WO2017047184A1 - コントローラ - Google Patents

コントローラ Download PDF

Info

Publication number
WO2017047184A1
WO2017047184A1 PCT/JP2016/068094 JP2016068094W WO2017047184A1 WO 2017047184 A1 WO2017047184 A1 WO 2017047184A1 JP 2016068094 W JP2016068094 W JP 2016068094W WO 2017047184 A1 WO2017047184 A1 WO 2017047184A1
Authority
WO
WIPO (PCT)
Prior art keywords
remaining life
controller
temperature
cooling fan
degrees
Prior art date
Application number
PCT/JP2016/068094
Other languages
English (en)
French (fr)
Inventor
村田 充
小川 義博
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201680030115.2A priority Critical patent/CN107923819A/zh
Priority to KR1020177033578A priority patent/KR20170139120A/ko
Priority to EP16846057.4A priority patent/EP3351918A1/en
Priority to US15/571,389 priority patent/US20190152497A1/en
Publication of WO2017047184A1 publication Critical patent/WO2017047184A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/06Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • B60G9/02Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle or housing being pivotally mounted on the vehicle, e.g. the pivotal axis being parallel to the longitudinal axis of the vehicle
    • B60G9/022Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle or housing being pivotally mounted on the vehicle, e.g. the pivotal axis being parallel to the longitudinal axis of the vehicle the axle having an imaginary pivotal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1428Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions

Definitions

  • the present invention relates to a controller.
  • a railway vehicle vibration damping device for example, an actuator interposed between a vehicle body and a carriage and an actuator are controlled so as to suppress left-right vibration in the traveling direction of the vehicle body in the railway vehicle. And a controller.
  • the actuator includes a cylinder connected to one of the carriage and the vehicle body of the railway vehicle, a piston slidably inserted in the cylinder, and a cylinder in the cylinder.
  • a cylinder connected to one of the carriage and the vehicle body of the railway vehicle, a piston slidably inserted in the cylinder, and a cylinder in the cylinder.
  • the rod side chamber and piston side chamber partitioned by the piston in the cylinder, the tank, and the rod side chamber and piston side chamber.
  • a control board is accommodated in a housing for controlling pumps and valves, and a cooling fan is provided to suppress a temperature rise of the control board.
  • the cooling fan includes a ball bearing, a rotary shaft that is rotatably supported by the ball bearing and includes a plurality of blades on the outer periphery, and a motor that drives the rotary shaft.
  • the bearing retains grease inward, and the viscosity of the grease decreases at high temperatures and the lubrication performance decreases. Therefore, the higher the temperature, the more the deterioration proceeds. Therefore, as disclosed in JP2005-043258A, a proposal has been made to detect a bearing abnormality by detecting the temperature and vibration of the bearing.
  • the conventional technology can detect the abnormality of the bearing, but the maintenance time of the bearing cannot be predicted, and there is no other way to perform the maintenance of the bearing after the occurrence of the abnormality.
  • JP2005-043258A it is possible to detect a bearing abnormality, but it is impossible to predict the maintenance time for electronic components mounted on a board or a board in the controller.
  • the present invention was devised to solve the above-mentioned problems, and the object of the present invention is to provide a controller that can predict the maintenance time of a component such as a board, an electronic component mounted on the board, or a cooling fan. Is an offer.
  • the controller of the present invention obtains the remaining life of at least one of the board, the electronic component mounted on the board, and the cooling fan based on the temperature detected by the temperature sensor installed on the board.
  • the controller C in the present embodiment includes a substrate 1 on which an electronic component 2 is mounted, temperature sensors S1 and S2 provided on the substrate 1, a cooling fan 3, a power supply substrate 4, Similarly, the apparatus includes a remaining life calculation unit 5 provided on the substrate 1 and a housing 6 that accommodates these.
  • the controller C is configured to control an actuator A that is interposed between the vehicle body and the carriage of the railway vehicle and suppresses vibration of the vehicle body, as shown in FIG.
  • the actuator A includes a cylinder 10, a rod 11 that is movably inserted into the cylinder 10, and is connected to the rod 11 and is movably inserted into the cylinder 10, so that the inside of the cylinder 10 is expanded and compressed side chamber R 1 and R 2. And a hydraulic circuit 15 that selectively connects the pump 13 and the tank 14 to the expansion side chamber R1 and the pressure side chamber R2 to expand and contract the actuator A. .
  • the hydraulic circuit 15 includes an electromagnetic valve 17 for selectively connecting the pump 13 and the tank 14 to the extension side chamber R1 and the pressure side chamber R2.
  • the controller C receives the input of the acceleration information of the vehicle body in the railway vehicle, and drives the motor 16 and the electromagnetic valve 17 that drive the pump 13 so that the actuator A exerts the control force that suppresses the vibration of the vehicle body.
  • the control command is generated.
  • the controller C includes a CPU (Central Processing Unit) 20 provided on the substrate 1 and a memory 21 that provides a storage area when the CPU 20 executes arithmetic processing and stores a program executed by the CPU 20.
  • the controller C includes a driver circuit 22 that drives the motor 16 and the electromagnetic valve 17 in the actuator A.
  • an electronic component 2 such as a capacitor provided for the purpose of supplying stable power to the CPU 20 is mounted, and temperature sensors S1 and S2 are attached. Further, the substrate 1 is provided with a low-pass filter circuit 23 for removing high-frequency components of the signals output from the temperature sensors S1 and S2, and a signal processed by the low-pass filter circuit 23 is received by the A / D converter 24. After being processed, it is input to the CPU 20.
  • the temperature sensors S1 and S2 are arranged at positions separated from each other on the substrate 1, and can detect temperatures at two locations in the housing 6 in which the substrate 1 is accommodated. The number of temperature sensors may be one or more.
  • the substrate 1 is provided with a fan drive circuit 25 that drives the cooling fan 3, and the cooling fan 3 is driven by power supply from the fan drive circuit 25.
  • the housing 6 is box-shaped, and contains the substrate 1, the power supply substrate 4, and the cooling fan 3.
  • the cooling fan 3 is disposed in the center of the housing 6 in this example. During driving, the air in the housing 6 is agitated to suppress the temperature rise of the substrate 1, the electronic component 2, and the power supply substrate 4.
  • the cooling fan 3 has a blade 3b rotatably attached to the case 3a, a motor (not shown) that rotationally drives the blade 3b, and a shaft that is held by the case 3a and rotatably supports the shaft.
  • the case 3 a is fixed to the housing 6.
  • the controller C includes a warning unit 7, and the warning unit 7 includes an LED (Light Emitting Diode) 8 attached to the housing 6 in a manner that is visible from the outside of the housing 6.
  • the warning unit 7 turns on the LED 8 and issues a warning that the maintenance is necessary.
  • the power supply board 4 is supplied with power from an external power supply, and is supplied to the CPU 20, the memory 21, the electronic component 2, the driver circuit 22, the temperature sensors S 1 and S 2, and the fan drive circuit 25 mounted on the board 1. Electric power can be supplied at a voltage required for operation.
  • the remaining life calculation unit 5 is realized by executing a program stored in the memory 21 of the CPU 20. Specifically, the CPU 20 executes the processing procedure shown in FIG.
  • the CPU 20 takes in the temperature in the housing 6 input from the temperature sensors S1 and S2 (step F1). In this case, since temperatures are input from the two temperature sensors S1 and S2, the CPU 20 takes in an average value of the temperatures obtained from the two temperature sensors S1 and S2 as the temperature in the housing 6.
  • the CPU 20 stores the fetched temperature, the driving time and the temperature of the cooling fan 3 from the last fetching of the temperature to the fetching of the current temperature in the memory 21 (step F2).
  • the cooling fan 3 is driven when the temperature in the housing 6 is equal to or higher than a preset temperature.
  • the set temperature can be arbitrarily set, but is set according to the usable temperature condition of the bearing of the cooling fan 3, the allowable maximum temperature of the substrate 1 and the electronic component 2, and the like. Therefore, the CPU 20 performs drive control of the cooling fan 3 in addition to processing as the remaining life calculation unit 5 and processing as the control device of the actuator A.
  • step F2 the CPU 20 executes the process of step F3.
  • step F ⁇ b> 3 the CPU 20 obtains the remaining life of the cooling fan 3 based on the temperature stored in the memory 21 and the driving time of the cooling fan 3.
  • the remaining life is the length of time to reach the service life from the present, and when the remaining life is obtained, the remaining time until the maintenance time such as the future replacement of the cooling fan 3 can be known.
  • the life of the bearing is determined by the temperature of the environment in which the bearing is used because the viscosity characteristics of the lubricant change depending on the temperature. For example, 10.4 years at 40 degrees, 6.9 years at 50 degrees, and 4.2 years at 65 degrees, the viscosity decreases and the lubricating performance of the lubricating oil decreases as the temperature increases, and the bearing life Is shortened. And since the temperature of a bearing is dependent on the air temperature in the housing
  • one year is 365 days
  • the detected temperature is 50 degrees and the driving time is 1 hour
  • 0.005708 ⁇ 416/345 0.006882 degrees / year.
  • the driving time is 65 degrees and the driving time is 1 hour
  • the total amount of heat is converted to a value based on 40 degrees
  • 65 degrees ⁇ 1/8760 ⁇ 416/273 0.011307 degrees / year.
  • the total amount of heat acting on the bearing is calculated by multiplying the detected temperature by the driving time of the cooling fan 3, and the calculated value is converted to a value based on 40 degrees. Further, when the converted values are integrated, the total amount Q of heat received by the bearing on the basis of 40 degrees is obtained.
  • the total amount of heat Q obtained as described above is subtracted from 416 degrees / year, which is the total amount of heat that the bearing receives until the end of its life when driven at 40 degrees, the amount of heat that the bearing can receive from the present to the end of its lifetime R is obtained. Then, if the heat quantity R is divided by 40 degrees, the remaining life of the bearing is obtained, and the time until the maintenance time is obtained.
  • the information necessary for this calculation is the total amount of heat that can be received by the bearing at each temperature of 40 ° C. or more until the end of its life, but this information can be mapped and stored in advance in the memory 21. Good.
  • This map may be capable of grasping the total amount of heat every 1 degree, or as being able to grasp every 10 degrees, and for the temperature in between, the total amount of heat at that temperature is determined by linear interpolation each time. You may make it ask.
  • the CPU 20 integrates the product of the driving time and temperature of the cooling fan 3 to obtain an integrated value that is the total amount Q of heat received by the bearing on the basis of 40 degrees, and from this integrated value, the remaining life is obtained. Ask for.
  • the cooling fan 3 may replace with the method of calculating
  • the average value of the detected temperatures of the temperature sensors S1 and S2 is less than 40 degrees
  • the cooling fan 3 when considering the service life at 40 degrees as a reference, the temperature environment of 40 degrees
  • the service life is 10.4 years due to the driving of the bearing below, but at 50 degrees it is 6.9 years. That is, the degree of progress of deterioration of the bearing by driving at 50 degrees is about 1.51 times the degree of progress of deterioration by driving at 40 degrees. That is, driving the cooling fan 3 at 50 degrees for 1 second is equivalent to driving the cooling fan 3 at 40 degrees for 1.51 seconds. Since the service life is 4.2 years when driven at 65 degrees, driving the cooling fan 3 for 1 second at 65 degrees is equivalent to driving the cooling fan 3 at 40 degrees for 1.64 seconds.
  • the cooling fan 3 when the cooling fan 3 is driven at 50 degrees, it is comparable to the state in which the cooling fan 3 is driven in 1.51 times the actual driving time than when the cooling fan 3 is driven at 40 degrees. Therefore, by multiplying the drive time by the magnification by the temperature to obtain the drive time converted on the basis of 40 degrees, subtracting the integrated value of the drive time obtained as described above from the service life due to the drive at 40 degrees, A remaining life is required.
  • the multiplication factor by which the driving time is multiplied depends on the temperature, if this magnification is mapped and stored in the memory 21 in advance, the driving time based on the temperature is calculated in the same manner as the remaining life is obtained from the amount of heat described above. The remaining life is obtained from the total.
  • the CPU 20 determines whether or not the remaining life determined as described above is within the maintenance required period (step F4).
  • the maintenance required period is 0.3 years, for example, the time from the present to the end of replacement of the cooling fan 3, that is, the remaining life of the bearing of the cooling fan 3 from the present obtained in step F3 is 0.3 years. It is determined whether or not the following is true, and it is determined whether or not the maintenance time has come.
  • the necessary maintenance period is a period that requires the replacement work of the cooling fan 3, and is set so that the cooling fan 3 can be replaced before reaching the end of its life depending on the maintenance cycle of the railway vehicle.
  • the CPU 20 determines that the remaining life is within the maintenance required period, the CPU 20 turns on the LED 8 and issues a warning to notify the operator of the controller C that maintenance is necessary (step F5).
  • the warning unit 7 includes the CPU 20 and the LED 8, and is realized by the CPU 20 executing the program and executing the process of step F5.
  • step F4 determines whether the remaining life is not within the maintenance required period. If it is determined in step F4 that the remaining life is not within the maintenance required period, the process returns to step F1, and the CPU 20 repeatedly executes the above-described processing.
  • the remaining life calculation unit 5 obtains the time (remaining life) until the cooling fan 3 needs to be maintained, but may obtain the remaining life other than the cooling fan 3.
  • the remaining life For example, in the substrate 1, cracks occur in the solder used for mounting the electronic component 2 due to aging degradation due to heat. Therefore, as described above, if the service life for each operating temperature condition is grasped, the remaining life as the time until the maintenance time when the substrate 1 needs to be replaced can be obtained based on the temperature. Even in the electronic component 2, the remaining life can be obtained in the same manner as long as the service life is determined by the use temperature, such as a capacitor and a switching element, and the service life is determined by the use temperature. Therefore, the controller C may obtain all remaining lifetimes of the board 1, the electronic component 2 mounted on the board 1, and the cooling fan 3 that cools the board 1, or any of these remaining lifetimes selected arbitrarily. You may ask for.
  • the CPU 20 may transmit the obtained remaining life information to the vehicle monitor of the railway vehicle.
  • the vehicle monitor may be used as a warning unit to display on the vehicle monitor screen that maintenance is necessary or the remaining life itself is displayed as a warning. Therefore, in step F5 described above, in addition to the lighting of the LED 8, or in place of the lighting of the LED 8, a warning that maintenance is necessary may be displayed on the vehicle monitor of the railway vehicle.
  • the controller C of the present invention includes the temperature sensors S1 and S2 installed on the substrate 1 and the electronic components mounted on the substrate 1 and the substrate 1 based on the temperatures detected by the temperature sensors S1 and S2. 2 and at least one remaining lifetime of the cooling fan 3 that cools the substrate 1 is obtained. Therefore, the controller C of the present invention can predict the maintenance time of the components such as the substrate 1, the electronic component 2 mounted on the substrate 1, or the cooling fan 3. In the past, component parts were replaced proactively even if it was not time to replace them. However, since the maintenance time of the components of controller C can be predicted in this way, the replacement time can be grasped and unnecessary parts can be identified. Exchange can be suppressed.
  • controller C of the present example can predict the maintenance time with high accuracy regardless of the temperature change because the remaining life calculation unit 5 calculates the remaining life based on the temperature and the drive time for which the remaining life is to be calculated.
  • the controller C of this example obtains the remaining life of the component based on the average value of the temperatures detected by the two or more temperature sensors S1 and S2 by the remaining life calculation unit 5. Even if it is not arranged close to S2, the maintenance time can be predicted with high accuracy for this component.
  • the controller C of this example includes a housing 6 that accommodates the substrate 1 and the cooling fan 3, and the remaining life calculation unit 5 is provided on the substrate 1. Is required. Therefore, the remaining life calculation unit 5 can be configured by the CPU 20 mounted on the controller C, and the maintenance time can be predicted at low cost.
  • the controller C of this example includes a warning unit 7 that issues a warning that prompts maintenance when the remaining life calculated by the remaining life calculation unit 5 is equal to or less than the maintenance required period. The operator can perform the maintenance in a timely manner.
  • controller C was demonstrated as what controls the actuator A of a railway vehicle, you may control a semi-active damper and the control object of the controller C is not restricted to these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

基板や基板上に実装される電子部品或いは冷却ファンといった構成部品のメンテナンス時期を予見できるコントローラの提供を目的とする。 コントローラ(C)は、基板(1)上に設置される温度センサ(S1,S2)が検出した温度に基づいて、基板(1)、基板(1)上に実装される電子部品(2)および冷却ファン(3)の少なくとも一つ以上の残存寿命を求める。

Description

コントローラ
 本発明は、コントローラに関する。
 鉄道車両用制振装置にあっては、たとえば、鉄道車両に車体の進行方向に対して左右方向の振動を抑制すべく、車体と台車との間に介装されるアクチュエータと、アクチュエータを制御するコントローラとを備えている。
 より詳しくは、アクチュエータは、JP2010-065797Aに開示されているように、鉄道車両の台車と車体の一方に連結されるシリンダと、当該シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンと台車と車体の他方に連結されるロッドと、シリンダ内にピストンで区画したロッド側室とピストン側室と、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室へ作動油を供給するポンプと、ロッド側室を前記タンクへ接続する排出通路と、当該排出通路の途中に設けられ開弁圧を変更可能な可変リリーフ弁とを備えて構成され、前記ポンプ、第一開閉弁、第二開閉弁および可変リリーフ弁をコントローラで駆動して、アクチュエータに推力を発揮させて鉄道車両の車体の振動を抑制するようになっている。
 このようなコントローラでは、ポンプや弁の制御のために制御基板を筐体に収容しており、制御基板の温度上昇を抑制するために冷却ファンを備えている。冷却ファンは、ボールベアリングと、ボールベアリングで回転自在に支持され外周に複数のブレードを備えた回転軸と、回転軸を駆動するモータとを備えて構成される。ベアリングは、内方にグリスを保持しており、高温下ではグリスの粘度が低くなり、潤滑性能が低下するため、温度が高くなればなるほど劣化が進んでしまう。そこで、JP2005-043258Aに開示されているように、ベアリングの温度と振動を検知して、ベアリングの異常を検知する提案がなされるに至っている。
 このように、従来技術では、ベアリングの異常を検知できるのであるが、ベアリングのメンテナンス時期を予期できず、異常が発生してから事後的にベアリングのメンテナンスを実施する他はなかった。
 また、JP2005-043258Aに開示された技術では、ベアリングの異常の検知はできるが、コントローラ内の基板や基盤に実装される電子部品についてのメンテナンス時期を予期できない。
 そこで、本発明は前記問題を解決するために創案されたものであって、その目的とするところは、基板や基板上に実装される電子部品或いは冷却ファンといった構成部品のメンテナンス時期を予見できるコントローラの提供である。
 本発明のコントローラは、基板上に設置される温度センサが検出した温度に基づいて、基板、基板上に実装される電子部品および冷却ファンの少なくとも一つ以上の残存寿命を求める。
一実施の形態におけるコントローラの概略図である。 一実施の形態におけるコントローラによって制御されるアクチュエータの概略図である。 一実施の形態におけるコントローラの処理手順を示すフローチャートである。
 以下、図に示した実施の形態に基づき、本発明を説明する。本実施の形態におけるコントローラCは、図1に示すように、電子部品2が実装された基板1と、基板1上に設けた温度センサS1,S2と、冷却ファン3と、電源基板4と、同じく基板1上に設けた残存寿命演算部5と、これらを収容する筐体6とを備えて構成されている。
 以下、コントローラCの各部について詳細に説明する。コントローラCは、本例では、図2に示すように、鉄道車両の車体と台車との間に介装されて車体の振動を抑制するアクチュエータAを制御するようになっている。
 アクチュエータAは、シリンダ10と、シリンダ10内に移動自在に挿入されたロッド11と、ロッド11に連結されるとともにシリンダ10内に移動自在に挿入されてシリンダ10内を伸側室R1と圧側室R2とに区画するピストン12と、ポンプ13と、タンク14と、ポンプ13とタンク14を伸側室R1と圧側室R2へ選択的に接続してアクチュエータAを伸縮作動させる油圧回路15とを備えている。油圧回路15は、ポンプ13とタンク14を伸側室R1と圧側室R2へ選択的に接続するために電磁弁17を備えている。
 そして、コントローラCは、鉄道車両における車体の加速度情報の入力を受けて、アクチュエータAに車体の振動を抑制する制御力を発揮させるべく、ポンプ13を駆動するモータ16と電磁弁17を駆動するための制御指令を生成するようになっている。
 そのため、コントローラCは、基板1に設けたCPU(Central Processing Unit)20と、CPU20における演算処理の実行に際して記憶領域を提供するとともにCPU20が実行するプログラムを格納するメモリ21とを備えている。また、コントローラCは、アクチュエータAにおけるモータ16と電磁弁17を駆動するドライバ回路22を備えている。
 基板1上には、CPU20へ安定した電力を供給する等の目的で設けられるコンデンサ等の電子部品2が実装されるほか、温度センサS1,S2が取り付けられている。また、基板1には、温度センサS1,S2が出力する信号の高周波成分を除去するローパスフィルタ回路23が設けられており、ローパスフィルタ回路23で処理された信号が、A/D変換器24で処理されたのち、CPU20へ入力されるようになっている。温度センサS1,S2は、基板1上の離れた位置に配置されており、基板1が収容される筐体6内の二箇所の温度を検知できるようになっている。温度センサの設置数は、一つ以上であればよい。
 さらに、基板1には、冷却ファン3の駆動するファン駆動回路25を備えており、ファン駆動回路25からの電力供給により冷却ファン3が駆動するようになっている。
 筐体6は、箱状であって、内部に、基板1、電源基板4および冷却ファン3が収容されており、冷却ファン3は、この例では、筐体6内の中央に配置されていて、駆動時には、筐体6内の空気を撹拌し、基板1、電子部品2および電源基板4の温度上昇を抑制する。冷却ファン3は、詳しくは、図示はしないが、ケース3aに回転自在に取り付けたブレード3bと、このブレード3bを回転駆動する図外のモータと、ケース3aに保持されて軸を回転自在に支持する図外のベアリングとを備えており、ケース3aが筐体6に固定される。
 また、コントローラCは、警告部7を備えており、警告部7は、筐体6に筐体6外から視認可能な態様で取り付けられたLED(Light Emitting Diode)8を備えている。警告部7は、CPU20が冷却ファン3の交換を要するメンテナンスが必要と判断すると、LED8を点灯させて、メンテナンスが必要である旨の警告を発するようになっている。
 なお、電源基板4は、外部電源から電力供給を受けて、基板1上に実装されるCPU20、メモリ21、電子部品2、ドライバ回路22、温度センサS1,S2、ファン駆動回路25へ、各々の動作必要な電圧で電力を供給できるようになっている。
 残存寿命演算部5は、CPU20のメモリ21内に格納されたプログラムの実行により実現されている。具体的には、図3に示す処理手順をCPU20が実行して、残存寿命演算部5が実現される。
 CPU20は、温度センサS1,S2から入力される筐体6内の温度を取り込む(ステップF1)。この場合、二つの温度センサS1,S2から温度が入力されるので、CPU20は、二つの温度センサS1,S2から得た温度の平均値を筐体6内の温度として取り込む。
 つづいて、CPU20は、取り込んだ温度と、前回に温度を取り込んでから今回の温度の取り込みまでにおける冷却ファン3の駆動時間と温度をメモリ21に記憶させる(ステップF2)。なお、残存寿命演算部5の処理ではないが、冷却ファン3は、筐体6内の温度が予め設定された設定温度以上となる場合に駆動されるようになっている。設定温度は、任意に設定できるが、冷却ファン3のベアリングの使用可能温度条件、基板1および電子部品2の許容最高温度等によって設定される。よって、CPU20は、残存寿命演算部5としての処理と、アクチュエータAの制御装置としての処理に加えて、冷却ファン3の駆動制御を実行している。
 戻って、ステップF2の処理が終了すると、CPU20は、ステップF3の処理を実行する。ステップF3では、CPU20は、メモリ21内に格納されている温度と、冷却ファン3の駆動時間とに基づいて、冷却ファン3の残存寿命を求める。残存寿命は、現在から耐用年数に到達する時間長さであり、残存寿命を求めると将来の冷却ファン3の交換などといったメンテナンス時期までに残された時間が分かる。
 ベアリングの寿命は、潤滑油が温度によって粘度特性が変化するため、ベアリングが使用される環境の温度によって耐用年数が決まっている。たとえば、40度では10.4年、50度では6.9年、65度では4.2年というように、温度が高くなると粘度が低下して潤滑油の潤滑性能が低下してベアリングの寿命が短くなるのである。そして、ベアリングの温度は、ベアリングを取り巻く雰囲気の温度である筐体6内の気温に依存するので、温度センサS1,S2が検知する温度から残存寿命を求め得る。
 具体的には、冷却ファン3の駆動時間と温度の積の積算した値を求め、この積算値から残存寿命を求める。前述した条件であると、40度で駆動する場合にベアリングが寿命までに受ける熱の総量は、40度×10.4年=416度・年となる。50度で駆動する場合にベアリングが寿命までに受ける熱の総量は、50度×6.9年=345度・年となる。さらに、65度で駆動する場合に寿命までにベアリングが受ける熱の総量は、65度×4.2年=273度・年となる。
 1年を365日とすると、1年は、24時間×365日=8760時間となる。よって、たとえば、検出された温度が50度であり、駆動時間が1時間であると、この駆動時間においてベアリングが受けた熱の総量は、50度×1/8760=0.005708度・年となる。この熱の総量を40度を基準とした値に換算すると、0.005708×416/345=0・006882度・年となる。65度で駆動時間が1時間の場合も同様に考えて熱の総量を40度を基準とした値に換算すると、65度×1/8760×416/273=0・011307度・年となる。このように、検出された温度に対して冷却ファン3の駆動時間を乗じてこの駆動時間にベアリングに作用した熱の総量を算出し、この算出した値を40度を基準とした値に換算し、さらに、この換算された値を積算すると、40度を基準としてベアリングが受けた熱の総量Qが得られる。そして、40度で駆動する場合にベアリングが寿命までに受ける熱の総量である416度・年から前記のようにして求めた熱の総量Qを差し引くと、ベアリングが現在から寿命までに受け得る熱量Rが求まる。そして、熱量Rを40度で割り算すれば、ベアリングの残存寿命が得られ、メンテナンス時期までの時間が得られる。この演算に必要な情報は、この例では、40度以上の各温度でのベアリングが寿命までに受け得る熱の総量であるが、この情報は、マップ化してメモリ21に予め格納しておけばよい。このマップは、1度毎に前記の熱の総量が把握できるものであってもよいし、10度毎に把握できるものとして、その間の温度に関しては線形補間によって、その温度における熱の総量を都度求めるようにしてもよい。
 CPU20は、このように、冷却ファン3の駆動時間と温度の積を積算し、40度基準でのベアリングが現在までに受けた熱の総量Qである積算値を求め、この積算値から残存寿命を求める。
 なお、前述のような残存寿命の求め方に代えて以下のようにしてもよい。温度センサS1,S2の検出温度の平均値が40度未満では、冷却ファン3を駆動しない場合、40度での耐用年数を基準にして考えると、前述した条件であると、40度の温度環境下でのベアリングの駆動により耐用年数は、10.4年であるが、50度では6.9年となる。つまり、50度での駆動によるベアリングの劣化の進み度合は、40度での駆動による劣化の進み度合の約1.51倍となる。つまり、50度で1秒間冷却ファン3を駆動すると、40度で1.51秒間冷却ファン3を駆動したのと同等となる。65度での駆動では耐用年数が4.2年となるので、65度での1秒間冷却ファン3を駆動すると、40度で1.64秒間冷却ファン3を駆動したのと同等となる。
 よって、50度で冷却ファン3を駆動すると、40度で冷却ファン3を駆動する場合より、実際の駆動時間の1.51倍の時間で冷却ファン3を駆動した状態に匹敵する。よって、温度によって、駆動時間に倍率を乗じて、40度基準で換算した駆動時間を求め、40度での駆動による耐用年数から、前述のようにして求めた駆動時間の積算値を差し引くと、残存寿命が求められる。この場合、温度によって駆動時間に乗じる倍率が異なるので、この倍率をマップ化してメモリ21に予め格納しておけば、前述の熱量から残存寿命を求めるのと同様に、温度に基づいた駆動時間の積算から残存寿命を求められる。
 つづいて、CPU20は、以上のようにして求めた残存寿命がメンテナンス必要期間内であるか否かを判断する(ステップF4)。メンテナンス必要期間を、たとえば、0.3年とする場合、現在から冷却ファン3の交換終期までの時間、つまり、ステップF3で求める現在から冷却ファン3のベアリングの残存寿命がが、0.3年以下となるか否かを判断して、メンテナンス時期が到来しているか否かを判断する。メンテナンス必要期間は、冷却ファン3の交換作業を要する期間であり、鉄道車両のメンテナンス周期に応じて冷却ファン3が寿命を迎える前に交換ができるように設定される。
 CPU20は、残存寿命がメンテナンス必要期間内に入ると判断すると、メンテナンスが必要となった旨をコントローラCのオペレータ等に知らせるべくLED8を点灯して警告を発する(ステップF5)。この場合、警告部7は、CPU20とLED8とで構成され、CPU20がプログラムを実行してステップF5の処理を実行して実現される。
 他方、ステップF4の判断で、残存寿命がメンテナンス必要期間内でない場合、ステップF1へ戻って、CPU20は、前述の処理を繰り返し実行する。
 前述したところでは、残存寿命演算部5は、冷却ファン3のメンテナンスが必要となるまでの時間(残存寿命)を求めているが、冷却ファン3以外の残存寿命を求めてもよい。たとえば、基板1にあっては、熱による経年劣化により、電子部品2の実装に使用される半田にクラックが入る。そのため、前述のように、使用温度条件毎の耐用年数を把握しておけば、温度に基づいて、基板1の交換が必要なメンテナンス時期までの時間としての残存寿命を求め得る。電子部品2にあっても、コンデンサやスイッチング素子等、熱の影響を受け、使用温度によって耐用年数が決まるものであれば、同様に、残存寿命を求め得る。よって、コントローラCは、基板1、基板1上に実装される電子部品2および基板1を冷却する冷却ファン3の全ての残存寿命を求めてもよいし、これらのうち任意に選択したものの残存寿命を求めてもよい。
 また、本例では、CPU20は、求めた残存寿命の情報を鉄道車両の車両モニタへ送信するようにしてもよい。この場合、車両モニタを警告部として利用して車両モニタの画面へメンテナンスが必要である旨或いは残存寿命そのものを警告として表示させるようにしてもよい。よって、前述のステップF5において、LED8の点灯に加えて、或いは、LED8の点灯に代えて鉄道車両の車両モニタへメンテナンスが必要である旨の警告表示するようにしてもよい。
 このように、本発明のコントローラCは、基板1上に設置される温度センサS1,S2と、温度センサS1,S2が検出した温度に基づいて、基板1、基板1上に実装される電子部品2および基板1を冷却する冷却ファン3の少なくとも一つ以上の残存寿命を求める。よって、本発明のコントローラCは、基板1や基板1上に実装される電子部品2或いは冷却ファン3といった構成部品のメンテナンス時期を予見できる。従来では、交換時期になっていなくとも予防的に構成部品の交換を行っていたが、このようにコントローラCの構成部品のメンテナンス時期を予見できるために、交換時期を把握でき、不必要な部品交換を抑制できる。
 さらに、本例のコントローラCは、残存寿命演算部5は、温度と残存寿命を求める対象の駆動時間とに基づいて残存寿命を求めるので、温度変化によらず精度よくメンテナンス時期を予見し得る。
 そして、本例のコントローラCは、残存寿命演算部5が二つ以上の温度センサS1,S2が検出した温度の平均値に基づいて構成部品の残存寿命を求めるので、構成部品が温度センサS1,S2の至近に配置されていなくともこの構成部品について精度良くメンテナンス時期を予見できる。
 また、本例のコントローラCは、基板1と冷却ファン3を収容する筐体6を備えており、残存寿命演算部5が基板1に設けられているので、コントローラCは自己診断にて残存寿命を求められる。よって、コントローラCに実装されるCPU20によって残存寿命演算部5を構成でき、安価にメンテナンス時期を予見し得る。
 そして、本例のコントローラCは、残存寿命演算部5が求めた残存寿命がメンテナンス必要期間以下となるとメンテナンスを促す警告を発する警告部7を備えているので、オペレータへメンテナンスが必要である状況となっている旨を伝達でき、オペレータはタイムリーにメンテナンスを実行できる。
 なお、コントローラCは、鉄道車両のアクチュエータAを制御するものとして説明したが、セミアクティブダンパを制御するものであってもよいし、コントローラCの制御対象はこれらに限られない。
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形及び変更が可能である。
 本願は、2015年9月14日に日本国特許庁に出願された特願2015-180626に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  コントローラであって、
     基板上に設置される温度センサと、
     前記温度センサが検出した温度に基づいて、前記基板、前記基板上に実装される電子部品および前記基板を冷却する冷却ファンの少なくとも一つ以上の残存寿命を求める残存寿命演算部とを備えた
     ことを特徴とするコントローラ。
  2.  請求項1に記載のコントローラであって、
     前記残存寿命演算部は、前記温度と残存寿命を求める対象の駆動時間とに基づいて前記残存寿命を求める
     ことを特徴とするコントローラ。
  3.  請求項1に記載のコントローラであって、
     前記温度センサを二つ以上設け、
     前記残存寿命演算部は、前記各温度センサが検出した温度の平均値に基づいて前記残存寿命を求める
     ことを特徴とするコントローラ。
  4.  請求項1に記載のコントローラであって、
     前記基板と前記冷却ファンを収容する筐体を備え、
     前記残存寿命演算部は、前記基板に設けられる
     ことを特徴とするコントローラ。
  5.  請求項1に記載のコントローラであって、
     前記残存寿命演算部が求めた残存寿命がメンテナンス必要期間以下となるとメンテナンスを促す警告を発する警告部
     を備えたことを特徴とするコントローラ。
PCT/JP2016/068094 2015-09-14 2016-06-17 コントローラ WO2017047184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680030115.2A CN107923819A (zh) 2015-09-14 2016-06-17 控制器
KR1020177033578A KR20170139120A (ko) 2015-09-14 2016-06-17 컨트롤러
EP16846057.4A EP3351918A1 (en) 2015-09-14 2016-06-17 Controller
US15/571,389 US20190152497A1 (en) 2015-09-14 2016-06-17 Controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-180626 2015-09-14
JP2015180626A JP2017058137A (ja) 2015-09-14 2015-09-14 コントローラ

Publications (1)

Publication Number Publication Date
WO2017047184A1 true WO2017047184A1 (ja) 2017-03-23

Family

ID=58288643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068094 WO2017047184A1 (ja) 2015-09-14 2016-06-17 コントローラ

Country Status (7)

Country Link
US (1) US20190152497A1 (ja)
EP (1) EP3351918A1 (ja)
JP (1) JP2017058137A (ja)
KR (1) KR20170139120A (ja)
CN (1) CN107923819A (ja)
TW (1) TW201710124A (ja)
WO (1) WO2017047184A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107526922B (zh) * 2017-07-28 2021-03-23 华为技术有限公司 确定风扇剩余寿命的方法和装置
EP3758219A4 (en) 2018-02-21 2021-11-03 Kabushiki Kaisha Yaskawa Denki ENGINE CONTROL SYSTEM, ENGINE CONTROL DEVICE AND DIAGNOSTIC PROCEDURES FOR BEARING LIFE
DE102018105063A1 (de) * 2018-03-06 2019-09-12 Ebm-Papst Mulfingen Gmbh & Co. Kg Vorrichtung und Verfahren zur Luftmengenerfassung
CN109372785A (zh) * 2018-08-16 2019-02-22 浙江艾罗网络能源技术有限公司 一种确定风扇剩余寿命的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091413A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 電子機器の寿命監視装置
JP2011119428A (ja) * 2009-12-03 2011-06-16 Fuji Electric Systems Co Ltd 余寿命推定方法及び余寿命推定システム
WO2014196315A1 (ja) * 2013-06-05 2014-12-11 古野電気株式会社 航法装置及び部品寿命通知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014860A (ja) * 2001-06-29 2003-01-15 Toshiba Corp 放射線検出器および放射線検査装置
US8498826B2 (en) * 2010-11-30 2013-07-30 General Electric Company Method and system for machine condition monitoring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091413A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 電子機器の寿命監視装置
JP2011119428A (ja) * 2009-12-03 2011-06-16 Fuji Electric Systems Co Ltd 余寿命推定方法及び余寿命推定システム
WO2014196315A1 (ja) * 2013-06-05 2014-12-11 古野電気株式会社 航法装置及び部品寿命通知方法

Also Published As

Publication number Publication date
TW201710124A (zh) 2017-03-16
EP3351918A1 (en) 2018-07-25
US20190152497A1 (en) 2019-05-23
KR20170139120A (ko) 2017-12-18
CN107923819A (zh) 2018-04-17
JP2017058137A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2017047184A1 (ja) コントローラ
JP5973786B2 (ja) 産業用ロボットの集中監視装置、集中監視プログラムおよびメンテナンスシステム
US11274684B2 (en) Method for determining the health status of the hydraulic circuit arrangement
CN104070539A (zh) 具备气弹簧的多关节机器人、及推断气弹簧的内压的方法
EP3095654A1 (en) Prediction of remaining lifetime for compressed air supply system component
CN103062380A (zh) 控制齿轮系统润滑的装置和方法
JP6745119B2 (ja) 関節型ロボットおよびそのガススプリングのガス減少状態推定方法
CN101040118A (zh) 流体泵控制系统及方法
CN112576489B (zh) 用于压缩空气设备的压缩机的使用寿命监测的方法
EP3923093A2 (en) Control device
CN101139980B (zh) 旋翼飞行器空气调节装置的控制方法和装置及旋翼飞行器
KR20090042762A (ko) 필요에 따라서 작동될 수 있고 및 작동 중단될 수 있는, 에어 스프링 시스템의 컴프레서 제어 방법
JP2008540226A (ja) 自動車のリターダにおける制動特性の調整方法
EP3303949B1 (en) Cargo-neutral diagnostic system, climate controlled mobile cargo container having a cargo-neutral diagnostic system and method
JP6092095B2 (ja) スクリュー圧縮機用のオイルレベルインジケータ
CN109113976A (zh) 油量监测系统及方法
RU2667656C2 (ru) Способ и система управления компрессором и транспортное средство с такой системой
US9926924B2 (en) System for managing a vehicle compressor
JP2012500615A (ja) 電動機モジュール、電動機を動作させる方法、および電動機制御装置
JP6648657B2 (ja) 疲労・耐久試験装置
US20200225132A1 (en) Real-time consumable parts monitoring system
US9932978B2 (en) Method for controlling the operation of a compressor
EP2735484A1 (en) Method for managing a vehicle compressor
CN103821624B (zh) 车辆的发动机效率系统和操作发动机效率系统的方法
DK201300213A1 (en) A motor drive controller for a compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033578

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE