WO2020204615A1 - Method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same - Google Patents

Method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same Download PDF

Info

Publication number
WO2020204615A1
WO2020204615A1 PCT/KR2020/004489 KR2020004489W WO2020204615A1 WO 2020204615 A1 WO2020204615 A1 WO 2020204615A1 KR 2020004489 W KR2020004489 W KR 2020004489W WO 2020204615 A1 WO2020204615 A1 WO 2020204615A1
Authority
WO
WIPO (PCT)
Prior art keywords
lava seawater
lactic acid
mineral
culture
acid bacteria
Prior art date
Application number
PCT/KR2020/004489
Other languages
French (fr)
Korean (ko)
Inventor
최지휘
김두성
김경민
양서진
이창완
이승훈
Original Assignee
에스케이바이오랜드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190039918A external-priority patent/KR102084350B1/en
Priority claimed from KR1020200022437A external-priority patent/KR102305076B1/en
Application filed by 에스케이바이오랜드 주식회사 filed Critical 에스케이바이오랜드 주식회사
Publication of WO2020204615A1 publication Critical patent/WO2020204615A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention uses lava seawater as cultivation water without separate pretreatment to increase the survival rate, storage stability over time, and intake stability during freeze-drying at the same time, and further balance diarrhea, a disease that causes electrolyte imbalance through minerals, to prevent intestinal probiotics.
  • the present invention relates to a method of manufacturing a natural mineral coated probiotics derived from lava seawater that can maximize efficacy, and a natural mineral coated probiotics derived from lava seawater using the same.
  • Probiotics refers to functional lactic acid bacteria in powder form that play a role in smooth bowel movement and proliferation of lactic acid bacteria in the intestine, mainly among health functional foods, unlike the manufacturing method of yogurt like regular yogurt.
  • WHO/FAO World Health Organization
  • probiotics were defined as microorganisms that help the health of the host.
  • WHO/FAO World Health Organization
  • it is registered as a health functional food notified raw material by the Ministry of Food and Drug Safety, and the daily intake of probiotics for intestinal health is defined as more than 100 million CFU/day (CFU: Colony Forming Unit).
  • Another prior art field is coating technology as a typical method of increasing the survival rate of lactic acid bacteria when manufacturing powder.
  • a four-coated lactic acid bacteria manufacturing technology is representative.
  • the coating technology of the prior art of lactic acid bacteria is to laminate a coating agent on the lactic acid bacteria exhibiting anaerobic characteristics, thereby increasing the shelf life and increasing storage stability. Therefore, when the coating layer collapses due to the uniformity of the coating and the inflow of external moisture, it is inevitable to be vulnerable to exposure to the outside air, resulting in the death of lactic acid bacteria that exhibit anaerobic properties.
  • conventional prior technologies focus only on storage stability by forming a protective film through a coating agent in the cultivation and post-treatment stages rather than improving the resistance of lactic acid bacteria itself to external attack factors such as air, temperature, gastric acid, and bile acids.
  • Lava seawater is a water that has been aged for a long period of time as seawater flows into the strata as it is naturally filtered through the basalt and sandy layers, and is a unique water resource possessed by Jeju Island.Since the 1980s, lava seawater in Jeju is characterized by the low temperature and cleanliness of lava seawater. It has been actively used as breeding water for flounder farms, and from 5 to 6 years ago, it has been used as water for saunas in terms of health and beauty, and is gaining much attention. Depending on the purpose of use, desalted lava seawater from which salt has been removed is used or as it is collected.
  • Lava seawater contains more essential minerals such as sodium, magnesium, calcium, and potassium, as well as general useful minerals (iron, manganese, zinc, molybdenum, selenium, etc.) than general seawater, deep water, and Samdawater.
  • vanadium which is known to stabilize insulin secretion or improve diabetes and hyperlipidemia, promotes blood circulation, enhances immunity
  • germanium which has anticancer activity, inhibits oxidation of fat, synergistic effect to maintain the heart and liver, scavenging radicals.
  • the content of selenium which has the effect of improving ability, anticancer, infertility, aging and cholesterol levels, is a characteristic of lava seawater that has never been reported in deep ocean water.
  • these minerals are in an ionized state, and the ionized minerals are easily digested and absorbed by the human body or other animals.
  • lava seawater is a clean groundwater resource in which E. coli, nitrate nitrogen, phosphate phosphorus, phenols, etc. are not detected, and harmful components such as arsenic, mercury, cadmium, etc. are not detected, or lead is detected in a very small amount, which is an obstacle to industrial application. There is no clean raw material.
  • magnesium and calcium minerals contained in lava seawater are essential for the proliferation of lactic acid bacteria and are also used as essential nutrients for humans.
  • lava seawater is applied as a water for cultivating lactic acid bacteria by itself, there is a technical limitation in which it is impossible to cultivate a high concentration of lactic acid bacteria (LJM Linders et al., 1997) because the lactic acid bacteria are inhibited by high concentration salts in the lava seawater.
  • water to which the demineralized water manufacturing method was introduced was used, such as in the prior art (Korean Patent No. 10-1347694).
  • such prior art has economic/technical limitations such as incurring costs for desalting lava seawater and reducing mineral content in desalted lava seawater.
  • the salt concentration is adjusted to enable high concentration culture. It increases the durability against stress of the lactic acid bacteria itself and coats the mineral-protein salt obtained from the salting-out of lava seawater on the lactic acid bacteria as a protective film of the strain, so that the survival stability after freeze drying or spray drying, and the storage stability during distribution are improved.
  • a novel form of probiotics was commercialized by devising a method to enhance stability during ingestion by inhibiting the loss of the coating film while passing through the gastrointestinal tract in vivo.
  • Korean Patent Registration No. 10-1280232 Name of the invention: manufacturing method of 4-coated lactic acid bacteria and 4-coated lactic acid bacteria produced by the method, Applicant: Ildong Pharmaceutical Co., Ltd., registration date: June 25, 2013)
  • Korean Patent Registration No. 10-1927859 (Title of invention: A method of increasing the stability and coating efficiency of probiotics using ultrasonic waves, and a food composition containing freeze-dried powder of probiotics manufactured by the method as an active ingredient, Applicant: Korea Yakult Co., Ltd. , Registration date: December 5, 2018)
  • An object of the present invention is to increase the survival rate, storage stability over time, and intake stability at the same time by coating the lactic acid bacteria through the formation of mineral-protein salts in the medium by using lava seawater as culture water without separate pretreatment.
  • the aim is to provide a method for producing natural mineral coated probiotics derived from lava seawater and natural mineral coated probiotics derived from lava seawater using the same.
  • the present invention relates to a method for producing natural mineral coated probiotics derived from lava seawater.
  • Step 1 preparing a culture medium for lactic acid bacteria prepared by using water containing 30-70% (v/v) lava seawater as culture water;
  • the present invention may include a step of drying the precipitate obtained by centrifuging the culture medium of the second step after (third step), or concentrating and drying the culture medium of the second step.
  • the drying may be performed through freeze drying or spray drying.
  • the concentrate obtained by concentrating the culture solution is preferably spray-dried.
  • the medium of the first step may preferably be any medium capable of culturing lactic acid bacteria, but more preferably, as a constituent, glucose, yeast extract, soypeptone, casein are included, and the constituent is lava seawater It may be a culture medium for lactic acid bacteria prepared by dissolving and sterilizing in water containing 30 to 70% (v/v).
  • the medium of the first step is based on a total volume of 1 liter, glucose 1-5% (w/v), yeast extract 0.5-5% (w/v), soypeptone 0.5-5% (w/v) ), it may be a culture medium for lactic acid bacteria prepared by dissolving each component in water containing 30-70% (v/v) lava seawater and sterilizing it so that the casein becomes 0.5-3% (w/v).
  • the sterilization of the medium is preferably performed at 100 to 125°C for 20 to 40 minutes.
  • the pressure at this time is preferably 0.13 ⁇ 0.17Mps, and most preferably, it can be carried out for 30 minutes at 0.15Mps, 121 °C, the optimal sterilization conditions.
  • Lactic acid of the second step is Lactobacillus genus (Lactobacillus sp.), Bifidobacterium (Bifidobacterium sp.), Streptococcus genus (Streptococcus sp.), Lactococcus genus (Lactococcus sp.), Enterococcus genus (Enterococcus sp.), Pediococcus sp., and Weissella sp. may be selected from the group consisting of.
  • the lactic acid bacteria culture condition of the second step is preferably 18 to 24 hours at 70 to 150 rpm and 30 to 37°C.
  • the culture of the lactic acid bacteria in the second step is characterized in that it is performed by a fed-batch culture method.
  • a method of maintaining a pH of 6.0 to 7.5 during culture by dropping a mixed solution of 10 to 50% (w/v) glucose and 10 to 50% (w/v) sodium hydroxide may be used.
  • the mixed solution may be obtained by mixing a glucose solution and a sodium hydroxide solution in a volume ratio of 1:0.5 to 1:2, respectively.
  • centrifugation when drying, centrifugation is preferably performed at 5,000 to 8,000 rpm.
  • the culture solution may be cooled and allowed to stand at 3 to 5° C. for 1 to 24 hours and then centrifuged.
  • the preferred time is 20 minutes or more and 24 hours or less is sufficient.
  • a mixture of lactic acid bacteria cells and mineral-protein salts is stirred (self) to coat the cells with mineral-protein salts precipitated together.
  • hydroxypropylmethylcellulose (HPMC) as a binder and trehalose as a freeze-dried protective agent may be selected and added.
  • hydroxypropylmethylcellulose and trehalose are preferably added sequentially.
  • the sediment obtained by centrifugation in the third step for freeze-drying is in a state in which mineral-protein salts precipitated due to the addition of lava seawater during the preparation of the medium in the first step are unevenly mixed with the cells (simple mixing process). ), it is stirred at a speed of 30 ⁇ 100rpm to perform a homogenization coating process so that the mineral-protein salt can be coated on the cells.
  • the homogenization time of the coating process is preferably performed for 30 minutes or more and 50 minutes or less.
  • the binder 10 to 40% by weight (powder), and 10 to 40% by weight of trehalose may be prepared and mixed.
  • the binder one or more of the group consisting of hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and chitosan may be added.
  • the binder when the binder is mixed with the mineral-protein salt-coated cells, it is recommended to add the binder after dissolving it in water (culture water) containing 30 to 70% (v/v) lava seawater.
  • the amount of water containing 30 to 70% (v/v) lava seawater for dissolving the binder is not limited, but it is preferably 3 to 7 times the weight of the binder. At this time, it is better to first add a binder solution to the mineral-protein salt coated cells, stir, mix trehalose, and freeze-dry, more preferably, mineral-protein salt coated cells, and a binder solution of 30 to 100 rpm. , After stirring for 10 to 30 minutes, it is recommended to mix trehalose and freeze-dry .
  • the mineral-protein salt when drying, is coated on the cells by concentrating the culture solution of the lactic acid bacteria in the second step, and it is easy to obtain only the cells while removing the culture solution.
  • the volume of the concentrate obtained by concentration is reduced to 1/5 ⁇ 1/15 volume compared to the culture medium before concentration. That is, while the culture solution is concentrated in the third step, the mineral-protein salt may be coated on the outside of the cells through homogenization.
  • concentration hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP) as a binder, which is an amphiphilic material that can be electrostatically used for both positive and negative, to stabilize the coating of cells after concentration.
  • polyvinyl alcohol (PVA), and one or more of the group consisting of chitosan may be added. That is, a culture (simple mixed culture) in which the mineral-protein salt precipitated due to the addition of lava seawater during the medium preparation is mixed with the cells through the first stage of culture (simple mixed culture) through this concentration process. It is possible to obtain a concentrate containing the mineral-protein salt-coated cells, and at this time, a binder is added to the mineral-protein salt-coated cells for coating safety. Mineral-protein salt coated cells 100 parts by weight compared to 50 to 200 parts by weight of a binder (powder) can be prepared and mixed.
  • the binder when the binder is mixed with the mineral-protein salt coated cells, the binder can be added after dissolving it in pure water or lava seawater as a solvent in water (culture water) containing 30 to 70% (v/v). .
  • the content of the solvent for dissolving the binder is not largely limited, but it is preferably 3 to 7 times the weight of the binder powder.
  • the present invention provides a natural mineral coated probiotics derived from lava seawater prepared by the above manufacturing method.
  • the mineral content of the natural mineral-coated probiotic powder derived from lava seawater is 0.1 to 0.5% by weight.
  • the present invention can provide various functional pharmaceutical compositions containing natural mineral coated probiotics derived from lava seawater prepared by the above method.
  • the natural mineral coated probiotics derived from lava seawater may be added in an amount of 0.001 to 100% by weight to the pharmaceutical composition of the present invention.
  • compositions may be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, etc., external preparations, suppositories, and sterile injectable solutions, respectively, according to conventional methods.
  • Carriers, excipients and diluents that may be included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oils.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and these solid preparations are at least one excipient, such as starch, calcium carbonate, for the natural mineral coated probiotics derived from lava seawater of the present invention. , Sucrose or lactose, gelatin, etc. are mixed and prepared. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used.
  • Liquid preparations for oral use include suspensions, liquid solutions, emulsions, syrups, etc.
  • various excipients such as wetting agents, sweetening agents, fragrances, and preservatives may be included.
  • Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate may be used.
  • As a base for suppositories witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like may be used.
  • the dosage of the pharmaceutical composition of the present invention will vary depending on the age, sex, and weight of the subject to be treated, the specific disease or pathology to be treated, the severity of the disease or pathology, the route of administration, and the judgment of the prescriber. Dosage determination based on these factors is within the level of one of skill in the art, and dosages generally range from 0.01 mg/kg/day to approximately 2,000 mg/kg/day. A more preferred dosage is from 1 mg/kg/day to 500 mg/kg/day. Administration may be administered once a day, or may be divided several times. The above dosage does not in any way limit the scope of the present invention.
  • the pharmaceutical composition of the present invention can be administered to mammals such as mice, livestock, and humans by various routes. All modes of administration can be expected and can be administered, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intrauterine dural or cerebrovascular injection.
  • the natural mineral-coated probiotics derived from lava seawater of the present invention have little toxicity and side effects, so they can be safely used even when taken for a long time for prophylactic purposes.
  • the present invention provides a variety of health functional foods including the natural mineral-coated probiotics derived from lava seawater and food supplementary additives that are acceptable food.
  • the health functional food can be applied to various foods to which probiotics can be applied, and can be used for the purpose of helping to proliferate intestinal lactic acid bacteria, inhibit harmful bacteria in the intestine, and facilitate bowel activity.
  • the natural mineral coated probiotics derived from lava seawater may be added in an amount of 0.001 to 100% by weight to the health functional food of the present invention.
  • the health functional food of the present invention includes the form of tablets, capsules, pills, liquids, etc., and foods to which the natural mineral coated probiotics derived from lava seawater of the present invention can be added include, for example, various drinks, meat, Sausages, breads, candies, snacks, noodles, ice cream, dairy products, soups, ion drinks, beverages, alcoholic beverages, gum, tea and vitamin complexes.
  • the present invention can also provide a cosmetic containing a natural mineral coated probiotics derived from lava seawater prepared by the above method.
  • the cosmetic may contain all commonly used ingredients.
  • it may contain general auxiliary ingredients such as emulsifiers, thickeners, emulsions, surfactants, lubricants, alcohols, water-soluble polymers, gelling agents, stabilizers, vitamins, inorganic salts, emulsifiers, and fragrances.
  • the amount of the ingredients may be selected within a range that does not impair the inherent effect of the cosmetic.
  • the amount of the ingredients added may be, for example, 0.1 to 10% by weight, preferably 0.1 to 6% by weight, based on the total weight of the composition, but is not limited thereto.
  • the type of cosmetic is not particularly limited, and for example, lotion, emulsion, gel, cream, essence, pack, ampoule, lotion, detergent, soap, body products, skin care cosmetics such as soap, oil, lipstick, Makeup cosmetics such as foundation, cosmetics for hair, and the like, and the formulation is not particularly limited.
  • the present invention relates to a method for producing natural mineral coated probiotics derived from lava seawater and to a natural mineral coated probiotic using the same.
  • the present invention uses a method of adding lava seawater so that the concentration of lava seawater is 30-70% (v/v) in the medium for cultivation of lactic acid bacteria, and thus minerals and minerals contained in the lava seawater
  • the protein on the lactic acid bacteria medium is precipitated in a mineral-protein salt state, and a growth environment suitable for the lactic acid bacteria is created by controlling the salinity of the medium. Using these conditions and fed-batch culture, the optimum conditions for lactic acid bacteria growth are implemented, and the culture is made with the number of viable bacteria suitable for probiotic standards.
  • the salt concentration is controlled Stress causes a stress-responsive protein, chaperone, to occur in the cells. Thereafter, the precipitated mineral-protein salt and the cultured lactic acid bacteria are recovered through centrifugation of the culture medium and homogenized through stirring so that the mineral-protein salt is coated on the lactic acid bacteria, or the mineral-protein salt is applied to the lactic acid bacteria through a membrane separation method. Let it be coated.
  • the overall thermal stability of the cells inside and outside the cells is remarkably increased, the efficacy of dramatically improving the survival rate and storage stability over time during freeze-drying or spray-drying of lactic acid bacteria, and withstands continuous pH changes in the digestive tract of the body of stomach and bile acids. Efficacy can be derived.
  • natural mineral coated probiotics derived from lava seawater having excellent storage stability against changes in external temperature can be produced and effectively used as biomaterials in the fields of foods, health functional foods, and pharmaceuticals.
  • the osmotic concentration outside the cells is higher than the inside of the cells, resulting in a decrease in moisture in the cell membrane of the cells, and thus the volume of the cells can be kept low. If the volume of the cytosol in the cells is kept low until freeze-drying, it will not damage the inner cell membrane due to volume expansion when the ice crystal is generated in the cells, thus contributing to the survival rate.
  • a separate coating solvent such as soy protein and milk protein is added when the lactic acid bacteria are freeze-dried by precipitating proteins that can protect lactic acid bacteria through minerals in lava seawater in a mineral-protein salt state by salting out in the pre-fermentation stage. Since probiotics can be coated using self-produced mineral-protein salts, the manufacturing stability, intake stability, and storage stability of probiotics can be dramatically improved.
  • lava seawater can be used not only in the pre-process of the cultivation and drying (powdering) process of lactic acid bacteria, but also in the post-process if necessary, so that the lactic acid bacteria survive and adapt to the high concentration mineral salts of the lava seawater during the manufacturing process. It acts to contribute to increasing the survival rate by continuously applying osmotic stress to lactic acid bacteria to form proteins in cells that respond to stress.
  • the protein produced for survival due to changes in the external environment is called chaperone protein.
  • the chaperone protein expressed by a specific stress exerts an effect that can withstand the stresses of other environments. Therefore, probiotics cultured with lava seawater can exhibit strong resistance to temperature (storage stability) and pH (intake stability) stress, and thus can realize all effects that cannot be achieved with conventional lactic acid bacteria culture techniques.
  • # 1 to 6 are experimental results confirming the efficacy of the freeze-dried preparation prepared by the method of the present invention.
  • Example 1 is a graph showing the dry weight of the mineral-protein salt and the amount of protein in the mineral-protein salt in the sterilized lyophilized base medium of Preparation Example 1 and the lava seawater-containing medium of lyophilized Example 1 before culturing lactic acid bacteria.
  • FIG. 2 is a graph showing the results of measuring the number of viable lactic acid bacteria in the culture medium of lyophilized Preparation Example 1 and the culture medium containing lava seawater of lyophilization Example 1;
  • 3 is a graph showing the results of comparing the correlation between the dry weight of the mineral-protein salt and lactic acid bacteria cells and the number of live lactic acid bacteria in the culture medium according to the concentration of lava seawater.
  • Example 4 is a graph showing a result of comparing fed-batch culture and batch culture conditions of lyophilized Example 1 as a culture method using lava seawater.
  • FIG. 6 is a graph showing the results of culturing lactic acid bacteria for each type under the culture conditions of lava seawater addition medium of lyophilized Example 1 or Freeze-dried Preparation Example 1.
  • FIG. 6 is a graph showing the results of culturing lactic acid bacteria for each type under the culture conditions of lava seawater addition medium of lyophilized Example 1 or Freeze-dried Preparation Example 1.
  • # 7 to 12 are experimental results confirming the efficacy of the spray-dried formulation prepared by the method of the present invention.
  • FIG. 7 is a graph showing the results of comparing the correlation between the dry weight of the mineral-protein salt and lactic acid bacteria cells and the number of live lactic acid bacteria in the culture medium according to the concentration of lava seawater.
  • Example 8 is a graph showing a result of comparing fed-batch culture and batch culture conditions of spray-dried Example 1 as a culture method using lava seawater.
  • TEM 9 is a photograph taken with a transmission electron microscope (TEM) of the coating state of the spray-dried powder of probiotics recovered in the spray drying Example 2 and the spray drying Preparation Example 2.
  • TEM transmission electron microscope
  • FIG. 10 is a graph showing the results of culturing lactic acid bacteria for each type under the culture conditions of the lava seawater addition medium of spray-dried Example 1 or Spray-dried Preparation Example 1.
  • FIG. 10 is a graph showing the results of culturing lactic acid bacteria for each type under the culture conditions of the lava seawater addition medium of spray-dried Example 1 or Spray-dried Preparation Example 1.
  • FIG. 11 is a 2D-SDS PAGE result photograph showing that a new protein was formed in the cells in the spray-dried Example 1 or Spray-dried Preparation Example 1 culture.
  • FIG. 12 is a photograph of agaroge gel electrophoresis results showing that the chaperone protein gene was expressed in the cells in the spray-dried Example 1 or Spray-dried Preparation Example 1 culture.
  • the method of manufacturing the natural mineral coated probiotics derived from lava seawater of the present invention was determined including the following steps.
  • the lactic acid bacteria are cultured in a liquid phase in a lactic acid bacteria culture medium containing lava seawater (the whole process of lava seawater).
  • the mineral-protein salt and lactic acid bacteria generated through the first culturing step are recovered, coated, and dried to obtain a natural mineral coated probiotic powder derived from lava seawater (lava seawater post-process).
  • mineral-protein salts are precipitated and produced by adding lava seawater by concentration instead of water to the basic culture medium for lactic acid bacteria culture. This is the step of determining the appropriate concentration of lava seawater in which lactic acid bacteria can grow and mineral-protein salts to be used for coating in the post-process are present.
  • the lava seawater concentration at this time should be a condition that does not inhibit the growth of lactic acid bacteria by high concentration salts by inducing salting out of protein components in the medium.
  • Polyelectrolyte components such as proteins increase in water solubility in normal water, whereas in water with a high salt concentration such as lava seawater, solubility decreases and precipitates in a mineral-protein salt state.
  • solubility decreases and precipitates in a mineral-protein salt state.
  • the salt concentration increases, when the concentration of external ions increases, the water molecules distributed in the hydrophobic part of the protein surface are attracted by the ions, and the hydrophobic part of the protein surface is exposed, and the protein is aggregated by hydrophobic bonds between proteins. This is because a phenomenon occurs.
  • the mineral-protein salt precipitated through the salting-out phenomenon acts as a coating agent that can protect lactic acid bacteria from harsh external stress environments.
  • the lactic acid bacteria cultivation process is designed in the form of fed-batch culture that maintains the pH of 6.0-7.5 with sugars, not the general batch culture method, thereby solving the problem of limiting lactic acid bacteria growth that may occur when adhering to the batch culture method I did.
  • the mineral-protein salt and lactic acid bacteria cells generated through the first culturing step are collected as a precipitate by centrifugation, and the recovered precipitate is separately stirred so that the mineral-protein salt is coated on the lactic acid bacteria cells. , Dry this to obtain a natural mineral coated probiotic powder derived from lava seawater (post-process lava seawater for freeze drying),
  • the mineral-protein salt and lactic acid bacteria cells generated through the first culturing step are concentrated to coat the mineral-protein salts on the lactic acid bacteria cells, and then spray-dried to obtain a natural mineral coated probiotic powder derived from lava seawater (spray drying For lava seawater post process).
  • a binder hydroxypropylmethylcellulose: HPMC
  • a freeze-drying protectant trehalose
  • HPMC hydroxypropylmethylcellulose
  • the method of the present invention is a method of preparing a novel type of probiotic preparation by repeating the same experiment by preparing a freeze-dried preparation and a spray-dried preparation for each subsequent experiment.
  • glucose 3% (w/v) per 1 liter glucose 3% (w/v) per 1 liter
  • yeast extract 2% w/v
  • soypeptone 2% w/v
  • casein 1% w/v
  • the lactic acid bacteria seed culture solution was inoculated into the sterilized medium of the fermentation tank in this sterilized basic medium, and cultured for 20 hours at 100 rpm and 37°C, but 40% (w/v) glucose and 40% (w/v) sodium hydroxide were 1: An aqueous solution mixed at a volume ratio of 1 (hereinafter referred to as glucose-sodium hydroxide solution) was incubated while maintaining the pH at 6.0-7.5 while dropping at regular time intervals (Fed-batch culture performed).
  • Lactobacillus seed culture solution Lactobacilli MRS broth (BD) cultured for 24 hours at 37°C for 24 hours, hereinafter referred to as lactic acid bacteria seed culture solution.
  • the culture solution cultured in Freeze-dried Preparation Example 1 was centrifuged at 6,000 rpm for 30 minutes. After removing the supernatant and recovering the precipitate, the recovered precipitate was homogenized with a stirrer at 50 rpm for 30 minutes.
  • HPMC hydroxypropylmethylcellulose
  • the medium was sterilized as in Preparation Example 1 of freeze-drying using the culture water containing lava seawater at each concentration.
  • the minerals of lava seawater react with the proteins of the medium to produce a mineral-protein salt precipitated in a salt state.
  • Example 2 Freeze-dried Under the conditions of Example 1, 4 tons of culture solution obtained by culturing lactic acid bacteria in a medium prepared using 30% (v/v) lava seawater was centrifuged to recover a precipitate in which mineral-protein salts and lactic acid bacteria cells were mixed. The recovered precipitate (mineral-protein salt and lactic acid bacteria cell mixture) was homogenized with a stirrer for 30 minutes at 50 rpm, so that the mineral-protein salt was coated on the cells.
  • hydroxypropylmethylcellulose and trehalose were added to the freeze-dried preparation example 2 to the cells coated with mineral-protein salts to prepare a probiotic powder, but instead of dissolving hydroxypropylmethylcellulose in water, 30% (v /v) was dissolved in lava seawater (culture water) to obtain probiotic powder.
  • Example 1 of lyophilization when a sterilized medium is prepared using lava seawater, minerals of lava seawater react with proteins of the medium components to produce mineral-protein salts precipitated in a salt state.
  • This mineral-protein salt is partially produced in the basic medium used in Preparation Example 1, but the amount of production is remarkably increased in the medium containing lava seawater.
  • the dry weight of the mineral-protein salt and the amount of protein in the mineral-protein salt were confirmed.
  • the amount of this protein was measured by BCA protein assay to confirm the protein content of the mineral-protein salt.
  • Freeze-dried Preparation Example 1 and freeze-dried Example 1 The culture solution cultured for 20 hours was taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Lactobacilli MRS Agar (BD) were mixed and solidified.
  • the number of lactic acid bacteria viable cells was confirmed by counting colonies cultured for 48 hours in a 37° C. stationary incubator, and this is shown in FIG. 2 (hereinafter referred to as a method for measuring the number of lactic acid bacteria viable cells).
  • Lactobacillus culture solutions cultured in each lava seawater medium of lyophilization Example 1 were dispensed into separate sterilized containers, respectively, and cooled at 4°C for 1 hour. Each stationary solution was centrifuged at 6,000 rpm for 30 minutes to recover mineral-protein salts and lactic acid bacteria, and freeze-dried to check the dry weight of the dried product. For comparison, the culture solution of lyophilized Preparation Example 1 was treated and compared under the same conditions, and it is shown in FIG. 3. At this time, the result of the dry weight was shown in comparison with the number of live lactic acid bacteria.
  • the lava seawater condition in the medium that most affects the culture of lactic acid bacteria is 30-70% (v/v) lava seawater culture medium condition in which the number of viable bacteria is significantly increased compared to the culture condition of lyophilized Preparation Example 1.
  • the best condition is when using a lava seawater concentration of around 30-40% (v/v) as the culture water, and the best condition in this experiment is a culture with a lava seawater concentration of 30% (v/v). It can be seen that it is time to cultivate lactic acid bacteria with water.
  • the conditions for culturing the lactic acid bacteria may be referred to as fed-batch culture conditions using a glucose-sodium hydroxide solution (Glucose/NaOH). This culture condition is compared with the batch culture. For this, the following experiment was performed.
  • the culture conditions of 30% (v/v) lava seawater in lyophilized Example 1 (referred to as lyophilized Example 1 or lyophilized Example 2 in the subsequent experimental examples is the lava seawater 30% (v/v) Corresponds to the medium culture conditions) and lyophilized lactic acid bacteria in the fed-batch culture conditions of Preparation Example 1, and glucose-sodium hydroxide solution in the culture conditions of the lava seawater 30% (v/v) medium of the freeze-dried Example 1
  • the lactic acid bacteria were cultured under comparative conditions in which only the addition conditions were not performed (referred to as comparative conditions of lyophilized Example 1, cultured without pH/glucose correction for 20 hours).
  • the number of viable cells was measured for each culture solution cultured for 20 hours by a method for measuring viable cells of lactic acid bacteria.
  • each culture solution was dispensed into a separate sterilized container and allowed to stand at 4°C for 1 hour, and the stationary solution was centrifuged at 6,000 rpm for 30 minutes to recover lactic acid bacteria cells or mineral-protein salts and lactic acid bacteria cell precipitates.
  • the recovered cells or precipitates were lyophilized to perform weight measurement.
  • the coating state of the probiotic powder recovered in the freeze-dried Example 2 and the freeze-dried Preparation Example 2 was photographed with a Scanning Electron Microscope (SEM) to confirm the morphological characteristics, which are shown in FIG. 5.
  • SEM Scanning Electron Microscope
  • the mineral-protein salt is coated on the surface of the probiotics of Example 2 to increase the size of the lactic acid bacteria cells, and hydroxyproxymethylcellulose binds the cells so that the mineral-protein salt coating is not detached. Can be observed.
  • Example 2 In the freeze-dried Preparation Example 2 and the freeze-dried Example 2, 1 a binder mixture before performing freeze-drying (conditions after sequentially mixing hydroxypropylmethylcellulose and trehalose); 2 After freeze-drying, the number of live bacteria of each lactic acid bacteria of probiotics powder; was compared to confirm the freeze-drying survival rate by the natural mineral coating derived from lava seawater. In order to accurately calculate the survival rate, the solid content of each binder mixture was measured by the loss-on-drying method, and the survival rate was calculated by converting the number of lactic acid bacteria in the binder mixture to the number of viable bacteria.
  • the natural mineral coated probiotic powder derived from lava seawater of lyophilized Example 2 had a significantly higher lyophilization survival rate of about 60% than the probiotic powder of lyophilized Preparation Example 2.
  • Lava seawater-derived natural mineral coating probiotics can be seen to have durability that can overcome the temperature, which is a stress between different kinds, because the coating process through high-concentration growth and post-process while receiving stress from a certain salt concentration from the pre-culture stage.
  • probiotic powders of lyophilized Preparation Example 2 and lyophilized Example 2 were mixed in 100 ml of the prepared artificial gastric juice medium. Each mixture was immediately taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added to solidify. Yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C were counted to confirm the initial viable cell count of each probiotic powder.
  • BD Bromo cresol purple agar
  • each mixture was incubated at 37°C for 2 hours, the cultured culture was taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added to solidify. The number of viable cells was confirmed by counting yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C.
  • BD Bromo cresol purple agar
  • An artificial bile broth medium was prepared by mixing 0.3 ml of sterilized oxgall solution in 100 ml of sterilized Lactobacilli MRS broth (BD).
  • Freeze-dried Preparation Example 2 and freeze-dried probiotic powder of Example 2 were each subjected to an acid resistance test according to the method of Experimental Example 7-1, and the culture solution was centrifuged to remove the supernatant, and then live cells were recovered. The recovered live cells were continuously subjected to a test for confirming bile acid resistance by the method of lyophilization Experimental Example 7-2, and the results are shown in Table 4.
  • Freeze-dried Preparation Example 2 and freeze-dried probiotics powder of Example 2 were divided into 5 g each in an airtight container and stored in a thermo-hygrostat (75% humidity) for 4 months at 4°C, 15°C, 25°C, and 35°C.
  • the number of viable cells was measured based on the method for measuring the number of viable lactic acid bacteria and is shown in Table 5.
  • Spray drying Manufacturing Example 2 4°C 15°C 25°C 35°C Day 0 (CFU/g) 3.6x10 9 3.6x10 9 3.6x10 9 3.6x10 9 30 days (CFU/g) 3.2x10 9 1.2x10 9 1.2x10 9 2.4x10 8 60 days (CFU/g) 2.2x10 9 8.7x10 8 3.3x10 8 4.3x10 7 90 days (CFU/g) 1.3x10 9 4.2x10 8 1.5x10 8 1.1x10 7 120 days (CFU/g) 1.2x10 9 3.2x10 8 6.2x10 7 5.5x10 6 Survival rate (%) 33.0 8.9 1.7 0.2 Spray drying Example 2 4°C 15°C 25°C 35°C Day 0 (CFU/g) 3.2x10 11 3.2x10 11 3.2x10 11 30 days (CFU/g) 3.2x10 11 2.8x10 11 2.4x10 11 7.2x10 10 60 days (CFU/g) 3.1x10
  • Lava seawater (lava seawater without cultivation of the strain itself), freeze-dried Preparation Example 2, and the content of magnesium and calcium in the probiotic powder of Freeze-dried Example 2 were analyzed according to the Magnesium and Calcium Test Method of the Health Functional Food Code Table 6 shows the amount of probiotics contained in natural mineral components derived from lava seawater.
  • glucose 3% (w/v) per 1 liter glucose 3% (w/v) per 1 liter
  • yeast extract 2% w/v
  • soypeptone 2% w/v
  • casein 1% w/v
  • the lactic acid bacteria seed culture solution was inoculated into the sterilized medium of the fermentation tank in this sterilized basic medium, and cultured for 20 hours at 100 rpm and 37°C, but 40% (w/v) glucose and 40% (w/v) sodium hydroxide were 1: An aqueous solution mixed at a volume ratio of 1 (hereinafter referred to as glucose-sodium hydroxide solution) was incubated while maintaining the pH at 6.0-7.5 while dropping at regular time intervals (Fed-batch culture performed).
  • the culture solution cultured in Preparation Example 1 was concentrated to 1/10 volume of the original culture solution using a membrane filtration concentrator (filtration membrane size 0.1 ⁇ m, manufacturer DOW separation systems, Serial No.546/57 205-92.) After obtained, 100 g of the concentrate was mixed with a solution in which 100 g of hydroxypropylmethylcellulose (HPMC) powder was dissolved in 500 g of water, and spray-dried to obtain a dried probiotic powder.
  • HPMC hydroxypropylmethylcellulose
  • the medium was sterilized as in Preparation Example 1 by spray drying using the culture water containing lava seawater for each concentration.
  • a sterilized medium is prepared using lava seawater, natural minerals of lava seawater react with proteins of the medium to produce mineral-protein salts precipitated in a salt state.
  • the lactic acid bacteria seed culture solution was inoculated into the sterilized lava seawater medium as in Preparation Example 1, and the pH was calibrated to 6.0-7.5 using a glucose-sodium hydroxide solution for 20 hours at 100 rpm and 37°C. I did.
  • the culture solution obtained by culturing lactic acid bacteria in a medium prepared using 30% (v/v) of lava seawater among the conditions of Example 1 was concentrated to 1/10 volume of the original culture solution as in the spray drying method of Preparation Example 2.
  • 100 g of the concentrate was mixed with a solution in which 100 g of hydroxypropylmethylcellulose (HPMC) powder was dissolved in 500 g of water, and spray-dried to obtain a dried probiotic powder.
  • HPMC hydroxypropylmethylcellulose
  • the mineral-protein salt coats the outside of the cells, and hydroxypropylmethylcellulose acts as a binder that makes the coating more robust.
  • Example 1 of spray drying when a sterilized medium is prepared using lava seawater, the natural minerals of the lava seawater react with the proteins of the medium to produce a mineral-protein salt precipitated in a salt state.
  • This mineral-protein salt is partially produced in the basic medium used in Spray-drying Preparation Example 1, but the amount of production is remarkably increased in the medium containing lava seawater.
  • the dry weight of the mineral-protein salt and the amount of protein in the mineral-protein salt were confirmed.
  • the amount of this protein was measured by BCA protein assay to confirm the protein content of the mineral-protein salt.
  • water containing 30% (v/v) of lava seawater is prepared for cultivation, and when the entire medium is 100 ml, 3 g of glucose, 2 g of yeast extract, and 2 g of soypeptone are used. After dissolution, the mixture was sterilized for 30 minutes at a temperature range of 100 to 121°C at 5°C. After cooling the sterilized medium, 400 ml of the medium for each concentration of lava seawater was dispensed into separate containers. Each stationary solution was centrifuged at 6,000 rpm for 30 minutes to recover mineral-protein salts and dried to check the dry weight, and the amount of protein in the dried product was measured by Bradford assay to confirm the protein amount. For comparison, the sterilized medium of Comparative Example 1 spray-dried under the same conditions was treated and compared, and are shown in Table 10.
  • Sterilization temperature (°C) Lava seawater concentration (%, v/v) Precipitate (mineral-protein salt) dry weight (mg/ml) The amount of pure protein in the precipitate (mineral-protein salt) (mg/ml) 100°C 30 3.5 1.9 105°C 30 5.4 2.9 110°C 30 7.4 3.1 115°C 30 9.8 3.8 121°C 30 11.8 5.9 121°C 0 0.5 0.2
  • Spray-drying 1 g of the spray-dried powders of Preparation Example 2 and Spray-drying Example 2 were taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into petridish, and 20 ml of sterilized Lactobacilli MRS Agar (BD) was added to solidify. The number of Petridish colonies cultured at 37°C for 48 hours in a stationary incubator was counted to check the number of viable cells, and this was shown in Table 11 (hereinafter referred to as a method for measuring the number of viable bacteria).
  • the number of lactic acid bacteria in the culture medium is measured as a very high value, and 1.0 ⁇ 10 11 CFU/g or more is significantly higher than the value of 1.0x10 8 CFU/g or more, which is the standard for probiotics. It can be seen that the probiotic powder can be stably manufactured.
  • the mineral-protein salt has a heat protection function.
  • Example 2 Each 400 ml of the lactic acid bacteria culture solution cultured in each lava seawater medium of Example 1 was dispensed into a separate sterilized container and allowed to cool at 4° C. for 1 hour. Each stationary solution was concentrated and spray-dried as in Example 2 to check the dry weight of the dried product. For comparison, the culture solution of Spray-dried Preparation Example 1 was treated and compared under the same conditions, and it is shown in FIG. 7. At this time, the result of the dry weight was shown in comparison with the number of live lactic acid bacteria.
  • the lava seawater conditions in the medium that most affect the cultivation of lactic acid bacteria are 30-70% (v/v) lava seawater culture medium conditions in which the number of viable bacteria is significantly increased compared to the culture conditions of spray-dried Preparation Example 1. It can be understood, and a better condition is when using a lava seawater concentration of around 30 ⁇ 40% (v/v) as culture water, and the best condition for this experiment is when the lava seawater concentration is 30% (v/v). It can be seen that it is time to cultivate lactic acid bacteria with cultivation water.
  • the conditions for culturing the lactic acid bacteria in Spray-drying Preparation Example 1 and Spray-drying Example 1 may be referred to as fed-batch culture conditions using a glucose-sodium hydroxide solution (Glucose/NaOH), which are compared with batch culture. For this, the following experiment was performed.
  • Glucose/NaOH glucose-sodium hydroxide solution
  • the lava seawater 30% (v/v) culture conditions in the following experimental examples, referred to as spray-drying Example 1 or spray-drying Example 2, the lava seawater 30% (v/v) Corresponds to the medium culture conditions
  • the lactic acid bacteria in the fed-batch culture conditions of Spray-dried Preparation Example 1, and the glucose-sodium hydroxide solution in the 30% (v/v) medium culture conditions of the spray-dried lava seawater of Example 1
  • the lactic acid bacteria were cultured under comparative conditions in which only the addition conditions were not performed (referred to as comparative conditions of spray drying Example 1, cultured without pH/glucose correction for 20 hours).
  • each culture solution was dispensed into a separate sterilized container and concentrated to 1/10 volume of the original culture solution using a membrane filtration concentrator (filtration membrane size 0.1 ⁇ m, manufacturer DOW separation systems, Serial No.546/57 205-92.)
  • a membrane filtration concentrator filtration membrane size 0.1 ⁇ m, manufacturer DOW separation systems, Serial No.546/57 205-92.
  • 100 g of the concentrate was mixed with a solution in which 100 g of hydroxypropylmethylcellulose (HPMC) powder was dissolved in 500 g of water, and spray dried to measure the total weight and the number of viable cells.
  • HPMC hydroxypropylmethylcellulose
  • the culture medium cultured in a mass of 500 L was concentrated and tested using a membrane filtration concentrator.
  • Example 2 Water culture spray-dried powder Spray-dried lava seawater culture spray-dried powder of Example 2 After spray drying ( ⁇ 10 9 CFU/g) 11 212 Before spray drying ( ⁇ 10 9 CFU/g) 163 318 Survival rate (%) 6.7 66.6
  • the natural mineral coated probiotic powder derived from lava seawater of spray-dried Example 2 compared with the spray-drying survival rate of about 6.7%, compared to the probiotic powder of Spray-dried Preparation Example 2, about 67% significantly more than 10 times. It is confirmed to be high.
  • the natural mineral coating probiotics derived from lava seawater were subjected to high-concentration growth and the coating process through the post-process while being under stress from a certain salt concentration from the pre-cultivation stage, so it can be seen that it has the durability to overcome the high temperature, which is a stress between different kinds. have.
  • probiotic powders of Spray-drying Preparation Example 2 and Spray-drying Example 2 were mixed in 100 ml of the prepared artificial gastric juice medium. Each mixture was immediately taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added to solidify. Yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C were counted to confirm the initial viable cell count of each probiotic powder.
  • BD Bromo cresol purple agar
  • each mixed solution was incubated at 37°C for 2 hours, and the cultured solution was taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed in Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added. Solidified. The number of viable cells was confirmed by counting yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C.
  • BD Bromo cresol purple agar
  • An artificial bile broth medium was prepared by mixing 0.3 ml of sterilized oxgall solution in 100 ml of sterilized Lactobacilli MRS broth (BD).
  • the probiotic powders of Spray-drying Preparation Example 2 and Spray-drying Example 2 were subjected to an acid resistance test according to the method of Spray-drying Experimental Example 6-1, respectively, and the culture solution was centrifuged to remove the supernatant, and then live bacteria were recovered.
  • the recovered live bacteria were continuously subjected to a test for confirming bile acid resistance according to the method of spray drying Experimental Example 6-2, and the results are shown in Table 15.
  • Example 2 Spray-drying
  • the probiotic powder of Example 2 is subdivided into a closed storage container by 5 g each, and stored in a thermo-hygrostat (75% humidity) for 4 months at 4°C, 15°C, 25°C, and 35°C.
  • the number of viable cells was measured based on the method for measuring the number of viable lactic acid bacteria and is shown in Table 16.
  • Spray drying Manufacturing Example 2 4°C 15°C 25°C 35°C Day 0 (CFU/g) 1.1 ⁇ 10 10 1.1 ⁇ 10 10 1.1 ⁇ 10 10 1.1 ⁇ 10 10 30 days (CFU/g) 1.0 ⁇ 10 10 4.1 ⁇ 10 9 1.1 ⁇ 10 9 8.3 ⁇ 10 8 60 days (CFU/g) 9.1 ⁇ 10 9 1.4 ⁇ 10 9 6.6 ⁇ 10 8 1.9 ⁇ 10 8 90 days (CFU/g) 8.8 ⁇ 10 9 6.7 ⁇ 10 8 2.3 ⁇ 10 8 7.5 ⁇ 10 7 120 days (CFU/g) 7.4 ⁇ 10 9 3.3 ⁇ 10 8 1.3 ⁇ 10 8 1.2 ⁇ 10 7 Survival rate (%) 67.2 3.0 1.1 0.1 Spray drying Example 2 4°C 15°C 25°C 35°C Day 0 (CFU/g) 2.1 ⁇ 10 11 2.1 ⁇ 10 11 2.1 ⁇ 10 11 2.1 ⁇ 10 11 30 days (CFU/g) 2.1 ⁇ 10 11 1.9 ⁇ 10 11 1.7 ⁇ 10 11 1.2 ⁇ 10 11 60 days (CFU/g) 2.1 ⁇
  • magnesium and calcium are representative components of natural minerals, and this content value is a value representing the content value of natural mineral coated probiotics derived from lava seawater, and additional experiments are conducted based on this, and natural mineral coated probiotic powder derived from lava seawater. It was confirmed that the mineral content of 0.1 ⁇ 0.5g / 100g. At this time, respectively, magnesium was 0.07 ⁇ 0.4g / 100g, calcium was 0.02 ⁇ 0.09g / 100g.
  • a culture solution obtained by culturing Lactobacillus rhamnosus spp. in the medium of Table 18 was prepared by the method of Example 2, and the number of lactic acid bacteria viable cells was measured (spray-dried). These values are shown in Table 19.
  • a two-dimensional electrophoresis method is used to confirm whether the self-defense protein (chaperone) is formed in the bacteria by a stress response that can withstand the spray drying conditions in the cultivation process through lava seawater.
  • the change in the protein expression level was compared with a gel image.
  • the synthesized cDNA band was confirmed to be significantly thicker, and accordingly, the spray-dried Example 1 It is believed that the expression of self-defense protein (chaperone) is increased through lava seawater cultivation, and thus thermal stability can be obtained when spray-dried.
  • self-defense protein chaperone

Abstract

The present invention relates to a method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same. More specifically, the present invention uses a method for adding lava seawater to a medium for culturing lactobacilli so that the concentration of the lava seawater becomes 30-70% (v/v), thus causing minerals included in the lava seawater and proteins on the lactobacilli medium to precipitate in a mineral-protein salt state, thus inducing smooth culture of lactobacilli through the control of salinity on the medium, and while lactobacilli are cultured, chaperones, which are stress-responsive proteins, are produced in microbial bodies on a medium in which the concentration of salt is adjusted, due to salt-induced stress, and a culture broth after culture is concentrated so that the outer sides of the microbial bodies are uniformly coated with a mineral-protein salt generated when the medium is sterilized, and thus overall thermal stability of the inner and outer sides of the microbial bodies are remarkably enhanced. Through this, it is possible to obtain efficacy in remarkably enhancing the viability and storage stability over time when lactobacilli are lyophilized or spray-dried, efficacy in enduring continuous pH changes of gastric acid and bile acid in the digestive tract inside a body, and the like.

Description

용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법 및 이를 이용한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 Lava seawater-derived natural mineral coating probiotics manufacturing method and lava seawater-derived natural mineral coating probiotics using the same
본 발명은 용암해수를 별도의 전처리 없이 배양용수로 사용하여 동결건조 시 생존율, 경시적 보관 안정성, 섭취 안정성을 동시에 증가시키고 나아가 미네랄을 통해 전해질 불균형을 초래하는 질환인 설사 등에 균형을 잡아주어 장내 프로바이오틱스의 효능을 극대화할 수 있는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법 및 이를 이용한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스에 관한 것이다.The present invention uses lava seawater as cultivation water without separate pretreatment to increase the survival rate, storage stability over time, and intake stability during freeze-drying at the same time, and further balance diarrhea, a disease that causes electrolyte imbalance through minerals, to prevent intestinal probiotics. The present invention relates to a method of manufacturing a natural mineral coated probiotics derived from lava seawater that can maximize efficacy, and a natural mineral coated probiotics derived from lava seawater using the same.
프로바이오틱스(Probiotics)는 일반 요구르트와 같은 호상 요구르트의 제조방법과는 달리, 주로 건강기능식품 중, 배변활동 원활과 장내에서 유산균의 증식을 도와주는 역할을 하는 분말형태의 기능성 유산균을 의미한다. 특히, 2002년 세계보건기구(WHO/FAO)에서 생균(live cells)으로서 적당량 섭취하였을 때, 숙주의 건강에 도움을 주는 미생물로 프로바이오틱스를 정의하면서 많이 대중화되었다. 한국에서는 식품의약품안전처의 건강기능식품 고시형 원료로 등재되어 있으며 장건강을 위한 프로바이오틱스 생균의 일일섭취량은 1억 CFU/day(CFU:Colony Forming Unit) 이상으로 정의하고 있다.Probiotics refers to functional lactic acid bacteria in powder form that play a role in smooth bowel movement and proliferation of lactic acid bacteria in the intestine, mainly among health functional foods, unlike the manufacturing method of yogurt like regular yogurt. In particular, when ingested in an appropriate amount as live cells by the World Health Organization (WHO/FAO) in 2002, it was widely popularized as probiotics were defined as microorganisms that help the health of the host. In Korea, it is registered as a health functional food notified raw material by the Ministry of Food and Drug Safety, and the daily intake of probiotics for intestinal health is defined as more than 100 million CFU/day (CFU: Colony Forming Unit).
최근에 서구화된 식습관, 많은 스트레스 등으로 인한 대장질환이 급증하고 있으며 특히 과민성 장증후군, 염증성장질환 등의 유병률이 높아지고 있다. 이러한 장 질환의 특징 중 하나는 설사증상으로 대장 내 전해질 균형이 깨지게 되어 수분을 동반한 설사가 일어나게 된다. 이럴 경우, 외부로부터 투입되는 프로바이오틱스가 정상적인 장 정착을 하기 어려워진다. 따라서 이런 질환을 가지고 있는 사람의 프로바이오틱스 사용은 1차적으로 전해질 균형을 회복시켜 프로바이오틱스 효과를 나타내도록 하는 것이 필요하다. Recently, colon diseases due to westernized eating habits and a lot of stress are increasing rapidly, and in particular, the prevalence of irritable bowel syndrome and inflammatory growth disease is increasing. One of the characteristics of such bowel disease is diarrhea, which causes the electrolyte balance in the large intestine to be broken, resulting in diarrhea accompanied by water. In this case, it becomes difficult for the probiotics introduced from the outside to settle the intestine normally. Therefore, the use of probiotics by people with these diseases is necessary to restore the electrolyte balance in the first place so that the probiotic effect can be exhibited.
원활한 장내 프로바이오틱스 효과를 나타내기 위해서는 일정균수 이상의 생균을 섭취해야 하는데 대부분의 경우 위장관을 통과하는 동안 위산과 담즙산에서 사멸되어 장내 도달하는 균수가 미달됨으로써 그 효과를 기대하기 어렵다. 따라서 산업계에서는 1차적으로 고농도 균수의 유산균 배양방법 개발과 함께 분말 제조 시 유산균의 생존율을 높이는 방법을 중요 사항으로 극복하려는 노력이 있었으며 특히, 공기에 노출시 사멸되는 혐기적 특성을 가진 유산균 액상 발효액으로부터 생균 분말 제형으로의 생산을 위해 혐기성을 나타내는 유산균을 여러가지 산업화된 균체배양법, 정제회수공정, 코팅법 등을 제품의 유통기한, 안정성과 관련이 있는 유산균 생존율을 높이는 방향으로 지속적으로 최적화하여 생산해왔다.In order to exhibit a smooth intestinal probiotic effect, it is necessary to consume more than a certain number of live bacteria, but in most cases, it is difficult to expect the effect as the number of bacteria reaching the intestine is insufficient due to death from gastric acid and bile acids during passage through the gastrointestinal tract. Therefore, in the industry, efforts were made to overcome the method of increasing the survival rate of lactic acid bacteria during powder manufacturing as an important matter, along with the development of a method for cultivating lactic acid bacteria with a high concentration of bacteria, especially from liquid fermentation broth with anaerobic properties that are killed when exposed to air. For the production of live bacteria powder formulations, various industrialized bacterial cell culture methods, tablet recovery processes, coating methods, etc., have been continuously optimized to increase the survival rate of lactic acid bacteria related to the shelf life and stability of the product.
배양기술 상의 유산균을 고농도화하는 기술로는 1억 CFU/day(CFU:Colony Forming Unit) 이상의 프로바이오틱스 생균을 안정적으로 제조하기 위해서 배양액의 균수를 50억 CFU/ml 이상으로 고농도 배양하는 기술이 필요하며, 선행기술로는 유산균수 증가를 위해 프롤린 첨가를 통한 안정성 증진기술(대한민국 등록특허 제10-1605516호)이 있다. 그러나 이 방법은 프롤린 아미노산을 톤 단위 생산에 투입하는 것으로 경제성 대비 그 효과는 미비하여 대량생산에는 사용하기 어려운 문제점으로 지적되어 왔다.As a technology for high concentration of lactic acid bacteria in the culture technology, it is necessary to cultivate the number of bacteria in the culture medium at a high concentration of 5 billion CFU/ml or more in order to stably produce probiotic live bacteria of 100 million CFU/day (CFU: Colon Forming Unit). , As a prior art, there is a technology for improving stability through the addition of proline to increase the number of lactic acid bacteria (Korean Patent No. 10-1605516). However, this method has been pointed out as a problem that it is difficult to use in mass production because proline amino acids are injected into the ton-unit production.
또 하나의 선행기술분야로 분말 제조 시 대표적으로 유산균의 생존율을 높이는 방법으로 코팅 기술을 예로 들 수 있다. 종래의 기술로는 4중코팅 유산균 제조기술(대한민국 등록특허 제10-1280232호)이 대표적이다. Another prior art field is coating technology as a typical method of increasing the survival rate of lactic acid bacteria when manufacturing powder. As a conventional technology, a four-coated lactic acid bacteria manufacturing technology (Korean Patent No. 10-1280232) is representative.
유산균의 선행 기술상의 코팅기술은 혐기적 특징을 나타내는 유산균에 코팅제를 적층하는 것으로 이를 통해 유통기한을 늘리는 보관안정성 증대를 목적으로 하고 있다. 따라서 코팅의 균일성 및 외부 수분유입에 의한 코팅층 붕괴 시 외부 공기에 노출에는 취약할 수 밖에 없어 혐기적 특성을 나타내는 유산균의 사멸을 가져올 수 있다. 이렇듯 종래의 선행기술들은 유산균이 공기, 온도, 위산, 담즙산 등의 외부 공격인자들을 유산균 자체의 내성능력의 향상보다는 배양공정단계와 후처리공정단계에서 코팅제를 통한 보호막을 형성하여 보관안정성에만 초점을 맞추고 있지만, 설사 등과 같은 장내 전해질 불균형을 초래하는 증상이 발생할 때나, 위장관을 연속통과하는 과정에서 코팅막이 벗겨지게 될 경우에는 유산균 자체의 내구성이 확보되어 있지 않으므로 기존 기술로 제조한 코팅 유산균을 섭취하더라도 위장관 환경의 스트레스를 극복하기에는 기술적 한계가 있음이 지적되어 왔다. The coating technology of the prior art of lactic acid bacteria is to laminate a coating agent on the lactic acid bacteria exhibiting anaerobic characteristics, thereby increasing the shelf life and increasing storage stability. Therefore, when the coating layer collapses due to the uniformity of the coating and the inflow of external moisture, it is inevitable to be vulnerable to exposure to the outside air, resulting in the death of lactic acid bacteria that exhibit anaerobic properties. As described above, conventional prior technologies focus only on storage stability by forming a protective film through a coating agent in the cultivation and post-treatment stages rather than improving the resistance of lactic acid bacteria itself to external attack factors such as air, temperature, gastric acid, and bile acids. However, when symptoms that cause intestinal electrolyte imbalance such as diarrhea occur, or when the coating film is peeled off during the continuous passage of the gastrointestinal tract, the durability of the lactic acid bacteria itself is not secured. It has been pointed out that there are technical limitations in overcoming the stress of the gastrointestinal environment.
유산균 자체의 활력증진을 통한 스트레스를 극복하는 방법으로 heat shock, osmotic shock, acid shock 등의 스트레스를 생존 가능한 임계조건까지 단시간 처리함으로써 혐기성을 극복하는 대안으로 제시되었다. 그러나 산업용 생산조건에서 수 분 이내로 단시간 급격한 스트레스를 유산균에 가하기에는 물리적, 기계적으로 어려움이 있고 스트레스 처리시 균체 사멸과 스트레스 인자를 제거하는 과정에서의 균체량 손실 등으로 인해 상용화는 이루어지지 않고 있다. As a method of overcoming stress by increasing the vitality of lactic acid bacteria itself, it has been suggested as an alternative to overcome anaerobicity by treating stress such as heat shock, osmotic shock, and acid shock for a short time to a critical condition for viability. However, in industrial production conditions, it is physically and mechanically difficult to apply rapid stress to lactic acid bacteria for a short time within a few minutes, and commercialization has not been made due to the death of the cells during stress treatment and the loss of the amount of cells in the process of removing the stress factor.
용암해수는 바닷물이 현무암층과 사니질층에 자연여과 되면서 지층 안으로 흘러 들어 오랜 기간 숙성된 물로서, 제주도만이 보유한 독특한 수자원이며, 제주에서는 1980년대부터 용암해수의 저온성, 청정성 등의 특성으로부터 용암해수를 넙치 양식장의 사육수로 활발히 사용하여 왔으며, 5~6년 전부터는 건강, 미용 등의 측면에서 사우나 등의 용수로 사용되고 있고 크게 각광을 받고 있다. 용암해수는 사용목적에 따라 염분을 제거한 탈염 용암해수를 이용하거나 채취한 상태 그대로를 사용하기도 한다. Lava seawater is a water that has been aged for a long period of time as seawater flows into the strata as it is naturally filtered through the basalt and sandy layers, and is a unique water resource possessed by Jeju Island.Since the 1980s, lava seawater in Jeju is characterized by the low temperature and cleanliness of lava seawater. It has been actively used as breeding water for flounder farms, and from 5 to 6 years ago, it has been used as water for saunas in terms of health and beauty, and is gaining much attention. Depending on the purpose of use, desalted lava seawater from which salt has been removed is used or as it is collected.
용암해수에는 일반 해수나 심층수, 삼다수보다 나트륨, 마그네슘, 칼슘, 칼륨 등의 필수 미네랄뿐만 아니라 일반 유용 미네랄 성분들(철, 망간, 아연, 몰리브덴, 셀레늄 등)이 더 많이 함유되어 있다. 그 중에서도 인슐린 분비를 안정시키거나 당뇨병, 고지혈증 등의 개선효과가 있다고 알려진 바나듐, 혈액순환 촉진, 면역력 증강, 항암작용을 갖는 게르마늄, 지방의 산화작용억제, 심장과 간을 유지하는 상승효과, 라디칼 소거능력, 항암, 불임, 노화 및 콜레스테롤 수치 개선효과가 있는 셀레늄의 함유는 해양심층수에서도 보고된 적이 없는 용암해수만의 특징이다. 게다가 이들 미네랄은 이온화된 상태에 있으며, 이온화된 미네랄은 인체나 타 동물에 대해 소화흡수가 용이하다. 또한, 용암해수는 대장균, 질산성질소, 인산염인, 페놀류 등이 검출되지 않은 청정한 지하수 자원이며, 비소, 수은, 카드뮴 등 유해성분이 검출되지 않거나 납이 극히 미량이 검출되기 때문에 산업화 적용에 장애요인이 없는 청정 원료이다. Lava seawater contains more essential minerals such as sodium, magnesium, calcium, and potassium, as well as general useful minerals (iron, manganese, zinc, molybdenum, selenium, etc.) than general seawater, deep water, and Samdawater. Among them, vanadium, which is known to stabilize insulin secretion or improve diabetes and hyperlipidemia, promotes blood circulation, enhances immunity, germanium, which has anticancer activity, inhibits oxidation of fat, synergistic effect to maintain the heart and liver, scavenging radicals. The content of selenium, which has the effect of improving ability, anticancer, infertility, aging and cholesterol levels, is a characteristic of lava seawater that has never been reported in deep ocean water. In addition, these minerals are in an ionized state, and the ionized minerals are easily digested and absorbed by the human body or other animals. In addition, lava seawater is a clean groundwater resource in which E. coli, nitrate nitrogen, phosphate phosphorus, phenols, etc. are not detected, and harmful components such as arsenic, mercury, cadmium, etc. are not detected, or lead is detected in a very small amount, which is an obstacle to industrial application. There is no clean raw material.
특히, 용암해수에 포함된 마그네슘, 칼슘 미네랄은 유산균의 증식에 반드시 필요한 것이며, 사람에게도 필수 영양소로 사용되고 있다. 그러나 용암해수를 그 자체로 유산균 배양을 위한 용수로 적용하는 경우 용암해수 내 고농도 염류에 의해 유산균이 저해를 받아 고농도 유산균수 배양이 불가한 기술적인 한계(L.J.M. Linders et al., 1997)가 있으며 이를 극복하기 위해 종래의 선행기술(대한민국 등록특허 제10-1347694호) 등과 같이 탈염수 제조공법이 도입된 용수를 사용하였다. 그러나 이러한 선행기술은 용암해수를 탈염하기 위한 비용의 발생 및 탈염 된 용암해수 내 미네랄 함량의 감소 등 경제적/기술적 한계점을 내포하고 있다. In particular, magnesium and calcium minerals contained in lava seawater are essential for the proliferation of lactic acid bacteria and are also used as essential nutrients for humans. However, when lava seawater is applied as a water for cultivating lactic acid bacteria by itself, there is a technical limitation in which it is impossible to cultivate a high concentration of lactic acid bacteria (LJM Linders et al., 1997) because the lactic acid bacteria are inhibited by high concentration salts in the lava seawater. In order to do so, water to which the demineralized water manufacturing method was introduced was used, such as in the prior art (Korean Patent No. 10-1347694). However, such prior art has economic/technical limitations such as incurring costs for desalting lava seawater and reducing mineral content in desalted lava seawater.
이에 본 발명에서는 우리 몸에 유익한 미네랄이 함유되어 식용섭취 가능한 용암해수를 사용하여 염농도가 높은 배지에서 고농도로 생존할 수 없는 유산균을 미네랄-단백질염을 유도시켜 염농도를 조절하여 고농도 배양이 가능하도록 함으로써 유산균 자체의 스트레스에 대한 내구성을 증대시키고 균주의 방어막으로서 용암해수의 염석반응(salting-out)으로 수득한 미네랄-단백질염을 유산균에 코팅함으로써 동결건조나 분무건조 후의 생존 안정성, 유통 중 보관안정성이 증대될 뿐만 아니라, 유산균이 생체 내 위장관을 통과하며 코팅막이 상실되는 것을 억제하여 섭취 시의 안정성을 증진시키는 방법을 고안하여 신규한 형태의 프로바이오틱스를 상용화 하였다.Therefore, in the present invention, by inducing mineral-protein salts of lactic acid bacteria that cannot survive at high concentration in a medium with a high salt concentration by using lava seawater that is useful for human consumption and contains minerals, the salt concentration is adjusted to enable high concentration culture. It increases the durability against stress of the lactic acid bacteria itself and coats the mineral-protein salt obtained from the salting-out of lava seawater on the lactic acid bacteria as a protective film of the strain, so that the survival stability after freeze drying or spray drying, and the storage stability during distribution are improved. In addition, a novel form of probiotics was commercialized by devising a method to enhance stability during ingestion by inhibiting the loss of the coating film while passing through the gastrointestinal tract in vivo.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
대한민국 등록특허 제10-1280232호 (발명의 명칭 : 4중 코팅 유산균의 제조방법 및 그 방법으로 제조된 4중 코팅 유산균, 출원인 : 일동제약주식회사, 등록일 : 2013년06월25일)Korean Patent Registration No. 10-1280232 (Name of the invention: manufacturing method of 4-coated lactic acid bacteria and 4-coated lactic acid bacteria produced by the method, Applicant: Ildong Pharmaceutical Co., Ltd., registration date: June 25, 2013)
대한민국 등록특허 제10-1605516호 (발명의 명칭 : 유산균의 생존율, 저장안정성, 내산성 또는 내담즙성을 증가시키는 방법, 출원인 : 주식회사 종근당바이오, 등록일 : 10-1605516)Republic of Korea Patent Registration No. 10-1605516 (Name of invention: method of increasing the survival rate, storage stability, acid resistance or bile resistance of lactic acid bacteria, Applicant: Chong Kun Dang Bio Co., Ltd., registration date: 10-1605516)
대한민국 등록특허 제10-1347694호 (발명의 명칭 : 탈염 용암해수의 발효물의 제조 방법과 그 방법에 의하여 얻어진 발효물 및 그 발효물을 이용한 화장료 조성물, 출원인 : 재단법인 제주테크노파크, 등록일 : 2013년12월27일)Republic of Korea Patent Registration No. 10-1347694 (Title of invention: Method for producing fermented product of desalted lava seawater, fermented product obtained by the method, and cosmetic composition using the fermented product, Applicant: Jeju Technopark Foundation, registration date: 2013 12 27th of month)
대한민국 등록특허 제10-1927859호 (발명의 명칭 : 초음파를 이용한 프로바이오틱스의 안정성과 코팅효율을 증가시키는 방법 및 그 방법으로 제조된 프로바이오틱스 동결건조분말을 유효성분으로 함유하는 식품조성물, 출원인 : 주식회사한국야쿠르트, 등록일 : 2018년12월05일)Korean Patent Registration No. 10-1927859 (Title of invention: A method of increasing the stability and coating efficiency of probiotics using ultrasonic waves, and a food composition containing freeze-dried powder of probiotics manufactured by the method as an active ingredient, Applicant: Korea Yakult Co., Ltd. , Registration date: December 5, 2018)
대한민국 공개특허 제10-2019-0008597호 (발명의 명칭 : 해양심층수 함유 배양배지를 이용한 유산균의 배양방법 및 유산균 배양용 배지 조성물, 출원인 : 주식회사 비피도 외 1인, 공개일 : 2019년01월25일)Republic of Korea Patent Publication No. 10-2019-0008597 (Name of the invention: cultivation method of lactic acid bacteria using culture medium containing deep sea water and medium composition for cultivation of lactic acid bacteria, Applicant: Bifido and others, Publication date: January 25, 2019 Work)
[비특허문헌][Non-patent literature]
L.J.M. Linders, G. Meerdink, K. Van ‘t Riet. (1997) Effect of growth parameters on the residual activity of Lactobacillus plantarum after drying. Journal of microbiology 82, 683-688.LJM Linders, G. Meerdink, K. Van't Riet. (1997) Effect of growth parameters on the residual activity of Lactobacillus plantarum after drying. Journal of microbiology 82, 683-688.
본 발명의 목적은 용암해수를 별도의 전처리 없이 배양용수로 사용하여 배지의 미네랄-단백질염 형성을 통해 유산균을 코팅함으로써 건조 분말로 제조시 생존율, 경시적 보관 안정성, 섭취 안정성을 동시에 증가시키는 효능이 있는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법 및 이를 이용한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 제공하는 데에 있다. An object of the present invention is to increase the survival rate, storage stability over time, and intake stability at the same time by coating the lactic acid bacteria through the formation of mineral-protein salts in the medium by using lava seawater as culture water without separate pretreatment. The aim is to provide a method for producing natural mineral coated probiotics derived from lava seawater and natural mineral coated probiotics derived from lava seawater using the same.
이에, 본 발명을 통해 프로바이오틱스 원말을 생산하는데 있어 전공정과 후공정의 과정에서 특정 농도의 용암해수를 사용하는 일관된 공정을 구현하고, 용암해수로 인해 형성되는 미네랄-단백질염으로 유산균의 코팅을 수행함으로써 급속동결 또는 분무건조 중 유산균의 외부위협인자인 온도 스트레스에 대한 생존율 및 경시적 보관 안정성을 획기적으로 향상시키며, 섭취 시의 외부위협인자 중 위산과 답즙산의 급격한 pH 변화에 따른 스트레스에 대한 섭취 안정성을 동시에 높이는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 제조방법을 제공할 수 있다. Accordingly, in the production of probiotics raw powder through the present invention, a consistent process using lava seawater of a specific concentration is implemented in the process of the pre-process and post-process, and the coating of lactic acid bacteria is performed with mineral-protein salts formed by lava seawater. By doing so, it dramatically improves the survival rate and storage stability of lactic acid bacteria against temperature stress, which is an external threat factor during rapid freezing or spray drying, and ingestion against stress caused by sudden pH changes of gastric acid and bile acid among external threat factors during ingestion. It is possible to provide a method for producing probiotics coated with natural minerals derived from lava seawater that increases stability at the same time.
본 발명은 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법에 관한 것이다. The present invention relates to a method for producing natural mineral coated probiotics derived from lava seawater.
보다 더 바람직하게는, 상기 제조방법은, Even more preferably, the manufacturing method,
(제1단계) 용암해수가 30~70%(v/v) 포함된 물을 배양용수로 이용하여 제조된 유산균 배양용 배지를 준비하는 단계; 및,(Step 1) preparing a culture medium for lactic acid bacteria prepared by using water containing 30-70% (v/v) lava seawater as culture water; And,
(제2단계) 상기 유산균 배양용 배지에 유산균을 접종하고 배양하여 배양액을 얻는 단계; (Second step) obtaining a culture solution by inoculating and culturing the lactic acid bacteria in the culture medium for lactic acid bacteria;
를 포함할 수 있다. It may include.
본 발명은 이후 (제3단계) 제2단계의 배양액을 원심분리하여 얻은 침전물을 건조하거나, 상기 제2단계의 배양액을 농축하고 건조하는 단계;를 포함할 수 있다. The present invention may include a step of drying the precipitate obtained by centrifuging the culture medium of the second step after (third step), or concentrating and drying the culture medium of the second step.
상기 건조는 동결건조 또는 분무건조를 통해 수행할 수 있다. The drying may be performed through freeze drying or spray drying.
이 중, 상기 배양액을 원심분리하여 얻은 침전물은 동결건조하는 것이 더바람직하다. 또한, 상기 배양액을 농축하여 얻은 농축물은 분무건조하는 것이 바람직하다. Among them, it is more preferable to freeze-dry the precipitate obtained by centrifuging the culture solution. In addition, the concentrate obtained by concentrating the culture solution is preferably spray-dried.
상기 제1단계의 배지는 바람직하게는, 유산균의 배양이 가능한 모든 배지일 수 있으나, 더 바람직하게는, 구성 성분으로, 포도당, 효모추출물, 소이펩톤, 카제인이 포함되고, 상기 구성 성분을 용암해수가 30~70%(v/v) 포함된 물에 용해하고 멸균하여 준비된 유산균 배양용 배지일 수 있다. The medium of the first step may preferably be any medium capable of culturing lactic acid bacteria, but more preferably, as a constituent, glucose, yeast extract, soypeptone, casein are included, and the constituent is lava seawater It may be a culture medium for lactic acid bacteria prepared by dissolving and sterilizing in water containing 30 to 70% (v/v).
보다 더 바람직하게는 상기 제1단계의 배지는 총 부피 1ℓ 기준, 포도당 1~5%(w/v), 효모추출물 0.5~5%(w/v), 소이펩톤 0.5~5%(w/v), 카제인 0.5~3%(w/v)가 되도록 각 성분을 용암해수가 30~70%(v/v) 포함된 물에 용해하고 멸균하여 준비된 유산균 배양용 배지일 수 있다. Even more preferably, the medium of the first step is based on a total volume of 1 liter, glucose 1-5% (w/v), yeast extract 0.5-5% (w/v), soypeptone 0.5-5% (w/v) ), it may be a culture medium for lactic acid bacteria prepared by dissolving each component in water containing 30-70% (v/v) lava seawater and sterilizing it so that the casein becomes 0.5-3% (w/v).
상기 배지 멸균은 100~125℃에서 20~40분간 수행하는 것이 좋다. 이 때의 압력은 바람직하게는 0.13~0.17Mps인 것이 좋으며, 가장 바람직하게는 멸균 최적 조건인 0.15Mps, 121℃에서 30분간 수행할 수 있다. The sterilization of the medium is preferably performed at 100 to 125°C for 20 to 40 minutes. The pressure at this time is preferably 0.13 ~ 0.17Mps, and most preferably, it can be carried out for 30 minutes at 0.15Mps, 121 ℃, the optimal sterilization conditions.
상기 제2단계의 유산균은 락토바실러스 속 (Lactobacillus sp.), 비피도박테리움 속 (Bifidobacterium sp.), 스트렙토코커스 속 (Streptococcus sp.), 락토코커스 속 (Lactococcus sp.), 엔테로코커스 속 (Enterococcus sp.), 페디오코커스 속 (Pediococcus sp.) 및 바이셀라 속 (Weissella sp.)으로 이루어진 군 중에서 선택될 수 있다. Lactic acid of the second step is Lactobacillus genus (Lactobacillus sp.), Bifidobacterium (Bifidobacterium sp.), Streptococcus genus (Streptococcus sp.), Lactococcus genus (Lactococcus sp.), Enterococcus genus (Enterococcus sp.), Pediococcus sp., and Weissella sp. may be selected from the group consisting of.
상기 제2단계의 유산균 배양조건은 70~150rpm, 30~37℃ 조건으로 18~24시간 인 것이 바람직하다. 상기 제2단계의 유산균 배양은 유가식배양(fed-batch culture) 방법으로 수행되는 것이 특징이다. 이를 위해, 10 내지 50%(w/v)의 포도당 및 10 내지 50%(w/v)의 수산화나트륨 혼합 용해액을 적하하여 배양 중 pH를 6.0~7.5로 유지하는 방법을 이용할 수 있다. 이 혼합 용해액은 각각 포도당 용액과 수산화나트륨 용액을 1:0.5 내지 1:2의 부피비로 혼합한 것일 수 있다. The lactic acid bacteria culture condition of the second step is preferably 18 to 24 hours at 70 to 150 rpm and 30 to 37°C. The culture of the lactic acid bacteria in the second step is characterized in that it is performed by a fed-batch culture method. To this end, a method of maintaining a pH of 6.0 to 7.5 during culture by dropping a mixed solution of 10 to 50% (w/v) glucose and 10 to 50% (w/v) sodium hydroxide may be used. The mixed solution may be obtained by mixing a glucose solution and a sodium hydroxide solution in a volume ratio of 1:0.5 to 1:2, respectively.
상기 제3단계의 일 예시 중, 건조 시, 원심분리는 5,000~8,000rpm에서 수행하는 것이 좋다. 이 때, 원활한 원심분리를 위해 배양액을 3~5℃에서 1~24시간 동안 냉각 정치한 후 원심분리할 수도 있다. 바람직한 시간은 20분 이상, 24시간 이내가 충분하다. In one example of the third step, when drying, centrifugation is preferably performed at 5,000 to 8,000 rpm. At this time, for smooth centrifugation, the culture solution may be cooled and allowed to stand at 3 to 5° C. for 1 to 24 hours and then centrifuged. The preferred time is 20 minutes or more and 24 hours or less is sufficient.
상기 제3단계에서 동결건조를 위해, 유산균 균체 및 미네랄-단백질염의 혼합상태인 침전물을 (자체) 교반하여, 상기 균체를 함께 침전된 미네랄-단백질염으로 코팅할 수 있다. 이 후, 균체의 코팅을 안정화하기 위해, 바인더로서 히드록시프로필메틸셀룰로오스(HPMC), 동결건조 보호제로서 트레할로스(trehalose)를 선택하여 첨가할 수 있다. 이 때, 히드록시프로필메틸셀룰로오스와 트레할로스가 순차적으로 첨가되는 것이 좋다. In the third step, for freeze-drying, a mixture of lactic acid bacteria cells and mineral-protein salts is stirred (self) to coat the cells with mineral-protein salts precipitated together. Thereafter, in order to stabilize the coating of the cells, hydroxypropylmethylcellulose (HPMC) as a binder and trehalose as a freeze-dried protective agent may be selected and added. At this time, hydroxypropylmethylcellulose and trehalose are preferably added sequentially.
즉, 동결건조를 위해 제3단계에서 원심분리하여 얻은 침전물은 제1단계의 배지준비 시에 용암해수의 첨가로 인해 침전된 미네랄-단백질염이 균체와 불균일하게 혼합된 상태인 것으로(단순 혼합 과정), 이를 30~100rpm의 속도로 교반하여 균질화 코팅공정을 수행함으로써 미네랄-단백질염이 균체에 코팅되도록 할 수 있다. That is, the sediment obtained by centrifugation in the third step for freeze-drying is in a state in which mineral-protein salts precipitated due to the addition of lava seawater during the preparation of the medium in the first step are unevenly mixed with the cells (simple mixing process). ), it is stirred at a speed of 30 ~ 100rpm to perform a homogenization coating process so that the mineral-protein salt can be coated on the cells.
상기 코팅공정의 균질화 시간은 30분 이상 50분 이하로 수행하는 것이 좋다. 이러한 교반 과정을 거쳐 미네랄-단백질염이 코팅된 균체를 얻은 후, 상기 미네랄-단백질염이 코팅된 균체에 바인더 및 트레할로스를 첨가할 때에, 미네랄-단백질염이 코팅된 균체 20~80 중량%, 바인더 10~40 중량%(분말), 및 트레할로스 10~40 중량%를 준비하여 혼합할 수 있다. 상기 바인더로는 히드록시프로필메틸셀룰로오스(HPMC), 카르복시메틸셀룰로오스(CMC), 폴리비닐피롤리돈(PVP), 폴리비닐알콜(PVA) 및 키토산으로 이루어진 군 중에서 1종 이상을 첨가할 수 있다. The homogenization time of the coating process is preferably performed for 30 minutes or more and 50 minutes or less. After obtaining the cells coated with mineral-protein salt through this stirring process, when adding the binder and trehalose to the cells coated with the mineral-protein salt, 20 to 80% by weight of the cells coated with the mineral-protein salt, the binder 10 to 40% by weight (powder), and 10 to 40% by weight of trehalose may be prepared and mixed. As the binder, one or more of the group consisting of hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and chitosan may be added.
다만, 미네랄-단백질염이 코팅된 균체에 바인더가 혼합될 때는, 바인더를 용암해수가 30~70%(v/v) 포함된 물(배양용수)에 용해한 후 첨가하는 것이 좋다. However, when the binder is mixed with the mineral-protein salt-coated cells, it is recommended to add the binder after dissolving it in water (culture water) containing 30 to 70% (v/v) lava seawater.
바인더의 용해를 위한 용암해수가 30~70%(v/v) 포함된 물의 함량은 크게 제한되지 않으나, 바인더의 3~7배 중량인 것이 바람직하다. 이 때, 미네랄-단백질염이 코팅된 균체에 바인더 용액을 먼저 첨가하여 교반하고 트레할로스를 혼합 후 동결건조하는 것이 좋고, 더 바람직하게는, 미네랄-단백질염이 코팅된 균체, 바인더 용액을 30~100rpm, 10~30분간 교반한 후 트레할로스를 혼합한 뒤 동결건조하는 것이 좋다. The amount of water containing 30 to 70% (v/v) lava seawater for dissolving the binder is not limited, but it is preferably 3 to 7 times the weight of the binder. At this time, it is better to first add a binder solution to the mineral-protein salt coated cells, stir, mix trehalose, and freeze-dry, more preferably, mineral-protein salt coated cells, and a binder solution of 30 to 100 rpm. , After stirring for 10 to 30 minutes, it is recommended to mix trehalose and freeze-dry .
상기 제3단계의 일 예시 중, 건조 시, 제2단계의 유산균 배양액을 농축함으로써 균체에 미네랄-단백질염이 코팅되며, 배양액을 제거하면서 균체만을 얻기가 용이하다. 농축하여 얻은 농축물의 부피는 농축전 배양액과 비교하여 1/5~1/15 부피로 줄어든다. 즉, 상기 제3단계에서 배양액이 농축되면서 균질화를 통해 미네랄-단백질염이 균체 외부에 코팅될 수 있다. 농축 이후, 균체의 코팅을 안정화하기 위해, 정전기적으로 양성과 음성에 모두 사용가능한 양친성 물질인 바인더로서 히드록시프로필메틸셀룰로오스(HPMC), 카르복시메틸셀룰로오스(CMC), 폴리비닐피롤리돈(PVP), 폴리비닐알콜(PVA) 및 키토산으로 이루어진 군 중에서 1종 이상을 첨가할 수 있다. 즉, 배지준비 시에 용암해수의 첨가로 인해 침전된 미네랄-단백질염이 제1단계의 배양을 통해 균체와 불균일하게 혼합된 상태인 배양물(단순 혼합된 배양물)을, 이러한 농축 과정을 거쳐 미네랄-단백질염이 코팅된 균체가 포함된 농축물을 얻을 수 있으며, 이 때, 상기 미네랄-단백질염이 코팅된 균체에 코팅안전성을 위해 바인더를 첨가하는 것이다. 미네랄-단백질염이 코팅된 균체 100 중량부 대비 바인더 50~200 중량부(분말)을 준비하여 혼합할 수 있다. 다만, 미네랄-단백질염이 코팅된 균체에 바인더가 혼합될 때는, 바인더를 용매로서 순수한 물 또는 용암해수가 30~70%(v/v) 포함된 물(배양용수)에 용해한 후 첨가할 수 있다. 바인더의 용해를 위한 용매의 함량은 크게 제한되지 않으나, 바인더 분말의 3~7배 중량인 것이 바람직하다. In one example of the third step, when drying, the mineral-protein salt is coated on the cells by concentrating the culture solution of the lactic acid bacteria in the second step, and it is easy to obtain only the cells while removing the culture solution. The volume of the concentrate obtained by concentration is reduced to 1/5~1/15 volume compared to the culture medium before concentration. That is, while the culture solution is concentrated in the third step, the mineral-protein salt may be coated on the outside of the cells through homogenization. After concentration, hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP) as a binder, which is an amphiphilic material that can be electrostatically used for both positive and negative, to stabilize the coating of cells after concentration. ), polyvinyl alcohol (PVA), and one or more of the group consisting of chitosan may be added. That is, a culture (simple mixed culture) in which the mineral-protein salt precipitated due to the addition of lava seawater during the medium preparation is mixed with the cells through the first stage of culture (simple mixed culture) through this concentration process. It is possible to obtain a concentrate containing the mineral-protein salt-coated cells, and at this time, a binder is added to the mineral-protein salt-coated cells for coating safety. Mineral-protein salt coated cells 100 parts by weight compared to 50 to 200 parts by weight of a binder (powder) can be prepared and mixed. However, when the binder is mixed with the mineral-protein salt coated cells, the binder can be added after dissolving it in pure water or lava seawater as a solvent in water (culture water) containing 30 to 70% (v/v). . The content of the solvent for dissolving the binder is not largely limited, but it is preferably 3 to 7 times the weight of the binder powder.
본 발명은 상기 제조방법으로 제조된 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 제공한다. 상기 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말의 미네랄 함량은 0.1~0.5 중량%인 것이 특징이다. The present invention provides a natural mineral coated probiotics derived from lava seawater prepared by the above manufacturing method. The mineral content of the natural mineral-coated probiotic powder derived from lava seawater is 0.1 to 0.5% by weight.
이에, 본 발명은 상기 방법으로 제조한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 함유하는 각종 기능성 약학 조성물을 제공할 수 있다. 상기 용암해수 유래 천연 미네랄 코팅 프로바이오틱스는 본 발명의 약학 조성물에 0.001~100 중량%로 하여 첨가될 수 있다. Accordingly, the present invention can provide various functional pharmaceutical compositions containing natural mineral coated probiotics derived from lava seawater prepared by the above method. The natural mineral coated probiotics derived from lava seawater may be added in an amount of 0.001 to 100% by weight to the pharmaceutical composition of the present invention.
상기 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 상기 약학 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 본 발명의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. The pharmaceutical compositions may be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, etc., external preparations, suppositories, and sterile injectable solutions, respectively, according to conventional methods. Carriers, excipients and diluents that may be included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oils. In the case of formulation, it is prepared using diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants that are usually used. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and these solid preparations are at least one excipient, such as starch, calcium carbonate, for the natural mineral coated probiotics derived from lava seawater of the present invention. , Sucrose or lactose, gelatin, etc. are mixed and prepared. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used. Liquid preparations for oral use include suspensions, liquid solutions, emulsions, syrups, etc. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweetening agents, fragrances, and preservatives may be included. . Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories. As the non-aqueous solvent and suspending agent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate may be used. As a base for suppositories, witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like may be used.
본 발명의 약학 조성물의 투여량은 치료받을 대상의 연령, 성별, 체중과, 치료할 특정 질환 또는 병리 상태, 질환 또는 병리 상태의 심각도, 투여경로 및 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 투여량 결정은 당업자의 수준 내에 있으며, 일반적으로 투여량은 0.01㎎/㎏/일 내지 대략 2,000㎎/㎏/일의 범위이다. 더 바람직한 투여량은 1㎎/㎏/일 내지 500㎎/㎏/일이다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다. The dosage of the pharmaceutical composition of the present invention will vary depending on the age, sex, and weight of the subject to be treated, the specific disease or pathology to be treated, the severity of the disease or pathology, the route of administration, and the judgment of the prescriber. Dosage determination based on these factors is within the level of one of skill in the art, and dosages generally range from 0.01 mg/kg/day to approximately 2,000 mg/kg/day. A more preferred dosage is from 1 mg/kg/day to 500 mg/kg/day. Administration may be administered once a day, or may be divided several times. The above dosage does not in any way limit the scope of the present invention.
본 발명의 약학 조성물은 쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내 주사에 의해 투여될 수 있다. 본 발명의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스는 독성 및 부작용이 거의 없으므로 예방 목적으로 장기간 복용시에도 안심하고 사용할 수 있는 약제이다. The pharmaceutical composition of the present invention can be administered to mammals such as mice, livestock, and humans by various routes. All modes of administration can be expected and can be administered, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intrauterine dural or cerebrovascular injection. The natural mineral-coated probiotics derived from lava seawater of the present invention have little toxicity and side effects, so they can be safely used even when taken for a long time for prophylactic purposes.
또한, 본 발명은 상기 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 및 식품학적으로 허용 가능한 식품보조 첨가제를 포함하는 각종 건강기능식품을 제공한다.In addition, the present invention provides a variety of health functional foods including the natural mineral-coated probiotics derived from lava seawater and food supplementary additives that are acceptable food.
상기 건강기능식품은 프로바이오틱스가 적용될 수 있는 각종 식품에 적용될 수 있는데, 장내 유산균 증식, 장내 유해균 억제, 배변활동 원활에 도움을 주는 목적으로 이용가능하다. The health functional food can be applied to various foods to which probiotics can be applied, and can be used for the purpose of helping to proliferate intestinal lactic acid bacteria, inhibit harmful bacteria in the intestine, and facilitate bowel activity.
상기 용암해수 유래 천연 미네랄 코팅 프로바이오틱스는 본 발명의 건강기능식품에 0.001~100 중량%로 하여 첨가될 수 있다. 본 발명의 건강기능식품은 정제, 캡슐제, 환제 또는 액제 등의 형태를 포함하며, 본 발명의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 첨가할 수 있는 식품으로는, 예를 들어, 각종 드링크제, 육류, 소세지, 빵, 캔디류, 스넥류, 면류, 아이스크림, 유제품, 스프, 이온음료, 음료수, 알코올 음료, 껌, 차 및 비타민 복합제 등이 있다. The natural mineral coated probiotics derived from lava seawater may be added in an amount of 0.001 to 100% by weight to the health functional food of the present invention. The health functional food of the present invention includes the form of tablets, capsules, pills, liquids, etc., and foods to which the natural mineral coated probiotics derived from lava seawater of the present invention can be added include, for example, various drinks, meat, Sausages, breads, candies, snacks, noodles, ice cream, dairy products, soups, ion drinks, beverages, alcoholic beverages, gum, tea and vitamin complexes.
본 발명은 또한 상기 방법으로 제조한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 함유하는 화장료를 제공할 수 있다. 상기 화장료에는 일반적으로 이용되는 성분 모두를 포함할 수 있다. 예를 들면 유화제, 점증제, 유제, 계면활성제, 윤활제, 알코올류, 수용성 고분자제, 겔화제, 안정화제, 비타민, 무기염류, 유화제, 향료 같은 일반적인 보조 성분을 포함할 수 있다. 상기 성분들은 제형 또는 사용목적에 따라 그 첨가량을 화장료 고유의 효과를 손상시키지 않는 범위 내에서 선택할 수 있다. 상기 성분들의 첨가량은 예를 들어 조성물 총중량에 대하여 0.1~10 중량%, 바람직하게는 0.1~6 중량%일 수 있으나 이에 제한되는 것은 아니다.The present invention can also provide a cosmetic containing a natural mineral coated probiotics derived from lava seawater prepared by the above method. The cosmetic may contain all commonly used ingredients. For example, it may contain general auxiliary ingredients such as emulsifiers, thickeners, emulsions, surfactants, lubricants, alcohols, water-soluble polymers, gelling agents, stabilizers, vitamins, inorganic salts, emulsifiers, and fragrances. According to the formulation or purpose of use, the amount of the ingredients may be selected within a range that does not impair the inherent effect of the cosmetic. The amount of the ingredients added may be, for example, 0.1 to 10% by weight, preferably 0.1 to 6% by weight, based on the total weight of the composition, but is not limited thereto.
또한, 화장료의 종류는 특별히 한정되지 않고, 예를 들면, 화장수, 유액, 젤, 크림, 에센스, 팩, 앰플, 로션, 세정료, 비누, 바디제품류, 비누, 오일 등의 스킨케어 화장료, 립스틱, 파운데이션 등의 메이크업 화장료, 두발용 화장료 등을 들 수 있고, 그 제형은 특별히 제한되지 않는다.In addition, the type of cosmetic is not particularly limited, and for example, lotion, emulsion, gel, cream, essence, pack, ampoule, lotion, detergent, soap, body products, skin care cosmetics such as soap, oil, lipstick, Makeup cosmetics such as foundation, cosmetics for hair, and the like, and the formulation is not particularly limited.
본 발명은 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법 및 이를 이용한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스에 관한 것이다. 보다 더 자세하게는 본 발명은 유산균의 배양을 위해 배지에 용암해수의 농도가 30~70% (v/v)이 되도록 용암해수를 첨가하는 방법을 이용하며, 이로 인해 용암해수에 포함되어 있는 미네랄과 유산균 배지상의 단백질이 미네랄-단백질염 상태로 침전되어 배지 상의 염도 조절을 통해 유산균에 적합한 생육 환경을 조성한다. 이러한 조건 및 유가식배양(fed-batch culture)을 이용하여 유산균 생육이 가능한 최적 조건을 구현하여 프로바이오틱스 기준에 적합한 생균수로 배양하게 하고, 유산균이 배양되면서, 염 농도가 조절된 배지 상에서 염으로 인한 스트레스로 인해 균체 내에 스트레스 응답성 단백질인 샤페론이 발생하게 한다. 이 후, 배양액의 원심분리를 통해 침전된 미네랄-단백질염과 배양된 유산균을 회수하고 교반을 통해 균질화하여 미네랄-단백질염이 유산균에 코팅되도록 하거나, 막분리 방법을 통해 미네랄-단백질염이 유산균에 코팅되도록 한다. The present invention relates to a method for producing natural mineral coated probiotics derived from lava seawater and to a natural mineral coated probiotic using the same. In more detail, the present invention uses a method of adding lava seawater so that the concentration of lava seawater is 30-70% (v/v) in the medium for cultivation of lactic acid bacteria, and thus minerals and minerals contained in the lava seawater The protein on the lactic acid bacteria medium is precipitated in a mineral-protein salt state, and a growth environment suitable for the lactic acid bacteria is created by controlling the salinity of the medium. Using these conditions and fed-batch culture, the optimum conditions for lactic acid bacteria growth are implemented, and the culture is made with the number of viable bacteria suitable for probiotic standards. As the lactic acid bacteria are cultured, the salt concentration is controlled Stress causes a stress-responsive protein, chaperone, to occur in the cells. Thereafter, the precipitated mineral-protein salt and the cultured lactic acid bacteria are recovered through centrifugation of the culture medium and homogenized through stirring so that the mineral-protein salt is coated on the lactic acid bacteria, or the mineral-protein salt is applied to the lactic acid bacteria through a membrane separation method. Let it be coated.
이러한 방법을 통해 전체적으로 균체 내외부에 대한 열안정성이 현저히 증가되어, 유산균의 동결건조나 분무건조 시 생존율 및 경시적 보관 안정성을 획기적으로 향상시키는 효능, 위산과 담즙산의 체내 소화관의 연속된 pH 변화에 견디는 효능 등을 도출할 수 있다. Through this method, the overall thermal stability of the cells inside and outside the cells is remarkably increased, the efficacy of dramatically improving the survival rate and storage stability over time during freeze-drying or spray-drying of lactic acid bacteria, and withstands continuous pH changes in the digestive tract of the body of stomach and bile acids. Efficacy can be derived.
이에 본 발명을 통해 외부 온도 변화에 대한 보관 안정성 모두 우수한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 생산하여 이를 식품, 건강기능식품 및 의약품 분야의 바이오 소재로 효과적으로 이용할 수 있다. Accordingly, through the present invention, natural mineral coated probiotics derived from lava seawater having excellent storage stability against changes in external temperature can be produced and effectively used as biomaterials in the fields of foods, health functional foods, and pharmaceuticals.
이에 대한 설명을 좀 더 덧붙이자면, 프로바이오틱스 제조 시 배지에 용암해수를 30~70% (v/v)로 첨가할 경우 유산균에 다음과 같은 장점이 있다. To add a little more explanation, there are the following advantages to lactic acid bacteria when adding 30-70% (v/v) lava seawater to the medium during probiotic production.
첫째, 균체 내부보다 외부의 삼투농도가 높아 균체 세포막 내 수분 감소를 일으켜 균체 부피를 낮게 유지할 수 있다. 동결건조까지 균체 내 세포질(cytosol) 부피를 낮게 유지하게 되면 세포 내의 아이스크리스탈(ice crystal) 생성 시 부피팽창으로 안쪽 세포막의 손상을 주지 않게 되어 생존율에 기여를 하게 된다. First, the osmotic concentration outside the cells is higher than the inside of the cells, resulting in a decrease in moisture in the cell membrane of the cells, and thus the volume of the cells can be kept low. If the volume of the cytosol in the cells is kept low until freeze-drying, it will not damage the inner cell membrane due to volume expansion when the ice crystal is generated in the cells, thus contributing to the survival rate.
둘째, 용암해수의 미네랄을 통해 유산균 보호를 할 수 있는 단백질을 전공정 발효 단계에서 염석과정으로 미네랄-단백질염 상태로 침전시킴으로써 유산균의 동결건조 시 별도의 soy protein, milk protein 등의 코팅용제를 첨가하지 않고도 자체 생산된 미네랄-단백질염을 이용하여 프로바이오틱스를 코팅할 수 있기에, 프로바이오틱스의 제조안정성, 섭취안정성, 보관안정성을 획기적으로 높일 수 있다.Second, a separate coating solvent such as soy protein and milk protein is added when the lactic acid bacteria are freeze-dried by precipitating proteins that can protect lactic acid bacteria through minerals in lava seawater in a mineral-protein salt state by salting out in the pre-fermentation stage. Since probiotics can be coated using self-produced mineral-protein salts, the manufacturing stability, intake stability, and storage stability of probiotics can be dramatically improved.
셋째, 배지 내의 용암해수에 풍부한 미네랄은 유산균 증식에 영향을 미치는데, 일반적인 유산균 배양에서 영양배지의 형태로 별도로 넣어주는 고체상의 미네랄은 이온화 되지 않은 비활성형으로 생장이용성이 떨어지지만, 용암해수에 포함된 미네랄이 이미 액상으로 이온화 되어 있는 활성형이므로, 본 발명의 배양방법을 이용 시, 약 24시간의 빠른 시간 내에 프로바이오틱스의 성장을 유도할 수 있는 장점이 있다.Third, minerals rich in lava seawater in the medium affect the proliferation of lactic acid bacteria. In general lactic acid bacteria culture, solid minerals that are separately added in the form of a nutrient medium are not ionized and have low growth availability, but are included in lava seawater. Since the mineral has already been ionized in a liquid phase, there is an advantage of inducing the growth of probiotics within a short time of about 24 hours when using the culture method of the present invention.
넷째, 용암해수를 유산균의 배양 및 건조(분말화) 과정의 전공정 외에도 필요에 따라 후공정에서도 사용할 수 있어, 유산균이 제조공정 중에 용암해수의 고농도 미네랄 염류에 생존적응을 하게 되는데, 이것은 용암해수가 지속적으로 삼투 스트레스를 유산균에 가해 스트레스에 반응하는 세포 내의 단백질을 형성하여 생존율을 높이는 것을 기여하는 작용을 한다. 이렇게 외부 환경의 변화로 인한 생존을 위해 생성된 단백질을 샤페론(Chaperone) 단백질이라 하는데 특정 스트레스에 의해 발현된 샤페론 단백질은 다른 환경의 스트레스에도 견딜 수 있는 효과를 낸다. 따라서 용암해수로 배양된 프로바이오틱스는 온도(보관 안정성), pH (섭취 안정성) 스트레스에도 강한 저항성을 나타낼 수 있어 종래 유산균 배양 기술로서 달성할 수 없는 효과를 모두 구현할 수 있다. Fourth, lava seawater can be used not only in the pre-process of the cultivation and drying (powdering) process of lactic acid bacteria, but also in the post-process if necessary, so that the lactic acid bacteria survive and adapt to the high concentration mineral salts of the lava seawater during the manufacturing process. It acts to contribute to increasing the survival rate by continuously applying osmotic stress to lactic acid bacteria to form proteins in cells that respond to stress. The protein produced for survival due to changes in the external environment is called chaperone protein. The chaperone protein expressed by a specific stress exerts an effect that can withstand the stresses of other environments. Therefore, probiotics cultured with lava seawater can exhibit strong resistance to temperature (storage stability) and pH (intake stability) stress, and thus can realize all effects that cannot be achieved with conventional lactic acid bacteria culture techniques.
# 도 1 내지 도 6은 본 발명의 방법으로 제조된 동결건조 제제의 효능을 확인한 실험결과이다.# 1 to 6 are experimental results confirming the efficacy of the freeze-dried preparation prepared by the method of the present invention.
도 1은 유산균 배양 전의 멸균된 동결건조 제조예 1의 기본 배지, 동결건조 실시예 1의 용암해수 포함 배지 자체 내의 미네랄-단백질염의 건조중량과 미네랄-단백질염 내의 단백질량을 나타내는 그래프이다. 1 is a graph showing the dry weight of the mineral-protein salt and the amount of protein in the mineral-protein salt in the sterilized lyophilized base medium of Preparation Example 1 and the lava seawater-containing medium of lyophilized Example 1 before culturing lactic acid bacteria.
도 2는 동결건조 제조예 1의 배양액, 동결건조 실시예 1의 용암해수 함유 배지에 배양된 배양액 내의 유산균 생균수를 측정한 결과 그래프이다. 2 is a graph showing the results of measuring the number of viable lactic acid bacteria in the culture medium of lyophilized Preparation Example 1 and the culture medium containing lava seawater of lyophilization Example 1;
도 3은 용암해수 농도에 따른 배양액 내의 미네랄-단백질염 및 유산균 균체의 건조중량과 유산균 생균수의 상관관계를 비교한 결과 그래프이다. 3 is a graph showing the results of comparing the correlation between the dry weight of the mineral-protein salt and lactic acid bacteria cells and the number of live lactic acid bacteria in the culture medium according to the concentration of lava seawater.
도 4는 용암해수를 적용한 배양방식으로서, 동결건조 실시예 1의 fed-batch culture와 batch culture 조건을 비교한 결과 그래프이다. 4 is a graph showing a result of comparing fed-batch culture and batch culture conditions of lyophilized Example 1 as a culture method using lava seawater.
도 5는 동결건조 실시예 2와 동결건조 제조예 2에서 회수된 분말의 코팅 상태를 주사전자현미경(Scanning Electron Microscope:SEM)으로 촬영한 사진이다. 5 is a photograph taken with a scanning electron microscope (SEM) of the coating state of the powder recovered in the freeze-dried Example 2 and the freeze-dried Preparation Example 2.
도 6은 동결건조 실시예 1 또는 동결건조 제조예 1의 용암해수 첨가배지 배양 조건에서 종류별 유산균을 배양한 결과 그래프이다. 6 is a graph showing the results of culturing lactic acid bacteria for each type under the culture conditions of lava seawater addition medium of lyophilized Example 1 or Freeze-dried Preparation Example 1. FIG.
# 도 7 내지 도 12는 본 발명의 방법으로 제조된 분무건조 제제의 효능을 확인한 실험결과이다.# 7 to 12 are experimental results confirming the efficacy of the spray-dried formulation prepared by the method of the present invention.
도 7은 용암해수 농도에 따른 배양액 내의 미네랄-단백질염 및 유산균 균체의 건조중량과 유산균 생균수의 상관관계를 비교한 결과 그래프이다. 7 is a graph showing the results of comparing the correlation between the dry weight of the mineral-protein salt and lactic acid bacteria cells and the number of live lactic acid bacteria in the culture medium according to the concentration of lava seawater.
도 8은 용암해수를 적용한 배양방식으로서, 분무건조 실시예 1의 fed-batch culture와 batch culture 조건을 비교한 결과 그래프이다. 8 is a graph showing a result of comparing fed-batch culture and batch culture conditions of spray-dried Example 1 as a culture method using lava seawater.
도 9는 분무건조 실시예 2와 분무건조 제조예 2에서 회수된 프로바이오틱스 분무건조 분말의 코팅 상태를 투과전자현미경(Transmission electron microscope, TEM)으로 촬영한 사진이다. 9 is a photograph taken with a transmission electron microscope (TEM) of the coating state of the spray-dried powder of probiotics recovered in the spray drying Example 2 and the spray drying Preparation Example 2.
도 10은 분무건조 실시예 1 또는 분무건조 제조예 1의 용암해수 첨가배지 배양 조건에서 종류별 유산균을 배양한 결과 그래프이다. 10 is a graph showing the results of culturing lactic acid bacteria for each type under the culture conditions of the lava seawater addition medium of spray-dried Example 1 or Spray-dried Preparation Example 1. FIG.
도 11은 분무건조 실시예 1 또는 분무건조 제조예 1 배양액 내 균체에 새로운 단백질이 형성되었음을 보여주는 2D-SDS PAGE 결과 사진이다. 11 is a 2D-SDS PAGE result photograph showing that a new protein was formed in the cells in the spray-dried Example 1 or Spray-dried Preparation Example 1 culture.
도 12는 분무건조 실시예 1 또는 분무건조 제조예 1 배양액 내 균체에 샤페론 단백질 유전자가 발현되었음을 보여주는 agaroge gel 전기영동 결과 사진이다. 12 is a photograph of agaroge gel electrophoresis results showing that the chaperone protein gene was expressed in the cells in the spray-dried Example 1 or Spray-dried Preparation Example 1 culture.
상기와 같은 과제를 해결하기 위하여, 본 발명의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법은 다음 단계들을 포함하여 결정되었다.In order to solve the above problems, the method of manufacturing the natural mineral coated probiotics derived from lava seawater of the present invention was determined including the following steps.
먼저, 첫 번째로, 용암해수가 포함된 유산균 배양배지에서 유산균을 액상배양한다(용암해수 전공정). First, first, the lactic acid bacteria are cultured in a liquid phase in a lactic acid bacteria culture medium containing lava seawater (the whole process of lava seawater).
두 번째로, 상기 첫 번째 배양 단계를 통해 생성된 미네랄-단백질염과 유산균을 회수, 코팅 및 건조하여 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말을 얻는다 (용암해수 후공정). Second, the mineral-protein salt and lactic acid bacteria generated through the first culturing step are recovered, coated, and dried to obtain a natural mineral coated probiotic powder derived from lava seawater (lava seawater post-process).
이를 보다 더 자세히 설명하면, 첫 번째의 용암해수가 포함된 유산균 배양배지는 유산균 배양용 기본 배지에 물 대신 용암해수를 농도 별로 첨가하여 미네랄-단백질염이 침전 생산되고 이를 통해 배지에 염도가 조절됨으로써 유산균 증식 가능하고 후공정의 코팅에 사용될 미네랄-단백질염이 존재하는 용암해수의 적정 농도를 결정하는 단계이다. In more detail, in the first lactic acid bacteria culture medium containing lava seawater, mineral-protein salts are precipitated and produced by adding lava seawater by concentration instead of water to the basic culture medium for lactic acid bacteria culture. This is the step of determining the appropriate concentration of lava seawater in which lactic acid bacteria can grow and mineral-protein salts to be used for coating in the post-process are present.
즉, 이 때의 용암해수 농도는 배지 내 단백질 성분의 염석을 유도하여 고농도 염류에 의한 유산균의 생육저해를 하지 않는 조건이어야 한다. That is, the lava seawater concentration at this time should be a condition that does not inhibit the growth of lactic acid bacteria by high concentration salts by inducing salting out of protein components in the medium.
단백질과 같은 고분자 전해질 성분은 일반 물에서는 물에 대한 용해도가 증가하는 반면, 용암해수와 같이 염농도가 일정 수준으로 높은 물에서는 용해도가 감소하여 미네랄-단백질염 상태로 침전이 된다. 이는 염농도 증가 시 외부 이온의 농도가 증가하게 되면 단백질 표면의 소수성 부분에 분포하고 있는 물분자를 이온들이 끌고 가게 되면서 단백질 표면의 소수성 부분이 겉으로 노출되며 단백질 간의 소수성 결합에 의해 단백질이 응집되게 되는 염석 현상이 발생되기 때문이다. 또한 이렇게 염석 현상을 통해 침전된 미네랄-단백질염은 유산균을 외부의 거친 스트레스 환경으로부터 보호할 수 있는 코팅제 작용을 하게 된다. Polyelectrolyte components such as proteins increase in water solubility in normal water, whereas in water with a high salt concentration such as lava seawater, solubility decreases and precipitates in a mineral-protein salt state. When the salt concentration increases, when the concentration of external ions increases, the water molecules distributed in the hydrophobic part of the protein surface are attracted by the ions, and the hydrophobic part of the protein surface is exposed, and the protein is aggregated by hydrophobic bonds between proteins. This is because a phenomenon occurs. In addition, the mineral-protein salt precipitated through the salting-out phenomenon acts as a coating agent that can protect lactic acid bacteria from harsh external stress environments.
한편, 유산균 증식에는 미네랄이 필수적인 성분인데 이를 외부에서 첨가하지 않고 용암해수로부터 공급받아 유산균 증식에 사용할 경우, 미네랄-단백질염 침전량에 따라, 자유 미네랄의 함량이 부족하게 될 수 있고 과하게 공급될 수도 있다. 따라서, 유산균 증식 정도에 따라 배지 내 적절한 용암해수의 농도구간 설정이 필요하다. On the other hand, minerals are essential for the growth of lactic acid bacteria, but if they are supplied from lava seawater without adding them from the outside and used for the growth of lactic acid bacteria, depending on the amount of mineral-protein salt precipitation, the content of free minerals may be insufficient or excessively supplied. . Therefore, it is necessary to set an appropriate concentration section of lava seawater in the medium according to the degree of proliferation of lactic acid bacteria.
덧붙여, 용암해수가 포함된 유산균 배양배지에서 유산균을 액상 배양할 때에 fed-batch culture 형태로 배지 내 pH 6.0~7.5 조건을 유지하는데, 이는 유산균이 생장하면서 발생되는 대사물질인 각종 유기산에 의해 이 pH 값이 3.0~5.5 의 산성을 나타내게 되면 용암해수 존재 하에서의 수용성 단백질의 용해도가 떨어져 과잉 침전됨으로써 유산균 생장에 필요한 수용성 단백질을 지속적으로 공급하기 어렵게 되어 생육이 제한된다. 따라서 본 발명에서는 일반적인 batch culture 방식이 아닌 당류와 함께 pH를 6.0~7.5로 유지시켜주는 fed-batch culture 형태로 유산균 배양 공정을 설계하여 batch culture 방법을 고수할 때에 발생할 수 있는 유산균 증식 제한문제를 해결하였다.In addition, when lactic acid bacteria are cultured in a liquid culture medium containing lava seawater, pH 6.0-7.5 in the medium is maintained in the form of fed-batch culture, which is caused by various organic acids, which are metabolites generated while lactic acid bacteria grow. If the value is acidic between 3.0 and 5.5, the solubility of the water-soluble protein in the presence of lava seawater decreases and excessive precipitation makes it difficult to continuously supply the water-soluble protein necessary for the growth of lactic acid bacteria, and the growth is limited. Therefore, in the present invention, the lactic acid bacteria cultivation process is designed in the form of fed-batch culture that maintains the pH of 6.0-7.5 with sugars, not the general batch culture method, thereby solving the problem of limiting lactic acid bacteria growth that may occur when adhering to the batch culture method I did.
두 번째로, 상기 첫 번째 배양 단계를 통해 생성된 미네랄-단백질염과 유산균 균체를 원심분리하여 침전물 상태로 회수하고, 회수된 침전물을 별도로 교반하여 미네랄-단백질염이 유산균의 균체에 코팅되게 한 후, 이를 건조하여 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말을 얻거나(동결건조를 위한 용암해수 후공정), Second, the mineral-protein salt and lactic acid bacteria cells generated through the first culturing step are collected as a precipitate by centrifugation, and the recovered precipitate is separately stirred so that the mineral-protein salt is coated on the lactic acid bacteria cells. , Dry this to obtain a natural mineral coated probiotic powder derived from lava seawater (post-process lava seawater for freeze drying),
상기 첫 번째 배양 단계를 통해 생성된 미네랄-단백질염과 유산균 균체를 농축하여 미네랄-단백질염이 유산균의 균체에 코팅되게 한 후, 이를 분무 건조하여 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말을 얻는다 (분무건조를 위한 용암해수 후공정). The mineral-protein salt and lactic acid bacteria cells generated through the first culturing step are concentrated to coat the mineral-protein salts on the lactic acid bacteria cells, and then spray-dried to obtain a natural mineral coated probiotic powder derived from lava seawater (spray drying For lava seawater post process).
이 때, 동결건조를 위해서는 바인더(히드록시프로필메틸셀룰로오스:HPMC)와 동결건조 보호제(트레할로스:trehalose)를 순차적으로 첨가하여 분말을 제조할 수 있으며, 분무 건조를 위해서는 바인더(히드록시프로필메틸셀룰로오스:HPMC)를 첨가할 수 있다. At this time, for lyophilization, a binder (hydroxypropylmethylcellulose: HPMC) and a freeze-drying protectant (trehalose) may be sequentially added to prepare a powder, and for spray drying, a binder (hydroxypropylmethylcellulose: HPMC) can be added.
이하 본 발명을 더 쉽게 이해할 수 있도록, 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지도록, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다. Hereinafter, a preferred embodiment of the present invention will be described in detail so that the present invention may be more easily understood. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided to sufficiently convey the spirit of the present invention to those skilled in the art so that the contents introduced herein are thorough and complete.
또한 이후의 각 실험 실시 동결건조 제제와 분무건조 제제를 각각 제조하여 동일한 실험을 반복함으로써 본 발명의 방법이 신규한 형태의 프로바이오틱스 제제를 제조하는 방법임을 입증하고자 한다. In addition, it is intended to prove that the method of the present invention is a method of preparing a novel type of probiotic preparation by repeating the same experiment by preparing a freeze-dried preparation and a spray-dried preparation for each subsequent experiment.
I. 동결건조 제제의 제조 및 효능 실험I. Preparation and efficacy experiment of lyophilized formulation
<동결건조 제조예 1: 유산균 기본배지 제조 및 배양방법><Lyophilization Preparation Example 1: Lactic Acid Bacteria Basic Medium Preparation and Culture Method>
본 발명에서 유산균을 배양하기 위한 기본배지로서 1ℓ 당 포도당 3%(w/v), 효모추출물 2%(w/v), 소이펩톤 2%(w/v), 카제인 1%(w/v)가 되도록 각 성분을 물에 용해하여 121~123℃, 30분간 멸균하였다. As a basic medium for culturing lactic acid bacteria in the present invention, glucose 3% (w/v) per 1 liter, yeast extract 2% (w/v), soypeptone 2% (w/v), casein 1% (w/v) Each component was dissolved in water and sterilized at 121-123°C for 30 minutes.
이렇게 멸균된 기본배지에 유산균 종배양액을 발효조의 멸균배지에 접종하고 100rpm, 37℃ 조건으로 20시간 동안 배양하되, 40%(w/v) 포도당 및 40%(w/v) 수산화나트륨이 1:1의 부피비로 혼합된 수용액(이하, 포도당-수산화나트륨 용해액이라 함)을 일정시간 간격으로 점적하면서 pH를 6.0~7.5로 유지하며 배양하였다(Fed-batch culture 수행).The lactic acid bacteria seed culture solution was inoculated into the sterilized medium of the fermentation tank in this sterilized basic medium, and cultured for 20 hours at 100 rpm and 37°C, but 40% (w/v) glucose and 40% (w/v) sodium hydroxide were 1: An aqueous solution mixed at a volume ratio of 1 (hereinafter referred to as glucose-sodium hydroxide solution) was incubated while maintaining the pH at 6.0-7.5 while dropping at regular time intervals (Fed-batch culture performed).
* 유산균 종배양액 : 락토바실러스 람노서스 균주를 Lactobacilli MRS Broth(BD)에서 37℃ 조건에서 24시간 배양한 것, 이하 유산균 종배양액이라 함은 이를 말함. * Lactobacillus seed culture solution: Lactobacilli MRS broth (BD) cultured for 24 hours at 37°C for 24 hours, hereinafter referred to as lactic acid bacteria seed culture solution.
<동결건조 제조예 2: 프로바이오틱스 분말 제조방법><Lyophilization Preparation Example 2: Probiotic Powder Manufacturing Method>
동결건조 제조예 1에서 배양된 배양액을 6,000rpm, 30분간 원심분리하였다. 상등액을 제거하여 침전물을 회수 후, 회수된 침전물을 교반기로 50rpm, 30분간 균질화하였다.The culture solution cultured in Freeze-dried Preparation Example 1 was centrifuged at 6,000 rpm for 30 minutes. After removing the supernatant and recovering the precipitate, the recovered precipitate was homogenized with a stirrer at 50 rpm for 30 minutes.
이렇게 교반된 침전물 50 중량%, 히드록시프로필메틸셀룰로오스(HPMC) 40 중량%(건조물 상태의 중량, 5배 중량의 물에 용해된 상태)를 80rpm 20분간 교반하고 이어서 트레할로스(Trehalose) 10중량%를 혼합 후 동결건조하여 건조된 프로바이오틱스 분말을 얻었다. 50% by weight of the thus stirred precipitate and 40% by weight of hydroxypropylmethylcellulose (HPMC) (dry weight, dissolved in 5 times the weight of water) were stirred for 20 minutes at 80 rpm, followed by 10% by weight of trehalose. After mixing, lyophilization was performed to obtain a dried probiotic powder.
<동결건조 실시예 1: 용암해수를 이용한 유산균의 배양><Lyophilization Example 1: Cultivation of lactic acid bacteria using lava seawater>
용암해수가 10~90%(v/v) 포함된 물, 또는 용암해수 자체를 배양용수로 준비하고, 상기 배양용수를 동결건조 제조예 1에서 이용한 기본 배지 제조 조건에서 물 대신 사용하였다. Water containing 10 to 90% (v/v) lava seawater, or lava seawater itself, was prepared as cultivation water, and the cultivation water was used instead of water under the conditions for preparing the basic medium used in Preparation Example 1.
이렇게 각 농도별 용암해수가 포함된 배양용수를 사용하여 배지를 동결건조 제조예 1에서와 같이 멸균하였다. 한편 이렇게 용암해수를 이용하여 멸균된 배지를 제조하게 되면 용암해수의 미네랄이 배지 성분들의 단백질과 반응하여 염 상태로 침전된 미네랄-단백질염이 생성된다. Thus, the medium was sterilized as in Preparation Example 1 of freeze-drying using the culture water containing lava seawater at each concentration. On the other hand, when a sterilized medium is prepared using lava seawater, the minerals of lava seawater react with the proteins of the medium to produce a mineral-protein salt precipitated in a salt state.
다음으로 멸균된 용암해수 배지에 동결건조 제조예 1에서와 같이 유산균 종배양액을 접종하고, 100rpm, 37℃ 조건으로 20시간 동안 포도당-수산화나트륨 용해액을 사용하여 pH를 6.0~7.5로 보정하며 배양하였다. Next, inoculate the lactic acid bacteria seed culture solution as in the freeze-dried preparation example 1 in the sterilized lava seawater medium, and cultivate it while adjusting the pH to 6.0-7.5 using a glucose-sodium hydroxide solution for 20 hours under conditions of 100 rpm and 37°C. I did.
<동결건조 실시예 2 : 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 제조><Lyophilization Example 2: Preparation of natural mineral coated probiotics derived from lava seawater>
동결건조 실시예 1의 조건 중 30%(v/v)의 용암해수를 이용하여 제조한 배지에 유산균을 배양한 배양액 4ton을 원심분리하여 미네랄-단백질염과 유산균 균체가 혼합된 침전물을 회수하였다. 회수된 침전물(미네랄-단백질염과 유산균의 균체 혼합물)을 교반기로 50rpm 30분간 균질화하여, 미네랄-단백질염이 균체에 코팅되도록 하였다. Freeze-dried Under the conditions of Example 1, 4 tons of culture solution obtained by culturing lactic acid bacteria in a medium prepared using 30% (v/v) lava seawater was centrifuged to recover a precipitate in which mineral-protein salts and lactic acid bacteria cells were mixed. The recovered precipitate (mineral-protein salt and lactic acid bacteria cell mixture) was homogenized with a stirrer for 30 minutes at 50 rpm, so that the mineral-protein salt was coated on the cells.
균질화 과정을 마쳐 미네랄-단백질염이 코팅된 균체에 동결건조 제조예 2 방법으로 히드록시프로필메틸셀룰로오스 및 트레할로스를 가하여 프로바이오틱스 분말을 제조하되, 히드록시프로필메틸셀룰로오스를 물에 용해하는 대신 30%(v/v)의 용암해수(배양용수)에 용해하여 프로바이오틱스 분말을 얻었다.After the homogenization process was completed, hydroxypropylmethylcellulose and trehalose were added to the freeze-dried preparation example 2 to the cells coated with mineral-protein salts to prepare a probiotic powder, but instead of dissolving hydroxypropylmethylcellulose in water, 30% (v /v) was dissolved in lava seawater (culture water) to obtain probiotic powder.
<동결건조 실험예 1: 배양 전 배지에서의 용암해수 농도에 따른 미네랄-단백질염 양과 단백질 양 비교><Lyophilization Experimental Example 1: Comparison of the amount of mineral-protein salt and the amount of protein according to the concentration of lava seawater in the medium before culture>
동결건조 실시예 1에서 이미 설명한 바와 같이, 용암해수를 이용하여 멸균된 배지를 제조하게 되면 용암해수의 미네랄이 배지 성분들의 단백질과 반응하여 염 상태로 침전된 미네랄-단백질염이 생성된다. 이 미네랄-단백질염은 제조예 1에서 사용한 기본배지에서도 일부 생성되나 용암해수가 포함된 배지에서는 생성량이 현저하게 증가한다. As already described in Example 1 of lyophilization, when a sterilized medium is prepared using lava seawater, minerals of lava seawater react with proteins of the medium components to produce mineral-protein salts precipitated in a salt state. This mineral-protein salt is partially produced in the basic medium used in Preparation Example 1, but the amount of production is remarkably increased in the medium containing lava seawater.
이를 측정하기 위해, 유산균 배양 전의 멸균된 동결건조 제조예 1의 기본 배지, 동결건조 실시예 1의 용암해수 포함 배지 자체만을 4℃에서 1시간 정치시킨 후 6,000rpm, 30분간 원심분리하여 미네랄-단백질염을 회수하고 회수물을 동결건조하였다. To measure this, only the sterilized freeze-dried base medium of Preparation Example 1 and the lava seawater-containing medium of Freeze-dried Example 1 were allowed to stand at 4° C. for 1 hour and then centrifuged at 6,000 rpm for 30 minutes to obtain mineral-protein The salt was recovered and the recovered product was lyophilized.
다음으로, 미네랄-단백질염의 건조중량과 미네랄-단백질염 내의 단백질량을 확인하였다. 이 단백질량은 BCA protein assay로 측정하여 미네랄-단백질염에 포함되어 있는 단백질 함량을 확인하였다. Next, the dry weight of the mineral-protein salt and the amount of protein in the mineral-protein salt were confirmed. The amount of this protein was measured by BCA protein assay to confirm the protein content of the mineral-protein salt.
각 실험 결과는 도 1에 나타내었다. 도 1의 결과에 따르면 동결건조 제조예 1의 기본배지에 비해 용암해수가 농도별로 포함된 용암해수 배지 내의 미네랄-단백질염, 상기 미네랄-단백질염이 용암해수 첨가량 10~80%(v/v)와 비례하여 증가하는 것으로 나타났다. 90%(v/v)와 100%(v/v)에서도 증가량이 약간 줄어드는 것은 배지내의 염농도가 너무 높아 단백질 염석의 침전효과가 줄어든 것으로 파악된다. The results of each experiment are shown in FIG. 1. According to the results of Figure 1, compared to the basic medium of lyophilized Preparation Example 1, mineral-protein salts in the lava seawater medium containing lava seawater by concentration, and the mineral-protein salt added amount of lava seawater 10 to 80% (v/v) Was found to increase in proportion to. Even at 90% (v/v) and 100% (v/v), the slight decrease in the amount of increase is believed to decrease the precipitation effect of protein salting out because the salt concentration in the medium is too high.
이를 통해, 농도별 용암해수를 이용하여 멸균된 배지 제조 시 유산균의 코팅 목적으로 사용 가능한 미네랄-단백질염의 생성 양을 확인할 수 있다. Through this, it is possible to check the amount of mineral-protein salts that can be used for the purpose of coating lactic acid bacteria when preparing a sterilized medium using lava seawater by concentration.
<동결건조 실험예 2: 배지 내 용암해수 농도 별 유산균 생균수 확인><Lyophilization Experimental Example 2: Confirmation of the number of lactic acid bacteria viable bacteria by lava seawater concentration in the medium>
동결건조 제조예 1과 동결건조 실시예 1에서 20시간 배양된 배양액을 취하여 생리식염수로 희석 후 희석액을 페트리디쉬(petridish)에 1ml 분주하고 멸균된 Lactobacilli MRS Agar(BD) 20ml을 혼합하여 굳혔다. 37℃ 정치배양기에서 48시간 배양된 콜로니를 개수하여 유산균 생균수를 확인하였고 이를 도 2에 나타내었다(이하, 유산균 생균수 측정법이라 한다).Freeze-dried Preparation Example 1 and freeze-dried Example 1 The culture solution cultured for 20 hours was taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Lactobacilli MRS Agar (BD) were mixed and solidified. The number of lactic acid bacteria viable cells was confirmed by counting colonies cultured for 48 hours in a 37° C. stationary incubator, and this is shown in FIG. 2 (hereinafter referred to as a method for measuring the number of lactic acid bacteria viable cells).
도 2의 결과에 따르면 동결건조 제조예 1에서 배양된 유산균 생균수에 비해, 동결건조 실시예 1 중 30%(v/v) 용암해수가 적용된 배지에서 배양된 유산균 생균수가 폭발적으로 크게 증가하는 것을 알 수 있고, 그 이후부터는 유산균 생균수가 오히려 줄어드는 것으로 나타난다. 다만 용암해수 농도 70%(v/v)까지는 배양액 중 유산균의 생균수가 5.0x109CFU/ml이상 증가하는 것을 확인함으로써 프로바이오틱스의 생균수 기준인 1.0x108CFU/g이상의 분말을 안정적으로 제조 가능한 용암해수 농도 범위를 확인할 수 있었다. According to the results of Figure 2, compared to the number of lactic acid bacteria cultivated in lyophilized Preparation Example 1, the number of lactic acid bacteria cultivated in a medium to which 30% (v/v) lava seawater was applied in lyophilized Example 1 was explosively increased. It can be seen, and after that, the number of viable lactic acid bacteria appears to decrease. However, by confirming that the number of lactic acid bacteria in the culture medium increases by 5.0x10 9 CFU/ml or more up to 70% (v/v) of lava seawater concentration, lava that can stably produce powders of 1.0x10 8 CFU/g or more, which is the standard for viable bacteria of probiotics. The seawater concentration range could be confirmed.
이는 용암해수의 첨가량이 증가한다고 하여 무조건 유산균의 배양이 증가하지 않음을 파악할 수 있고, 용암해수 내의 적정 염 농도가 유산균 배양에 있어 중요한 요소인 것으로 판단할 수 있다. It can be seen that the cultivation of lactic acid bacteria does not unconditionally increase even if the amount of lava seawater is increased, and it can be determined that the proper salt concentration in the lava seawater is an important factor in culturing lactic acid bacteria.
<동결건조 실험예 3: 용암해수 농도에 따른 배양액 내의 미네랄-단백질염 및 유산균 균체의 건조중량과 유산균 생균수의 상관관계 비교><Lyophilization Experimental Example 3: Comparison of the correlation between the dry weight of the mineral-protein salt and lactic acid bacteria cells in the culture medium according to the concentration of lava seawater and the number of lactic acid bacteria live cells>
동결건조 실시예 1의 각 용암해수 배지에서 배양된 유산균 배양액을 별도의 멸균된 용기에 각각 분주하고 4℃, 1시간 냉각정치하였다. 각 정치액을 6,000rpm, 30분간 원심분리하여 미네랄-단백질염 및 유산균 균체를 회수하고, 이를 동결건조하여 건조물의 건조중량을 확인하였다. 비교를 위해 동일 조건으로 동결건조 제조예 1의 배양액을 처리하여 비교하였고 이를 도 3에 나타내었다. 이 때, 건조중량의 결과를 유산균 생균수와 비교하여 나타내었다. Lactobacillus culture solutions cultured in each lava seawater medium of lyophilization Example 1 were dispensed into separate sterilized containers, respectively, and cooled at 4°C for 1 hour. Each stationary solution was centrifuged at 6,000 rpm for 30 minutes to recover mineral-protein salts and lactic acid bacteria, and freeze-dried to check the dry weight of the dried product. For comparison, the culture solution of lyophilized Preparation Example 1 was treated and compared under the same conditions, and it is shown in FIG. 3. At this time, the result of the dry weight was shown in comparison with the number of live lactic acid bacteria.
도 3의 결과에 따르면 미네랄-단백질염 및 유산균 균체의 건조중량이 용암해수 30~100%(v/v)가 포함된 곳에서 모두 비슷해 보이는데, 이 결과는 30~70%(v/v) 용암해수 배양액 조건에서 배양 전 생성된 미네랄-단백질 염 외에도 생균수가 폭발적으로 증가하여 총 중량이 유사해졌기 때문이다. According to the results of Figure 3, the dry weight of mineral-protein salts and lactic acid bacteria cells all look similar in the place containing 30-100% (v/v) lava seawater, and this result is 30-70% (v/v) lava In addition to the mineral-protein salts generated before cultivation in seawater culture medium, the number of viable cells exploded and the total weight became similar.
이 결과는 또한 80%(v/v) 이상의 용암해수 배양액 내 미네랄-단백질염 및 유산균 균체의 건조중량이 배양 전 배지 내 미네랄-단백질염 중량과 유사한 것은 생균수가 거의 늘지 않은 것을 입증하기도 한다. This result also proves that the dry weight of mineral-protein salts and lactic acid bacteria cells in the lava seawater culture medium of 80% (v/v) or more is similar to the weight of mineral-protein salts in the medium before cultivation, and that the number of viable cells is not increased.
따라서, 유산균의 배양에 가장 영향을 주는 배지 내 용암해수 조건이 생균수가 동결건조 제조예 1의 배양 조건에 비해 현저하게 증가된 30~70%(v/v) 용암해수 배양배지 조건임을 다시 한번 파악할 수 있고, 더 좋은 조건이, 배양용수로서 용암해수 농도가 30~40%(v/v) 전후인 것을 사용할 때이며, 본 실험에서 가장 좋은 조건은 용암해수 농도가 30%(v/v)인 배양용수로 유산균을 배양할 때임을 확인할 수 있다. Therefore, it will be recognized once again that the lava seawater condition in the medium that most affects the culture of lactic acid bacteria is 30-70% (v/v) lava seawater culture medium condition in which the number of viable bacteria is significantly increased compared to the culture condition of lyophilized Preparation Example 1. The best condition is when using a lava seawater concentration of around 30-40% (v/v) as the culture water, and the best condition in this experiment is a culture with a lava seawater concentration of 30% (v/v). It can be seen that it is time to cultivate lactic acid bacteria with water.
<동결건조 실험예 4: 용암해수를 적용한 배양방식의 비교(batch culture vs. Glucose/NaOH fed-batch culture)><Lyophilization Experimental Example 4: Comparison of culture method using lava seawater (batch culture vs. Glucose/NaOH fed-batch culture)>
동결건조 제조예 1과 동결건조 실시예 1에서 유산균을 배양한 조건은 포도당-수산화나트륨 용해액(Glucose/NaOH)을 이용한 fed-batch culture 조건이라 할 수 있는데, 이 배양 조건을 batch culture와 비교하기 위해 다음의 실험을 수행하였다. In the freeze-dried Preparation Example 1 and the freeze-dried Example 1, the conditions for culturing the lactic acid bacteria may be referred to as fed-batch culture conditions using a glucose-sodium hydroxide solution (Glucose/NaOH). This culture condition is compared with the batch culture. For this, the following experiment was performed.
우선, 동결건조 실시예 1 중 용암해수 30%(v/v) 배지 배양 조건(이 후의 실험예에서 동결건조 실시예 1 또는 동결건조 실시예 2라 함은 상기 용암해수 30%(v/v) 배지 배양 조건에 해당됨)과 동결건조 제조예 1의 fed-batch culture 조건으로 유산균을 배양하고, 상기 동결건조 실시예 1의 용암해수 30%(v/v) 배지 배양 조건에서 포도당-수산화나트륨 용해액 첨가 조건만 수행하지 않은 비교조건에서 유산균을 배양하였다(동결건조 실시예 1의 비교조건이라 함, 20시간 동안 pH/glucose 보정없이 배양). First, the culture conditions of 30% (v/v) lava seawater in lyophilized Example 1 (referred to as lyophilized Example 1 or lyophilized Example 2 in the subsequent experimental examples is the lava seawater 30% (v/v) Corresponds to the medium culture conditions) and lyophilized lactic acid bacteria in the fed-batch culture conditions of Preparation Example 1, and glucose-sodium hydroxide solution in the culture conditions of the lava seawater 30% (v/v) medium of the freeze-dried Example 1 The lactic acid bacteria were cultured under comparative conditions in which only the addition conditions were not performed (referred to as comparative conditions of lyophilized Example 1, cultured without pH/glucose correction for 20 hours).
이 후, 20시간 배양된 각 배양액을 유산균 생균수 측정법으로 생균수를 측정하였다. Thereafter, the number of viable cells was measured for each culture solution cultured for 20 hours by a method for measuring viable cells of lactic acid bacteria.
또한 상기 각 배양액을 별도의 멸균된 용기에 분주하고 4℃에서 1시간 정치하였고, 정치액을 6,000rpm, 30분간 원심분리하여 유산균 균체 또는 미네랄-단백질염과 유산균 균체 침전물을 회수하였다. 회수된 균체 또는 침전물을 동결건조하여 중량 측정을 수행하였다.In addition, each culture solution was dispensed into a separate sterilized container and allowed to stand at 4°C for 1 hour, and the stationary solution was centrifuged at 6,000 rpm for 30 minutes to recover lactic acid bacteria cells or mineral-protein salts and lactic acid bacteria cell precipitates. The recovered cells or precipitates were lyophilized to perform weight measurement.
이를 동결건조 제조예 1의 Fed-batch culture(물), 동결건조 실시예 1의 Fed-batch culture(용암해수 30%(v/v)), 동결건조 실시예 1의 Batch culture(용암해수 30%(v/v))로 구분하여 도 4에 나타내었다.This is a freeze-dried Fed-batch culture (water) of Preparation Example 1, a Fed-batch culture of lyophilization Example 1 (lava seawater 30% (v/v)), and a batch culture of lyophilization Example 1 (lava seawater 30%). (v/v)) and shown in FIG. 4.
도 4의 결과에 따르면 용암해수가 첨가되었더라도 Batch culture에서는 균주가 거의 증식하지 않은 것을 알 수 있다. 따라서, Batch culture에서 회수된 건조물의 성분은 유산균 균체가 아닌 대부분 배지 내의 미네랄-단백질염인 것으로 파악된다. According to the results of FIG. 4, it can be seen that even if lava seawater was added, the strains hardly proliferated in batch culture. Therefore, it is understood that the components of the dried product recovered from batch culture are mostly mineral-protein salts in the medium, not lactic acid bacteria cells.
<동결건조 실험예 5: 동결건조된 프로바이오틱스 분말의 형태학적 특징 확인> <Lyophilization Experimental Example 5: Confirmation of morphological characteristics of freeze-dried probiotic powder>
동결건조 실시예 2와 동결건조 제조예 2에서 회수된 프로바이오틱스 분말의 코팅 상태를 주사전자현미경(Scanning Electron Microscope:SEM)으로 촬영하여 형태학적 특징을 확인하였고, 이를 도 5에 나타내었다. The coating state of the probiotic powder recovered in the freeze-dried Example 2 and the freeze-dried Preparation Example 2 was photographed with a Scanning Electron Microscope (SEM) to confirm the morphological characteristics, which are shown in FIG. 5.
도 5를 참고하면, 동결건조 실시예 2의 프로바이오틱스 표면에 미네랄-단백질염이 코팅되어 유산균 균체의 크기가 커졌으며, 히드록시프록시메틸셀룰로오스가 미네랄-단백질염 코팅이 탈착되지 않도록 균체를 바인딩하고 있는 것을 관찰할 수 있다. Referring to Figure 5, the mineral-protein salt is coated on the surface of the probiotics of Example 2 to increase the size of the lactic acid bacteria cells, and hydroxyproxymethylcellulose binds the cells so that the mineral-protein salt coating is not detached. Can be observed.
<동결건조 실험예 6: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 동결건조 생존율 비교><Lyophilization Experimental Example 6: Comparison of freeze-drying survival rate of natural mineral coated probiotics derived from lava seawater>
동결건조 제조예 2와 동결건조 실시예 2에서, ①동결건조 수행 전의 바인더 혼합액(히드록시프로필메틸셀룰로오스 및 트레할로스를 순차적으로 혼합한 후의 조건); ②동결건조 후 프로바이오틱스 분말;의 각 유산균 생균수를 비교하여 용암해수 유래 천연 미네랄 코팅에 의한 동결건조 생존율을 확인하였다. 정확한 생존율 산출을 위해 건조감량법으로 각 바인더 혼합액의 고형분을 측정하여 바인더 혼합액 중의 유산균 생균수에 환산하여 생존율을 구하여 표 1에 기재하였다.In the freeze-dried Preparation Example 2 and the freeze-dried Example 2, ① a binder mixture before performing freeze-drying (conditions after sequentially mixing hydroxypropylmethylcellulose and trehalose); ② After freeze-drying, the number of live bacteria of each lactic acid bacteria of probiotics powder; was compared to confirm the freeze-drying survival rate by the natural mineral coating derived from lava seawater. In order to accurately calculate the survival rate, the solid content of each binder mixture was measured by the loss-on-drying method, and the survival rate was calculated by converting the number of lactic acid bacteria in the binder mixture to the number of viable bacteria.
구분division 바인더 혼합액 (CFU/g)Binder mixture (CFU/g) 프로바이오틱스 분말(CFU/g)Probiotics powder (CFU/g) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 1.3x1010 1.3x10 10 3.6x109 3.6x10 9 2828
실시예 2Example 2 4.1x1011 4.1x10 11 3.2x1011 3.2x10 11 7878
표 1의 결과에 따르면 동결건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 동결건조 제조예 2의 프로바이오틱스 분말보다 동결건조 생존율이 60% 정도 현저하게 높은 것으로 확인된다. 용암해수 유래 천연 미네랄 코팅 프로바이오틱스는 전공정 배양단계부터 일정 염농도에 스트레스를 받으면서 고농도 생육 및 후공정을 통한 코팅공정을 수행하였기 때문에 이종간 스트레스인 온도에 대해서도 극복할 수 있는 내구성을 갖추었다고 볼 수 있다.According to the results of Table 1, it was confirmed that the natural mineral coated probiotic powder derived from lava seawater of lyophilized Example 2 had a significantly higher lyophilization survival rate of about 60% than the probiotic powder of lyophilized Preparation Example 2. Lava seawater-derived natural mineral coating probiotics can be seen to have durability that can overcome the temperature, which is a stress between different kinds, because the coating process through high-concentration growth and post-process while receiving stress from a certain salt concentration from the pre-culture stage.
<동결건조 실험예 7: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 동결건조 제제의 섭취 안정성><Lyophilization Experimental Example 7: Intake stability of freeze-dried preparation of natural mineral coated probiotics derived from lava seawater>
동결건조 실험예 7-1: 내산성(단독) Freeze-drying Experimental Example 7-1: Acid resistance (alone)
염산을 사용하여 Lactobacilli MRS broth(BD) 100ml의 pH를 3.0으로 조절 후 멸균하고, 멸균된 MRS broth 100ml에 펩신(Sigma P7000, 250 Units/mg) 0.4g을 혼합하여 인공위액 배지를 제조하였다. Using hydrochloric acid, the pH of 100 ml of Lactobacilli MRS broth (BD) was adjusted to 3.0 and then sterilized, and 0.4 g of pepsin (Sigma P7000, 250 Units/mg) was mixed with 100 ml of sterilized MRS broth to prepare an artificial gastric juice medium.
제조한 인공위액 배지 100ml에 동결건조 제조예 2, 동결건조 실시예 2의 프로바이오틱스 분말을 0.5g씩 각각 혼합하였다. 각 혼합액을 즉시 취하여 생리식염수로 희석 후 희석액을 페트리디쉬(Petridish)에 1ml 분주하고 멸균된 Bromo cresol purple agar(BD)배지 20ml을 가하여 굳혔다. 37℃ 정치배양기에서 48시간 배양된 페트리디쉬(Petridish)의 노란색 콜로니를 개수하여 각 프로바이오틱스 분말의 초기 생균수를 확인하였다. 0.5 g of probiotic powders of lyophilized Preparation Example 2 and lyophilized Example 2 were mixed in 100 ml of the prepared artificial gastric juice medium. Each mixture was immediately taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added to solidify. Yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C were counted to confirm the initial viable cell count of each probiotic powder.
이 후, 각 혼합액을 37℃, 2시간 정치배양하고 배양된 배양액을 취하여 생리식염수로 희석 후 희석액을 페트리디쉬(Petridish)에 1ml 분주하고 멸균된 Bromo cresol purple agar(BD)배지 20ml을 가하여 굳혔다. 37℃ 정치배양기에서 48시간 배양된 페트리디쉬(Petridish)의 노란색 콜로니를 개수하여 생균수를 확인하였다.Thereafter, each mixture was incubated at 37°C for 2 hours, the cultured culture was taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added to solidify. The number of viable cells was confirmed by counting yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C.
각 결과는 하기의 표 2에 나타내었다. Each result is shown in Table 2 below.
구분division 프로바이오틱스초기균수 (CFU/g)Initial number of probiotics (CFU/g) 내산성Acid resistance
초기 (CFU/g)Initial (CFU/g) 배양후 (CFU/g)After culture (CFU/g) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 3.6 x 109 3.6 x 10 9 1.6 x 107 1.6 x 10 7 2.0 x 106 2.0 x 10 6 12.512.5
실시예 2Example 2 3.2 x 1011 3.2 x 10 11 1.0 x 109 1.0 x 10 9 4.8 x 108 4.8 x 10 8 48.048.0
표 2의 결과에 따르면, 동결건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 동결건조 제조예 2의 프로바이오틱스 분말보다 산성에 대한 내성이 매우 우수함을 알 수 있다(동결건조 실시예 2에서 약 50%의 생존율 확인, 제조예 2와 비교하여 35.5% 증가). According to the results of Table 2, it can be seen that the natural mineral-coated probiotic powder derived from lava seawater of lyophilized Example 2 has very better resistance to acidity than the probiotic powder of lyophilized Preparation Example 2 (about 50% survival rate confirmed, 35.5% increase compared to Preparation Example 2).
동결건조 실험예 7-2: 담즙산성(단독) Freeze-drying Experimental Example 7-2: Bile acidity (alone)
멸균된 Lactobacilli MRS broth(BD) 100ml에 제균된 oxgall 용액 0.3 ml을 혼합하여 인공담즙액 배지를 제조하였다. An artificial bile broth medium was prepared by mixing 0.3 ml of sterilized oxgall solution in 100 ml of sterilized Lactobacilli MRS broth (BD).
이후 제조한 인공담즙액 배지 100ml에 동결건조 제조예 2, 동결건조 실시예 2의 프로바이오틱스 분말을 0.5g씩 각각 혼합하고, 초기 생균수/ 2시간 정치배양 후의 생균수를 동결건조 실험예 7-1에서처럼 확인하였으며, 이를 표 3에 나타내었다. Thereafter, 0.5 g of the probiotic powders of Preparation Example 2 and Freeze-dried Example 2 were mixed in 100 ml of the artificial bile broth prepared afterwards, respectively, and the initial number of viable cells / number of viable cells after stationary culture for 2 hours were freeze-dried Experimental Example 7-1 It was confirmed as in, and it is shown in Table 3.
구분division 프로바이오틱스초기균수 (CFU/g)Initial number of probiotics (CFU/g) 내답즙산성Bile acid resistance
초기 (CFU/g)Initial (CFU/g) 배양후 (CFU/g)After culture (CFU/g) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 3.6x109 3.6x10 9 2.2x107 2.2x10 7 3.1x107 3.1x10 7 141141
실시예 2Example 2 3.2x1011 3.2x10 11 9.8x108 9.8x10 8 2.4x109 2.4x10 9 244244
표 3의 결과에 따르면, 동결건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 동결건조 제조예 2의 프로바이오틱스 분말보다 내담즙성 또한 약 103% 가량 더 좋은 것으로 나타난다. According to the results of Table 3, it is shown that the natural mineral coated probiotic powder derived from lava seawater of lyophilized Example 2 has about 103% better bile resistance than the probiotic powder of lyophilized Preparation Example 2.
동결건조 실험예 7-3: 내산성-내담즙산성(연속) Freeze-drying Experimental Example 7-3: Acid resistance-bile acid resistance (continuous)
동결건조 제조예 2, 동결건조 실시예 2의 프로바이오틱스 분말을 각각 상기 실험예 7-1의 방법에 의하여 내산성 확인시험을 수행하고 배양액을 원심분리하여 상등액을 제거 후 생균을 회수하였다. 회수한 생균을 동결건조 실험예 7-2의 방법에 의하여 내답즙산성 확인시험을 연속적으로 수행하여 결과를 확인하여 표 4에 나타내었다.Freeze-dried Preparation Example 2 and freeze-dried probiotic powder of Example 2 were each subjected to an acid resistance test according to the method of Experimental Example 7-1, and the culture solution was centrifuged to remove the supernatant, and then live cells were recovered. The recovered live cells were continuously subjected to a test for confirming bile acid resistance by the method of lyophilization Experimental Example 7-2, and the results are shown in Table 4.
구분division 프로바이오틱스초기균수 (CFU/g)Initial number of probiotics (CFU/g) 내산성-내담즙산성Acid resistance-bile acid resistance
초기 (CFU/g)Initial (CFU/g) 배양후 (CFU/g)After culture (CFU/g) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 3.6x109 3.6x10 9 1.6x107 1.6x10 7 1.2x107 1.2x10 7 7575
실시예 2Example 2 3.2x1011 3.2x10 11 1.0x109 1.0x10 9 2.3x109 2.3x10 9 230230
표 4의 결과에 따르면, 동결건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 동결건조 제조예 2의 프로바이오틱스 분말보다 내산성-내담즙성이 강하기 때문에 155% 이상의 매우 뛰어난 생존율 차이가 나는 것을 알 수 있어 본 발명의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 제조방법의 우수성이 입증된다. According to the results of Table 4, it was found that the natural mineral coated probiotic powder derived from lava seawater of lyophilized Example 2 has a very excellent survival rate difference of 155% or more because it has stronger acid resistance-bile resistance than the probiotic powder of lyophilized Preparation Example 2. It is possible to prove the excellence of the method for producing natural mineral coated probiotics derived from lava seawater of the present invention.
<동결건조 실험예 8: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 동결건조 제제의 보관 안정성(온도에 따른 경시적 안정성 비교)><Lyophilization Experimental Example 8: Storage stability of a freeze-dried formulation of natural mineral coated probiotics derived from lava seawater (comparison of stability over time according to temperature)>
동결건조 제조예 2, 동결건조 실시예 2의 프로바이오틱스 분말을 밀폐보관 용기에 각각 5g씩 소분하여 4℃, 15℃, 25℃, 35℃ 항온항습기(습도 75%)에 4개월간 보관하며 1개월 단위로 유산균 생균수 측정법에 의거하여 생균수를 측정하여 표 5에 기재하였다.Freeze-dried Preparation Example 2 and freeze-dried probiotics powder of Example 2 were divided into 5 g each in an airtight container and stored in a thermo-hygrostat (75% humidity) for 4 months at 4°C, 15°C, 25°C, and 35°C. The number of viable cells was measured based on the method for measuring the number of viable lactic acid bacteria and is shown in Table 5.
분무건조 Spray drying 제조예 2Manufacturing Example 2 4℃4 15℃15 25℃25 35℃35℃
0일(CFU/g)Day 0 (CFU/g) 3.6x109 3.6x10 9 3.6x109 3.6x10 9 3.6x109 3.6x10 9 3.6x109 3.6x10 9
30일(CFU/g)30 days (CFU/g) 3.2x109 3.2x10 9 1.2x109 1.2x10 9 1.2x109 1.2x10 9 2.4x108 2.4x10 8
60일(CFU/g)60 days (CFU/g) 2.2x109 2.2x10 9 8.7x108 8.7x10 8 3.3x108 3.3x10 8 4.3x107 4.3x10 7
90일(CFU/g)90 days (CFU/g) 1.3x109 1.3x10 9 4.2x108 4.2x10 8 1.5x108 1.5x10 8 1.1x107 1.1x10 7
120일(CFU/g)120 days (CFU/g) 1.2x109 1.2x10 9 3.2x108 3.2x10 8 6.2x107 6.2x10 7 5.5x106 5.5x10 6
생존율(%)Survival rate (%) 33.033.0 8.98.9 1.71.7 0.20.2
분무건조 Spray drying 실시예 2Example 2 4℃4 15℃15 25℃25 35℃35℃
0일(CFU/g)Day 0 (CFU/g) 3.2x1011 3.2x10 11 3.2x1011 3.2x10 11 3.2x1011 3.2x10 11 3.2x1011 3.2x10 11
30일(CFU/g)30 days (CFU/g) 3.2x1011 3.2x10 11 2.8x1011 2.8x10 11 2.4x1011 2.4x10 11 7.2x1010 7.2x10 10
60일(CFU/g)60 days (CFU/g) 3.1x1011 3.1x10 11 2.7x1011 2.7x10 11 2.3x1011 2.3x10 11 5.3x1010 5.3x10 10
90일(CFU/g)90 days (CFU/g) 3.0x1011 3.0x10 11 2.5x1011 2.5x10 11 2.1x1011 2.1x10 11 4.8x1010 4.8x10 10
120일(CFU/g)120 days (CFU/g) 2.9x1011 2.9x10 11 2.3x1011 2.3x10 11 2.0x1011 2.0x10 11 4.1x1010 4.1x10 10
생존율(%)Survival rate (%) 90.690.6 71.971.9 62.562.5 12.812.8
표 5의 결과에 따르면, 동결건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 동결건조 제조예 2의 프로바이오틱스 분말보다 120일 내의 보관안정성이 높은 것으로 확인된다. According to the results of Table 5, it was confirmed that the natural mineral coated probiotic powder derived from lava seawater of lyophilized Example 2 has higher storage stability within 120 days than the probiotic powder of lyophilized Preparation Example 2.
<동결건조 실험예 9: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 동결건조 제제의 천연미네랄 함량><Lyophilization Experimental Example 9: Natural mineral content of freeze-dried formulation of natural mineral coated probiotics derived from lava seawater>
용암해수(균주를 배양하지 않은 용암해수 자체), 동결건조 제조예 2, 동결건조 실시예 2의 프로바이오틱스 분말 중의 마그네슘, 칼슘 함량을 식약처 건강기능식품공전의 마그네슘, 칼슘 시험법에 의거하여 분석하여 용암해수 유래 천연미네랄 성분의 프로바이오틱스 내포량을 표 6에 비교하였다.Lava seawater (lava seawater without cultivation of the strain itself), freeze-dried Preparation Example 2, and the content of magnesium and calcium in the probiotic powder of Freeze-dried Example 2 were analyzed according to the Magnesium and Calcium Test Method of the Health Functional Food Code Table 6 shows the amount of probiotics contained in natural mineral components derived from lava seawater.
구분division 마그네슘 (mg/100g)Magnesium (mg/100g) 칼슘 (mg/100g)Calcium (mg/100g)
용암해수Lava seawater 116116 4242
제조예 2Manufacturing Example 2 0.30.3 0.40.4
실시예 2Example 2 182182 5555
표 6의 결과에 따르면, 동결건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말에, 배양 시의 용암해수 첨가로 인해 마그네슘과 칼슘이 잘 이입되었음을 확인할 수 있다. 또한 마그네슘, 칼슘은 천연미네랄 중 대표되는 성분으로서, 이 함량 값이 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 함량 값을 대표하는 값이 될 수 있기에, 반복적으로 추가 실험하기도 하였는데, 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말의 미네랄 함량이 0.1~0.5g/100g인 것으로 파악할 수 있다. 이 때, 개별적으로 마그네슘 0.07~0.4g/100g, 칼슘 0.02~0.09g/100g인 것으로도 확인되었다. According to the results of Table 6, it can be seen that magnesium and calcium were well transferred to the natural mineral coated probiotic powder derived from lava seawater of Example 2 of lyophilization due to the addition of lava seawater during culture. In addition, magnesium and calcium are representative components of natural minerals, and since this content value can represent the value of the content of natural mineral coated probiotics derived from lava seawater, additional experiments were repeatedly conducted. Natural mineral coated probiotics derived from lava seawater It can be understood that the mineral content of the powder is 0.1~0.5g/100g. At this time, it was also confirmed that magnesium was 0.07 ~ 0.4g / 100g, calcium 0.02 ~ 0.09g / 100g individually.
<동결건조 실험예 10: 균주 별 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 동결건조 제제의 제조조건 확인> <Lyophilization Experimental Example 10: Confirmation of manufacturing conditions of natural mineral coated probiotics freeze-dried formulation derived from lava seawater by strain>
동결건조 실시예 1 조건으로 유산균 배양 시, 유산균 종배양액으로 락토바실러스 람노서스 균주 외에도 다른 종류의 유산균들이 용암해수 첨가배지에서 모두 배양이 원활하게 되는지를 확인하였다. When lactic acid bacteria were cultivated under the conditions of lyophilization Example 1, it was confirmed that the lactic acid bacteria seed culture solution in addition to the Lactobacillus rhamnosus strains, as well as other types of lactic acid bacteria, were all smoothly cultured in the lava seawater addition medium.
이 때, 비교 조건으로 동결건조 제조예 1의 배양방법으로 제조한 배양액을 제시하였다. At this time, as comparative conditions, the culture solution prepared by the cultivation method of lyophilization Preparation Example 1 was presented.
이 결과는 도 6에 나타내었는데, 동결건조 제조예 1 배양액과 비교하여, 동결건조 실시예 1의 용암해수 첨가배지 배양 조건에서 실험대상 모든 배양액 내 유산균 생균수가 큰 폭으로 증가하는 것을 확인할 수 있다. This result is shown in Figure 6, compared to the freeze-dried Preparation Example 1 culture medium, it can be seen that the number of lactic acid bacteria viable cells in all the culture solutions of the experiment was significantly increased under the culture conditions of the lava seawater addition medium of the freeze-dried Example 1.
이는 상기 조건의 균주별 배양액들이 최종적으로 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 제조하기에 적합한 조건임을 입증한다. This proves that the culture solutions for each strain under the above conditions are finally suitable conditions for producing natural mineral coated probiotics derived from lava seawater.
<동결건조 실험예 11: 탈염용암해수 배지의 미네랄-단백질염 생성 및 유산균 배양액 내의 생균 수 확인> <Lyophilization Experimental Example 11: Generation of mineral-protein salts in desalted lava seawater medium and confirmation of the number of viable bacteria in the lactic acid bacteria culture medium>
동결건조 제조예 1의 기본배지를 제조하는 조건에서 물 대신 탈염 용암해수(대한민국 등록특허 제10-0947637호의 실시예 1 방법 이용)를 배양용수로 이용하여 배지를 제조하였고, 원심분리하여 침전된 미네랄-단백질염의 건조중량을 확인하여 표 7에 나타내었다. Under the conditions of preparing the basic medium of Freeze-dried Preparation Example 1, a medium was prepared using desalted lava seawater (using the method of Example 1 of Korean Patent Registration No. 10-0947637) instead of water as culture water, and precipitated minerals by centrifugation- The dry weight of the protein salt was confirmed and shown in Table 7.
배지에 첨가된 배양용수Culture water added to the medium 미네랄-단백질염 (㎎/㎖)Mineral-protein salt (mg/ml)
용암해수 30%(v/v) (동결건조 실시예 1 조건) Lava seawater 30% (v/v) (freeze drying Example 1 condition) 16 16
탈염 용암해수 100(v/v)Desalted lava seawater 100(v/v) 88
또한, 상기 표 7의 배지에 락토바실러스 람노서스 종배양균을 배양하여 얻은 배양액 내 유산균 생균수를 측정하였다. 이 값은 표 8에 나타내었다. In addition, the number of viable lactic acid bacteria in the culture medium obtained by culturing Lactobacillus rhamnosus spp. in the medium of Table 7 was measured. These values are shown in Table 8.
배양액Culture medium 유산균 생균수(CFU/ml)Lactobacillus viable cell count (CFU/ml)
용암해수 30%(v/v) (동결건조 실시예 1 조건)를 배양용수로 하여 배양된 것Cultured with 30% (v/v) of lava seawater (freeze-dried Example 1 condition) as culture water 2 x 1010 2 x 10 10
탈염 용암해수 100%(v/v)를 배양용수로 하여 배양된 것Cultured with 100% (v/v) desalted lava seawater as culture water 9 x 108 9 x 10 8
표 7과 표 8의 결과를 확인하면, 탈염 용암해수를 이용하는 것은 그 결과가 배양용수로서 물을 이용하는 동결건조 제조예 1과 유사하여, 미네랄-단백질염의 생성 및 유산균의 증식에도 거의 영향을 주지 않는 것으로 파악된다. Checking the results in Tables 7 and 8, the result of using desalted lava seawater is similar to that of lyophilization Preparation Example 1 using water as culture water, and has little effect on the production of mineral-protein salts and proliferation of lactic acid bacteria. It is understood to be.
II. 분무건조 제제의 제조 및 효능 실험II. Preparation and efficacy test of spray-dried formulation
<분무건조 제조예 1: 분무건조를 위한 유산균 기본배지 제조 및 배양방법><Spray drying Preparation Example 1: Preparation and culture method of lactic acid bacteria basic medium for spray drying>
본 발명에서 유산균을 배양하기 위한 기본배지로서 1ℓ 당 포도당 3%(w/v), 효모추출물 2%(w/v), 소이펩톤 2%(w/v), 카제인 1%(w/v)가 되도록 각 성분을 물에 용해하여 121℃, 30분간 멸균하였다. As a basic medium for culturing lactic acid bacteria in the present invention, glucose 3% (w/v) per 1 liter, yeast extract 2% (w/v), soypeptone 2% (w/v), casein 1% (w/v) Each component was dissolved in water so as to be sterilized at 121°C for 30 minutes.
이렇게 멸균된 기본배지에 유산균 종배양액을 발효조의 멸균배지에 접종하고 100rpm, 37℃ 조건으로 20시간 동안 배양하되, 40%(w/v) 포도당 및 40%(w/v) 수산화나트륨이 1:1의 부피비로 혼합된 수용액(이하, 포도당-수산화나트륨 용해액이라 함)을 일정시간 간격으로 점적하면서 pH를 6.0~7.5로 유지하며 배양하였다(Fed-batch culture 수행).The lactic acid bacteria seed culture solution was inoculated into the sterilized medium of the fermentation tank in this sterilized basic medium, and cultured for 20 hours at 100 rpm and 37°C, but 40% (w/v) glucose and 40% (w/v) sodium hydroxide were 1: An aqueous solution mixed at a volume ratio of 1 (hereinafter referred to as glucose-sodium hydroxide solution) was incubated while maintaining the pH at 6.0-7.5 while dropping at regular time intervals (Fed-batch culture performed).
<분무건조 제조예 2: 프로바이오틱스 분무건조 분말 제조방법><Spray-dried manufacturing example 2: Probiotics spray-dried powder manufacturing method>
분무건조 제조예 1에서 배양된 배양액을 막여과 농축기(여과막 사이즈 0.1㎛, 제조사 DOW separation systems, Serial No.546/57 205-92.)를 사용하여 원배양액의 1/10 부피로 농축하여 농축액을 얻은 후, 상기 농축액 100g을 히드록시프로필메틸셀룰로오스(HPMC) 100g 분말이 물 500g에 용해된 용액에 혼합하고 분무건조하여 건조된 프로바이오틱스 분말을 얻었다.Spray-drying The culture solution cultured in Preparation Example 1 was concentrated to 1/10 volume of the original culture solution using a membrane filtration concentrator (filtration membrane size 0.1㎛, manufacturer DOW separation systems, Serial No.546/57 205-92.) After obtained, 100 g of the concentrate was mixed with a solution in which 100 g of hydroxypropylmethylcellulose (HPMC) powder was dissolved in 500 g of water, and spray-dried to obtain a dried probiotic powder.
<분무건조 실시예 1: 용암해수를 이용한 유산균의 배양><Spray drying Example 1: Culture of lactic acid bacteria using lava seawater>
용암해수가 10~90%(v/v) 포함된 물, 또는 용암해수 자체를 배양용수로 준비하고, 상기 배양용수를 분무건조 제조예 1에서 이용한 기본 배지 제조 조건에서 물 대신 사용하였다.Water containing 10 to 90% (v/v) lava seawater, or lava seawater itself, was prepared as cultivation water, and the cultivation water was used instead of water in the basic medium preparation conditions used in Spray-drying Preparation Example 1.
이렇게 각 농도별 용암해수가 포함된 배양용수를 사용하여 배지를 분무건조 제조예 1에서와 같이 멸균하였다. 한편 이렇게 용암해수를 이용하여 멸균된 배지를 제조하게 되면 용암해수의 천연 미네랄이 배지 성분들의 단백질과 반응하여 염 상태로 침전된 미네랄-단백질염이 생성된다. In this way, the medium was sterilized as in Preparation Example 1 by spray drying using the culture water containing lava seawater for each concentration. On the other hand, when a sterilized medium is prepared using lava seawater, natural minerals of lava seawater react with proteins of the medium to produce mineral-protein salts precipitated in a salt state.
다음으로 멸균된 용암해수 배지에 분무건조 제조예 1에서와 같이 유산균 종배양액을 접종하고, 100rpm, 37℃ 조건으로 20시간 동안 포도당-수산화나트륨 용해액을 사용하여 pH를 6.0~7.5로 보정하며 배양하였다. Next, the lactic acid bacteria seed culture solution was inoculated into the sterilized lava seawater medium as in Preparation Example 1, and the pH was calibrated to 6.0-7.5 using a glucose-sodium hydroxide solution for 20 hours at 100 rpm and 37°C. I did.
<분무건조 실시예 2 : 용암해수 유래 천연 미네랄 코팅 분무건조 프로바이오틱스 제조><Spray drying Example 2: Preparation of spray-dried probiotics with natural mineral coating derived from lava seawater>
분무건조 실시예 1의 조건 중 30%(v/v)의 용암해수를 이용하여 제조한 배지에 유산균을 배양한 배양액을 분무건조 제조예 2 방법에서와 같이 원배양액의 1/10 부피로 농축하여 농축액을 얻은 후, 상기 농축액 100g을 히드록시프로필메틸셀룰로오스(HPMC) 100g 분말이 물 500g에 용해된 용액에 혼합하고 분무건조하여 건조된 프로바이오틱스 분말을 얻었다. 이 때, 농축과정에서 미네랄-단백질염이 균체외부를 코팅하게 되고, 히드록시프로필메틸셀룰로오스가 코팅을 보다 더 견고하게 하는 결합제 역할을 하게 된다. Spray drying The culture solution obtained by culturing lactic acid bacteria in a medium prepared using 30% (v/v) of lava seawater among the conditions of Example 1 was concentrated to 1/10 volume of the original culture solution as in the spray drying method of Preparation Example 2. After obtaining the concentrate, 100 g of the concentrate was mixed with a solution in which 100 g of hydroxypropylmethylcellulose (HPMC) powder was dissolved in 500 g of water, and spray-dried to obtain a dried probiotic powder. At this time, in the process of concentration, the mineral-protein salt coats the outside of the cells, and hydroxypropylmethylcellulose acts as a binder that makes the coating more robust.
<분무건조 실험예 1 : 배양 전 배지에서의 멸균온도 및 용암해수 농도에 따른 미네랄-단백질염 양과 단백질 양 비교><Spray drying Experimental Example 1: Comparison of mineral-protein salt amount and protein amount according to sterilization temperature and lava seawater concentration in the medium before culture>
분무건조 실험예 1-1: 용암해수 농도Spray drying Experimental Example 1-1: Lava seawater concentration
분무건조 실시예 1에서 이미 설명한 바와 같이, 용암해수를 이용하여 멸균된 배지를 제조하게 되면 용암해수의 천연 미네랄이 배지 성분들의 단백질과 반응하여 염 상태로 침전된 미네랄-단백질염이 생성된다. 이 미네랄-단백질염은 분무건조 제조예 1에서 사용한 기본배지에서도 일부 생성되나 용암해수가 포함된 배지에서는 생성량이 현저하게 증가한다.As already described in Example 1 of spray drying, when a sterilized medium is prepared using lava seawater, the natural minerals of the lava seawater react with the proteins of the medium to produce a mineral-protein salt precipitated in a salt state. This mineral-protein salt is partially produced in the basic medium used in Spray-drying Preparation Example 1, but the amount of production is remarkably increased in the medium containing lava seawater.
이를 측정하기 위해, 유산균 배양 전의 멸균된 배지로서, 분무건조 제조예 1의 기본 배지, 분무건조 실시예 1의 용암해수 포함 배지 자체만을 400㎖를 별도의 용기에 각각 분주하고, 4℃에서 1시간 정치시킨 후 6,000rpm, 30분간 원심분리하여 미네랄-단백질염을 회수하고 회수물을 분무건조하였다. To measure this, as a sterilized medium before cultivation of lactic acid bacteria, 400 ml of only the basic medium of Spray-drying Preparation Example 1 and the medium containing lava seawater of Spray-drying Example 1 were dispensed into separate containers, respectively, and 1 hour at 4°C. After standing, the mineral-protein salt was recovered by centrifugation at 6,000 rpm for 30 minutes, and the recovered product was spray-dried.
다음으로, 미네랄-단백질염의 건조중량과 미네랄-단백질염 내의 단백질량을 확인하였다. 이 단백질량은 BCA protein assay로 측정하여 미네랄-단백질염에 포함되어 있는 단백질 함량을 확인하였다. Next, the dry weight of the mineral-protein salt and the amount of protein in the mineral-protein salt were confirmed. The amount of this protein was measured by BCA protein assay to confirm the protein content of the mineral-protein salt.
각 실험 결과는 표 9에 나타내었다. The results of each experiment are shown in Table 9.
용암해수 농도(%, v/v)Lava seawater concentration (%, v/v) 침전물 (미네랄-단백질염) 건조 중량 (mg/㎖)Precipitate (mineral-protein salt) dry weight (mg/ml) 침전물 (미네랄-단백질염) 내의 순수 단백질 양 (mg/㎖)The amount of pure protein in the precipitate (mineral-protein salt) (mg/ml)
00 0.40.4 0.10.1
1010 3.23.2 1.61.6
2020 5.25.2 2.52.5
3030 11.811.8 5.95.9
4040 13.213.2 6.46.4
5050 16.516.5 7.77.7
6060 17.417.4 8.38.3
7070 18.418.4 9.49.4
8080 18.218.2 9.39.3
9090 17.917.9 8.78.7
100100 17.717.7 8.58.5
표 9의 결과에 따르면 분무건조 제조예 1의 기본배지에 비해 용암해수가 농도별로 포함된 용암해수 배지 내의 미네랄-단백질염, 상기 미네랄-단백질염이 용암해수 첨가량 10~70%(v/v)와 비례하여 증가하는 것으로 나타났다. 용암해수 농도가 80%(v/v)에서는 정체하거나, 용암해수 첨가량 90%(v/v)와 100%(v)에서도 증가량이 약간 줄어드는 것은 배지 내의 염농도가 너무 높아 단백질 염석의 침전효과가 크게 늘어나지 않거나 줄어든 것으로 파악된다. According to the results of Table 9, mineral-protein salts in the lava seawater medium containing lava seawater by concentration compared to the basic medium of Spray-drying Preparation Example 1, and the mineral-protein salt added amount of lava seawater 10 to 70% (v/v) Was found to increase in proportion to. When the lava seawater concentration is 80% (v/v), the amount of increase is stagnant, or even when the amount of lava seawater is added at 90% (v/v) and 100% (v), the increase in the amount decreases. It is believed to have not increased or decreased.
이를 통해, 농도별 용암해수를 이용하여 멸균된 배지 제조 시 유산균의 코팅 목적으로 사용 가능한 미네랄-단백질염의 생성 양을 확인할 수 있고, 배양용수로서 적절한 농도를 결정할 수 있다(배양용수로서 용암해수 30~70%(v/v)인 것이 적절함). Through this, when preparing a sterilized medium using lava seawater for each concentration, it is possible to check the amount of mineral-protein salt that can be used for coating purposes of lactic acid bacteria, and to determine an appropriate concentration as culture water (lava seawater 30~ 70% (v/v) is appropriate).
분무건조 실험예 1-2: 멸균온도Spray drying Experimental Example 1-2: Sterilization temperature
멸균온도에 따른 미네랄-단백질염 생성량을 비교하기 위하여 용암해수가 30%(v/v) 포함된 물을 배양용수를 제조하고 배지 전체를 100ml로 할 때 포도당 3g, 효모추출물 2g, 소이펩톤 2g을 가하여 용해 후 100~121℃까지의 범위로 5℃ 온도구간으로 각각 30분간 멸균하였다. 멸균된 배지를 냉각 후 용암해수 각 농도별 배지 400㎖를 별도의 용기에 각각 분주하였다. 각 정치액을 6,000rpm, 30분간 원심분리하여 미네랄-단백질염을 회수하고 건조시켜 건조중량을 확인하고 건조물 중의 단백질량을 Bradford assay로 측정하여 단백질 양을 확인하였다. 비교를 위해 동일 조건으로 분무건조 비교예 1의 멸균된 배지를 처리하여 비교하였으며, 표 10에 나타내었다. In order to compare the amount of mineral-protein salt production according to the sterilization temperature, water containing 30% (v/v) of lava seawater is prepared for cultivation, and when the entire medium is 100 ml, 3 g of glucose, 2 g of yeast extract, and 2 g of soypeptone are used. After dissolution, the mixture was sterilized for 30 minutes at a temperature range of 100 to 121°C at 5°C. After cooling the sterilized medium, 400 ml of the medium for each concentration of lava seawater was dispensed into separate containers. Each stationary solution was centrifuged at 6,000 rpm for 30 minutes to recover mineral-protein salts and dried to check the dry weight, and the amount of protein in the dried product was measured by Bradford assay to confirm the protein amount. For comparison, the sterilized medium of Comparative Example 1 spray-dried under the same conditions was treated and compared, and are shown in Table 10.
멸균온도(℃)Sterilization temperature (℃) 용암해수 농도(%, v/v)Lava seawater concentration (%, v/v) 침전물 (미네랄-단백질염)건조 중량 (mg/㎖)Precipitate (mineral-protein salt) dry weight (mg/ml) 침전물 (미네랄-단백질염) 내의 순수 단백질 양 (mg/㎖)The amount of pure protein in the precipitate (mineral-protein salt) (mg/ml)
100℃100 3030 3.53.5 1.91.9
105℃105 3030 5.45.4 2.92.9
110℃110 3030 7.47.4 3.13.1
115℃115 3030 9.89.8 3.83.8
121℃121 3030 11.811.8 5.95.9
121℃121 00 0.50.5 0.20.2
표 10의 결과를 살펴보면, 미네랄-단백질염 내의 순수 단백질 양 또한 배양용수로서 용암해수를 30(v/v)%로 이용한 경우에서, 121℃에서 멸균한 배지에서 미네랄-단백질염 내의 순수 단백질양이 가장 많으며, 100℃ 이상의 온도에서도 미네랄-단백질염의 형성이 이루어짐을 확인할 수 있다. Looking at the results of Table 10, when the amount of pure protein in the mineral-protein salt was also used at 30 (v/v)% of lava seawater as the culture water, the amount of pure protein in the mineral-protein salt in the medium sterilized at 121°C. It is the most common, and it can be seen that mineral-protein salts are formed even at temperatures above 100°C.
그러나, 물(용암해수 농도 0%)을 이용할 경우에는 121℃에서 멸균하더라도 코팅에 필요한 충분한 양의 미네랄-단백질염이 생성 되지 않는 것을 알 수 있었다. However, in the case of using water (lava seawater concentration of 0%), it was found that a sufficient amount of mineral-protein salt required for coating was not generated even when sterilized at 121°C.
<분무건조 실험예 2: 배지 내 용암해수 농도 별 유산균 생균수 확인><Spray drying Experimental Example 2: Confirmation of the number of lactic acid bacteria viable bacteria by lava seawater concentration in the medium>
분무건조 제조예 2와 분무건조 실시예 2의 분무건조 분말 1g을 취하여 생리식염수로 희석 후, 희석액을 petridish에 1 ml 분주하고 멸균된 Lactobacilli MRS Agar(BD) 20㎖을 가하여 굳혔다. 정치인큐베이터에서 37℃, 48시간 배양된 Petridish의 콜로니를 개수하여 생균수를 확인하여 이를 표 11에 나타내었다(이하, 유산균 생균수 측정법이라 한다).Spray-drying 1 g of the spray-dried powders of Preparation Example 2 and Spray-drying Example 2 were taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into petridish, and 20 ml of sterilized Lactobacilli MRS Agar (BD) was added to solidify. The number of Petridish colonies cultured at 37°C for 48 hours in a stationary incubator was counted to check the number of viable cells, and this was shown in Table 11 (hereinafter referred to as a method for measuring the number of viable bacteria).
용암해수 농도(%, v/v)Lava seawater concentration (%, v/v) 분무건조 분말 내의 생균수(×109CFU/g)Viable bacteria count in spray-dried powder (×10 9 CFU/g)
00 1111
1010 1515
2020 3434
3030 212212
4040 164164
5050 131131
6060 122122
7070 106106
8080 4747
9090 2626
100100 2424
표 11의 결과에 따르면 분무건조 제조예 1에서 배양된 유산균 생균수에 비해, 분무건조 실시예 1 중 30%(v/v) 용암해수가 적용된 배지에서 배양된 유산균 생균수가 폭발적으로 크게 증가하는 것을 알 수 있고, 그 이후부터는 유산균 생균수가 오히려 줄어드는 것으로 나타난다. According to the results of Table 11, compared to the number of lactic acid bacteria cultivated in Spray-drying Preparation Example 1, the number of lactic acid bacteria cultivated in a medium to which 30% (v/v) lava seawater was applied in spray-drying Example 1 was explosively increased. It can be seen, and after that, the number of viable lactic acid bacteria appears to decrease.
다만 용암해수 농도 70%(v/v)까지는 배양액 중 유산균의 생균수가 매우 높은 값으로 측정되며, 프로바이오틱스의 생균수 기준인 1.0x108 CFU/g 이상의 값보다 현저히 많은 1.0×1011 CFU/g 이상의 생균제 분말을 안정적으로 제조 가능함을 확인할 수 있다. However, up to 70% (v/v) concentration of lava seawater, the number of lactic acid bacteria in the culture medium is measured as a very high value, and 1.0 × 10 11 CFU/g or more is significantly higher than the value of 1.0x10 8 CFU/g or more, which is the standard for probiotics. It can be seen that the probiotic powder can be stably manufactured.
또한, 이는 용암해수의 첨가량이 증가한다고 하여 무조건 유산균의 배양이 증가하지 않음을 파악할 수 있고, 용암해수 내의 적정 염 농도가 유산균 배양에 있어 중요한 요소인 것으로 판단할 수 있다. In addition, it can be seen that the cultivation of lactic acid bacteria does not unconditionally increase even if the amount of lava seawater is increased, and it can be determined that the proper salt concentration in the lava seawater is an important factor in culturing the lactic acid bacteria.
덧붙여 이러한 결과들을 통해 미네랄-단백질염이 열방어 기능이 있음을 확인할 수 있다.In addition, through these results, it can be confirmed that the mineral-protein salt has a heat protection function.
<분무건조 실험예 3: 용암해수 농도에 따른 배양액 내의 미네랄-단백질염 및 유산균 균체의 분무건조 중량과 유산균 생균수의 상관관계 비교><Spray drying Experimental Example 3: Comparison of the correlation between the spray-dried weight of mineral-protein salts and lactic acid bacteria cells in the culture medium according to the concentration of lava seawater and the number of lactic acid bacteria viable cells>
분무건조 실시예 1의 각 용암해수 배지에서 배양된 유산균 배양액을 별도의 멸균된 용기에 각각 400㎖를 분주하고 4℃, 1시간 냉각정치하였다. 각 정치액을 실시예 2에서처럼 농축 및 분무건조하여 건조물의 건조중량을 확인하였다. 비교를 위해 동일 조건으로 분무건조 제조예 1의 배양액을 처리하여 비교하였고 이를 도 7에 나타내었다. 이 때, 건조중량의 결과를 유산균 생균수와 비교하여 나타내었다. Spray-drying Each 400 ml of the lactic acid bacteria culture solution cultured in each lava seawater medium of Example 1 was dispensed into a separate sterilized container and allowed to cool at 4° C. for 1 hour. Each stationary solution was concentrated and spray-dried as in Example 2 to check the dry weight of the dried product. For comparison, the culture solution of Spray-dried Preparation Example 1 was treated and compared under the same conditions, and it is shown in FIG. 7. At this time, the result of the dry weight was shown in comparison with the number of live lactic acid bacteria.
도 7의 결과에 따르면 ‘미네랄-단백질염 및 유산균 균체’의 건조중량이 용암해수 30~100%(v/v)가 포함된 곳에서 모두 비슷해 보이는데, 이 결과는 30~70%(v/v) 용암해수 배양액 조건에서 배양 전 생성된 미네랄-단백질염 외에도 생균수가 폭발적으로 증가하여 총 중량이 유사해졌기 때문이다. According to the results of Figure 7, the dry weight of'mineral-protein salts and lactic acid bacteria cells' looks similar in all places where 30-100% (v/v) of lava seawater is included, and this result is 30-70% (v/v ) In addition to the mineral-protein salts produced before cultivation under the condition of lava seawater culture, the number of viable bacteria exploded and the total weight became similar.
이 결과는 또한 80%(v/v) 이상의 용암해수 배양액 내 미네랄-단백질염 및 유산균 균체의 건조중량이 배양 전 배지 내 미네랄-단백질염 중량과 유사한 것은 생균수가 거의 늘지 않은 것을 입증하기도 한다. This result also proves that the dry weight of mineral-protein salts and lactic acid bacteria cells in the lava seawater culture medium of 80% (v/v) or more is similar to the weight of mineral-protein salts in the medium before cultivation, and that the number of viable cells is not increased.
따라서, 유산균의 배양에 가장 영향을 주는 배지 내 용암해수 조건이, 생균수가 분무건조 제조예 1의 배양 조건에 비해 현저하게 증가된 30~70%(v/v) 용암해수 배양배지 조건임을 다시 한번 파악할 수 있고, 더 좋은 조건이, 배양용수로서 용암해수 농도가 30~40%(v/v) 전후인 것을 사용할 때이며, 본 실험에서 가장 좋은 조건은 용암해수 농도가 30%(v/v)인 배양용수로 유산균을 배양할 때임을 확인할 수 있다. Therefore, once again that the lava seawater conditions in the medium that most affect the cultivation of lactic acid bacteria are 30-70% (v/v) lava seawater culture medium conditions in which the number of viable bacteria is significantly increased compared to the culture conditions of spray-dried Preparation Example 1. It can be understood, and a better condition is when using a lava seawater concentration of around 30~40% (v/v) as culture water, and the best condition for this experiment is when the lava seawater concentration is 30% (v/v). It can be seen that it is time to cultivate lactic acid bacteria with cultivation water.
<분무건조 실험예 4: 용암해수를 적용한 배양방식의 비교(batch culture vs. Glucose/NaOH fed-batch culture)><Spray drying Experimental Example 4: Comparison of culture method using lava seawater (batch culture vs. Glucose/NaOH fed-batch culture)>
분무건조 제조예 1과 분무건조 실시예 1에서 유산균을 배양한 조건은 포도당-수산화나트륨 용해액(Glucose/NaOH)을 이용한 fed-batch culture 조건이라 할 수 있는데, 이 배양 조건을 batch culture와 비교하기 위해 다음의 실험을 수행하였다. The conditions for culturing the lactic acid bacteria in Spray-drying Preparation Example 1 and Spray-drying Example 1 may be referred to as fed-batch culture conditions using a glucose-sodium hydroxide solution (Glucose/NaOH), which are compared with batch culture. For this, the following experiment was performed.
우선, 분무건조 실시예 1 중 용암해수 30%(v/v) 배지 배양 조건(이 후의 실험예에서 분무건조 실시예 1 또는 분무건조 실시예 2라 함은 상기 용암해수 30%(v/v) 배지 배양 조건에 해당됨)과 분무건조 제조예 1의 fed-batch culture 조건으로 유산균을 배양하고, 상기 분무건조 실시예 1의 용암해수 30%(v/v) 배지 배양 조건에서 포도당-수산화나트륨 용해액 첨가 조건만 수행하지 않은 비교조건에서 유산균을 배양하였다(분무건조 실시예 1의 비교조건이라 함, 20시간 동안 pH/glucose 보정없이 배양). First, in the spray-drying Example 1, the lava seawater 30% (v/v) culture conditions (in the following experimental examples, referred to as spray-drying Example 1 or spray-drying Example 2, the lava seawater 30% (v/v) Corresponds to the medium culture conditions) and the lactic acid bacteria in the fed-batch culture conditions of Spray-dried Preparation Example 1, and the glucose-sodium hydroxide solution in the 30% (v/v) medium culture conditions of the spray-dried lava seawater of Example 1 The lactic acid bacteria were cultured under comparative conditions in which only the addition conditions were not performed (referred to as comparative conditions of spray drying Example 1, cultured without pH/glucose correction for 20 hours).
이 후, 20시간 배양된 각 배양액을 유산균 생균수 측정법으로 생균수를 측정하였다. 또한 상기 각 배양액을 별도의 멸균된 용기에 분주하고 막여과 농축기(여과막 사이즈 0.1㎛, 제조사 DOW separation systems, Serial No.546/57 205-92.)를 사용하여 원배양액의 1/10 부피로 농축하여 농축액을 얻은 후, 상기 농축액 100g을 히드록시프로필메틸셀룰로오스(HPMC) 100g 분말이 물 500g에 용해된 용액에 혼합하고 분무건조하여 총 중량과, 생균수 측정을 수행하였다.Thereafter, the number of viable cells was measured for each culture solution cultured for 20 hours by a method for measuring viable cells of lactic acid bacteria. In addition, each culture solution was dispensed into a separate sterilized container and concentrated to 1/10 volume of the original culture solution using a membrane filtration concentrator (filtration membrane size 0.1㎛, manufacturer DOW separation systems, Serial No.546/57 205-92.) After obtaining the concentrate, 100 g of the concentrate was mixed with a solution in which 100 g of hydroxypropylmethylcellulose (HPMC) powder was dissolved in 500 g of water, and spray dried to measure the total weight and the number of viable cells.
이를 분무건조 제조예 1의 Fed-batch culture(물), 분무건조 실시예 1의 Fed-batch culture(용암해수 30%(v/v)), 분무건조 실시예 1의 Batch culture(용암해수 30%(v/v))로 구분하여 도 8에 나타내었다.This is spray-dried Fed-batch culture (water) of Preparation Example 1, Fed-batch culture of Spray-drying Example 1 (lava seawater 30% (v/v)), and Spray-drying Example 1 batch culture (lava seawater 30%) (v/v)) and shown in FIG. 8.
도 8의 결과에 따르면 용암해수가 첨가되었더라도 Batch culture에서는 균주가 거의 증식하지 않은 것을 알 수 있다. 따라서, Batch culture에서 회수된 건조물의 성분은 유산균 균체가 아닌 대부분 배지 내의 미네랄-단백질염인 것으로 파악된다. According to the results of FIG. 8, it can be seen that even if lava seawater was added, the strains hardly proliferated in batch culture. Therefore, it is understood that the components of the dried product recovered from batch culture are mostly mineral-protein salts in the medium, not lactic acid bacteria cells.
각 균체의 사진을 주사전자현미경(Scanning Electron Microscope:SEM)을 사용하여 촬영하되, 균체의 표면이 아닌 간균 상태를 촬영한 바, 도 9에서처럼 미네랄 염이 분무건조 분말의 균체에 결합되어 있음을 확인할 수 있다. A picture of each cell was taken using a Scanning Electron Microscope (SEM), but the bacillus state was taken rather than the surface of the cell. As shown in FIG. 9, it was confirmed that the mineral salt was bound to the cell of the spray-dried powder. I can.
<분무건조 실험예 5: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 분무건조 생존율 비교><Spray drying Experimental Example 5: Comparison of spray drying survival rate of natural mineral coated probiotics derived from lava seawater>
분무건조 제조예 2와 분무건조 실시예 2에서, ①분무건조 수행 전의 바인더(히드록시프로필메틸셀룰로오스) 혼합액; ②분무건조 후 프로바이오틱스 분말;의 각 유산균 생균수를 비교하여 용암해수 유래 천연 미네랄 코팅에 의한 분무건조 생존율을 확인하였다. Spray drying In Preparation Example 2 and Spray Drying Example 2, ① a mixture of a binder (hydroxypropylmethylcellulose) before spray drying was performed; ② After spray drying, the number of viable bacteria of each lactic acid bacteria in probiotics powder; was compared to confirm the spray drying survival rate by the natural mineral coating derived from lava seawater.
이 때, 대용량 생산도 가능한지 확인하기 위해, 500L 규모로 대량 배양된 배양액을 막여과 농축기를 사용하여 농축하여 실험하였다. At this time, in order to confirm whether large-capacity production is possible, the culture medium cultured in a mass of 500 L was concentrated and tested using a membrane filtration concentrator.
실험결과는 정확한 생존율 산출을 위해 건조감량법으로 각 바인더 혼합액의 고형분을 측정하여 바인더 혼합액 중의 유산균 생균수에 환산하여 생존율을 구하여 표 12에 기재하였다.The experimental results are shown in Table 12 by measuring the solid content of each binder mixture by the loss-on-drying method to calculate the accurate survival rate and converting it to the number of lactic acid bacteria viable bacteria in the binder mixture to obtain the survival rate.
구분division 분무건조 제조예 2의상수배양 분무건조 분말 Spray-drying Preparation Example 2 Water culture spray-dried powder 분무건조 실시예 2의용암해수배양 분무건조 분말Spray-dried lava seawater culture spray-dried powder of Example 2
분무건조후 (×109 CFU/g)After spray drying (×10 9 CFU/g) 1111 212212
분무건조전 (×109 CFU/g)Before spray drying (×10 9 CFU/g) 163163 318318
생존율(%)Survival rate (%) 6.76.7 66.666.6
표 12의 결과에 따르면 분무건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이, 분무건조 제조예 2의 프로바이오틱스 분말보다 분무건조 생존율 약 6.7%와 비교하여, 약 67% 정도 현저하게 10배 이상 높은 것으로 확인된다. According to the results of Table 12, the natural mineral coated probiotic powder derived from lava seawater of spray-dried Example 2, compared with the spray-drying survival rate of about 6.7%, compared to the probiotic powder of Spray-dried Preparation Example 2, about 67% significantly more than 10 times. It is confirmed to be high.
따라서, 용암해수 유래 천연 미네랄 코팅 프로바이오틱스는 전공정 배양단계부터 일정 염농도에 스트레스를 받으면서 고농도 생육 및 후공정을 통한 코팅공정을 수행하였기 때문에 이종간 스트레스인 고온에 대해서도 극복할 수 있는 내구성을 갖추었다고 볼 수 있다. Therefore, the natural mineral coating probiotics derived from lava seawater were subjected to high-concentration growth and the coating process through the post-process while being under stress from a certain salt concentration from the pre-cultivation stage, so it can be seen that it has the durability to overcome the high temperature, which is a stress between different kinds. have.
<분무건조 실험예 6: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분무건조 제제의 섭취 안정성><Spray drying Experimental Example 6: Intake stability of spray-dried formulation of natural mineral coated probiotics derived from lava seawater>
분무건조 실험예 6-1: 내산성(단독) Spray drying Experimental Example 6-1: Acid resistance (alone)
염산을 사용하여 Lactobacilli MRS broth(BD) 100㎖의 pH를 3.0으로 조절 후 멸균하고, 멸균된 MRS broth 100㎖에 펩신(Sigma P7000, 250 Units/mg) 0.4g을 혼합하여 인공위액 배지를 제조하였다. Using hydrochloric acid, the pH of 100 ml of Lactobacilli MRS broth (BD) was adjusted to 3.0 and then sterilized, and 0.4 g of pepsin (Sigma P7000, 250 Units/mg) was mixed with 100 ml of sterilized MRS broth to prepare an artificial gastric juice medium. .
제조한 인공위액 배지 100㎖에 분무건조 제조예 2, 분무건조 실시예 2의 프로바이오틱스 분말을 0.5g씩 각각 혼합하였다. 각 혼합액을 즉시 취하여 생리식염수로 희석 후 희석액을 페트리디쉬(Petridish)에 1㎖ 분주하고 멸균된 Bromo cresol purple agar(BD)배지 20㎖을 가하여 굳혔다. 37℃ 정치배양기에서 48시간 배양된 페트리디쉬(Petridish)의 노란색 콜로니를 개수하여 각 프로바이오틱스 분말의 초기 생균수를 확인하였다. 0.5 g of probiotic powders of Spray-drying Preparation Example 2 and Spray-drying Example 2 were mixed in 100 ml of the prepared artificial gastric juice medium. Each mixture was immediately taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed into Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added to solidify. Yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C were counted to confirm the initial viable cell count of each probiotic powder.
이 후, 각 혼합액을 37℃, 2시간 정치배양하고 배양된 배양액을 취하여 생리식염수로 희석 후 희석액을 페트리디쉬(Petridish)에 1㎖ 분주하고 멸균된 Bromo cresol purple agar(BD)배지 20㎖을 가하여 굳혔다. 37℃ 정치배양기에서 48시간 배양된 페트리디쉬(Petridish)의 노란색 콜로니를 개수하여 생균수를 확인하였다.After that, each mixed solution was incubated at 37°C for 2 hours, and the cultured solution was taken, diluted with physiological saline, 1 ml of the diluted solution was dispensed in Petridish, and 20 ml of sterilized Bromo cresol purple agar (BD) medium was added. Solidified. The number of viable cells was confirmed by counting yellow colonies of Petridish cultured for 48 hours in a stationary incubator at 37°C.
각 결과는 하기의 표 13에 나타내었다. Each result is shown in Table 13 below.
구분division 프로바이오틱스초기균수 (CFU/g)Initial number of probiotics (CFU/g) 내산성Acid resistance
초기(CFU/ml)Initial (CFU/ml) 배양후(CFU/ml)After incubation (CFU/ml) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 1.1×1010 1.1×10 10 5.0×108 5.0×10 8 3.1×107 3.1×10 7 6.26.2
실시예 2Example 2 2.1×1011 2.1×10 11 1.2×109 1.2×10 9 5.9×108 5.9×10 8 49.149.1
표 13의 결과에 따르면, 분무건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 분무건조 제조예 2의 프로바이오틱스 분말보다 산성에 대한 내성이 매우 우수함을 알 수 있다(분무건조 실시예 2에서 약 49%의 생존율 확인, 제조예 2와 비교하여 7.9배 증가). According to the results of Table 13, it can be seen that the natural mineral-coated probiotic powder derived from lava seawater of spray-dried Example 2 has much better resistance to acidity than the probiotic powder of Spray-dried Preparation Example 2 (about spray drying Example 2 Confirmation of survival rate of 49%, 7.9 times increase compared to Preparation Example 2).
분무건조 실험예 6-2: 담즙산성(단독) Spray drying Experimental Example 6-2: Bile acidity (alone)
멸균된 Lactobacilli MRS broth(BD) 100㎖에 제균된 oxgall 용액 0.3 ㎖을 혼합하여 인공담즙액 배지를 제조하였다. An artificial bile broth medium was prepared by mixing 0.3 ml of sterilized oxgall solution in 100 ml of sterilized Lactobacilli MRS broth (BD).
이후 제조한 인공담즙액 배지 100㎖에 분무건조 제조예 2, 분무건조 실시예 2의 프로바이오틱스 분말을 0.5g씩 각각 혼합하고, 초기 생균수/ 2시간 정치배양 후의 생균수를 분무건조 실험예 6-1에서처럼 확인하였으며, 이를 표 14에 나타내었다. Subsequently, 0.5 g of the probiotic powders of Preparation Example 2 and Spray Drying Example 2 were mixed in 100 ml of the prepared artificial bile broth, respectively, and the initial viable cell count/the viable cell count after stationary culture for 2 hours was spray-dried Experimental Example 6- It was confirmed as in 1, and it is shown in Table 14.
구분division 프로바이오틱스초기균수 (CFU/g)Initial number of probiotics (CFU/g) 내답즙산성Bile acid resistance
초기 (CFU/g)Initial (CFU/g) 배양후 (CFU/g)After culture (CFU/g) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 1.1×1010 1.1×10 10 5.0×108 5.0×10 8 4.1×108 4.1×10 8 82.082.0
실시예 2Example 2 2.1×1011 2.1×10 11 1.2×109 1.2×10 9 1.9×109 1.9×10 9 158.3158.3
표 14의 결과에 따르면, 분무건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 분무건조 제조예 2의 프로바이오틱스 분말보다 내담즙산성이 1.9배 좋은 것으로 나타났다. According to the results of Table 14, it was found that the natural mineral coated probiotic powder derived from lava seawater of spray-dried Example 2 had 1.9 times better bile acid resistance than the probiotic powder of Spray-dried Preparation Example 2.
분무건조 실험예 6-3: 내산성-내담즙산성(연속) Spray drying Experimental Example 6-3: Acid resistance-bile acid resistance (continuous)
분무건조 제조예 2, 분무건조 실시예 2의 프로바이오틱스 분말을 각각 상기 분무건조 실험예 6-1의 방법에 의하여 내산성 확인시험을 수행하고 배양액을 원심분리하여 상등액을 제거 후 생균을 회수하였다. 회수한 생균을 분무건조 실험예 6-2의 방법에 의하여 내답즙산성 확인시험을 연속적으로 수행하여 결과를 확인하여 표 15에 나타내었다.The probiotic powders of Spray-drying Preparation Example 2 and Spray-drying Example 2 were subjected to an acid resistance test according to the method of Spray-drying Experimental Example 6-1, respectively, and the culture solution was centrifuged to remove the supernatant, and then live bacteria were recovered. The recovered live bacteria were continuously subjected to a test for confirming bile acid resistance according to the method of spray drying Experimental Example 6-2, and the results are shown in Table 15.
구분division 프로바이오틱스초기균수 (CFU/g)Initial number of probiotics (CFU/g) 내산성-내담즙산성Acid resistance-bile acid resistance
초기 (CFU/g)Initial (CFU/g) 배양후 (CFU/g)After culture (CFU/g) 생존율 (%)Survival rate (%)
제조예 2Manufacturing Example 2 1.1×1010 1.1×10 10 5.0×108 5.0×10 8 1.1×108 1.1×10 8 22.022.0
실시예 2Example 2 2.1×1011 2.1×10 11 1.2×109 1.2×10 9 1.6×109 1.6×10 9 133.3133.3
표 15의 결과에 따르면, 분무건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 분무건조 제조예 2의 프로바이오틱스 분말보다 내산성-내담즙성이 강하기 때문에 133% 이상의 매우 뛰어난 생존율 차이가 나는 것을 알 수 있어 본 발명의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 제조방법의 우수성이 입증된다. According to the results of Table 15, it was found that the natural mineral coated probiotic powder derived from lava seawater of spray-dried Example 2 has a very excellent survival rate difference of 133% or more because it has stronger acid resistance-bile resistance than the probiotic powder of Spray-dried Preparation Example 2. It is possible to prove the excellence of the method for producing natural mineral coated probiotics derived from lava seawater of the present invention.
<분무건조 실험예 7: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분무건조 제제의 보관 안정성(온도에 따른 경시적 안정성 비교)><Spray drying Experimental Example 7: Storage stability of spray-dried formulation of natural mineral coated probiotics derived from lava seawater (comparison of stability over time according to temperature)>
분무건조 제조예 2, 분무건조 실시예 2의 프로바이오틱스 분말을 밀폐보관 용기에 각각 5g씩 소분하여 4℃, 15℃, 25℃, 35℃ 항온항습기(습도 75%)에 4개월간 보관하며 1개월 단위로 유산균 생균수 측정법에 의거하여 생균수를 측정하여 표 16에 기재하였다.Spray-drying Preparation Example 2, Spray-drying The probiotic powder of Example 2 is subdivided into a closed storage container by 5 g each, and stored in a thermo-hygrostat (75% humidity) for 4 months at 4°C, 15°C, 25°C, and 35°C. The number of viable cells was measured based on the method for measuring the number of viable lactic acid bacteria and is shown in Table 16.
분무건조 Spray drying 제조예 2Manufacturing Example 2 4℃4 15℃15 25℃25 35℃35℃
0일(CFU/g)Day 0 (CFU/g) 1.1×1010 1.1×10 10 1.1×1010 1.1×10 10 1.1×1010 1.1×10 10 1.1×1010 1.1×10 10
30일(CFU/g)30 days (CFU/g) 1.0×1010 1.0×10 10 4.1×109 4.1×10 9 1.1×109 1.1×10 9 8.3×108 8.3×10 8
60일(CFU/g)60 days (CFU/g) 9.1×109 9.1×10 9 1.4×109 1.4×10 9 6.6×108 6.6×10 8 1.9×108 1.9×10 8
90일(CFU/g)90 days (CFU/g) 8.8×109 8.8×10 9 6.7×108 6.7×10 8 2.3×108 2.3×10 8 7.5×107 7.5×10 7
120일(CFU/g)120 days (CFU/g) 7.4×109 7.4×10 9 3.3×108 3.3×10 8 1.3×108 1.3×10 8 1.2×107 1.2×10 7
생존율(%)Survival rate (%) 67.267.2 3.03.0 1.11.1 0.10.1
분무건조 Spray drying 실시예 2Example 2 4℃4 15℃15 25℃25 35℃35℃
0일(CFU/g)Day 0 (CFU/g) 2.1×1011 2.1×10 11 2.1×1011 2.1×10 11 2.1×1011 2.1×10 11 2.1×1011 2.1×10 11
30일(CFU/g)30 days (CFU/g) 2.1×1011 2.1×10 11 1.9×1011 1.9×10 11 1.7×1011 1.7×10 11 1.2×1011 1.2×10 11
60일(CFU/g)60 days (CFU/g) 2.1×1011 2.1×10 11 1.7×1011 1.7×10 11 1.4×1011 1.4×10 11 9.7×1010 9.7×10 10
90일(CFU/g)90 days (CFU/g) 2.0×1011 2.0×10 11 1.5×1011 1.5×10 11 1.1×1011 1.1×10 11 4.5×1010 4.5×10 10
120일(CFU/g)120 days (CFU/g) 2.0×1011 2.0×10 11 1.5×1011 1.5×10 11 1.0×1011 1.0×10 11 2.2×109 2.2×10 9
생존율(%)Survival rate (%) 95.295.2 71.471.4 47.647.6 10.410.4
표 16의 결과에 따르면, 분무건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말이 분무건조 제조예 2의 프로바이오틱스 분말보다 120일 내의 보관안정성이 높은 것으로 확인된다. According to the results of Table 16, it was confirmed that the natural mineral coated probiotic powder derived from lava seawater of spray-dried Example 2 has higher storage stability within 120 days than the probiotic powder of Spray-dried Preparation Example 2.
<분무건조 실험예 8: 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분무건조 제제의 미네랄 함량><Spray drying Experimental Example 8: Mineral content of spray-dried formulation of natural mineral coated probiotics derived from lava seawater>
용암해수(균주를 배양하지 않은 용암해수 자체), 분무건조 제조예 2, 분무건조 실시예 2의 프로바이오틱스 분말 중의 마그네슘, 칼슘 함량을 식약처 건강기능식품공전의 마그네슘, 칼슘 시험법에 의거하여 분석하여 용암해수 유래 천연 미네랄 성분의 프로바이오틱스 내포량을 표 17에 비교하였다. The contents of magnesium and calcium in the probiotic powders of Lava Seawater (Lava Seawater without culturing the strain itself), spray-dried Preparation Example 2, and Spray-dried Example 2 were analyzed according to the Magnesium and Calcium Test Method of the Health Functional Food Code of the Ministry of Food and Drug Safety. Table 17 shows the amount of probiotics contained in natural mineral components derived from lava seawater.
구분division 마그네슘 (mg/100g)Magnesium (mg/100g) 칼슘 (mg/100g)Calcium (mg/100g)
용암해수 (균주를 배양하지 않은 용암해수 자체)Lava seawater (lava seawater itself without cultivating strains) 114.2114.2 40.140.1
분무건조 제조예 2의 프로바이오틱스 분말Probiotic powder of spray-dried preparation example 2 0.20.2 0.30.3
분무건조 실시예 2의 프로바이오틱스 분말Spray-dried probiotic powder of Example 2 179.5179.5 54.254.2
표 17의 결과에 따르면, 분무건조 실시예 2의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말에, 배양 시의 용암해수 첨가로 인해 마그네슘과 칼슘이 잘 이입되었음을 확인할 수 있다. According to the results of Table 17, it can be seen that magnesium and calcium were well transferred to the natural mineral coated probiotic powder derived from lava seawater of Example 2 of spray drying due to the addition of lava seawater during culture.
한편, 마그네슘, 칼슘은 천연미네랄 중 대표되는 성분으로서, 이 함량 값이 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 함량 값을 대표하는 값이 되어, 이를 기준으로 추가실험을 하여 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말의 미네랄 함량이 0.1~0.5g/100g인 것으로 확인하였다. 이 때, 개별적으로 마그네슘 0.07~0.4g/100g, 칼슘 0.02~0.09g/100g이었다. On the other hand, magnesium and calcium are representative components of natural minerals, and this content value is a value representing the content value of natural mineral coated probiotics derived from lava seawater, and additional experiments are conducted based on this, and natural mineral coated probiotic powder derived from lava seawater. It was confirmed that the mineral content of 0.1 ~ 0.5g / 100g. At this time, respectively, magnesium was 0.07 ~ 0.4g / 100g, calcium was 0.02 ~ 0.09g / 100g.
<분무건조 실험예 9: 균주 별 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분무건조 제제의 제조조건 확인> <Spray drying Experimental Example 9: Confirmation of the manufacturing conditions of a spray-dried formulation of natural mineral coated probiotics derived from lava seawater by strain>
분무건조 실시예 1 조건으로 유산균 배양 시, 유산균 종배양액으로 락토바실러스 람노서스 균주 외에도 다른 종류의 유산균들이 용암해수 첨가배지에서 모두 배양이 원활하게 되는지를 확인하였다. When culturing lactic acid bacteria under the conditions of spray-drying Example 1, it was confirmed that the lactic acid bacteria seed culture solution in addition to the Lactobacillus rhamnosus strains, as well as other types of lactic acid bacteria, were all cultured smoothly in the lava seawater addition medium.
이 때, 비교 조건으로 분무건조 제조예 1의 배양방법으로 제조한 배양액을 제시하였다. At this time, a culture solution prepared by the cultivation method of Spray-drying Preparation Example 1 was presented as a comparative condition.
이 결과는 도 10에 나타내었는데, 분무건조 제조예 1 배양액과 비교하여, 분무건조 실시예 1의 용암해수 첨가배지 배양 조건에서 실험대상 모든 배양액 내 유산균 생균수가 큰 폭으로 증가하는 것을 확인할 수 있다. This result is shown in Fig. 10, compared with the spray-dried Preparation Example 1 culture solution, it can be seen that the number of lactic acid bacteria viable bacteria in all the culture solutions of the experiment is significantly increased under the culture conditions of the lava seawater-added medium of spray-dried Example 1.
이는 상기 조건의 균주별 배양액들이 최종적으로 용암해수 유래 천연 미네랄 코팅 프로바이오틱스를 제조하기에 적합한 조건임을 입증한다. This proves that the culture solutions for each strain under the above conditions are finally suitable conditions for producing natural mineral coated probiotics derived from lava seawater.
<분무건조 실험예 10: 탈염용암해수 배지의 미네랄-단백질염 생성 및 유산균 배양액 내의 생균 수 확인> <Spray drying Experimental Example 10: Generation of mineral-protein salts in desalted lava seawater medium and confirmation of the number of viable bacteria in the lactic acid bacteria culture medium>
분무건조 제조예 1의 기본배지를 제조하는 조건에서 물 대신 탈염 용암해수(대한민국 등록특허 제10-0947637호의 실시예 1 방법 이용)를 배양용수로 이용하여 배지를 제조하였고, 원심분리하여 침전된 미네랄-단백질염의 건조중량을 확인하여 표 18에 나타내었다. Under the conditions of preparing the basic medium of Spray-drying Preparation Example 1, a medium was prepared using desalted lava seawater (using the method of Example 1 of Korean Patent Registration No. 10-0947637) instead of water as culture water, and the mineral precipitated by centrifugation- The dry weight of the protein salt was confirmed and shown in Table 18.
배지에 첨가된 배양용수Culture water added to the medium 미네랄-단백질염 (㎎/㎖)Mineral-protein salt (mg/ml)
용암해수 30%(v/v) (분무건조 실시예 1 조건) Lava seawater 30% (v/v) (spray drying Example 1 condition) 11.811.8
탈염 용암해수 100%100% desalted lava seawater 0.40.4
또한, 상기 표 18의 배지에 락토바실러스 람노서스 종배양균을 배양하여 얻은 배양액을 실시예 2의 방법으로 제조하여 유산균 생균수를 측정하였다(분무건조). 이 값은 표 19에 나타내었다. In addition, a culture solution obtained by culturing Lactobacillus rhamnosus spp. in the medium of Table 18 was prepared by the method of Example 2, and the number of lactic acid bacteria viable cells was measured (spray-dried). These values are shown in Table 19.
배양액Culture medium 유산균 분말 생균수 (CFU/g)Lactobacillus powder viable cell count (CFU/g)
용암해수 30%(v/v) (분무건조 실시예 1 조건)를 배양용수로 하여 배양된 것Cultured using 30% (v/v) of lava seawater (spray-dried Example 1 condition) as culture water 2.1 × 1011 2.1 × 10 11
탈염 용암해수 100%(v/v)를 배양용수로 하여 배양된 것Cultured with 100% (v/v) desalted lava seawater as culture water 1.2 × 1010 1.2 × 10 10
상수 100%(v/v) (분무건조 제조예 1 조건)를 배양용수로 하여 배양된 것Cultured with water for cultivation using constant 100% (v/v) (Spray-dried Preparation Example 1 condition) 1.1 × 1010 1.1 × 10 10
표 18과 표 19의 결과를 확인하면, 탈염 용암해수를 이용하는 것은 그 결과가 배양용수로서 물을 이용하는 분무건조 제조예 1과 유사하여, 미네랄-단백질염의 생성 및 유산균의 증식에도 거의 영향을 주지 않는 것으로 파악된다. Checking the results in Tables 18 and 19, the result of using desalted lava seawater is similar to that of Spray-drying Preparation Example 1 using water as culture water, and has little effect on the production of mineral-protein salts and proliferation of lactic acid bacteria. It is understood to be.
<분무건조 실험예 11: 용암해수 첨가 배양에 따른 균체 내부 자기방어단백질 형성 확인><Spray drying Experimental Example 11: Confirmation of the formation of self-defense protein inside the cells by lava seawater addition culture>
용암해수를 통한 배양과정에서의 분무건조 조건을 견딜 수 있는 스트레스 응답식 균체 내 자기방어단백질(샤페론)이 형성되는지를 확인하기 위해 2차원 전기영동방법을 사용하여 상수와 용암해수에서의 반응 전후의 단백질 발현 정도의 변화를 겔 이미지로 비교하였다. A two-dimensional electrophoresis method is used to confirm whether the self-defense protein (chaperone) is formed in the bacteria by a stress response that can withstand the spray drying conditions in the cultivation process through lava seawater. The change in the protein expression level was compared with a gel image.
구체적으로 분무건조 제조예 1의 균체와 분무건조 실시예 1의 배양액 내 균체 100 mg을 회수하여 PBS (phosphate buffered saline, pH 7.2)로 3회 washing 한 후, 500 ㎕ lysis buffer (50 mM Tris-HCl, 0.3% SDS, 200 mM DTT, 0.4 mM PMSF, pH 7.5)에 현탁하였다. 유산균 현탁액은 250 mg zirconium bead가 들어있는 2 ㎖ micro cap tube로 옮겨 4℃에서 균체를 파쇄하여 균체 파쇄물을 얻었다. 상기 균체 파쇄물로부터 95℃, 10분간 열처리 한 후, 다시 4℃, 12,000 rpm으로 원심분리하여 상등액만 획득하였다. 단백질이 존재하는 상등액은 desalting column을 통해 salt를 제거하고 아세톤으로 단백질만을 침전시킨 다음, 에탄올로 washing 후, 상온에서 건조하고 IEF (isoelectric focusing) 용액 (8M urea, 0.12%(w/v) destreak solution, 4%(w/v) CHAPS, 2%(w/v) IPG buffer)로 용해시키고 100~150 ㎍의 단백질을 pI 3~10 범위의 immobiline dry strip에 cup loading하여 IEF를 수행하고 종료후, strip을 SDS-PAGE로 gel image화하여 용암해수 배양법으로 발현된 새로운 단백질이 있음을 확인하였고(도 11), 스트레스에 의한 샤페론 단백질이 증가하는지를 명확히 하기 위해 다음의 실험에서 대표 샤페론 단백질의 유전자 발현 변화를 분석하였다.Specifically, 100 mg of the cells of the spray-dried Preparation Example 1 and 100 mg of the cells of the spray-drying Example 1 were collected, washed three times with PBS (phosphate buffered saline, pH 7.2), and then 500 µl lysis buffer (50 mM Tris-HCl). , 0.3% SDS, 200 mM DTT, 0.4 mM PMSF, pH 7.5). The lactic acid bacteria suspension was transferred to a 2 ml micro cap tube containing 250 mg zirconium bead, and the cells were crushed at 4°C to obtain a cell lysate. After heat treatment at 95° C. for 10 minutes from the cell lysate, it was centrifuged again at 4° C. and 12,000 rpm to obtain only the supernatant. From the supernatant containing protein, remove salt through a desalting column, precipitate only protein with acetone, wash with ethanol, dry at room temperature, and IEF (isoelectric focusing) solution (8M urea, 0.12%(w/v) destreak solution). , 4% (w/v) CHAPS, 2% (w/v) IPG buffer), and cup loading 100-150 ㎍ of protein into an immobiline dry strip in the range of pI 3-10 to perform IEF, and after completion, The strip was gel-imaged by SDS-PAGE to confirm that there was a new protein expressed by the lava seawater culture method (FIG. 11), and the gene expression change of the representative chaperone protein in the following experiment to clarify whether the chaperone protein increased due to stress. Was analyzed.
용암해수를 통한 배양과정에서의 분무건조 조건을 견딜 수 있는 스트레스 응답식 균체 내 자기방어단백질(샤페론)으로서 대표적인 세포 분열 및 방어기전을 촉진하는 GroEL 유전자 발현이 증가되는지를 확인하기 위해 cDNA 합성법 및 전기영동방법을 사용하여 상수와 용암해수에서의 반응 전후의 mRNA 발현 정도의 변화를 겔 이미지로 비교하였다. CDNA synthesis method and electrophoresis to confirm whether the expression of GroEL gene that promotes typical cell division and defense mechanisms as a stress-responsive microbial self-defense protein (chaperone) that can withstand spray drying conditions in the process of cultivation through lava seawater is increased. The change in the level of mRNA expression before and after the reaction in constant water and lava seawater was compared with gel images using the Yeongdong method.
구체적으로 분무건조 제조예 1의 균체와 분무건조 실시예 1의 배양액 내 균체 100 mg을 회수하여 PBS (phosphate buffered saline, pH 7.2)로 3회 washing 한 후, 500 ㎕ lysis buffer (50 mM Tris-HCl, 0.3% SDS, 200 mM DTT, 0.4 mM PMSF, pH 7.5)에 현탁하였다. 다시 4℃, 12,000 rpm으로 원심분리하여 상등액을 제거하고 퀴아졸 (QIAzol, QIAGEN 社) 1 ml를 첨가하여 퀴아젠 사의 RNA 분리법에 따라 RNA를 분리하고 정량한 뒤 1 μg의 RNA로 cDNA를 합성하여 1.5% agarose gel에 전기영동하여 밴드 증폭 양상을 확인하였다(도 6). PCR에 사용된 프라이머는 마크로젠 社에서 합성하여 사용하였고, 프라이머 서열은 하기 표 20에 나타내었다.Specifically, 100 mg of the cells of the spray-dried Preparation Example 1 and 100 mg of the cells of the spray-drying Example 1 were collected, washed three times with PBS (phosphate buffered saline, pH 7.2), and then 500 µl lysis buffer (50 mM Tris-HCl). , 0.3% SDS, 200 mM DTT, 0.4 mM PMSF, pH 7.5). After centrifugation again at 4°C and 12,000 rpm to remove the supernatant, 1 ml of quiazole (QIAzol, QIAGEN) was added to isolate and quantify RNA according to Qiagen's RNA separation method, and then cDNA was synthesized with 1 μg of RNA. The band amplification pattern was confirmed by electrophoresis on 1.5% agarose gel (Fig. 6). Primers used for PCR were synthesized and used by Macrogen, and the primer sequences are shown in Table 20 below.
유전자gene ForwardForward ReverseReverse
GroELGroEL 5’-GAAGGTATGAAGAACGTC-3’5’-GAAGGTATGAAGAACGTC-3’ 3’-CTTGTTCTAAGCACCGTG-5’3’-CTTGTTCTAAGCACCGTG-5’
도 12를 참고하면, 분무건조 제조예 1 배양 균체보다 분무건조 실시예 1 배양 균체 내 GroEL 유전자의 mRNA 발현이 증가함에 따라 합성된 cDNA의 밴드가 월등히 두껍게 확인되었으며, 이에 따라 분무건조 실시예 1의 용암해수 배양을 통해 자기방어단백질(샤페론)의 발현이 증가하여 분무건조 시 열 안정성을 가질 수 있는 것으로 판단된다.Referring to FIG. 12, as the mRNA expression of the GroEL gene in the spray-dried Example 1 increased than the spray-dried Preparation Example 1 cultured cells, the synthesized cDNA band was confirmed to be significantly thicker, and accordingly, the spray-dried Example 1 It is believed that the expression of self-defense protein (chaperone) is increased through lava seawater cultivation, and thus thermal stability can be obtained when spray-dried.
이상과 같이, 본 발명에 대해 동결건조 및 분무건조를 통해 상기 제조예, 실시예 및 실험예를 참조하고 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명에 속하는 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허 청구 범위의 기술적 사항에 의해 정해져야 할 것이다. As described above, the preparation examples, examples, and experimental examples have been referenced and described through freeze-drying and spray-drying for the present invention, but these are merely exemplary, and those of ordinary skill in the art pertaining to the present invention If so, it will be understood that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical details of the appended claims.

Claims (15)

  1. (제1단계) 용암해수가 30~70%(v/v) 포함된 물을 배양용수로 이용하여 제조된 유산균 배양용 배지를 준비하는 단계; 및,(Step 1) preparing a culture medium for lactic acid bacteria prepared by using water containing 30-70% (v/v) lava seawater as culture water; And,
    (제2단계) 상기 유산균 배양용 배지에 유산균을 접종하고 배양하여 배양액을 얻는 단계;(Second step) obtaining a culture solution by inoculating and culturing the lactic acid bacteria in the culture medium for lactic acid bacteria;
    를 포함하는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.Lava seawater-derived natural mineral coating method for producing probiotics comprising a.
  2. 제1항에 있어서, The method of claim 1,
    (제3단계) 제2단계의 배양액을 원심분리하여 얻은 침전물을 건조하거나, 상기 제2단계의 배양액을 농축하고 건조하는 단계;(3rd step) drying the precipitate obtained by centrifuging the culture solution of the second stage, or concentrating and drying the culture solution of the second stage;
    를 포함하는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.Lava seawater-derived natural mineral coating method for producing probiotics comprising a.
  3. 제2항에 있어서, The method of claim 2,
    상기 건조는 동결건조 또는 분무건조를 통해 수행하는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.The drying is a method for producing natural mineral coated probiotics derived from lava seawater, characterized in that the drying is carried out through freeze drying or spray drying.
  4. 제1항에 있어서, The method of claim 1,
    제1단계의 배지는, 구성 성분으로, 포도당, 효모추출물, 소이펩톤, 카제인이 포함되고, 상기 구성 성분을 용암해수가 30~70%(v/v) 포함된 물에 용해하고 멸균하여 미네랄-단백질염이 형성된 유산균 배양용 배지인 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.The medium of the first step contains, as constituents, glucose, yeast extract, soypeptone, and casein, and the constituents are dissolved in water containing 30 to 70% (v/v) of lava seawater and sterilized to mineral- A method for producing natural mineral coated probiotics derived from lava seawater, characterized in that it is a medium for culturing lactic acid bacteria in which protein salts are formed.
  5. 제1항에 있어서, The method of claim 1,
    상기 제2단계의 유산균은 락토바실러스 속 (Lactobacillus sp.), 비피도박테리움 속 (Bifidobacterium sp.), 스트렙토코커스 속 (Streptococcus sp.), 락토코커스 속 (Lactococcus sp.), 엔테로코커스 속 (Enterococcus sp.), 페디오코커스 속 (Pediococcus sp.) 및 바이셀라 속 (Weissella sp.)으로 이루어진 군 중에서 선택되는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.Lactic acid of the second step is Lactobacillus genus (Lactobacillus sp.), Bifidobacterium (Bifidobacterium sp.), Streptococcus genus (Streptococcus sp.), Lactococcus genus (Lactococcus sp.), Enterococcus genus (Enterococcus sp.), Pediococcus sp., and Weissella sp.
  6. 제1항에 있어서, The method of claim 1,
    상기 제2단계의 유산균 배양은 유가식배양(fed-batch culture) 방법으로 수행되는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.The second step of culturing the lactic acid bacteria is a method for producing natural mineral coated probiotics derived from lava seawater, characterized in that it is carried out by a fed-batch culture method.
  7. 제2항에 있어서, The method of claim 2,
    상기 제3단계에서 원심분리를 통해 회수된 침전물은 미네랄-단백질염과 균체의 혼합물로서, 침전물 회수 이후 교반 과정에 따른 균질화를 통해 미네랄-단백질로 코팅된 균체를 얻는 과정이 더 수행되는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.The sediment recovered through centrifugation in the third step is a mixture of mineral-protein salts and cells, and the process of obtaining the mineral-protein coated cells is further performed through homogenization according to the stirring process after the sediment is recovered. A method for producing natural mineral coated probiotics derived from lava seawater.
  8. 제7항에 있어서, The method of claim 7,
    미네랄-단백질염이 코팅된 균체의 코팅안정화를 위해, In order to stabilize the coating of cells coated with mineral-protein salts,
    히드록시프로필메틸셀룰로오스(HPMC), 카르복시메틸셀룰로오스(CMC), 폴리비닐피롤리돈(PVP), 폴리비닐알콜(PVA) 및 키토산으로 이루어진 군 중에서 1종 이상 선택되는 바인더; 및, A binder selected from the group consisting of hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and chitosan; And,
    트레할로스;를 첨가하는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법.Trehalose; method for producing a natural mineral coated probiotics derived from lava seawater, characterized in that the addition.
  9. 제8항에 있어서, The method of claim 8,
    바인더는 용암해수가 30~70%(v/v) 포함된 물에 용해한 용액 상태이고, 미네랄-단백질염이 코팅된 균체에 바인더 용액을 먼저 첨가하여 교반한 뒤 트레할로스를 혼합 후 건조하는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법. The binder is in the form of a solution dissolved in water containing 30 to 70% (v/v) of lava seawater, and a binder solution is first added to the cells coated with mineral-protein salts, stirred, and then trehalose is mixed and dried. A method for producing natural mineral coated probiotics derived from lava seawater.
  10. 제2항에 있어서,The method of claim 2,
    상기 제3단계의 농축 시, 상기 배양액이 농축되면서 균질화를 통해 미네랄-단백질염이 균체 외부에 코팅되는 것이 특징인 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법. When the concentration in the third step, the culture medium is concentrated while homogenizing the mineral-protein salt is coated on the outside of the cells, characterized in that the production method of natural mineral coated probiotics derived from lava seawater.
  11. 제10항에 있어서, The method of claim 10,
    농축 이후, 균체의 코팅을 안정화하기 위해, 바인더로서 히드록시프로필메틸셀룰로오스(HPMC), 카르복시메틸셀룰로오스(CMC), 폴리비닐피롤리돈(PVP), 폴리비닐알콜(PVA) 및 키토산으로 이루어진 군 중에서 1종 이상을 첨가하는 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법. After concentration, in order to stabilize the coating of the cells, as a binder, from the group consisting of hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and chitosan Method for producing a natural mineral coated probiotics derived from lava seawater, characterized in that at least one is added.
  12. 제1항의 방법으로 제조한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말. Lava seawater-derived natural mineral coated probiotic powder prepared by the method of claim 1.
  13. 제13항에 있어서, The method of claim 13,
    상기 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말의 미네랄 함량이 0.1~0.5 중량%인 것을 특징으로 하는 용암해수 유래 천연 미네랄 코팅 프로바이오틱스. Natural mineral coated probiotics derived from lava seawater, characterized in that the mineral content of the natural mineral coated probiotics powder derived from lava seawater is 0.1 to 0.5% by weight.
  14. 제13항의 용암해수 유래 천연 미네랄 코팅 프로바이오틱스 분말을 함유하는 식품.A food containing the natural mineral coated probiotic powder derived from lava seawater of claim 13.
  15. 제14항에 있어서, The method of claim 14,
    상기 식품은 장내 유산균 증식용, 장내 유해균 억제용 또는 배변활동 증진용 건강기능식품인 것을 특징으로 하는 식품. The food is a food, characterized in that for the growth of lactic acid bacteria in the intestine, for suppressing harmful bacteria in the intestine, or for promoting bowel activity.
PCT/KR2020/004489 2019-04-05 2020-04-02 Method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same WO2020204615A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190039918A KR102084350B1 (en) 2019-04-05 2019-04-05 Method of preparing lava seawater mineral coating probiotics and lava seawater mineral coating probiotics thereby
KR10-2019-0039918 2019-04-05
KR10-2020-0022437 2020-02-24
KR1020200022437A KR102305076B1 (en) 2020-02-24 2020-02-24 Method of preparing lava seawater natural mineral coating probiotics and spray-drided formulations of lava seawater natural mineral coating probiotics thereby

Publications (1)

Publication Number Publication Date
WO2020204615A1 true WO2020204615A1 (en) 2020-10-08

Family

ID=72667241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004489 WO2020204615A1 (en) 2019-04-05 2020-04-02 Method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same

Country Status (1)

Country Link
WO (1) WO2020204615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102323673B1 (en) * 2021-04-12 2021-11-08 주식회사 현대바이오랜드 Manufacturing method for HtrA(high temperature requirement A) chaperone probiotics and composition manufactured through thereof having the effect of controlling the intestinal microbiome for the treatment of inflammatory bowel disease

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018522A (en) * 2002-06-18 2004-01-22 Ichiro Ito Disease preventive and therapeutic formulation comprising sea mineral and lactobacillus symbiotic culture extract
KR20130046082A (en) * 2011-10-27 2013-05-07 재단법인 제주테크노파크 A method for preparing a fermentation product of desalinized magma seawater, the product obtained thereby and a cosmetic composition using the same
KR20160060676A (en) * 2013-10-17 2016-05-30 가부시키가이샤 게놈소야쿠겡큐쇼 New lactic acid bacterium, natural immunostimulant having new lactic acid bacterium as active ingredient, and food or drink containing new lactic acid bacterium
KR101927859B1 (en) * 2018-07-17 2018-12-11 주식회사한국야쿠르트 Method for improving the stability and coating efficiency of probiotics using ultrasonic wave after freeze-drying and food composition containing freeze-dried powder of probiotics prepared thereby as effective component
KR20190008597A (en) * 2017-07-17 2019-01-25 주식회사 비피도 Culturing method of lactic acid bacterium using deep sea water medium and medium composition for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018522A (en) * 2002-06-18 2004-01-22 Ichiro Ito Disease preventive and therapeutic formulation comprising sea mineral and lactobacillus symbiotic culture extract
KR20130046082A (en) * 2011-10-27 2013-05-07 재단법인 제주테크노파크 A method for preparing a fermentation product of desalinized magma seawater, the product obtained thereby and a cosmetic composition using the same
KR20160060676A (en) * 2013-10-17 2016-05-30 가부시키가이샤 게놈소야쿠겡큐쇼 New lactic acid bacterium, natural immunostimulant having new lactic acid bacterium as active ingredient, and food or drink containing new lactic acid bacterium
KR20190008597A (en) * 2017-07-17 2019-01-25 주식회사 비피도 Culturing method of lactic acid bacterium using deep sea water medium and medium composition for the same
KR101927859B1 (en) * 2018-07-17 2018-12-11 주식회사한국야쿠르트 Method for improving the stability and coating efficiency of probiotics using ultrasonic wave after freeze-drying and food composition containing freeze-dried powder of probiotics prepared thereby as effective component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102323673B1 (en) * 2021-04-12 2021-11-08 주식회사 현대바이오랜드 Manufacturing method for HtrA(high temperature requirement A) chaperone probiotics and composition manufactured through thereof having the effect of controlling the intestinal microbiome for the treatment of inflammatory bowel disease

Similar Documents

Publication Publication Date Title
WO2015122717A1 (en) Novel lactic acid bacteria having obesity inhibitory effect and use thereof
EP3454869A1 (en) A composition comprising a lactic acid bacteria for preventing and treating vaginosis and the use thereof
WO2021182829A1 (en) Lactobacillus rhamnosus strain having intestinal immunomodulatory function and preventive or therapeutic activity for inflammatory bowel disease
WO2018143678A1 (en) Novel lactic acid bacteria and use thereof
WO2020075949A1 (en) Novel lactobacillus plantarum strain atg-k2, atg-k6 or atg-k8, and composition for preventing or treating vaginitis comprising same
WO2017047968A1 (en) Novel lactobacillus having various functions, and use thereof
WO2017204415A1 (en) Novel lactic acid bacteria capable of controlling blood sugar and use thereof
WO2015115790A1 (en) Bacillus sp. strain having improved fermented soybean meal productivity, and method for preparing fermented soybean meal by using same
WO2020050553A1 (en) Probiotic strain for upper respiratory tract infection, stress, anxiety, memory and cognitive dysfunctions, and ageing
WO2013151362A1 (en) Novel bacillus subtilis
WO2017222335A1 (en) Antimicrobial peptide having synergistic antibacterial effect with antibiotics on multidrug resistant bacteria, and use thereof
WO2021162282A1 (en) Composition using novel lactobacillus plantarum kc3 strain for prevention or treatment of immune impairment, respiratory inflammatory disease, allergy, and asthma and use thereof
WO2020091312A1 (en) Composition for preventing or treating alcoholic intestinal injury, containing probiotics as active ingredient
WO2021040186A1 (en) Akkermansia muciniphila eb-amdk27 strain and use thereof
WO2018004224A2 (en) Novel sporichthyaceae microorganism and use thereof
WO2021066549A1 (en) Lactobacillus acidophilus kbl409 strain and use thereof
WO2011158998A1 (en) Strain of bacillus amyloliquefaciens having a high vitamin k2 producing ability
WO2021221398A1 (en) Novel lactic acid bacteria having excellent immune function enhancement effect, and food composition, health functionl food composition and probiotics comprising same
WO2015174747A1 (en) Novel antibacterial compound and use thereof
WO2023055188A1 (en) Novel probiotics and use thereof
WO2020204615A1 (en) Method for producing lava seawater-derived natural mineral-coated probiotics and lava seawater-derived natural mineral-coated probiotics using same
WO2020071667A1 (en) Composition comprising molokhia extract as active ingredient for improving gut microbiome or for alleviating, preventing, or treating intestinal inflammation, leaky gut syndrome, obesity, or metabolic disease
WO2014189176A1 (en) Ecklonia cava extract for reducing weight and process for preparation thereof
WO2022039561A1 (en) Composition for treating or preventing clostridium difficile infection
WO2022240224A1 (en) Composition containing gellan gum as active ingredient for improving gut microbiota and composition containing same for alleviation, prevention, or treatment of metabolic disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785226

Country of ref document: EP

Kind code of ref document: A1