WO2017047528A1 - 画像表示装置およびヘッドマウントディスプレイ - Google Patents

画像表示装置およびヘッドマウントディスプレイ Download PDF

Info

Publication number
WO2017047528A1
WO2017047528A1 PCT/JP2016/076690 JP2016076690W WO2017047528A1 WO 2017047528 A1 WO2017047528 A1 WO 2017047528A1 JP 2016076690 W JP2016076690 W JP 2016076690W WO 2017047528 A1 WO2017047528 A1 WO 2017047528A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
diffraction efficiency
birefringence
diffractive optical
Prior art date
Application number
PCT/JP2016/076690
Other languages
English (en)
French (fr)
Inventor
誉之 岡野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017539880A priority Critical patent/JP6597784B2/ja
Priority to EP16846399.0A priority patent/EP3351996A4/en
Publication of WO2017047528A1 publication Critical patent/WO2017047528A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic

Definitions

  • the present invention relates to an image display device and a head mounted display (hereinafter also referred to as HMD (Head-Mounted Display)) provided with the image display device.
  • HMD Head-Mounted Display
  • an image display device that allows an observer to observe an image (virtual image) by guiding image light from a display element in a light guide prism and guiding it to an observation pupil through a diffractive optical element.
  • an observer visually recognizes an image, if there is uneven brightness (brightness difference) in the plane of the image, the image quality is impaired.
  • a hologram having interference fringes with different slant angles (tilt angles) is used as a diffractive optical element to reduce luminance unevenness depending on the incident angle of incident parallel light.
  • the diffraction efficiency of the diffractive optical element is increased on the side closer to the light source side, while being decreased on the far side, and the light from the light source is diffracted and reflected by the diffractive optical element a plurality of times for observation. By guiding it to the pupil, the light intensity balance of the light emitted from the diffractive optical element is maintained, and the brightness is made uniform.
  • Patent Document 4 an observer with an eye width distance different from the designed eye width distance causes both left and right images to be observed with both eyes, and the left and right images are added together, thereby causing color unevenness. A small image is observed. Color unevenness occurs when the intensity of each wavelength included in the light reaching the observation pupil is different. Therefore, it is considered that improvement in color unevenness leads to improvement in luminance unevenness.
  • Patent Document 4 there is a restriction that an image must be viewed with both eyes in order to improve color unevenness and brightness unevenness.
  • JP 2013-117743 A see claim 1, paragraph [0014], etc.
  • JP 2014-63173 A reffer to paragraphs [0130], [0137], FIG. 21, etc.
  • JP 2008-287049 A refer to claim 1, paragraphs [0012], [0013], [0037], FIG. 1, etc.
  • a resin material that generates birefringence such as an acrylic resin is used.
  • a light guide element is formed using a birefringent material, when light enters the light guide element, the polarization state of the light guided by the light guide element changes due to birefringence.
  • the degree of birefringence varies depending on the location in the light guide element (the optical path of the light to be guided). For this reason, light having different polarization states enters at different positions of the diffractive optical element.
  • the diffractive optical element Since the diffractive optical element has a polarization dependency in which the diffraction efficiency changes depending on the polarization state of the incident light, when light of a different polarization state is incident on a different position of the diffractive optical element, the diffraction efficiency changes at the different position. . Therefore, when light diffracted with different diffraction efficiencies depending on the position of the diffractive optical element is guided to the observation pupil, luminance unevenness due to the change in the diffraction efficiency occurs in the image observed by the observer.
  • Patent Documents 2 to 4 described above the polarization dependence of the diffraction efficiency of the diffractive optical element is not studied at all.
  • the polarization state changes due to birefringence. It is not possible to reduce luminance unevenness due to the above.
  • the present invention has been made to solve the above-described problems, and its purpose is to reduce luminance unevenness caused by a change in polarization state due to birefringence even when birefringence occurs in a light guide element.
  • An object of the present invention is to provide an image display device capable of improving image quality and an HMD equipped with the image display device.
  • An image display device includes a display element that displays an image, a light guide element that internally guides image light from the display element, and the image that is guided by the light guide element.
  • An image display device comprising a diffractive optical element that diffracts light and guides it to an observation pupil, wherein the light guide element is birefringent that birefringes at least part of the image light incident on the diffractive optical element.
  • the image light is incident on the light guide element in the direction of polarized light that is P-polarized with respect to the diffractive optical element when the light guide element has no birefringence, and
  • the optical element has a diffraction characteristic in which the peak of the diffraction efficiency varies depending on the position in the element plane when the diffraction efficiency for the same polarized light is measured at different positions in the element plane of the diffractive optical element.
  • the efficiency peak is observed in the diffractive optical element. Te, from the position of the image of the light path of birefringence amount is minimized in the light guide element, it lowers with distance in the element plane.
  • An image display device includes a display element that displays an image, a light guide element that internally guides image light from the display element, and the light guide element guided by the light guide element.
  • An image display device comprising a diffractive optical element that diffracts image light and guides it to an observation pupil, wherein the light guide element is a birefringent member that birefringes at least part of the image light incident on the diffractive optical element.
  • the image light is incident on the light guide element in the direction of polarized light that is S-polarized with respect to the diffractive optical element when the light guide element has no birefringence
  • the diffractive optical element has diffraction characteristics in which the peak of the diffraction efficiency varies depending on the position in the element plane when the diffraction efficiency for the same polarized light is measured at different positions in the element plane of the diffractive optical element, The peak of diffraction efficiency is in the diffractive optical element.
  • a head mounted display includes the above-described image display device and a support member that supports the image display device in front of an observer's eyes.
  • luminance unevenness due to a change in polarization state due to birefringence can be reduced by setting the diffraction characteristics as described above in the diffractive optical element. Can be improved.
  • FIG. 1 is a perspective view showing a schematic configuration of an image display apparatus according to Embodiment 1 of the present invention. It is sectional drawing of the said image display apparatus. It is a front view when the said image display apparatus is seen from the observer side. It is a front view when the eyepiece optical system of the said image display apparatus is seen from the observer side.
  • it is explanatory drawing which shows an example of the polarization state in the time of the entrance to an eyepiece prism, and the time of entrance to a hologram about each image light radiate
  • the left, right, front, back, and top and bottom directions refer to the left, right, front, back, and top and bottom directions based on the position (line-of-sight direction) when the observer observes the image. Then, the eye width direction (left-right direction), the front-rear direction, and the up-down direction at the time of image observation are set as the X direction, the Y direction, and the Z direction, respectively (however, the forward and backward directions of each direction are not particularly limited). Moreover, in each drawing, in order to avoid that an optical path becomes complicated, only the typical optical path is shown with the broken line.
  • FIG. 1 and 2 are a perspective view and a cross-sectional view showing a schematic configuration of the image display device 1 of the present embodiment, and FIG. 3 is a front view when the image display device 1 is viewed from the observer side.
  • the image display device 1 includes a light source 2, an illumination mirror 3, a diffuser plate 4, a polarization beam splitter (PBS) 5, a display element 6, and an eyepiece optical system 7.
  • the light source 2 and the illumination mirror 3 constitute an illumination optical system 10 that illuminates the display element 6.
  • the light source 2 is composed of RGB integrated LEDs that emit light corresponding to each color of R (red), G (green), and B (blue). A plurality of light emitting points (each light emitting point of RGB) are arranged in a substantially straight line in the horizontal direction.
  • the wavelength of light emitted from the light source 2 is, for example, a peak wavelength of light intensity and a wavelength width of half value of light intensity, 462 ⁇ 12 nm (B light), 525 ⁇ 17 nm (G light), 635 ⁇ 11 nm (R light). It is.
  • the light source 2 may be a laser light source.
  • the light source 2 includes two pairs of RGB integrated LEDs.
  • the light emitting points are arranged in a substantially straight line so that the light emitting points are symmetrically positioned with respect to the optical axis incident surface of the hologram 13 to be described later (for example, light emission in the order of BGRRGB in the X direction). Dots are lined up). Thereby, the distribution of RGB light intensity can be made symmetric in the X direction.
  • the illumination mirror 3 reflects the light (illumination light) emitted from the light source 2 toward the diffusion plate 4, and the observation pupil P that is an optical pupil (exit pupil) and the light source 2 are substantially conjugate in the YZ plane. It is an optical element that bends the illumination light so that
  • the diffusion plate 4 is a diffusion plate that diffuses incident light in all directions. Although it is possible to omit the arrangement of the diffusing plate 4, it is desirable to dispose the diffusing plate 4 from the viewpoint of widening the light distribution angle of incident light and making the light intensity of the light source 2 more uniform.
  • the diffuser plate 4 may be a diffuser plate (unidirectional diffuser plate) that diffuses incident light only in one direction (for example, the X direction).
  • the PBS 5 reflects only S-polarized light of the incident light in the direction of the display element 6, while out of the light reflected by the display element 6, transmits light corresponding to the image signal ON, that is, a flat plate that transmits P-polarized light. And is attached to a light incident surface (surface 11a) of an eyepiece prism 11 (to be described later) of the eyepiece optical system 7.
  • the display element 6 is a display element that modulates light from the light source 2 and displays an image.
  • the display element 6 is composed of a reflective liquid crystal display element.
  • the display element 6 may have a configuration having a color filter, and is driven in a time division manner so that an RGB image corresponding to the emission color is displayed in synchronization with the time division emission for each RGB of the light source 2. It may be a configuration.
  • the display element 6 is arranged so that light incident from the PBS 5 substantially vertically is reflected almost vertically and directed toward the PBS 5. This facilitates optical design that increases the resolution as compared with a configuration in which light is incident on the reflective display element at a large incident angle.
  • the display surface of the display element 6 is rectangular, and is arranged so that the longitudinal direction of the display surface is the X direction and the short side direction is perpendicular to the X direction.
  • the eyepiece optical system 7 is an optical system for guiding image light from the display element 6 to the observation pupil P, and has positive optical power that is non-axisymmetric (non-rotationally symmetric).
  • the eyepiece optical system 7 includes an eyepiece prism 11, a deflection prism 12, and a hologram 13.
  • the eyepiece prism 11 is a light guide element that guides the image light incident from the display element 6 via the PBS 5 while transmitting the light of the external image (external light), with the upper end of the parallel plate at the upper end. It has a shape that is thicker toward the bottom and thinner at the lower end toward the bottom.
  • the eyepiece prism 11 has surfaces 11a to 11d.
  • the surface 11a is a light incident surface on which image light is incident from the display element 6 via the PBS 5.
  • the surfaces 11b and 11c are two parallel planes that are positioned substantially parallel to the observation pupil P and face each other, and are total reflection surfaces that totally reflect and guide the image light.
  • the surface 11 b on the observation pupil P side also serves as an exit surface for image light diffracted and reflected by the hologram 13.
  • the surface 11d is a pasting surface that connects the surfaces 11b and 11c and to which the hologram 13 is pasted, and is inclined with respect to the surfaces 11b and 11c.
  • the surface 11d is a curved surface (cylindrical surface) having a curvature only in one direction (X direction), but may be a flat surface.
  • the eyepiece prism 11 is joined to the deflection prism 12 with an adhesive 14 so as to sandwich the hologram 13 arranged at the lower end thereof.
  • the deflection prism 12 is bonded to the eyepiece prism 11 and the hologram 13 to form a substantially parallel plate.
  • the hologram 13 is provided in contact with the eyepiece prism 11 and is a diffractive optical element that diffracts the image light guided inside the eyepiece prism 11 and guides it to the observation pupil P.
  • the hologram 13 is reflected by a volume phase type.
  • Type hologram optical element The volume phase type hologram optical element is formed by irradiating a hologram photosensitive material with laser light with two light beams to form fringes (interference fringes) due to interference of the two light beams.
  • interference fringes can be easily formed by photopolymerization of the photopolymer.
  • the volume phase hologram 13 has a plurality of resin layers having different refractive indexes and alternately arranged. It can be said that it includes the composition.
  • the hologram 13 emits light in three wavelength ranges of, for example, 465 ⁇ 5 nm (B light), 521 ⁇ 5 nm (G light), and 634 ⁇ 5 nm (R light) with a peak wavelength of diffraction efficiency and a half width of diffraction efficiency. Diffract (reflect). That is, the RGB diffraction wavelength of the hologram 13 substantially corresponds to the wavelength of RGB image light (the emission wavelength of the light source 2).
  • the light emitted from the light source 2 is reflected by the illumination mirror 3, diffused by the diffusion plate 4, and then enters the PBS 5, where only S-polarized light is reflected in the direction of the display element 6. .
  • incident light is modulated in accordance with an image signal.
  • the image light corresponding to the image signal ON is converted by the display element 6 into light (P-polarized light) whose polarization direction is orthogonal to that of the incident light, and thus is emitted and transmitted through the PBS 5 to the eyepiece prism 11.
  • the light enters the surface 11a.
  • the image light corresponding to the image signal OFF is output as S-polarized light without being converted in the polarization direction by the display element 6, and thus is blocked by the PBS 5 and does not enter the eyepiece prism 11.
  • the incident image light is totally reflected at least once by the two opposing surfaces 11 c and 11 b of the eyepiece prism 11, and then enters the hologram 13, where it is selectively diffracted and reflected for each color of RGB.
  • the surface 11b Are emitted from the surface 11b and reach the observation pupil P. Therefore, at the position of the observation pupil P, the observer can observe the image displayed on the display element 6 as a virtual image.
  • the eyepiece prism 11, the deflecting prism 12, and the hologram 13 transmit almost all of the outside light, the observer can observe the outside image (outside scenery) with see-through. Therefore, the virtual image of the image displayed on the display element 6 is observed while being overlapped with a part of the external image.
  • the illumination optical system 10 As described above, of the illumination light from the illumination optical system 10 (the light source 2 and the illumination mirror 3), light having a predetermined polarization direction (for example, S-polarized light) is reflected by the PBS 5 and guided to the display element 6, while displaying.
  • a predetermined polarization direction for example, S-polarized light
  • the optical path on the light incident side with respect to the eyepiece prism 11 Therefore, the optical members arranged on the light incident side with respect to the eyepiece prism 11 can be arranged in a compact manner while ensuring a desired optical path length from the light source 2 to the eyepiece prism 11. Thereby, size reduction of the image display apparatus 1 becomes easy.
  • a diffractive optical element by using a volume phase type hologram 13 having a plurality of resin layers having different refractive indexes and alternately arranged, desired diffraction characteristics can be obtained by two-beam interference of laser light.
  • An optical element can be easily realized.
  • the diffractive optical element is not limited to the volume phase hologram 13 and may be, for example, a blazed (cross-sectional sawtooth) optical element.
  • the deflecting prism 12 is arranged to realize a good see-through property capable of observing an external image without distortion. However, if it is not necessary to obtain a good see-through property, the deflecting prism 12 is arranged. May be omitted.
  • a reflective liquid crystal display element is used as the display element 6, but a transmissive liquid crystal display element may be used.
  • the liquid crystal display element is arranged so that light having a desired polarization direction (for example, light whose polarization direction is parallel to the optical axis incident surface of the hologram 13) is emitted from the transmissive liquid crystal display element.
  • the arrangement of the PBS 5 can be made unnecessary.
  • the eyepiece prism 11 described above is a resin prism formed of a resin material (birefringent material) that generates birefringence, such as acrylic resin, and birefringent at least part of the image light from the display element 6 incident on the hologram 13.
  • the eyepiece prism 11 has birefringence that divides at least a part of the incident image light into two linearly polarized light beams whose polarization directions (polarization planes) are perpendicular to each other.
  • the degree of birefringence in the eyepiece prism 11 varies depending on the location. For this reason, image light having a different polarization state is incident on the hologram 13 depending on the incident position in the element plane. Details of this point will be described below.
  • FIG. 4 is a front view of the eyepiece optical system 7 as viewed from the observer side (observation pupil P side).
  • the optical paths of the image lights A C , A L, and A R are indicated by broken lines.
  • the image light A C is emitted from the center of the display surface of the display element 6 (see FIG. 3), diffracted and reflected at the center of the element surface of the hologram 13, and then guided to the center of the observation pupil P.
  • the image light AL is emitted from a position on the left side (for example, the left end) of the display surface center of the display element 6, is diffracted and reflected at a position on the left side of the element surface center of the hologram 13, and then is centered on the observation pupil P.
  • the image light is guided to the position on the left side.
  • the image light AR is emitted from a position on the right side (for example, the right end) of the display surface center of the display element 6 and is diffracted and reflected at a position on the right side of the element surface center of the hologram 13.
  • the image light is guided to a position on the right side of the image.
  • an optical axis is an axis that optically connects the center of the display surface of the display element 6 and the center of the observation pupil P, and the optical axis of incident light with respect to the hologram 13 and outgoing light (reflected light).
  • a surface including the optical axis is defined as an optical axis incident surface. This optical axis incident surface is parallel to the YZ plane.
  • the degree of birefringence differs in the left-right direction (X direction), and the birefringence amount is distributed. More specifically, the amount of birefringence is the smallest at the center of the eyepiece prism 11 in the left-right direction (position on the optical axis incident surface), and the birefringence amount increases as the distance from the position on the optical axis incident surface increases in the left-right direction. It is getting bigger. Therefore, the distribution of the birefringence amount in the eyepiece prism 11 is symmetrical in the left-right direction with respect to the optical axis incident surface.
  • an eyepiece prism 11 for example, in resin molding, two molds having a substantially symmetrical shape are prepared, a resin inlet (gate part) is provided at a joint part of the two molds, and the gate part is provided.
  • the resin can be obtained by pouring a resin (for example, acrylic resin) through the mold, cooling, releasing and molding. That is, by casting the resin into the mold and molding the eyepiece prism 11 so that the resin flows symmetrically in the left-right direction in the mold, the eyepiece prism 11 whose birefringence distribution is symmetrical in the left-right direction is obtained. Obtainable.
  • the image light emitted from the display element 6 is incident on the PBS 5 with P-polarized light and is transmitted therethrough, when the eyepiece prism 11 has no birefringence, the image light incident on the eyepiece prism 11 is Then, it enters the hologram 13 as it is with P-polarized light. However, since the eyepiece prism 11 has birefringence as described above, the image light changes its polarization state due to birefringence and enters the hologram 13.
  • FIG. 5 shows an example of polarization states of the image lights A C , A L, and A R when they are incident on the eyepiece prism 11 and when they are incident on the hologram 13. Because birefringence is near the center in the lateral direction of the ocular prism 11 is small, the image light A C guided while being totally reflected in the lateral direction near the center in the longitudinal direction in the ocular prism 11, the state of P polarized light It is maintained almost as it is and enters the hologram 13. Note that “the amount of birefringence is small” includes the case where the amount of birefringence is zero or substantially zero.
  • the image light A C when the birefringence amount is zero, is incident on the hologram 13 in all P-polarized light, if the birefringence is caused, since a part of the P polarized light is converted into S-polarized light, P-polarized light And S-polarized light are incident on the hologram 13.
  • the amount of birefringence increases as the distance from the center of the eyepiece prism 11 in the left-right direction increases. Therefore, the image guided in the eyepiece prism 11 while being totally reflected in the front-rear direction at a position away from the center in the left-right direction.
  • the rate at which P-polarized light is converted to S-polarized light increases, and enters the hologram 13 in a state containing more S-polarized light than the image light A C.
  • the position where the image light A C is incident is B C
  • the position where the image light A L and A R is incident is B L and B R , respectively. Since the hologram 13 has a polarization dependency in which the diffraction efficiency changes depending on the polarization state of the incident light, when light having a different polarization state enters the different positions B C , B L, and B R of the hologram 13, the position B C ⁇ Diffraction efficiency changes at B L and B R , and uneven brightness occurs. For this reason, in the present embodiment, the hologram 13 has the following diffraction characteristics.
  • FIG. 6 shows diffraction characteristics at different positions B C , B L, and B R in the element plane of the hologram 13.
  • the hologram 13 has diffraction characteristics in which the peak of diffraction efficiency changes depending on the position in the element plane (image light incident position) in all three wavelength regions of RGB.
  • the peak of the diffraction efficiency starts from the position B C on the optical path of the image light (the optical path of the image light A C ) where the birefringence amount of the eyepiece prism 11 is the smallest in the hologram 13 for each of the RGB wavelength ranges. It becomes low as it goes away in the horizontal direction.
  • the peak of the diffraction efficiency of the S-polarized light at positions B C is higher than the peak of diffraction efficiency of S-polarized light at positions B L and B R , and the peak of diffraction efficiency of S-polarized light decreases as it moves away from position B C in the left-right direction (towards positions B L and B R ). ing.
  • the peak of diffraction efficiency of P-polarized light is higher than the peak of diffraction efficiency of P-polarized light at positions B L and B R , and the peak of diffraction efficiency of P-polarized light decreases as it moves away from position B C in the left-right direction (towards positions B L and B R ). ing. As shown in the figure, in the hologram 13, the peak of diffraction efficiency is generally higher for S-polarized light than for P-polarized light.
  • the hologram 13 having the above-mentioned diffraction characteristics can be manufactured as follows.
  • a photopolymer is used as the hologram photosensitive material
  • resin layers having different refractive indexes are periodically formed by photopolymerization of the photopolymer. That is, the hologram photosensitive material is caused to interfere with at least two light beams of coherent light such as a laser beam, and the interference fringes are formed on the hologram photosensitive material.
  • a laser beam Gausian beam
  • FIG. 7 a laser beam having a unimodal intensity distribution as shown in FIG. 7 is used. Then, as shown in FIG.
  • the hologram photosensitive material 13a is exposed with a Gaussian beam (laser beams 1 and 2) so that the center of the Gaussian beam comes to a portion where the diffraction efficiency is to be increased.
  • the intensity distribution of the laser beam is indicated by a broken line.
  • the exposure intensity of the portion where the diffraction efficiency is desired to be increased is increased, the photopolymerization of the photopolymer is further promoted, and a larger refractive index difference can be obtained between the resin layers.
  • the diffraction efficiency of a predetermined portion of the produced hologram 13 is increased.
  • the intensity of the Gaussian beam at the time of exposure decreases as it goes from the portion where the diffraction efficiency is desired to increase to the periphery, the diffraction efficiency decreases as the distance from the predetermined portion in the produced hologram 13 increases.
  • high diffraction efficiency refers to a state where the difference in refractive index between adjacent resin layers when resin layers having different refractive indexes are periodically formed, and conversely, "low diffraction efficiency” Indicates a state where the difference in refractive index between adjacent resin layers is small.
  • the number of light beams (laser light) used for exposure is two, and two light beams are incident on the hologram photosensitive material 13a from opposite directions to interfere with each other.
  • the number of light beams used at the time of exposure and the incident direction (incident angle) of the light beam with respect to the hologram photosensitive material 13a are optically designed. It may be changed depending on the conditions.
  • a Gaussian beam is used and the hologram photosensitive material 13a is exposed using its intensity distribution.
  • a beam having another intensity distribution may be used during exposure.
  • the other beam is shaped into a beam having a desired intensity distribution using an optical element such as a mirror, a lens, or an aperture, and the portion of the shaped beam that has high intensity is irradiated to the portion where the diffraction efficiency is desired to be increased.
  • the hologram photosensitive material 13a may be exposed.
  • exposure after forming a photopolymer layer on the resin prism (eyepiece prism 11), exposure may be performed by irradiating with a laser beam having an intensity distribution that increases the diffraction efficiency at a desired location.
  • the hologram was fabricated so that the in-plane distribution of diffraction efficiency becomes a desired distribution. May be cut out and the cut out hologram may be attached to a resin prism using an adhesive or the like.
  • the image light A C is incident on the eyepiece prism 11 with P polarization, is guided through the eyepiece prism 11 with substantially P polarization, and is incident on the position B C of the hologram 13.
  • the hologram 13 is generally because the diffraction efficiency of the S polarized light is higher than the diffraction efficiency of the P-polarized light, many components of the P-polarized light, and the hologram 13 for S-polarized light component image having a small light A C
  • the diffraction efficiency of (2) becomes low (when the diffraction efficiency of S-polarized light and P-polarized light are added together).
  • the diffraction efficiency at the position B C is higher than the diffraction efficiency at the other positions B L and B R.
  • the image light A L ⁇ A R is enters the ocular prism 11 as P-polarized light, by a change in the polarization state by birefringence, than the image light A C becomes light containing many components of the S-polarized hologram
  • the light beams are incident on 13 positions B L and B R respectively.
  • the diffraction efficiency in the hologram 13 for the image light A L and A R is high in consideration of polarization (because there are many S-polarized components).
  • the diffraction efficiency at the position B L ⁇ B R is less than the diffraction efficiency in other positions B C.
  • the diffraction efficiency considering the polarization (diffraction efficiency based on the total of S-polarized light and P-polarized light) and the distribution of the diffraction efficiency in the element surface of the hologram 13 (diffractive efficiency depending on the position in the element surface) Offset each other.
  • the diffraction efficiency of the image light A C , A L , A R diffracted at each position B C , B L , B R in the element plane of the hologram 13 is as shown by the thick line in FIG. B C , B L , B R are almost aligned.
  • the total contribution of the P-polarized light and the S-polarized light to the total diffraction efficiency is higher in the S-polarized light than in the P-polarized light. It can be said.
  • the diffraction efficiency of the S-polarized light having high contribution to the diffraction efficiency at such total is, since it is set lower than the position B C, the image light A L ⁇ rich in S-polarized light even if a R is incident to the position B L ⁇ B R, when the image light a L ⁇ a R is diffracted by the position B L ⁇ B R, the diffraction efficiency in total of P polarized light and S-polarized light
  • the image light A C is diffracted at the position B C , it becomes possible to approach the total diffraction efficiency of the P-polarized light and the S-polarized light.
  • the intensity difference in the pupil plane of the image light guided from the hologram 13 to the observation pupil P is reduced, so that the luminance unevenness of the image observed at the position of the observation pupil P can be reduced, and the image quality is improved. be able to.
  • the hologram 13 has diffraction characteristics in which the peak of diffraction efficiency varies depending on the positions B C , B L, and B R in the element plane in all three wavelength regions of RGB. Since the peak of the diffraction efficiency decreases with increasing distance from the position B C on the optical path of the image light A C where the birefringence amount of the eyepiece prism 11 is the smallest for each RGB wavelength range, For each color of RGB, the intensity difference of the image light in the pupil plane of the observation pupil P can be reduced. As a result, color unevenness due to the position of the image can be reduced, and the image quality can be further improved.
  • FIG. 6 the distribution of the diffraction efficiency of S-polarized light and the distribution of diffraction efficiency of P-polarized light at different positions B C , B L, and B R in the element plane of the hologram 13 are shown together.
  • the polarized light for which the diffraction efficiency is set is not limited to the above-described S-polarized light and P-polarized light.
  • the diffraction efficiency was measured for a random polarization (unpolarized)
  • the diffraction characteristics may be as follows.
  • the distribution for S polarization and P polarization is also as shown in FIG.
  • the peak of the diffraction efficiency measured for a random polarization at respective positions B C ⁇ B L ⁇ B R is presumed to be located between the peaks of the diffraction efficiency peak and P-polarized light of the diffraction efficiency of the S-polarized light .
  • the peak of the diffraction efficiency for one of the S-polarized light and the P-polarized light is set so as to decrease as the distance from the position B C in the element plane decreases, the peak of the diffraction efficiency for the other polarized light is also set. However, it is thought that it becomes low as it goes away from the position B C in the element plane.
  • the “same polarized light” may be S-polarized light, P-polarized light, or random polarized light.
  • the configuration in which image light is incident on the hologram 13 as S-polarized light is obtained by rotating the transmission axis of the PBS 5 by 90 ° in the configuration of the first embodiment, for example.
  • P-polarized light is reflected by the PBS 5 and guided to the display element 6, while the image light converted by the display element 6 into light (S-polarized light) whose polarization direction is orthogonal to the incident light. This can be realized by entering the PBS 5, transmitting the PBS 5, and entering the eyepiece prism 11.
  • the birefringence of the eyepiece prism 11 is the same as that in the first embodiment. That is, the eyepiece prism 11 has the least amount of birefringence at the center in the left-right direction, and the amount of birefringence increases as the distance from the position on the optical axis incident surface increases in the left-right direction.
  • FIG. 10 shows the polarization states of the image lights A C , A L, and A R according to the present embodiment when they enter the eyepiece prism 11 and when they enter the hologram 13. Because birefringence is near the center in the lateral direction of the ocular prism 11 is small, the image light A C guided while being totally reflected in the lateral direction near the center in the longitudinal direction in the ocular prism 11, the state of the S polarized light It is maintained almost as it is and enters the hologram 13.
  • the amount of birefringence increases as the distance from the center of the eyepiece prism 11 in the left-right direction increases. Therefore, the image guided in the eyepiece prism 11 while being totally reflected in the front-rear direction at a position away from the center in the left-right direction.
  • the rate at which S-polarized light is converted to P-polarized light increases, and enters the hologram 13 in a state containing more P-polarized light than the image light A C.
  • Figure 11 shows the diffraction characteristics at different positions B C ⁇ B L ⁇ B R within the element surface of the hologram 13.
  • the hologram 13 has diffraction characteristics in which the peak of diffraction efficiency changes depending on the position in the element plane (image light incident position) in all three wavelength regions of RGB.
  • the peak of the diffraction efficiency in the hologram 13 for each wavelength band of RGB, position B on the optical path of the image light birefringence amount of the ocular prism 11 is minimized (the optical path of the image light A C) From C , the distance increases in the horizontal direction in the element plane.
  • the peak of the diffraction efficiency of the S-polarized light at positions B C is lower than the peak of diffraction efficiency of S-polarized light at the positions B L and B R , and the peak of diffraction efficiency of S-polarized light increases as it moves away from the position B C in the horizontal direction (towards the positions B L and B R ). ing.
  • the peak of diffraction efficiency of P-polarized light is lower than the peak of diffraction efficiency of P-polarized light at positions B L and B R , and the peak of diffraction efficiency of P-polarized light increases as it moves away from position B C in the left-right direction (towards positions B L and B R ). ing. Note that, in the hologram 13, the peak of diffraction efficiency is higher for S-polarized light than for P-polarized light, as in the first embodiment.
  • the hologram 13 having the above-described diffraction characteristics can be manufactured as follows.
  • a bimodal mode in which the center intensity is weak such as TEM 10 or TEM 01
  • the center part having a weak intensity is diffracted by the hologram 13. Irradiate and expose areas with low efficiency.
  • the TEM is an abbreviation for Transverse ElectroMagnetic mode, and indicates a transverse mode in which electromagnetic waves propagate. Further, exposure may be performed by shaping a laser beam into a beam having a desired intensity distribution using an optical element such as a mirror, a lens, or a diaphragm.
  • the image light A C enters the ocular prism 11 with S-polarized light is guided inside the ocular prism 11 remains substantially S-polarized light, the hologram 13 Is incident on position B C.
  • the hologram 13 since the diffraction efficiency of the S polarized light is higher than the diffraction efficiency of the P-polarized light, many components of the S-polarized light, and the diffraction efficiency of the hologram 13 for P-polarized light component image having a small light A C is When the polarization is taken into consideration, it becomes high. However, paying attention to the distribution of diffraction efficiency in the element plane, the diffraction efficiency at the position B C is lower than the diffraction efficiency at the other positions B L and B R.
  • the image light A L ⁇ A R is incident on the eyepiece prism 11 with S-polarized light, by a change in the polarization state by birefringence, than the image light A C becomes light containing much component of P polarized light hologram
  • the light beams are incident on 13 positions B L and B R respectively.
  • the diffraction efficiency of the hologram 13 for the image lights A L and A R is low in consideration of polarization (because there are few S-polarized components).
  • the diffraction efficiency at the positions B L and B R is higher than the diffraction efficiency at the other positions B C.
  • the diffraction efficiency of S-polarized light which has a high contribution to the total diffraction efficiency of the total of P-polarized light and S-polarized light, is set lower than the positions B L and B R.
  • the diffraction efficiency in total of P polarized light and S polarized light It becomes possible to approach the total diffraction efficiency of P-polarized light and S-polarized light when the image light A L / A R is diffracted at the positions B L / B R.
  • the intensity difference in the pupil plane of the image light guided from the hologram 13 to the observation pupil P is reduced, so that the luminance unevenness of the image observed at the position of the observation pupil P can be reduced, and the image quality is improved. be able to.
  • the hologram 13 has diffraction characteristics in which the peak of diffraction efficiency changes depending on the position B C ⁇ B L ⁇ B R in the element plane in all three wavelength regions of RGB. Since the peak of the diffraction efficiency increases with increasing distance from the position B C on the optical path of the image light A C where the birefringence amount of the eyepiece prism 11 is the smallest for each RGB wavelength range, For each color of RGB, the intensity difference of the image light in the pupil plane of the observation pupil P can be reduced. As a result, color unevenness due to the position of the image can be reduced, and the image quality can be further improved.
  • the distribution of the birefringence amount in the eyepiece prism 11 is a symmetrical distribution in the left-right direction. Since the birefringence distribution is symmetrical in the left-right direction, luminance unevenness is reduced by setting the diffraction characteristics of the hologram 13 described above, and even if the luminance unevenness is not completely eliminated, the remaining luminance unevenness remains. However, since the distribution is symmetrical in the left-right direction, it is difficult for the observer to visually recognize the remaining luminance unevenness.
  • the birefringence of the eyepiece prism 11 is the smallest in the optical path of the image light guided near the optical axis entrance surface that is a symmetry plane.
  • This optical path also includes the optical path of the image light A C as described above. That is, as shown in FIG. 12, the optical path of the image light guided in the vicinity of the optical axis incident surface includes two directions perpendicular to each other in the display surface 6a including the center O of the rectangular display surface 6a of the display element 6. This is an optical path of light emitted from the display region T1 along one direction (for example, the D1 direction) of the (D1 direction, D2 direction).
  • the D1 direction corresponds to the vertical direction (Y direction) of the observation image
  • the D2 direction corresponds to the horizontal direction (X direction) of the observation image. Therefore, if the optical path in which the amount of birefringence of the eyepiece prism 11 is the smallest is the optical path of the light emitted from the display region T1, even if luminance unevenness remains in the observation image, the luminance unevenness is It can be said that the distribution of symmetry in the direction can make it difficult for the observer to visually recognize the luminance unevenness.
  • the optical path where the amount of birefringence of the eyepiece prism 11 is the smallest includes the center O of the display surface 6a of the display element 6, and is in two directions perpendicular to each other in the display surface 6a. It may be an optical path of light emitted from the display region T2 along the other direction (for example, the D2 direction).
  • the diffraction characteristics are set so that the peak of the diffraction efficiency decreases (or increases) as the distance from the position on the optical path of the image light where the amount of birefringence is the smallest in the element plane, Even if the brightness unevenness of the observed image is reduced and the brightness unevenness is not completely eliminated, the brightness unevenness becomes a symmetrical distribution in the vertical direction in the observation image, so that it is difficult for the observer to visually recognize the brightness unevenness. Become.
  • the eyepiece prism 11 may be the optical path of light emitted from the central region T3 of the display surface 6a.
  • the diffraction characteristics are set in the hologram 13 such that the peak of the diffraction efficiency decreases (or increases) as the distance from the position on the optical path of the image light where the amount of birefringence is the smallest in the element plane.
  • the brightness unevenness of the observed image is reduced and the brightness unevenness is not completely eliminated, the brightness unevenness is rotationally symmetric (axisymmetric) with respect to the center of the observation image (the direction in which the brightness unevenness occurs is (Radial direction), it is difficult for the observer to visually recognize the luminance unevenness.
  • the optical path with the smallest amount of birefringence of the eyepiece prism 11 is the optical path of the light emitted from the display area T1, the optical path of the light emitted from the display area T2, and the center. If any of the optical paths of the light emitted from the region T3, even if luminance unevenness remains in the observation image, the luminance unevenness has a symmetrical distribution. It can be made difficult to visually recognize.
  • the amount of birefringence of the eyepiece prism 11 is minimized by appropriately setting the size, position (left-right direction, front-rear direction position), and angle (direction in which resin is poured) of the gate portion during resin molding.
  • the optical path can be any of the optical paths described above.
  • the birefringence distribution in the eyepiece prism 11 may be asymmetric in the left-right direction.
  • the amount of birefringence may be the smallest at the left end of the eyepiece prism 11, and the amount of birefringence may increase as the distance from the rightward direction increases.
  • the configuration of the first embodiment in which image light is incident on the hologram 13 as P-polarized light when there is no birefringence when the image light is incident on the eyepiece prism 11, as shown in FIG.
  • the image light A L is incident on the surface in a state including much P-polarized light
  • the image light A C is incident in a state including more S-polarized light than the image light A L
  • the image light A R is than the light a C enters a state containing a large amount of S-polarized light.
  • luminance unevenness due to birefringence at the eyepiece prism 11 can be reduced. That is, at different positions B C ⁇ B L ⁇ B R within the element surface of the hologram 13, when setting the diffraction efficiency for the same polarization (e.g., S-polarized light), the peak of the diffraction efficiency, the birefringence amount is smallest it is sufficient that lower as the image light a L position B L of the optical path becomes away the element plane.
  • the diffraction efficiency for the same polarization e.g., S-polarized light
  • the diffraction characteristic may be set to have a distribution opposite to the above. That is, at different positions B C ⁇ B L ⁇ B R within the element surface of the hologram 13, when setting the diffraction efficiency for the same polarization (e.g., S-polarized light), the peak of the diffraction efficiency, the birefringence amount is smallest from the position B L of the optical path of the image light a L only needs higher increase in distance in the element plane made.
  • FIG. 16 is a perspective view from the front side of the HMD 40.
  • the HMD 40 includes the above-described image display device 1, the frame 42, the lens 43, the nose pad 44, and the position adjustment mechanism 45.
  • the image display apparatus 1 includes the above-described illumination optical system 10 (light source 2, illumination mirror 3), diffusion plate 4, PBS 5, and display element 6 in a casing 1a.
  • the upper end portion of the eyepiece optical system 7 is also provided. It is located in the housing 1a.
  • the eyepiece optical system 7 is positioned in front of the right-eye lens 43R (on the outside side opposite to the observer).
  • the light source 2 and the display element 6 in the housing 1a are connected to a circuit board (not shown) via a cable (not shown) provided through the housing 1a, and drive power and image signals are output from the circuit board. Etc. are supplied.
  • the image display device 1 further includes an imaging device that captures still images and moving images, a microphone, a speaker, an earphone, and the like, and information on the captured image and the display image via an external server or terminal and a communication line such as the Internet. Or a configuration for exchanging (transmitting / receiving) audio information.
  • the frame 42 corresponds to a frame of eyeglasses, and is a support member that is attached to the observer's head and supports the image display device 1.
  • the frame 42 includes temples that come into contact with the left and right temporal regions of the observer.
  • the lens 43 includes a right-eye lens 43 ⁇ / b> R and a left-eye lens 43 ⁇ / b> L disposed in front of the right and left eyes of the observer.
  • the right-eye lens 43R and the left-eye lens 43L are connected to the position adjustment mechanism 45 via the right connection portion 46R and the left connection portion 46L.
  • the right-eye lens 43R and the left-eye lens 43L may be lenses for correcting vision, or may be simple dummy lenses that do not correct vision.
  • the nose pad 44 includes a right nose pad 44R and a left nose pad 44L that come into contact with the observer's nose.
  • the right nose pad 44R and the left nose pad 44L are connected to the position adjusting mechanism 45 via the right connecting part 47R and the left connecting part 47L.
  • the position adjustment mechanism 45 moves the nose pad 44 relative to the frame 42 in the vertical direction perpendicular to the eye width direction of the observer, so that the vertical position of the image display device 1 supported by the frame 42 is detected. It is a mechanism that adjusts. Note that the lens 43 and the nose pad 44 may be directly fixed to the frame 42 without providing the position adjusting mechanism 45.
  • the HMD 40 When the HMD 40 is mounted on the observer's head and an image is displayed on the display element 6, the image light is guided to the observation pupil P (see FIG. 2) via the eyepiece optical system 7. Accordingly, by aligning the observer's pupil with the position of the observation pupil P, the observer can observe an enlarged virtual image of the display image of the image display device 1. At the same time, the observer can observe the external image through the eyepiece optical system 7 in a see-through manner.
  • the image display device 1 is supported by the frame 42 as the support member, so that the observer can observe the image provided by the image display device 1 in a hands-free and stable manner for a long time.
  • the eyepiece optical system 7 and the lens 43 of the image display device 1 are configured separately, but the eyepiece optical system 7 may be integrated with the lens 43. . Further, two image display devices 1 may be used so that an image can be observed with both eyes.
  • the image display device includes a display element that displays an image, a light guide element that internally guides image light from the display element, and diffracts the image light guided by the light guide element.
  • An image display device including a diffractive optical element that guides the observation pupil, wherein the light guide element has birefringence that birefringes at least a part of the image light incident on the diffractive optical element.
  • the image light is incident on the light guide element in the direction of the polarization that is P-polarized with respect to the diffractive optical element when the light guide element has no birefringence, and the diffractive optical element is
  • the diffraction efficiency peak has a diffraction characteristic that varies depending on the position in the element plane, and the diffraction efficiency peak In the diffractive optical element, From the position of the optical path of the birefringence amount is smallest becomes the image light of the light guide element, lowers with distance in the element plane.
  • the diffractive optical element has diffraction characteristics in which the peak of the diffraction efficiency varies depending on the position in the element plane in all three wavelength regions of red, green, and blue, and the peak of the diffraction efficiency is in the wavelength region. Every time, the distance from the position on the optical path of the image light where the birefringence amount of the light guide element is minimized may decrease as the distance from the position in the element plane increases.
  • the image display device includes a display element that displays an image, a light guide element that internally guides image light from the display element, and diffracts the image light guided by the light guide element.
  • An image display device including a diffractive optical element that guides the observation pupil, wherein the light guide element has birefringence that birefringes at least a part of the image light incident on the diffractive optical element.
  • the image light is incident on the light guide element in the direction of polarized light that is S-polarized with respect to the diffractive optical element when the light guide element has no birefringence, and the diffractive optical element is
  • the diffraction efficiency peak has a diffraction characteristic that varies depending on the position in the element plane, and the diffraction efficiency peak In the diffractive optical element, From the position of the optical path of the birefringence amount is smallest becomes the image light of the light guide element, increases with distance in the element plane.
  • the diffractive optical element has diffraction characteristics in which the peak of the diffraction efficiency varies depending on the position in the element plane in all three wavelength regions of red, green, and blue, and the peak of the diffraction efficiency is in the wavelength region. Every time, the distance from the position on the optical path of the image light where the birefringence amount of the light guide element becomes the smallest may increase as the distance from the element surface increases.
  • the optical path where the amount of birefringence of the light guide element is the smallest includes the center of the display surface, and is out of two directions perpendicular to each other in the display surface
  • the optical surface may be an optical path of light emitted from the central region.
  • the diffractive optical element may be a volume phase hologram.
  • the hologram may include a plurality of resin layers having different refractive indexes and alternately arranged.
  • the display element is a reflection type, and the image display apparatus reflects the light in a predetermined polarization direction among the illumination optical system that illuminates the display element and illumination light from the illumination optical system. It may further include a polarization separation element that is guided by the display element and is reflected by the display element and transmits light that has a polarization direction orthogonal to the incident light to the display element and guides the light to the light guide element.
  • the head mounted display of the present embodiment includes the above-described image display device and a support member that supports the image display device in front of the eyes of the observer.
  • the image display device of the present invention can be used for, for example, an HMD.
  • Image display device PBS (polarization separation element) 6 Display element 10 Illumination optical system 11 Eyepiece prism (light guide element) 13 Hologram (Diffraction optical element) 40 HMD (head mounted display) 42 Frame (support member) P Observation pupil T1 Display area T2 Display area T3 Central area T4 Peripheral area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

画像表示装置は、表示素子(6)と、導光素子(例えば接眼プリズム(11))と、回折光学素子(例えばホログラム(13))とを備えている。導光素子は、回折光学素子に入射する表示素子(6)からの画像光の少なくとも一部を複屈折させる複屈折性を有している。画像光は、導光素子に複屈折がなかった場合に回折光学素子に対してP偏光となる偏光の向きで、導光素子に入射する。回折光学素子は、素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、回折効率のピークが素子面内の位置によって変化する回折特性を持つ。上記回折効率のピークは、回折光学素子において、導光素子の複屈折量が最も少なくなる画像光の光路上の位置(BC)から、素子面内で遠ざかるにつれて低くなる。

Description

画像表示装置およびヘッドマウントディスプレイ
 本発明は、画像表示装置と、その画像表示装置を備えたヘッドマウントディスプレイ(以下、HMD(Head Mounted Display)とも称する)とに関するものである。
 従来から、表示素子からの画像光を導光プリズム内で導光し、回折光学素子を介して観察瞳に導くことで、観察者に画像(虚像)を観察させる画像表示装置が提案されている(例えば特許文献1参照)。この画像表示装置において、観察者が画像を視認する際に、画像の面内で輝度ムラ(輝度差)があると、画像品位が損なわれてしまう。
 そこで、例えば特許文献2では、異なるスラント角(傾斜角)の干渉縞を有するホログラムを回折光学素子として用いることにより、入射する平行光の入射角に依存した輝度ムラを低減するようにしている。また、例えば特許文献3では、回折光学素子の回折効率を、光源側に近い側で高くする一方、遠い側で低くし、光源からの光を回折光学素子にて複数回、回折反射させて観察瞳に導くことで、回折光学素子から出射される光の光量バランスを保ち、輝度の均一化を図っている。さらに、例えば特許文献4では、設計眼幅距離とは異なる眼幅距離の観察者に対して、左右で異なる色の像を両眼で観察させ、左右の像を足し合わせることで、色ムラの小さい画像を観察させるようにしている。色ムラは、観察瞳に届く光に含まれる各波長の強度が異なることによって起こるため、色ムラの改善は輝度ムラの改善にもつながると考えられる。ただし、特許文献4では、色ムラや輝度ムラの改善に関して、両眼で画像を見なければならないという制約がある。
特開2015-105990号公報(請求項1、図2A等参照) 特開2013-117743号公報(請求項1、段落〔0014〕等参照) 特開2014-63173号公報(段落〔0130〕、〔0137〕、図21等参照) 特開2008-287049号公報(請求項1、段落〔0012〕、〔0013〕、〔0037〕、図1等参照)
 導光素子を構成する材料としては、ガラス材料のように複屈折の生じない材料のほか、アクリル樹脂などの、複屈折が生じる樹脂材料(複屈折材料)が用いられる。複屈折材料を用いて導光素子を形成した場合、導光素子に光が入射すると、複屈折により、導光素子にて導光される光の偏光状態が変化する。しかも、複屈折の度合いは、導光素子内の場所(導光する光の光路)によっても異なる。このため、回折光学素子の異なる位置において、異なる偏光状態の光が入射することになる。回折光学素子には、入射光の偏光状態によって回折効率が変化する偏光依存性があるため、回折光学素子の異なる位置に、異なる偏光状態の光が入射すると、上記異なる位置において回折効率が変化する。したがって、回折光学素子の位置によって異なる回折効率で回折された光が観察瞳に導かれると、観察者が観察する画像に、上記回折効率の変化に起因する輝度ムラが生じてしまう。
 この点、上記した特許文献2~4では、回折光学素子の回折効率の偏光依存性については全く検討されておらず、導光素子にて複屈折が生じる場合に、複屈折による偏光状態の変化に起因する輝度ムラを低減することができない。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、導光素子にて複屈折が生じる場合でも、複屈折による偏光状態の変化に起因する輝度ムラを低減して、画像品位を向上させることができる画像表示装置と、その画像表示装置を備えたHMDとを提供することにある。
 本発明の一側面に係る画像表示装置は、画像を表示する表示素子と、前記表示素子からの画像光を内部で導光する導光素子と、前記導光素子にて導光された前記画像光を回折させて、観察瞳に導く回折光学素子とを備えた画像表示装置であって、前記導光素子は、前記回折光学素子に入射する前記画像光の少なくとも一部を複屈折させる複屈折性を有しており、前記画像光は、前記導光素子に複屈折がなかった場合に前記回折光学素子に対してP偏光となる偏光の向きで、前記導光素子に入射し、前記回折光学素子は、該回折光学素子の素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、前記回折効率のピークは、前記回折光学素子において、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて低くなる。
 本発明の他の側面に係る画像表示装置は、画像を表示する表示素子と、前記表示素子からの画像光を内部で導光する導光素子と、前記導光素子にて導光された前記画像光を回折させて、観察瞳に導く回折光学素子とを備えた画像表示装置であって、前記導光素子は、前記回折光学素子に入射する前記画像光の少なくとも一部を複屈折させる複屈折性を有しており、前記画像光は、前記導光素子に複屈折がなかった場合に前記回折光学素子に対してS偏光となる偏光の向きで、前記導光素子に入射し、前記回折光学素子は、該回折光学素子の素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、前記回折効率のピークは、前記回折光学素子において、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて高くなる。
 本発明のさらに他の側面に係るヘッドマウントディスプレイは、上述した画像表示装置と、前記画像表示装置を観察者の眼前で支持する支持部材とを有している。
 導光素子にて複屈折が生じる場合でも、回折光学素子における上述したような回折特性の設定により、複屈折による偏光状態の変化に起因する輝度ムラを低減することができ、これによって、画像品位を向上させることができる。
本発明の実施の形態1に係る画像表示装置の概略の構成を示す斜視図である。 上記画像表示装置の断面図である。 上記画像表示装置を観察者側から見たときの正面図である。 上記画像表示装置の接眼光学系を観察者側から見たときの正面図である。 上記画像表示装置において、表示素子の表示面の異なる位置から出射される各画像光についての、接眼プリズムへの入射時と、ホログラムへの入射時とにおける偏光状態の一例を示す説明図である。 上記ホログラムの素子面内の異なる位置での回折特性を示す説明図である。 上記ホログラムの作製時に用いるレーザービームの強度分布を示すグラフである。 上記レーザービームを用いてホログラム感光材料を露光するときの露光方法の一例を示す説明図である。 画像光が素子面内での異なる位置で回折されるときの実際の回折効率を示す説明図である。 本発明の実施の形態2に係る画像表示装置において、表示素子の表示面の異なる位置から出射される各画像光についての、接眼プリズムへの入射時と、ホログラムへの入射時とにおける偏光状態の一例を示す説明図である。 上記ホログラムの素子面内の異なる位置での回折特性と、画像光が素子面内での異なる位置で回折されるときの実際の回折効率とを併せて示す説明図である。 上記表示素子の表示面の各領域を示す説明図である。 上記実施の形態1に係る画像表示装置において、表示素子の表示面の異なる位置から出射される各画像光についての、接眼プリズムへの入射時と、ホログラムへの入射時とにおける偏光状態の他の例を示す説明図である。 上記ホログラムの素子面内の異なる位置での回折特性と、画像光が素子面内での異なる位置で回折されるときの実際の回折効率とを併せて示す説明図である。 上記画像表示装置が適用されるヘッドマウントディスプレイの上面図である。 上記ヘッドマウントディスプレイの正面図である。 上記ヘッドマウントディスプレイの下面図である。 上記ヘッドマウントディスプレイの正面側からの斜視図である。
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、本明細書において、数値範囲をa~bと表記した場合、その数値範囲に下限aおよび上限bの値は含まれるものとする。また、本発明は、以下の内容に限定されるものではない。
 また、以下での説明において、左右、前後、上下の各方向は、観察者の画像観察時の位置(視線方向)を基準にして、左右、前後、上下の各方向を指すものとする。そして、画像観察時の眼幅方向(左右方向)、前後方向、上下方向を、それぞれ、X方向、Y方向、Z方向とする(ただし、各方向の正逆は特に問わない)。また、各図面では、光路が煩雑になるのを避けるため、代表的な光路についてのみ破線で示している。
 (画像表示装置について)
 図1および図2は、本実施形態の画像表示装置1の概略の構成を示す斜視図および断面図であり、図3は、画像表示装置1を観察者側から見たときの正面図である。画像表示装置1は、光源2と、照明ミラー3と、拡散板4と、偏光ビームスプリッタ(PBS)5と、表示素子6と、接眼光学系7とを備えている。光源2と、照明ミラー3とで、表示素子6を照明する照明光学系10が構成されている。
 光源2は、R(赤)、G(緑)、B(青)の各色に対応する光を出射するRGB一体型のLEDで構成されている。複数の発光点(RGBの各発光点)は、水平方向に略直線状に並んでいる。光源2から出射される光の波長は、例えば、光強度のピーク波長および光強度半値の波長幅で、462±12nm(B光)、525±17nm(G光)、635±11nm(R光)である。なお、光源2は、レーザー光源であってもよい。
 本実施形態では、光源2は、RGB一体型のLEDを2対備えている。そして、RGBのそれぞれについて、後述するホログラム13の光軸入射面に対して各発光点が対称に位置するように、各発光点が略直線状に並んでいる(例えばX方向においてBGRRGBの順に発光点が並んでいる)。これにより、RGBの光強度の分布をX方向で対称にすることができる。
 照明ミラー3は、光源2から出射された光(照明光)を拡散板4に向けて反射させるとともに、YZ面内で、光学瞳(射出瞳)である観察瞳Pと光源2とが略共役となるように、照明光を曲げる光学素子である。
 拡散板4は、入射光を全方向に拡散する拡散板である。拡散板4の配置を省略することも可能であるが、入射光の配光角を拡げて、光源2の光強度をより均一化できる観点では、拡散板4を配置することが望ましい。なお、拡散板4は、入射光を一方向(例えばX方向)にのみ拡散する拡散板(一方向拡散板)であってもよい。
 PBS5は、入射光のうち、S偏光のみを表示素子6の方向に反射させる一方、表示素子6にて反射された光のうち、画像信号オンに対応する光、すなわち、P偏光を透過させる平板状の偏光分離素子であり、接眼光学系7の後述する接眼プリズム11の光入射面(面11a)に貼り付けられている。
 表示素子6は、光源2からの光を変調して画像を表示する表示素子であり、本実施形態では、反射型の液晶表示素子で構成されている。表示素子6はカラーフィルタを有する構成であってもよいし、光源2のRGBごとの時分割発光に同期して、発光色に対応するRGBの画像が表示されるように、時分割で駆動される構成であってもよい。
 表示素子6は、PBS5からほぼ垂直に入射する光がほぼ垂直に反射されてPBS5に向かうように配置されている。これにより、反射型の表示素子に対して大きな入射角で光を入射させる構成に比べて、解像度を増大させるような光学設計が容易となる。表示素子6の表示面は長方形となっており、表示面の長手方向がX方向となり、短手方向がX方向に垂直となるように配置されている。
 接眼光学系7は、表示素子6からの画像光を観察瞳Pに導くための光学系であり、非軸対称(非回転対称)な正の光学パワーを有している。この接眼光学系7は、接眼プリズム11と、偏向プリズム12と、ホログラム13とを有している。
 接眼プリズム11は、表示素子6からPBS5を介して入射する画像光を内部で導光する一方、外界像の光(外光)を透過させる導光素子であり、平行平板の上端部を上端に向かうほど厚くし、下端部を下端に向かうほど薄くした形状で構成されている。
 接眼プリズム11は、面11a~面11dを有している。面11aは、表示素子6からPBS5を介して画像光が入射する光入射面である。面11b・11cは、観察瞳Pとほぼ平行に位置し、互いに対向する2つの平行な平面であり、画像光を全反射させて導光する全反射面となっている。そのうち、観察瞳P側の面11bは、ホログラム13で回折反射される画像光の出射面を兼ねている。面11dは、面11b・11cを連結し、ホログラム13が貼り付けられる貼付面であり、面11b・11cに対して傾いている。面11dは、一方向(X方向)においてのみ曲率を有する曲面(シリンドリカル面)となっているが、平面であってもよい。
 接眼プリズム11は、その下端部に配置されるホログラム13を挟むように偏向プリズム12と接着剤14で接合されている。偏向プリズム12は、接眼プリズム11とホログラム13を介して貼り合わされて略平行平板を形成している。偏向プリズム12を接眼プリズム11と貼り合わせることで、外光が接眼プリズム11の楔状の下端部を透過するときの屈折を偏向プリズム12でキャンセルすることができ、観察される外界像に歪みが生じるのを防止することができる。
 ホログラム13は、接眼プリズム11に接して設けられ、接眼プリズム11の内部で導光された画像光を回折させて観察瞳Pに導く回折光学素子であり、本実施形態では、体積位相型で反射型のホログラム光学素子で構成されている。体積位相型のホログラム光学素子は、ホログラム感光材料に対してレーザー光を2光束で照射し、2光束の干渉による縞(干渉縞)を形成したものである。ホログラム感光材料として、例えばフォトポリマーを用いると、フォトポリマーの光重合によって上記の干渉縞を容易に形成することができる。上記干渉縞は、屈折率の異なる複数の樹脂層が交互に積層されたものであるため、体積位相型のホログラム13は、屈折率が異なり、かつ、交互に並んで位置する複数の樹脂層を含んだ構成と言える。
 ホログラム13は、回折効率のピーク波長および回折効率半値の波長幅で、例えば465±5nm(B光)、521±5nm(G光)、634±5nm(R光)の3つの波長域の光を回折(反射)させる。すなわち、ホログラム13のRGBの回折波長は、RGBの画像光の波長(光源2の発光波長)とほぼ対応している。
 上記の構成において、光源2から出射された光は、照明ミラー3で反射され、拡散板4にて拡散された後、PBS5に入射し、そこでS偏光のみが表示素子6の方向に反射される。表示素子6では、入射光が画像信号に応じて変調される。このとき、画像信号オンに対応する画像光は、表示素子6にて入射光とは偏光方向が直交する光(P偏光)に変換されて出射されるため、PBS5を透過して接眼プリズム11の内部に面11aから入射する。一方、画像信号オフに対応する画像光は、表示素子6にて偏光方向が変換されずにS偏光のまま出射されるため、PBS5で遮断され、接眼プリズム11の内部に入射しない。
 接眼プリズム11では、入射した画像光が接眼プリズム11の対向する2つの面11c・11bで少なくとも1回ずつ全反射された後、ホログラム13に入射し、そこでRGBの各色について選択的に回折反射されて面11bから出射され、観察瞳Pに達する。したがって、この観察瞳Pの位置では、観察者は、表示素子6に表示された画像を虚像として観察することができる。
 一方、接眼プリズム11、偏向プリズム12およびホログラム13は、外光をほとんど全て透過させるので、観察者は外界像(外の景色)をシースルーで観察することができる。したがって、表示素子6に表示された画像の虚像は、外界像の一部に重なって観察されることになる。
 上記のように、照明光学系10(光源2、照明ミラー3)からの照明光のうち、所定の偏光方向の光(例えばS偏光)をPBS5にて反射させて表示素子6に導く一方、表示素子6にて反射され、表示素子6への入射光とは偏光方向が直交する光(例えばP偏光)を透過させて接眼プリズム11に導く構成では、接眼プリズム11に対して光入射側の光路が折り曲げられるため、光源2から接眼プリズム11まで所望の光路長を確保したまま、接眼プリズム11に対して光入射側に配置される光学部材をコンパクトにまとめて配置することができる。これにより、画像表示装置1の小型化が容易となる。
 また、回折光学素子として、屈折率が異なり、かつ、交互に並んで位置する複数の樹脂層を含む体積位相型のホログラム13を用いることにより、レーザー光の2光束干渉によって、所望の回折特性を持つ光学素子を容易に実現することができる。なお、回折光学素子は、体積位相型のホログラム13には限定されず、例えばブレーズ型(断面鋸歯状)の光学素子であってもよい。
 なお、本実施形態では、偏向プリズム12を配置して、歪みの無い外界像を観察できる良好なシースルー性を実現しているが、良好なシースルー性を求める必要がなければ、偏向プリズム12の配置を省略してもよい。
 なお、本実施形態では、表示素子6として、反射型の液晶表示素子を用いているが、透過型の液晶表示素子を用いてもよい。この場合、透過型の液晶表示素子から所望の偏光方向の光(例えばホログラム13の光軸入射面に対して偏光方向が平行な光)が出射されるように、上記液晶表示素子を配置することにより(液晶セルに対して光出射側の偏光板(偏光子)の透過軸の向きを設定することにより)、PBS5の配置を不要とすることができる。
 (接眼プリズムでの画像光の複屈折について)
 上述した接眼プリズム11は、アクリル樹脂など、複屈折が生じる樹脂材料(複屈折材料)で形成された樹脂プリズムであり、ホログラム13に入射する表示素子6からの画像光の少なくとも一部を複屈折させる。つまり、接眼プリズム11は、入射した画像光の少なくとも一部を、偏光方向(偏光面)の互いに垂直な2つの直線偏光に分ける複屈折性を有している。そして、接眼プリズム11における複屈折の度合いは、場所によって異なっている。このため、ホログラム13には、素子面内の入射位置によって偏光状態の異なる画像光が入射することになる。以下、この点の詳細について説明する。
 図4は、接眼光学系7を観察者側(観察瞳P側)から見たときの正面図である。図4では、画像光AC・AL・ARの光路をそれぞれ破線で示している。ここで、画像光ACは、表示素子6(図3参照)の表示面の中心から出射されてホログラム13の素子面の中心で回折反射された後、観察瞳Pの中心に導かれる画像光を指す。画像光ALは、表示素子6の表示面中心よりも左側の位置(例えば左端)から出射されて、ホログラム13の素子面中心よりも左側の位置で回折反射された後、観察瞳Pにおいて中心よりも左側の位置に導かれる画像光を指す。画像光ARは、表示素子6の表示面中心よりも右側の位置(例えば右端)から出射されて、ホログラム13の素子面中心よりも右側の位置で回折反射された後、観察瞳Pにおいて中心よりも右側の位置に導かれる画像光を指す。
 また、以下での説明の便宜上、表示素子6の表示面の中心と観察瞳Pの中心とを光学的に結ぶ軸を光軸とし、ホログラム13に対する入射光の光軸と出射光(反射光)の光軸とを含む面を、光軸入射面とする。この光軸入射面は、YZ面と平行である。
 複屈折材料からなる接眼プリズム11において、複屈折の度合いは、左右方向(X方向)において異なっており、複屈折量に分布がある。より具体的には、接眼プリズム11の左右方向の中心(光軸入射面上の位置)で複屈折量が最も少なく、光軸入射面上の位置から左右方向に離れるにしたがって、複屈折量が大きくなっている。したがって、接眼プリズム11における複屈折量の分布は、光軸入射面に対して左右方向に対称な分布となっている。
 このような接眼プリズム11は、例えば樹脂成型において、略左右対称な形状の2つの金型を用意し、2つの金型の接合部に樹脂の流し込み口(ゲート部)を設け、このゲート部を介して金型の内部に樹脂(例えばアクリル樹脂)を流し込み、冷却、離型して成型する、などの方法で得ることができる。すなわち、樹脂が金型内で左右方向に対称に流れるように、金型内に樹脂を流し込んで接眼プリズム11を成型することにより、複屈折量の分布が左右方向に対称となる接眼プリズム11を得ることができる。
 表示素子6から出射される画像光は、PBS5に対してP偏光で入射し、そこを透過するため、接眼プリズム11に複屈折がなかった場合には、接眼プリズム11に入射した上記画像光は、ホログラム13に対してそのままP偏光で入射する。しかし、接眼プリズム11は、上記のように複屈折性を有しているため、上記画像光は、複屈折によって偏光状態が変化してホログラム13に入射することになる。
 ここで、図5は、各画像光AC・AL・ARについての、接眼プリズム11への入射時と、ホログラム13への入射時とにおける偏光状態の一例を示している。接眼プリズム11の左右方向の中心付近では複屈折量が少ないため、接眼プリズム11内で左右方向の中心付近を前後方向に全反射しながら導光される画像光ACは、P偏光の状態がほとんどそのまま維持されてホログラム13に入射する。なお、「複屈折量が少ない」とは、複屈折量がゼロや略ゼロである場合も含むものとする。したがって、画像光ACは、複屈折量がゼロである場合、全てP偏光でホログラム13に入射するが、複屈折が生じる場合、P偏光の一部がS偏光に変換されるため、P偏光とS偏光とを含んだ状態でホログラム13に入射する。
 一方、接眼プリズム11の左右方向の中心から離れるにしたがって、複屈折量が大きくなるため、接眼プリズム11内で、左右方向の中心から離れた位置を前後方向に全反射しながら導光される画像光AL・ARについては、P偏光がS偏光に変換される割合が増大し、画像光ACよりもS偏光を多く含んだ状態でホログラム13に入射する。
 図4で示したように、ホログラム13において、画像光ACが入射する位置をBCとし、画像光AL・ARが入射する位置をそれぞれBL・BRとする。ホログラム13には、入射光の偏光状態によって回折効率が変化する偏光依存性があるため、ホログラム13の異なる位置BC・BL・BRに、異なる偏光状態の光が入射すると、位置BC・BL・BRにおいて回折効率が変化し、輝度ムラが発生する。このため、本実施形態では、ホログラム13に以下のような回折特性を持たせている。
 (ホログラムの回折特性)
 図6は、ホログラム13の素子面内の異なる位置BC・BL・BRでの回折特性を示している。同図に示すように、ホログラム13は、RGBの3つの波長域の全てにおいて、回折効率のピークが素子面内の位置(画像光の入射位置)によって変化する回折特性を持っている。上記回折効率のピークは、ホログラム13において、RGBの波長域ごとに、接眼プリズム11の複屈折量が最も少なくなる画像光の光路(画像光ACの光路)上の位置BCから、素子面内で左右方向に遠ざかるにつれて低くなっている。
 つまり、ホログラム13の素子面内の異なる位置BC・BL・BRで、例えばS偏光についての回折効率を測定したときに、位置BCでのS偏光の回折効率のピークが、他の位置BL・BRでのS偏光の回折効率のピークよりも高く、位置BCから左右方向に遠ざかるにつれて(位置BL・BRに向かうにつれて)、S偏光の回折効率のピークが低くなっている。また、ホログラム13の素子面内の異なる位置BC・BL・BRで、例えばP偏光についての回折効率を測定したときでも、位置BCでのP偏光の回折効率のピークが、他の位置BL・BRでのP偏光の回折効率のピークよりも高く、位置BCから左右方向に遠ざかるにつれて(位置BL・BRに向かうにつれて)、P偏光の回折効率のピークが低くなっている。なお、同図に示すように、ホログラム13においては、一般的に、P偏光よりもS偏光のほうが、回折効率のピークが高い。
 上記した回折特性を持つホログラム13は、以下のようにして作製することができる。例えば、ホログラム感光材料としてフォトポリマーを用いる場合、フォトポリマーの光重合によって異なる屈折率の樹脂層を周期的に形成する。つまり、ホログラム感光材料に対して、レーザービームのようなコヒーレントな光を少なくとも2光束以上照射して干渉させ、その干渉縞をホログラム感光材料に形成する。その際に、図7に示すような単峰性の強度分布をもつレーザービーム(ガウシアンビーム)を用いる。そして、図8に示すように、回折効率を高くしたい部分にガウシアンビームの中心がくるように、ホログラム感光材料13aをガウシアンビーム(レーザー光1・2)で露光する。なお、図8では、レーザー光の強度分布を破線で示す。
 このようにホログラム感光材料13aを露光することにより、回折効率を高くしたい部分の露光強度が大きくなり、フォトポリマーの光重合がより促進され、樹脂層間でより大きな屈折率差を得ることができる。その結果、作製されたホログラム13の所定の部分の回折効率が高くなる。また、回折効率を高くしたい部分から周囲に向かうにしたがって、露光時のガウシアンビームの強度が弱くなるため、作製されたホログラム13において、上記所定の部分から離れるにしたがって、回折効率が低くなる。すなわち、「回折効率が高い」とは、異なる屈折率の樹脂層が周期的に形成されるときの隣り合う樹脂層の屈折率差が大きい状態を指し、逆に、「回折効率が低い」とは、隣り合う樹脂層の屈折率差が小さい状態を指す。
 なお、図8では、説明を簡単にするため、露光に用いる光束(レーザー光)の本数を2本とし、ホログラム感光材料13aに対して2光束を互いに逆方向から入射させ、これらを干渉させているが、上記した回折効率の高低とレーザー光の強度分布との関係を満たしていれば、露光時に用いる光束の数や、ホログラム感光材料13aに対する光束の入射方向(入射角)などは、光学設計等の条件によって変えても構わない。
 また、上記の例では、ガウシアンビームを用い、その強度分布を利用してホログラム感光材料13aを露光しているが、露光時に他の強度分布を持つビームを用いてもよい。つまり、ミラーやレンズ、絞り等の光学素子を用いて、上記他のビームを所望の強度分布を持つビームに整形し、整形したビームにおける強度の強い部分が、回折効率を高くしたい部分に照射されるように、ホログラム感光材料13aを露光してもよい。
 また、露光については、樹脂プリズム(接眼プリズム11)にフォトポリマー層を形成した後に、所望の場所の回折効率が高くなるような強度分布のレーザー光を照射して露光を行ってもよい。また、予め基板やフィルムの上にフォトポリマー層を形成し、強度分布を持つレーザー光を照射して露光した後、回折効率の面内分布が所望の分布になるような形に、作製したホログラムを切り抜き、切り抜いたホログラムを樹脂プリズムに接着剤等を用いて貼りつけてもよい。
 (効果について)
 ホログラム13に、図6で示したような回折特性(回折効率の分布)を持たせることにより、接眼プリズム11が複屈折性を有している場合でも、複屈折による偏光状態の変化に起因する輝度ムラを低減して、画像品位を向上させることができる。より詳しくは、以下の通りである。
 上述のように、画像光ACについては、P偏光で接眼プリズム11に入射し、ほぼP偏光のまま接眼プリズム11の内部を導光され、ホログラム13の位置BCに入射する。ホログラム13においては、一般的に、S偏光の回折効率がP偏光の回折効率よりも高いことから、P偏光の成分が多く、かつ、S偏光の成分が少ない画像光ACについてのホログラム13での回折効率は、偏光を考慮すると(S偏光、P偏光の回折効率を足し合わせると)低くなる。しかし、図6で示したように、素子面内での回折効率の分布に着目すると、位置BCでの回折効率は、他の位置BL・BRでの回折効率よりも高い。
 一方、画像光AL・ARについては、P偏光で接眼プリズム11に入射するが、複屈折による偏光状態の変化により、画像光ACよりもS偏光の成分を多く含む光となってホログラム13の位置BL・BRにそれぞれ入射する。このため、画像光AL・ARについてのホログラム13での回折効率は、偏光を考慮すると高くなる(S偏光の成分が多いため)。しかし、図6で示したように、素子面内での回折効率の分布に着目すると、位置BL・BRでの回折効率は、他の位置BCでの回折効率よりも低い。
 結果として、偏光を考慮した回折効率(S偏光、P偏光の総合による回折効率)の高低と、ホログラム13の素子面内での回折効率の分布(素子面内の位置による回折効率の高低)とが相殺し合う。その結果、ホログラム13の素子面内の各位置BC・BL・BRで回折される画像光AC・AL・ARの回折効率が、図9の太線で示すように、各位置BC・BL・BRでほぼ揃うようになる。
 すなわち、ホログラム13においては、P偏光よりもS偏光のほうが、回折効率が高いため、P偏光とS偏光とを総合したトータルでの回折効率に対する寄与度は、P偏光よりもS偏光のほうが高いと言える。位置BL・BRでは、そのようなトータルでの回折効率に対する寄与度の高いS偏光の回折効率が、位置BCよりも低く設定されているため、S偏光を多く含む画像光AL・ARが位置BL・BRに入射した場合でも、画像光AL・ARが位置BL・BRにて回折されるときの、P偏光とS偏光とのトータルでの回折効率を、画像光ACが位置BCにて回折されるときの、P偏光とS偏光とのトータルでの回折効率に近づけることが可能となる。
 これにより、ホログラム13から観察瞳Pに導かれる画像光の瞳面内での強度差が低減されるため、観察瞳Pの位置で観察される画像の輝度ムラを低減でき、画像品位を向上させることができる。
 特に、図6で示したように、ホログラム13が、RGBの3つの波長域の全てにおいて、回折効率のピークが素子面内の位置BC・BL・BRによって変化する回折特性を持ち、上記回折効率のピークは、RGBの波長域ごとに、接眼プリズム11の複屈折量が最も少なくなる画像光ACの光路上の位置BCから、素子面内で遠ざかるにつれて低くなっているので、RGBの各色について、観察瞳Pの瞳面内での画像光の強度差を低減できる。その結果、画像の位置による色ムラを低減することも可能となり、画像品位をさらに向上させることができる。
 なお、図6では、ホログラム13の素子面内の異なる位置BC・BL・BRにおける、S偏光の回折効率の分布と、P偏光の回折効率の分布とを併せて示しているが、回折効率を設定する対象となる偏光は、上記のS偏光およびP偏光には限定されない。例えば、ホログラム13の異なる位置BC・BL・BRで、ランダム偏光(無偏光)について回折効率を測定したときに、その回折効率のピークが、位置BCから素子面内で遠ざかるにつれて低くなる回折特性であってもよい。ランダム偏光についての回折効率がそのような分布であると、S偏光およびP偏光についても図6で示したような分布になると考えられるからである。なお、ランダム偏光について測定した回折効率のピークは、それぞれの位置BC・BL・BRにおいて、S偏光の回折効率のピークとP偏光の回折効率のピークとの間に位置すると推測される。また、S偏光およびP偏光のどちらか一方の偏光についての回折効率のピークが、位置BCから素子面内で遠ざかるにつれて低くなるように設定されると、他方の偏光についても、回折効率のピークが、位置BCから素子面内で遠ざかるにつれて低くなると考えられる。
 以上のことから、本実施形態では、ホログラム13の素子面内の異なる位置BC・BL・BRで、同じ偏光について回折効率を設定したときに、その回折効率のピークが、位置BCから素子面内で遠ざかるにつれて低くなっていればよいと言える。そして、このとき、上記の「同じ偏光」とは、S偏光であってもよいし、P偏光であってもよいし、ランダム偏光であってもよいと言える。
 〔実施の形態2〕
 本発明の他の実施の形態について、図面に基づいて説明すれば、以下の通りである。本実施形態では、表示素子6からの画像光が、接眼プリズム11に複屈折がなかった場合に、ホログラム13に対してS偏光で入射する場合の、ホログラム13の回折特性について説明する。
 なお、接眼プリズム11に複屈折がなかった場合に、ホログラム13に対してS偏光で画像光が入射する構成は、例えば実施の形態1の構成において、PBS5の透過軸を90°回転させ、PBS5に入射する照明光のうち、P偏光をPBS5にて反射させて表示素子6に導く一方、表示素子6にて入射光とは偏光方向が直交する光(S偏光)に変換された画像光をPBS5に入射させ、PBS5を透過させて接眼プリズム11に入射させることで実現することができる。
 なお、本実施形態において、接眼プリズム11の複屈折性は、実施の形態1と同様とする。すなわち、接眼プリズム11では、左右方向の中心で複屈折量が最も少なく、光軸入射面上の位置から左右方向に離れるにしたがって、複屈折量が大きくなるものとする。
 図10は、本実施形態における各画像光AC・AL・ARについての、接眼プリズム11への入射時と、ホログラム13への入射時とにおける偏光状態を示している。接眼プリズム11の左右方向の中心付近では複屈折量が少ないため、接眼プリズム11内で左右方向の中心付近を前後方向に全反射しながら導光される画像光ACは、S偏光の状態がほとんどそのまま維持されてホログラム13に入射する。なお、「複屈折量が少ない」とは、複屈折量がゼロである場合も含むため、画像光ACは、複屈折量がゼロである場合、全てS偏光でホログラム13に入射するが、複屈折が生じる場合、S偏光の一部がP偏光に変換されるため、S偏光とP偏光とを含んだ状態でホログラム13に入射する。
 一方、接眼プリズム11の左右方向の中心から離れるにしたがって、複屈折量が大きくなるため、接眼プリズム11内で、左右方向の中心から離れた位置を前後方向に全反射しながら導光される画像光AL・ARについては、S偏光がP偏光に変換される割合が増大し、画像光ACよりもP偏光を多く含んだ状態でホログラム13に入射する。
 図11は、ホログラム13の素子面内の異なる位置BC・BL・BRでの回折特性を示している。同図に示すように、ホログラム13は、RGBの3つの波長域の全てにおいて、回折効率のピークが素子面内の位置(画像光の入射位置)によって変化する回折特性を持っている。本実施形態では、上記回折効率のピークは、ホログラム13において、RGBの波長域ごとに、接眼プリズム11の複屈折量が最も少なくなる画像光の光路(画像光ACの光路)上の位置BCから、素子面内で左右方向に遠ざかるにつれて高くなっている。
 つまり、ホログラム13の素子面内の異なる位置BC・BL・BRで、例えばS偏光についての回折効率を測定したときに、位置BCでのS偏光の回折効率のピークが、他の位置BL・BRでのS偏光の回折効率のピークよりも低く、位置BCから左右方向に遠ざかるにつれて(位置BL・BRに向かうにつれて)、S偏光の回折効率のピークが高くなっている。また、ホログラム13の素子面内の異なる位置BC・BL・BRで、例えばP偏光についての回折効率を測定したときでも、位置BCでのP偏光の回折効率のピークが、他の位置BL・BRでのP偏光の回折効率のピークよりも低く、位置BCから左右方向に遠ざかるにつれて(位置BL・BRに向かうにつれて)、P偏光の回折効率のピークが高くなっている。なお、ホログラム13において、P偏光よりもS偏光のほうが、回折効率のピークが高い点は、実施の形態1と同様である。
 上記した回折特性を持つホログラム13は、以下のようにして作製することができる。例えば、ホログラム感光材料としてフォトポリマーを用いる場合、レーザービームの発振モードとして、TEM10やTEM01などの、中心強度が弱くなる双峰性のモードを用い、強度が弱い中心部分をホログラム13の回折効率が低い部分に照射して露光する。なお、上記のTEMとは、Transverse ElectroMagnetic モードの略で、電磁波の伝搬する横モード(Transverse mode)を示す。また、ミラーやレンズ、絞り等の光学素子を用いて、レーザービームを所望の強度分布を持つビームに整形して露光を行ってもよい。
 図11のようにホログラム13の回折特性を設定することにより、画像光ACについては、S偏光で接眼プリズム11に入射し、ほぼS偏光のまま接眼プリズム11の内部を導光され、ホログラム13の位置BCに入射する。ホログラム13においては、S偏光の回折効率がP偏光の回折効率よりも高いことから、S偏光の成分が多く、かつ、P偏光の成分が少ない画像光ACについてのホログラム13での回折効率は、偏光を考慮すると高くなる。しかし、素子面内での回折効率の分布に着目すると、位置BCでの回折効率は、他の位置BL・BRでの回折効率よりも低い。
 一方、画像光AL・ARについては、S偏光で接眼プリズム11に入射するが、複屈折による偏光状態の変化により、画像光ACよりもP偏光の成分を多く含む光となってホログラム13の位置BL・BRにそれぞれ入射する。このため、画像光AL・ARについてのホログラム13での回折効率は、偏光を考慮すると低くなる(S偏光の成分が少ないため)。しかし、素子面内での回折効率の分布に着目すると、位置BL・BRでの回折効率は、他の位置BCでの回折効率よりも高い。
 結果として、偏光を考慮した回折効率の高低と、ホログラム13の素子面内での回折効率の分布とが相殺し合う。その結果、ホログラム13の素子面内の各位置BC・BL・BRで回折される画像光AC・AL・ARの回折効率が、図11の太線で示すように、各位置BC・BL・BRでほぼ揃うようになる。
 すなわち、ホログラム13の位置BCでは、P偏光とS偏光とを総合したトータルでの回折効率に対する寄与度が高いS偏光の回折効率が、位置BL・BRよりも低く設定されているため、S偏光を多く含む画像光ACが位置BCに入射した場合でも、画像光ACが位置BCにて回折されるときの、P偏光とS偏光とのトータルでの回折効率を、画像光AL・ARが位置BL・BRにて回折されるときの、P偏光とS偏光とのトータルでの回折効率に近づけることが可能となる。
 これにより、ホログラム13から観察瞳Pに導かれる画像光の瞳面内での強度差が低減されるため、観察瞳Pの位置で観察される画像の輝度ムラを低減でき、画像品位を向上させることができる。
 特に、図11で示したように、ホログラム13が、RGBの3つの波長域の全てにおいて、回折効率のピークが素子面内の位置BC・BL・BRによって変化する回折特性を持ち、上記回折効率のピークは、RGBの波長域ごとに、接眼プリズム11の複屈折量が最も少なくなる画像光ACの光路上の位置BCから、素子面内で遠ざかるにつれて高くなっているので、RGBの各色について、観察瞳Pの瞳面内での画像光の強度差を低減できる。その結果、画像の位置による色ムラを低減することも可能となり、画像品位をさらに向上させることができる。
 以上の各実施の形態では、接眼プリズム11における複屈折量の分布が、左右方向に対称な分布となっている場合について説明した。複屈折量の分布が左右方向で対称であることにより、上述したホログラム13の回折特性の設定によって輝度ムラを低減し、仮に輝度ムラが完全に無くならずに残ったとしても、その残った輝度ムラが、左右方向に対称な分布となるため、観察者にとっては、残った輝度ムラを視認しにくくなる。
 ここで、複屈折量の分布が左右方向で対称である場合、対称面となる光軸入射面付近を導光される画像光の光路において、接眼プリズム11の複屈折量が最も少なくなる。この光路には、上述したように画像光ACの光路も含まれる。つまり、光軸入射面付近を導光される画像光の光路は、図12に示すように、表示素子6の矩形の表示面6aの中心Oを含み、表示面6a内で互いに垂直な2方向(D1方向、D2方向)のうちの一方向(例えばD1方向)に沿った表示領域T1から出射される光の光路である。なお、上記D1方向は、観察画像の上下方向(Y方向)に対応し、上記D2方向は、観察画像の左右方向(X方向)に対応しているとする。したがって、接眼プリズム11の複屈折量が最も少なくなる光路が、上記の表示領域T1から出射される光の光路となっていれば、観察画像に輝度ムラが残ったとしても、その輝度ムラを左右方向に対称な分布にして、観察者に輝度ムラを視認させにくくすることができると言える。
 この他にも、接眼プリズム11の複屈折量が最も少なくなる光路は、図12に示すように、表示素子6の表示面6aの中心Oを含み、表示面6a内で互いに垂直な2方向のうちの他方向(例えばD2方向)に沿った表示領域T2から出射される光の光路であってもよい。この場合、ホログラム13において、複屈折量が最も少なくなる画像光の光路上の位置から、素子面内で遠ざかるにつれて回折効率のピークが低くなる(または高くなる)ように回折特性を設定して、観察画像の輝度ムラを低減し、仮に輝度ムラが完全に無くならずに残ったとしても、その輝度ムラは観察画像において上下方向で対称な分布となるため、観察者がその輝度ムラを視認しにくくなる。
 また、図12に示すように、表示素子6の表示面6aを、中心Oを含む中心領域T3と、中心領域T3を表示面6a内で囲む周辺領域T4とに分けたときに、接眼プリズム11の複屈折量が最も少なくなる光路は、表示面6aの中心領域T3から出射される光の光路であってもよい。この場合でも、ホログラム13において、複屈折量が最も少なくなる画像光の光路上の位置から、素子面内で遠ざかるにつれて回折効率のピークが低くなる(または高くなる)ように回折特性を設定して、観察画像の輝度ムラを低減し、仮に輝度ムラが完全に無くならずに残ったとしても、その輝度ムラは観察画像の中心に対して回転対称(軸対称)な分布(輝度ムラが生じる方向は半径方向)となるため、やはり、観察者がその輝度ムラを視認しにくくなる。
 つまり、ホログラム13に入射する画像光の光路において、接眼プリズム11の複屈折量が最も少なくなる光路が、表示領域T1から出射される光の光路、表示領域T2から出射される光の光路、中心領域T3から出射される光の光路、のいずれかであれば、観察画像に輝度ムラが残ったとしても、その輝度ムラが対称性を持った分布となるため、残った輝度ムラを観察者に視認させにくくすることができる。
 なお、樹脂成型時のゲート部の大きさ、位置(左右方向、前後方向の各位置)、角度(樹脂を流し込む方向)を適切に設定することにより、接眼プリズム11の複屈折量が最も少なくなる光路を、上述したいずれかの光の光路とすることができる。
 なお、接眼プリズム11における複屈折量の分布は、左右方向に非対称な分布であってもよい。例えば、接眼プリズム11の左端で複屈折量が最も少なく、そこから右方向に離れるにしたがって、複屈折量が大きくなっていてもよい。複屈折がなかった場合に画像光がホログラム13に対してP偏光で入射する実施の形態1の構成では、上記接眼プリズム11に画像光が入射すると、図13に示すように、ホログラム13の素子面には、画像光ALがP偏光を多く含んだ状態で入射し、画像光ACは、画像光ALよりもS偏光を多く含んだ状態で入射し、画像光ARは、画像光ACよりもS偏光を多く含んだ状態で入射する。
 したがって、この場合は、ホログラム13の回折特性を図14に示すような回折特性に設定することにより、接眼プリズム11での複屈折に起因する輝度ムラを低減することができる。つまり、ホログラム13の素子面内の異なる位置BC・BL・BRで、同じ偏光(例えばS偏光)について回折効率を設定したときに、その回折効率のピークが、複屈折量が最も少なくなる画像光ALの光路上の位置BLから素子面内で遠ざかるにつれて低くなっていればよい。
 なお、複屈折がなかった場合に画像光がホログラム13に対してS偏光で入射する実施の形態2の構成では、回折特性が上記とは逆の分布となるように設定されればよい。つまり、ホログラム13の素子面内の異なる位置BC・BL・BRで、同じ偏光(例えばS偏光)について回折効率を設定したときに、その回折効率のピークが、複屈折量が最も少なくなる画像光ALの光路上の位置BLから素子面内で遠ざかるにつれて高くなっていればよい。
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。本実施形態では、実施の形態1および2の画像表示装置の応用例であるHMDについて説明する。図15A、図15Bおよび図15Cは、本実施形態のHMD40の上面図、正面図、下面図であり、図16は、HMD40の正面側からの斜視図である。
 HMD40は、上述した画像表示装置1と、フレーム42と、レンズ43と、鼻当て44と、位置調整機構45とを有している。
 画像表示装置1は、筐体1a内に、上述した照明光学系10(光源2、照明ミラー3)、拡散板4、PBS5および表示素子6を有しており、接眼光学系7の上端部も筐体1a内に位置している。接眼光学系7は、右眼用レンズ43Rの前方(観察者とは反対側の外界側)に位置している。筐体1a内の光源2および表示素子6は、筐体1aを貫通して設けられるケーブル(図示せず)を介して、図示しない回路基板と接続されており、回路基板から駆動電力や画像信号などが供給される。
 なお、画像表示装置1は、静止画や動画を撮影する撮像装置、マイク、スピーカー、イヤホンなどをさらに備え、外部のサーバーや端末とインターネット等の通信回線を介して、撮像画像および表示画像の情報や音声情報をやりとり(送受信)する構成であってもよい。
 フレーム42は、眼鏡のフレームに相当するものであり、観察者の頭部に装着され、画像表示装置1を支持する支持部材である。このフレーム42は、観察者の左右の側頭部に当接するテンプルを含んでいる。
 レンズ43は、観察者の右眼および左眼の眼前に配置される右眼用レンズ43Rおよび左眼用レンズ43Lを含んでいる。右眼用レンズ43Rおよび左眼用レンズ43Lは、右連結部46Rおよび左連結部46Lを介して、位置調整機構45と連結されている。右眼用レンズ43Rおよび左眼用レンズ43Lは、視力矯正用のレンズであってもよいし、視力矯正を行わない単なるダミーレンズであってもよい。
 鼻当て44は、観察者の鼻と当接する右鼻当て44Rおよび左鼻当て44Lを含んでいる。右鼻当て44Rおよび左鼻当て44Lは、右連結部47Rおよび左連結部47Lを介して、位置調整機構45と連結されている。
 位置調整機構45は、フレーム42に対して鼻当て44を観察者の眼幅方向に垂直な上下方向に相対的に移動させることにより、フレーム42で支持された画像表示装置1の上下方向の位置を調整する機構である。なお、位置調整機構45を設けることなく、レンズ43および鼻当て44をフレーム42に直接固定した構成としてもよい。
 HMD40を観察者の頭部に装着し、表示素子6に画像を表示すると、その画像光が接眼光学系7を介して観察瞳P(図2参照)に導かれる。したがって、観察瞳Pの位置に観察者の瞳を合わせることにより、観察者は、画像表示装置1の表示画像の拡大虚像を観察することができる。また、これと同時に、観察者は接眼光学系7を介して、外界像をシースルーで観察することができる。
 このように、画像表示装置1が支持部材としてのフレーム42で支持されることにより、観察者は画像表示装置1によって提供される画像をハンズフリーで長時間安定して観察することができる。
 なお、図15A等では、画像表示装置1の接眼光学系7と、レンズ43とを別体で構成しているが、接眼光学系7をレンズ43と一体化した構成とすることも可能である。また、画像表示装置1を2つ用いて両眼で画像を観察できるようにしてもよい。
 (その他)
 以上で説明した本実施形態の画像表示装置およびヘッドマウントディスプレイは、以下のように表現されてもよい。
 本実施形態の画像表示装置は、画像を表示する表示素子と、前記表示素子からの画像光を内部で導光する導光素子と、前記導光素子にて導光された前記画像光を回折させて、観察瞳に導く回折光学素子とを備えた画像表示装置であって、前記導光素子は、前記回折光学素子に入射する前記画像光の少なくとも一部を複屈折させる複屈折性を有しており、前記画像光は、前記導光素子に複屈折がなかった場合に前記回折光学素子に対してP偏光となる偏光の向きで、前記導光素子に入射し、前記回折光学素子は、該回折光学素子の素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、前記回折効率のピークは、前記回折光学素子において、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて低くなる。
 前記回折光学素子は、赤、緑、青の3つの波長域の全てにおいて、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、前記回折効率のピークは、前記波長域ごとに、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて低くなってもよい。
 本実施形態の画像表示装置は、画像を表示する表示素子と、前記表示素子からの画像光を内部で導光する導光素子と、前記導光素子にて導光された前記画像光を回折させて、観察瞳に導く回折光学素子とを備えた画像表示装置であって、前記導光素子は、前記回折光学素子に入射する前記画像光の少なくとも一部を複屈折させる複屈折性を有しており、前記画像光は、前記導光素子に複屈折がなかった場合に前記回折光学素子に対してS偏光となる偏光の向きで、前記導光素子に入射し、前記回折光学素子は、該回折光学素子の素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、前記回折効率のピークは、前記回折光学素子において、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて高くなる。
 前記回折光学素子は、赤、緑、青の3つの波長域の全てにおいて、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、前記回折効率のピークは、前記波長域ごとに、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて高くなってもよい。
 前記回折光学素子に入射する前記画像光の光路において、前記導光素子の複屈折量が最も少なくなる前記光路は、前記表示面の中心を含み、前記表示面内で互いに垂直な2方向のうちの一方向に沿った表示領域から出射される光の光路、前記表示面の中心を含み、前記表示面内で前記2方向のうちの他方向に沿った表示領域から出射される光の光路、前記表示面を、中心を含む中心領域と、該中心領域を前記表示面内で囲む周辺領域とに分けたときに、前記中心領域から出射される光の光路、のいずれかであってもよい。
 前記回折光学素子は、体積位相型のホログラムであってもよい。
 前記ホログラムは、屈折率が異なり、かつ、交互に並んで位置する複数の樹脂層を含んでいてもよい。
 前記表示素子は、反射型であり、該画像表示装置は、前記表示素子を照明する照明光学系と、前記照明光学系からの照明光のうち、所定の偏光方向の光を反射させて前記表示素子に導く一方、前記表示素子にて反射され、前記表示素子への入射光とは偏光方向が直交する光を透過させて前記導光素子に導く偏光分離素子とをさらに備えていてもよい。
 本実施形態のヘッドマウントディスプレイは、上述した画像表示装置と、前記画像表示装置を観察者の眼前で支持する支持部材とを有している。
 本発明の画像表示装置は、例えばHMDに利用可能である。
   1   画像表示装置
   5   PBS(偏光分離素子)
   6   表示素子
  10   照明光学系
  11   接眼プリズム(導光素子)
  13   ホログラム(回折光学素子)
  40   HMD(ヘッドマウントディスプレイ)
  42   フレーム(支持部材)
   P   観察瞳
  T1   表示領域
  T2   表示領域
  T3   中心領域
  T4   周辺領域

Claims (9)

  1.  画像を表示する表示素子と、
     前記表示素子からの画像光を内部で導光する導光素子と、
     前記導光素子にて導光された前記画像光を回折させて、観察瞳に導く回折光学素子とを備えた画像表示装置であって、
     前記導光素子は、前記回折光学素子に入射する前記画像光の少なくとも一部を複屈折させる複屈折性を有しており、
     前記画像光は、前記導光素子に複屈折がなかった場合に前記回折光学素子に対してP偏光となる偏光の向きで、前記導光素子に入射し、
     前記回折光学素子は、該回折光学素子の素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、
     前記回折効率のピークは、前記回折光学素子において、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて低くなる、画像表示装置。
  2.  前記回折光学素子は、赤、緑、青の3つの波長域の全てにおいて、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、
     前記回折効率のピークは、前記波長域ごとに、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて低くなる、請求項1に記載の画像表示装置。
  3.  画像を表示する表示素子と、
     前記表示素子からの画像光を内部で導光する導光素子と、
     前記導光素子にて導光された前記画像光を回折させて、観察瞳に導く回折光学素子とを備えた画像表示装置であって、
     前記導光素子は、前記回折光学素子に入射する前記画像光の少なくとも一部を複屈折させる複屈折性を有しており、
     前記画像光は、前記導光素子に複屈折がなかった場合に前記回折光学素子に対してS偏光となる偏光の向きで、前記導光素子に入射し、
     前記回折光学素子は、該回折光学素子の素子面内の異なる位置で同じ偏光についての回折効率を測定したときに、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、
     前記回折効率のピークは、前記回折光学素子において、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて高くなる、画像表示装置。
  4.  前記回折光学素子は、赤、緑、青の3つの波長域の全てにおいて、前記回折効率のピークが前記素子面内の位置によって変化する回折特性を持ち、
     前記回折効率のピークは、前記波長域ごとに、前記導光素子の複屈折量が最も少なくなる前記画像光の光路上の位置から、前記素子面内で遠ざかるにつれて高くなる、請求項3に記載の画像表示装置。
  5.  前記回折光学素子に入射する前記画像光の光路において、前記導光素子の複屈折量が最も少なくなる前記光路は、
     前記表示面の中心を含み、前記表示面内で互いに垂直な2方向のうちの一方向に沿った表示領域から出射される光の光路、
     前記表示面の中心を含み、前記表示面内で前記2方向のうちの他方向に沿った表示領域から出射される光の光路、
     前記表示面を、中心を含む中心領域と、該中心領域を前記表示面内で囲む周辺領域とに分けたときに、前記中心領域から出射される光の光路、
    のいずれかである、請求項1から4のいずれかに記載の画像表示装置。
  6.  前記回折光学素子は、体積位相型のホログラムである、請求項1から5のいずれかに記載の画像表示装置。
  7.  前記ホログラムは、屈折率が異なり、かつ、交互に並んで位置する複数の樹脂層を含む、請求項6に記載の画像表示装置。
  8.  前記表示素子は、反射型であり、
     該画像表示装置は、
     前記表示素子を照明する照明光学系と、
     前記照明光学系からの照明光のうち、所定の偏光方向の光を反射させて前記表示素子に導く一方、前記表示素子にて反射され、前記表示素子への入射光とは偏光方向が直交する光を透過させて前記導光素子に導く偏光分離素子とをさらに備えている、請求項1から7のいずれかに記載の画像表示装置。
  9.  請求項1から8のいずれかに記載の画像表示装置と、
     前記画像表示装置を観察者の眼前で支持する支持部材とを有している、ヘッドマウントディスプレイ。
PCT/JP2016/076690 2015-09-16 2016-09-09 画像表示装置およびヘッドマウントディスプレイ WO2017047528A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017539880A JP6597784B2 (ja) 2015-09-16 2016-09-09 画像表示装置およびヘッドマウントディスプレイ
EP16846399.0A EP3351996A4 (en) 2015-09-16 2016-09-09 Image display device and head mounted display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015182990 2015-09-16
JP2015-182990 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017047528A1 true WO2017047528A1 (ja) 2017-03-23

Family

ID=58288744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076690 WO2017047528A1 (ja) 2015-09-16 2016-09-09 画像表示装置およびヘッドマウントディスプレイ

Country Status (3)

Country Link
EP (1) EP3351996A4 (ja)
JP (1) JP6597784B2 (ja)
WO (1) WO2017047528A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521675A (ja) * 2019-05-30 2022-04-12 アップル インコーポレイテッド 光拡大カプラを備える光学システム
WO2022196204A1 (ja) * 2021-03-19 2022-09-22 ソニーグループ株式会社 表示装置
US11994672B2 (en) 2020-05-26 2024-05-28 Apple Inc. Optical systems with light-expanding couplers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248194A (ja) * 2002-02-25 2003-09-05 Minolta Co Ltd 映像表示装置
JP2010072151A (ja) * 2008-09-17 2010-04-02 Konica Minolta Holdings Inc 映像表示装置およびヘッドマウントディスプレイ
JP2010145721A (ja) * 2008-12-18 2010-07-01 Konica Minolta Holdings Inc 光路コンバイナ、映像表示装置およびヘッドマウントディスプレイ
JP2011203508A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 透過型表示装置
JP2015099238A (ja) * 2013-11-19 2015-05-28 セイコーエプソン株式会社 光学デバイス及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731943B1 (en) * 2004-03-29 2019-02-13 Sony Corporation Optical device and virtual image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248194A (ja) * 2002-02-25 2003-09-05 Minolta Co Ltd 映像表示装置
JP2010072151A (ja) * 2008-09-17 2010-04-02 Konica Minolta Holdings Inc 映像表示装置およびヘッドマウントディスプレイ
JP2010145721A (ja) * 2008-12-18 2010-07-01 Konica Minolta Holdings Inc 光路コンバイナ、映像表示装置およびヘッドマウントディスプレイ
JP2011203508A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 透過型表示装置
JP2015099238A (ja) * 2013-11-19 2015-05-28 セイコーエプソン株式会社 光学デバイス及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351996A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521675A (ja) * 2019-05-30 2022-04-12 アップル インコーポレイテッド 光拡大カプラを備える光学システム
JP7216219B2 (ja) 2019-05-30 2023-01-31 アップル インコーポレイテッド 光拡大カプラを備える光学システム
US11994672B2 (en) 2020-05-26 2024-05-28 Apple Inc. Optical systems with light-expanding couplers
WO2022196204A1 (ja) * 2021-03-19 2022-09-22 ソニーグループ株式会社 表示装置

Also Published As

Publication number Publication date
JP6597784B2 (ja) 2019-10-30
JPWO2017047528A1 (ja) 2018-07-26
EP3351996A1 (en) 2018-07-25
EP3351996A4 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US11940625B2 (en) Light-guide display with reflector
CN110068927B (zh) 光学装置
EP2905655B1 (en) Image display device and display apparatus
JP4874593B2 (ja) 映像表示装置およびヘッドマウントディスプレイ
WO2010061835A1 (ja) 映像表示装置およびヘッドマウントディスプレイ
JP6229711B2 (ja) 映像表示装置およびヘッドマウントディスプレイ
JP2007333952A (ja) 映像表示装置およびヘッドマウントディスプレイ
WO2016147868A1 (ja) 映像表示装置と光学シースルーディスプレイ
JP6597784B2 (ja) 画像表示装置およびヘッドマウントディスプレイ
JP2010145561A (ja) ヘッドマウントディスプレイ
JP2008216852A (ja) 映像表示装置およびヘッドマウントディスプレイ
JP2010243787A (ja) 映像表示装置、およびヘッドマウントディスプレイ
JP6610675B2 (ja) 導光素子、接合光学素子、画像表示装置およびヘッドマウントディスプレイ
EP3287835B1 (en) Image display device and head mounted display
JP2009157026A (ja) 映像表示装置およびヘッドマウントディスプレイ
CN211979334U (zh) 一种近眼显示装置和电子设备
JP2018004764A (ja) 映像表示装置及び接眼光学系
JP2017161570A (ja) ホログラフィック光学素子の製造方法および映像表示装置の製造方法
JP2018036558A (ja) 映像表示装置及び接眼光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE