatory response-inducing substance, for 2 hours or 24 hours.
  • the lactic acid bacteria treatment concentration was 1 ⁇ 10 4 CFU / ml.
  • the obtained cells were placed in a buffer (Gibco) and homogenized.
  • the expression level of cytokines such as TNF- ⁇ was measured from the obtained supernatant by ELISA kit.
  • the expression levels of p65 (NF-kappa B), p-p65 (phosphor-NF-kappa B) and ⁇ -actin from the obtained cells were measured by immunoblotting. Specifically, 50 ⁇ g of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa. The sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight.
  • the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, fluoresced and developed, and the intensity of the color band was measured, and then the inhibition rate was calculated as follows.
  • the normal group represents a group treated with physiological saline only to macrophages
  • the LPS treated group represents a group treated with LPS only to macrophages
  • the lactic acid bacteria treated group represents a group treated with both LPS and lactic acid bacteria to macrophages.
  • Table 19 shows the effects of NF-kappaB activation inhibition level and TNF- ⁇ expression inhibition level when treated with lactic acid bacteria to macrophage cells induced inflammatory response by lipopolysaccharide (LPS).
  • Lactobacillus plantarum LC5 Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium long gum ( Bifidobacterium) longum ) LC67, Bifidobacterium longum LC68 and their mixed lactic acid bacteria effectively inhibited the inflammatory response induced by lipopolysaccharide (LPS).
  • CD4 T cell isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). Separated CD4 T cells were dispensed in 12-well plates at 5 ⁇ 10 5 cells per well, containing anti-CD3 (1 ⁇ g / ml, Miltenyi Biotec, Bergisch Gladbach, Germany) and anti-CD28 (1 ⁇ g / ml, Miltenyi Biotec).
  • the cells of the culture were stained with anti-FoxP3 or anti-IL-17A antibody and Th17 cells and Treg cells using a Fluorescence-activated cell sorting (FACS) device (C6 Flow Cytometer® System, San Jose, CA, USA). The distribution of was analyzed.
  • FACS Fluorescence-activated cell sorting
  • Table 20 below shows the levels of differentiation into Th17 cells when treated with lactic acid bacteria after treatment with anti-CD3, anti-CD28, IL-6 and TGF- ⁇ on T cells isolated from the spleen, and Table 21 below. After treatment with anti-CD3 and anti-CD28 on T cells isolated from, the level of differentiation into Treg cells was shown when treated with lactic acid bacteria.
  • Lactobacillus plantarum LC5 Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium longgum ( Bifidobacterium longum ) LC67, Bifidobacterium longum ) LC68 and their mixed lactic acid bacteria inhibited the differentiation of T cells into Th17 cells (T helper 17 cells) and promoted the differentiation into Treg cells. Based on the results, the lactic acid bacteria or lactic acid bacteria mixture can effectively improve inflammatory diseases such as colitis and arthritis.
  • T cell treatment method % Differentiation into Th17 cells Whether anti-CD3, anti-CD28, IL-6 and TGF- ⁇ are processed Lactic acid bacteria treatment No treatment No treatment 12.2 process No treatment 25.6 process LC5 treatment 14.2 process LC15 treatment 19.6 process LC17 treatment 17.9 process LC25 treatment 18.2 process LC27 treatment 15.1 process LC28 treatment 14.9 process LC55 treatment 18.8 process LC65 treatment 17.9 process LC67 treatment 15.9 process LC68 treatment 15.7 process LC5 + LC67 Treatment 14.2 process LC5 + LC68 Treatment 14.5 process LC27 + LC67 Treatment 13.9 process LC27 + LC68 Treatment 14.4 process LC28 + LC67 Treatment 14.1
  • T cell treatment method Differentiation rate into Treg cells (%) Whether anti-CD3 and anti-CD28 are processed Lactic acid bacteria treatment No treatment No treatment 9.1 process No treatment 11.4 process LC5 treatment 22.9 process LC15 treatment 15.8 process LC17 treatment 16.9 process LC25 treatment 18.4 process LC27 treatment 21.8 process LC28 treatment 21.4 process LC55 treatment 19.5 process LC65 treatment 19.2 process LC67 treatment 21.6 process LC68 treatment 20.5 process LC5 + LC67 Treatment 21.8 process LC5 + LC68 Treatment 21.8 process LC27 + LC67 Treatment 22.0 process LC27 + LC68 Treatment 21.5 process LC28 + LC67 Treatment 21.9
  • mice Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ⁇ 10%, temperature 25 ⁇ 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
  • TNBS 2,4,6-trinitrobenzenesulfonic acid
  • the animal was lightly anesthetized with ether, and 2.5 g of TNBS (2,4,6-Trinitrobenzene sulfonic acid) solution was mixed with 100 ml of 50% ethanol. Inoculated into the large intestine by 0.1ml and maintained vertically for 30 seconds to cause inflammation.
  • the normal group was orally administered 0.1 ml of saline. Afterwards, the test sample was suspended in physiological saline once a day for 3 days from the next day, orally in the amount of 2.0 ⁇ 10 9 CFU.
  • the animal was smothered with carbon dioxide and killed. A large intestine from the middle caecum to the area immediately before the anus was extracted and used. In addition, only normal saline was administered orally to physiological saline instead of lactic acid bacteria. In addition, the experimental animals of the negative control group was orally administered only saline instead of lactic acid bacteria after induction of colitis caused by TNBS. In addition, the experimental animals of the positive control group were orally administered sulfasalazine (sulfasalazine), a colitis treatment drug, in an amount of 50 mg / kg instead of lactic acid bacteria.
  • sulfasalazine sulfasalazine
  • the length and appearance of the extracted colon were observed and analyzed by appearance according to the criteria of Table 22 (Hollenbach et al., 2005 criteria for colitis).
  • the colon tissues were removed from the colon contents, washed in physiological saline, and some were fixed with 4% formaldehyde fixative for use as pathological samples, and the rest were frozen and stored at minus 80 ° C for molecular biological analysis. It was.
  • MPO Myeloperoxidase
  • Western blotting was used to measure inflammatory response markers such as p-p65, p65, iNOS, COX-2, and ⁇ -actin. Specifically, the supernatant was obtained in the same manner as the myeloperoxidase (MPO) activity measurement experiment. Then, 50 ⁇ g of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa.
  • MPO myeloperoxidase
  • the sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, and developed after fluorescence.
  • inflammation-related cytokines such as TNF- ⁇ , IL-17, and IL-10 were measured using an ELISA kit.
  • the isolated colon was washed twice with 2.5 mM EDTA solution. Thereafter, the colon was washed in RPMI medium containing collagenase type VIII (Sigma) at a concentration of 1 mg / ml, shaken at 30 ° C. for 20 minutes, and filtered to separate Lamina basement. Lamina basement was then treated with 30-100% Percol solution and centrifuged to separate T cells. Thereafter, the isolated T cells were stained with an anti-FoxP3 or anti-IL-17A antibody, and stained with Th17 and Tregs using a FACS (Fluorescence-activated cell sorting) device (C6 Flow Cytometer® System, San Jose, CA, USA). The distribution was analyzed.
  • FACS Fluorescence-activated cell sorting
  • Table 23 shows the effects of lactobacillus on the weight of colon, the appearance of colon, myeloperoxidase (MPO) activity, and inflammation-related cytokine content when Lactobacillus was administered to model animals induced by acute colitis induced by TNBS. The effect is shown. As shown in Table 23, in the model animals induced by acute colitis induced by TNBS, weight, appearance index of colitis, colon length decreased, and MPO activity increased. However, all of these indicators were improved when lactic acid bacteria were administered to a model animal induced by acute colitis induced by TNBS.
  • Bifidobacterium ronggeom (Bifidobacterium longum) administered alone to LC67 or Bifidobacterium ronggeom (Bifidobacterium longum) LC67 and Lactobacillus Planta room (Lactobacillus plantarum)
  • IL The amount of -17 was greatly reduced and the amount of IL-10 was greatly increased.
  • Figure 22 shows the effect of lactic acid bacteria to differentiation of T cells into Th17 cells induced by acute colitis induced by TNBS
  • Figure 23 shows the effect of lactic acid bacteria against model animals induced by acute colitis induced by TNBS The effect is shown in the differentiation pattern of T cells into Treg cells.
  • NOR represents a normal group
  • TNBS represents a negative control
  • LC5 represents a Lactobacillus plantarum LC5 administration group
  • LC27 represents a Lactobacillus planta Lactobacillus plantarum LC27 administration group
  • LC67 represents the Bifidobacterium longum LC67 administration group
  • LC68 represents the Bifidobacterium longum LC68 administration group
  • LC5 + LC67 Lactobacillus plantarum LC5 and Bifidobacterium longum LC67 represents a mixed lactobacillus administration group prepared by mixing the same amount
  • LC27 + LC68 is Lactobacillus plantarum ( Lactobacillus plantarum ) LC27 ronggeom and Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacteria administration group prepared by mixing the same amount of LC68
  • SS represents a sulfasalazin
  • FIG. 24 shows the effects of lactic acid bacteria on model animals induced by acute colitis induced by TNBS as inflammatory response indicators.
  • “Nor” represents the control group
  • “T” indicates a negative control
  • "LC5" denotes a Lactobacillus Planta room (Lactobacillus plantarum) LC5 group
  • “LC27” is Lactobacillus Planta room (Lactobacillus plantarum ) represents an LC27 administration group
  • LC67 represents a Bifidobacterium longum LC67 administration group
  • LC68 represents a Bifidobacterium longum LC68 administration group
  • “LC5 + LC67” represents a lactose.
  • Lactobacillus plantarum LC5 and Bifidobacterium longum LC67 represents a mixed lactobacillus administration group prepared by mixing the same amount
  • LC27 + LC68 is Lactobacillus plantarum LC27
  • ronggeom Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacteria administration group prepared by mixing the same amount of LC68
  • SS represents a sulfasalazine administration group.
  • NF- ⁇ B was activated (p-p65) and expression levels of COX-2 and iNOS were increased in the model animal induced by acute colitis induced by TNBS, but NF- ⁇ B was activated by administration of lactic acid bacteria ( p-p65) was inhibited and the increase in the expression level of COX-2 and iNOS was also reduced.
  • ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 alone or Bifidobacterium Lactobacillus ( Lactobacillus plantarum ) LC5 administration of longum ) LC67 and Lactobacillus plantarum LC5 was effective in inhibiting the activation (p-p65) and increased expression of COX-2 and iNOS.
  • mice Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ⁇ 10%, temperature 25 ⁇ 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
  • Lactobacillus plantarum LC27 was suspended in physiological saline and orally administered once daily for 3 days in an amount of 1 ⁇ 10 9 CFU
  • one experimental group included Bifidobacterium long gum ( Bifidobacterium).
  • longum ) LC67 was suspended in physiological saline and administered orally once daily for 3 days in an amount of 1 ⁇ 10 9 CFU
  • one experimental group included Lactobacillus plantarum LC27 and Bifidobacterium long gum ( Bifidobacterium).
  • the mixed lactic acid bacteria prepared by mixing the same amount of LC67 was suspended in physiological saline and administered orally in an amount of 1 ⁇ 10 9 CFU once daily for 3 days.
  • ranitidine a commercial gastric ulcer drug
  • ranitidine a commercial gastric ulcer drug
  • the normal group and the negative control group was administered orally for 3 days in an amount of 0.2 ml once daily.
  • the experimental mice were fasted and watered for 18 hours.
  • mice of all experimental groups except the normal group were orally administered with 0.2 ml of 99% pure ethanol to induce gastric ulcers.
  • the normal group was orally administered 0.2 ml of saline instead of ethanol.
  • mice Three hours after ethanol administration, the mice were sacrificed and the stomach tissues were removed, vertically divided and washed with PBS (phosphate buffer saline) solution.
  • PBS phosphate buffer saline
  • MPO Myeloperoxidase
  • FIG. 25 is a photograph showing the effect of lactic acid bacteria on the gastric mucosa of the mouse induced by gastric ulcers in the second experiment of the present invention.
  • FIG. 26 is a second experiment of the present invention.
  • the effect of lactic acid bacteria on the gastric mucosa of the gastric ulcer induced by the gastric ulcer is shown by the gross gastric lesion score (Gross gastric lesion score)
  • Figure 27 is a gastric ulcer by ethanol in the second experiment of the present invention
  • the effect of lactic acid bacteria on the gastric mucosa of the induced mice is shown by the ulcer index (ulcer index)
  • Figure 28 in the second experiment of the present invention, gastric mucosa of the mice induced gastric ulcer by ethanol (Histological activity index) shows the effect of lactic acid bacteria on (stomach mucosa).
  • Bifidobacterium longum LC67 Bifidobacterium
  • Lactobacillus plantarum LC27 or a mixed lactic acid bacteria thereof effectively improve the gastric ulcer or gastric ulcer caused by ethanol It was.
  • Bifidobacterium long gum ( Bifidobacterium) as shown in Figure 30 and 31 longum ) LC67, Lactobacillus plantarum LC27, or a mixed lactobacillus thereof significantly reduced the level of inflammatory markers in mice induced by gastric ulcer or gastric ulcer.
  • mice Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ⁇ 10%, temperature 25 ⁇ 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
  • Lactobacillus plantarum LC27 was suspended in physiological saline and orally administered once daily for 3 days in an amount of 1 ⁇ 10 9 CFU
  • one experimental group included Bifidobacterium long gum ( Bifidobacterium).
  • longum ) LC67 was suspended in physiological saline and administered orally once daily for 3 days in an amount of 1 ⁇ 10 9 CFU
  • one experimental group included Lactobacillus plantarum LC27 and Bifidobacterium long gum ( Bifidobacterium).
  • the mixed lactic acid bacteria prepared by mixing the same amount of LC67 was suspended in physiological saline and administered orally in an amount of 1 ⁇ 10 9 CFU once daily for 3 days.
  • the positive control group was orally administered silymarin (silymarin), a therapeutic agent for the treatment of liver damage, once daily in an amount of 50 mg / kg for 3 days.
  • the normal group and the negative control group were orally administered with saline solution once daily in an amount of 0.1 ml for 3 days. Hepatic damage was induced by oral administration of a sample or saline solution for 3 days, and intraperitoneally administered ethanol in an amount of 6 ml / kg to all experimental groups except the normal group after 3 hours.
  • the normal group was intraperitoneally administered physiological saline instead of ethanol in an amount of 6 ml / kg. Thereafter, the mice were fasted and watered for 12 hours, and sacrificed for heart blood collection.
  • GPT glutamic pyruvate transaminase
  • GOT glutamic oxalacetic transaminase
  • Bifidobacterium longum LC67, Lactobacillus plantarum LC27, or mixed lactobacilli thereof effectively improved liver damage caused by ethanol, in particular ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 was superior to silymarin, a commercial treatment for liver damage.
  • LC27 / LC67 Lactobacillus Planta Room (Lactobacillus plantarum) LC27 ronggeom and Bifidobacterium (Bifidobacterium longum ) Mixed lactic acid bacteria prepared by mixing LC67 in the same amount

Abstract

The present invention provides a novel Lactobacillus sp. strain, a novel Bifidobacterium sp. strain or a lactobacillus mixture thereof, which is isolated from kimchi or human feces. According to the present invention, the specific Lactobacillus sp. strain or the specific Bifidobacterium sp. strain is isolated from kimchi or human feces, thereby having high safety and various physiological activities such as an antioxidant activity, a β-glucuronidase inhibitory activity, a lipopolysaccharide (LPS) generation inhibitory activity or a tight junction protein expression-inducing activity. Therefore, according to the present invention, the specific Lactobacillus sp. strain, the specific Bifidobacterium sp. strain or a lactobacillus mixture thereof can be used as a functional food and drug material useful for preventing, alleviating or treating a bowel injury, a liver injury, allergies, inflammatory diseases or obesity.

Description

다양한 기능성을 가진 신규 유산균 및 이의 용도New lactic acid bacteria with various functionalities and uses thereof
본 발명은 신규 유산균 등에 관한 것으로서, 더 상세하게는 김치 또는 사람의 분변에서 분리되고, 항산화 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성 등과 같은 다양한 생리활성을 가진 신규 유산균 또는 신규 혼합 유산균에 관한 것이다. 또한, 본 발명은 신규 유산균 또는 신규 혼합 유산균의 다양한 식의약적 용도에 관한 것이다.The present invention relates to novel lactic acid bacteria, and more particularly, it is isolated from kimchi or human feces, antioxidant activity, beta-glucuronidase (β-glucuronidase) inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity Or it relates to a novel lactic acid bacteria or a new mixed lactic acid bacteria having a variety of physiological activities such as tight junction protein expression inducing activity. The present invention also relates to various food and pharmaceutical uses of the novel lactic acid bacteria or new mixed lactic acid bacteria.
인류가 풍요로운 사회로 점점 발전해 감에 따라 생활습관이 급속하게 서구화되면서 질병의 양상도 크게 변하고 있다. 특히, 현대인에게는 육식 및 지방 위주의 서구화된 식생활, 불규칙한 식사, 과음, 운동 부족, 과도한 스트레스, 유해 환경에의 노출 등으로 인해 장내세균총의 교란, 장 누수 증후군, 대장염, 간질환, 알러지 질환, 비만 등이 급격하게 증가하고 있다.As mankind develops into an affluent society, lifestyles are rapidly westernized, and the pattern of disease is changing greatly. In particular, in modern people, the intestinal bacterial flora is disturbed, intestinal leak syndrome, colitis, liver disease, allergic disorders, obesity due to the eating and fat-oriented westernized diet, irregular diet, excessive drinking, lack of exercise, excessive stress, exposure to harmful environment, etc. The back is increasing rapidly.
장내세균총의 교란Disruption of Intestinal Bacteria
우리 몸의 소화관에는 많은 세균들이 서식하고 있다. 우리 몸에는 정상세포가 약 10조 개가 있는 반면, 세균의 수는 그보다 10배쯤 더 많은 100조 개 정도이다. 그리고 이 세균들은 우리 장의 건강에 도움을 주는 유익균과 건강에 해로운 유해균으로 나눌 수 있다. 우리 몸은 락토바실러스(Lactobacillus), 비피도박테리움(Bifidobacterium), 스트렙토코쿠스(Streptococcus), 류코노스톡(Leuconostoc), 페디오코쿠스(Pediococcus), 스포로락토바실러스(Sporolactobacilius) 등과 같은 유익균이 유해균보다 우세균으로 소화관에 서식하고 있을 때 건강을 유지할 수 있다. 그렇지 않으면, 비만, 장 누수 증후군, 간질환, 노화촉진, 장염 등과 같은 질환을 유발할 수 있다. Many bacteria live in the digestive tract of our bodies. There are about 10 trillion normal cells in our body, while the number of bacteria is about 100 trillion times more than that. And these bacteria can be divided into beneficial bacteria that help our gut health and harmful bacteria that are harmful to our health. Our bodies are Lactobacillus bacteria (Lactobacillus), Bifidobacterium (Bifidobacterium), Streptococcus (Streptococcus), current Kono Stock (Leuconostoc), Peddie yuikgyun the harmful bacteria, such as OKO Syracuse (Pediococcus), sports as Lactobacillus (Sporolactobacilius) The more prevalent bacteria live in the digestive tract and maintain their health. Otherwise, it can lead to diseases such as obesity, bowel leak syndrome, liver disease, aging, enteritis, and the like.
장 누수 증후군(Intestinal Permeability Syndrome)Intestinal Permeability Syndrome
우리 몸의 소화관은 점액질과 융모로 구성되어 있어서, 영양성분을 효율적으로 흡수하면서도 분자량이 큰 병원미생물이나 이들이 생산하는 독소들이 흡수되지 못하도록 관리한다. 또한, 우리 몸은 분자량이 큰 외부항원들이 체내로 침입하면 이를 방어할 수 있는 면역체계를 갖추고 있다. 그러나, 많은 병원미생물 또는 독소의 감염, 과다한 스트레스, 소화관 서식 유해세균을 증식시킬 수 있는 고지방식과 같은 음식물 섭취, 과다한 알코올 섭취, 약물(예를 들어, 항생물질) 남용 등에 의해 장내세균총이 교란되고 소화관의 면역체계에 이상이 발생하며, 밀착연접단백질(tight junction proteins들)의 발현이 억제된다. 밀착연접단백질(tight junction proteins들)의 발현이 억제되는 경우 장점막의 치밀도 결합이 느슨해지고, 이 느슨해진 틈과 면역체계의 이상으로 병원미생물 등과 같은 거대분자의 체내 침입이 쉬워진다. 장 누수 증후군(Intestinal Permeability Syndrome)은 새는 장 증후군(Leaky Gut Syndrome)이라고 하며, 위장관을 구성하는 상피세포의 밀착연접 방어체계가 원활이 작동되지 않아 소화가 덜된 음식물, 병원미생물, 독소 등과 같이 외부 물질이 혈액으로 계속 유입되는 상태를 말한다. 장 누수 증후군이 생기면 일반적으로 체내로 흡수되지않는 외부항원들이 체내로 들어오기 때문에 궤양성 대장염, 크론병, 간장해, 간기능 장애, 알러지 질환(천식 포함), 아토피, 자가면역질환, 지방변증, 소화흡수 장애, 여드름, 노화 촉진, 내독소혈증, 장 감염, 습진, 과민성장증후군, 만성피로증후군, 건선, 류머티스 관절염, 췌장기능 부전, 염증성 관절 질환 등이 발생한다. The digestive tract of our body is composed of mucus and villi, which efficiently absorb nutrients and prevent the absorption of high molecular weight pathogens and their toxins. In addition, our body has an immune system that can protect against high molecular weight foreign antigens invading the body. However, the intestinal bacterial flora is disturbed by infections of many hospital microorganisms or toxins, excessive stress, food intake such as high-fat diets that can multiply harmful bacteria in the digestive tract, excessive alcohol intake, and abuse of drugs (eg antibiotics). The immune system in the digestive tract develops abnormally and the expression of tight junction proteins is suppressed. When the expression of tight junction proteins is suppressed, the dense bonds of the mesenteric membranes are loosened, and these loosened gaps and immune system abnormalities facilitate the invasion of macromolecules such as pathogens. Intestinal Permeability Syndrome (Leaky Gut Syndrome) is a leaky gut syndrome, and the tightly connected defense system of the epithelial cells that make up the gastrointestinal tract is not working well. It is a condition that continues to flow into the blood. When intestinal leak syndrome occurs, external antigens that are not absorbed into the body generally enter the body, so ulcerative colitis, Crohn's disease, liver damage, liver dysfunction, allergic diseases (including asthma), atopy, autoimmune diseases, lipodiasis, Digestive absorption disorders, acne, aging, endotoxins, intestinal infections, eczema, hypersensitivity syndrome, chronic fatigue syndrome, psoriasis, rheumatoid arthritis, pancreatic insufficiency, inflammatory joint disease, etc.
대장염colitis
종래, 궤양성 대장염 및 크론병의 발생율은 서양인에게 높다고 알려져 있었지만, 최근, 식습관 등의 생활습관의 변화로 인해 우리나라 등 동양에서도 환자수가 급증하고 있다. 그렇지만, 원인이 불분명한 이유도 있어 근본적 치료법은 확립되어 있지 않다. 이 때문에 완전한 치료를 목표로 하는 것이 아니라, 증상을 완해시키고, 이러한 상태를 가능한 한 장기간 유지하는 약제가 사용되고 있는 실정이다. 이러한 대증요법을 위한 약제로서, 주로 아미노살리실산제제, 부신피질 스테로이드제, 면역억제제 등이 사용되지만, 다양한 부작용이 보고되고 있다. 예를 들어, 아미노살리실산제제로서 자주 사용되는 살라조설파피리딘은 구역질, 구토, 식욕부진, 발진, 두통, 간장해, 백혈구 감소, 이상 적혈구, 단백뇨, 설사 등의 부작용이 보고되고 있다. 또한 부신피질스테로이드제는 일반적으로는 프레드니솔론의 경구투여, 관장, 좌약, 정맥 주사 등으로 사용되지만, 위궤양이나 장기사용에 의한 대퇴골두 괴사 등 부작용이 강하다. 그러나 투약의 중단은 증상을 재발시키기 때문에, 이들 약제는 계속적으로 사용하지 않을 수 없다. 따라서, 효과가 우수하면서도, 안전하고 부작용을 일으키지 않는 궤양성 대장염, 크론병 등의 장질환 치료제의 개발이 요구되고 있다. 과민성 대장염 증후군((irritable bowel syndrome, IBS)도 마찬가지로 그 원인이 명확하지 않은 만성 복부 질환이다. 현재, IBS의 근본적인 치료제는 존재하지 않으며, 각 타입의 증상 경감을 목적으로 한 대증요법이 행해지고 있다. 예를 들어, 하리형 IBS에 대해서는 평활근의 수축을 억제하는 진경작용을 갖는 항콜린제가 사용되며, 변비형 IBS에는 염류 하제, 대체형 IBS에는 약제로 조절하기 곤란하고, 기본적으로 소화관 운동기능 개선제가 사용되고 있다.Conventionally, the incidence rate of ulcerative colitis and Crohn's disease has been known to Westerners, but recently, the number of patients has increased rapidly in the Asian countries such as Korea due to changes in lifestyles such as eating habits. However, there are some reasons why the cause is unclear, and no fundamental treatment is established. For this reason, it is not aimed at complete treatment, but the situation which uses the medicament which alleviates a symptom and maintains this state for as long as possible. As drugs for such symptomatic therapy, aminosalicylic acid agents, corticosteroids, immunosuppressants and the like are mainly used, but various side effects have been reported. For example, salazosulpapyridine, which is frequently used as an aminosalicylic acid agent, has been reported to have side effects such as nausea, vomiting, anorexia, rash, headache, liver injury, white blood cell reduction, abnormal red blood cells, proteinuria, and diarrhea. In addition, corticosteroids are generally used for oral administration of prednisolone, enemas, suppositories, and intravenous injections, but side effects such as femoral head necrosis due to gastric ulcer and long-term use are strong. However, because discontinuation of medication causes symptoms to recur, these drugs cannot be used continuously. Therefore, there is a need for development of a therapeutic agent for intestinal diseases such as ulcerative colitis, Crohn's disease, which is excellent in effect but safe and does not cause side effects. Irritable bowel syndrome (IBS) is also a chronic abdominal disease whose cause is unclear. Currently, there is no fundamental therapeutic agent for IBS, and symptomatic therapy for the purpose of alleviating symptoms of each type is being performed. For example, an anticholinergic agent that suppresses contraction of smooth muscle is used for hari-type IBS, and it is difficult to control with constipation-type IBS with salt laxatives, and alternative-type IBS with drugs. have.
간질환Liver disease
간은 우리 몸에서 에너지 대사(영양분의 처치, 저장 및 노폐물 배설), 독소의 해독, 혈청 단백질의 합성, 담즙 배설을 통한 장에서의 지방의 원활한 흡수와 같은 역할을 하며, 면역유지(신체방어작용) 및 비타민의 대사에도 중요하다. 그러나, 간염 바이러스의 감염, 알코올이나 고지질식의 과다 섭취에 의해 간염, 지방간 또는 간경변증 등과 같은 간질환이 발생한다. 또한, 약물(결핵약, 아스피린, 항생제, 마취제, 고혈압 치료제, 경구피임제 등), 선천적 대사이상, 심부전, 쇼크 등으로도 간질환이 유발될 수 있다. 간질환이 발생하면 피로감, 구토, 설사, 식욕부진, 황달, 우상복부통, 발열, 근육통이 나타나는 급성 간염으로 시작해서 만성 간염으로 발전할 수 있다.The liver plays a role in energy metabolism (nutrient treatment, storage and waste excretion), toxin detoxification, synthesis of serum proteins, and smooth absorption of fat from the intestine through bile excretion. And vitamins are also important. However, liver diseases such as hepatitis, fatty liver or cirrhosis occur due to hepatitis virus infection and excessive intake of alcohol or high lipid diet. In addition, liver disease may also be caused by drugs (TB, aspirin, antibiotics, anesthetics, antihypertensives, oral contraceptives), congenital metabolic disorders, heart failure, and shock. Liver disease can develop from chronic hepatitis to acute hepatitis with fatigue, vomiting, diarrhea, loss of appetite, jaundice, right upper abdominal pain, fever, and muscle pain.
알러지 질환Allergic diseases
사회가 복잡해지고 산업과 문명의 발달로 인해 환경오염, 스트레스가 증가하고, 식생활이 변화되면서 알러지 질환 환자들이 매년 증가하고 있다. 1980년에 아토피, 아낙필락시스, 천식 등과 같은 알러지 질환 환자는 1% 미만이었으나, 2000년대에는 5% 이상으로 급증하고 있으며 잠재적인 환자까지 포함하면 10%가 넘는 것으로 추정되고 있다. 알러지 질환의 발생원인은 항원항체반응의 결과로 나타나는 생체의 과도한 면역반응이며, 알러지 질환은 반응시간 및 보체 관여의 유무에 따라 일반적으로 1~4형 과민반응으로 분류된다. 제1형 과민반응에는 아토피, 아나필락시스 쇼크, 기관지 천식, 두드러기, 화분증 등이 있고, 제2형 과민반응에는 부적합수혈, 자가 면역성 용혈성 빈혈, 약제에 의한 용혈성 빈혈, 과립구 감소증, 혈소판감소성 자반병 등이 있고, 제3형 과민반응에는 홍반, 림프선종창, 관절통, 관절염, 신염, 연쇄구균감염 뒤의 급성사구체신염 등이 있고, 제4형 과민 반응에는 만성 염증 등이 있다. 알러지 질환을 개선하기 위해 1차적으로는 샤워나 목욕 등을 하여 피부에 묻은 있는 알레르겐(집 먼지, 진드기 등)을 제거하고, 알레르겐의 섭취를 하지 않는 것이 좋다. 그러나, 알러지 질환이 개선되지 않는 경우 스테로이드, 항히스타민제, 면역억제제 등과 같은 약물을 사용하게 되는데, 이 약물들은 피부위축, 혈관확장, 탈색, 자반(스테로이드 제제), 졸림(항히타민제), 신부전(면역억제제) 등과 같은 부작용이 발생하기 쉽다. 지금까지 개발된 약물 중에 알레르기를 완치할 수 있는 약물은 없으며 증상개선을 기대하고 있으나 부작용이 크다는 문제점이 있다.The complexity of society, the development of industry and civilization increase environmental pollution, stress, and dietary changes, increasing the number of allergic patients every year. In 1980, less than 1% of allergic patients, such as atopy, anaphylaxis, and asthma, increased to more than 5% in the 2000s, and more than 10% of potential patients were estimated. The cause of allergic disease is excessive immune response of the living body resulting from antigen antibody reaction, and allergic disease is generally classified into type 1-4 hypersensitivity reaction according to reaction time and presence of complement involvement. Type 1 hypersensitivity reactions include atopy, anaphylaxis shock, bronchial asthma, urticaria, hay fever, and type 2 hypersensitivity reactions include inadequate transfusion, autoimmune hemolytic anemia, hemolytic anemia by medications, granulocytopenia, thrombocytopenic purpura, etc. Type III hypersensitivity reactions include erythema, lymphadenopathy, arthralgia, arthritis, nephritis, acute glomerulonephritis after streptococcal infection, and type 4 hypersensitivity reactions include chronic inflammation. In order to improve allergic diseases, you should take a shower or bath to remove allergens (house dust, mites, etc.) on your skin, and do not eat allergens. However, if the allergic disease does not improve, drugs such as steroids, antihistamines, and immunosuppressants are used, such as skin atrophy, vasodilation, discoloration, purpura (steroid preparation), drowsiness (antihitamin), and kidney failure ( Side effects such as immunosuppressants) are likely to occur. None of the drugs that have been developed so far can cure allergies, and the symptoms are expected to improve, but side effects are large.
비만obesity
비만은 열량의 섭취와 소비의 불균형으로 발생되는 대사성 질환이며, 형태학적으로 볼 때 체내 지방 세포의 크기 증가(hypertrophy) 또는 수의 증가(hyperplasia)에 의해 초래된다. 비만은 서구사회에서 가장 흔한 영양장애일 뿐만 아니라, 최근 우리나라에서도 경제발전에 의한 식생활의 향상과 생활 방식의 서구화로 비만의 빈도가 급속히 증가하는 추세에 있어서 그 치료와 예방에 대한 중요성이 크게 부각되고 있다. 비만은 심리적으로 개인을 위축시킬 뿐만 아니라 사회적으로도 여러 가지 성인병의 발병 위험을 증가시키는 중요한 요인이다. 비만이 2형 당뇨병, 고혈압, 고지혈증, 심질환 등 여러 가지 성인병의 유병율 증가와 직접적인 관련이 있다고 알려져 있으며(Cell 87:377, 1999), 비만과 관련된 질환들을 함께 묶어서 대사증후군(metabolic syndrome) 또는 인슐린 저항성 증후군(insulin resistance syndrome)이라고 하며, 이들이 동맥경화증 및 심혈관질환의 원인으로 밝혀지고 있다. 현재까지 알려진 비만치료제로는 제니칼(Xenical, 로슈제약회사, 스위스), 리덕틸(Reductil, 에보트사, 미국), 엑소리제(Exolise, 아토파마, 프랑스) 등으로 크게 식욕억제제, 에너지소비 촉진제, 지방흡수억제제로 분류되며, 대부분의 비만치료제는 시상하부와 관련된 신경전달물질을 조절함으로써 식욕을 억제하는 식욕억제제이다. 그러나 종래의 치료제들은 심장질환, 호흡기질환, 신경계질환 등의 부작용과 함께 그 효능의 지속성도 낮아, 더욱 개선된 비만치료제의 개발이 필요하고 또한, 현재 개발되고 있는 제품도 부작용없이 만족할 만한 치료 효과를 가지는 치료제는 거의 없어 새로운 비만치료제의 개발이 요구되고 있다.Obesity is a metabolic disease caused by an imbalance between calorie intake and consumption and is morphologically caused by hypertrophy or hyperplasia of fat cells in the body. Obesity is not only the most common malnutrition in Western society, but the importance of treatment and prevention has been highlighted in recent years in Korea, as the frequency of obesity is rapidly increasing due to the improvement of dietary life and the westernization of lifestyle. have. Obesity is an important factor that not only psychologically diminishes individuals but also increases the risk of developing various adult diseases. Obesity is known to be directly related to the increased prevalence of various adult diseases, such as type 2 diabetes, hypertension, hyperlipidemia, and heart disease (Cell 87: 377, 1999), and the combination of obesity-related disorders together with metabolic syndrome or insulin resistance It is called syndrome (insulin resistance syndrome), and these have been found to be the cause of atherosclerosis and cardiovascular disease. Known obesity treatments such as Xenical (Roche Pharmaceuticals, Switzerland), Reductil (Eboth, USA), Exolise (Atopama, France), etc. Classified as inhibitors, most anti-obesity agents are appetite suppressants that suppress appetite by regulating neurotransmitters associated with the hypothalamus. However, conventional treatments have low side effects such as heart disease, respiratory disease, and neurological disease, and thus have low sustainability. Therefore, development of an improved obesity treatment agent is needed, and currently developed products have satisfactory treatment effects without side effects. Since there are few therapeutic agents, development of new obesity agents is required.
사람을 포함한 동물의 위장관 내에서 숙주의 장내 미생물 환경을 개선하여 숙주의 건강에 유익한 영향을 주는 살아있는 미생물을 통칭하여 프로바이오틱스(probiotics)라고 한다. 프로바이오틱스로서 효과가 있기 위해서는 경구로 섭취될 때, 대부분이 소장에 도달해서 장 표면에 부착되어야 하므로, 기본적으로 내산성, 내담즙성 및 장 상피세포 부착능력이 우수하여야 한다. 유산균은 인체의 소화계에 공생하면서 섬유질 및 복합 단백질들을 분해하여 중요한 영양성분으로 만드는 역할을 담당하기 때문에 프로바이오틱스로 사용된다. 유산균은 장내 정상균총의 유지, 장내 균총의 개선, 항당뇨 및 항고지혈증 효과, 발암 억제, 대장염 억제, 그리고 숙주의 면역체계의 비특이적 활성 등의 효과를 나타낸다고 보고되고 있다. 그 중에서도 락토바실러스 속 균주는 인체의 장내에 서식하는 정상 미생물 군집의 주요 구성원으로서, 건강한 소화기관과 질 내 환경을 유지하는 데 있어서 중요한 것으로 오래전부터 알려져 왔고 미국의 공중건강 가이드라인(U.S. Public Health Service guidelines)에 의하면, 현재 미국 균주 기탁기관(ATCC)에 기탁된 락토바실러스 균주 모두 인체나 동물에 질병을 유발할 잠재적 위험에 대해서는 알려진 것이 없다고 인정되는 '안정수준(Bio-safty Level) 1'로 분류되어 있다. 한편, 김치 유산균은 김치 발효에 관여하는 유산균으로서 면역증강, 항 미생물, 항산화, 항암 효과, 항비만 효과, 고혈압 예방 또는 변비 예방 효과 등이 있는 것으로 보고되고 있다[Hivak P, Odrska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z. : One-year application of Probiotic strain Enterococcus facium M-74 decreases Serum cholesterol levels. : Bratisl lek Listy 2005; 106(2); 67-72; Agerholm-Larsen L. Bell ML. Grunwald GK. Astrup A. : The effect of a probiotic milk product on plasma cholesterol : a metaanalysis of short-term intervention studies ; Eur J Clin Nutr. 2000; 54(11) 856-860; Renato Sousa, Jaroslava Helper, Jian Zhang, Strephen J Lewis and Wani O Li ; Effect of Lactobacillus acidophilus supernants on body weight and leptin expression in rats ; BMC complementary and alternative medicine. 2008; 8(5)1-8].In the gastrointestinal tract of animals including humans, living organisms that improve the host's intestinal microbial environment and have beneficial effects on the health of the host are collectively called probiotics. In order to be effective as a probiotic, when ingested orally, most of them must reach the small intestine and adhere to the intestinal surface. Therefore, the resistance to acid, bile and intestinal epithelial cells should be excellent. Lactic acid bacteria are used as probiotics because they play a role in breaking down fiber and complex proteins into important nutrients while living in the digestive system of the human body. Lactobacillus has been reported to show the effects of maintaining normal intestinal flora, improving intestinal flora, antidiabetic and antihyperlipidemic effects, inhibiting carcinogenesis, inhibiting colitis, and nonspecific activity of the host's immune system. Among them, the strain Lactobacillus is a major member of the normal microbial community in the intestine of the human body, which has long been known to be important for maintaining a healthy digestive system and the vaginal environment, and the US Public Health Service (US Public Health Service). guidelines) are currently classified as 'Bio-safty Level 1', where none of the Lactobacillus strains currently deposited with the American Strain Deposit Organization (ATCC) is known about the potential risk of causing disease in humans or animals. have. On the other hand, kimchi lactic acid bacteria are reported to have the effect of immuno-enhancing, anti-microbial, antioxidant, anti-cancer, anti-obesity, hypertension or constipation as a lactic acid bacteria involved in kimchi fermentation [Hivak P, Odrska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z .: One-year application of Probiotic strain Enterococcus facium M-74 decreases Serum cholesterol levels. Bratisl lek Listy 2005; 106 (2); 67-72; Agerholm-Larsen L. Bell ML. Grunwald GK. Astrup A.: The effect of a probiotic milk product on plasma cholesterol: a metaanalysis of short-term intervention studies; Eur J Clin Nutr. 2000; 54 (11) 856-860; Renato Sousa, Jaroslava Helper, Jian Zhang, Strephen J Lewis and Wani O Li; Effect of Lactobacillus acidophilus supernants on body weight and leptin expression in rats; BMC complementary and alternative medicine. 2008; 8 (5) 1-8].
이러한 유산균의 다양한 생리활성이 알려지면서, 최근 인체에 안전하면서도 기능이 우수한 유산균 균주를 개발하고 이를 의약품 또는 기능성 식품으로 적용하려는 연구가 활발하게 진행되고 있다. 예들 들어, 대한민국 공개특허공보 제10-2009-0116051호에는 대장염 치료 및 예방 효능을 갖는 것을 특징으로 하는 락토바실러스 브레비스(Lactobacillus brevis) HY7401이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2006-0119045호에는 류코노스톡 시트리움(Leuconostoc citreum) KACC91035, 류코노스톡 메센테로이데스 아종 메센테로이데스(Leuconostoc mesenteroides subsp . mesenteroides) KCTC 3100 및 락토바실러스 브레비스(Lactobacillus brevis) KCTC 3498로 이루어진 군으로부터 선택된 아토피성 피부염 치료 또는 예방용 유산균이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2013-0092182호에는 알코올 분해능이 우수한 락토바실러스 브레비스(Lactobacillus brevis) HD-01[기탁번호: KACC91701P]을 함유하는 알코올성 간질환 예방용 또는 숙취해소용 건강기능식품이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2010-0010015호에는 혈중 콜레스테롤 농도 저하 및 항 비만 활성을 갖는 락토바실러스 존소니(Lactobacillus johnsonii) HFI 108 균주(KCTC 11356BP)가 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2014-0006509호에는 공액리놀레산(Conjugated Linoleic acid)을 생산하는 비피도박테리움 롱검(Bifidobacterium longum) CGB-C11(수탁번호 KCTC 11979BP) 균주를 유효성분으로 포함하는 비만 예방 또는 치료용 조성물이 개시되어 있다.As various physiological activities of these lactic acid bacteria are known, researches to develop lactic acid bacteria strains which are safe for humans and excellent in function and apply them as pharmaceuticals or functional foods are being actively conducted. For example, Korean Laid-open Patent Publication No. 10-2009-0116051 discloses Lactobacillus brevis HY7401, which has the effect of treating and preventing colitis. In addition, Korean Patent Publication No. 10-2006-0119045 discloses Leuconostoc citreum) KACC91035, flow may Pocono stock mesen teroyi des subspecies mesen teroyi des (Leuconostoc mesenteroides subsp. mesenteroides) The KCTC 3100 and Lactobacillus brevis (Lactobacillus brevis) atopic lactic acid bacteria for dermatitis treatment or prevention, selected from the group consisting of KCTC 3498 discloses . In addition, Korean Patent Laid-Open No. 10-2013-0092182 discloses a health functional food for preventing or hangover of alcoholic liver disease, which contains Lactobacillus brevis HD-01 [Accession No .: KACC91701P], which has excellent alcohol resolution. Is disclosed. In addition, Korean Patent Laid-Open Publication No. 10-2010-0010015 discloses Lactobacillus johnsonii HFI 108 strain (KCTC 11356BP) having blood cholesterol concentration lowering and anti-obesity activity. In addition, Korean Unexamined Patent Publication No. 10-2014-0006509 describes obesity including strain Bifidobacterium longum CGB-C11 (Accession No. KCTC 11979BP), which produces conjugated linoleic acid, as an active ingredient. Prophylactic or therapeutic compositions are disclosed.
그러나, 현대인에게 발병이 증가하고 있는 장내세균총의 교란, 장 누수 증후군, 대장염, 간질환, 알러지 질환, 비만 등을 총체적으로 개선하거나 치료할 수 있는 유산균 관련 기술은 출현하지 않고 있는바 다양한 기능성을 가진 새로운 균주의 스크리닝 및 이의 통한 의약품, 기능성 식품 등의 개발이 필요하다.However, there are no technologies related to lactic acid bacteria that can collectively improve or treat the disturbance of enterobacteriaceae, intestinal leak syndrome, colitis, liver disease, allergic diseases, and obesity. Screening of strains and the development of pharmaceuticals, functional foods and the like through the same is necessary.
본 발명은 이러한 종래의 기술적 배경하에서 도출된 것으로서, 본 발명의 일 목적은 프로바이오틱스로서 요구되는 다양한 생리활성 또는 기능성을 가진 신규 유산균 및 이의 식의약적 용도를 제공하는데에 있다. The present invention has been derived under such a conventional technical background, and an object of the present invention is to provide a novel lactic acid bacterium having various physiological activities or functions required as probiotics and a medicinal use thereof.
또한, 본 발명의 다른 목적은 다양한 생리활성 또는 기능성을 극대화할 수 있는 신규 유산균 혼합물 및 이의 식의약적 용도를 제공하는데에 있다.In addition, another object of the present invention to provide a novel lactic acid bacteria mixture and its pharmaceutical use that can maximize a variety of physiological activity or functionality.
본 발명의 발명자들은 김치 또는 사람 분변으로부터 무수한 유산균을 스크리닝하고, 이중 특정 락토바실러스속 균주, 특정 비피도박테리움속 균주 또는 이들의 혼합 유산균이 장 누수 증후군 등과 같은 장 손상, 지방간 등과 같은 간 손상, 아토피 피부염 등과 같은 알러지 질환, 대장염 등과 같은 염증 질환, 또는 비만 등에 우수한 개선 효과를 가진다는 점을 확인하고, 본 발명을 완성하였다.The inventors of the present invention screen a myriad lactic acid bacteria from kimchi or human feces, the specific Lactobacillus strains, certain Bifidobacterium strains or mixed lactic acid bacteria thereof, liver damage such as intestinal leak syndrome, fatty liver and the like, The present invention was completed by confirming that it has an excellent improvement effect on allergic diseases such as atopic dermatitis, inflammatory diseases such as colitis, or obesity.
본 발명의 일 목적을 달성하기 위하여, 본 발명의 일 예는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)에서 선택되는 유산균을 제공한다. 상기 락토바실러스 브레비스(Lactobacillus brevis), 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 비피도박테리움 롱검(Bifidobacterium longum)은 항산화 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성을 갖는다. 또한, 본 발명의 일 예는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)에서 선택되는 유산균, 상기 유산균의 배양물, 상기 유산균의 파쇄물 또는 상기 유산균의 추출물을 유효성분으로 포함하고, 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 치료하기 위한 용도의 약학 조성물을 제공한다. 또한 본 발명의 일예는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)에서 선택되는 유산균, 상기 유산균의 배양물, 상기 유산균의 파쇄물 또는 상기 유산균의 추출물을 유효성분으로 포함하고, 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 개선하기 위한 용도의 식품 조성물을 제공한다.In order to achieve the object of the present invention, one example of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence described in SEQ ID NO: 1 as 16S rDNA, comprising the nucleotide sequence described in SEQ ID NO: 3 as 16S rDNA Bifidobacterium longum , Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA, Lactobacillus plantarum , Lactobacillus planta comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA Lactobacillus plantarum or Lactobacillus is selected from Bifidobacterium longum ( Bifidobacterium longum ) comprising the nucleotide sequence of SEQ ID NO: 7 in 16S rDNA. The Lactobacillus brevis ( Lactobacillus brevis ), Lactobacillus plantarum ( Lactobacillus plantarum ) or Bifidobacterium long gum ( Bifidobacterium) longum ) has antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity, or tight junction protein expression inducing activity. In addition, one embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) lactic acid bacteria selected from, lactic acid bacteria cultures, lysates of lactic acid bacteria or extracts of the lactic acid bacteria as an active ingredient, and for preventing or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity It provides a pharmaceutical composition. In addition, one embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) lactic acid bacteria, the culture of the lactic acid bacteria, lactic acid bacteria lysate or extract of the lactic acid bacteria as an active ingredient, and for preventing or improving intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity It provides a food composition.
본 발명의 다른 목적을 달성하기 위하여, 본 발명의 일 예는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 및 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)으로 이루어진 군에서 2종 이상 선택되는 혼합 유산균 을 제공한다. 상기 혼합 유산균은 항산화 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성을 갖는다. 또한, 본 발명의 일 예는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 및 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)으로 이루어진 군에서 2종 이상 선택되는 혼합 유산균, 상기 혼합 유산균의 배양물, 상기 혼합 유산균의 파쇄물 또는 상기 혼합 유산균의 추출물을 유효성분으로 포함하고, 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 치료하기 위한 용도의 조성물을 제공한다. 또한, 본 발명의 일 예는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 및 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)으로 이루어진 군에서 2종 이상 선택되는 혼합 유산균, 상기 혼합 유산균의 배양물, 상기 혼합 유산균의 파쇄물 또는 상기 혼합 유산균의 추출물을 유효성분으로 포함하고, 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 개선하기 위한 용도의 식품 조성물을 제공한다.In order to achieve another object of the present invention, one example of the present invention is Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA Bifidobacterium longum , Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA, Lactobacillus plantarum , Lactobacillus planta comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA Provided is a mixed lactic acid bacteria selected from the group consisting of Bifidobacterium longum ( Lactobacillus plantarum ) and Bifidobacterium longum comprising the nucleotide sequence of SEQ ID NO: 7 in 16S rDNA. The mixed lactic acid bacteria have antioxidant activity, beta-glucuronidase (β-glucuronidase) inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity or tight junction protein expression inducing activity. In addition, one embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum), Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S BP gambling comprising the nucleotide sequence set forth in SEQ ID NO: 7 by rDNA Te Solarium ronggeom (Bifidobacterium longum ) comprises a mixed lactic acid bacteria selected from the group consisting of two or more, the culture of the mixed lactic acid bacteria, the shredded product of the mixed lactic acid or the extract of the mixed lactic acid bacteria as an active ingredient, intestinal damage, liver damage, allergic diseases, inflammatory diseases Or compositions for use in preventing or treating obesity. In addition, one embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum ( Bifidobacterium) comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum), Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) comprises a mixed lactic acid bacteria selected from the group consisting of two or more, the culture of the mixed lactic acid bacteria, the shredded product of the mixed lactic acid or the extract of the mixed lactic acid bacteria as an active ingredient, intestinal damage, liver damage, allergic diseases, inflammatory diseases Or a food composition for use in preventing or improving obesity.
본 발명에 따른 특정 락토바실러스속 균주 또는 특정 비피도박테리움속 균주는 김치 또는 사람의 분변에서 분리되어 안전성이 높고 항산화 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성 등과 같은 다양한 생리활성을 갖는다. 따라서, 본 발명에 따른 특정 락토바실러스속 균주, 특정 비피도박테리움속 균주 또는 이들의 혼합 유산균은 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만 등을 예방, 개선 또는 치료하는데에 유용한 기능성 식의약 소재로 사용될 수 있다.Specific Lactobacillus strains or specific Bifidobacterium strains according to the present invention are isolated from kimchi or human feces, high safety, antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide ( lipopolysaccharide (LPS) production inhibitory activity or tight junction protein (tight junction protein) expression inducing activity and the like have a variety of physiological activities. Accordingly, certain Lactobacillus strains, certain Bifidobacterium strains or mixed lactic acid bacteria thereof according to the present invention are useful in preventing, ameliorating or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity. It can be used as a food and pharmaceutical material.
도 1은 본 발명의 1차 실험에서, D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 GOT 값의 변화를 나타낸 그래프이고, 도 2는 본 발명의 1차 실험에서, D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 GPT 값의 변화를 나타낸 그래프이고, 도 3은 본 발명의 1차 실험에서, D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 MDA 값의 변화를 나타낸 그래프이다.1 is a graph showing changes in GOT values when lactic acid bacteria are administered to a model animal induced by liver damage by D-galactosamine in the first experiment of the present invention, and FIG. In the first experiment, when the lactic acid bacteria were administered to the model animal induced liver damage by D-galactosamine (D-Galactosamine) is a graph showing the change in the GPT value, Figure 3 in the first experiment of the present invention, D -It is a graph showing the change of MDA value when lactic acid bacteria were administered to a model animal in which liver damage was induced by galactosamine (D-Galactosamine).
도 4는 본 발명의 1차 실험에서 선별한 유산균들이 LPS(lipopolysaccharide)로 유도된 수지상 세포의 염증 반응에 미치는 영향을 나타낸 그래프이다. 도 4에서 왼쪽의 그래프는 LPS(lipopolysaccharide)를 처리하지 않은 세포에 유산균들이 미치는 영향을 나타낸 그래프이고, 오른쪽의 그래프는 LPS(lipopolysaccharide)를 처리한 세포에 유산균들이 미치는 영향을 나타낸 그래프이다.4 is a graph showing the effect of lactic acid bacteria selected in the first experiment of the present invention on the inflammatory response of dendritic cells induced by LPS (lipopolysaccharide). 4 is a graph showing the effect of lactic acid bacteria on cells not treated with LPS (lipopolysaccharide), and the graph on the right is a graph showing the effect of lactic acid bacteria on cells treated with LPS (lipopolysaccharide).
도 5는 본 발명의 1차 실험에서, 비피도박테리움 롱검(Bifidobacterium longum) CH57이 LPS(lipopolysaccharide)로 유도된 대식세포(macrophage)의 염증 반응에 미치는 영향을 나타낸 그래프이다.5 is a graph showing the effect of Bifidobacterium longum CH57 on the inflammatory response of macrophage induced by LPS (lipopolysaccharide) in the first experiment of the present invention.
도 6은 본 발명의 1차 실험에서, 락토바실러스 브레비스(Lactobacillus brevis) CH23이 비장에서 분리된 T 세포의 Th17 세포 또는 Treg 세포로의 분화에 미치는 영향을 FACS(Fluorescence-activated cell sorting) 장치로 분석한 결과이다.FIG. 6 shows the effect of Lactobacillus brevis CH23 on the differentiation of T cells isolated from the spleen into Th17 cells or Treg cells in the first experiment of the present invention using a Fluorescence-activated cell sorting (FACS) device. One result.
도 7은 본 발명의 1차 실험에서, 락토바실러스 브레비스(Lactobacillus brevis) CH23, 비피도박테리움 롱검(Bifidobacterium longum) CH57 또는 이들의 혼합 유산균이 CaCO2 세포의 ZO-1 단백질 발현에 미치는 영향을 분석한 결과이다.Figure 7 in the first experiment of the present invention, Lactobacillus brevis ( Lactobacillus brevis ) CH23, Bifidobacterium long gum ( Bifidobacterium) longum ) The result of analyzing the effect of CH57 or mixed lactic acid bacteria on the expression of ZO-1 protein in CaCO2 cells.
도 8은 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57이 미치는 영향을 대장의 외관 또는 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등으로 나타낸 것이고, 도 9는 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57이 미치는 영향을 대장의 조직학적 사진으로 나타낸 것이며, 도 10은 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이다.FIG. 8 shows Bifidobacterium longgum for a model animal induced by acute colitis by TNBS in a first experiment of the present invention. longum ) shows the effect of CH57 on the appearance of the large intestine or myeloperoxidase (MPO) activity, etc., Figure 9 is a non-gambling for the model animal induced acute colitis by TNBS in the first experiment of the present invention Te Solarium ronggeom (Bifidobacterium longum ) shows the effect of CH57 in the histological picture of the colon, Figure 10 shows the Bifidobacterium longum CH57 in a model animal induced by acute colitis by TNBS in the first experiment of the present invention The effect is indicated by inflammation related cytokines and the like.
도 11은 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 대장의 외관 또는 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등으로 나타낸 것이고, 도 12는 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 대장의 조직학적 사진으로 나타낸 것이며, 도 13은 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 T 세포의 분화 양상으로 나타낸 것이고, 도 14는 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이다.FIG. 11 illustrates the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis by TNBS in the first experiment of the present invention, such as the appearance of colon or myeloperoxidase (MPO) activity. 12 is a histological picture of the large intestine showing the effect of Lactobacillus brevis CH23 on a model animal induced by acute colitis by TNBS in the first experiment of the present invention. In the first experiment of the present invention, the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis induced by TNBS is shown as a differentiation aspect of T cells, and FIG. 14 is a first experiment of the present invention. in, Lactobacillus brevis for an animal model of acute colitis is induced by TNBS (Lactobacillus brevis) influence on the CH23 It shows the inflammatory cytokines and the like.
도 15는 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 대장의 외관 또는 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등으로 나타낸 것이고, 도 16은 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 대장의 조직학적 사진으로 나타낸 것이며, 도 17은 본 발명의 1차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이다.15 is ronggeom Bifidobacterium (Bifidobacterium for an animal model of acute colitis is induced by the primary experiment according to the present invention, TNBS longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by the appearance of colon or myeloperoxidase (MPO) activity, and FIG. 16 shows the effect of TNBS on the first experiment of the present invention. Bifidobacterium long gum ( Bifidobacterium) on model animals induced by acute colitis longum ) shows the effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 in the histological picture of the large intestine, Figure 17 shows in a model animal induced by acute colitis by TNBS in the first experiment of the present invention. ronggeom for Bifidobacterium (Bifidobacterium longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by cytokines related to inflammation.
도 18은 본 발명의 1차 실험에서, 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 체중 변화량 등으로 나타낸 것이고, 도 19는 본 발명의 1차 실험에서, 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 대장의 외관, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성, 대장의 조직학적 사진 등으로 나타낸 것이고, 도 20은 본 발명의 1차 실험에서, 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이고, 도 21은 본 발명의 1차 실험에서, 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 염증 반응 지표 물질 등으로 나타낸 것이다.FIG. 18 shows the Bifidobacterium long gum for obesity-induced model animals in the first experiment of the present invention. longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) will represented by such weight the effect of mixing lactic acid bacteria on the CH23 variation, Figure 19 is Bifidobacterium ronggeom for the primary test of the invention, the obesity induction model animal (Bifidobacterium longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown in the appearance of the large intestine, myeloperoxidase (MPO) activity, histological picture of the large intestine, and FIG. In the second experiment, the effects of mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 on obesity-induced model animals are shown by inflammation related cytokines and the like. In the first experiment of Bifidobacterium longum CH57 on obesity-induced model animals And Lactobacillus brevis ( Lactobacillus brevis ) the effect of the mixed lactic acid bacteria of CH23 is shown as an indicator of inflammatory response.
도 22는 본 발명의 2차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 유산균이 미치는 영향을 T 세포의 Th17 세포로의 분화 양상으로 나타낸 것이고, 도 23은 본 발명의 2차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 유산균이 미치는 영향을 T 세포의 Treg 세포로의 분화 양상으로 나타낸 것이다.22 shows the effect of lactic acid bacteria on the differentiation of T cells into Th17 cells in a model animal induced by acute colitis by TNBS in a second experiment of the present invention, and FIG. 23 is a second experiment of the present invention. In the present invention, the effect of lactic acid bacteria on TNBS-induced acute colitis is shown as a differentiation pattern of T cells into Treg cells.
도 24는 본 발명의 2차 실험에서, TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 유산균이 미치는 영향을 염증 반응 지표 물질 등으로 나타낸 것이다.FIG. 24 shows the effects of lactic acid bacteria on the model animals induced by acute colitis by TNBS in the second experiment of the present invention as inflammatory response indicators.
도 25는 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 사진으로 나타낸 것이고, 도 26은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 총 위 병변 점수(gross gastric lesion score)로 나타낸 것이고, 도 27은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 궤양 지수(ulcer index)로 나타낸 것이고, 도 28은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 조직 활성 지수(Histological activity index)로 나타낸 것이다.FIG. 25 is a photograph showing the effect of lactic acid bacteria on the gastric mucosa of the mouse induced by gastric ulcers in the second experiment of the present invention. FIG. 26 is a second experiment of the present invention. The effect of lactic acid bacteria on the gastric mucosa of the gastric ulcer induced by the gastric ulcer is shown by the gross gastric lesion score (Gross gastric lesion score), Figure 27 is a gastric ulcer by ethanol in the second experiment of the present invention The effect of lactic acid bacteria on the gastric mucosa of the induced mice (ulcer index) is shown by the ulcer index (ulcer index), Figure 28, in the second experiment of the present invention, gastric mucosa of the mice induced gastric ulcer by ethanol (Histological activity index) shows the effect of lactic acid bacteria on (stomach mucosa).
도 29는 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성으로 나타낸 것이다.FIG. 29 shows the effect of lactic acid bacteria on the gastric mucosa of the mice induced by gastric ulcer in ethanol in the second experiment of the present invention as myeloperoxidase (MPO) activity.
도 30은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 CXCL4의 발현 수준으로 나타낸 것이고, 도 31은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 TNF-α의 발현 수준으로 나타낸 것이다.FIG. 30 shows the effect of lactic acid bacteria on the gastric mucosa of the mice induced by gastric ulcers in the second experiment of the present invention by expression level of CXCL4, and FIG. 31 is a second experiment of the present invention. In the present invention, the effect of lactic acid bacteria on the gastric mucosa (stomach mucosa) of the gastric ulcer induced by ethanol is expressed as the expression level of TNF-α.
이하, 본 발명에서 사용한 용어를 설명한다.Hereinafter, the term used by this invention is demonstrated.
본 발명에서 사용되는 용어 "배양물"이란 미생물을 공지의 액체 배지 또는 고체 배지에서 배양시켜 수득한 산물을 의미하여, 미생물이 포함되는 개념이다.As used herein, the term "culture" means a product obtained by culturing a microorganism in a known liquid medium or a solid medium, and is a concept in which a microorganism is included.
본 발명에서 "약학적으로 허용가능한" 및 "식품학적으로 허용가능한"이란 생물체를 상당히 자극하지 않고 투여 활성 물질의 생물학적 활성 및 특성을 저해하지 않는 것을 의미한다.As used herein, "pharmaceutically acceptable" and "food acceptable" means that they do not significantly stimulate the organism and do not inhibit the biological activity and properties of the administered active substance.
본 발명에서 사용되는 용어 "예방"은 본 발명의 조성물의 투여로 특정 질환의 증상을 억제하거나 진행을 지연시키는 모든 행위를 의미한다.As used herein, the term "prevention" means any action that inhibits the symptoms or delays the progression of a particular disease by administration of a composition of the present invention.
본 발명에서 사용되는 용어 "치료"는 본 발명의 조성물의 투여로 특정 질환의 증상을 호전 또는 이롭게 변경시키는 모든 행위를 의미한다.As used herein, the term "treatment" means any action that improves or beneficially alters the symptoms of a particular disease by administration of a composition of the present invention.
본 발명에서 사용되는 용어 "개선"은 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.The term "improvement" as used herein refers to any action that at least reduces the parameters associated with the condition being treated, for example, the extent of symptoms.
본 발명에서 사용되는 용어 "투여"는 임의의 적절한 방법으로 개체에 소정의 본 발명의 조성물을 제공하는 것을 의미한다. 이때, 개체는 본 발명의 조성물을 투여하여 특정 질환의 증상이 호전될 수 있는 질환을 가진 인간, 원숭이, 개, 염소, 돼지 또는 쥐 등 모든 동물을 의미한다.As used herein, the term "administration" means providing a subject with a composition of the present invention in any suitable manner. At this time, the subject refers to all animals, such as humans, monkeys, dogs, goats, pigs or mice having a disease that can improve the symptoms of a particular disease by administering the composition of the present invention.
본 발명에서 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜 또는 위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 이는 개체의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시에 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.As used herein, the term "pharmaceutically effective amount" refers to an amount sufficient to treat a disease at a reasonable benefit or risk ratio applicable to medical treatment, which refers to the type of disease, the severity, the activity of the drug, the drug, and the like. Sensitivity, time of administration, route of administration and rate of excretion, duration of treatment, factors including drug used concurrently, and other factors well known in the medical arts.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명의 일 측면은 다양한 생리활성을 갖는 신규 유산균 또는 생리활성을 상승시킬 수 있는 신규 혼합 유산균에 관한 것이다.One aspect of the present invention relates to a novel lactic acid bacteria having a variety of physiological activity or a novel mixed lactic acid bacteria that can increase the biological activity.
본 발명의 일 예에 따른 신규 유산균은 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)에서 선택되고, 항산화 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성을 갖는다. 상기 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis)는 김치에서 분리된 혐기성 간균으로서, 그람 염색시 양성을 나타내고, 넓은 온도 범위, 낮은 pH, 높은 염 농도에 환경에서 생존할 수 있으며, 글루코시다제를 생산한다. 또한, 상기 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis)는 탄소원으로 D-리보스, D-자일로스, D-글루코스, D-프럭토스, 에스큘린(Esculin), 살리신(Salicin), 말토스, 멜리바이오스(Melibiose), 5-케토-글루코네이트(5-keto-gluconate) 등을 이용한다. 또한, 상기 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis)는 바람직하게는 락토바실러스 브레비스(Lactobacillus brevis) CH23(수탁번호 : KCCM 11762P)이다. 상기 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 사람의 분변에서 분리된 혐기성 간균으로서, 그람 염색시 양성을 나타내고, 글루코시다제를 생산한다. 또한, 상기 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 탄소원으로 D-갈락토스, D-글루코스, D-프럭토스 등을 이용한다. 또한, 상기 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 바람직하게는 비피도박테리움 롱검(Bifidobacterium longum) CH57(수탁번호 : KCCM 11764P)이다. 상기 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 김치에서 분리된 혐기성 간균으로서, 그람 염색시 양성을 나타낸다. 또한, 상기 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 탄소원으로 D-리보스, D-갈락토스, D-글루코스, D-프럭토스, D-만노스, 만니톨, 솔비톨, N-아세틸-글루코사민, 아미그달린, 알부틴, 에스큘린(Esculin), 살리신(Salicin), 셀로바이오스, 말토스, 멜리바이오스(Melibiose), 수크로스, 트레할로스, 멜레지토스 등을 이용한다. 또한, 상기 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 바람직하게는 락토바실러스 플란타룸(Lactobacillus plantarum) LC5(수탁번호 : KCCM 11800P)이다. 상기 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 김치에서 분리된 혐기성 간균으로서, 그람 염색시 양성을 나타낸다. 또한, 상기 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 탄소원으로 L-아라비노스, D-리보스, D-글루코스, D-프럭토스, D-만노스, 만니톨, 솔비톨, N-아세틸-글루코사민, 아미그달린, 알부틴, 에스큘린(Esculin), 살리신(Salicin), 셀로바이오스, 말토스, 락토스, 멜리바이오스(Melibiose), 수크로스, 트레할로스, 멜레지토스 등을 이용한다. 또한, 상기 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 바람직하게는 락토바실러스 플란타룸(Lactobacillus plantarum) LC27(수탁번호 : KCCM 11801P)이다. 상기 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 사람의 분변에서 분리된 혐기성 간균으로서, 그람 염색시 양성을 나타낸다. 또한, 상기 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 탄소원으로 L-아라비노스, D-자일로스, D-글루코스, D-프럭토스, 에스큘린(Esculin), 말토스, 락토스, 멜리바이오스, 수크로스 등을 이용한다. 또한, 상기 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 바람직하게는 비피도박테리움 롱검(Bifidobacterium longum) LC67(수탁번호 : KCCM 11802P)이다.The novel lactic acid bacteria according to an embodiment of the present invention is Lactobacillus brevis (16S rDNA) comprising the nucleotide sequence of SEQ ID NO: 1Lactobacillus brevis), Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA (Bifidobacterium longum), Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA (Lactobacillus plantarum), Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA (Lactobacillus plantarumOr Bifidobacterium longgum comprising the nucleotide sequence of SEQ ID NO: 7 as 16S rDNA (Bifidobacterium longum) Has antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity or tight junction protein expression inducing activity. Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA (Lactobacillus brevis) Is an anaerobic bacillus isolated from kimchi, shows positive in Gram staining, can survive in a wide temperature range, low pH, high salt concentration, and produces glucosidase. In addition, Lactobacillus brevis containing the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA (Lactobacillus brevis) Is the carbon source of D-ribose, D-xylose, D-glucose, D-fructose, Esculin, Salicin, Maltose, Melibiose, 5-keto-gluconate (5 -keto-gluconate). In addition, Lactobacillus brevis containing the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA (Lactobacillus brevis) Is preferably Lactobacillus brevis (Lactobacillus brevis) CH23 (accession number: KCCM 11762P). Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as the 16S rDNA (Bifidobacterium longum) Is an anaerobic bacillus isolated from human feces, positive in Gram staining, and produces glucosidase. In addition, Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as the 16S rDNA (Bifidobacterium longum) Uses D-galactose, D-glucose, D-fructose as a carbon source. In addition, Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as the 16S rDNA (Bifidobacterium longum) Is preferably Bifidobacterium long gum (Bifidobacterium longum) CH57 (Accession No .: KCCM 11764P). Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as the 16S rDNA (Lactobacillus plantarum) Is an anaerobic bacillus isolated from Kimchi and shows positive gram staining. In addition, Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as the 16S rDNA (Lactobacillus plantarum) Is the carbon source of D-ribose, D-galactose, D-glucose, D-fructose, D-mannose, mannitol, sorbitol, N-acetyl-glucosamine, amigdaline, arbutin, esculin, salicycin, Cellobiose, maltose, melibiose, sucrose, trehalose, melezitose and the like are used. In addition, Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 4 as the 16S rDNA (Lactobacillus plantarum) Is preferably Lactobacillus plantarum (Lactobacillus plantarum) LC5 (Accession No .: KCCM 11800P). Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as the 16S rDNA (Lactobacillus plantarum) Is an anaerobic bacillus isolated from Kimchi and shows positive gram staining. In addition, Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as the 16S rDNA (Lactobacillus plantarum) Is the carbon source of L-arabinose, D-ribose, D-glucose, D-fructose, D-mannose, mannitol, sorbitol, N-acetyl-glucosamine, amigdaline, arbutin, esculin, salicycin , Cellobiose, maltose, lactose, melibiose, sucrose, trehalose, melezitose and the like. In addition, Lactobacillus plantarum comprising the nucleotide sequence of SEQ ID NO: 5 as the 16S rDNA (Lactobacillus plantarum) Is preferably Lactobacillus plantarum (Lactobacillus plantarum) LC27 (Accession No .: KCCM 11801P). Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 7 as the 16S rDNA (Bifidobacterium longum) Is an anaerobic bacillus isolated from human feces and shows positive gram staining. In addition, Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 7 as the 16S rDNA (Bifidobacterium longum) Uses L-arabinose, D-xylose, D-glucose, D-fructose, esculin, maltose, lactose, melibios, sucrose and the like as carbon sources. In addition, Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 7 as the 16S rDNA (Bifidobacterium longum) Is preferably Bifidobacterium long gum (Bifidobacterium longum) LC67 (Accession No .: KCCM 11802P).
본 발명의 일 예에 따른 혼합 유산균은 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 및 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)으로 이루어진 군에서 2종 이상 선택된다. 본 발명의 일 예에 따른 혼합 유산균은 유산균들의 상승 작용을 고려할 때, 바람직하게는 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis) 및 16S rDNA로 서열번호 3 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)의 조합으로 이루어진다. 또한, 본 발명의 일 예에 따른 혼합 유산균은 유산균들의 상승 작용을 고려할 때, 바람직하게는 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)에서 선택되는 하나 이상의 락토바실러스속 균; 및 16S rDNA로 서열번호 7 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)의 조합으로 이루어진다. 상기 혼합 유산균은 특정 락토바실러스속 균주와 특정 비피도박테리움속 균주의 상승 작용에 의해 단일 유산균보다 높은 항산화 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성을 가지며, 기능성 식의약적 소재 측면에서 보다 유용하다. 본 발명의 일 예에 따른 혼합 유산균에서 상기 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis)는 락토바실러스 브레비스(Lactobacillus brevis) CH23(수탁번호 : KCCM 11762P)이고, 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 비피도박테리움 롱검(Bifidobacterium longum) CH57(수탁번호 : KCCM 11764P)이고, 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5(수탁번호 : KCCM 11800P)이고, 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27(수탁번호 : KCCM 11801P)이고, 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 비피도박테리움 롱검(Bifidobacterium longum) LC67(수탁번호 : KCCM 11802P)인 것이 바람직하다.Mixed lactic acid bacteria according to an embodiment of the present invention is Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum (SEQ ID NO: 3) Bifidobacterium longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) and Bifidobacterium longgum comprising the nucleotide sequence of SEQ ID NO: 7 as 16S rDNA It is selected from the group consisting of two or more kinds longum). Mixed lactic acid bacteria according to an embodiment of the present invention is preferably Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA and bases described in SEQ ID NO: 3 as 16S rDNA It consists of a combination of Bifidobacterium longum containing sequences. In addition, the mixed lactic acid bacteria according to an embodiment of the present invention, when considering the synergistic action of the lactic acid bacteria, preferably in Lactobacillus plantarum ( Lactobacillus plantarum ) or 16S rDNA comprising the nucleotide sequence of SEQ ID NO: 4 in 16S rDNA One or more Lactobacillus genus bacteria selected from Lactobacillus plantarum comprising the nucleotide sequence of No. 5; And Bifidobacterium longum comprising the nucleotide sequence set forth in SEQ ID NO: 7 as 16S rDNA. The mixed lactic acid bacteria have a higher antioxidant activity, a beta-glucuronidase inhibitory activity than a single lactic acid bacterium by synergistic action of a specific Lactobacillus strain and a specific Bifidobacterium strain, and a lipopolysaccharide (LPS). A) has a production inhibitory activity or a tight junction protein expression inducing activity, and is more useful in terms of functional food and pharmaceutical materials. Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA in the mixed lactic acid bacteria according to an embodiment of the present invention is Lactobacillus brevis CH23 (Accession Number: KCCM 11762P), 16S rDNA as Bifidobacterium ronggeom comprising the nucleotide sequence set forth in SEQ ID NO: 3 (Bifidobacterium longum) is ronggeom Bifidobacterium (Bifidobacterium longum ) CH57 (Accession No .: KCCM 11764P), Lactobacillus plantarum ( Lactobacillus plantarum ) LC5 (Accession No .: KCCM) containing the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA Lactobacillus plantarum Lactobacillus plantarum LC27 (Accession No .: KCCM 11801P) comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA, and sequence as 16S rDNA BP gambling comprising the nucleotide sequence shown in No. 7 Te Solarium ronggeom (Bifidobacterium longum ) is preferably Bifidobacterium longum LC67 (Accession Number: KCCM 11802P).
본 발명의 다른 측면은 신규 유산균 또는 신규 혼합 유산균의 다양한 용도에 관한 것이다. 신규 유산균의 용도로, 본 발명은 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)에서 선택되는 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물을 유효성분으로 포함하고, 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방, 개선 또는 치료하기 위한 용도의 조성물을 제공한다. 또한, 신규 혼합 유산균의 용도로, 본 발명은 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 및 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)으로 이루어진 군에서 2종 이상 선택되는 혼합 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물을 유효성분으로 포함하고, 장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방, 개선 또는 치료하기 위한 용도의 조성물을 제공한다. 본 발명의 조성물에서 상기 락토바실러스 브레비스(Lactobacillus brevis), 락토바실러스 플란타룸(Lactobacillus plantarum) 및 비피도박테리움 롱검(Bifidobacterium longum)의 기술적 특징은 전술한 바와 동일하므로 설명을 생략한다. 상기 장 손상은 장내세균총의 교란 등에 의해 장(특히 소장 또는 대장)의 기능이 정상적이지 않은 상태를 말하며, 바람직하게는 장 누수 증후군이다. 또한, 상기 간 손상은 외부적 요인이나 내부적 요인 등에 의해 간의 기능이 정상적이지 않은 상태를 말하며, 바람직하게는 간염, 지방간 또는 간 경변증에서 선택된다. 또한, 상기 간염은 비알코올성 간염 및 알코올성 간염을 모두 포함한다. 또한, 상기 지방간은 비알코올성 지방간 및 알코올성 지방간을 모두 포함한다. 또한, 상기 알러지 질환은 생체의 과도한 면역반응에 의해 발생하는 질환이라면 그 종류가 크게 제한되지 않으며, 바람직하게는 아토피 피부염, 천식, 인후염 또는 만성 피부염에서 선택된다. 또한, 상기 염증 질환은 염증 반응에 의해 유발되는 질환이라면 그 종류가 크게 제한되지 않으며, 바람직하게는 위염, 위궤양, 관절염 또는 대장염에서 선택된다. 또한, 상기 관절염은 류머티스 관절염을 포함한다. 또한, 상기 대장염은 세균 감염이나 장 내용물의 병적 발효 등으로 인해 대장에 염증이 발생한 상태를 말하며, 감염성 대장염과 비감염성 대장염을 포함하는 개념이다. 대장염의 구체적인 예로는 염증성 대장 질환 또는 과민성 대장염 증후군 등이 있다. 또한, 염증성 대장 질환은 궤양성 대장염(ulcerative colitis), 또는 크론병(Crohn's disease) 등을 포함한다.Another aspect of the invention relates to various uses of the novel lactic acid bacteria or new mixed lactic acid bacteria. For the use of the novel lactic acid bacteria, the present invention is Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) comprising a lactic acid bacteria, its culture, its crush or its extract as an active ingredient, and provides a composition for use in preventing, improving or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity do. In addition, for use of the novel mixed lactic acid bacteria, the present invention is Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, Bifidobacterium comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA Long Gum ( Bifidobacterium) longum), Lactobacillus Planta room (Lactobacillus plantarum), Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) containing two or more selected lactic acid bacteria, its culture, its lysate or its extract as an active ingredient, and prevents, improves or treats intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity A composition for use is provided. Lactobacillus brevis ( Lactobacillus brevis ), Lactobacillus plantarum ( Lactobacillus plantarum ) and Bifidobacterium long gum ( Bifidobacterium ) in the composition of the present invention longum ) technical features are the same as described above, and thus description thereof is omitted. The intestinal damage refers to a condition in which the function of the intestine (particularly the small intestine or the large intestine) is not normal due to disturbance of the intestinal bacterial flora, and preferably intestinal leak syndrome. In addition, the liver damage refers to a condition in which liver function is not normal due to external factors or internal factors, and is preferably selected from hepatitis, fatty liver, or liver cirrhosis. In addition, the hepatitis includes both nonalcoholic hepatitis and alcoholic hepatitis. In addition, the fatty liver includes both non-alcoholic fatty liver and alcoholic fatty liver. In addition, the allergic disease is not limited in kind as long as it is caused by an excessive immune response of the living body, and is preferably selected from atopic dermatitis, asthma, sore throat or chronic dermatitis. In addition, if the inflammatory disease is a disease caused by an inflammatory response, the type thereof is not particularly limited and is preferably selected from gastritis, gastric ulcer, arthritis or colitis. In addition, the arthritis includes rheumatoid arthritis. In addition, the colitis refers to a condition in which the intestine is inflamed due to bacterial infection or pathological fermentation of the intestinal contents, and is a concept including infective colitis and non-infectious colitis. Specific examples of colitis include inflammatory bowel disease or irritable colitis syndrome. Inflammatory bowel disease also includes ulcerative colitis, Crohn's disease, and the like.
본 발명에서 유산균의 배양물 또는 혼합 유산균의 배양물은 소정의 균주 또는 혼합 균주를 배지에서 배양시켜 수득한 산물로서, 상기 배지는 공지의 액체 배지 또는 고체 배지에서 선택될 수 있으며, 예를 들어 MRS 액체 배지, MRS 한천 배지, BL 한천 배지일 수 있다.In the present invention, the culture of lactic acid bacteria or the culture of mixed lactic acid bacteria is a product obtained by culturing a predetermined strain or mixed strain in a medium, the medium may be selected from a known liquid medium or a solid medium, for example, MRS Liquid medium, MRS agar medium, BL agar medium.
본 발명에서 상기 조성물은 사용 목적 내지 양상에 따라 약학 조성물, 식품 첨가제, 식품 조성물(특히 기능성 식품 조성물) 또는 사료 첨가제 등으로 구체화될 수 있다. 또한, 유효성분인 유산균 또는 혼합 유산균의 함량도 조성물의 구체적인 형태, 사용 목적 내지 양상에 따라 다양한 범위에서 조정될 수 있다.In the present invention, the composition may be embodied as a pharmaceutical composition, a food additive, a food composition (particularly a functional food composition), a feed additive, and the like according to the purpose or aspect of use. In addition, the content of the lactic acid bacteria or mixed lactic acid bacteria as an active ingredient may also be adjusted in various ranges according to the specific form of the composition, purpose of use, and aspects.
본 발명에 따른 약학 조성물에서 유효성분인 신규 유산균, 신규 혼합 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물의 함량은 크게 제한되지 않으며, 예를 들어 조성물 총 중량을 기준으로 0.01~99 중량%, 바람직하게는 0.5~50 중량%, 더 바람직하게는 1~30 중량%일 수 있다. 또한, 본 발명에 따른 약학 조성물은 유효성분 외에 약학적으로 허용가능한 담체, 부형제 또는 희석제와 같은 첨가제를 더 포함할 수 있다. 본 발명의 약학 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 본 발명의 약학 조성물은 신규 유산균, 신규 혼합 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물 외에 장 손상, 간 손상, 알러지 질환, 염증 질환 또는 비만의 예방 또는 치료 효과를 갖는 공지의 유효성분을 1종 이상 더 함유할 수 있다. 본 발명의 약학 조성물은 통상의 방법에 의해 경구 투여를 위한 제형 또는 비경구 투여를 위한 제형으로 제제화될 수 있고, 제제화할 경우 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구 투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 유효성분에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(Calcium carbonate), 수크로스(Sucrose), 락토오스(Lactose) 또는 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용될 수 있다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 및 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약학 조성물은 목적하는 방법에 따라 인간을 포함한 포유류에 경구 투여되거나 비경구 투여될 수 있으며, 비경구 투여 방식으로는 피부 외용, 복강내주사, 직장내주사, 피하주사, 정맥주사, 근육내 주사 또는 흉부내 주사 주입방식 등이 있다. 본 발명의 약학 조성물의 투여량은 약학적으로 유효한 양이라면 크게 제한되지 않으며, 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도에 따라 그 범위가 다양하다. 본 발명의 약학 조성물의 통상적인 1일 투여량은 크게 제한되지 않으나 바람직하게는 유효성분을 기준으로 할 때 0.1 내지 3000 ㎎/㎏이고, 더 바람직하게는 1 내지 2000 ㎎/㎏이며, 하루 1회 또는 수회로 나누어 투여될 수 있다.In the pharmaceutical composition according to the present invention, the content of the novel lactic acid bacteria, new mixed lactic acid bacteria, its culture, its lysate or its extract is not particularly limited, for example, 0.01 to 99% by weight, based on the total weight of the composition, preferably Preferably 0.5 to 50% by weight, more preferably 1 to 30% by weight. In addition, the pharmaceutical composition according to the present invention may further include an additive such as a pharmaceutically acceptable carrier, excipient or diluent in addition to the active ingredient. Carriers, excipients and diluents that may be included in the pharmaceutical compositions of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate , Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, the pharmaceutical composition of the present invention, in addition to the novel lactic acid bacteria, new mixed lactic acid bacteria, cultures thereof, crushed products or extracts thereof, known active ingredients having the effect of preventing or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases or obesity It may contain 1 or more types. The pharmaceutical composition of the present invention may be formulated into a formulation for oral administration or a parenteral administration by a conventional method, and when formulated, such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. Diluents or excipients may be used. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations contain at least one excipient such as starch, calcium carbonate, sucrose in active ingredients. ), Lactose (Lactose) or gelatin can be prepared by mixing. In addition to simple excipients, lubricants such as magnesium styrate talc may also be used. Liquid preparations for oral administration include suspensions, solutions, emulsions, and syrups, and various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents, water and liquid paraffin. have. Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories. As the non-aqueous solvent and the suspension solvent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used. As the base of the suppository, witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used. Furthermore, it may be preferably formulated according to each disease or component by an appropriate method in the art or using a method disclosed in Remington's Pharmaceutical Science (Recent Edition), Mack Publishing Company, Easton PA. The pharmaceutical composition of the present invention can be administered orally or parenterally to mammals including humans according to a desired method, and parenteral administration methods include external skin, intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, muscle Intra-injection or intrathoracic injection; The dosage of the pharmaceutical composition of the present invention is not particularly limited as long as it is a pharmaceutically effective amount, and the range thereof depends on the weight, age, sex, health condition, diet, time of administration, method of administration, excretion rate and severity of the disease. Varies. Typical daily dosages of the pharmaceutical compositions of the present invention are not particularly limited but are preferably 0.1 to 3000 mg / kg, more preferably 1 to 2000 mg / kg, once daily based on the active ingredient. Or divided into several doses.
또한, 본 발명에 따른 식품 조성물에서 유효성분인 신규 유산균, 신규 혼합 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물의 함량은 조성물 총 중량을 기준으로 0.01~99 중량%, 바람직하게는 0.1~50 중량%, 더 바람직하게는 0.5~25 중량%이나, 이에 한정되는 것은 아니다. 본 발명의 식품 조성물은 환제, 분말, 과립, 침제, 정제, 캡슐, 또는 액제 등의 형태를 포함하며, 구체적인 식품의 예로는 육류, 소시지, 빵, 초콜릿, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 기능수, 드링크제, 알코올음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다. 본 발명의 식품 조성물은 유효성분 외에 식품학적으로 허용 가능한 담체, 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 또한, 본 발명의 식품 조성물은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 식품 조성물은 천연 과일주스, 과일주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분들은 독립적으로 또는 혼합하여 사용할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드, 및 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 향미제로는 타우마틴, 스테비아 추출물과 같은 천연 향미제나 사카린, 아스파르탐과 같은 합성 향미제 등을 사용할 수 있다.In addition, the content of the novel lactic acid bacteria, new mixed lactic acid bacteria, its culture, its lysate or extract thereof as an active ingredient in the food composition according to the present invention is 0.01 to 99% by weight, preferably 0.1 to 50% by weight, based on the total weight of the composition. %, More preferably 0.5 to 25% by weight, but is not limited thereto. The food composition of the present invention includes the form of pills, powders, granules, acupuncture, tablets, capsules, or liquids, and examples of specific foods include meat, sausage, bread, chocolate, candy, snacks, confectionary, pizza, ramen, Other noodles, gums, dairy products, including ice cream, various soups, beverages, tea, functional water, drinks, alcoholic beverages and vitamin complexes, and includes all of the health food in the usual sense. In addition to the active ingredient, the food composition of the present invention may contain, as an additional component, a food acceptable carrier, various flavors, or natural carbohydrates. In addition, the food composition of the present invention is a variety of nutrients, vitamins, electrolytes, flavors, colorants, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH regulators, stabilizers, preservatives, glycerin, alcohols And carbonation agents used in carbonated beverages. In addition, the food composition of the present invention may contain a flesh for preparing natural fruit juice, fruit juice beverage and vegetable beverage. These components can be used independently or in combination. The above-mentioned natural carbohydrates are glucose, monosaccharides such as fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, sugar alcohols such as xylitol, sorbitol and erythritol. As the flavoring agent, natural flavoring agents such as taumartin, stevia extract, synthetic flavoring agents such as saccharin, aspartame, etc. may be used.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것 일뿐, 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only intended to clearly illustrate the technical features of the present invention, and do not limit the protection scope of the present invention.
Ⅰ. 유산균 선별 및 효능 확인을 위한 1차 실험I. First experiment to screen for lactic acid bacteria and confirm efficacy
1. 유산균의 분리 및 동정1. Isolation and Identification of Lactic Acid Bacteria
(1) 김치로부터 유산균의 분리(1) Isolation of Lactic Acid Bacteria from Kimchi
배추 김치, 무 김치 및 파김치를 각각 파쇄하고, 파쇄액을 MRS 액체 배지(MRS Broth; Difco, USA)에 넣고 현탁하였다. 이후, 상등액을 취해 MRS 한천 배지(MRS agar medium; Difco, USA)에 이식하고 37℃에서 약 48시간 동안 혐기적으로 배양한 후, 콜로니(colony)를 형성한 균주들을 분리하였다.Chinese cabbage kimchi, radish kimchi, and green kimchi were respectively crushed, and the crushed liquid was suspended in MRS broth (MRS Broth; Difco, USA). Then, the supernatant was taken, transplanted into MRS agar medium (MRS agar medium; Difco, USA), and cultured anaerobicly at 37 ° C. for about 48 hours, and then colonies were formed.
(2) 사람 분변으로부터 유산균의 분리(2) Isolation of Lactic Acid Bacteria from Human Feces
사람 분변을 GAM 액체 배지(GAM broth; Nissui Pharmaceutical, Japan)에 넣고 현탁하였다. 이후, 상등액을 취해 BL 한천 배지(BL agar medium; Nissui Pharmaceutical, Japan)에 이식하고 37℃에서 약 48시간 동안 혐기적으로 배양한 후, 콜로니(colony)를 형성한 비피도박테리움속(Bifidobacterium sp.) 균주들을 분리하였다.Human feces were suspended in GAM liquid medium (GAM broth; Nissui Pharmaceutical, Japan). Subsequently, the supernatant was taken and transplanted into BL agar medium (Nissui Pharmaceutical, Japan) and incubated anaerobicly at 37 ° C. for about 48 hours, after which colony-forming Bifidobacterium sp. .) Strains were isolated.
(3) 선별한 유산균의 동정(3) Identification of selected lactic acid bacteria
김치 또는 사람 분변으로부터 분리한 균주들의 생리학적 특성 및 16S rDNA 서열을 분석하여 균주의 종을 확정하고, 균주명을 부여하였다. 하기 표 1은 배추 김치, 무 김치, 파 김치 및 사람 분변에서 분리된 유산균의 관리번호 및 균주명을 나타낸 것이다.Physiological characteristics and 16S rDNA sequences of strains isolated from kimchi or human feces were analyzed to determine the species of the strains and to give a strain name. Table 1 shows the control numbers and strain names of lactic acid bacteria isolated from Chinese cabbage kimchi, radish kimchi, green onion kimchi and human feces.
관리번호Control Number 균주명Strain name 관리번호Control Number 균주명Strain name
1One Lactobacillus acidophilus CH1 Lactobacillus acidophilus CH1 3131 Lactobacillus sakei CH31 Lactobacillus sakei CH31
22 Lactobacillus acidophilus CH2 Lactobacillus acidophilus CH2 3232 Lactobacillus johnsonii CH32 Lactobacillus johnsonii CH32
33 Lactobacillus acidophilus CH3 Lactobacillus acidophilus CH3 3333 Lactobacillus sakei CH33 Lactobacillus sakei CH33
44 Lactobacillus brevis CH4 Lactobacillus brevis CH4 3434 Lactobacillus sakei CH34 Lactobacillus sakei CH34
55 Lactobacillus curvatus CH5 Lactobacillus curvatus CH5 3535 Lactobacillus plantarum CH35 Lactobacillus plantarum CH35
66 Lactobacillus brevis CH6 Lactobacillus brevis CH6 3636 Lactobacillus sanfranciscensis CH36 Lactobacillus sanfranciscensis CH36
77 Lactobacillus casei CH7 Lactobacillus casei CH7 3737 Bifidobacterium pseudocatenulatum CH37 Bifidobacterium pseudocatenulatum CH37
88 Lactobacillus planantrum CH8 Lactobacillus planantrum CH8 3838 Bifidobacterium pseudocatenulatum CH38 Bifidobacterium pseudocatenulatum CH38
99 Lactobacillus sakei CH9 Lactobacillus sakei CH9 3939 Bifidobacterium adolescentis CH39 Bifidobacterium adolescentis CH39
1010 Lactobacillus curvatus CH10 Lactobacillus curvatus CH10 4040 Bifidobacterium adolescentis CH40 Bifidobacterium adolescentis CH40
1111 Lactobacillus sakei CH11 Lactobacillus sakei CH11 4141 Bifidobacterium adolescentis CH41 Bifidobacterium adolescentis CH41
1212 Lactobacillus curvatus CH12 Lactobacillus curvatus CH12 4242 Bifidobacterium animalis CH42 Bifidobacterium animalis CH42
1313 Lactobacillus plantarum CH13 Lactobacillus plantarum CH13 4343 Bifidobacterium animalis CH43 Bifidobacterium animalis CH43
1414 Lactobacillus fermentum CH14 Lactobacillus fermentum CH14 4444 Bifidobacterium bifidum CH44 Bifidobacterium bifidum CH44
1515 Lactobacillus fermentum CH15 Lactobacillus fermentum CH15 4545 Bifidobacterium bifidum CH45 Bifidobacterium bifidum CH45
1616 Lactobacillus gasseri CH16 Lactobacillus gasseri CH16 4646 Bifidobacterium breve CH46 Bifidobacterium breve CH46
1717 Lactobacillus paracasei CH17 Lactobacillus paracasei CH17 4747 Bifidobacterium breve CH47 Bifidobacterium breve CH47
1818 Lactobacillus helveticus CH18 Lactobacillus helveticus CH18 4848 Bifidobacterium breve CH48 Bifidobacterium breve CH48
1919 Lactobacillus helveticus CH19 Lactobacillus helveticus CH19 4949 Bifidobacterium catenulatum CH49 Bifidobacterium catenulatum CH49
2020 Lactobacillus johnsonii CH20 Lactobacillus johnsonii CH20 5050 Bifidobacterium catenulatum CH50 Bifidobacterium catenulatum CH50
2121 Lactobacillus johnsonii CH21 Lactobacillus johnsonii CH21 5151 Bifidobacterium dentium CH51 Bifidobacterium dentium CH51
2222 Lactobacillus johnsonii CH22 Lactobacillus johnsonii CH22 5252 Bifidobacterium infantis CH52 Bifidobacterium infantis CH52
2323 Lactobacillus brevis CH23 Lactobacillus brevis CH23 5353 Bifidobacterium infantis CH53 Bifidobacterium infantis CH53
2424 Lactobacillus paracasei CH24 Lactobacillus paracasei CH24 5454 Bifidobacterium infantis CH54 Bifidobacterium infantis CH54
2525 Lactobacillus kimchi CH25 Lactobacillus kimchi CH25 5555 Bifidobacterium longum CH55 Bifidobacterium longum CH55
2626 Lactobacillus gasseri CH26 Lactobacillus gasseri CH26 5656 Bifidobacterium longum CH56 Bifidobacterium longum CH56
2727 Lactobacillus paracasei CH27 Lactobacillus paracasei CH27 5757 Bifidobacterium longum CH57 Bifidobacterium longum CH57
2828 Lactobacillus pentosus CH28 Lactobacillus pentosus CH28 5858 Bifidobacterium longum CH58 Bifidobacterium longum CH58
2929 Lactobacillus pentosus CH29 Lactobacillus pentosus CH29 5959 Bifidobacterium longum CH59 Bifidobacterium longum CH59
3030 Lactobacillus reuteri CH30 Lactobacillus reuteri CH30 6060 Bifidobacterium longum CH60 Bifidobacterium longum CH60
상기 표 1에 기재된 균주들 중 락토바실러스 브레비스(Lactobacillus brevis) CH23은 그람 염색시 양성을 나타내는 혐기성 간균으로서, 포자를 형성하지 않고 호기적 조건에서도 생존성을 보였다. 또한, 락토바실러스 브레비스(Lactobacillus brevis) CH23은 10~42℃에서 생존하였고, pH 2에서 2시간 동안 안정한 내산성 균주였다. 또한, 락토바실러스 브레비스(Lactobacillus brevis) CH23은 2% 염화나트륨 용액에서도 생존하였고, 글루코시다제(glucosidase)를 활발하게 생산하였다. 또한, 락토바실러스 브레비스(Lactobacillus brevis) CH23의 화학분류학적 특성으로 16S rDNA을 측정하였고, 그 결과 서열번호 1의 염기서열을 갖는 것으로 나타났다. 락토바실러스 브레비스(Lactobacillus brevis) CH23의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 락토바실러스 브레비스(Lactobacillus brevis) 균주는 검색되지 않았고, 락토바실러스 브레비스(Lactobacillus brevis) 균주 FJ004의 16S rDNA 부분 서열과 99%의 상동성을 보였다.Among the strains described in Table 1, Lactobacillus brevis CH23 is an anaerobic bacilli that show positive gram staining, and shows viability even under aerobic conditions without forming spores. In addition, Lactobacillus brevis CH23 survived at 10-42 ° C. and was a stable acid resistant strain at pH 2 for 2 hours. In addition, Lactobacillus brevis CH23 survived in 2% sodium chloride solution and actively produced glucosidase. In addition, 16S rDNA was measured by the chemical classification of Lactobacillus brevis CH23, and as a result, it was found to have the nucleotide sequence of SEQ ID NO: 1. The 16S rDNA sequence of Lactobacillus brevis CH23 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). As a result, Lactobacillus brevis ( Lactobacillus brevis ) having the same 16S rDNA sequence was identified. Lactobacillus brevis strain was not detected and showed 99% homology with the 16S rDNA subsequence of Lactobacillus brevis strain FJ004.
상기 표 1에 기재된 균주들 중 락토바실러스 존소니(Lactobacillus johnsonii) CH32는 그람 염색시 양성을 나타내는 혐기성 간균으로서, 포자를 형성하지 않고 호기적 조건에서도 생존성을 보였다. 또한, 락토바실러스 존소니(Lactobacillus johnsonii) CH32는 45℃까지 안정적으로 생존하였고, H 2에서 2시간 동안 안정한 내산성 균주였다. 또한, 락토바실러스 존소니(Lactobacillus johnsonii) CH32는 글루코시다제(glucosidase)를 활발하게 생산하였으나, 베타-글루쿠로니다제(β-glucuronidase)는 생산하지 않았다. 또한, 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 화학분류학적 특성으로 16S rDNA을 측정하였고, 그 결과 서열번호 2의 염기서열을 갖는 것으로 나타났다. 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 락토바실러스 존소니(Lactobacillus johnsonii) 균주는 검색되지 않았고, 락토바실러스 존소니(Lactobacillus johnsonii) 균주 JCM 2012의 16S rDNA 부분 서열과 99%의 상동성을 보였다.Among the strains described in Table 1, Lactobacillus johnsonii CH32 is an anaerobic bacilli that show positive gram staining, and shows viability even under aerobic conditions without forming spores. In addition, Lactobacillus johnsonii CH32 survived stably up to 45 ℃, was a stable acid resistant strain for 2 hours in H 2. In addition, Lactobacillus johnsonii CH32 actively produced glucosidase, but did not produce beta-glucuronidase. In addition, 16S rDNA was determined by the chemical classification of Lactobacillus johnsonii CH32, and as a result, it was found to have the nucleotide sequence of SEQ ID NO: 2. The Lactobacillus johnsonii CH32 16S rDNA sequence was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/), and the Lactobacillus zone having the same 16S rDNA sequence was found. The Sony ( Lactobacillus johnsonii ) strain was not detected and showed 99% homology with the 16S rDNA subsequence of Lactobacillus johnsonii strain JCM 2012.
상기 표 1에 기재된 균주들 중 비피도박테리움 롱검(Bifidobacterium longum) CH57은 그람 염색시 양성을 나타내는 혐기성 간균으로서, 포자를 형성하지 않고 호기적 조건에서 생존성이 매우 낮았다. 또한, 비피도박테리움 롱검(Bifidobacterium longum) CH57은 열에 불안정하였다. 또한, 비피도박테리움 롱검(Bifidobacterium longum) CH57은 글루코시다제(glucosidase)를 활발하게 생산하였으나, 베타-글루쿠로니다제(β-glucuronidase)는 생산하지 않았다. 또한, 비피도박테리움 롱검(Bifidobacterium longum) CH57의 화학분류학적 특성으로 16S rDNA을 측정하였고, 그 결과 서열번호 3의 염기서열을 갖는 것으로 나타났다. 비피도박테리움 롱검(Bifidobacterium longum) CH57의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 비피도박테리움 롱검(Bifidobacterium longum) 균주는 검색되지 않았고, 비피도박테리움 롱검(Bifidobacterium longum) 균주 CBT-6의 16S rDNA 부분 서열과 99%의 상동성을 보였다.Among the strains described in Table 1, Bifidobacterium longum ( Bifidobacterium longum ) CH57 is an anaerobic bacilli that show positive gram staining, and did not form spores and had very low viability under aerobic conditions. In addition, Bifidobacterium longum CH57 was unstable to heat. In addition, Bifidobacterium longum CH57 actively produced glucosidase, but did not produce beta-glucuronidase. In addition, ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA was determined by chemical classification of CH57, and the result was found to have the nucleotide sequence of SEQ ID NO: 3. Ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA nucleotide sequence of CH57 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/) and Bifidobacterium long gum having the same 16S rDNA sequence longum ) was not detected and Bifidobacterium longgum longum ) showed 99% homology with the 16S rDNA subsequence of strain CBT-6.
또한, 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32 및 비피도박테리움 롱검(Bifidobacterium longum) CH57의 생리학적 특성 중 탄소원 이용성을 API Kit(모델명 : API 50 CHL; 제조사 : BioMerieux’s, USA)에 의한 당 발효 시험으로 분석하였다. 하기 표 2는 락토바실러스 브레비스(Lactobacillus brevis) CH23의 탄소원 이용성 결과를 나타낸 것이고, 하기 표 3은 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 탄소원 이용성 결과를 나타낸 것이고, 하기 표 4는 비피도박테리움 롱검(Bifidobacterium longum) CH57의 탄소원 이용성 결과를 나타낸 것이다. 하기 표 2, 표 3 및 표 4에서 "+"는 탄소원 이용성이 양성인 경우를 나타내고, "-"는 탄소원 이용성이 음성인 경우를 나타내고, "±"는 탄소원 이용성 여부가 모호한 경우를 나타낸다. 하기 표 2, 표 3 및 표 4에서 보이는 바와 같이 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32 및 비피도박테리움 롱검(Bifidobacterium longum) CH57은 일부 탄소원에 대해서 동일 종의 균주와 다른 이용성을 보였다.In addition, the physiological characteristics of Lactobacillus brevis CH23, Lactobacillus johnsonii CH32, and Bifidobacterium longum CH57 were found in API Kit (Model: API 50 CHL; BioMerieux's, USA) for analysis of sugar fermentation. Table 2 shows the carbon source availability results of Lactobacillus brevis CH23, Table 3 below shows the carbon source availability results of Lactobacillus johnsonii CH32, and Table 4 shows the Bifidobacterium long gum. ( Bifidobacterium longum ) shows the results of carbon source availability of CH57. In Table 2, Table 3 and Table 4, "+" represents a case where the carbon source availability is positive, "-" represents a case where the carbon source availability is negative, and "±" represents a case where the availability of the carbon source is ambiguous. Lactobacillus brevis CH23, Lactobacillus johnsonii CH32 and Bifidobacterium long gum ( Bifidobacterium ) as shown in Tables 2, 3 and 4 below longum ) CH57 has different availability to some carbon sources than strains of the same species.
탄소원Carbon source 균주명Strain name 탄소원Carbon source 균주명Strain name
L. brevisL. brevis 1)One) L. brevis CH23 L. brevis CH23 L. brevisL. brevis 1)One) L. brevis CH23 L. brevis CH23
glycerolglycerol -- -- salicinsalicin ++ ++
erythritolerythritol -- -- cellobiosecellobiose ++ --
D-arabinoseD-arabinose -- -- maltosemaltose ++ ++
L-arabinoseL-arabinose ++ -- lactoselactose ++ --
D-riboseD-ribose ++ ++ melibiosemelibiose -- ++
D-xyloseD-xylose ++ ++ sucrosesucrose ++ --
L-xyloseL-xylose -- -- trehalosetrehalose ++ --
D-adonitolD-adonitol -- -- inulininulin ++ --
methyl-β-D-xylopyranosidemethyl-β-D-xylopyranoside -- -- melezitosemelezitose ++ --
D-galactoseD-galactose ++ -- raffinoseraffinose -- --
D-glucoseD-glucose ++ ++ starchstarch -- --
D-fructoseD-fructose ++ ++ glycogenglycogen -- --
D-mannoseD-mannose ++ -- xylitolxylitol -- --
L-sorboseL-sorbose -- -- gentiobiosegentiobiose ++ --
L-rhamnoseL-rhamnose -- -- D-turanoseD-turanose ++ --
dulcitoldulcitol ++ -- D-lyxoseD-lyxose -- --
inositolinositol -- -- D-tagatoseD-tagatose ++ --
mannitolmannitol ++ -- D-fucoseD-fucose -- --
sorbitolsorbitol ++ -- L-fucoseL-fucose -- --
α-methyl-D-mannosideα-methyl-D-mannoside -- -- D-arabitolD-arabitol -- --
α-methly-D-glucosideα-methly-D-glucoside -- -- L-arabitolL-arabitol -- --
N-acetyl-glucosamineN-acetyl-glucosamine ++ ±± gluconategluconate ++ ±±
amygdalinamygdalin ++ -- 2-keto-gluconate2-keto-gluconate -- --
arbutinarbutin ++ -- 5-keto-gluconate5-keto-gluconate -- ++
esculinesculin ++ ++
1) Suriasih K., Aryanta WR, MahardikaG, Astawa NM. Microbiological and Chemical Properties of Kefir Made of Bali Cattle Milk. Food Science and Quality Management 2012;6:112-22.1) Suriasih K., Aryanta WR, Mahardika G, Astawa NM. Microbiological and Chemical Properties of Kefir Made of Bali Cattle Milk. Food Science and Quality Management 2012; 6: 112-22.
탄소원Carbon source 균주명Strain name 탄소원Carbon source 균주명Strain name
L. johnsoniiL. johnsonii 2)2) L. johnsonii CH32 L. johnsonii CH32 L. johnsoniiL. johnsonii 2)2) L. johnsonii CH32 L. johnsonii CH32
glycerolglycerol -- -- salicinsalicin -- --
erythritolerythritol -- -- cellobiosecellobiose ++ --
D-arabinoseD-arabinose -- -- maltosemaltose -- ++
L-arabinoseL-arabinose -- -- lactoselactose -- ++
D-riboseD-ribose -- -- melibiosemelibiose ++ --
D-xyloseD-xylose -- -- sucrosesucrose ++ ++
L-xyloseL-xylose -- -- trehalosetrehalose ++ --
D-adonitolD-adonitol -- -- inulininulin -- --
methyl-β-D-xylopyranosidemethyl-β-D-xylopyranoside -- -- melezitosemelezitose -- --
D-galactoseD-galactose -- -- raffinoseraffinose ++ --
D-glucoseD-glucose -- ++ starchstarch -- --
D-fructoseD-fructose -- ++ glycogenglycogen -- --
D-mannoseD-mannose ++ ++ xylitolxylitol -- --
L-sorboseL-sorbose -- -- gentiobiosegentiobiose -- ++
L-rhamnoseL-rhamnose -- -- D-turanoseD-turanose -- --
dulcitoldulcitol -- -- D-lyxoseD-lyxose -- --
inositolinositol -- -- D-tagatoseD-tagatose -- --
mannitolmannitol -- -- D-fucoseD-fucose -- --
sorbitolsorbitol -- -- L-fucoseL-fucose -- --
α-methyl-D-mannosideα-methyl-D-mannoside -- -- D-arabitolD-arabitol -- --
α-methly-D-glucosideα-methly-D-glucoside -- -- L-arabitolL-arabitol -- --
N-acetyl-glucosamineN-acetyl-glucosamine ++ ++ gluconategluconate -- --
amygdalinamygdalin -- -- 2-keto-gluconate2-keto-gluconate -- --
arbutinarbutin -- -- 5-keto-gluconate5-keto-gluconate -- --
esculinesculin -- --
2) Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2512-72) Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A. 2004 Feb 24; 101 (8): 2512-7
탄소원Carbon source 균주명Strain name 탄소원Carbon source 균주명Strain name
B. longumB. longum 3)3) B. longum CH57 B. longum CH57 B. longumB. longum 3)3) B. longum CH57 B. longum CH57
glycerolglycerol ±± -- salicinsalicin ±± --
erythritolerythritol -- -- cellobiosecellobiose ±± ±±
D-arabinoseD-arabinose -- -- maltosemaltose -- --
L-arabinoseL-arabinose -- -- lactoselactose -- --
D-riboseD-ribose ±± -- melibiosemelibiose -- --
D-xyloseD-xylose -- -- sucrosesucrose ++ ±±
L-xyloseL-xylose -- -- trehalosetrehalose ±± --
D-adonitolD-adonitol -- -- inulininulin -- --
methyl-β-D-xylopyranosidemethyl-β-D-xylopyranoside -- -- melezitosemelezitose -- --
D-galactoseD-galactose ++ ++ raffinoseraffinose -- --
D-glucoseD-glucose ++ ++ starchstarch -- --
D-fructoseD-fructose ++ ++ glycogenglycogen -- --
D-mannoseD-mannose -- -- xylitolxylitol -- --
L-sorboseL-sorbose -- -- gentiobiosegentiobiose -- --
L-rhamnoseL-rhamnose -- -- D-turanoseD-turanose -- --
dulcitoldulcitol -- -- D-lyxoseD-lyxose -- --
inositolinositol -- -- D-tagatoseD-tagatose -- --
mannitolmannitol ++ -- D-fucoseD-fucose -- --
sorbitolsorbitol -- -- L-fucoseL-fucose -- --
α-methyl-D-mannosideα-methyl-D-mannoside -- -- D-arabitolD-arabitol -- --
α-methly-D-glucosideα-methly-D-glucoside -- -- L-arabitolL-arabitol -- --
N-acetyl-glucosamineN-acetyl-glucosamine ±± -- gluconategluconate ±± --
amygdalinamygdalin -- -- 2-keto-gluconate2-keto-gluconate -- --
arbutinarbutin ±± -- 5-keto-gluconate5-keto-gluconate -- --
esculinesculin -- --
3) Lukacova D, Karovucova J, Greifova M, Greif G, Sovcikova A, Kohhajdova Z. In vitro testing of selected probiotic characteristics of Lactobacillus plantarum and Bifidobacterium longum. Journal of Food and Nutrition Research 2006; 45: 77-83. 3) Lukacova D, Karovucova J, Greifova M, Greif G, Sovcikova A, Kohhajdova Z. In vitro testing of selected probiotic characteristics of Lactobacillus plantarum and Bifidobacterium longum. Journal of Food and Nutrition Research 2006; 45: 77-83.
(4) 유산균의 수탁 정보(4) trust information of lactic acid bacteria
본 발명의 발명자들은 락토바실러스 브레비스(Lactobacillus brevis) CH23을 2015년 9월 1일에 공인기탁기관인 한국미생물보존센터(주소 : 대한민국 서울 서대문구 홍제내 2가길 45 유림빌딩)에 특허기탁 하여 KCCM 11762P의 수탁번호를 부여받았다. 또한, 본 발명의 발명자들은 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 2015년 9월 1일에 공인기탁기관인 한국미생물보존센터(주소 : 대한민국 서울 서대문구 홍제내 2가길 45 유림빌딩)에 특허기탁 하여 KCCM 11763P의 수탁번호를 부여받았다. 또한, 본 발명의 발명자들은 비피도박테리움 롱검(Bifidobacterium longum) CH57을 2015년 9월 1일에 공인기탁기관인 한국미생물보존센터(주소 : 대한민국 서울 서대문구 홍제내 2가길 45 유림빌딩)에 특허기탁 하여 KCCM 11764P의 수탁번호를 부여받았다.The inventors of the present invention deposited the Lactobacillus brevis CH23 on September 1, 2015 to the Korea Microorganism Conservation Center (address: Yurim Building, 45, 2 Ga-gil, Hongje-si, Seodaemun-gu, Seoul, Korea) on September 1, 2015 and consigned KCCM 11762P. I am assigned a number. In addition, the inventors of the present invention patented Lactobacillus johnsonii CH32 to the Korea Microorganism Conservation Center (Address: 45 Yurim Building, 45, 2ga-gil, Hongdae, Seodaemun-gu, Seoul, Korea) on September 1, 2015 KCCM You have been assigned an accession number of 11763P. In addition, the inventors of the present invention patented Bifidobacterium longum CH57 to the Korea Microbiological Conservation Center (address: 45 Yurim Building 45, Honggae, Seojemun-gu, Seoul, Korea) on September 1, 2015 The accession number of KCCM 11764P is given.
2. 유산균의 장 손상 또는 장 누수 개선 효능 평가2. Evaluation of Efficacy of Lactic Acid Bacteria for Intestinal Damage or Intestinal Leakage Improvement
김치 또는 사람 분변으로부터 분리한 유산균의 장 손상 또는 장 누수 개선 효능을 평가하기 위하여 유산균의 항산화 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성, 장내 유해 효소인 베타-글루쿠로니다제(β-glucuronidase) 저해 활성 및 밀착연접단백질(tight junction protein) 발현 유도 활성을 측정하였다.In order to evaluate the intestinal damage or intestinal leakage of lactic acid bacteria isolated from kimchi or human feces, the antioxidant activity of lactic acid bacteria, the inhibitory activity of lipopolysaccharide (LPS) production, beta-glucuronidase (β-) Glucuronidase) inhibitory activity and tight junction protein expression induction activity were measured.
(1) 실험방법(1) Experimental method
* 항산화 활성* Antioxidant activity
DPPH(2,2-Diphenyl-1-picrylhydrazyl)를 에탄올에 0.2 mM 농도가 되도록 녹여 DPPH 용액을 제조하였다. 상기 DPPH 용액 0.1 ㎖에 유산균 현탁액(1×108 CFU/㎖) 또는 비타민 C 용액(1 g/㎖)을 넣고 20분간 37℃에서 배양하였다. 배양액을 3000 rpm에서 5분간 원심분리하여 상등액을 수득하였다. 이후, 517 ㎚에서 상등액의 흡광도를 측정하고, 유산균의 항산화 활성을 계산하였다.DPPH (2,2-Diphenyl-1-picrylhydrazyl) was dissolved in ethanol to a concentration of 0.2 mM to prepare a DPPH solution. 0.1 mL of the DPPH solution was added to lactic acid bacteria suspension (1 × 10 8 CFU / mL) or vitamin C solution (1 g / mL) and incubated at 37 ° C. for 20 minutes. The culture was centrifuged at 3000 rpm for 5 minutes to obtain a supernatant. Thereafter, the absorbance of the supernatant was measured at 517 nm, and the antioxidant activity of the lactic acid bacteria was calculated.
* 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성* Inhibitory activity of lipopolysaccharide (LPS) production
사람의 신선한 분변 0.1 g을 0.9 ㎖의 멸균 생리식염수에 현탁하고, 일반 혐기성 배지로 100배 희석하여 분변 현탁액을 제조하였다. 멸균 일반혐기성배지(일본 Nissui 제약) 9.8 ㎖에 상기 분변 현탁액 0.1 ㎖ 및 유산균(1×104 또는 1×105 CFU) 0.1 ㎖를 이식하고 24시간 동안 혐기적으로 배양하였다. 이후, 배양액을 약 1시간 동안 초음파로 처리하여 균의 세포 외막을 파괴하고, 5000×g의 조건으로 원심분리하여 상등액을 수득하였다. 이후, 상등액에 존재하는 대표적인 내독소인 LPS(lipopolysaccharide)의 함량을 LAL(Limulus Amoebocyte Lysate) assay kit(제조사 : Cape Cod Inc., USA)로 측정하였다. 또한, 유산균의 대장균 증식 억제 활성을 평가하기 위해 동일한 실험을 통해 얻은 배양액을 천배 및 십만배로 희석하고, DHL 배지에 배양한 후 대장균수를 측정하였다.0.1 g of fresh human feces were suspended in 0.9 ml of sterile saline solution and diluted 100-fold with normal anaerobic medium to prepare fecal suspension. 0.1 ml of the fecal suspension and 0.1 ml of lactic acid bacteria (1 × 10 4 or 1 × 10 5 CFU) were implanted into 9.8 ml of sterile general anaerobic medium (Nissui Pharmaceutical, Japan) and incubated anaerobicly for 24 hours. Thereafter, the culture solution was sonicated for about 1 hour to destroy the outer membrane of bacteria, and centrifuged at 5000 × g to obtain a supernatant. Then, the content of the representative endotoxin LPS (lipopolysaccharide) present in the supernatant was measured by LAL (Limulus Amoebocyte Lysate) assay kit (manufacturer: Cape Cod Inc., USA). In addition, in order to evaluate the E. coli proliferation inhibitory activity of the lactic acid bacteria, the culture solution obtained through the same experiment was diluted 1000 times and 100,000 times, and cultured in DHL medium, and the number of E. coli was measured.
* 베타-글루쿠로니다제(β-glucuronidase) 저해 활성* Beta-glucuronidase (β-glucuronidase) inhibitory activity
0.1 mM 농도의 p-니트로페닐-β-D-글루쿠로나이드(p-nitrophenyl-β-D-glucuronide) 용액 0.1 ㎖, 50 mM 농도의 인산완충용액 0.2 ㎖ 및 유산균 현탁액(유산균 배양액 5 ㎖를 집균한 후, 생리식염수 5 ㎖에 현탁하여 제조함) 0.1 ㎖를 반응기에 넣고 15분간 베타-글루쿠로니다제(β-glucuronidase) 효소반응을 진행하고, 0.1 mM 농도의 NaOH 용액 0.5 ㎖를 넣어 반응을 정지시켰다. 이후, 반응액을 3000 rpm에서 5분간 원심분리하여 상등액을 수득하였다. 이후, 405 ㎚에서 상등액의 흡광도를 측정하였다.0.1 ml of p-nitrophenyl-β-D-glucuronide solution at 0.1 mM concentration, 0.2 ml of 50 mM phosphate buffer solution and 5 ml of lactic acid bacteria suspension (lactic acid bacteria culture medium) After collection, 0.1 ml of the solution was prepared by suspending it in 5 ml of physiological saline. The reaction was performed in a reactor for 15 minutes, followed by beta-glucuronidase enzyme reaction, and 0.5 ml of 0.1 mM NaOH solution was added thereto. The reaction was stopped. Thereafter, the reaction solution was centrifuged at 3000 rpm for 5 minutes to obtain a supernatant. The absorbance of the supernatant was then measured at 405 nm.
* 밀착연접단백질(tight junction protein) 발현 유도 활성* Induced activity of tight junction protein expression
한국 세포주 은행에서 분양받은 Caco2 세포를 RPMI 1640 배지에서 48시간 동안 배양한 후, Caco2 세포 배양액을 12-well 플레이트에 웰 당 2×106 cells의 양이 되도록 분주하였다. 이후, 각 웰에 LPS(lipopolysaccharide) 1 ㎍을 단독으로 처리하거나 LPS(lipopolysaccharide) 1 ㎍과 유산균 1×103 CFU를 같이 처리한 후 24시간 동안 배양하였다. 이후, 각 웰로부터 배양된 세포들을 긁어 모으고 면역블롯팅(immunoblotting) 방법으로 밀착연접단백질(tight junction protein) ZO-1의 발현량을 측정하였다.Caco2 cells cultured in the Korean Cell Line Bank were incubated for 48 hours in RPMI 1640 medium, and then Caco2 cell cultures were dispensed in 12-well plates at an amount of 2 × 10 6 cells per well. Thereafter, each well was treated with 1 μg of LPS (lipopolysaccharide) alone or 1 μg of LPS (lipopolysaccharide) and 1 × 10 3 CFU were incubated together for 24 hours. Then, cells cultured from each well were scraped, and the expression level of tight junction protein ZO-1 was measured by immunoblotting.
(2) 실험결과(2) Experiment result
김치 또는 사람 분변으로부터 분리한 유산균의 항산화 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성 및 밀착연접단백질(tight junction protein) 발현 유도 활성을 측정하고, 그 결과를 하기 표 5 및 표 6에 나타내었다. 하기 표 5 및 표 6에서 보이는 바와 같이 락토바실러스 쿠르바투스(Lactobacillus curvatus) CH5, 락토바실러스 사케이(Lactobacillus sakei) CH11, 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32, 비피도박테리움 슈도카테눌라툼(Bifidobacterium pseudocatenulatum) CH38 및 비피도박테리움 롱검(Bifidobacterium longum) CH57 유산균은 항산화 활성이 우수하고, 지질다당류(lipopolysaccharide, LPS) 생성 및 베타-글루쿠로니다제(β-glucuronidase) 활성을 강하게 저해하였고, 밀착연접단백질(tight junction protein) 발현을 강하게 유도하였다. 상기 유산균들은 항산화 효과, 염증발현 및 발암과 관련있는 장내세균총의 유해균 효소활성 억제 효과가 우수하고, 장내세균총의 유해균이 생산하는 내독소인 LPS(lipopolysaccharide)의 생성을 억제할 뿐만 아니라 밀착연접단백질(tight junction protein)의 발현을 유도하므로 장 누수 증후군(Intestinal permeability)을 개선시킬 수 있다.Antioxidative activity, inhibitory activity of lipopolysaccharide (LPS) production, β-glucuronidase inhibitory activity, and tight junction protein expression induction activity of lactic acid bacteria isolated from kimchi or human feces It measured and the result is shown in following Table 5 and 6. Table 5 and Lactobacillus ku Yerba As seen in Table 6 tooth (Lactobacillus curvatus) CH5, Lactobacillus four K (Lactobacillus sakei) CH11, Lactobacillus brevis (Lactobacillus brevis) CH23, Lactobacillus zone Sony (Lactobacillus johnsonii) CH32, Bifidobacterium Bifidobacterium pseudocatenulatum) CH38 ronggeom and Bifidobacterium (Bifidobacterium longum ) CH57 lactic acid bacteria have excellent antioxidant activity, strongly inhibited lipopolysaccharide (LPS) production and beta-glucuronidase activity, and strongly induced tight junction protein expression. It was. The lactic acid bacteria have an excellent inhibitory effect on the enzymatic activity of the enterobacteriaceae bacteria related to the antioxidant effect, inflammation and carcinogenesis, and also inhibit the production of endotoxin LPS (lipopolysaccharide) produced by the harmful bacteria of the intestinal flora, as well as tightly coupled proteins ( Induction of tight junction protein may improve intestinal permeability.
관리번호Control Number 균주명Strain name 항산화 활성Antioxidant activity 베타-글루쿠로니다제 저해 활성Beta-glucuronidase inhibitory activity LPS 생성 억제 활성LPS production inhibitory activity 밀착연접단백질 발현 유도 활성Induced activity of tight junction protein expression
1One Lactobacillus acidophilus CH1 Lactobacillus acidophilus CH1 ++ ++ -- --
22 Lactobacillus acidophilus CH2 Lactobacillus acidophilus CH2 ++ ++ ++ --
33 Lactobacillus acidophilus CH3 Lactobacillus acidophilus CH3 ++ ++ ++ --
44 Lactobacillus brevis CH4 Lactobacillus brevis CH4 ++ ++ -- --
55 Lactobacillus curvatus CH5 Lactobacillus curvatus CH5 ++++++ ++ ++++++ ++++
66 Lactobacillus brevis CH6 Lactobacillus brevis CH6 ++ ++ -- --
77 Lactobacillus casei CH7 Lactobacillus casei CH7 ++ ++ -- --
88 Lactobacillus planantrum CH8 Lactobacillus planantrum CH8 ++ ++ -- --
99 Lactobacillus sakei CH9 Lactobacillus sakei CH9 -- ++ -- --
1010 Lactobacillus curvatus CH10 Lactobacillus curvatus CH10 -- ++ -- --
1111 Lactobacillus sakei CH11 Lactobacillus sakei CH11 ++++++ ++ ++++++ ++++
1212 Lactobacillus curvatus CH12 Lactobacillus curvatus CH12 -- ++ -- ++
1313 Lactobacillus plantarum CH13 Lactobacillus plantarum CH13 -- ++ -- --
1414 Lactobacillus fermentum CH14 Lactobacillus fermentum CH14 -- ++ -- --
1515 Lactobacillus fermentum CH15 Lactobacillus fermentum CH15 ++++++ ++ ++++ --
1616 Lactobacillus gasseri CH16 Lactobacillus gasseri CH16 ++ ++ -- --
1717 Lactobacillus paracasei CH17 Lactobacillus paracasei CH17 ++ ++ -- --
1818 Lactobacillus helveticus CH18 Lactobacillus helveticus CH18 ++ ++ -- --
1919 Lactobacillus helveticus CH19 Lactobacillus helveticus CH19 ++ ++ -- --
2020 Lactobacillus johnsonii CH20 Lactobacillus johnsonii CH20 ++ ++ -- ++
2121 Lactobacillus johnsonii CH21 Lactobacillus johnsonii CH21 ++ ++ -- ++
2222 Lactobacillus johnsonii CH22 Lactobacillus johnsonii CH22 ++ ++ -- ++
2323 Lactobacillus brevis CH23 Lactobacillus brevis CH23 ++++++ ++ ++++ ++++
2424 Lactobacillus paracasei CH24 Lactobacillus paracasei CH24 ++ ++ -- --
2525 Lactobacillus kimchi CH25 Lactobacillus kimchi CH25 ++ ++ -- --
2626 Lactobacillus gasseri CH26 Lactobacillus gasseri CH26 ++ ++ -- --
2727 Lactobacillus paracasei CH27 Lactobacillus paracasei CH27 ++ ++ -- ++
2828 Lactobacillus pentosus CH28 Lactobacillus pentosus CH28 ++ ++ -- --
2929 Lactobacillus pentosus CH29 Lactobacillus pentosus CH29 ++ ++ -- --
3030 Lactobacillus reuteri CH30 Lactobacillus reuteri CH30 ++ -- -- --
관리번호Control Number 균주명Strain name 항산화 활성Antioxidant activity 베타-글루쿠로니다제 저해 활성Beta-glucuronidase inhibitory activity LPS 생성 억제 활성LPS production inhibitory activity 밀착연접단백질 발현 유도 활성Induced activity of tight junction protein expression
3131 Lactobacillus sakei CH31 Lactobacillus sakei CH31 -- ++ -- ++
3232 Lactobacillus johnsonii CH32 Lactobacillus johnsonii CH32 ++++++ ++ ++++ ++++
3333 Lactobacillus sakei CH33 Lactobacillus sakei CH33 ++ ++ -- ++
3434 Lactobacillus sakei CH34 Lactobacillus sakei CH34 ++ ++ -- ++
3535 Lactobacillus plantarum CH35 Lactobacillus plantarum CH35 ++ ++ ++ ++
3636 Lactobacillus sanfranciscensis CH36 Lactobacillus sanfranciscensis CH36 ++ ++ ++ ++
3737 Bifidobacterium pseudocatenulatum CH37 Bifidobacterium pseudocatenulatum CH37 -- ++ -- ++
3838 Bifidobacterium pseudocatenulatum CH38 Bifidobacterium pseudocatenulatum CH38 ++++++ ++ ++++ ++++
3939 Bifidobacterium adolescentis CH39 Bifidobacterium adolescentis CH39 -- ++ -- ++
4040 Bifidobacterium adolescentis CH40 Bifidobacterium adolescentis CH40 -- ++ ++++++ ++
4141 Bifidobacterium adolescentis CH41 Bifidobacterium adolescentis CH41 ++ ++ -- ++
4242 Bifidobacterium animalis CH42 Bifidobacterium animalis CH42 ++ ++ -- --
4343 Bifidobacterium animalis CH43 Bifidobacterium animalis CH43 ++ ++ -- --
4444 Bifidobacterium bifidum CH44 Bifidobacterium bifidum CH44 ++ ++ -- --
4545 Bifidobacterium bifidum CH45 Bifidobacterium bifidum CH45 ++ ++ -- --
4646 Bifidobacterium breve CH46 Bifidobacterium breve CH46 ++ -- -- --
4747 Bifidobacterium breve CH47 Bifidobacterium breve CH47 ++ ++ -- ++
4848 Bifidobacterium breve CH48 Bifidobacterium breve CH48 ++ ++ -- ++
4949 Bifidobacterium catenulatum CH49 Bifidobacterium catenulatum CH49 ++ ++ -- ++++
5050 Bifidobacterium catenulatum CH50 Bifidobacterium catenulatum CH50 -- ++ -- --
5151 Bifidobacterium dentium CH51 Bifidobacterium dentium CH51 ++ -- -- --
5252 Bifidobacterium infantis CH52 Bifidobacterium infantis CH52 -- ++ -- --
5353 Bifidobacterium infantis CH53 Bifidobacterium infantis CH53 -- ++ -- --
5454 Bifidobacterium infantis CH54Bifidobacterium infantis CH54 ++ ++ -- --
5555 Bifidobacterium longum CH55 Bifidobacterium longum CH55 ++ ++ -- ++
5656 Bifidobacterium longum CH56 Bifidobacterium longum CH56 ++++++ ++ ++++ ++
5757 Bifidobacterium longum CH57 Bifidobacterium longum CH57 ++++++ ++ ++++++ ++++
5858 Bifidobacterium longum CH58 Bifidobacterium longum CH58 ++ ++ ++ ++
5959 Bifidobacterium longum CH59 Bifidobacterium longum CH59 ++ ++ ++ ++
6060 Bifidobacterium longum CH60 Bifidobacterium longum CH60 ++ -- ++ ++
* 항산화 활성 측정시 유산균의 최종 농도 : 1×104 CFU/㎖; 베타-글루쿠로니다제 저해 활성 및 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 측정시 유산균의 이식 농도 : 1×104 CFU/㎖; 밀착연접단백질(tight junction protein) 발현 유도 활성 측정시 유산균 농도 : 1×104 CFU/㎖* Final concentration of lactic acid bacteria in antioxidant activity measurement: 1 × 10 4 CFU / mL; Graft concentration of lactic acid bacteria in measuring beta-glucuronidase inhibitory activity and lipopolysaccharide (LPS) production inhibitory activity: 1 × 10 4 CFU / ml; Lactobacillus concentration when measuring tight junction protein expression-inducing activity: 1 × 10 4 CFU / mL
* 유산균의 다양한 활성 측정시 기준 : very strongly (+++; >90%); strongly (++; >60-90%); weakly (+; >20-60%); not or less than 20%(-; <20%)* Standard for measuring various activities of lactic acid bacteria: very strongly (+++;> 90%); strongly (++;> 60-90%); weakly (+;> 20-60%); not or less than 20% (-; <20%)
3. 유산균의 간 손상 개선 효과 평가3. Evaluation of Lactobacillus Liver Damage Improvement Effect
유산균의 장 손상 또는 장 누수 개선 효능 평가를 통해 총 7개의 균주인 락토바실러스 쿠르바투스(Lactobacillus curvatus) CH5, 락토바실러스 사케이(Lactobacillus sakei) CH11, 락토바실러스 페르멘툼(Lactobacillus fermentum) CH15, 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32, 비피도박테리움 슈도카테눌라툼(Bifidobacterium pseudocatenulatum) CH38 및 비피도박테리움 롱검(Bifidobacterium longum) CH57을 선별하고, 이들 단독 또는 혼합 유산균의 간 손상 개선 효과를 다양한 간 손상 모델동물을 이용하여 평가하였다. Lactobacillus curvatus CH5, Lactobacillus sakei CH11, Lactobacillus fermentum CH15, Lactobacillus , Lactobacillus curvatus CH5, Lactobacillus curvatus CH5, Lactobacillus fermentum CH15 Lactobacillus brevis CH23, Lactobacillus johnsonii CH32, Bifidobacterium pseudocatenulatum CH38 and Bifidobacterium longum CH57 were selected and these alone or mixed lactic acid bacteria The liver damage improvement effect was evaluated using various liver damage model animals.
(1) D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물 실험을 통한 유산균의 간 손상 개선 효과 측정(1) Measurement of the liver damage improvement effect of lactic acid bacteria through a model animal experiment in which liver damage was induced by D-galactosamine
1) 실험방법1) Experiment Method
생쥐(C57BL/6, 웅성) 6마리를 한 군으로 하여, 정상군을 제외한 나머지 군의 실험동물에 D-갈락토스아민(D-Galactosamine)을 800 ㎎/㎏의 용량으로 복강투여 하여 간 손상을 유발하였다. D-갈락토스아민(D-Galactosamine)을 복강투여하고 2시간 후부터 정상군과 음성 대조군을 제외한 나머지 군의 실험동물에 유산균을 1×109 CFU의 양으로 하루 1회씩 3일간 경구투여하였다. 또한, 양성 대조군의 실험동물에는 유산균 대신 실리마린(silymarin)을 100 ㎎/㎏의 양으로 하루 1회씩 3일간 경구투여하였다. 약물을 마지막으로 투여하고 6시간 후에 심장채혈 하였다. 채취한 혈액을 상온에서 60분간 방치하고 3,000 rpm에서 15분간 원심분리하여 혈청을 분리하였다. 분리한 혈청의 GPT(glutamic pyruvate transaminase)와 GOT(glutamic oxalacetic transaminase)를 혈액분석 키트((ALT & AST 측정 키트; Asan Pharm. Co., 대한민국)를 이용하여 측정하였다.Six mice (C57BL / 6, male) were used as a group, and liver damage was induced by intraperitoneal administration of D-galactosamine at a dose of 800 mg / kg to the experimental animals except the normal group. It was. D-galactosamine was intraperitoneally administered and 2 hours later, lactic acid bacteria were orally administered to the experimental animals of the group except for the normal group and the negative control group in an amount of 1 × 10 9 CFU once a day for 3 days. In addition, the experimental animals of the positive control group was orally administered silymarin (silymarin) once daily for 3 days in an amount of 100 mg / kg instead of lactic acid bacteria. Six hours after the last dose of the drug, the heart was bled. The collected blood was left at room temperature for 60 minutes and centrifuged at 3,000 rpm for 15 minutes to separate serum. GPT (glutamic pyruvate transaminase) and GOT (glutamic oxalacetic transaminase) of the isolated serum were measured using a blood analysis kit (ALT & AST measurement kit; Asan Pharm. Co., South Korea).
또한, 실험동물의 간 조직을 적출하고 간 조직 내에 존재하는 말론다이알데하이드(malondialdehyde, MDA)의 양을 측정하였다. 말론다이알데하이드(malondialdehyde)는 지질과산화의 지표 물질이다. 구체적으로, 적출한 간 조직 0.5 g에 16배 용량의 RIPA 용액(0.21M Mannitol, 0.1M EDTA-2Na, 0.07M Sucrose, 0.01M Trizma base)을 가한 다음 호모게나이저(homogenizer)를 사용하여 균질화 하였다. 균질액을 다시 3,000 rpm에서 10분 동안 원심 분리하여 간 호모게네이트(liver homogenate)를 수득하였다. 간 호모게네이트(liver homogenate) 0.5 ㎖에 10% SDS 0.4 ㎖를 가하고 30분간 37℃에서 배양하고, 식힌 다음, 1% phosphate buffer 3 ㎖와 0.6% TBA 1 ㎖를 가하고 100℃의 수욕 상에서 45분간 가열하여 발색시켰다. 발색된 시료액에 n-butanol 4 ㎖를 가하고 혼합한 뒤, 3000 rpm에서 10분간 원심분리하여 상등액을 수득하였다. 수득한 상등액의 흡광도를 535 ㎚에서 측정하여 MDA를 정량하였다. 또한, MDA 측정을 위한 검량선은 1,1,3,3-tetraethoxypropane을 사용하여 작성하였다.In addition, the liver tissue of the experimental animal was removed and the amount of malondialdehyde (MDA) present in the liver tissue was measured. Malondialdehyde is an indicator of lipid peroxidation. Specifically, 16 g of RIPA solution (0.21 M Mannitol, 0.1 M EDTA-2Na, 0.07 M Sucrose, 0.01 M Trizma base) was added to 0.5 g of the liver tissue, and then homogenized using a homogenizer. . The homogenate was again centrifuged at 3,000 rpm for 10 minutes to obtain liver homogenate. 0.4 ml of 10% SDS was added to 0.5 ml of liver homogenate, incubated at 37 ° C. for 30 minutes, cooled, and then added 3 ml of 1% phosphate buffer and 1 ml of 0.6% TBA, followed by 45 minutes in a 100 ° C. water bath. It developed by heating. 4 ml of n-butanol was added to the developed sample solution, mixed, and centrifuged at 3000 rpm for 10 minutes to obtain a supernatant. The absorbance of the obtained supernatant was measured at 535 nm to quantify MDA. In addition, the calibration curve for MDA measurement was prepared using 1,1,3,3-tetraethoxypropane.
2) 실험결과2) Experiment result
도 1은 D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 GOT 값의 변화를 나타낸 그래프이고, 도 2는 D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 GPT 값의 변화를 나타낸 그래프이고, 도 3은 D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 MDA 값의 변화를 나타낸 그래프이다. 도 1 내지 도 3에서 X축의 "Nor"은 정상군을 나타내고, "Con"은 D-갈락토스아민(D-Galactosamine)에 의해 간 손상이 유발된 모델동물에 별도의 약물을 투여하지 않은 음성 대조군을 나타내고, "ch11"은 락토바실러스 사케이(Lactobacillus sakei) CH11 투여군을 나타내고, "ch15"는 락토바실러스 페르멘툼(Lactobacillus fermentum) CH15 투여군을 나타내고, "ch23"은 락토바실러스 브레비스(Lactobacillus brevis) CH23 투여군을 나타내고, "ch32"는 락토바실러스 존소니(Lactobacillus johnsonii) CH32 투여군을 나타내고, "ch38"은 비피도박테리움 슈도카테눌라툼(Bifidobacterium pseudocatenulatum) CH38 투여군을 나타내고, "ch57"은 비피도박테리움 롱검(Bifidobacterium longum) CH57 투여군을 나타내고, "ch57+ch11"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 사케이(Lactobacillus sakei) CH11을 동량으로 혼합하여 제조한 혼합 유산균의 투여군을 나타내고, "ch57+ch23"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23을 동량으로 혼합하여 제조한 혼합 유산균의 투여군을 나타내고, "ch57+ch32"는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 동량으로 혼합하여 제조한 혼합 유산균의 투여군을 나타내고, "SM"은 유산균 대신 실리마린(silymarin)을 투여한 양성 대조군을 나타낸다.1 is a graph showing the change in GOT value when lactic acid bacteria are administered to a model animal induced liver damage by D-galactosamine (D-Galactosamine), Figure 2 is a D-galactosamine (D-Galactosamine) It is a graph showing the change of GPT value when the lactic acid bacteria were administered to a model animal that caused liver damage, and FIG. 3 is an MDA when lactic acid bacteria were administered to a model animal induced by liver damage by D-galactosamine. A graph showing the change in value. 1 to 3, "Nor" on the X axis represents a normal group, and "Con" represents a negative control group that is not administered a separate drug to a model animal in which liver damage is induced by D-galactosamine. "Ch11" represents the Lactobacillus sakei CH11 administration group, "ch15" represents the Lactobacillus fermentum CH15 administration group, and "ch23" represents the Lactobacillus brevis CH23 administration group. "Ch32" represents Lactobacillus johnsonii CH32 administration group, and "ch38" represents Bifidobacterium pseudocatenulatum ( Bifidobacterium). pseudocatenulatum) represents a group CH38, "ch57" is ronggeom Bifidobacterium (Bifidobacterium longum) denotes a group CH57, "ch57 + ch11" is ronggeom Bifidobacterium (Bifidobacterium longum ) represents the administration group of mixed lactic acid bacteria prepared by mixing the same amount of CH57 and Lactobacillus sakei CH11, "ch57 + ch23" Bifidobacterium longum CH57 and Lactobacillus brevis ( Lactobacillus brevis) ) Represents the administration group of the mixed lactic acid bacteria prepared by mixing the same amount of CH23, "ch57 + ch32" is a mixture made by mixing the same amount of Bifidobacterium longum CH57 and Lactobacillus johnsonii CH32 The group showing the administration of lactic acid bacteria, "SM" represents a positive control group administered silymarin (silymarin) instead of lactic acid bacteria.
도 1 내지 도 3에서 보이는 바와 같이 간 손상에 의해 GOT, GPT, MAD 값이 상승한 모델동물에 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32 및 비피도박테리움 롱검(Bifidobacterium longum) CH57을 투여하는 경우 간 손상이 개선되었고, 특히, 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균 또는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 혼합 유산균을 투여하는 경우 간 손상이 크게 개선되었다. 또한, 특정 유산균들 또는 이들에서 선택된 혼합 유산균은 간 손상 치료 약물로 사용되는 실리마린(silymarin)보다 간 손상 개선 효과가 더 우수하였다. 상기 결과로부터 특정 유산균들 또는 이들에서 선택된 혼합 유산균이 알코올 및 고지방식이에 의해 유도되는 지방간을 개선하거나 산화적 스트레스로부터 오는 간 질환을 개선하는데에 유용한 소재임을 알 수 있다.Also in model animals GOT, GPT, MAD value increased by liver damage as shown in Figs. 1 to 3 Lactobacillus brevis (Lactobacillus brevis) CH23, Lactobacillus zone Sony (Lactobacillus johnsonii) CH32 and Bifidobacterium ronggeom (Bifidobacterium longum ) CH57 improved liver damage, especially Bifidobacterium long lum) Lactobacillus brevis CH23 mixed lactic acid bacteria or Bifidobacterium longum CH57 and Lactobacillus johnsonii CH32 when mixed lactic acid bacteria significantly improved liver damage. In addition, certain lactic acid bacteria or mixed lactic acid bacteria selected from them had better liver damage improvement effect than silymarin (silymarin) used as a drug for treating liver damage. From the above results, it can be seen that the specific lactic acid bacteria or mixed lactic acid bacteria selected therefrom are useful materials for improving fatty liver induced by alcohol and high fat diet or liver disease resulting from oxidative stress.
(2) Tert-부틸퍼옥사이드(Tert-butylperoxide)에 의해 간 손상이 유발된 모델동물 실험을 통한 유산균의 간 손상 개선 효과 측정(2) Measurement of the liver damage improvement effect of lactic acid bacteria through a model animal experiment in which liver damage was induced by Tert-butylperoxide.
1) 실험방법1) Experiment Method
생쥐(C57BL/6, 웅성) 6마리를 한 군으로 하여, 정상군을 제외한 나머지 군의 실험동물에 Tert-부틸퍼옥사이드(Tert-butylperoxide)를 2.5 mmol/㎏의 용량으로 복강투여 하여 간 손상을 유발하였다. Tert-부틸퍼옥사이드(Tert-butylperoxide)를 투여하고 2시간 후부터 정상군과 음성 대조군을 제외한 나머지 군의 실험동물에 유산균을 2×109 CFU의 양으로 하루 1회씩 3일간 경구투여하였다. 또한, 양성 대조군의 실험동물에는 유산균 대신 실리마린(silymarin)을 100 ㎎/㎏의 양으로 하루 1회씩 3일간 경구투여하였다. 약물을 마지막으로 투여하고 6시간 후에 심장채혈 하였다. 채취한 혈액을 상온에서 60분간 방치하고 3,000 rpm에서 15분간 원심분리하여 혈청을 분리하였다. 분리한 혈청의 GPT(glutamic pyruvate transaminase)와 GOT(glutamic oxalacetic transaminase)를 혈액분석 키트((ALT & AST 측정 키트; Asan Pharm. Co., 대한민국)를 이용하여 측정하였다.Six rats (C57BL / 6, male) were used as a group, and tert-butylperoxide was dosed at a dose of 2.5 mmol / kg to experimental animals of the other groups except the normal group for liver damage. Induced. After 2 hours of tert-butylperoxide administration, lactic acid bacteria were orally administered to the experimental animals of the group except the normal group and the negative control group once a day for 3 days in an amount of 2 × 10 9 CFU. In addition, the experimental animals of the positive control group was orally administered silymarin (silymarin) once daily for 3 days in an amount of 100 mg / kg instead of lactic acid bacteria. Six hours after the last dose of the drug, the heart was bled. The collected blood was left at room temperature for 60 minutes and centrifuged at 3,000 rpm for 15 minutes to separate serum. GPT (glutamic pyruvate transaminase) and GOT (glutamic oxalacetic transaminase) of the isolated serum were measured using a blood analysis kit (ALT & AST measurement kit; Asan Pharm. Co., South Korea).
2) 실험결과2) Experiment result
하기 표 7은 Tert-부틸퍼옥사이드(Tert-butylperoxide)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 GOT, GPT 값의 변화를 나타낸 것이다. 하기 표 7에서 보이는 바와 같이 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32 및 비피도박테리움 롱검(Bifidobacterium longum) CH57은 실리마린(silymarin)보다 우수한 간 손상 개선 효과를 보였고, 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균 또는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 혼합 유산균은 간 손상 개선 효과가 더 우수하였다.Table 7 below shows the changes in GOT and GPT values when lactic acid bacteria were administered to a model animal induced by liver damage by Tert-butylperoxide. As shown in Table 7, Lactobacillus brevis CH23, Lactobacillus johnsonii CH32, and Bifidobacterium longum CH57 showed better liver damage improvement effect than silymarin, ronggeom Bifidobacterium (Bifidobacterium longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) mixing lactic acid bacteria or Bifidobacterium ronggeom of CH23 (Bifidobacterium longum) mixing lactic acid bacteria and Lactobacillus CH57 John Sony (Lactobacillus johnsonii) CH32 was better improve liver damage effects.
실험군Experimental group GOT(IU/L)GOT (IU / L) GPT(IU/L)GPT (IU / L)
정상군Normal 36.136.1 26.326.3
음성 대조준Negative contrast 84.184.1 96.196.1
CH23 투여군CH23 administration group 58.058.0 74.274.2
CH32 투여군CH32 administration group 53.053.0 70.570.5
CH57 투여군CH57 administration group 57.657.6 71.271.2
CH57+CH23 투여군CH57 + CH23 administration group 48.648.6 64.364.3
CH57+CH32 투여군CH57 + CH32 administration group 51.251.2 68.468.4
실리마린(silymarin) 투여군Silymarin administration group 61.761.7 69.169.1
상기 표 7에서 "CH23"은 락토바실러스 브레비스(Lactobacillus brevis) CH23을 나타내고, "CH32"는 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 나타내고 "CH57"은 비피도박테리움 롱검(Bifidobacterium longum) CH57을 나타내고, "CH57+CH23"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "CH57+CH32"는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 동량으로 혼합하여 제조한 혼합 유산균을 나타낸다.In Table 7 "CH23" is Lactobacillus brevis (Lactobacillus brevis) show a CH23, "CH32" is Lactobacillus zone Sony (Lactobacillus johnsonii) represents a CH32 "CH57" is ronggeom Bifidobacterium (Bifidobacterium longum) represents a CH57, "CH57 CH23 +" is ronggeom Bifidobacterium (Bifidobacterium longum ) Lactic acid bacteria prepared by mixing the same amount of CH57 and Lactobacillus brevis CH23 Represents, "CH57 + CH32" is ronggeom Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacterium prepared by mixing the same amount of CH57 and Lactobacillus johnsonii CH32.
4. 유산균의 알러지 개선 효과 평가4. Evaluation of allergic effect of lactic acid bacteria
(1) 유산균의 탈과립 저해율 측정(1) Degranulation inhibition rate measurement of lactic acid bacteria
RBL-2H3 세포주(rat mast cell line, 한국세포주은행, Cat. No.22256)를 10% FBS(fetal bovine serum)과 L-글루타민을 포함하는 DMEM(Dulbeccos' modified Eagle's medium, Sigma사, 22256)을 이용하여 37℃, 가습화된(humidified) 5% CO2 배양기에서 배양하였다. 배양액에 포함된 세포들을 트립신-EDTA 용액을 사용하여 부유시키고, 분리 및 회수하여 실험에 사용하였다. 회수된 RBL-2H3 세포들을 24-웰 플레이트에 웰 당 5×105 cells의 양이 되도록 분주한 후, 마우스 단클론성 IgE 0.5 ㎍/㎖를 넣고 12시간 동안 배양시키며 감작화(sensitization) 시켰다. 감작화된 세포들을 0.5 ㎖의 시라가니안 완충액(siraganian buffer; 119mM NaCl, 5mM KCl, 0.4mM MgCl2, 25mM PIPES, 40mM NaOH, pH 7.2)으로 세척한 후에 다시 0.16 ㎖의 시라가니안 완충액(5.6mM 포도당, 1mM CaCl2, 0.1% BSA를 첨가)을 넣고 37℃에서 10분간 배양하였다. 이후, 세포 배양액에 시험약물인 유산균을 1×104 CFU/㎖의 농도가 되도록 첨가하거나 대조약물인 DSCG(disodium cromoglycate) 0.04 ㎖를 첨가한 다음 20분이 경과되었을 때 0.02 ㎖의 항원(DNP-BSA 1㎍/ml)으로 37℃에서 10분간 세포들을 활성화시켰다. 이후, 세포 배양액을 2000 rpm에서 10분간 원심분리하여 상등액을 수득하였다. 수득한 상등액 0.025 ㎖를 96-웰 플레이트로 옮기고, 기질액인 1mM p-NAG(0.1M 시트레이트 완충액에 p-니트로페닐-N-아세틸-β-D-글루코스아미니드를 pH 4.5로 녹인 용액) 0.025 ㎖를 가한 후, 37℃에서 60분간 반응시켰다. 이후, 0.1M Na2CO3/NaHCO3 0.2 ㎖를 반응액에 첨가하여 반응을 정지시키고 405 ㎚에서 ELISA 분석기로 흡광도를 측정하였다.RBL-2H3 cell line (rat mast cell line, Korea Cell Line Bank, Cat. No. 22256) was prepared using DMEM (Dulbeccos' modified Eagle's medium, Sigma, 22256) containing 10% FBS (fetal bovine serum) and L-glutamine. Incubated in a 37 ° C., humidified 5% CO 2 incubator. Cells contained in the culture were suspended using trypsin-EDTA solution, separated and recovered and used for the experiment. The recovered RBL-2H3 cells were aliquoted to a volume of 5 × 10 5 cells per well in a 24-well plate, and then sensitized with 0.5 μg / ml of mouse monoclonal IgE and incubated for 12 hours. The sensitized cells were washed with 0.5 ml of siraganian buffer (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl 2 , 25 mM PIPES, 40 mM NaOH, pH 7.2) and then again with 0.16 ml of Shiraganian buffer (5.6). mM glucose, 1 mM CaCl 2 , 0.1% BSA was added) and incubated at 37 ° C. for 10 minutes. Thereafter, lactic acid bacteria as a test drug were added to the cell culture to a concentration of 1 × 10 4 CFU / mL, or 0.04 mL of DSCG (disodium cromoglycate) as a control drug was added, and then 0.02 mL of antigen (DNP-BSA) was added after 20 minutes. Cells were activated at 37 ° C. for 10 minutes. Thereafter, the cell culture was centrifuged at 2000 rpm for 10 minutes to obtain a supernatant. 0.025 ml of the supernatant obtained was transferred to a 96-well plate, and 1 mM p-NAG (substrate solution, in which p-nitrophenyl-N-acetyl-β-D-glucoamide) was dissolved in 0.1 M citrate buffer to pH 4.5). After adding 0.025 ml, the mixture was reacted at 37 ° C. for 60 minutes. Thereafter, 0.2 ml of 0.1 M Na 2 CO 3 / NaHCO 3 was added to the reaction solution to stop the reaction, and the absorbance was measured by an ELISA analyzer at 405 nm.
(2) 유산균의 소양 반응 저해율 측정(2) Measurement of inhibition rate of pruritic reaction of lactic acid bacteria
BALB/c 마우스 5마리를 한 군으로 하여, 정상군과 대조군을 제외한 나머지 실험군에 시험약물인 유산균을 1×109 CFU의 양으로 하루 1회씩 3일간 경구투여하거나 대조약물인 DSCG(disodium cromoglycate) 또는 Azelastine을 0.2 ㎎/mouse의 양으로 1회씩 3일간 경구투여하였다. 약물을 마지막으로 경구투여하고 1시간이 지난 후에 마우스를 관찰상자(24㎝×22㎝×24㎝)에 10분간 방치하여 환경에 순화시킨 뒤 머리뒷부분(경부배면)의 털을 제거하였다. 이후, 정상군 마우스에는 생리식염수를 주사하고, 다른 실험군 마우스에는 29 게이지 바늘을 이용하여 소양 유도제(50 ㎍의 compound 48/80; 시그마사, 미국)를 주사하였다. 이후, 마우스를 즉시 관찰상자에 한 마리씩 격리시킨 뒤 무인조건 하에서 8-㎜ 비디오 카메라(SV-K80, Samsung)로 1시간 녹화하여 소양행동을 관찰하였다. 소양행동은 뒷발로 주사부위를 긁는 행위를 인정하였으며, 그 이외 부분은 인정하지 않았다.Five groups of BALB / c mice were used as a group, and the test drug lactic acid bacterium was orally administered once a day for 3 days in a quantity of 1 × 10 9 CFU to the control group except the control group and the control group, or DSCG (disodium cromoglycate) as a control drug. Alternatively, Azelastine was orally administered once every 3 days in an amount of 0.2 mg / mouse. One hour after the last oral administration of the drug, the mice were left in the observation box (24cm × 22cm × 24cm) for 10 minutes to purify the environment, and the hairs on the back of the head (back of the neck) were removed. Subsequently, normal mice were injected with saline, and other experimental mice were injected with a pruritic inducer (50 μg of compound 48/80; Sigma, USA) using a 29 gauge needle. Thereafter, mice were immediately isolated into observation boxes one by one and recorded for 1 hour with an 8-mm video camera (SV-K80, Samsung) under unmanned conditions to observe the behavior. It was admitted that scratching the injection site with the hind paw was not permitted.
(3) 유산균의 모세혈관 투과성 저해율 측정(3) Measurement of capillary permeability inhibition rate of lactic acid bacteria
소양 유발 부위에서는 모세혈관 투과성이 증가하는 것으로 알려져 있다. 본 실험에서는 다양한 화합물에 의해서 유발되는 모세혈관 투과성을 본 발명에 따른 유산균이 효율적으로 저해할 수 있는지를 알아보기 위해 수행되었다. 앞의 소양 반응 억제 활성 측정 실험과 같은 방법으로 동일한 마우스에 같은 방법으로 약물을 투여하였다. 이후, 정상군 마우스의 경부배면 부위에는 생리식염수를 피하주사하고, 다른 실험군 마우스의 경부배면 부위에는 소양 유도제(50 ㎍의 compound 48/80; 시그마사, 미국)를 피하주사 하였다. 이후, 1% Evans blue 용액(시그마사, 미국) 0.2 ㎖를 미정맥으로 투여하고 1 시간 후에 마우스를 치사시켰다. 이후, 피하주사 부위의 피부를 절개하여 1N KOH 1 ㎖에 넣은 뒤, 37℃에서 익일 반응시킨 다음, 0.6N 인산-아세톤(5:13) 혼합용액 4 ㎖를 첨가하여 혼합한 뒤, 3000 rpm에서 15 분간 원심분리한 다음, 상등액을 취하여 620 ㎚에서 흡광도를 측정하였다. 모세혈관 투과성 저해율(%)은 다음과 같은 식으로 계산하였다.It is known that capillary permeability increases at the site of pruritus. In this experiment, it was performed to see if the lactic acid bacteria according to the present invention can effectively inhibit capillary permeability induced by various compounds. Drugs were administered to the same mouse in the same manner as in the previous antipruritic activity measurement experiment. Subsequently, physiological saline was injected subcutaneously into the cervical back region of the normal group mouse, and a pruritic inducer (50 μg of compound 48/80; Sigma, USA) was injected into the cervical back region of another experimental group mouse. Thereafter, 0.2 ml of a 1% Evans blue solution (Sigma, USA) was administered intravenously and mice were killed one hour later. Subsequently, the skin of the subcutaneous injection site was cut and placed in 1 ml of 1N KOH, and then reacted at 37 ° C. the next day. Then, 4 ml of 0.6N phosphate-acetone (5:13) mixed solution was added and mixed, followed by mixing at 3000 rpm. After centrifugation for 15 minutes, the supernatant was taken and the absorbance was measured at 620 nm. Capillary permeability inhibition rate (%) was calculated by the following equation.
저해율 (%) = {1- [약물 및 소양 유도제 처리한 부위의 흡광도 - 소양 유도제 처리하지 않은 부위의 흡광도]/[소양 유도제 처리한 부위의 흡광도 - 소양 유도제 처리하지 않은 부위의 흡광도]} ×100% Inhibition = {1- [absorbance at sites treated with drug and pruritus-absorbance at sites not treated with antipruritic] / [absorbance at sites treated with antipruritic-absorbance at sites not treated with antipruritic]} × 100
(4) 실험결과(4) Experiment result
하기 표 8은 유산균의 탈과립 저해율, 소양 반응 저해율 및 모세혈관 투과성 저해율을 측정한 결과이다. 하기 표 8에서 "CH5"는 락토바실러스 쿠르바투스(Lactobacillus curvatus) CH5를 나타내고, "CH11"은 락토바실러스 사케이(Lactobacillus sakei) CH11을 나타내고, "CH15"는 락토바실러스 페르멘툼(Lactobacillus fermentum) CH15를 나타내고, "CH23"은 락토바실러스 브레비스(Lactobacillus brevis) CH23을 나타내고, "CH32"는 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 나타내고, "CH38"은 비피도박테리움 슈도카테눌라툼(Bifidobacterium pseudocatenulatum) CH38을 나타내고, "CH57"은 비피도박테리움 롱검(Bifidobacterium longum) CH57을 나타내고, "CH57+CH11"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 사케이(Lactobacillus sakei) CH11을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "CH57+CH23"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "CH57+CH32"는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 동량으로 혼합하여 제조한 혼합 유산균을 나타낸다.Table 8 is a result of measuring the degranulation inhibition rate, pruritus inhibition rate and capillary permeability inhibition rate of lactic acid bacteria. In Table 8, "CH5" represents Lactobacillus curvatus CH5, "CH11" represents Lactobacillus sakei CH11, and "CH15" represents Lactobacillus fermentum CH15. "CH23" represents Lactobacillus brevis CH23, "CH32" represents Lactobacillus johnsonii CH32, and "CH38" represents Bifidobacterium pseudocatenulatum ( Bifidobacterium pseudocatenulatum ). represents a CH38, "CH57" is ronggeom Bifidobacterium (Bifidobacterium longum) represents a CH57, "CH57 CH11 +" is ronggeom Bifidobacterium (Bifidobacterium longum) CH57 and Lactobacillus four K (Lactobacillus sakei) represents a mixture of lactic acid bacteria prepared by mixing with an equal volume CH11, "CH57 CH23 +" is ronggeom Bifidobacterium (Bifidobacterium longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) represents a mixture of lactic acid bacteria prepared by mixing with an equal volume CH23, "CH57 CH32 +" is ronggeom Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacterium prepared by mixing the same amount of CH57 and Lactobacillus johnsonii CH32.
표 8에서 보이는 바와 같이 락토바실러스 쿠르바투스(Lactobacillus curvatus) CH5, 락토바실러스 브레비스(Lactobacillus brevis) CH23, 락토바실러스 존소니(Lactobacillus johnsonii) CH32 및 비피도박테리움 롱검(Bifidobacterium longum) CH57은 호염구의 탈과립을 효과적으로 억제하였고, 비피도박테리움 롱검(Bifidobacterium longum) CH57은 소양 반응과 모세혈관 투과성을 매우 강하게 저해하였다. 또한, 단독 유산균보다는 이들의 혼합 유산균, 특히 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균 또는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 혼합 유산균에서 더 높은 탈과립 저해율, 소양 반응 저해율 및 모세혈관 투과성 저해율을 보였다. 따라서, 상기 유산균 또는 유산균 혼합물은 알러지로부터 유발되는 아토피, 천식, 인후염 또는 만성 피부염 등을 매우 효과적으로 개선할 수 있다.As shown in Table 8, Lactobacillus curvatus CH5, Lactobacillus brevis CH23, Lactobacillus johnsonii CH32 and Bifidobacterium longum CH57 were dephilized Bifidobacterium longum (CH57) inhibited pruritus and capillary permeability very strongly. In addition, lactic acid bacteria alone rather than a mixture of these lactic acid bacteria, especially Bifidobacterium ronggeom (Bifidobacterium longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) CH23 mixing lactic acid bacteria or Bifidobacterium ronggeom (Bifidobacterium of longum ) showed higher degranulation inhibition, pruritus inhibition and capillary permeability inhibition in the mixed lactic acid bacteria of CH57 and Lactobacillus johnsonii CH32. Thus, the lactic acid bacteria or lactic acid bacteria mixture can very effectively improve atopic dermatitis, asthma, sore throat or chronic dermatitis caused by allergy.
처리 약물Treatment medication 저해율(%)% Inhibition
탈과립Degranulation 소양 반응Pruritic reaction 모세혈관 투과성 Capillary permeability
없음none 00 22 1One
CH5 CH5 5353 4646 4545
CH11CH11 4747 4646 4545
CH15CH15 4848 4242 4242
CH23CH23 5454 4747 4747
CH32CH32 5252 4545 4646
CH38CH38 4444 4545 4242
CH57CH57 5555 5555 5252
CH57+CH11CH57 + CH11 5959 5656 5454
CH57+CH23CH57 + CH23 6363 6262 6161
CH57+CH32CH57 + CH32 6161 5858 5656
DSCG(disodium cromoglycate)DSCo (disodium cromoglycate) 6262 2525 3737
AzelastineAzelastine -- 6565 6868
5. 유산균의 항염 및 장 누수 억제 효과 평가(in vitro)5. Evaluation of anti-inflammatory and intestinal leakage inhibitory effect of lactic acid bacteria (in vitro)
(1) 수지상 세포의 분리 및 염증 지표 측정(1) Isolation of Dendritic Cells and Measurement of Inflammatory Indicators
C57BL/6 생쥐(male, 20-23 g)의 골수에서 10% FBS, 1% antibiotics, 1% glutamax, 0.1% mercaptoethanol을 함유한 RPMI 1640을 이용하여 면역세포들을 분리하고, RBC lysis buffer를 처리하고, 세척한 후, 24웰-플레이트의 각 웰에 분주하고 GM-CSF 및 IL-4를 1:1000의 비율로 처리하고 배양하였다. 배양 5일째 되는 날에 새로운 배지로 교환해주고, 8일째 되는 날에 수거하여 수지상 세포로 사용하였다. 이후, 24-well 플레이트에 수지상 세포를 각 well당 0.5×106의 수로 깔고, 시험 물질인 유산균과 염증 반응 유도 물질인 LPS(lipopolysaccharide)를 2시간 또는 24시간 동안 처리한 후 상등액 및 세포를 수득하였다. 수득한 상등액으로부터 IL-10, IL-12의 발현량을 면역블롯팅(immunoblotting) 방법으로 측정하였다.Immune cells were isolated from the bone marrow of C57BL / 6 mice (male, 20-23 g) using RPMI 1640 containing 10% FBS, 1% antibiotics, 1% glutamax, and 0.1% mercaptoethanol, and treated with RBC lysis buffer. After washing, each well of the 24-well-plate was dispensed and treated with GM-CSF and IL-4 in a ratio of 1: 1000 and incubated. The culture medium was replaced with fresh medium on the fifth day of culture, and collected on the eighth day, and used as dendritic cells. Subsequently, the dendritic cells were laid in a 24-well plate at a number of 0.5 × 10 6 per well, and the supernatant and the cells were obtained after treating the test substance lactic acid bacteria and the inflammatory response inducing substance LPS (lipopolysaccharide) for 2 hours or 24 hours. It was. The expression levels of IL-10 and IL-12 were measured from the obtained supernatant by immunoblotting.
도 4는 본 발명에서 선별한 유산균들이 LPS(lipopolysaccharide)로 유도된 수지상 세포의 염증 반응에 미치는 영향을 나타낸 그래프이다. 도 4에서 왼쪽의 그래프는 LPS(lipopolysaccharide)를 처리하지 않은 세포에 유산균들이 미치는 영향을 나타낸 그래프이고, 오른쪽의 그래프는 LPS(lipopolysaccharide)를 처리한 세포에 유산균들이 미치는 영향을 나타낸 그래프이다. 또한, 도 4에서 X축의 "Nor"은 시험 물질인 유산균 및 염증 반응 유도 물질인 LPS(lipopolysaccharide)를 처리하지 않은 경우를 나타내고, "LPS"는 염증 반응 유도 물질인 LPS(lipopolysaccharide)를 처리한 경우를 나타내고, "ch11"은 락토바실러스 사케이(Lactobacillus sakei) CH11 처리군을 나타내고, "ch15"는 락토바실러스 페르멘툼(Lactobacillus fermentum) CH15 처리군을 나타내고, "ch23"은 락토바실러스 브레비스(Lactobacillus brevis) CH23 처리군을 나타내고, "ch32"는 락토바실러스 존소니(Lactobacillus johnsonii) CH32 처리군을 나타내고, "ch38"은 비피도박테리움 슈도카테눌라툼(Bifidobacterium pseudocatenulatum) CH38 처리군을 나타내고, "ch57"은 비피도박테리움 롱검(Bifidobacterium longum) CH57 처리군을 나타내고, "ch57+ch11"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 사케이(Lactobacillus sakei) CH11을 동량으로 혼합하여 제조한 혼합 유산균의 처리군을 나타내고, "ch57+ch23"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23을 동량으로 혼합하여 제조한 혼합 유산균의 처리군을 나타내고, "ch57+ch32"는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 동량으로 혼합하여 제조한 혼합 유산균의 처리군을 나타낸다.Figure 4 is a graph showing the effect of the lactic acid bacteria selected in the present invention on the inflammatory response of dendritic cells induced by LPS (lipopolysaccharide). 4 is a graph showing the effect of lactic acid bacteria on cells not treated with LPS (lipopolysaccharide), and the graph on the right is a graph showing the effect of lactic acid bacteria on cells treated with LPS (lipopolysaccharide). In addition, in Fig. 4, "Nor" on the X-axis represents a case in which the test substance is not treated with lactic acid bacteria and an inflammatory response inducing substance LPS (lipopolysaccharide), and "LPS" is treated with an inflammatory response inducing substance LPS (lipopolysaccharide). "Ch11" represents the Lactobacillus sakei CH11 treatment group, "ch15" represents the Lactobacillus fermentum CH15 treatment group, and "ch23" represents the Lactobacillus brevis . CH23 treatment group, "ch32" represents Lactobacillus johnsonii CH32 treatment group, "ch38" represents Bifidobacterium pseudocatenulatum CH38 treatment group, "ch57" ronggeom Bifidobacterium (Bifidobacterium longum) denotes a group CH57 treatment, "ch57 + ch11" is ronggeom Bifidobacterium (Bifidobacterium longum) CH57 and Lactobacillus four K (Lactobacillus sakei) represents the group treated with a mixture of lactic acid bacteria prepared by mixing with an equal volume CH11, "ch57 + ch23" is ronggeom Bifidobacterium (Bifidobacterium longum) CH57 and Lactobacillus brevis (Lactobacillus brevis) represents the group treated in a mixture of lactic acid bacteria prepared by mixing with an equal volume CH23, "ch57 + ch32" is Bifidobacterium ronggeom (Bifidobacterium longum) CH57 and Lactobacillus zone Sony (Lactobacillus johnsonii ) shows a treatment group of mixed lactic acid bacteria prepared by mixing CH32 in the same amount.
도 4에서 보이는 바와 같이 락토바실러스 사케이(Lactobacillus sakei) CH11, 락토바실러스 브레비스(Lactobacillus brevis) CH23 및 락토바실러스 존소니(Lactobacillus johnsonii) CH32는 골수에서 분리하여 분화시킨 수지상 세포의 IL-10 생산을 유도하고, LPS(lipopolysaccharide)에 의해 유도된 IL-12의 생산을 효과적으로 억제하였으며, 비피도박테리움 롱검(Bifidobacterium longum) CH57과의 병용에 의해 그 효과는 증가하였다. 특히, 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균은 염증 반응 억제 효과가 가장 우수하였다. 수지상 세포를 제어하는 경우 Treg 세포(Regulatory T cell)를 효율적으로 제어할 수 있기 때문에, 본 발명에서 선별한 유산균들은 대장염과 같은 만성염증 질환, 류마티스성 관절염과 같은 자가면역질환 등을 효과적으로 개선할 수 있다.As shown in FIG. 4, Lactobacillus sakei CH11, Lactobacillus brevis CH23, and Lactobacillus johnsonii CH32 induced IL-10 production of dendritic cells differentiated and differentiated from bone marrow It effectively inhibited the production of IL-12 induced by lipopolysaccharide (LPS), and Bifidobacterium longgum ( Bifidobacterium) longum ) The effect was increased by use with CH57. In particular, the mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 had the best inhibitory effect on inflammatory response. Since regulating dendritic cells can effectively control Treg cells (Regulatory T cells), the lactic acid bacteria selected in the present invention can effectively improve chronic inflammatory diseases such as colitis, autoimmune diseases such as rheumatoid arthritis, etc. have.
(2) 대식세포의 분리와 염증 지표 측정(2) Isolation of macrophages and measurement of inflammatory markers
6주령 C57BL/6J 수컷 생쥐(20-23g)를 라운바이오㈜로부터 구입하였다. 생쥐의 복강에 멸균된 4% thioglycolate 2 ㎖를 투여하고, 96시간이 지난 뒤에 생쥐를 마취시키고, 다시 생쥐 복강에 RPMI 1640 배지 8 ㎖를 투여하고 5~10분이 지난 뒤에 생쥐 복강 내의 RPMI 배지(대식세포를 포함)를 다시 뽑아내고 1000 rpm의 조건에서 10분간 원심분리하고 다시 RPMI 1640 배지로 2회 세척하였다. 24-well 플레이트에 대식세포를 각 well당 0.5×106의 수로 깔고, 시험 물질인 유산균과 염증 반응 유도 물질인 LPS(lipopolysaccharide)를 2시간 또는 24시간 동안 처리한 후 상등액 및 세포를 수득하였다. 수득한 세포를 buffer(Gibco사)에 넣고 균질화 하였다. 수득한 상등액으로부터 TNF-α, IL-1β와 같은 사이토카인의 발현량을 ELISA kit로 측정하였다. 또한, 수득한 세포로부터 p65(NF-카파B), p-p65(phosphor-NF-카파B) 및 β-actin의 발현량을 면역블롯팅(immunoblotting) 방법으로 측정하였다. 구체적으로 상등액 50㎍을 취해 SDS 10%(w/v) polyacrylamide gel에서 1시간 30분간 전기영동을 하였다. 전기영동한 샘플을 니트로셀룰로스지에 100V, 400㎃의 조건에서 1시간 10분간 트랜스퍼(transfer) 하였다. 샘플이 트랜스퍼된 니트로셀로로스지를 5% skim milk로 30분간 blocking 한 후, 5분씩 3회에 걸쳐 PBS-Tween으로 세척하고, 1차 antibody(Santa Cruz Biotechnology, 미국)를 1:100의 비율로 하여 하룻밤 동안 반응시켰다. 이후, 10분씩 3회에 걸쳐 세척하고, 2차 antibody(Santa Cruz Biotechnology, 미국)를 1:1000의 비율로 하여 1시간 20분간 반응시켰다. 이후, 15분씩 3회에 걸쳐 세척하고, 형광발색 시킨 후 현상하였다.Six-week-old C57BL / 6J male mice (20-23 g) were purchased from Roundbio. 2 ml of sterile 4% thioglycolate was injected into the abdominal cavity of the mouse, anesthetized the mouse after 96 hours, and again 8 ml of RPMI 1640 medium was injected into the abdominal cavity of the mouse, and 5 to 10 minutes later, RPMI medium in the mouse abdominal cavity (large Phagocytic cells) were extracted again, centrifuged at 1000 rpm for 10 minutes, and washed twice with RPMI 1640 medium. Macrophages were placed in a 24-well plate at a number of 0.5 × 10 6 per well, and supernatants and cells were obtained after treatment with lactic acid bacteria, a test substance, and LPS (lipopolysaccharide), an inflammatory response-inducing substance, for 2 hours or 24 hours. The obtained cells were placed in a buffer (Gibco) and homogenized. From the obtained supernatant, the expression levels of cytokines such as TNF-α and IL-1β were measured by ELISA kit. In addition, the expression levels of p65 (NF-kappa B), p-p65 (phosphor-NF-kappa B) and β-actin from the obtained cells were measured by immunoblotting. Specifically, 50 ㎍ of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa. The sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, and developed after fluorescence.
도 5는 비피도박테리움 롱검(Bifidobacterium longum) CH57이 LPS(lipopolysaccharide)로 유도된 대식세포(macrophage)의 염증 반응에 미치는 영향을 나타낸 그래프이다. 도 5에서 보이는 바와 같이 비피도박테리움 롱검(Bifidobacterium longum) CH57은 LPS(lipopolysaccharide)로 유도된 염증 반응을 효과적으로 억제하였다.5 is Bifidobacterium long gum ( Bifidobacterium) longum ) is a graph showing the effect of CH57 on the inflammatory response of macrophage induced by LPS (lipopolysaccharide). As shown in Figure 5 Bifidobacterium longum ( Bifidobacterium longum ) CH57 effectively inhibited the inflammatory response induced by LPS (lipopolysaccharide).
(3) 비장으로부터 T 세포의 분리와 Th17 세포 또는 Treg 세포로의 분화능 측정(3) Isolation of T Cells from the Spleen and Differentiation Capability into Th17 Cells or Treg Cells
C56BL/6J 생쥐의 비장을 분리하고, 적당하고 분쇄하고, 10% FCS 함유 RPMI 1640 배제에 현탁하고 CD4 T cell isolation kit(MiltenyiBiotec, Bergisch Gladbach, 독일)를 사용하여 CD4 T 세포를 분리하였다. 분리한 CD4 T 세포를 12-웰 플레이트에 각 웰당 5×105 수로 분주하고, 여기에 anti-CD3(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일) 및 anti-CD28(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일)을 넣거나, anti-CD3(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일), anti-CD28(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일), recombinant IL-6(20 ng/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일) 및 recombinant transforming growth factor beta(1 ng/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일)를 넣고 세포를 배양하면서 유산균을 웰당 1×103 또는 1×105 CFU의 양으로 넣고 4일간 배양하였다. 이후, 배양액의 세포를 anti-FoxP3 또는 anti-IL-17A 항체로 염색하고 FACS(Fluorescence-activated cell sorting) 장치(C6 Flow Cytometer® System, San Jose, CA, USA)를 이용하여 Th17, Treg의 분포를 분석하였다.Spleens of C56BL / 6J mice were isolated, crushed, suspended, suspended in RPMI 1640 exclusion with 10% FCS and CD4 T cells were isolated using a CD4 T cell isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). Separated CD4 T cells were dispensed in 12-well plates at 5 × 10 5 cells per well, containing anti-CD3 (1 μg / ml, Miltenyi Biotec, Bergisch Gladbach, Germany) and anti-CD28 (1 μg / ml, Miltenyi Biotec). , Bergisch Gladbach, Germany), anti-CD3 (1 μg / ml, Miltenyi Biotec, Bergisch Gladbach, Germany), anti-CD28 (1 μg / ml, Miltenyi Biotec, Bergisch Gladbach, Germany), recombinant IL-6 (20 ng) / Ml, MiltenyiBiotec, Bergisch Gladbach, Germany) and recombinant transforming growth factor beta (1 ng / ml, MiltenyiBiotec, Bergisch Gladbach, Germany), incubating the cells and adding lactic acid bacteria to 1 × 10 3 or 1 × 10 5 CFU per well. Incubated for 4 days. Subsequently, the cells of the culture were stained with anti-FoxP3 or anti-IL-17A antibody, and the distribution of Th17 and Tregs using a Fluorescence-activated cell sorting (FACS) device (C6 Flow Cytometer® System, San Jose, CA, USA). Was analyzed.
도 6은 락토바실러스 브레비스(Lactobacillus brevis) CH23이 비장에서 분리된 T 세포의 Th17 세포 또는 Treg 세포로의 분화에 미치는 영향을 FACS(Fluorescence-activated cell sorting) 장치로 분석한 결과이다. 도 6에서 보이는 바와 같이 락토바실러스 브레비스(Lactobacillus brevis) CH23은 T 세포의 Th17 세포(T helper 17 cell)로의 분화를 저해하고 Treg 세포로의 분화를 촉진하였다. 상기 결과에 의할 때 락토바실러스 브레비스(Lactobacillus brevis) CH23은 대장염, 관절염과 같은 염증 질환을 효과적으로 개선할 수 있다.6 is a result of analyzing the effect of Lactobacillus brevis CH23 on the differentiation of T cells isolated from the spleen into Th17 cells or Treg cells with a Fluorescence-activated cell sorting (FACS) device. As shown in FIG. 6, Lactobacillus brevis CH23 inhibited the differentiation of T cells into Th17 cells (T helper 17 cells) and promoted the differentiation into Treg cells. Based on the above results, Lactobacillus brevis CH23 can effectively improve inflammatory diseases such as colitis and arthritis.
(4) CaCO2 세포의 ZO-1 단백질 발현에 대한 유산균의 효과 측정(4) Measurement of the Effect of Lactic Acid Bacteria on the Expression of ZO-1 Protein in CaCO2 Cells
한국 세포주 은행에서 분양받은 Caco2 세포를 RPMI 1640 배지에서 48시간 동안 배양한 후, Caco2 세포 배양액을 12-well 플레이트에 웰 당 2×106 cells의 양이 되도록 분주하였다. 이후, 각 웰에 LPS(lipopolysaccharide) 1 ㎍을 단독으로 처리하거나 LPS(lipopolysaccharide) 1 ㎍과 유산균 1×103 CFU 또는 1×105 CFU를 같이 처리한 후 24시간 동안 배양하였다. 이후, 각 웰로부터 배양된 세포들을 긁어 모으고 면역블롯팅(immunoblotting) 방법으로 밀착연접단백질(tight junction protein) ZO-1의 발현량을 측정하였다.Caco2 cells cultured in the Korean Cell Line Bank were incubated for 48 hours in RPMI 1640 medium, and then Caco2 cell cultures were dispensed in 12-well plates at an amount of 2 × 10 6 cells per well. Then, each well was treated with 1 μg of LPS (lipopolysaccharide) alone or 1 μg of LPS (lipopolysaccharide) and lactic acid bacteria 1 × 10 3 CFU or 1 × 10 5 CFU and then incubated for 24 hours. Then, cells cultured from each well were scraped, and the expression level of tight junction protein ZO-1 was measured by immunoblotting.
도 7은 락토바실러스 브레비스(Lactobacillus brevis) CH23, 비피도박테리움 롱검(Bifidobacterium longum) CH57 또는 이들의 혼합 유산균이 CaCO2 세포의 ZO-1 단백질 발현에 미치는 영향을 분석한 결과이다. 도 7에서 "CH23"은 락토바실러스 브레비스(Lactobacillus brevis) CH23을 나타내고, "CH57"은 비피도박테리움 롱검(Bifidobacterium longum) CH57을 나타내고, "mix"는 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32를 동량으로 혼합하여 제조한 혼합 유산균을 나타낸다. 도 7에서 보이는 바와 같이 락토바실러스 브레비스(Lactobacillus brevis) CH23 및 비피도박테리움 롱검(Bifidobacterium longum) CH57을 처리하는 경우 밀착연접단백질(tight junction protein) ZO-1의 발현이 증가하였고, 피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 존소니(Lactobacillus johnsonii) CH32의 혼합 유산균을 처리하는 경우 밀착연접단백질(tight junction protein) ZO-1의 발현이 상승적으로 증가하였다. 밀착연접단백질의 발현이 증가하는 경우 독성물질이 체내로 유입되는 것을 차단하여 대장염, 관절염, 간 손상의 악화를 막을 수 있다.7 is a result of analyzing the effect of Lactobacillus brevis CH23, Bifidobacterium longum CH57 or their mixed lactic acid bacteria on the expression of ZO-1 protein of CaCO2 cells. In Figure 7, "CH23" represents Lactobacillus brevis CH23, "CH57" represents Bifidobacterium longum CH57, and "mix" represents Bifidobacterium longum CH57 and Lactobacillus johnsonii represents a mixed lactic acid bacterium prepared by mixing the same amount of CH32. As shown in Figure 7 Lactobacillus brevis ( Lactobacillus brevis ) CH23 and Bifidobacterium long gum ( Bifidobacterium longum ) CH57 increased the expression of tight junction protein ZO-1 and treated with mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus johnsonii CH32. The expression of tight junction protein ZO-1 increased synergistically. Increasing the expression of tight junction proteins can block the entry of toxic substances into the body, preventing colitis, arthritis, and exacerbation of liver damage.
6. 유산균의 항염 및 대장염 개선 효과 평가(in vivo)6. Evaluation of anti-inflammatory and colitis improvement effects of lactic acid bacteria (in vivo)
(1) 실험동물(1) experimental animals
5주령 C57BL/6 수컷 생쥐(24-27g)를 오리엔트바이오㈜로부터 구입하고, 습도 50±10%, 온도 25±2℃, 조명은 12시간 킨 후 12시간 끄는 것을 반복하는 조절된 환경 조건에서 일주일 동안 사육한 후 실험에 사용하였다. 사료는 표준 실험용 사료(Samyang, Korea)를 사용하였으며 음용수는 자유롭게 섭취하도록 하였다. 모든 실험에서 한 군은 6마리로 하였다.Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ± 10%, temperature 25 ± 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
(2) TNBS에 의한 대장염 유발 및 시료 투여(2) TNBS-induced colitis and sample administration
실험동물 중 한 군을 정상군으로 하고, 나머지 군의 실험동물에 대해서는 2,4,6-트리니트로벤젠술폰산(2,4,6-trinitrobenzenesulfonic acid, TNBS)으로 급성 대장염을 유발하였다. 구체적으로 실험동물을 가볍게 에테르로 마취한 후 TNBS(2,4,6-Trinitrobenzene sulfonic acid) 용액 2.5g을 50% 에탄올 100㎖에 혼합한 용액을 끝이 둥근 1㎖ 용량의 주사기를 이용하여 항문을 통해 대장 내로 0.1㎖씩 투여하고 수직으로 들어 30초간 유지하여 염증을 유발하였다. 반면, 정상군에는 생리식염수 0.1㎖를 경구투여하였다. 이후, 익일부터 매일 1회씩 3일간 시험시료인 유산균 또는 혼합 유산균을 생리식염수에 현탁하여 2.0×109 CFU의 양으로 경구투여하고 시료 투여가 종료된 다음날에 실험동물을 이산화탄소로 질식시켜 죽이고 대장부위 중 맹장으로부터 항문 직전 부위까지의 대장을 적출하여 사용하였다. 또한, 정상군의 실험동물에는 유산균 대신 생리식염수만을 경구투여하였다. 또한, 음성 대조군의 실험동물에도 TNBS에 의한 대장염 유발 후 유산균 대신 생리식염수만을 경구투여하였다. 또한, 양성 대조군의 실험동물에는 유산균 대신 대장염 치료 약물인 설파살라진(sulfasalazine)을 50 ㎎/㎏의 양으로 경구투여하였다.One group of test animals was normal, and the other group of test animals induced acute colitis with 2,4,6-trinitrobenzenesulfonic acid (TNBS). Specifically, the animal was lightly anesthetized with ether, and 2.5 g of TNBS (2,4,6-Trinitrobenzene sulfonic acid) solution was mixed with 100 ml of 50% ethanol. Inoculated into the large intestine by 0.1ml and maintained vertically for 30 seconds to cause inflammation. In contrast, the normal group was orally administered 0.1 ml of saline. Afterwards, the test sample was suspended in physiological saline once a day for 3 days from the next day, orally in the amount of 2.0 × 10 9 CFU. The day after the administration of the sample, the animal was smothered with carbon dioxide and killed. A large intestine from the middle caecum to the area immediately before the anus was extracted and used. In addition, only normal saline was administered orally to physiological saline instead of lactic acid bacteria. In addition, the experimental animals of the negative control group was orally administered only saline instead of lactic acid bacteria after induction of colitis caused by TNBS. In addition, the experimental animals of the positive control group were orally administered sulfasalazine (sulfasalazine), a colitis treatment drug, in an amount of 50 mg / kg instead of lactic acid bacteria.
(3) 대장의 외관 분석 (3) appearance analysis of the large intestine
적출한 대장의 길이와 외관을 관찰하고 하기 표 9의 기준(Hollenbach 등, 2005 대장염 정도에 대한 기준)에 따라 점수로 매겨 외관 분석을 하였다. 대장 조직은 대장 내용물을 모두 제거하고, 생리 식염수에 세척한 후 일부는 병리조직용 샘플로 사용하기 위해 4% 포름알데히드 고정액으로 고정하였으며, 나머지는 분자생물학적 분석을 위해 영하 80℃에서 냉동보관하면서 사용하였다.The length and appearance of the extracted colon were observed and analyzed by appearance according to the criteria of Table 9 below (Hollenbach et al., 2005 criteria for colitis). The colon tissues were removed from the colon contents, washed in physiological saline, and some were fixed with 4% formaldehyde fixative for use as pathological samples, and the rest were frozen and stored at minus 80 ° C for molecular biological analysis. It was.
외관 점수(Macroscopic Score) Macroscopic Score 기준standard
00 어떠한 궤양과 염증도 발견되지 않음No ulcers and inflammations found
1One 출혈이 없는 충혈이 발견됨Congestion without bleeding is found
22 충혈이 있는 궤양이 발견됨Ulcers with congestion found
33 한 곳에서만 궤양과 염증이 발견됨Ulcers and inflammations only found in one place
44 궤양과 염증이 2곳 이상에서 발견됨Ulcers and inflammations found in more than one place
55 궤양이 2㎝ 이상으로 확대되어 있음Ulcers that extend beyond 2 cm
(4) 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 측정(4) Determination of Myeloperoxidase (MPO) Activity
대장조직 100㎎에 0.5% hexadecyl trimethyl ammonium bromide 함유 10 mM potassium phosphate buffer(pH 7.0) 200㎕를 넣고 균질화(homogenization) 하였다. 이후, 4℃ 및 10,000×g의 조건에서 10분간 원심분리하여 상등액을 얻었다. 상등액 50 ㎕를 0.95 ㎖ 의 반응액(1.6mM tetramethyl benzidine과 0.1mM H2O2 함유)에 넣고 37℃에서 반응시키면서 650 ㎚에서 경시적으로 흡광도를 측정하였다. 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성은 반응물로서 생긴 peroxide 1 μmol/㎖를 1 unit로 계산하였다.To 100 mg of colon tissue, 200 μl of 10 mM potassium phosphate buffer (pH 7.0) containing 0.5% hexadecyl trimethyl ammonium bromide was added and homogenized. Then, the supernatant was obtained by centrifugation for 10 minutes at 4 ℃ and 10,000 × g conditions. 50 μl of the supernatant was added to 0.95 ml of reaction solution (containing 1.6 mM tetramethyl benzidine and 0.1 mM H 2 O 2 ) and the absorbance was measured at 650 nm over time while reacting at 37 ° C. Myeloperoxidase (MPO) activity was calculated as 1 unit of 1 mol / ml of peroxide as a reactant.
(5) 염증 지표 측정(5) Inflammatory index measurement
웨스턴블롯팅 방법을 이용하여 p-p65, p65, iNOS, COX-2, β-actin 과 같은 염증 반응 지표 물질을 측정하였다. 구체적으로, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 측정 실험과 동일한 방법으로 상등액을 얻었다. 이후, 상등액 50㎍을 취해 SDS 10%(w/v) polyacrylamide gel에서 1시간 30분간 전기영동을 하였다. 전기영동한 샘플을 니트로셀룰로스지에 100V, 400㎃의 조건에서 1시간 10분간 트랜스퍼(transfer) 하였다. 샘플이 트랜스퍼된 니트로셀로로스지를 5% skim milk로 30분간 blocking 한 후, 5분씩 3회에 걸쳐 PBS-Tween으로 세척하고, 1차 antibody(Santa Cruz Biotechnology, 미국)를 1:100의 비율로 하여 하룻밤 동안 반응시켰다. 이후, 10분씩 3회에 걸쳐 세척하고, 2차 antibody(Santa Cruz Biotechnology, 미국)를 1:1000의 비율로 하여 1시간 20분간 반응시켰다. 이후, 15분씩 3회에 걸쳐 세척하고, 형광발색 시킨 후 현상하였다.Western blotting was used to measure inflammatory response markers such as p-p65, p65, iNOS, COX-2, and β-actin. Specifically, the supernatant was obtained in the same manner as the myeloperoxidase (MPO) activity measurement experiment. Then, 50 ㎍ of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa. The sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, and developed after fluorescence.
또한, ELISA kit를 이용하여 TNF-α, IL-1β 등과 같은 염증 관련 사이토카인을 측정하였다.In addition, inflammation-related cytokines such as TNF-α and IL-1β were measured using an ELISA kit.
(6) 실험결과(6) Experiment result
도 8은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57이 미치는 영향을 대장의 외관 또는 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등으로 나타낸 것이고, 도 9는 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57이 미치는 영향을 대장의 조직학적 사진으로 나타낸 것이며, 도 10은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이다. 도 8 내지 도 10에서 "NOR"은 정상군을 나타내고, "TNBS"는 음성 대조군을 나타내고, "CH57"은 비피도박테리움 롱검(Bifidobacterium longum) CH57 투여군을 나타내고, "SS50"은 설파살라진(sulfasalazine) 투여군을 나타낸다. 도 8 내지 도 10에서 보이는 바와 같이 비피도박테리움 롱검(Bifidobacterium longum) CH57은 TNBS에 의해 급성 대장염이 유도된 모델동물의 체중, 대장염 지표, 대장 길이, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등에 기초할 때 대장염을 효과적으로 개선하는 것으로 나타났고, 설파살라진보다 개선 효과가 더 우수한 것으로 나타났다. 또한, 비피도박테리움 롱검(Bifidobacterium longum) CH57은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 염증성 사이토카인 생산을 억제하고 항염증성 사이토카인인 IL-10의 생산을 증가시켰다.FIG. 8 shows Bifidobacterium longgum for model animals in which acute colitis is induced by TNBS.Bifidobacterium longum) The effect of CH57 is shown by the appearance of colon or myeloperoxidase (MPO) activity, etc., FIG. 9 shows Bifidobacterium longgum for a model animal induced by acute colitis by TNBS.Bifidobacterium longumThe effect of CH57 is shown in the histological picture of the large intestine.Bifidobacterium longum) The effects of CH57 are shown on cytokines related to inflammation. 8 to 10, "NOR" represents a normal group, "TNBS" represents a negative control, "CH57" represents a Bifidobacterium long gum (Bifidobacterium longum) CH57 administration group, "SS50" represents a sulfasalazine administration group. As shown in FIGS. 8 to 10, Bifidobacterium long gum (Bifidobacterium longumCH57 has been shown to effectively improve colitis based on the body weight, colitis index, colon length, myeloperoxidase (MPO) activity of model animals induced by acute colitis induced by TNBS, and more effective than sulfasalazine. Found to be excellent. In addition, Bifidobacterium longgum (Bifidobacterium longumCH57 inhibited inflammatory cytokine production and increased the production of the anti-inflammatory cytokine IL-10 in model animals in which acute colitis was induced by TNBS.
도 11은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 대장의 외관 또는 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등으로 나타낸 것이고, 도 12는 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 대장의 조직학적 사진으로 나타낸 것이며, 도 13은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 T 세포의 분화 양상으로 나타낸 것이고, 도 14는 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 락토바실러스 브레비스(Lactobacillus brevis) CH23이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이다. 도 11 내지 도 14에서 "N"은 정상군을 나타내고, "TNBS"는 음성 대조군을 나타내고, "CH23"은 락토바실러스 브레비스(Lactobacillus brevis) CH23 투여군을 나타내고, "SS"는 설파살라진(sulfasalazine) 투여군을 나타낸다. 도 11 내지 도 14에서 보이는 바와 같이 락토바실러스 브레비스(Lactobacillus brevis) CH23은 TNBS에 의해 급성 대장염이 유도된 모델동물의 체중, 대장염 지표, 대장 길이, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등에 기초할 때 대장염을 효과적으로 개선하는 것으로 나타났고, 설파살라진보다 개선 효과가 더 우수한 것으로 나타났다. 또한, 락토바실러스 브레비스(Lactobacillus brevis) CH23은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 T 세포의 Th17 세포로의 분화를 억제하고 Treg 세포로의 분화를 유도하였다. 또한, 락토바실러스 브레비스(Lactobacillus brevis) CH23은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 염증성 사이토카인 생산을 억제하고 항염증성 사이토카인인 IL-10의 생산을 증가시켰다.FIG. 11 illustrates the effect of Lactobacillus brevis CH23 on model animals induced by acute colitis induced by TNBS by the appearance of colon or myeloperoxidase (MPO) activity, and FIG. 12 shows TNBS. The effect of Lactobacillus brevis CH23 on model animals induced by acute colitis is shown by histological picture of the intestine. FIG. 13 shows Lactobacillus brevis (T. Lactobacillus brevis ) shows the effect of CH23 on the differentiation of T cells, Figure 14 shows the effect of Lactobacillus brevis (CH23) on model animals induced by acute colitis induced by TNBS to inflammation-related cytokines and the like. It is shown. 11 to 14, "N" represents a normal group, "TNBS" represents a negative control group, "CH23" represents a Lactobacillus brevis CH23 administration group, and "SS" represents a sulfasalazine administration group. Indicates. As shown in FIGS. 11 to 14, Lactobacillus brevis CH23 is based on body weight, colitis index, colon length, myeloperoxidase (MPO) activity, etc. of a model animal induced by acute colitis by TNBS. It has been shown to effectively improve colitis and is better than sulfasalazine. In addition, Lactobacillus brevis CH23 inhibited the differentiation of T cells into Th17 cells and induced the differentiation into Treg cells in model animals in which acute colitis was induced by TNBS. In addition, Lactobacillus brevis CH23 inhibited inflammatory cytokine production and increased production of the anti-inflammatory cytokine IL-10 in model animals induced by acute colitis by TNBS.
도 15는 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 대장의 외관 또는 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 등으로 나타낸 것이고, 도 16은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 대장의 조직학적 사진으로 나타낸 것이며, 도 17은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이다. 도 15 내지 도 17에서 "NOR"은 정상군을 나타내고, "TNBS"는 음성 대조군을 나타내고, "BL"은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23을 동량으로 혼합하여 제조한 혼합 유산균의 투여군을 나타내고, "SS50"은 설파살라진(sulfasalazine) 투여군을 나타낸다. 도 15 내지 도 17에서 보이는 바와 같이 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균은 TNBS에 의해 급성 대장염이 유도된 모델동물의 감소된 체중, 증가한 대장염 지표, 짧아진 대장 길이, 증가한 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성을 크게 개선하였고 설파살라진보다 대장염 개선 효과가 훨씬 우수한 것으로 나타났다. 또한, 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 염증성 사이토카인 생산을 크게 억제하고 항염증성 사이토카인인 IL-10의 생산을 극적으로 증가시켰다.Figure 15 shows the effect of mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 in acute colitis induced by TNBS in the appearance of colon or myeloperoxidase (Myeloperoxidase) , MPO) activity, and FIG. 16 shows Bifidobacterium longgum ( Bifidobacterium) for a model animal induced by acute colitis by TNBS. longum ) shows the effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 in the histological picture of the large intestine, Figure 17 Bifidobacterium long gum ( Bifidobacterium) for the model animal induced acute colitis by TNBS longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by cytokines related to inflammation. 15 to 17, "NOR" represents a normal group, "TNBS" represents a negative control, "BL" is Bifidobacterium long gum ( Bifidobacterium longum ) represents the administration group of the mixed lactic acid bacteria prepared by mixing the same amount of CH57 and Lactobacillus brevis CH23, "SS50" represents a sulfasalazine administration group. Bifidobacterium long gum as shown in FIGS. 15 to 17 longum ) Lactobacillus brevis CH23 mixed lactobacillus was observed in reduced weight, increased colitis index, shortened colon length, and increased myeloperoxidase (MPO) activity in model animals induced by acute colitis induced by TNBS. And significantly improved colitis than sulfasalazine. In addition, Lactobacillus mixed with Bifidobacterium longum CH57 and Lactobacillus brevis CH23 significantly inhibited the production of inflammatory cytokines and suppressed anti-inflammatory cytokine in model animals induced by acute colitis by TNBS. The production of IL-10 has been dramatically increased.
7. 유산균의 비만 개선 및 항염 효과 평가(in vivo)7. Evaluation of anti-inflammatory and anti-inflammatory effects of lactic acid bacteria (in vivo)
(1) 실험방법(1) Experimental method
C57BL6/J 마우스를 라운바이오㈜에서 구입하고 총 24 마리를 온도 20±2 ℃, 습도 50±10 %, 12 hr light/12 hr dark cycle의 조건 아래 chow diet (Purina)로 1 주일간 적응시켰다. 이후, 실험동물을 8마리씩 3개의 군(LFD, HFD, HFD+BL)으로 나누어, LFD 군에는 4주간 정상식이(LFD, 10% of calories from fat; Research, NJ, USA)를 공급하였고 HFD 군 및 HFD+BL 군에는 4주간 고지방식이(HFD, 60% of calories from; Research, NJ, USA)를 공급하였다. 그 다음 LFD 군에는 4주간 정상식이를 공급함과 동시에 PBS를 경구투여 하였다. 또한, HFD 군에는 4주간 고지방식이를 공급함과 동시에 PBS를 경구투여 하였다. 또한, HFD+BL 군에는 4주간 고지방식이를 공급함과 동시에 혼합 유산균을 PBS에 현탁하여 2×109 CFU의 양으로 경구투여 하였다. 혼합 유산균은 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23을 동량으로 혼합하여 제조한 것이다.C57BL6 / J mice were purchased from Round Bio Co., Ltd. and a total of 24 mice were acclimated for one week with a chow diet (Purina) under conditions of temperature 20 ± 2 ° C., humidity 50 ± 10%, and 12 hr light / 12 hr dark cycle. Thereafter, the experimental animals were divided into three groups (LFD, HFD, HFD + BL) by eight animals, and the LFD group was fed a normal diet (LFD, 10% of calories from fat; Research, NJ, USA) for 4 weeks, and the HFD group. And HFD + BL group was fed high-fat diet (HFD, 60% of calories from; Research, NJ, USA) for 4 weeks. The LFD group was then fed orally with PBS for 4 weeks. In addition, the HFD group was fed oral PBS at the same time as a high-fat diet for 4 weeks. In addition, the HFD + BL group was fed a high-fat diet for 4 weeks, and the mixed lactic acid bacteria were suspended in PBS orally administered in an amount of 2 × 10 9 CFU. Mixing lactic acid bacteria Bifidobacterium ronggeom (Bifidobacterium longum ) CH57 and Lactobacillus brevis CH23 are prepared by mixing the same amount.
(2) 혼합 유산균의 항비만 효과 및 항염 효과 분석(2) Analysis of anti-obesity and anti-inflammatory effects of mixed lactic acid bacteria
혼합 유산규의 항비만 효과는 체중 변화를 통해 분석하였다. 또한, 혼합 유산균의 항염 효과는 TNBS에 의해 급성 대장염이 유도된 모델동물 실험에서 측정한 방법과 동일한 방법을 사용하여 분석하였다.The anti-obesity effect of mixed lactose was analyzed by weight change. In addition, the anti-inflammatory effect of the mixed lactic acid bacteria was analyzed using the same method as measured in the model animal experiments in which acute colitis was induced by TNBS.
(3) 실험결과(3) Experiment result
도 18은 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 체중 변화량 등으로 나타낸 것이고, 도 19는 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 대장의 외관, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성, 대장의 조직학적 사진 등으로 나타낸 것이고, 도 20은 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 염증 관련 사이토카인 등으로 나타낸 것이고, 도 21은 비만 유도 모델동물에 대해 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균이 미치는 영향을 염증 반응 지표 물질 등으로 나타낸 것이다. 도 18 내지 도 21에서 보이는 바와 같이 고지방식이에 의한 비만이 유도된 모델동물의 증가한 체중, 증가한 대장염 지표, 증가한 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성을 크게 감소시켰고 대장염의 발생을 억제하였다. 또한, 비피도박테리움 롱검(Bifidobacterium longum) CH57과 락토바실러스 브레비스(Lactobacillus brevis) CH23의 혼합 유산균은 고지방식이에 의해 비만이 유도된 모델동물에 대해 염증성 사이토카인 생산을 크게 억제하고 항염증성 사이토카인인 IL-10의 생산을 증가시켰다.FIG. 18 illustrates the effects of the mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 on the obesity-induced model animal by weight change amount, and FIG. 19. ronggeom for Bifidobacterium (Bifidobacterium longum ) The effect of the mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown by the appearance of the large intestine, myeloperoxidase (MPO) activity, histological picture of the large intestine, and FIG. The effect of mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 is shown in relation to inflammation-related cytokines and the like. FIG. 21 shows Bifidobacterium on obesity-induced model animals. Long Gum ( Bifidobacterium) longum ) The effect of mixed lactic acid bacteria of CH57 and Lactobacillus brevis CH23 is shown as an indicator of inflammatory response. As shown in FIGS. 18 to 21, obesity induced by high fat diet increased body weight, increased colitis index, and increased myeloperoxidase (Myeloperoxidase (MPO)) activity and inhibited the occurrence of colitis. In addition, mixed lactic acid bacteria of Bifidobacterium longum CH57 and Lactobacillus brevis CH23 significantly inhibited the production of inflammatory cytokines and reduced anti-inflammatory cytokines in obese model animals induced by high fat diet. Increased the production of phosphorus IL-10.
Ⅱ. 유산균 선별 및 효능 확인을 위한 2차 실험II. Second experiment for screening lactic acid bacteria and confirming efficacy
1. 유산균의 분리 및 동정1. Isolation and Identification of Lactic Acid Bacteria
(1) 김치로부터 유산균의 분리(1) Isolation of Lactic Acid Bacteria from Kimchi
배추 김치, 무 김치 및 파김치를 각각 파쇄하고, 파쇄액을 MRS 액체 배지(MRS Broth; Difco, USA)에 넣고 현탁하였다. 이후, 상등액을 취해 MRS 한천 배지(MRS agar medium; Difco, USA)에 이식하고 37℃에서 약 48시간 동안 혐기적으로 배양한 후, 콜로니(colony)를 형성한 균주들을 모양에 따라 분리하였다.Chinese cabbage kimchi, radish kimchi, and green kimchi were respectively crushed, and the crushed liquid was suspended in MRS broth (MRS Broth; Difco, USA). Then, the supernatant was taken and transplanted into MRS agar medium (MRS agar medium; Difco, USA) and incubated anaerobically at 37 ° C. for about 48 hours, after which colony-forming strains were separated according to shape.
(2) 사람 분변으로부터 유산균의 분리(2) Isolation of Lactic Acid Bacteria from Human Feces
사람 분변을 GAM 액체 배지(GAM broth; Nissui Pharmaceutical, Japan)에 넣고 현탁하였다. 이후, 상등액을 취해 BL 한천 배지(BL agar medium; Nissui Pharmaceutical, Japan)에 이식하고 37℃에서 약 48시간 동안 혐기적으로 배양한 후, 콜로니(colony)를 형성한 비피도박테리움 롱검(Bifidobacterium longum) 균주들을 분리하였다.Human feces were suspended in GAM liquid medium (GAM broth; Nissui Pharmaceutical, Japan). Subsequently, the supernatant was taken, transplanted into BL agar medium (Nissui Pharmaceutical, Japan), and incubated anaerobicly at 37 ° C. for about 48 hours, and then colony-forming Bifidobacterium longum ( Bifidobacterium longum) ) Strains were isolated.
(3) 선별한 유산균의 동정(3) Identification of selected lactic acid bacteria
김치 또는 사람 분변으로부터 분리한 균주들의 그람 염색, 생리학적 특성 및 16S rDNA 서열을 분석하여 균주의 종을 확정하고, 균주명을 부여하였다. 하기 표 10은 배추 김치, 무 김치 및 파 김치에서 분리된 유산균의 관리번호 및 균주명을 나타낸 것이고, 하기 표 11은 분변에서 분리된 유산균의 관리번호 및 균주명을 나타낸 것이다.Gram staining, physiological characteristics, and 16S rDNA sequences of strains isolated from kimchi or human feces were analyzed to determine the species of the strain and to assign a strain name. Table 10 shows the control numbers and strain names of lactic acid bacteria isolated from Chinese cabbage kimchi, radish kimchi and leek kimchi, Table 11 shows the control numbers and strain names of lactic acid bacteria isolated from feces.
관리번호Control Number 균주명Strain name 관리번호Control Number 균주명Strain name
1One Lactobacillus plantarum LC1 Lactobacillus plantarum LC1 2626 Lactobacillus plantarum LC26 Lactobacillus plantarum LC26
22 Lactobacillus plantarum LC2 Lactobacillus plantarum LC2 2727 Lactobacillus plantarum LC27 Lactobacillus plantarum LC27
33 Lactobacillus plantarum LC3 Lactobacillus plantarum LC3 2828 Lactobacillus plantarum LC28 Lactobacillus plantarum LC28
44 Lactobacillus plantarum LC4 Lactobacillus plantarum LC4 2929 Lactobacillus plantarum LC29 Lactobacillus plantarum LC29
55 Lactobacillus plantarum LC5 Lactobacillus plantarum LC5 3030 Lactobacillus plantarum LC30 Lactobacillus plantarum LC30
66 Lactobacillus plantarum LC6 Lactobacillus plantarum LC6 3131 Lactobacillus plantarum LC31 Lactobacillus plantarum LC31
77 Lactobacillus plantarum LC7 Lactobacillus plantarum LC7 3232 Lactobacillus plantarum LC32 Lactobacillus plantarum LC32
88 Lactobacillus plantarum LC8 Lactobacillus plantarum LC8 3333 Lactobacillus plantarum LC33 Lactobacillus plantarum LC33
99 Lactobacillus plantarum LC9 Lactobacillus plantarum LC9 3434 Lactobacillus plantarum LC34 Lactobacillus plantarum LC34
1010 Lactobacillus plantarum LC10 Lactobacillus plantarum LC10 3535 Lactobacillus plantarum LC35 Lactobacillus plantarum LC35
1111 Lactobacillus plantarum LC11 Lactobacillus plantarum LC11 3636 Lactobacillus plantarum LC36 Lactobacillus plantarum LC36
1212 Lactobacillus plantarum LC12 Lactobacillus plantarum LC12 3737 Lactobacillus plantarum LC37 Lactobacillus plantarum LC37
1313 Lactobacillus plantarum LC13 Lactobacillus plantarum LC13 3838 Lactobacillus plantarum LC38 Lactobacillus plantarum LC38
1414 Lactobacillus plantarum LC14 Lactobacillus plantarum LC14 3939 Lactobacillus plantarum LC39 Lactobacillus plantarum LC39
1515 Lactobacillus plantarum LC15 Lactobacillus plantarum LC15 4040 Lactobacillus plantarum LC40 Lactobacillus plantarum LC40
1616 Lactobacillus plantarum LC16 Lactobacillus plantarum LC16 4141 Lactobacillus plantarum LC41 Lactobacillus plantarum LC41
1717 Lactobacillus plantarum LC17 Lactobacillus plantarum LC17 4242 Lactobacillus plantarum LC42 Lactobacillus plantarum LC42
1818 Lactobacillus plantarum LC18 Lactobacillus plantarum LC18 4343 Lactobacillus plantarum LC43 Lactobacillus plantarum LC43
1919 Lactobacillus plantarum LC19 Lactobacillus plantarum LC19 4444 Lactobacillus plantarum LC44 Lactobacillus plantarum LC44
2020 Lactobacillus plantarum LC20 Lactobacillus plantarum LC20 4545 Lactobacillus plantarum LC45 Lactobacillus plantarum LC45
2121 Lactobacillus plantarum LC21 Lactobacillus plantarum LC21 4646 Lactobacillus plantarum LC46 Lactobacillus plantarum LC46
2222 Lactobacillus plantarum LC22 Lactobacillus plantarum LC22 4747 Lactobacillus plantarum LC47 Lactobacillus plantarum LC47
2323 Lactobacillus plantarum LC23 Lactobacillus plantarum LC23 4848 Lactobacillus plantarum LC48 Lactobacillus plantarum LC48
2424 Lactobacillus plantarum LC24 Lactobacillus plantarum LC24 4949 Lactobacillus plantarum LC49 Lactobacillus plantarum LC49
2525 Lactobacillus plantarum LC25 Lactobacillus plantarum LC25 5050 Lactobacillus plantarum LC50 Lactobacillus plantarum LC50
관리번호Control Number 균주명Strain name 관리번호Control Number 균주명Strain name
5151 Bifidobacterium longum LC51 Bifidobacterium longum LC51 7676 Bifidobacterium longum LC76 Bifidobacterium longum LC76
5252 Bifidobacterium longum LC52 Bifidobacterium longum LC52 7777 Bifidobacterium longum LC77 Bifidobacterium longum LC77
5353 Bifidobacterium longum LC53 Bifidobacterium longum LC53 7878 Bifidobacterium longum LC78 Bifidobacterium longum LC78
5454 Bifidobacterium longum LC54 Bifidobacterium longum LC54 7979 Bifidobacterium longum LC79 Bifidobacterium longum LC79
5555 Bifidobacterium longum LC55 Bifidobacterium longum LC55 8080 Bifidobacterium longum LC80 Bifidobacterium longum LC80
5656 Bifidobacterium longum LC56 Bifidobacterium longum LC56 8181 Bifidobacterium longum LC81 Bifidobacterium longum LC81
5757 Bifidobacterium longum LC57 Bifidobacterium longum LC57 8282 Bifidobacterium longum LC82 Bifidobacterium longum LC82
5858 Bifidobacterium longum LC58 Bifidobacterium longum LC58 8383 Bifidobacterium longum LC83 Bifidobacterium longum LC83
5959 Bifidobacterium longum LC59 Bifidobacterium longum LC59 8484 Bifidobacterium longum LC84 Bifidobacterium longum LC84
6060 Bifidobacterium longum LC60 Bifidobacterium longum LC60 8585 Bifidobacterium longum LC85 Bifidobacterium longum LC85
6161 Bifidobacterium longum LC61 Bifidobacterium longum LC61 8686 Bifidobacterium longum LC86 Bifidobacterium longum LC86
6262 Bifidobacterium longum LC62 Bifidobacterium longum LC62 8787 Bifidobacterium longum LC87 Bifidobacterium longum LC87
6363 Bifidobacterium longum LC63 Bifidobacterium longum LC63 8888 Bifidobacterium longum LC88 Bifidobacterium longum LC88
6464 Bifidobacterium longum LC64 Bifidobacterium longum LC64 8989 Bifidobacterium longum LC89 Bifidobacterium longum LC89
6565 Bifidobacterium longum LC65 Bifidobacterium longum LC65 9090 Bifidobacterium longum LC90 Bifidobacterium longum LC90
6666 Bifidobacterium longum LC66 Bifidobacterium longum LC66 9191 Bifidobacterium longum LC91 Bifidobacterium longum LC91
6767 Bifidobacterium longum LC67 Bifidobacterium longum LC67 9292 Bifidobacterium longum LC92 Bifidobacterium longum LC92
6868 Bifidobacterium longum LC68 Bifidobacterium longum LC68 9393 Bifidobacterium longum LC93 Bifidobacterium longum LC93
6969 Bifidobacterium longum LC69 Bifidobacterium longum LC69 9494 Bifidobacterium longum LC94 Bifidobacterium longum LC94
7070 Bifidobacterium longum LC70 Bifidobacterium longum LC70 9595 Bifidobacterium longum LC95 Bifidobacterium longum LC95
7171 Bifidobacterium longum LC71 Bifidobacterium longum LC71 9696 Bifidobacterium longum LC96 Bifidobacterium longum LC96
7272 Bifidobacterium longum LC72 Bifidobacterium longum LC72 9797 Bifidobacterium longum LC97 Bifidobacterium longum LC97
7373 Bifidobacterium longum LC73 Bifidobacterium longum LC73 9898 Bifidobacterium longum LC98 Bifidobacterium longum LC98
7474 Bifidobacterium longum LC74 Bifidobacterium longum LC74 9999 Bifidobacterium longum LC99 Bifidobacterium longum LC99
7575 Bifidobacterium longum LC75 Bifidobacterium longum LC75 100100 Bifidobacterium longum LC100 Bifidobacterium longum LC100
표 10에 표시된 락토바실러스 플란타룸(Lactobacillus plantarum) LC5는 그람 염색시 양성을 나타내는 혐기성 간균으로서, 이의 16S rDNA는 서열번호 4의 염기서열을 갖는 것으로 나타났다. 락토바실러스 플란타룸(Lactobacillus plantarum) LC5의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 락토바실러스 플란타룸(Lactobacillus plantarum) 균주는 검색되지 않았고, Lactobacillus plantarum strain KF9의 16S rDNA 서열과 99%의 상동성을 보였다. 또한, 표 10에 표시된 락토바실러스 플란타룸(Lactobacillus plantarum) LC27은 그람 염색시 양성을 나타내는 혐기성 간균으로서, 이의 16S rDNA는 서열번호 5의 염기서열을 갖는 것으로 나타났다. 락토바실러스 플란타룸(Lactobacillus plantarum) LC27의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 락토바실러스 플란타룸(Lactobacillus plantarum) 균주는 검색되지 않았고, Lactobacillus plantarum strain JL18의 16S rDNA 서열과 99%의 상동성을 보였다. 또한, 표 10에 표시된 락토바실러스 플란타룸(Lactobacillus plantarum) LC28은 그람 염색시 양성을 나타내는 혐기성 간균으로서, 이의 16S rDNA는 서열번호 6의 염기서열을 갖는 것으로 나타났다. 락토바실러스 플란타룸(Lactobacillus plantarum) LC28의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 락토바실러스 플란타룸(Lactobacillus plantarum) 균주는 검색되지 않았고, Lactobacillus plantarum strain USIM01의 16S rDNA 서열과 99%의 상동성을 보였다. Lactobacillus plantarum LC5 shown in Table 10 is an anaerobic bacillus showing positive in Gram staining, and its 16S rDNA was shown to have the nucleotide sequence of SEQ ID NO: 4. The 16S rDNA sequence of Lactobacillus plantarum LC5 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). As a result, Lactobacillus having the same 16S rDNA sequence Lactobacillus plantarum strain was not detected and showed 99% homology with the 16S rDNA sequence of Lactobacillus plantarum strain KF9. In addition, Lactobacillus plantarum LC27 shown in Table 10 is an anaerobic bacillus showing positive upon Gram staining, and its 16S rDNA was shown to have the nucleotide sequence of SEQ ID NO: 5. 16S rDNA sequencing of Lactobacillus plantarum LC27 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). Lactobacillus plantarum strain was not detected and showed 99% homology with the 16S rDNA sequence of Lactobacillus plantarum strain JL18. In addition, Lactobacillus plantarum LC28 shown in Table 10 is an anaerobic bacillus that shows positive upon Gram staining, and its 16S rDNA was shown to have a nucleotide sequence of SEQ ID NO: 6. The 16S rDNA sequence of Lactobacillus plantarum LC28 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/). As a result, Lactobacillus having the same 16S rDNA sequence Lactobacillus plantarum strain was not detected and showed 99% homology with the 16S rDNA sequence of Lactobacillus plantarum strain USIM01.
표 11에 표시된 비피도박테리움 롱검(Bifidobacterium longum) LC67은 그람 염색시 양성을 나타내는 혐기성 간균으로서, 이의 16S rDNA는 서열번호 7의 염기서열을 갖는 것으로 나타났다. 비피도박테리움 롱검(Bifidobacterium longum) LC67의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 비피도박테리움 롱검(Bifidobacterium longum) 균주는 검색되지 않았고, Bifidobacterium longum strain CBT-6의 16S rDNA 서열과 99%의 상동성을 보였다. 또한, 표 11에 표시된 비피도박테리움 롱검(Bifidobacterium longum) LC68은 그람 염색시 양성을 나타내는 혐기성 간균으로서, 이의 16S rDNA는 서열번호 8의 염기서열을 갖는 것으로 나타났다. 비피도박테리움 롱검(Bifidobacterium longum) LC68의 16S rDNA 염기서열을 Genebank(http://www.ncbi.nlm.nih.gov/)의 BLAST 검색으로 동정한 결과, 동일한 16S rDNA 염기서열을 갖는 비피도박테리움 롱검(Bifidobacterium longum) 균주는 검색되지 않았고, Bifidobacterium longum strain IMAUFB067의 16S rDNA 서열과 99%의 상동성을 보였다. Bifidobacterium longgum shown in Table 11 longum ) LC67 is an anaerobic bacilli that show positive gram staining, and its 16S rDNA was found to have the nucleotide sequence of SEQ ID NO: 7. Ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA sequence of LC67 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/), and Bifidobacterium longum having the same 16S rDNA sequence was obtained. No strain was detected, Bifidobacterium It showed 99% homology with the 16S rDNA sequence of longum strain CBT-6. In addition, Bifidobacterium long gum shown in Table 11 longum ) LC68 is an anaerobic bacilli that show positive gram staining, and its 16S rDNA was found to have the nucleotide sequence of SEQ ID NO: 8. Ronggeom Bifidobacterium (Bifidobacterium longum ) 16S rDNA nucleotide sequence of LC68 was identified by BLAST search of Genebank (http://www.ncbi.nlm.nih.gov/) and Bifidobacterium long gum having the same 16S rDNA sequence was identified. longum ) strain was not detected and Bifidobacterium 99% homology with the 16S rDNA sequence of longum strain IMAUFB067.
또한, 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 비피도박테리움 롱검(Bifidobacterium longum) LC67 및 비피도박테리움 롱검(Bifidobacterium longum) LC68의 생리학적 특성 중 탄소원 이용성을 API Kit(모델명 : API 50 CHL; 제조사 : BioMerieux’s, USA)에 의한 당 발효 시험으로 분석하였다. 하기 표 12는 락토바실러스 플란타룸(Lactobacillus plantarum) LC5 및 락토바실러스 플란타룸(Lactobacillus plantarum) LC27의 탄소원 이용성 결과를 나타낸 것이고, 하기 표 13은 비피도박테리움 롱검(Bifidobacterium longum) LC67 및 비피도박테리움 롱검(Bifidobacterium longum) LC68의 탄소원 이용성 결과를 나타낸 것이다. 하기 표 12 및 표 13에서 "+"는 탄소원 이용성이 양성인 경우를 나타내고, "-"는 탄소원 이용성이 음성인 경우를 나타내고, "±"는 탄소원 이용성 여부가 모호한 경우를 나타낸다. 하기 표 12 및 표 13에서 보이는 바와 같이 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 비피도박테리움 롱검(Bifidobacterium longum) LC67 및 비피도박테리움 롱검(Bifidobacterium longum) LC68은 일부 탄소원에 대해서 동일 종의 공지된 균주와 다른 이용성을 보였다.In addition, Lactobacillus Planta Room (Lactobacillus plantarum) LC5, Lactobacillus Planta Room (Lactobacillus plantarum) LC27, ronggeom Bifidobacterium (Bifidobacterium longum) LC67 ronggeom and Bifidobacterium (Bifidobacterium longum ) Carbon source availability among the physiological characteristics of LC68 was analyzed by sugar fermentation test by API Kit (Model: API 50 CHL; Manufacturer: BioMerieux's, USA). Table 12 is a Lactobacillus Planta room (Lactobacillus plantarum) LC5 and Lactobacillus Planta room (Lactobacillus plantarum) will showing the results of carbon source utilization LC27, Table 13 ronggeom Bifidobacterium (Bifidobacterium longum ) Carbon source availability results of LC67 and Bifidobacterium longum LC68 are shown. In Tables 12 and 13, "+" represents a case where the carbon source availability is positive, "-" represents a case where the carbon source availability is negative, and "±" represents a case where the availability of the carbon source is ambiguous. As shown in Table 12 and Table 13, Lactobacillus plantarum LC5, Lactobacillus plantarum LC27, Bifidobacterium longum LC67 and Bifidobacterium longgum ( Bifidobacterium longgum) longum ) LC68 showed different availability to known strains of the same species for some carbon sources.
탄소원Carbon source 균주명Strain name 탄소원Carbon source 균주명Strain name
L. plantarum LC5 L. plantarum LC5 L. plantarum LC27 L. plantarum LC27 L. plantarum LC5 L. plantarum LC5 L. plantarum LC27 L. plantarum LC27
glycerolglycerol -- -- salicinsalicin ++ ++
erythritolerythritol -- -- cellobiosecellobiose ++ ++
D-arabinoseD-arabinose -- -- maltosemaltose ++ ++
L-arabinoseL-arabinose -- ++ lactoselactose -- ++
D-riboseD-ribose ++ ++ melibiosemelibiose ++ ++
D-xyloseD-xylose -- -- sucrosesucrose ++ ++
L-xyloseL-xylose -- -- trehalosetrehalose ++ ++
D-adonitolD-adonitol -- -- inulininulin -- --
methyl-β-D-xylopyranosidemethyl-β-D-xylopyranoside -- -- melezitosemelezitose ++ ++
D-galactoseD-galactose ++ ±± raffinoseraffinose ±± --
D-glucoseD-glucose ++ ++ starchstarch -- --
D-fructoseD-fructose ++ ++ glycogenglycogen -- --
D-mannoseD-mannose ++ ++ xylitolxylitol -- --
L-sorboseL-sorbose -- -- gentiobiosegentiobiose ++ ++
L-rhamnoseL-rhamnose -- ±± D-turanoseD-turanose -- ++
dulcitoldulcitol -- -- D-lyxoseD-lyxose -- --
inositolinositol -- -- D-tagatoseD-tagatose -- --
mannitolmannitol ++ ++ D-fucoseD-fucose -- --
sorbitolsorbitol ++ ++ L-fucoseL-fucose -- --
α-methyl-D-mannosideα-methyl-D-mannoside -- ±± D-arabitolD-arabitol -- --
α-methly-D-glucosideα-methly-D-glucoside -- -- L-arabitolL-arabitol -- --
N-acetyl-glucosamineN-acetyl-glucosamine ++ ++ gluconategluconate -- --
amygdalinamygdalin ++ ++ 2-keto-gluconate2-keto-gluconate -- --
arbutinarbutin ++ ++ 5-keto-gluconate5-keto-gluconate -- --
esculinesculin ++ ++
탄소원Carbon source 균주명Strain name 탄소원Carbon source 균주명Strain name
B. longum LC67 B. longum LC67 B. longum LC68 B. longum LC68 B. longum LC67 B. longum LC67 B. longum LC68 B. longum LC68
glycerolglycerol -- -- salicinsalicin -- --
erythritolerythritol -- -- cellobiosecellobiose -- --
D-arabinoseD-arabinose -- -- maltosemaltose ++ ++
L-arabinoseL-arabinose ++ ++ lactoselactose ++ ++
D-riboseD-ribose -- -- melibiosemelibiose ++ ++
D-xyloseD-xylose ++ ±± sucrosesucrose ++ ±±
L-xyloseL-xylose -- -- trehalosetrehalose -- ±±
D-adonitolD-adonitol -- -- inulininulin -- --
methyl-β-D-xylopyranosidemethyl-β-D-xylopyranoside -- -- melezitosemelezitose -- ++
D-galactoseD-galactose ±± ++ raffinoseraffinose ++ ++
D-glucoseD-glucose ++ ++ starchstarch -- --
D-fructoseD-fructose ++ ++ glycogenglycogen -- --
D-mannoseD-mannose -- -- xylitolxylitol -- --
L-sorboseL-sorbose -- -- gentiobiosegentiobiose ++ ±±
L-rhamnoseL-rhamnose -- -- D-turanoseD-turanose ±± ±±
dulcitoldulcitol -- -- D-lyxoseD-lyxose -- --
inositolinositol -- -- D-tagatoseD-tagatose -- --
mannitolmannitol ±± ++ D-fucoseD-fucose -- --
sorbitolsorbitol ±± ++ L-fucoseL-fucose -- --
α-methyl-D-mannosideα-methyl-D-mannoside -- -- D-arabitolD-arabitol -- --
α-methly-D-glucosideα-methly-D-glucoside ±± ±± L-arabitolL-arabitol -- --
N-acetyl-glucosamineN-acetyl-glucosamine -- -- gluconategluconate -- --
amygdalinamygdalin -- ±± 2-keto-gluconate2-keto-gluconate -- --
arbutinarbutin -- -- 5-keto-gluconate5-keto-gluconate -- --
esculinesculin ++ ++
(4) 유산균의 수탁 정보(4) trust information of lactic acid bacteria
본 발명의 발명자들은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5를 2016년 1월 11일에 공인기탁기관인 한국미생물보존센터(주소 : 대한민국 서울 서대문구 홍제내 2가길 45 유림빌딩)에 특허기탁 하여 KCCM 11800P의 수탁번호를 부여받았다. 또한, 본 발명의 발명자들은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27을 2016년 1월 11일에 공인기탁기관인 한국미생물보존센터(주소 : 대한민국 서울 서대문구 홍제내 2가길 45 유림빌딩)에 특허기탁 하여 KCCM 11801P의 수탁번호를 부여받았다. 또한, 본 발명의 발명자들은 비피도박테리움 롱검(Bifidobacterium longum) LC67을 2016년 1월 11일에 공인기탁기관인 한국미생물보존센터(주소 : 대한민국 서울 서대문구 홍제내 2가길 45 유림빌딩)에 특허기탁 하여 KCCM 11802P의 수탁번호를 부여받았다.The inventors of the present invention patented Lactobacillus plantarum LC5 to the Korea Microbiological Conservation Center (Address: 45 Yurim Building, 45, Honggae, Hongje, Seodaemun-gu, Seoul, Korea) on January 11, 2016 KCCM 11800P Was given an accession number. In addition, the inventors of the present invention patented Lactobacillus plantarum LC27 to the Korea Microbiological Conservation Center (Address: 45 Yurim Building, 45, 2ga-gil, Hongdae, Seodaemun-gu, Seoul, Korea) on January 11, 2016. The accession number of KCCM 11801P is given. In addition, the inventors of the present invention patented Bifidobacterium longum LC67 to the Korea Microbiological Conservation Center (Address: 45 Yurim Building, 45, 2ga-gil, Hongje, Seodaemun-gu, Seoul, Korea) on January 11, 2016. The accession number of KCCM 11802P is given.
2. 유산균의 장 손상 또는 장 누수 개선 효능 평가2. Evaluation of Efficacy of Lactic Acid Bacteria for Intestinal Damage or Intestinal Leakage Improvement
김치 또는 사람 분변으로부터 분리한 유산균의 장 손상 또는 장 누수 개선 효능을 평가하기 위하여 유산균의 항산화 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성, 장내 유해 효소인 베타-글루쿠로니다제(β-glucuronidase) 저해 활성 및 밀착연접단백질(tight junction protein) 발현 유도 활성을 측정하였다.In order to evaluate the intestinal damage or intestinal leakage of lactic acid bacteria isolated from kimchi or human feces, the antioxidant activity of lactic acid bacteria, the inhibitory activity of lipopolysaccharide (LPS) production, beta-glucuronidase (β-) Glucuronidase) inhibitory activity and tight junction protein expression induction activity were measured.
(1) 실험방법(1) Experimental method
* 항산화 활성* Antioxidant activity
DPPH(2,2-Diphenyl-1-picrylhydrazyl)를 에탄올에 0.2 mM 농도가 되도록 녹여 DPPH 용액을 제조하였다. 상기 DPPH 용액 0.1 ㎖에 유산균 현탁액(1×108 CFU/㎖) 또는 비타민 C 용액(1 g/㎖)을 넣고 20분간 37℃에서 배양하였다. 배양액을 3000 rpm에서 5분간 원심분리하여 상등액을 수득하였다. 이후, 517 ㎚에서 상등액의 흡광도를 측정하고, 유산균의 항산화 활성을 계산하였다.DPPH (2,2-Diphenyl-1-picrylhydrazyl) was dissolved in ethanol to a concentration of 0.2 mM to prepare a DPPH solution. 0.1 mL of the DPPH solution was added to lactic acid bacteria suspension (1 × 10 8 CFU / mL) or vitamin C solution (1 g / mL) and incubated at 37 ° C. for 20 minutes. The culture was centrifuged at 3000 rpm for 5 minutes to obtain a supernatant. Thereafter, the absorbance of the supernatant was measured at 517 nm, and the antioxidant activity of the lactic acid bacteria was calculated.
* 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성* Inhibitory activity of lipopolysaccharide (LPS) production
사람의 신선한 분변 0.1 g을 0.9 ㎖의 멸균 생리식염수에 현탁하고, 일반 혐기성 배지로 100배 희석하여 분변 현탁액을 제조하였다. 멸균 일반혐기성배지(일본 Nissui 제약) 9.8 ㎖에 상기 분변 현탁액 0.1 ㎖ 및 유산균(1×104 또는 1×105 CFU) 0.1 ㎖를 이식하고 24시간 동안 혐기적으로 배양하였다. 이후, 배양액을 약 1시간 동안 초음파로 처리하여 균의 세포 외막을 파괴하고, 5000×g의 조건으로 원심분리하여 상등액을 수득하였다. 이후, 상등액에 존재하는 대표적인 내독소인 LPS(lipopolysaccharide)의 함량을 LAL(Limulus Amoebocyte Lysate) assay kit(제조사 : Cape Cod Inc., USA)로 측정하였다. 또한, 유산균의 대장균 증식 억제 활성을 평가하기 위해 동일한 실험을 통해 얻은 배양액을 천배 및 십만배로 희석하고, DHL 배지에 배양한 후 대장균수를 측정하였다.0.1 g of fresh human feces were suspended in 0.9 ml of sterile saline solution and diluted 100-fold with normal anaerobic medium to prepare fecal suspension. 0.1 ml of the fecal suspension and 0.1 ml of lactic acid bacteria (1 × 10 4 or 1 × 10 5 CFU) were implanted into 9.8 ml of sterile general anaerobic medium (Nissui Pharmaceutical, Japan) and incubated anaerobicly for 24 hours. Thereafter, the culture solution was sonicated for about 1 hour to destroy the outer membrane of bacteria, and centrifuged at 5000 × g to obtain a supernatant. Then, the content of the representative endotoxin LPS (lipopolysaccharide) present in the supernatant was measured by LAL (Limulus Amoebocyte Lysate) assay kit (manufacturer: Cape Cod Inc., USA). In addition, in order to evaluate the E. coli proliferation inhibitory activity of the lactic acid bacteria, the culture solution obtained through the same experiment was diluted 1000 times and 100,000 times, and cultured in DHL medium, and the number of E. coli was measured.
* 베타-글루쿠로니다제(β-glucuronidase) 저해 활성* Beta-glucuronidase (β-glucuronidase) inhibitory activity
0.1 mM 농도의 p-니트로페닐-β-D-글루쿠로나이드(p-nitrophenyl-β-D-glucuronide) 용액 0.1 ㎖, 50 mM 농도의 인산완충용액 0.2 ㎖ 및 유산균 현탁액(유산균 배양액 5 ㎖를 집균한 후, 생리식염수 5 ㎖에 현탁하여 제조함) 0.1 ㎖를 반응기에 넣고 15분간 베타-글루쿠로니다제(β-glucuronidase) 효소반응을 진행하고, 0.1 mM 농도의 NaOH 용액 0.5 ㎖를 넣어 반응을 정지시켰다. 이후, 반응액을 3000 rpm에서 5분간 원심분리하여 상등액을 수득하였다. 이후, 405 ㎚에서 상등액의 흡광도를 측정하였다.0.1 ml of p-nitrophenyl-β-D-glucuronide solution at 0.1 mM concentration, 0.2 ml of 50 mM phosphate buffer solution and 5 ml of lactic acid bacteria suspension (lactic acid bacteria culture medium) After collection, 0.1 ml of the solution was prepared by suspending it in 5 ml of physiological saline. The reaction was performed in a reactor for 15 minutes, followed by beta-glucuronidase enzyme reaction, and 0.5 ml of 0.1 mM NaOH solution was added thereto. The reaction was stopped. Thereafter, the reaction solution was centrifuged at 3000 rpm for 5 minutes to obtain a supernatant. The absorbance of the supernatant was then measured at 405 nm.
* 밀착연접단백질(tight junction protein) 발현 유도 활성* Induced activity of tight junction protein expression
한국 세포주 은행에서 분양받은 Caco2 세포를 RPMI 1640 배지에서 48시간 동안 배양한 후, Caco2 세포 배양액을 12-well 플레이트에 웰 당 2×106 cells의 양이 되도록 분주하였다. 이후, 각 웰에 LPS(lipopolysaccharide) 1 ㎍을 단독으로 처리하거나 LPS(lipopolysaccharide) 1 ㎍과 유산균 1×103 CFU를 같이 처리한 후 24시간 동안 배양하였다. 이후, 각 웰로부터 배양된 세포들을 긁어 모으고 면역블롯팅(immunoblotting) 방법으로 밀착연접단백질(tight junction protein) ZO-1의 발현량을 측정하였다.Caco2 cells cultured in the Korean Cell Line Bank were incubated for 48 hours in RPMI 1640 medium, and then Caco2 cell cultures were dispensed in 12-well plates at an amount of 2 × 10 6 cells per well. Thereafter, each well was treated with 1 μg of LPS (lipopolysaccharide) alone or 1 μg of LPS (lipopolysaccharide) and 1 × 10 3 CFU were incubated together for 24 hours. Then, cells cultured from each well were scraped, and the expression level of tight junction protein ZO-1 was measured by immunoblotting.
(2) 실험결과(2) Experiment result
김치 또는 사람 분변으로부터 분리한 유산균의 항산화 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성, 베타-글루쿠로니다제(β-glucuronidase) 저해 활성 및 밀착연접단백질(tight junction protein) 발현 유도 활성을 측정하고, 그 결과를 하기 표 14 내지 표 16에 나타내었다. 하기 표 14 내지 표 16에서 보이는 바와 같이 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC15, 락토바실러스 플란타룸(Lactobacillus plantarum) LC17, 락토바실러스 플란타룸(Lactobacillus plantarum) LC25, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 락토바실러스 플란타룸(Lactobacillus plantarum) LC28, 비피도박테리움 롱검(Bifidobacterium longum) LC55, 비피도박테리움 롱검(Bifidobacterium longum) LC65, 비피도박테리움 롱검(Bifidobacterium longum) LC67 및 비피도박테리움 롱검(Bifidobacterium longum) LC68 유산균은 항산화 활성이 우수하고, 지질다당류(lipopolysaccharide, LPS) 생성 및 베타-글루쿠로니다제(β-glucuronidase) 활성을 강하게 저해하였고, 밀착연접단백질(tight junction protein) 발현을 강하게 유도하였다. 특히, 비피도박테리움 롱검(Bifidobacterium longum) LC67은 밀착연접단백질(tight junction protein) 발현 유도 활성이 가장 우수하였다. 상기 유산균들은 항산화 효과, 염증발현 및 발암과 관련있는 장내세균총의 유해균 효소활성 억제 효과가 우수하고, 장내세균총의 유해균이 생산하는 내독소인 LPS(lipopolysaccharide)의 생성을 억제할 뿐만 아니라 밀착연접단백질(tight junction protein)의 발현을 유도하므로 장 누수 증후군(Intestinal permeability)을 개선시킬 수 있다.Antioxidative activity, inhibitory activity of lipopolysaccharide (LPS) production, β-glucuronidase inhibitory activity, and tight junction protein expression induction activity of lactic acid bacteria isolated from kimchi or human feces It measured and the result is shown in following Table 14-16. Table 14 - Lactobacillus Planta room (Lactobacillus plantarum), as shown in Table 16 LC5, Lactobacillus Planta room (Lactobacillus plantarum) LC15, Lactobacillus Planta room (Lactobacillus plantarum) LC17, Lactobacillus Planta room (Lactobacillus plantarum) LC25, Lactobacillus Planta Room (Lactobacillus plantarum) LC27, Lactobacillus Planta Room (Lactobacillus plantarum) LC28, ronggeom Bifidobacterium (Bifidobacterium longum) LC55, ronggeom Bifidobacterium (Bifidobacterium longum ) LC65, Bifidobacterium longum ) LC67 and Bifidobacterium longum LC68 lactic acid bacteria have excellent antioxidant activity, strongly inhibited lipopolysaccharide (LPS) production and beta-glucuronidase activity, and adhered closely. Tight junction protein expression was strongly induced. In particular, ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 was the best inducing activity of tight junction protein expression. The lactic acid bacteria have an excellent inhibitory effect on the enzymatic activity of the enterobacteriaceae bacteria related to the antioxidant effect, inflammation and carcinogenesis, and also inhibit the production of endotoxin LPS (lipopolysaccharide) produced by the harmful bacteria of the intestinal flora, as well as tightly coupled proteins ( Induction of tight junction protein may improve intestinal permeability.
관리번호Control Number 균주명Strain name 항산화 활성Antioxidant activity 베타-글루쿠로니다제 저해 활성Beta-glucuronidase inhibitory activity LPS 생성 억제 활성LPS production inhibitory activity 밀착연접단백질 발현 유도 활성Induced activity of tight junction protein expression
1One Lactobacillus plantarum LC1 Lactobacillus plantarum LC1 ++++ ++ ++ --
22 Lactobacillus plantarum LC2 Lactobacillus plantarum LC2 ++++ ++++ ++ --
33 Lactobacillus plantarum LC3 Lactobacillus plantarum LC3 ++++++ ++++ ++ --
44 Lactobacillus plantarum LC4 Lactobacillus plantarum LC4 ++++++ ++++ ++ ++
55 Lactobacillus plantarum LC5 Lactobacillus plantarum LC5 ++++++ ++++++ ++++ ++++
66 Lactobacillus plantarum LC6 Lactobacillus plantarum LC6 ++++ ++++++ ++ --
77 Lactobacillus plantarum LC7 Lactobacillus plantarum LC7 ++++++ ++++ ++ --
88 Lactobacillus plantarum LC8 Lactobacillus plantarum LC8 ++++ ++++++ ++ --
99 Lactobacillus plantarum LC9 Lactobacillus plantarum LC9 ++++ ++++ ++ ++
1010 Lactobacillus plantarum LC10 Lactobacillus plantarum LC10 ++++ ++++++ ++ ++
1111 Lactobacillus plantarum LC11 Lactobacillus plantarum LC11 ++++ ++++ ++ --
1212 Lactobacillus plantarum LC12 Lactobacillus plantarum LC12 ++++ ++++++ ++ ++
1313 Lactobacillus plantarum LC13 Lactobacillus plantarum LC13 ++++ ++++ ++ ++
1414 Lactobacillus plantarum LC14 Lactobacillus plantarum LC14 ++++ ++++ ++ --
1515 Lactobacillus plantarum LC15 Lactobacillus plantarum LC15 ++++++ ++++++ ++++ ++++
1616 Lactobacillus plantarum LC16 Lactobacillus plantarum LC16 ++ ++++++ ++ --
1717 Lactobacillus plantarum LC17 Lactobacillus plantarum LC17 ++++++ ++++++ ++++ ++++
1818 Lactobacillus plantarum LC18 Lactobacillus plantarum LC18 ++++ ++++ ++ ++
1919 Lactobacillus plantarum LC19 Lactobacillus plantarum LC19 ++++ ++++++ ++ ++
2020 Lactobacillus plantarum LC20 Lactobacillus plantarum LC20 ++++ ++++ ++ --
2121 Lactobacillus plantarum LC21 Lactobacillus plantarum LC21 ++++ ++++ ++ --
2222 Lactobacillus plantarum LC22 Lactobacillus plantarum LC22 ++++ ++++++ -- --
2323 Lactobacillus plantarum LC23 Lactobacillus plantarum LC23 ++++++ ++++ -- --
2424 Lactobacillus plantarum LC24 Lactobacillus plantarum LC24 ++++++ ++ -- --
2525 Lactobacillus plantarum LC25 Lactobacillus plantarum LC25 ++++++ ++++++ ++++ ++++
2626 Lactobacillus plantarum LC26 Lactobacillus plantarum LC26 ++++ ++ ++ ++
2727 Lactobacillus plantarum LC27 Lactobacillus plantarum LC27 ++++++ ++++++ ++++ ++++
2828 Lactobacillus plantarum LC28 Lactobacillus plantarum LC28 ++++++ ++++++ ++++ ++++
2929 Lactobacillus plantarum LC29 Lactobacillus plantarum LC29 ++++ ++ -- --
3030 Lactobacillus plantarum LC30 Lactobacillus plantarum LC30 ++++ ++ ++ --
3131 Lactobacillus plantarum LC31 Lactobacillus plantarum LC31 ++++++ ++++ ++ --
3232 Lactobacillus plantarum LC32 Lactobacillus plantarum LC32 ++++++ ++++ ++ --
3333 Lactobacillus plantarum LC33 Lactobacillus plantarum LC33 ++++++ ++++ ++ --
3434 Lactobacillus plantarum LC34 Lactobacillus plantarum LC34 ++++ ++++ ++ ++
3535 Lactobacillus plantarum LC35 Lactobacillus plantarum LC35 ++++ ++++ ++ ++
관리번호Control Number 균주명Strain name 항산화 활성Antioxidant activity 베타-글루쿠로니다제 저해 활성Beta-glucuronidase inhibitory activity LPS 생성 억제 활성LPS production inhibitory activity 밀착연접단백질 발현 유도 활성Induced activity of tight junction protein expression
3636 Lactobacillus plantarum LC36 Lactobacillus plantarum LC36 ++++ ++++ ++++ --
3737 Lactobacillus plantarum LC37 Lactobacillus plantarum LC37 ++++++ ++++ ++ ++
3838 Lactobacillus plantarum LC38 Lactobacillus plantarum LC38 ++++ ++++ ++ --
3939 Lactobacillus plantarum LC39 Lactobacillus plantarum LC39 ++++ ++ ++ --
4040 Lactobacillus plantarum LC40 Lactobacillus plantarum LC40 ++++++ ++ -- --
4141 Lactobacillus plantarum LC41 Lactobacillus plantarum LC41 ++++ ++++ -- ++
4242 Lactobacillus plantarum LC42 Lactobacillus plantarum LC42 ++++++ ++ -- ++
4343 Lactobacillus plantarum LC43 Lactobacillus plantarum LC43 ++++ ++ -- ++
4444 Lactobacillus plantarum LC44 Lactobacillus plantarum LC44 ++++ ++ -- ++
4545 Lactobacillus plantarum LC45 Lactobacillus plantarum LC45 ++++ ++++ -- ++
4646 Lactobacillus plantarum LC46 Lactobacillus plantarum LC46 ++++ ++ -- ++
4747 Lactobacillus plantarum LC47 Lactobacillus plantarum LC47 ++++++ ++ -- ++
4848 Lactobacillus plantarum LC48 Lactobacillus plantarum LC48 ++++ ++++ -- ++
4949 Lactobacillus plantarum LC49 Lactobacillus plantarum LC49 ++++ ++++++ ++ ++
5050 Lactobacillus plantarum LC50 Lactobacillus plantarum LC50 ++++++ ++++ ++ --
5151 Bifidobacterium longum LC51 Bifidobacterium longum LC51 ++++ ++++ ++ --
5252 Bifidobacterium longum LC52 Bifidobacterium longum LC52 ++++++ ++++++ ++ --
5353 Bifidobacterium longum LC53 Bifidobacterium longum LC53 ++++ ++++++ -- ++
5454 Bifidobacterium longum LC54 Bifidobacterium longum LC54 ++++++ ++++ ++ ++
5555 Bifidobacterium longum LC55 Bifidobacterium longum LC55 ++++++ ++++++ ++++ ++++
5656 Bifidobacterium longum LC56 Bifidobacterium longum LC56 ++++++ ++++ ++ ++
5757 Bifidobacterium longum LC57 Bifidobacterium longum LC57 ++++ ++ -- ++
5858 Bifidobacterium longum LC58 Bifidobacterium longum LC58 ++++++ ++ -- ++
5959 Bifidobacterium longum LC59 Bifidobacterium longum LC59 ++++ ++ -- --
6060 Bifidobacterium longum LC60 Bifidobacterium longum LC60 ++++++ ++ -- --
6161 Bifidobacterium longum LC61 Bifidobacterium longum LC61 ++++ ++ ++ --
6262 Bifidobacterium longum LC62 Bifidobacterium longum LC62 ++++++ ++ ++ --
6363 Bifidobacterium longum LC63 Bifidobacterium longum LC63 ++++ ++++ ++++ --
6464 Bifidobacterium longum LC64 Bifidobacterium longum LC64 ++++++ ++ -- --
6565 Bifidobacterium longum LC65 Bifidobacterium longum LC65 ++++++ ++++++ ++++ ++++
6666 Bifidobacterium longum LC66 Bifidobacterium longum LC66 ++++ ++ ++ ++
6767 Bifidobacterium longum LC67 Bifidobacterium longum LC67 ++++++ ++++++ ++++ ++++++
6868 Bifidobacterium longum LC68 Bifidobacterium longum LC68 ++++++ ++++++ ++++ ++++
6969 Bifidobacterium longum LC69 Bifidobacterium longum LC69 ++++++ ++ -- --
7070 Bifidobacterium longum LC70 Bifidobacterium longum LC70 ++++ ++ -- ++
관리번호Control Number 균주명Strain name 항산화 활성Antioxidant activity 베타-글루쿠로니다제 저해 활성Beta-glucuronidase inhibitory activity LPS 생성 억제 활성LPS production inhibitory activity 밀착연접단백질 발현 유도 활성Induced activity of tight junction protein expression
7171 Bifidobacterium longum LC71 Bifidobacterium longum LC71 ++++ ++ -- ++
7272 Bifidobacterium longum LC72 Bifidobacterium longum LC72 ++++++ ++++ -- ++
7373 Bifidobacterium longum LC73 Bifidobacterium longum LC73 ++++ ++++ ++ --
7474 Bifidobacterium longum LC74 Bifidobacterium longum LC74 ++++ ++++++ ++ --
7575 Bifidobacterium longum LC75 Bifidobacterium longum LC75 ++++++ ++ -- ++
7676 Bifidobacterium longum LC76 Bifidobacterium longum LC76 ++++ ++ -- ++
7777 Bifidobacterium longum LC77 Bifidobacterium longum LC77 ++++ ++++ ++ ++
7878 Bifidobacterium longum LC78 Bifidobacterium longum LC78 ++++ ++ ++ ++
7979 Bifidobacterium longum LC79 Bifidobacterium longum LC79 ++++++ ++ ++ ++
8080 Bifidobacterium longum LC80 Bifidobacterium longum LC80 ++++ ++ ++ ++
8181 Bifidobacterium longum LC81 Bifidobacterium longum LC81 ++++ ++ ++ ++
8282 Bifidobacterium longum LC82 Bifidobacterium longum LC82 ++++ ++++ -- ++
8383 Bifidobacterium longum LC83 Bifidobacterium longum LC83 ++++++ ++ -- ++
8484 Bifidobacterium longum LC84 Bifidobacterium longum LC84 ++++ ++++ -- --
8585 Bifidobacterium longum LC85 Bifidobacterium longum LC85 ++++++ ++++ -- ++
8686 Bifidobacterium longum LC86 Bifidobacterium longum LC86 ++++ ++ ++ --
8787 Bifidobacterium longum LC87 Bifidobacterium longum LC87 ++++ ++++ ++ --
8888 Bifidobacterium longum LC88 Bifidobacterium longum LC88 ++++ ++++++ ++ ++
8989 Bifidobacterium longum LC89 Bifidobacterium longum LC89 ++++ ++++ ++ ++
9090 Bifidobacterium longum LC90 Bifidobacterium longum LC90 ++++ ++++ ++ ++
9191 Bifidobacterium longum LC91 Bifidobacterium longum LC91 ++++++ ++++++ ++ ++
9292 Bifidobacterium longum LC92 Bifidobacterium longum LC92 ++++++ ++++ ++ ++
9393 Bifidobacterium longum LC93 Bifidobacterium longum LC93 ++++ ++++ ++ ++
9494 Bifidobacterium longum LC94 Bifidobacterium longum LC94 ++++ ++++ -- ++
9595 Bifidobacterium longum LC95 Bifidobacterium longum LC95 ++++ ++++++ -- --
9696 Bifidobacterium longum LC96 Bifidobacterium longum LC96 ++++ ++ -- --
9797 Bifidobacterium longum LC97 Bifidobacterium longum LC97 ++++ ++ -- --
9898 Bifidobacterium longum LC98 Bifidobacterium longum LC98 ++++ ++++ -- --
9999 Bifidobacterium longum LC99 Bifidobacterium longum LC99 ++++ ++++ -- --
100100 Bifidobacterium longum LC100 Bifidobacterium longum LC100 ++++ ++++ -- ++
* 항산화 활성 측정시 유산균의 최종 농도 : 1×104 CFU/㎖; 베타-글루쿠로니다제 저해 활성 및 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 측정시 유산균의 이식 농도 : 1×104 CFU/㎖; 밀착연접단백질(tight junction protein) 발현 유도 활성 측정시 유산균 농도 : 1×104 CFU/㎖* Final concentration of lactic acid bacteria in antioxidant activity measurement: 1 × 10 4 CFU / mL; Graft concentration of lactic acid bacteria in measuring beta-glucuronidase inhibitory activity and lipopolysaccharide (LPS) production inhibitory activity: 1 × 10 4 CFU / ml; Lactobacillus concentration when measuring tight junction protein expression-inducing activity: 1 × 10 4 CFU / mL
* 유산균의 다양한 활성 측정시 기준 : very strongly (+++; >90%); strongly (++; >60-90%); weakly (+; >20-60%); not or less than 20%(-; <20%)* Standard for measuring various activities of lactic acid bacteria: very strongly (+++;> 90%); strongly (++;> 60-90%); weakly (+;> 20-60%); not or less than 20% (-; <20%)
3. 유산균의 간 손상 개선 효과 평가3. Evaluation of Lactobacillus Liver Damage Improvement Effect
유산균의 장 손상 또는 장 누수 개선 효능 평가를 통해 총 10개의 균주인 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC15, 락토바실러스 플란타룸(Lactobacillus plantarum) LC17, 락토바실러스 플란타룸(Lactobacillus plantarum) LC25, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 락토바실러스 플란타룸(Lactobacillus plantarum) LC28, 비피도박테리움 롱검(Bifidobacterium longum) LC55, 비피도박테리움 롱검(Bifidobacterium longum) LC65, 비피도박테리움 롱검(Bifidobacterium longum) LC67 및 비피도박테리움 롱검(Bifidobacterium longum) LC68을 선별하였다. 이후, 선별한 유산균 단독 또는 혼합 유산균의 간 손상 개선 효과를 Tert-부틸퍼옥사이드(Tert-butylperoxide)에 의해 간 손상이 유발된 모델동물을 이용하여 평가하였다. Lactobacillus plantarum LC5, Lactobacillus plantarum LC15, Lactobacillus plantarum LC17 Lactobacillus Planta Room (Lactobacillus plantarum) LC25, Lactobacillus Planta Room (Lactobacillus plantarum) LC27, Lactobacillus Planta Room (Lactobacillus plantarum) LC28, ronggeom Bifidobacterium (Bifidobacterium longum) LC55, ronggeom Bifidobacterium (Bifidobacterium longum ) LC65, Bifidobacterium longum LC67 and Bifidobacterium longum LC68 were selected. Thereafter, the liver damage improvement effect of the selected lactic acid bacteria alone or mixed lactic acid bacteria was evaluated using a model animal in which liver damage was induced by Tert-butylperoxide.
(1) 실험방법(1) Experimental method
생쥐(C57BL/6, 웅성) 6마리를 한 군으로 하여, 정상군을 제외한 나머지 군의 실험동물에 Tert-부틸퍼옥사이드(Tert-butylperoxide)를 2.5 mmol/㎏의 용량으로 복강투여 하여 간 손상을 유발하였다. Tert-부틸퍼옥사이드(Tert-butylperoxide)를 투여하고 2시간 후부터 정상군과 음성 대조군을 제외한 나머지 군의 실험동물에 유산균을 2×109 CFU의 양으로 하루 1회씩 3일간 경구투여하였다. 또한, 양성 대조군의 실험동물에는 유산균 대신 실리마린(silymarin)을 100 ㎎/㎏의 양으로 하루 1회씩 3일간 경구투여하였다. 약물을 마지막으로 투여하고 6시간 후에 심장채혈 하였다. 채취한 혈액을 상온에서 60분간 방치하고 3,000 rpm에서 15분간 원심분리하여 혈청을 분리하였다. 분리한 혈청의 GPT(glutamic pyruvate transaminase)와 GOT(glutamic oxalacetic transaminase)를 혈액분석 키트((ALT & AST 측정 키트; Asan Pharm. Co., 대한민국)를 이용하여 측정하였다. 또한, 실험동물로부터 적출한 간 조직 1g을 생리식염수에 넣고 호모게나이저를 이용하여 균질화한 후 상등액을 ELISA kit로 분석하여 TNF-α의 양을 측정하였다.Six rats (C57BL / 6, male) were used as a group, and tert-butylperoxide was dosed at a dose of 2.5 mmol / kg to experimental animals of the other groups except the normal group for liver damage. Induced. After 2 hours of tert-butylperoxide administration, lactic acid bacteria were orally administered to the experimental animals of the group except the normal group and the negative control group once a day for 3 days in an amount of 2 × 10 9 CFU. In addition, the experimental animals of the positive control group was orally administered silymarin (silymarin) once daily for 3 days in an amount of 100 mg / kg instead of lactic acid bacteria. Six hours after the last dose of the drug, the heart was bled. The collected blood was left at room temperature for 60 minutes and centrifuged at 3,000 rpm for 15 minutes to separate serum. GPT (glutamic pyruvate transaminase) and GOT (glutamic oxalacetic transaminase) of the isolated serum were measured using a blood analysis kit (ALT & AST measurement kit; Asan Pharm. Co., South Korea). 1 g of liver tissue was added to physiological saline and homogenized using a homogenizer, and the supernatant was analyzed by ELISA kit to determine the amount of TNF-α.
(2) 실험결과(2) Experiment result
하기 표 17은 Tert-부틸퍼옥사이드(Tert-butylperoxide)에 의해 간 손상이 유발된 모델동물에 유산균을 투여하였을 때 GOT, GPT, TNF-α 값의 변화를 나타낸 것이다. 하기 표 17에서 보이는 바와 같이 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 락토바실러스 플란타룸(Lactobacillus plantarum) LC28, 비피도박테리움 롱검(Bifidobacterium longum) LC67 및 비피도박테리움 롱검(Bifidobacterium longum) LC68은 실리마린(silymarin)보다 우수한 간 손상 개선 효과를 보였고, 이들의 혼합 유산균은 간 손상 개선 효과가 더 우수하였다.Table 17 shows the change in GOT, GPT, TNF-α values when lactic acid bacteria were administered to a model animal induced by liver damage caused by Tert-butylperoxide (Tert-butylperoxide). As shown in Table 17, Lactobacillus plantarum LC5, Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium longum LC67 And Bifidobacterium longum LC68 showed superior liver damage improvement effect than silymarin, and their mixed lactic acid bacteria showed better liver damage improvement effect.
실험군Experimental group GOT(IU/L)GOT (IU / L) GPT(IU/L)GPT (IU / L) TNF-α(pg/g)TNF-α (pg / g)
정상군Normal 42.442.4 6.26.2 140.4140.4
음성 대조군Negative control 103.1103.1 28.028.0 298.0298.0
LC5 투여군LC5 administration group 36.936.9 5.45.4 115.7115.7
LC15 투여군LC15 administration group 60.360.3 6.26.2 154.3154.3
LC17 투여군LC17 administration group 65.865.8 6.86.8 136.7136.7
LC25 투여군LC25 administration group 64.664.6 11.311.3 132.4132.4
LC27 투여군LC27 administration group 35.335.3 3.33.3 157.1157.1
LC28 투여군LC28 administration group 42.042.0 1.01.0 185.7185.7
LC55 투여군LC55 administration group 55.655.6 17.617.6 251.4251.4
LC65 투여군LC65 administration group 61.461.4 17.317.3 127.6127.6
LC67 투여군LC67 administration group 50.850.8 3.83.8 150.5150.5
LC68 투여군LC68 administration group 40.840.8 5.75.7 82.482.4
LC5+LC67 투여군LC5 + LC67 administration group 32.732.7 3.13.1 115.9115.9
LC5+LC68 투여군LC5 + LC68 administration group 36.836.8 5.65.6 105.4105.4
LC27+LC67 투여군LC27 + LC67 administration group 30.530.5 2.32.3 121.2121.2
LC27+LC68 투여군LC27 + LC68 administration group 35.435.4 3.23.2 112.8112.8
LC28+LC67 투여군LC28 + LC67 administration group 32.532.5 2.82.8 128.2128.2
실리마린(silymarin) 투여군Silymarin administration group 52.952.9 5.95.9 93.893.8
상기 표 17에서 "LC5"는 락토바실러스 플란타룸(Lactobacillus plantarum) LC5를 나타내고, "LC15"는 락토바실러스 플란타룸(Lactobacillus plantarum) LC15를 나타내고, "LC17"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC17을 나타내고, "LC25"는 락토바실러스 플란타룸(Lactobacillus plantarum) LC25를 나타내고, "LC27"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27을 나타내고, "LC28"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC28을 나타내고, "LC55"는 비피도박테리움 롱검(Bifidobacterium longum) LC55를 나타내고, "LC65"는 비피도박테리움 롱검(Bifidobacterium longum) LC65를 나타내고, "LC67"은 비피도박테리움 롱검(Bifidobacterium longum) LC67을 나타내고, "LC68"은 비피도박테리움 롱검(Bifidobacterium longum) LC68를 나타내고, "LC5+LC67"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5와 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "LC5+LC68"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5와 비피도박테리움 롱검(Bifidobacterium longum) LC68을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "LC27+LC67"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "LC27+LC68"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균을 나타내고, "LC28+LC67"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC28과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균을 나타낸다. 이하의 실험 결과를 나타낸 표들에서 단독 유산균 또는 혼합 유산균에 대해 동일한 기호를 사용하였다.In Table 17, "LC5" represents Lactobacillus plantarum LC5, "LC15" represents Lactobacillus plantarum LC15, and "LC17" represents Lactobacillus plantarum. ) represents the LC17, "LC25" is Lactobacillus Planta Room (Lactobacillus plantarum) represents the LC25, "LC27" represents the Lactobacillus Planta Room (Lactobacillus plantarum) LC27, "LC28 " is Lactobacillus Planta Room (Lactobacillus plantarum) represents the LC28, "LC55" is ronggeom Bifidobacterium (Bifidobacterium longum) represents an LC55, "LC65" is ronggeom Bifidobacterium (Bifidobacterium longum ) LC65 and "LC67" refers to Bifidobacterium longum ) LC67 and "LC68" refers to Bifidobacterium longum ) LC68, "LC5 + LC67" refers to a mixed lactic acid bacteria prepared by mixing Lactobacillus plantarum LC5 and Bifidobacterium longum LC67 in the same amount "LC5 + LC68" represents a mixed lactic acid bacterium prepared by mixing Lactobacillus plantarum LC5 and Bifidobacterium longum LC68 in the same amount. "LC27 + LC67" indicates Lactobacillus plantarum LC27 and Bifidobacterium longgum ( Bifidobacterium) longum ) mixed lactic acid bacteria prepared by mixing the same amount of LC67 "LC27 + LC68" denotes Lactobacillus plantarum LC27 and Bifidobacterium longgum ( Bifidobacterium) longum ) mixed lactic acid bacteria prepared by mixing the same amount of LC67 "LC28 + LC67" indicates a mixed lactic acid bacterium prepared by mixing Lactobacillus plantarum LC28 and Bifidobacterium longum LC67 in the same amount. Indicates. The same symbols were used for single lactic acid bacteria or mixed lactic acid bacteria in the tables showing the experimental results below.
4. 유산균의 알러지 개선 효과 평가4. Evaluation of allergic effect of lactic acid bacteria
(1) 유산균의 탈과립 저해율 측정(1) Degranulation inhibition rate measurement of lactic acid bacteria
RBL-2H3 세포주(rat mast cell line, 한국세포주은행, Cat. No.22256)를 10% FBS(fetal bovine serum)과 L-글루타민을 포함하는 DMEM(Dulbeccos' modified Eagle's medium, Sigma사, 22256)을 이용하여 37℃, 가습화된(humidified) 5% CO2 배양기에서 배양하였다. 배양액에 포함된 세포들을 트립신-EDTA 용액을 사용하여 부유시키고, 분리 및 회수하여 실험에 사용하였다. 회수된 RBL-2H3 세포들을 24-웰 플레이트에 웰 당 5×105 cells의 양이 되도록 분주한 후, 마우스 단클론성 IgE 0.5 ㎍/㎖를 넣고 12시간 동안 배양시키며 감작화(sensitization) 시켰다. 감작화된 세포들을 0.5 ㎖의 시라가니안 완충액(siraganian buffer; 119mM NaCl, 5mM KCl, 0.4mM MgCl2, 25mM PIPES, 40mM NaOH, pH 7.2)으로 세척한 후에 다시 0.16 ㎖의 시라가니안 완충액(5.6mM 포도당, 1mM CaCl2, 0.1% BSA를 첨가)을 넣고 37℃에서 10분간 배양하였다. 이후, 세포 배양액에 시험약물인 유산균을 1×104 CFU/㎖의 농도가 되도록 첨가하거나 대조약물인 DSCG(disodium cromoglycate) 0.04 ㎖를 첨가한 다음 20분이 경과되었을 때 0.02 ㎖의 항원(DNP-BSA 1㎍/ml)으로 37℃에서 10분간 세포들을 활성화시켰다. 이후, 세포 배양액을 2000 rpm에서 10분간 원심분리하여 상등액을 수득하였다. 수득한 상등액 0.025 ㎖를 96-웰 플레이트로 옮기고, 기질액인 1mM p-NAG(0.1M 시트레이트 완충액에 p-니트로페닐-N-아세틸-β-D-글루코스아미니드를 pH 4.5로 녹인 용액) 0.025 ㎖를 가한 후, 37℃에서 60분간 반응시켰다. 이후, 0.1M Na2CO3/NaHCO3 0.2 ㎖를 반응액에 첨가하여 반응을 정지시키고 405 ㎚에서 ELISA 분석기로 흡광도를 측정하였다.RBL-2H3 cell line (rat mast cell line, Korea Cell Line Bank, Cat. No. 22256) was prepared using DMEM (Dulbeccos' modified Eagle's medium, Sigma, 22256) containing 10% FBS (fetal bovine serum) and L-glutamine. Incubated in a 37 ° C., humidified 5% CO 2 incubator. Cells contained in the culture were suspended using trypsin-EDTA solution, separated and recovered and used for the experiment. The recovered RBL-2H3 cells were aliquoted to a volume of 5 × 10 5 cells per well in a 24-well plate, and then sensitized with 0.5 μg / ml of mouse monoclonal IgE and incubated for 12 hours. The sensitized cells were washed with 0.5 ml of siraganian buffer (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl 2 , 25 mM PIPES, 40 mM NaOH, pH 7.2) and then again with 0.16 ml of Shiraganian buffer (5.6). mM glucose, 1 mM CaCl 2 , 0.1% BSA was added) and incubated at 37 ° C. for 10 minutes. Thereafter, lactic acid bacteria as a test drug were added to the cell culture to a concentration of 1 × 10 4 CFU / mL, or 0.04 mL of DSCG (disodium cromoglycate) as a control drug was added, and then 0.02 mL of antigen (DNP-BSA) was added after 20 minutes. Cells were activated at 37 ° C. for 10 minutes. Thereafter, the cell culture was centrifuged at 2000 rpm for 10 minutes to obtain a supernatant. 0.025 ml of the supernatant obtained was transferred to a 96-well plate, and 1 mM p-NAG (substrate solution, in which p-nitrophenyl-N-acetyl-β-D-glucoamide) was dissolved in 0.1 M citrate buffer to pH 4.5). After adding 0.025 ml, the mixture was reacted at 37 ° C. for 60 minutes. Thereafter, 0.2 ml of 0.1 M Na 2 CO 3 / NaHCO 3 was added to the reaction solution to stop the reaction, and the absorbance was measured by an ELISA analyzer at 405 nm.
(2) 실험결과(2) Experiment result
하기 표 18은 유산균의 탈과립 저해율을 측정한 결과이다. 표 18에서 보이는 바와 같이 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 락토바실러스 플란타룸(Lactobacillus plantarum) LC28, 비피도박테리움 롱검(Bifidobacterium longum) LC67, 비피도박테리움 롱검(Bifidobacterium longum) LC68 및 이들의 혼합 유산균은 호염구의 탈과립을 효과적으로 억제하였다. 따라서, 상기 유산균 또는 유산균 혼합물은 알러지로부터 유발되는 아토피, 천식, 인후염 또는 만성 피부염 등을 매우 효과적으로 개선할 수 있다.Table 18 shows the results of measuring the degranulation inhibition rate of lactic acid bacteria. As shown in Table 18, Lactobacillus plantarum LC5, Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium longgum ( Bifidobacterium) longum ) LC67, Bifidobacterium longum ) LC68 and their mixed lactic acid bacteria effectively inhibited degranulation of basophils. Thus, the lactic acid bacteria or lactic acid bacteria mixture can very effectively improve atopic dermatitis, asthma, sore throat or chronic dermatitis caused by allergy.
처리 약물Treatment medication 탈과립 저해율(%)Degranulation inhibition rate (%)
없음 none 00
LC5LC5 6565
LC15LC15 4545
LC17LC17 4343
LC25LC25 4848
LC27LC27 5252
LC28LC28 5454
LC55LC55 3838
LC65LC65 4242
LC67LC67 6565
LC68LC68 6161
LC5+LC67LC5 + LC67 6565
LC5+LC68LC5 + LC68 6060
LC27+LC67LC27 + LC67 6565
LC27+LC68LC27 + LC68 5959
LC28+LC67LC28 + LC67 6262
DSCG(disodium cromoglycate)DSCo (disodium cromoglycate) 6262
5. 유산균의 항염 및 면역조절 효과 평가(in vitro)5. Evaluation of anti-inflammatory and immunomodulatory effects of lactic acid bacteria (in vitro)
(1) 대식세포의 분리와 염증 지표 측정(1) Isolation of macrophages and measurement of inflammatory markers
6주령 C57BL/6J 수컷 생쥐(20-23g)를 라운바이오㈜로부터 구입하였다. 생쥐의 복강에 멸균된 4% thioglycolate 2 ㎖를 투여하고, 96시간이 지난 뒤에 생쥐를 마취시키고, 다시 생쥐 복강에 RPMI 1640 배지 8 ㎖를 투여하고 5~10분이 지난 뒤에 생쥐 복강 내의 RPMI 배지(대식세포를 포함)를 다시 뽑아내고 1000 rpm의 조건에서 10분간 원심분리하고 다시 RPMI 1640 배지로 2회 세척하였다. 24-well 플레이트에 대식세포를 각 well당 0.5×106의 수로 깔고, 시험 물질인 유산균과 염증 반응 유도 물질인 LPS(lipopolysaccharide)를 2시간 또는 24시간 동안 처리한 후 상등액 및 세포를 수득하였다. 이때, 유산균 처리 농도는 1×104 CFU/㎖ 이었다. 수득한 세포를 buffer(Gibco사)에 넣고 균질화 하였다. 수득한 상등액으로부터 TNF-α와 같은 사이토카인의 발현량을 ELISA kit로 측정하였다. 또한, 수득한 세포로부터 p65(NF-카파B), p-p65(phosphor-NF-카파B) 및 β-actin의 발현량을 면역블롯팅(immunoblotting) 방법으로 측정하였다. 구체적으로 상등액 50㎍을 취해 SDS 10%(w/v) polyacrylamide gel에서 1시간 30분간 전기영동을 하였다. 전기영동한 샘플을 니트로셀룰로스지에 100V, 400㎃의 조건에서 1시간 10분간 트랜스퍼(transfer) 하였다. 샘플이 트랜스퍼된 니트로셀로로스지를 5% skim milk로 30분간 blocking 한 후, 5분씩 3회에 걸쳐 PBS-Tween으로 세척하고, 1차 antibody(Santa Cruz Biotechnology, 미국)를 1:100의 비율로 하여 하룻밤 동안 반응시켰다. 이후, 10분씩 3회에 걸쳐 세척하고, 2차 antibody(Santa Cruz Biotechnology, 미국)를 1:1000의 비율로 하여 1시간 20분간 반응시켰다. 이후, 15분씩 3회에 걸쳐 세척하고, 형광발색 시킨 후 현상하고, 발색밴드의 강도(Intensity)를 측정한 후, 저해율을 아래와 같은 식으로 계산하였다. 하기 식에서 정상군은 대식세포에 생리식염수만 처리한 군을 나타내고, LPS 처리군은 대식세포에 LPS만 처리한 군을 나타내고, 유산균 처리군은 대식세포에 LPS 및 유산균을 모두 처리한 군을 나타낸다.Six-week-old C57BL / 6J male mice (20-23 g) were purchased from Roundbio. 2 ml of sterile 4% thioglycolate was injected into the abdominal cavity of the mouse, anesthetized the mouse after 96 hours, and again 8 ml of RPMI 1640 medium was injected into the abdominal cavity of the mouse, and 5 to 10 minutes later, RPMI medium in the mouse abdominal cavity (large Phagocytic cells) were extracted again, centrifuged at 1000 rpm for 10 minutes, and washed twice with RPMI 1640 medium. Macrophages were placed in a 24-well plate at a number of 0.5 × 10 6 per well, and supernatants and cells were obtained after treatment with lactic acid bacteria, a test substance, and LPS (lipopolysaccharide), an inflammatory response-inducing substance, for 2 hours or 24 hours. At this time, the lactic acid bacteria treatment concentration was 1 × 10 4 CFU / ml. The obtained cells were placed in a buffer (Gibco) and homogenized. The expression level of cytokines such as TNF-α was measured from the obtained supernatant by ELISA kit. In addition, the expression levels of p65 (NF-kappa B), p-p65 (phosphor-NF-kappa B) and β-actin from the obtained cells were measured by immunoblotting. Specifically, 50 ㎍ of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa. The sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, fluoresced and developed, and the intensity of the color band was measured, and then the inhibition rate was calculated as follows. In the following formula, the normal group represents a group treated with physiological saline only to macrophages, the LPS treated group represents a group treated with LPS only to macrophages, and the lactic acid bacteria treated group represents a group treated with both LPS and lactic acid bacteria to macrophages.
Figure PCTKR2016009994-appb-I000001
Figure PCTKR2016009994-appb-I000001
하기 표 19는 LPS(lipopolysaccharide)에 의해 염증 반응이 유도된 대식세포에 유산균을 처리하였을 때 NF-카파B 활성화 저해 수준과 TNF-α 발현 저해 수준을 영향을 나타낸 것이다. 하기 표 19에서 보이는 바와 같이 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 락토바실러스 플란타룸(Lactobacillus plantarum) LC28, 비피도박테리움 롱검(Bifidobacterium longum) LC67, 비피도박테리움 롱검(Bifidobacterium longum) LC68 및 이들의 혼합 유산균은 LPS(lipopolysaccharide)로 유도된 염증 반응을 효과적으로 억제하였다.Table 19 shows the effects of NF-kappaB activation inhibition level and TNF-α expression inhibition level when treated with lactic acid bacteria to macrophage cells induced inflammatory response by lipopolysaccharide (LPS). As shown in Table 19, Lactobacillus plantarum LC5, Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium long gum ( Bifidobacterium) longum ) LC67, Bifidobacterium longum LC68 and their mixed lactic acid bacteria effectively inhibited the inflammatory response induced by lipopolysaccharide (LPS).
처리 유산균Treatment Lactobacillus TNF-α 발현 저해율(%)% Inhibition of TNF-α expression p-p65/p65 활성화 저해율(%)% inhibition of p-p65 / p65 activation
LC5LC5 7171 7373
LC15LC15 5454 5555
LC17LC17 6161 5555
LC25LC25 5252 6565
LC27LC27 7070 7272
LC28LC28 7474 7171
LC55LC55 6363 6262
LC65LC65 6565 6868
LC67LC67 7676 7777
LC68 LC68 7575 7171
LC5+LC67LC5 + LC67 7878 7272
LC5+LC68LC5 + LC68 7676 7272
LC27+LC67LC27 + LC67 8181 7575
LC27+LC68LC27 + LC68 7777 7373
LC28+LC67LC28 + LC67 7777 7373
(2) 비장으로부터 T 세포의 분리와 Th17 세포 또는 Treg 세포로의 분화능 측정(2) Isolation of T Cells from the Spleen and Differentiation Capability into Th17 Cells or Treg Cells
C56BL/6J 생쥐의 비장을 분리하고, 적당하고 분쇄하고, 10% FCS 함유 RPMI 1640 배제에 현탁하고 CD4 T cell isolation kit(MiltenyiBiotec, Bergisch Gladbach, 독일)를 사용하여 CD4 T 세포를 분리하였다. 분리한 CD4 T 세포를 12-웰 플레이트에 각 웰당 5×105 수로 분주하고, 여기에 anti-CD3(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일) 및 anti-CD28(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일)을 넣거나, anti-CD3(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일), anti-CD28(1 ㎍/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일), recombinant IL-6(20 ng/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일) 및 recombinant transforming growth factor beta(1 ng/㎖, MiltenyiBiotec, Bergisch Gladbach, 독일)를 넣고 세포를 배양하면서 유산균을 웰당 1×103 또는 1×105 CFU의 양으로 넣고 4일간 배양하였다. 이후, 배양액의 세포를 anti-FoxP3 또는 anti-IL-17A 항체로 염색하고 FACS(Fluorescence-activated cell sorting) 장치(C6 Flow Cytometer® System, San Jose, CA, USA)를 이용하여 Th17 세포 및 Treg 세포의 분포를 분석하였다.Spleens of C56BL / 6J mice were isolated, crushed, suspended, suspended in RPMI 1640 exclusion with 10% FCS and CD4 T cells were isolated using a CD4 T cell isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). Separated CD4 T cells were dispensed in 12-well plates at 5 × 10 5 cells per well, containing anti-CD3 (1 μg / ml, Miltenyi Biotec, Bergisch Gladbach, Germany) and anti-CD28 (1 μg / ml, Miltenyi Biotec). , Bergisch Gladbach, Germany), anti-CD3 (1 μg / ml, Miltenyi Biotec, Bergisch Gladbach, Germany), anti-CD28 (1 μg / ml, Miltenyi Biotec, Bergisch Gladbach, Germany), recombinant IL-6 (20 ng) / Ml, MiltenyiBiotec, Bergisch Gladbach, Germany) and recombinant transforming growth factor beta (1 ng / ml, MiltenyiBiotec, Bergisch Gladbach, Germany), incubating the cells and adding lactic acid bacteria to 1 × 10 3 or 1 × 10 5 CFU per well. Incubated for 4 days. Subsequently, the cells of the culture were stained with anti-FoxP3 or anti-IL-17A antibody and Th17 cells and Treg cells using a Fluorescence-activated cell sorting (FACS) device (C6 Flow Cytometer® System, San Jose, CA, USA). The distribution of was analyzed.
하기 표 20은 비장에서 분리된 T 세포에 anti-CD3, anti-CD28, IL-6 및 TGF-β를 처리한 후 유산균을 처리하였을 때 Th17 세포로의 분화 수준을 나타낸 것이고, 하기 표 21은 비장에서 분리된 T 세포에 anti-CD3 및 anti-CD28을 처리한 후 유산균을 처리하였을 때 Treg 세포로의 분화 수준을 나타낸 것이다. 하기 표 20 및 표 21에서 보이는 바와 같이, 락토바실러스 플란타룸(Lactobacillus plantarum) LC5, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27, 락토바실러스 플란타룸(Lactobacillus plantarum) LC28, 비피도박테리움 롱검(Bifidobacterium longum) LC67, 비피도박테리움 롱검(Bifidobacterium longum) LC68 및 이들의 혼합 유산균은 T 세포의 Th17 세포(T helper 17 cell)로의 분화를 저해하고 Treg 세포로의 분화를 촉진하였다. 상기 결과에 의할 때 상기 유산균 또는 유산균 혼합물은 대장염, 관절염과 같은 염증 질환을 효과적으로 개선할 수 있다.Table 20 below shows the levels of differentiation into Th17 cells when treated with lactic acid bacteria after treatment with anti-CD3, anti-CD28, IL-6 and TGF-β on T cells isolated from the spleen, and Table 21 below. After treatment with anti-CD3 and anti-CD28 on T cells isolated from, the level of differentiation into Treg cells was shown when treated with lactic acid bacteria. As shown in Table 20 and Table 21, Lactobacillus plantarum LC5, Lactobacillus plantarum LC27, Lactobacillus plantarum LC28, Bifidobacterium longgum ( Bifidobacterium longum ) LC67, Bifidobacterium longum ) LC68 and their mixed lactic acid bacteria inhibited the differentiation of T cells into Th17 cells (T helper 17 cells) and promoted the differentiation into Treg cells. Based on the results, the lactic acid bacteria or lactic acid bacteria mixture can effectively improve inflammatory diseases such as colitis and arthritis.
T 세포 처리 방법T cell treatment method Th17 세포로의 분화율(%) % Differentiation into Th17 cells
anti-CD3, anti-CD28, IL-6 및 TGF-β를 처리 여부Whether anti-CD3, anti-CD28, IL-6 and TGF-β are processed 유산균 처리 여부Lactic acid bacteria treatment
무처리No treatment 무처리No treatment 12.212.2
처리process 무처리No treatment 25.625.6
처리process LC5 처리LC5 treatment 14.214.2
처리process LC15 처리LC15 treatment 19.619.6
처리process LC17 처리LC17 treatment 17.917.9
처리process LC25 처리LC25 treatment 18.218.2
처리process LC27 처리LC27 treatment 15.115.1
처리process LC28 처리LC28 treatment 14.914.9
처리process LC55 처리LC55 treatment 18.818.8
처리process LC65 처리LC65 treatment 17.917.9
처리process LC67 처리LC67 treatment 15.915.9
처리process LC68 처리LC68 treatment 15.715.7
처리process LC5+LC67 처리LC5 + LC67 Treatment 14.214.2
처리process LC5+LC68 처리LC5 + LC68 Treatment 14.514.5
처리process LC27+LC67 처리LC27 + LC67 Treatment 13.913.9
처리process LC27+LC68 처리LC27 + LC68 Treatment 14.414.4
처리process LC28+LC67 처리LC28 + LC67 Treatment 14.114.1
T 세포 처리 방법T cell treatment method Treg 세포로의 분화율(%) Differentiation rate into Treg cells (%)
anti-CD3 및 anti-CD28 처리 여부Whether anti-CD3 and anti-CD28 are processed 유산균 처리 여부Lactic acid bacteria treatment
무처리No treatment 무처리No treatment 9.19.1
처리process 무처리No treatment 11.411.4
처리process LC5 처리LC5 treatment 22.922.9
처리process LC15 처리LC15 treatment 15.815.8
처리process LC17 처리LC17 treatment 16.916.9
처리process LC25 처리LC25 treatment 18.418.4
처리process LC27 처리LC27 treatment 21.821.8
처리process LC28 처리LC28 treatment 21.421.4
처리process LC55 처리LC55 treatment 19.519.5
처리process LC65 처리LC65 treatment 19.219.2
처리process LC67 처리LC67 treatment 21.621.6
처리process LC68 처리LC68 treatment 20.520.5
처리process LC5+LC67 처리LC5 + LC67 Treatment 21.821.8
처리process LC5+LC68 처리LC5 + LC68 Treatment 21.821.8
처리process LC27+LC67 처리LC27 + LC67 Treatment 22.022.0
처리process LC27+LC68 처리LC27 + LC68 Treatment 21.521.5
처리process LC28+LC67 처리LC28 + LC67 Treatment 21.921.9
6. 유산균의 항염 및 대장염 개선 효과 평가(in vivo)6. Evaluation of anti-inflammatory and colitis improvement effects of lactic acid bacteria (in vivo)
(1) 실험동물(1) experimental animals
5주령 C57BL/6 수컷 생쥐(24-27g)를 오리엔트바이오㈜로부터 구입하고, 습도 50±10%, 온도 25±2℃, 조명은 12시간 킨 후 12시간 끄는 것을 반복하는 조절된 환경 조건에서 일주일 동안 사육한 후 실험에 사용하였다. 사료는 표준 실험용 사료(Samyang, Korea)를 사용하였으며 음용수는 자유롭게 섭취하도록 하였다. 모든 실험에서 한 군은 6마리로 하였다.Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ± 10%, temperature 25 ± 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
(2) TNBS에 의한 대장염 유발 및 시료 투여(2) TNBS-induced colitis and sample administration
실험동물 중 한 군을 정상군으로 하고, 나머지 군의 실험동물에 대해서는 2,4,6-트리니트로벤젠술폰산(2,4,6-trinitrobenzenesulfonic acid, TNBS)으로 급성 대장염을 유발하였다. 구체적으로 실험동물을 가볍게 에테르로 마취한 후 TNBS(2,4,6-Trinitrobenzene sulfonic acid) 용액 2.5g을 50% 에탄올 100㎖에 혼합한 용액을 끝이 둥근 1㎖ 용량의 주사기를 이용하여 항문을 통해 대장 내로 0.1㎖씩 투여하고 수직으로 들어 30초간 유지하여 염증을 유발하였다. 반면, 정상군에는 생리식염수 0.1㎖를 경구투여하였다. 이후, 익일부터 매일 1회씩 3일간 시험시료인 유산균 또는 혼합 유산균을 생리식염수에 현탁하여 2.0×109 CFU의 양으로 경구투여하고 시료 투여가 종료된 다음날에 실험동물을 이산화탄소로 질식시켜 죽이고 대장부위 중 맹장으로부터 항문 직전 부위까지의 대장을 적출하여 사용하였다. 또한, 정상군의 실험동물에는 유산균 대신 생리식염수만을 경구투여하였다. 또한, 음성 대조군의 실험동물에도 TNBS에 의한 대장염 유발 후 유산균 대신 생리식염수만을 경구투여하였다. 또한, 양성 대조군의 실험동물에는 유산균 대신 대장염 치료 약물인 설파살라진(sulfasalazine)을 50 ㎎/㎏의 양으로 경구투여하였다.One group of test animals was normal, and the other group of test animals induced acute colitis with 2,4,6-trinitrobenzenesulfonic acid (TNBS). Specifically, the animal was lightly anesthetized with ether, and 2.5 g of TNBS (2,4,6-Trinitrobenzene sulfonic acid) solution was mixed with 100 ml of 50% ethanol. Inoculated into the large intestine by 0.1ml and maintained vertically for 30 seconds to cause inflammation. In contrast, the normal group was orally administered 0.1 ml of saline. Afterwards, the test sample was suspended in physiological saline once a day for 3 days from the next day, orally in the amount of 2.0 × 10 9 CFU. The day after the administration of the sample, the animal was smothered with carbon dioxide and killed. A large intestine from the middle caecum to the area immediately before the anus was extracted and used. In addition, only normal saline was administered orally to physiological saline instead of lactic acid bacteria. In addition, the experimental animals of the negative control group was orally administered only saline instead of lactic acid bacteria after induction of colitis caused by TNBS. In addition, the experimental animals of the positive control group were orally administered sulfasalazine (sulfasalazine), a colitis treatment drug, in an amount of 50 mg / kg instead of lactic acid bacteria.
(3) 대장의 외관 분석 (3) appearance analysis of the large intestine
적출한 대장의 길이와 외관을 관찰하고 하기 표 22의 기준(Hollenbach 등, 2005 대장염 정도에 대한 기준)에 따라 점수로 매겨 외관 분석을 하였다. 대장 조직은 대장 내용물을 모두 제거하고, 생리 식염수에 세척한 후 일부는 병리조직용 샘플로 사용하기 위해 4% 포름알데히드 고정액으로 고정하였으며, 나머지는 분자생물학적 분석을 위해 영하 80℃에서 냉동보관하면서 사용하였다.The length and appearance of the extracted colon were observed and analyzed by appearance according to the criteria of Table 22 (Hollenbach et al., 2005 criteria for colitis). The colon tissues were removed from the colon contents, washed in physiological saline, and some were fixed with 4% formaldehyde fixative for use as pathological samples, and the rest were frozen and stored at minus 80 ° C for molecular biological analysis. It was.
외관 점수(Macroscopic Score) Macroscopic Score 기준standard
00 어떠한 궤양과 염증도 발견되지 않음No ulcers and inflammations found
1One 출혈이 없는 충혈이 발견됨Congestion without bleeding is found
22 충혈이 있는 궤양이 발견됨Ulcers with congestion found
33 한 곳에서만 궤양과 염증이 발견됨Ulcers and inflammations only found in one place
44 궤양과 염증이 2곳 이상에서 발견됨Ulcers and inflammations found in more than one place
55 궤양이 2㎝ 이상으로 확대되어 있음Ulcers that extend beyond 2 cm
(4) 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 측정(4) Determination of Myeloperoxidase (MPO) Activity
대장조직 100㎎에 0.5% hexadecyl trimethyl ammonium bromide 함유 10 mM potassium phosphate buffer(pH 7.0) 200㎕를 넣고 균질화(homogenization) 하였다. 이후, 4℃ 및 10,000×g의 조건에서 10분간 원심분리하여 상등액을 얻었다. 상등액 50 ㎕를 0.95 ㎖ 의 반응액(1.6mM tetramethyl benzidine과 0.1mM H2O2 함유)에 넣고 37℃에서 반응시키면서 650 ㎚에서 경시적으로 흡광도를 측정하였다. 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성은 반응물로서 생긴 peroxide 1 μmol/㎖를 1 unit로 계산하였다.To 100 mg of colon tissue, 200 μl of 10 mM potassium phosphate buffer (pH 7.0) containing 0.5% hexadecyl trimethyl ammonium bromide was added and homogenized. Then, the supernatant was obtained by centrifugation for 10 minutes at 4 ℃ and 10,000 × g conditions. 50 μl of the supernatant was added to 0.95 ml of reaction solution (containing 1.6 mM tetramethyl benzidine and 0.1 mM H 2 O 2 ) and the absorbance was measured at 650 nm over time while reacting at 37 ° C. Myeloperoxidase (MPO) activity was calculated as 1 unit of 1 mol / ml of peroxide as a reactant.
(5) 염증 지표 측정(5) Inflammatory index measurement
웨스턴블롯팅 방법을 이용하여 p-p65, p65, iNOS, COX-2, β-actin 과 같은 염증 반응 지표 물질을 측정하였다. 구체적으로, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 측정 실험과 동일한 방법으로 상등액을 얻었다. 이후, 상등액 50㎍을 취해 SDS 10%(w/v) polyacrylamide gel에서 1시간 30분간 전기영동을 하였다. 전기영동한 샘플을 니트로셀룰로스지에 100V, 400㎃의 조건에서 1시간 10분간 트랜스퍼(transfer) 하였다. 샘플이 트랜스퍼된 니트로셀로로스지를 5% skim milk로 30분간 blocking 한 후, 5분씩 3회에 걸쳐 PBS-Tween으로 세척하고, 1차 antibody(Santa Cruz Biotechnology, 미국)를 1:100의 비율로 하여 하룻밤 동안 반응시켰다. 이후, 10분씩 3회에 걸쳐 세척하고, 2차 antibody(Santa Cruz Biotechnology, 미국)를 1:1000의 비율로 하여 1시간 20분간 반응시켰다. 이후, 15분씩 3회에 걸쳐 세척하고, 형광발색 시킨 후 현상하였다.Western blotting was used to measure inflammatory response markers such as p-p65, p65, iNOS, COX-2, and β-actin. Specifically, the supernatant was obtained in the same manner as the myeloperoxidase (MPO) activity measurement experiment. Then, 50 ㎍ of the supernatant was electrophoresed for 1 hour and 30 minutes in SDS 10% (w / v) polyacrylamide gel. The electrophoretic sample was transferred to nitrocellulose paper for 1 hour and 10 minutes at 100 V and 400 kPa. The sample was blocked with 5% skim milk for 30 minutes after transferring the transferred nitrocellulose paper, and washed with PBS-Tween three times for 5 minutes and the primary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 100. The reaction was overnight. Thereafter, the mixture was washed three times for 10 minutes, and reacted with a secondary antibody (Santa Cruz Biotechnology, USA) at a ratio of 1: 1000 for 1 hour and 20 minutes. Thereafter, the mixture was washed three times for 15 minutes, and developed after fluorescence.
또한, ELISA kit를 이용하여 TNF-α, IL-17, IL-10 등과 같은 염증 관련 사이토카인을 측정하였다.In addition, inflammation-related cytokines such as TNF-α, IL-17, and IL-10 were measured using an ELISA kit.
(6) 면역조절 지표 분석(6) Analysis of immunomodulatory indicator
적출한 대장을 2.5 mM EDTA 용액으로 2회 세척하였다. 이후, 1 ㎎/㎖ 농도로 collagenase type VIII(Sigma)가 함유된 RPMI 배지에 세척한 대장을 넣고 30℃에서 20분간 흔들어 처리하고, 여과하여 Lamina propria를 분리하였다. 이후, Lamina propria를 30-100% 퍼콜액으로 처리하고 원심분리하여 T 세포를 분리하였다. 이후, 분리한 T 세포를 anti-FoxP3 또는 anti-IL-17A 항체로 염색하고 FACS(Fluorescence-activated cell sorting) 장치(C6 Flow Cytometer® System, San Jose, CA, USA)를 이용하여 Th17, Treg의 분포를 분석하였다.The isolated colon was washed twice with 2.5 mM EDTA solution. Thereafter, the colon was washed in RPMI medium containing collagenase type VIII (Sigma) at a concentration of 1 mg / ml, shaken at 30 ° C. for 20 minutes, and filtered to separate Lamina propria. Lamina propria was then treated with 30-100% Percol solution and centrifuged to separate T cells. Thereafter, the isolated T cells were stained with an anti-FoxP3 or anti-IL-17A antibody, and stained with Th17 and Tregs using a FACS (Fluorescence-activated cell sorting) device (C6 Flow Cytometer® System, San Jose, CA, USA). The distribution was analyzed.
(7) 실험결과(7) Experiment result
하기 표 23은 TNBS에 의해 급성 대장염이 유도된 모델동물에 유산균을 투여하였을 때, 유산균이 대장의 무게, 대장의 외관, 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성, 염증 관련 사이토카인의 함량 변화에 미치는 영향을 나타낸 것이다. 하기 표 23에서 보이는 바와 같이 TNBS에 의해 급성 대장염이 유도된 모델동물의 경우 몸무게, 대장염의 외관 지수, 대장 길이가 감소하고 MPO 활성이 증가하였다. 그러나, TNBS에 의해 급성 대장염이 유도된 모델동물에 유산균을 투여하였을 때 상기 지표들이 모두 개선되었다. 특히, 비피도박테리움 롱검(Bifidobacterium longum) LC67을 단독으로 투여하거나 비피도박테리움 롱검(Bifidobacterium longum) LC67과 락토바실러스 플란타룸(Lactobacillus plantarum) LC5의 혼합 유산균을 투여하는 경우 대장염 개선 효과가 매우 우수하였다. 또한, TNBS에 의해 급성 대장염이 유도된 모델동물의 경우 TNF-α, IL-17가 증가하고 IL-10이 감소하였다. 그러나, TNBS에 의해 급성 대장염이 유도된 모델동물에 유산균을 투여하였을 때 상기 지표들이 모두 개선되었다. 특히, 비피도박테리움 롱검(Bifidobacterium longum) LC67을 단독으로 투여하거나 비피도박테리움 롱검(Bifidobacterium longum) LC67과 락토바실러스 플란타룸(Lactobacillus plantarum) LC5의 혼합 유산균을 투여하는 경우 TNF-α, IL-17의 양이 크게 감소하고 IL-10의 양이 크게 증가하였다.Table 23 shows the effects of lactobacillus on the weight of colon, the appearance of colon, myeloperoxidase (MPO) activity, and inflammation-related cytokine content when Lactobacillus was administered to model animals induced by acute colitis induced by TNBS. The effect is shown. As shown in Table 23, in the model animals induced by acute colitis induced by TNBS, weight, appearance index of colitis, colon length decreased, and MPO activity increased. However, all of these indicators were improved when lactic acid bacteria were administered to a model animal induced by acute colitis induced by TNBS. In particular, administration of Bifidobacterium longum LC67 alone or a mixed lactic acid bacterium of Bifidobacterium longum LC67 and Lactobacillus plantarum LC5 significantly improves colitis. Excellent. In addition, TNF-α and IL-17 were increased and IL-10 was decreased in model animals induced by acute colitis induced by TNBS. However, all of these indicators were improved when lactic acid bacteria were administered to a model animal induced by acute colitis induced by TNBS. In particular, Bifidobacterium ronggeom (Bifidobacterium longum) administered alone to LC67 or Bifidobacterium ronggeom (Bifidobacterium longum) LC67 and Lactobacillus Planta room (Lactobacillus plantarum) When administering a mixture of lactic acid bacteria of the LC5 TNF-α, IL The amount of -17 was greatly reduced and the amount of IL-10 was greatly increased.
실험군Experimental group Weight gain(g)Weight gain (g) Macroscopic scoreMacroscopic score Colon length(㎝)Colon length (cm) MPO 활성(μU/㎎)MPO activity (μU / mg) TNF-α(pg/㎎)TNF-α (pg / mg) IL-17(pg/㎎)IL-17 (pg / mg) IL-10(pg/㎎)IL-10 (pg / mg)
정상군Normal 0.640.64 5.95.9 0.140.14 0.420.42 35.135.1 18.418.4 61.261.2
음성 대조군Negative control -2.46-2.46 4.24.2 2.322.32 1.541.54 95.595.5 65.265.2 30.730.7
LC5 투여군LC5 administration group -1.90-1.90 4.654.65 1.301.30 0.910.91 75.575.5 52.852.8 43.943.9
LC27 투여군LC27 administration group -1.0-1.0 4.564.56 1.081.08 0.820.82 67.267.2 50.450.4 44.044.0
LC67 투여군LC67 administration group -0.28-0.28 4.924.92 0.500.50 0.430.43 48.548.5 38.538.5 54.654.6
LC 68 투여군LC 68 administration group -1.02-1.02 4.54.5 1.341.34 1.041.04 54.454.4 50.550.5 48.148.1
LC5+LC67 투여군LC5 + LC67 administration group -0.3-0.3 5.085.08 0.840.84 0.420.42 45.145.1 37.337.3 55.355.3
LC27+LC68 투여군LC27 + LC68 administration group -1.15-1.15 4.84.8 1.171.17 0.780.78 59.859.8 45.045.0 50.050.0
양성 대조군Positive control -0.91-0.91 4.584.58 1.431.43 0.950.95 58.258.2 48.548.5 45.545.5
도 22는 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 유산균이 미치는 영향을 T 세포의 Th17 세포로의 분화 양상으로 나타낸 것이고, 도 23은 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 유산균이 미치는 영향을 T 세포의 Treg 세포로의 분화 양상으로 나타낸 것이다. 도 22 및 도 23에서 "NOR"은 정상군을 나타내고, "TNBS"는 음성 대조군을 나타내고, "LC5"는 락토바실러스 플란타룸(Lactobacillus plantarum) LC5 투여군을 나타내고, "LC27"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27 투여군을 나타내고, "LC67"은 비피도박테리움 롱검(Bifidobacterium longum) LC67 투여군을 나타내고, "LC68"은 비피도박테리움 롱검(Bifidobacterium longum) LC68 투여군을 나타내고, "LC5+LC67"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5와 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균 투여군을 나타내고, "LC27+LC68"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC68을 동량으로 혼합하여 제조한 혼합 유산균 투여군을 나타내고, "SS"는 설파살라진(sulfasalazine) 투여군을 나타낸다. 도 22 및 도 23에서 보이는 바와 같이 TNBS에 의해 급성 대장염이 유도된 모델동물의 경우 T 세포의 Th17 세포로의 분화가 촉진되고 T 세포의 Treg 세포로의 분화가 억제되었다. 그러나, TNBS에 의해 급성 대장염이 유도된 모델동물에 유산균을 투여하였을 때 T 세포의 Th17 세포로의 분화가 억제되고 T 세포의 Treg 세포로의 분화가 촉진되었다. 특히, 비피도박테리움 롱검(Bifidobacterium longum) LC67을 단독으로 투여하거나 비피도박테리움 롱검(Bifidobacterium longum) LC67과 락토바실러스 플란타룸(Lactobacillus plantarum) LC5의 혼합 유산균을 투여하는 경우 T 세포의 Th17 세포로의 분화가 크게 억제되고 T 세포의 Treg 세포로의 분화가 크게 촉진되었다.Figure 22 shows the effect of lactic acid bacteria to differentiation of T cells into Th17 cells induced by acute colitis induced by TNBS, Figure 23 shows the effect of lactic acid bacteria against model animals induced by acute colitis induced by TNBS The effect is shown in the differentiation pattern of T cells into Treg cells. 22 and 23, "NOR" represents a normal group, "TNBS" represents a negative control, "LC5" represents a Lactobacillus plantarum LC5 administration group, "LC27" represents a Lactobacillus planta Lactobacillus plantarum LC27 administration group, "LC67" represents the Bifidobacterium longum LC67 administration group, "LC68" represents the Bifidobacterium longum LC68 administration group, "LC5 + LC67 " Lactobacillus plantarum LC5 and Bifidobacterium longum LC67 represents a mixed lactobacillus administration group prepared by mixing the same amount," LC27 + LC68 "is Lactobacillus plantarum ( Lactobacillus plantarum ) LC27 ronggeom and Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacteria administration group prepared by mixing the same amount of LC68, "SS" represents a sulfasalazine administration group. As shown in FIGS. 22 and 23, in the model animals in which acute colitis was induced by TNBS, the differentiation of T cells into Th17 cells was promoted and the differentiation of T cells into Treg cells was suppressed. However, when lactic acid bacteria were administered to TNBS-induced acute colitis, the differentiation of T cells into Th17 cells was inhibited and the differentiation of T cells into Treg cells was promoted. In particular, ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 alone or Bifidobacterium Lactobacillus administration of longum ) LC67 and Lactobacillus plantarum LC5 significantly inhibited the differentiation of T cells into Th17 cells and greatly promoted the differentiation of T cells into Treg cells.
도 24는 TNBS에 의해 급성 대장염이 유도된 모델동물에 대해 유산균이 미치는 영향을 염증 반응 지표 물질 등으로 나타낸 것이다. 도 24에서 "Nor"은 정상군을 나타내고, "T"는 음성 대조군을 나타내고, "LC5"는 락토바실러스 플란타룸(Lactobacillus plantarum) LC5 투여군을 나타내고, "LC27"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27 투여군을 나타내고, "LC67"은 비피도박테리움 롱검(Bifidobacterium longum) LC67 투여군을 나타내고, "LC68"은 비피도박테리움 롱검(Bifidobacterium longum) LC68 투여군을 나타내고, "LC5+LC67"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5와 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균 투여군을 나타내고, "LC27+LC68"은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC68을 동량으로 혼합하여 제조한 혼합 유산균 투여군을 나타내고, "SS"는 설파살라진(sulfasalazine) 투여군을 나타낸다. 도 24에서 보이는 바와 같이 TNBS에 의해 급성 대장염이 유도된 모델동물의 경우 NF-κB가 활성화(p-p65)되고 COX-2 및 iNOS의 발현량이 증가하였으나, 유산균 투여에 의해 NF-κB가 활성화(p-p65)가 억제되고 COX-2 및 iNOS의 발현량의 증가도 감소하였다. 특히, 비피도박테리움 롱검(Bifidobacterium longum) LC67을 단독으로 투여하거나 비피도박테리움 롱검(Bifidobacterium longum) LC67과 락토바실러스 플란타룸(Lactobacillus plantarum) LC5의 혼합 유산균을 투여하는 경우 NF-κB가 활성화(p-p65) 억제 효과 및 COX-2 및 iNOS의 발현 증가 억제 효과가 우수하였다.FIG. 24 shows the effects of lactic acid bacteria on model animals induced by acute colitis induced by TNBS as inflammatory response indicators. In Figure 24 "Nor" represents the control group, "T" indicates a negative control, "LC5" denotes a Lactobacillus Planta room (Lactobacillus plantarum) LC5 group, "LC27" is Lactobacillus Planta room (Lactobacillus plantarum ) represents an LC27 administration group, "LC67" represents a Bifidobacterium longum LC67 administration group, "LC68" represents a Bifidobacterium longum LC68 administration group, and "LC5 + LC67" represents a lactose. Lactobacillus plantarum LC5 and Bifidobacterium longum LC67 represents a mixed lactobacillus administration group prepared by mixing the same amount, "LC27 + LC68" is Lactobacillus plantarum LC27 and ronggeom Bifidobacterium (Bifidobacterium longum ) represents a mixed lactic acid bacteria administration group prepared by mixing the same amount of LC68, "SS" represents a sulfasalazine administration group. As shown in FIG. 24, NF-κB was activated (p-p65) and expression levels of COX-2 and iNOS were increased in the model animal induced by acute colitis induced by TNBS, but NF-κB was activated by administration of lactic acid bacteria ( p-p65) was inhibited and the increase in the expression level of COX-2 and iNOS was also reduced. In particular, ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 alone or Bifidobacterium Lactobacillus ( Lactobacillus plantarum ) LC5 administration of longum ) LC67 and Lactobacillus plantarum LC5 was effective in inhibiting the activation (p-p65) and increased expression of COX-2 and iNOS.
7. 유산균의 알코올 유도성 위궤양 개선 효과 평가(in 7. Evaluation of the Lactic Acid Bacteria Improvement Effect of Alcohol-Induced Gastric Ulcer (in vivovivo ))
(1) 실험동물(1) experimental animals
5주령 C57BL/6 수컷 생쥐(24-27g)를 오리엔트바이오㈜로부터 구입하고, 습도 50±10%, 온도 25±2℃, 조명은 12시간 킨 후 12시간 끄는 것을 반복하는 조절된 환경 조건에서 일주일 동안 사육한 후 실험에 사용하였다. 사료는 표준 실험용 사료(Samyang, Korea)를 사용하였으며 음용수는 자유롭게 섭취하도록 하였다. 모든 실험에서 한 군은 6마리로 하였다.Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ± 10%, temperature 25 ± 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
(2) 알코올에 의한 위궤양 유도 및 시료 투여(2) Induction of gastric ulcer by alcohol and sample administration
1개의 실험군에는 락토바실러스 플란타룸(Lactobacillus plantarum) LC27을 생리식염수에 현탁하여 매일 1회씩 1×109 CFU의 양으로 3일 동안 경구투여하고 1개의 실험군에는 비피도박테리움 롱검(Bifidobacterium longum) LC67을 생리식염수에 현탁하여 매일 1회씩 1×109 CFU의 양으로 3일 동안 경구투여하고, 1개의 실험군에는 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균을 생리식염수에 현탁하여 매일 1회씩 1×109 CFU의 양으로 3일 동안 경구투여하였다. 또한, 양성 대조군에는 상업적인 위궤양 치료제인 라니티딘(Ranitidine)을 매일 1회씩 50 ㎎/㎏의 양으로 3일 동안 경구투여하였다. 또한, 정상군 및 음성 대조군에는 생리식염수를 매일 1회씩 0.2㎖의 양으로 3일 동안 경구투여하였다. 시료를 3일 동안 경구투여한 후, 18시간 동안 실험 생쥐를 절식 및 절수시켰다. 실험 4일째에 시료 또는 생리식염수를 투여하고 1시간이 지난 후 정상군을 제외한 모든 실험군의 생쥐에게 99% 순도의 에탄올 0.2㎖를 경구투여하여 위궤양을 유발하였다. 또한, 정상군에는 에탄올 대신 생리식염수 0.2㎖를 경구투여하였다.In one experimental group, Lactobacillus plantarum LC27 was suspended in physiological saline and orally administered once daily for 3 days in an amount of 1 × 10 9 CFU, and one experimental group included Bifidobacterium long gum ( Bifidobacterium). longum ) LC67 was suspended in physiological saline and administered orally once daily for 3 days in an amount of 1 × 10 9 CFU, and one experimental group included Lactobacillus plantarum LC27 and Bifidobacterium long gum ( Bifidobacterium). longum ) The mixed lactic acid bacteria prepared by mixing the same amount of LC67 was suspended in physiological saline and administered orally in an amount of 1 × 10 9 CFU once daily for 3 days. In the positive control group, ranitidine, a commercial gastric ulcer drug, was orally administered once daily in an amount of 50 mg / kg for 3 days. In addition, the normal group and the negative control group was administered orally for 3 days in an amount of 0.2 ml once daily. After oral administration of the sample for 3 days, the experimental mice were fasted and watered for 18 hours. One hour after the administration of the sample or saline on the fourth day of the experiment, mice of all experimental groups except the normal group were orally administered with 0.2 ml of 99% pure ethanol to induce gastric ulcers. In addition, the normal group was orally administered 0.2 ml of saline instead of ethanol.
(3) 위 손상 관련 거시적 지표 측정(3) measuring macroscopic indicators of gastric damage
에탄올 투여 후 3시간이 경과하였을 때 실험 생쥐를 희생시켜 위 조직을 떼어내고 세로로 갈라 PBS(phosphate buffer saline) 용액으로 세척한 뒤 위 손상 정도를 육안 또는 현미경으로 관찰하고 손상 정도에 따라 점수를 부여하였다(참고문헌 : Park, S.W., Oh, T.Y., Kim,Y.S., Sim, H., et al., Artemisia asiatica extracts protect against ethanol-induced injury in gastric mucosa of rats. J. Gastroenterol. Hepatol. 2008, 23, 976?984.). Three hours after ethanol administration, the mice were sacrificed and the stomach tissues were removed, vertically divided and washed with PBS (phosphate buffer saline) solution. (Reference: Park, SW, Oh, TY, Kim, YS, Sim, H., et al., Artemisia asiatica extracts protect against ethanol-induced injury in gastric mucosa of rats. J. Gastroenterol. Hepatol. 2008, 23 , 976? 984.).
(4) 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성 측정(4) Determination of Myeloperoxidase (MPO) Activity
위 조직 100㎎에 0.5% hexadecyl trimethyl ammonium bromide 함유 10 mM potassium phosphate buffer(pH 7.0) 200㎕를 넣고 균질화(homogenization) 하였다. 이후, 4℃ 및 10,000×g의 조건에서 10분간 원심분리하여 상등액을 얻었다. 상등액 50 ㎕를 0.95 ㎖ 의 반응액(1.6mM tetramethyl benzidine과 0.1mM H2O2 함유)에 넣고 37℃에서 반응시키면서 650 ㎚에서 경시적으로 흡광도를 측정하였다. 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성은 반응물로서 생긴 peroxide 1 μmol/㎖를 1 unit로 계산하였다.In 100 mg of the tissue, 200 μl of 10 mM potassium phosphate buffer (pH 7.0) containing 0.5% hexadecyl trimethyl ammonium bromide was added and homogenized. Then, the supernatant was obtained by centrifugation for 10 minutes at 4 ℃ and 10,000 × g conditions. 50 μl of the supernatant was added to 0.95 ml of reaction solution (containing 1.6 mM tetramethyl benzidine and 0.1 mM H 2 O 2 ) and the absorbance was measured at 650 nm over time while reacting at 37 ° C. Myeloperoxidase (MPO) activity was calculated as 1 unit of 1 mol / ml of peroxide as a reactant.
(5) 염증 지표 측정(5) Inflammatory index measurement
위 조직을 Qiagen RNeasy Mini Kit로 정제하여 mRNA 2㎍을 분리하고, Takara Prime Script Rtase를 이용하여 cDNA를 만들었다. 이후, quantitative real time polymerase chain reaction(Qiagn thermal cycler, Takara SYBER premix agent, Thermal cycling conditions: activation of DNA polymerase for 5 min at 95℃, followed by 40 cycles of amplification for 10 s at 95℃ and for 45 s at 60℃)을 이용하여 CXCL4[chemokine (C-X-C motif) ligand 4] 및 TNF-α(tumor necrosis factor-alpha)의 발현량을 측정하였다. 하기 표 24는 quantitative real time polymerase chain reaction에 사용된 프라이머(primer) 서열을 분석 대상 사이토카인(cytokine)별로 나타낸 것이다.Gastric tissue was purified by Qiagen RNeasy Mini Kit to isolate 2 μg of mRNA, and cDNA was prepared using Takara Prime Script Rtase. Then, quantitative real time polymerase chain reaction (Qiagn thermal cycler, Takara SYBER premix agent, Thermal cycling conditions: activation of DNA polymerase for 5 min at 95 ° C, followed by 40 cycles of amplification for 10 s at 95 ° C and for 45 s at 60 ° C) was used to measure the expression levels of CXCL4 [chemokine (CXC motif) ligand 4] and TNF-α (tumor necrosis factor-alpha). Table 24 below shows primer sequences used for quantitative real time polymerase chain reaction for each cytokine to be analyzed.
분석 대상 사이토카인Cytokines Analyzed 프라이머 종류Primer type 프라이머 염기서열Primer Sequence
TNF-αTNF-α ForwardForward 5'-CTGTAGCCCACGTCGTAGC-3'5'-CTGTAGCCCACGTCGTAGC-3 '
ReverseReverse 5'-TTGAGATCCATGCCGTTG-3'5'-TTGAGATCCATGCCGTTG-3 '
CXCL4CXCL4 ForwardForward 5'-AGTCCTGAGCTGCTGCTTCT-3'5'-AGTCCTGAGCTGCTGCTTCT-3 '
ReverseReverse 5'-GATCTCCATCGCTTTCTTCG-3'5'-GATCTCCATCGCTTTCTTCG-3 '
(6) 실험결과(6) Experiment result
도 25는 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 사진으로 나타낸 것이고, 도 26은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 총 위 병변 점수(gross gastric lesion score)로 나타낸 것이고, 도 27은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 궤양 지수(ulcer index)로 나타낸 것이고, 도 28은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 조직 활성 지수(Histological activity index)로 나타낸 것이다. 또한, 도 29는 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 미엘로퍼옥시다아제(Myeloperoxidase, MPO) 활성으로 나타낸 것이다. 또한, 도 30은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 CXCL4의 발현 수준으로 나타낸 것이고, 도 31은 본 발명의 2차 실험에서, 에탄올에 의해 위궤양이 유발된 생쥐의 위점막(stomach mucosa)에 대해 유산균이 미치는 영향을 TNF-α의 발현 수준으로 나타낸 것이다. 도 30 및 도 31에서 정상군을 제외한 실험군들의 CXCL4 발현 수준 및 TNF-α 발현 수준은 정상군의 발현량을 기준으로 하여 배수(fold change)로 나타내었다. 도 25 내지 도 31에서 "Nor"은 정상군을 나타내고, "Ethanol"는 에탄올에 의해 위궤양이 유발되고 시료로 생리식염수가 투여된 음성 대조군을 나타내고, "Ethanol+Ranitidine"은 에탄올에 의해 위궤양이 유발되고 시료로 라니티딘(Ranitidine)이 투여된 실험군을 나타내고, "Ethanol+LC27"은 에탄올에 의해 위궤양이 유발되고 시료로 락토바실러스 플란타룸(Lactobacillus plantarum) LC27이 투여된 실험군을 나타내고, "Ethanol+LC67"은 에탄올에 의해 위궤양이 유발되고 시료로 비피도박테리움 롱검(Bifidobacterium longum) LC67이 투여된 실험군을 나타내고, "Ethanol+LC27/LC67"은 에탄올에 의해 위궤양이 유발되고 시료로 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균이 투여된 실험군을 나타낸다. 도 25 내지 도 29에서 보이는 바와 같이 내고, 비피도박테리움 롱검(Bifidobacterium longum) LC67, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27 또는 이들의 혼합 유산균은 에탄올에 의해 유발된 위 손상 또는 위궤양을 효과적으로 개선하였다. 또한, 도 30 및 도 31에서 보이는 바와 같이 비피도박테리움 롱검(Bifidobacterium longum) LC67, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27 또는 이들의 혼합 유산균은 에탄올에 의해 위 손상 또는 위궤양이 유발된 생쥐의 염증 지표 수준을 크게 경감시켰다.FIG. 25 is a photograph showing the effect of lactic acid bacteria on the gastric mucosa of the mouse induced by gastric ulcers in the second experiment of the present invention. FIG. 26 is a second experiment of the present invention. The effect of lactic acid bacteria on the gastric mucosa of the gastric ulcer induced by the gastric ulcer is shown by the gross gastric lesion score (Gross gastric lesion score), Figure 27 is a gastric ulcer by ethanol in the second experiment of the present invention The effect of lactic acid bacteria on the gastric mucosa of the induced mice (ulcer index) is shown by the ulcer index (ulcer index), Figure 28, in the second experiment of the present invention, gastric mucosa of the mice induced gastric ulcer by ethanol (Histological activity index) shows the effect of lactic acid bacteria on (stomach mucosa). In addition, in the second experiment of the present invention, the effect of lactic acid bacteria on the gastric mucosa (stomach mucosa) of the gastric ulcer induced mice by ethanol is shown as myeloperoxidase (MPO) activity. In addition, Figure 30 shows the effect of lactic acid bacteria on the gastric mucosa (stomach mucosa) of the ethanol-induced gastric ulcer mice in the second experiment of the present invention, the expression level of CXCL4, Figure 31 In the next experiment, the effect of lactic acid bacteria on the gastric mucosa of gastric ulcer-induced gastric mucosa was expressed as the expression level of TNF-α. In FIG. 30 and FIG. 31, CXCL4 expression levels and TNF-α expression levels of the test groups except the normal group were expressed as fold changes based on the expression level of the normal group. In FIGS. 25 to 31, "Nor" represents a normal group, "Ethanol" represents a negative control in which gastric ulcers are induced by ethanol and physiological saline is administered as a sample, and "Ethanol + Ranitidine" induces gastric ulcers by ethanol. And an experiment group in which ranitidine was administered as a sample, and "Ethanol + LC27" represents an experimental group in which gastric ulcer was induced by ethanol and Lactobacillus plantarum LC27 was administered as a sample, and "Ethanol + LC67 "The gastric ulcer is caused by ethanol and the Bifidobacterium long gum ( Bifidobacterium) longum ) represents an experimental group to which LC67 was administered, and "Ethanol + LC27 / LC67" is a gastric ulcer induced by ethanol and the same amount of Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 as a sample. The experimental group to which the mixed lactic acid bacteria prepared by mixing was administered. As shown in Fig. 25 to 29, Bifidobacterium longum LC67, Lactobacillus plantarum LC27 or a mixed lactic acid bacteria thereof effectively improve the gastric ulcer or gastric ulcer caused by ethanol It was. In addition, Bifidobacterium long gum ( Bifidobacterium) as shown in Figure 30 and 31 longum ) LC67, Lactobacillus plantarum LC27, or a mixed lactobacillus thereof significantly reduced the level of inflammatory markers in mice induced by gastric ulcer or gastric ulcer.
8. 유산균의 알코올 유도성 간 손상 개선 효과 평가(in 8. Evaluation of the Lactic Acid Bacteria Improvement Effect of Alcohol-induced Liver Injury (in vivovivo ))
(1) 실험동물(1) experimental animals
5주령 C57BL/6 수컷 생쥐(24-27g)를 오리엔트바이오㈜로부터 구입하고, 습도 50±10%, 온도 25±2℃, 조명은 12시간 킨 후 12시간 끄는 것을 반복하는 조절된 환경 조건에서 일주일 동안 사육한 후 실험에 사용하였다. 사료는 표준 실험용 사료(Samyang, Korea)를 사용하였으며 음용수는 자유롭게 섭취하도록 하였다. 모든 실험에서 한 군은 6마리로 하였다.Five-week-old C57BL / 6 male mice (24-27 g) were purchased from Orient Bio Co., Ltd., with controlled humidity conditions of 50 ± 10%, temperature 25 ± 2 ° C., lighting for 12 hours, and turning off for 12 hours. After the breeding was used for the experiment. Feed was used as standard experimental feed (Samyang, Korea) and drinking water was freely consumed. In all experiments, one group was 6 animals.
(2) 알코올에 의한 간 손상 유도 및 시료 투여(2) Induce liver damage by alcohol and sample administration
1개의 실험군에는 락토바실러스 플란타룸(Lactobacillus plantarum) LC27을 생리식염수에 현탁하여 매일 1회씩 1×109 CFU의 양으로 3일 동안 경구투여하고 1개의 실험군에는 비피도박테리움 롱검(Bifidobacterium longum) LC67을 생리식염수에 현탁하여 매일 1회씩 1×109 CFU의 양으로 3일 동안 경구투여하고, 1개의 실험군에는 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균을 생리식염수에 현탁하여 매일 1회씩 1×109 CFU의 양으로 3일 동안 경구투여하였다. 또한, 양성 대조군에는 상업적인 간 손상 치료제인 실리마린(silymarin)을 매일 1회씩 50 ㎎/㎏의 양으로 3일 동안 경구투여하였다. 또한, 정상군 및 음성 대조군에는 생리식염수 용액을 매일 1회씩 0.1㎖의 양으로 3일 동안 경구투여하였다. 시료 또는 생리식염수를 3일 동안 경구투여하고 3시간 후에 정상군을 제외한 모든 실험군의 생쥐에게 에탄올을 6 ㎖/㎏의 양으로 복강투여하여 간 손상을 유발하였다. 또한, 정상군에는 에탄올 대신 생리식염수를 6 ㎖/㎏의 양으로 복강투여하였다. 이후, 실험 생쥐를 12시간 동안 절식 및 절수시킨 후 희생시켜 심장채혈을 하였다.In one experimental group, Lactobacillus plantarum LC27 was suspended in physiological saline and orally administered once daily for 3 days in an amount of 1 × 10 9 CFU, and one experimental group included Bifidobacterium long gum ( Bifidobacterium). longum ) LC67 was suspended in physiological saline and administered orally once daily for 3 days in an amount of 1 × 10 9 CFU, and one experimental group included Lactobacillus plantarum LC27 and Bifidobacterium long gum ( Bifidobacterium). longum ) The mixed lactic acid bacteria prepared by mixing the same amount of LC67 was suspended in physiological saline and administered orally in an amount of 1 × 10 9 CFU once daily for 3 days. In addition, the positive control group was orally administered silymarin (silymarin), a therapeutic agent for the treatment of liver damage, once daily in an amount of 50 mg / kg for 3 days. In addition, the normal group and the negative control group were orally administered with saline solution once daily in an amount of 0.1 ml for 3 days. Hepatic damage was induced by oral administration of a sample or saline solution for 3 days, and intraperitoneally administered ethanol in an amount of 6 ml / kg to all experimental groups except the normal group after 3 hours. In addition, the normal group was intraperitoneally administered physiological saline instead of ethanol in an amount of 6 ml / kg. Thereafter, the mice were fasted and watered for 12 hours, and sacrificed for heart blood collection.
(3) 간 기능 지표 측정 및 결과(3) liver function indicator measurement and results
채취한 혈액을 상온에서 60분간 방치하고 3,000 rpm에서 15분간 원심분리하여 혈청을 분리하였다. 분리한 혈청의 GPT(glutamic pyruvate transaminase)와 GOT(glutamic oxalacetic transaminase)를 혈액분석 키트((ALT & AST 측정 키트; Asan Pharm. Co., 대한민국)를 이용하여 측정하였고, 그 결과를 하기 표 25에 나타내었다. 하기 표 25에서 보이는 바와 같이 비피도박테리움 롱검(Bifidobacterium longum) LC67, 락토바실러스 플란타룸(Lactobacillus plantarum) LC27 또는 이들의 혼합 유산균은 에탄올에 의해 유발된 간 손상을 효과적으로 개선하였고, 특히 비피도박테리움 롱검(Bifidobacterium longum) LC67은 상업적인 간 손상 치료제인 실리마린(silymarin)보다 우수한 효과를 보였다.The collected blood was left at room temperature for 60 minutes and centrifuged at 3,000 rpm for 15 minutes to separate serum. GPT (glutamic pyruvate transaminase) and GOT (glutamic oxalacetic transaminase) of the isolated serum were measured using a blood analysis kit (ALT & AST measurement kit; Asan Pharm. Co., South Korea), and the results are shown in Table 25 below. As shown in Table 25, Bifidobacterium longum LC67, Lactobacillus plantarum LC27, or mixed lactobacilli thereof, effectively improved liver damage caused by ethanol, in particular ronggeom Bifidobacterium (Bifidobacterium longum ) LC67 was superior to silymarin, a commercial treatment for liver damage.
실험군 구분Experiment group GOT(IU/L)GOT (IU / L) GPT(IU/L)GPT (IU / L)
정상군Normal 52.152.1 42.242.2
음성 대조군Negative control 107.7107.7 156.3156.3
에탄올 및 LC27을 투여한 군Group administered ethanol and LC27 82.382.3 95.495.4
에탄올 및 LC67을 투여한 군Group administered ethanol and LC67 62.562.5 65.865.8
에탄올 및 LC27/LC67을 투여한 군Group administered ethanol and LC27 / LC67 71.471.4 78.378.3
에탄올 및 실리마린을 투여한 군Ethanol and silymarin 79.579.5 87.587.5
* LC27 : 락토바실러스 플란타룸(Lactobacillus plantarum) LC27* LC27: Lactobacillus plantarum LC27
* LC67 : 비피도박테리움 롱검(Bifidobacterium longum) LC67* LC67: ronggeom Bifidobacterium (Bifidobacterium longum ) LC67
* LC27/LC67 : 락토바실러스 플란타룸(Lactobacillus plantarum) LC27과 비피도박테리움 롱검(Bifidobacterium longum) LC67을 동량으로 혼합하여 제조한 혼합 유산균* LC27 / LC67: Lactobacillus Planta Room (Lactobacillus plantarum) LC27 ronggeom and Bifidobacterium (Bifidobacterium longum ) Mixed lactic acid bacteria prepared by mixing LC67 in the same amount
이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 따라서, 본 발명의 보호범위는 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 형태를 포함하는 것으로 해석되어야 한다.Although the present invention has been described through the above embodiments as described above, the present invention is not necessarily limited thereto, and various modifications can be made without departing from the scope and spirit of the present invention. Therefore, the protection scope of the present invention should be construed as including all embodiments falling within the scope of the claims appended to the present invention.

Claims (16)

16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 또는 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)에서 선택되는 유산균으로서, Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, and Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA. longum), Lactobacillus Planta room (Lactobacillus plantarum) comprising a base sequence described in Lactobacillus Planta room (Lactobacillus plantarum) comprising the nucleotide sequence set forth in SEQ ID NO: 4 with 16S rDNA, SEQ ID NO: 5 with 16S rDNA or 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) is selected from lactic acid bacteria,
항산화 활성, 베타-글루쿠로니다제 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성을 갖는 유산균.Lactic acid bacteria having antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity or tight junction protein expression inducing activity.
제 1항에 있어서, 상기 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis)는 락토바실러스 브레비스(Lactobacillus brevis) CH23(수탁번호 : KCCM 11762P)이고, 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 비피도박테리움 롱검(Bifidobacterium longum) CH57(수탁번호 : KCCM 11764P)이고, 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5(수탁번호 : KCCM 11800P)이고, 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27(수탁번호 : KCCM 11801P)이고, 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 비피도박테리움 롱검(Bifidobacterium longum) LC67(수탁번호 : KCCM 11802P)인 것을 특징으로 하는 유산균.According to claim 1, Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA is Lactobacillus brevis CH23 (Accession Number: KCCM 11762P), SEQ ID NO: 16S rDNA Bifidobacterium longgum containing the nucleotide sequence of claim 3 longum) is ronggeom Bifidobacterium (Bifidobacterium longum ) CH57 (Accession No .: KCCM 11764P), Lactobacillus plantarum ( Lactobacillus plantarum ) LC5 (Accession No .: KCCM) containing the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA Lactobacillus plantarum Lactobacillus plantarum LC27 (Accession No .: KCCM 11801P) comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA, and sequence as 16S rDNA No. 7 Bifidobacterium ronggeom comprising a base sequence described in (Bifidobacterium longum) is ronggeom Bifidobacterium (Bifidobacterium longum ) Lactobacillus, characterized in that LC67 (Accession Number: KCCM 11802P).
16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis), 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum), 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum), 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum) 및 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)으로 이루어진 군에서 2종 이상 선택되는 혼합 유산균으로서, Lactobacillus brevis comprising the nucleotide sequence of SEQ ID NO: 1 as 16S rDNA, and Bifidobacterium long gum comprising the nucleotide sequence of SEQ ID NO: 3 as 16S rDNA. longum), Lactobacillus Planta room (Lactobacillus plantarum), Lactobacillus Planta room (Lactobacillus plantarum comprising the nucleotide sequence set forth in SEQ ID NO: 5 as 16S rDNA) containing the nucleotide sequence shown in SEQ ID NO: 4 to the 16S rDNA and 16S Bifidobacterium longgum containing the nucleotide sequence of SEQ ID NO: 7 as rDNA longum ) is a mixed lactic acid bacteria selected from the group consisting of two or more,
항산화 활성, 베타-글루쿠로니다제 저해 활성, 지질다당류(lipopolysaccharide, LPS) 생성 억제 활성 또는 밀착연접단백질(tight junction protein) 발현 유도 활성을 갖는 혼합 유산균.Mixed lactic acid bacteria having antioxidant activity, beta-glucuronidase inhibitory activity, lipopolysaccharide (LPS) production inhibitory activity or tight junction protein expression inducing activity.
제 3항에 있어서, 상기 16S rDNA로 서열번호 1에 기재된 염기서열을 포함하는 락토바실러스 브레비스(Lactobacillus brevis)는 락토바실러스 브레비스(Lactobacillus brevis) CH23(수탁번호 : KCCM 11762P)이고, 16S rDNA로 서열번호 3에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 비피도박테리움 롱검(Bifidobacterium longum) CH57(수탁번호 : KCCM 11764P)이고, 16S rDNA로 서열번호 4에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 락토바실러스 플란타룸(Lactobacillus plantarum) LC5(수탁번호 : KCCM 11800P)이고, 16S rDNA로 서열번호 5에 기재된 염기서열을 포함하는 락토바실러스 플란타룸(Lactobacillus plantarum)은 락토바실러스 플란타룸(Lactobacillus plantarum) LC27(수탁번호 : KCCM 11801P)이고, 16S rDNA로 서열번호 7에 기재된 염기서열을 포함하는 비피도박테리움 롱검(Bifidobacterium longum)은 비피도박테리움 롱검(Bifidobacterium longum) LC67(수탁번호 : KCCM 11802P)인 것을 특징으로 하는 혼합 유산균.According to claim 3, Lactobacillus brevis ( Lactobacillus brevis ) comprising the nucleotide sequence of SEQ ID NO: 1 as the 16S rDNA is Lactobacillus brevis CH23 (Accession Number: KCCM 11762P), SEQ ID NO: 16S rDNA Bifidobacterium longgum containing the nucleotide sequence of claim 3 longum) is ronggeom Bifidobacterium (Bifidobacterium longum ) CH57 (Accession No .: KCCM 11764P), Lactobacillus plantarum ( Lactobacillus plantarum ) containing the nucleotide sequence of SEQ ID NO: 4 as 16S rDNA is Lactobacillus plantarum LC5 (Accession No .: KCCM Lactobacillus plantarum Lactobacillus plantarum LC27 (Accession No .: KCCM 11801P) comprising the nucleotide sequence of SEQ ID NO: 5 as 16S rDNA, and sequence as 16S rDNA No. 7 Bifidobacterium ronggeom comprising a base sequence described in (Bifidobacterium longum) is ronggeom Bifidobacterium (Bifidobacterium longum ) mixed lactic acid bacteria, characterized in that LC67 (Accession Number: KCCM 11802P).
제 1항 또는 제 2항의 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물을 유효성분으로 포함하고,Claim 1 or claim 2 of the lactic acid bacteria, its culture, its lysate or extract thereof as an active ingredient,
장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 치료하기 위한 용도의 약학 조성물.A pharmaceutical composition for use in preventing or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity.
제 5항에 있어서, 상기 장 손상은 장 누수 증후군인 것을 특징으로 하는 약학 조성물.6. The pharmaceutical composition of claim 5, wherein the bowel injury is bowel leak syndrome.
제 5항에 있어서, 상기 간 손상은 간염, 지방간 또는 간 경변증에서 선택되는 것을 특징으로 하는 약학 조성물.6. The pharmaceutical composition of claim 5, wherein the liver damage is selected from hepatitis, fatty liver or cirrhosis of the liver.
제 5항에 있어서, 상기 알러지 질환은 아토피 피부염, 천식, 인후염 또는 만성 피부염에서 선택되는 것을 특징으로 하는 약학 조성물.6. The pharmaceutical composition of claim 5, wherein the allergic disease is selected from atopic dermatitis, asthma, sore throat or chronic dermatitis.
제 5항에 있어서, 상기 염증 질환은 위염, 위궤양, 대장염 또는 관절염에서 선택되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 5, wherein the inflammatory disease is selected from gastritis, gastric ulcer, colitis or arthritis.
제 1항 또는 제 2항의 유산균, 상기 유산균의 배양물, 상기 유산균의 파쇄물 또는 이의 추출물을 유효성분으로 포함하고,Claim 1 or claim 2 of the lactic acid bacteria, the culture of the lactic acid bacteria, lysate of the lactic acid bacteria or extracts thereof as an active ingredient
장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 개선하기 위한 용도의 식품 조성물.A food composition for use in preventing or ameliorating bowel damage, liver damage, allergic diseases, inflammatory diseases, or obesity.
제 3항 또는 제 4항의 혼합 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물을 유효성분으로 포함하고,The mixed lactic acid bacteria of claim 3 or 4, its culture, its lysate or its extract as an active ingredient,
장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 치료하기 위한 용도의 약학 조성물.A pharmaceutical composition for use in preventing or treating intestinal damage, liver damage, allergic diseases, inflammatory diseases, or obesity.
제 11항에 있어서, 상기 장 손상은 장 누수 증후군인 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 11, wherein the intestinal injury is intestinal leak syndrome.
제 11항에 있어서, 상기 간 손상은 간염, 지방간 또는 간 경변증에서 선택되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 11, wherein the liver injury is selected from hepatitis, fatty liver or cirrhosis of the liver.
제 11항에 있어서, 상기 알러지 질환은 아토피 피부염, 천식, 인후염 또는 만성 피부염에서 선택되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 11, wherein the allergic disease is selected from atopic dermatitis, asthma, sore throat, or chronic dermatitis.
제 11항에 있어서, 상기 염증 질환은 위염, 위궤양, 대장염 또는 관절염에서 선택되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 11, wherein the inflammatory disease is selected from gastritis, gastric ulcer, colitis or arthritis.
제 3항 또는 제 4항의 혼합 유산균, 이의 배양물, 이의 파쇄물 또는 이의 추출물을 유효성분으로 포함하고,The mixed lactic acid bacteria of claim 3 or 4, its culture, its lysate or its extract as an active ingredient,
장 손상, 간 손상, 알러지 질환, 염증 질환, 또는 비만을 예방 또는 개선하기 위한 용도의 식품 조성물.A food composition for use in preventing or ameliorating bowel damage, liver damage, allergic diseases, inflammatory diseases, or obesity.
PCT/KR2016/009994 2015-09-15 2016-09-07 Novel lactobacillus having various functions, and use thereof WO2017047968A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN202210200178.5A CN114410548B (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions and use thereof
JP2018513778A JP6608047B2 (en) 2015-09-15 2016-09-07 Novel lactic acid bacteria having various functions and uses thereof
EP16846789.2A EP3351617A4 (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions, and use thereof
RU2018113245A RU2734031C2 (en) 2015-09-15 2016-09-07 New lactobacteria characterized by various functions, and its application
CA2998841A CA2998841C (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions and use thereof for prevention or treatment of liver injury, intestinal damage, allergy, inflammation or obesity
SG11201802144TA SG11201802144TA (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions, and use thereof
AU2016322617A AU2016322617B2 (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions, and use thereof
CN201680066778.XA CN108473944B (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions and use thereof
MX2018003230A MX2018003230A (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions, and use thereof.
US15/759,915 US11202811B2 (en) 2015-09-15 2016-09-07 Lactobacillus having various functions, and use thereof
BR112018005195-0A BR112018005195A2 (en) 2015-09-15 2016-09-07 lactobacillus plantarum lc27, pharmaceutical composition for the prevention or treatment of one or more diseases, food composition for the prevention or treatment of one or more diseases, method of prevention or treatment of one or more diseases, and use of a composition comprising lactobacillus plantarum lc27
PH12018500566A PH12018500566A1 (en) 2015-09-15 2018-03-15 Novel lactobacillus having various functions, and use thereof
AU2020202144A AU2020202144B2 (en) 2015-09-15 2020-03-26 Novel lactobacillus having various functions, and use thereof
US17/455,328 US11771725B2 (en) 2015-09-15 2021-11-17 Lactobacillus having various functions, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0130124 2015-09-15
KR20150130124 2015-09-15
KR1020160005018A KR20170032816A (en) 2015-09-15 2016-01-15 Novel lactic acid bacteria with various functionality and use thereof
KR10-2016-0005018 2016-01-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/759,915 A-371-Of-International US11202811B2 (en) 2015-09-15 2016-09-07 Lactobacillus having various functions, and use thereof
US17/455,328 Continuation US11771725B2 (en) 2015-09-15 2021-11-17 Lactobacillus having various functions, and use thereof

Publications (1)

Publication Number Publication Date
WO2017047968A1 true WO2017047968A1 (en) 2017-03-23

Family

ID=58289199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009994 WO2017047968A1 (en) 2015-09-15 2016-09-07 Novel lactobacillus having various functions, and use thereof

Country Status (1)

Country Link
WO (1) WO2017047968A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103198A1 (en) * 2017-11-24 2019-05-31 주식회사 고바이오랩 Lactobacillus fermentum kbl 375 strain and use thereof
KR102058622B1 (en) 2019-08-27 2019-12-23 주식회사 아미코스메틱 Lactobacillus curvatus having antimicrobial activity against skin phathgens
US10668116B2 (en) 2014-10-31 2020-06-02 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
CN112111430A (en) * 2020-09-27 2020-12-22 吉林农业大学 Anti-oxidation and anti-aging double-effect probiotics and application thereof
CN113604400A (en) * 2021-08-26 2021-11-05 王玉莹 Novel lactobacillus yuyinw with effect of preventing or treating diabetes
US11202811B2 (en) 2015-09-15 2021-12-21 University-Industry Cooperation Group Of Kyung Hee University Lactobacillus having various functions, and use thereof
US11583558B2 (en) 2017-08-30 2023-02-21 Pendulum Therapeutics, Inc. Methods and compositions for treatment of microbiome-associated disorders

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075971A (en) * 2007-02-14 2008-08-20 (주)네오팜 Probiotics combined preparations
KR101470347B1 (en) * 2012-12-31 2014-12-10 재단법인 전남생물산업진흥원 A Composition Comprising the Fermentate of Scutellariae Radix extract for protecting liver damage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075971A (en) * 2007-02-14 2008-08-20 (주)네오팜 Probiotics combined preparations
KR101470347B1 (en) * 2012-12-31 2014-12-10 재단법인 전남생물산업진흥원 A Composition Comprising the Fermentate of Scutellariae Radix extract for protecting liver damage

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KARCZEWSKI, JURGEN ET AL.: "Regulation of Human Epithelial Tight Junction Proteins by Lactobacillus plantarum In Vivo and Protective Effects on the Epithelial Barrier", AMERICAN JOURNAL OF PHYSIOLOGY GASTROINTESTINAL AND LIVER PHISIOLOGY, vol. 298, no. 6, 11 March 2010 (2010-03-11), pages G851 - G859, XP055373219 *
See also references of EP3351617A4 *
SULTANA, RESHMA ET AL.: "Strain-dependent Augmentation of Tight-junction Barrier Function in Human Primary Epidermal Keratinocytes by Lactobacillus and Bifi-dobacterium Lysates", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 79, no. 16, 14 June 2013 (2013-06-14), pages 4887 - 4894, XP055373211 *
ULLUWISHEWA, DULANTHA ET AL.: "Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components", THE JOURNAL OF NUTRITION, vol. 141, no. 5, 23 March 2011 (2011-03-23), pages 769 - 776, XP055373216 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213556B2 (en) 2014-10-31 2022-01-04 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US11931387B2 (en) 2014-10-31 2024-03-19 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US10668116B2 (en) 2014-10-31 2020-06-02 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US10675312B2 (en) 2014-10-31 2020-06-09 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US10842831B2 (en) 2014-10-31 2020-11-24 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US10842830B2 (en) 2014-10-31 2020-11-24 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US11364270B2 (en) 2014-10-31 2022-06-21 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US11278580B2 (en) 2014-10-31 2022-03-22 Pendulum Therapeutics, Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
US11202811B2 (en) 2015-09-15 2021-12-21 University-Industry Cooperation Group Of Kyung Hee University Lactobacillus having various functions, and use thereof
US11771725B2 (en) 2015-09-15 2023-10-03 University-Industry Cooperation Group Of Kyung Hee University Lactobacillus having various functions, and use thereof
US11583558B2 (en) 2017-08-30 2023-02-21 Pendulum Therapeutics, Inc. Methods and compositions for treatment of microbiome-associated disorders
WO2019103198A1 (en) * 2017-11-24 2019-05-31 주식회사 고바이오랩 Lactobacillus fermentum kbl 375 strain and use thereof
KR102058622B1 (en) 2019-08-27 2019-12-23 주식회사 아미코스메틱 Lactobacillus curvatus having antimicrobial activity against skin phathgens
CN112111430A (en) * 2020-09-27 2020-12-22 吉林农业大学 Anti-oxidation and anti-aging double-effect probiotics and application thereof
CN112111430B (en) * 2020-09-27 2022-10-21 吉林农业大学 Anti-oxidation and anti-aging double-effect probiotics and application thereof
CN113604400A (en) * 2021-08-26 2021-11-05 王玉莹 Novel lactobacillus yuyinw with effect of preventing or treating diabetes
CN113604400B (en) * 2021-08-26 2023-06-02 王玉莹 Novel lactobacillus YUYINGW with diabetes preventing or treating effect

Similar Documents

Publication Publication Date Title
WO2017047968A1 (en) Novel lactobacillus having various functions, and use thereof
WO2018143678A1 (en) Novel lactic acid bacteria and use thereof
KR101937365B1 (en) Novel lactic acid bacteria with various functionality and use thereof
WO2021182829A1 (en) Lactobacillus rhamnosus strain having intestinal immunomodulatory function and preventive or therapeutic activity for inflammatory bowel disease
WO2015122717A1 (en) Novel lactic acid bacteria having obesity inhibitory effect and use thereof
WO2017204415A1 (en) Novel lactic acid bacteria capable of controlling blood sugar and use thereof
WO2019216649A1 (en) Novel strain having prophylactic or therapeutic effect on cancer
EP3454869A1 (en) A composition comprising a lactic acid bacteria for preventing and treating vaginosis and the use thereof
WO2020050553A1 (en) Probiotic strain for upper respiratory tract infection, stress, anxiety, memory and cognitive dysfunctions, and ageing
WO2019066599A2 (en) Novel lactic acid bacteria and use thereof
WO2020075949A1 (en) Novel lactobacillus plantarum strain atg-k2, atg-k6 or atg-k8, and composition for preventing or treating vaginitis comprising same
WO2017131402A1 (en) Novel human gut-derived lactic acid bacteria having immune regulatory function, and use thereof
WO2021162282A1 (en) Composition using novel lactobacillus plantarum kc3 strain for prevention or treatment of immune impairment, respiratory inflammatory disease, allergy, and asthma and use thereof
WO2020091312A1 (en) Composition for preventing or treating alcoholic intestinal injury, containing probiotics as active ingredient
WO2021221398A1 (en) Novel lactic acid bacteria having excellent immune function enhancement effect, and food composition, health functionl food composition and probiotics comprising same
WO2017047962A1 (en) Novel lactobacillus and composition for preventing, improving, or treating degenerative brain diseases or cognitive function disorders
WO2018004224A2 (en) Novel sporichthyaceae microorganism and use thereof
WO2021066549A1 (en) Lactobacillus acidophilus kbl409 strain and use thereof
WO2020071667A1 (en) Composition comprising molokhia extract as active ingredient for improving gut microbiome or for alleviating, preventing, or treating intestinal inflammation, leaky gut syndrome, obesity, or metabolic disease
WO2022240224A1 (en) Composition containing gellan gum as active ingredient for improving gut microbiota and composition containing same for alleviation, prevention, or treatment of metabolic disease
WO2022045719A1 (en) Pharmaceutical composition comprising novel lactobacillus plantarum kc3 strain and leonurus japonicus extract as active ingredient for prevention or treatment of respiratory disease and method using same
WO2020204615A1 (en) Method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same
WO2020153815A1 (en) Novel kazachstania turicensis cau y1706 and composition using same
WO2022065957A1 (en) Composition for diagnosis or treatment of inflammatory diseases, comprising microorganism
WO2021006623A1 (en) Novel lactococcus chungangensis cau 1447 strain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2998841

Country of ref document: CA

Ref document number: 2018513778

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12018500566

Country of ref document: PH

Ref document number: MX/A/2018/003230

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201802144T

Country of ref document: SG

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018005195

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018113245

Country of ref document: RU

Ref document number: 2016846789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016322617

Country of ref document: AU

Date of ref document: 20160907

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018005195

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180315