WO2017046913A1 - Differential refractive index detector - Google Patents

Differential refractive index detector Download PDF

Info

Publication number
WO2017046913A1
WO2017046913A1 PCT/JP2015/076450 JP2015076450W WO2017046913A1 WO 2017046913 A1 WO2017046913 A1 WO 2017046913A1 JP 2015076450 W JP2015076450 W JP 2015076450W WO 2017046913 A1 WO2017046913 A1 WO 2017046913A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
flow cell
cell
measurement light
differential refractive
Prior art date
Application number
PCT/JP2015/076450
Other languages
French (fr)
Japanese (ja)
Inventor
亨 山口
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2015/076450 priority Critical patent/WO2017046913A1/en
Publication of WO2017046913A1 publication Critical patent/WO2017046913A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to a differential refractive index detector used as a detector in an analyzer such as a liquid chromatograph.
  • the differential refractive index detector detects the refractive index of the sample solution and the concentration of the components contained in the sample solution using the difference in refractive index between the sample solution and the reference solution.
  • a flow cell comprising: an optical system that guides light from a light source to the flow cell through a slit; and an optical system that guides light that has passed through the flow cell to a light receiving element and forms a slit image on the light receiving element. Yes.
  • a reference solution flows through one cell of the flow cell, and a sample solution flows through the other cell. Light from the light source sequentially passes through the two cells of the flow cell and then enters the light receiving element.
  • the path of light passing through the flow cell changes according to the difference in refractive index between the reference solution and the sample solution, and the slit image formed on the light receiving element is displaced.
  • the component concentration of the sample solution can be obtained (Patent Documents 1 and 2).
  • the differential refractive index detector is usually configured such that a mirror 560 is disposed behind the flow cell 550, and light from the light source 510 passes through the flow cell 550 twice. That is, the light incident on the flow cell 550 is refracted by an angle ⁇ corresponding to the difference in refractive index between the reference solution and the sample solution, is emitted from the flow cell 550, is reflected by the mirror 560, and passes through the two cells again. Then, the light is further refracted by an angle ⁇ and emitted from the flow cell 550 (FIG. 9). Thereby, the displacement amount of the slit image is increased.
  • the differential refractive index detector can accurately measure the refractive index and concentration of the sample because the slit image is greatly displaced if the difference in refractive index between the reference solution and the sample solution is large.
  • the concentration of the sample in the sample solution is low or when the refractive index of the component contained in the sample is close to the refractive index of the reference solution, the refractive index difference is small and the slit image is hardly displaced. It becomes difficult to accurately measure the refractive index and density.
  • a differential refractive index detector with improved sensitivity as in Patent Document 3 has been proposed, a differential refractive index detector with higher sensitivity has been demanded in order to measure a sample with a smaller refractive index difference.
  • the problem to be solved by the present invention is to provide a differential refractive index detector having high sensitivity.
  • the differential refractive index detector according to the present invention made to solve the above problems is A flow cell having a sample solution cell and a reference solution cell partitioned by a partition; And two reflecting portions arranged opposite to each other with the sample solution cell and the reference solution cell interposed therebetween so that the measurement light passes through the partition wall three times or more and then travels toward the measurement light detector.
  • the two reflecting portions are arranged to face each other with the sample solution cell and the reference solution cell interposed therebetween, and the measurement light incident on the flow cell is reflected between the two reflecting portions. After passing through the partition wall between the sample solution cell and the reference solution cell three times or more, it goes to the measuring light detector. Each time the measurement light passes through the partition wall, it is refracted by an angle ⁇ corresponding to the difference in refractive index between the sample solution and the reference solution contained in these two cells.
  • the angle at which the measurement light is refracted also increases in accordance with the number of times.
  • the measurement light detector detects the refraction angle of the measurement light, and based on this, the refractive index of the sample solution and the concentration of the component contained in the solution are measured.
  • the differential refractive index detector may be configured such that one or both of the two reflecting portions are provided on one or both of the two wall surfaces sandwiching the sample solution cell and the reference solution cell of the flow cell. .
  • the flow cell and the reflection portion are provided separately, a fixture for fixing each of them is necessary.
  • a space for arranging the reflecting portion is also required.
  • a fixture or a space for fixing the reflecting portion is not required, and the differential refractive index detector can be miniaturized.
  • Such a reflection part can be configured by adhering a mirror to the flow cell or by depositing metal on the flow cell.
  • the reflecting part or measuring light on the wall surface on which the measuring light is incident enters the measuring light detector. It is desirable that the reflecting portion of the wall surface on the outgoing side is set shorter than the reflecting portion of the other wall surface in the direction in which the measurement light is repeatedly reflected.
  • the measurement light can enter or exit the flow cell from the short set portion, so the overall differential refractive index detector including the light source and the measurement light detector can be reduced in size. can do.
  • the normal line is the reflection of the other wall surface of the portion not provided with the reflecting portion of the shorter wall surface. It is desirable to incline toward the center side of the part.
  • the reflecting portion of the wall surface on which the measurement light is incident is shortened, the light incident from the portion of the wall surface where the reflecting portion is not provided is on the center side of the reflecting portion of the other wall surface. Because the light is refracted toward the light source, the incident light from the light source can be incident at a lower angle with respect to the normal of the reflection portion of the other wall surface, and the position of the light source can be brought closer to the measurement light detector. It becomes like this. This also leads to a reduction in the size of the entire differential refractive index detector including the light source and the measurement light detector. The same applies when the reflecting portion of the wall surface on the side from which the measurement light is emitted is shortened.
  • the measurement light incident on the flow cell passes through the partition wall between the sample solution cell and the reference solution cell at least three times, and every time it passes, the refractive index of the sample solution and the reference solution. Refraction is made at an angle corresponding to the difference.
  • FIG. 1 is a schematic configuration diagram of a differential refractive index detector according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the structure of a flow cell of the differential refractive index detector according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining reflection of measurement light by a first reflecting portion and a second reflecting portion of the differential refractive index detector according to the first embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of a differential refractive index detector according to a second embodiment of the present invention. The figure explaining the structure of the flow cell of the differential refractive index detector which concerns on the 2nd Embodiment of this invention.
  • FIG. 3 is a diagram illustrating the structure of a flow cell of the differential refractive index detector according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining reflection of measurement light by a first reflecting portion and a second reflecting portion of the differential refractive index detector according to the first embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of a differential refractive index detector according to a third embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a differential refractive index detector according to a first embodiment of the present invention.
  • the differential refractive index detector includes a light source 110, a condenser lens 120, a slit plate 130, a collimator lens 140, a flow cell 150, and a split photodiode 170.
  • the condenser lens 120 and the slit plate 130 are arranged in the light irradiation direction of the light source 110, and the collimating lens 140 is arranged in front of the flow cell 150.
  • the focal point of the condensing lens 120 is adjusted to be the position of the collimating lens 140.
  • FIG. 2A is a top view of the flow cell 150
  • FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A.
  • a reference solution cell 150a and a sample solution cell 150b both having a right triangular prism shape are juxtaposed so as to share a hypotenuse, and a partition wall 150e is provided between the two cells.
  • a mobile phase is passed through the reference solution cell 150a, and a mobile phase or a mobile phase containing a sample is passed through the sample solution cell 150b.
  • the first reflecting portion 160a and the second reflecting portion 160b are provided on the outer wall surface on the collimating lens side of the flow cell 150 and the outer wall surface facing the collimating lens so that the reflecting surfaces face the inside of the flow cell 150, respectively.
  • the second reflecting portion 160 b is provided on the entire outer surface of the flow cell 150.
  • the first reflection unit 160a has a shorter structure than the second reflection unit 160b in the height direction (z-axis direction) of the flow cell 150 (referred to as the flow cell axial direction).
  • the reflective surfaces of the first reflective unit 160a and the second reflective unit 160b are arranged in parallel to each other.
  • an incident part 150c and an emission part 150d are provided on the upper and lower parts of the outer wall of the flow cell 150 on the collimator lens 150 side, and a first reflection is provided between the incidence part 150c and the emission part 150d.
  • Part 160a The incidence part 150c and the emission part 150d are inclined so that the normal line is directed toward the center of the wall surface on which the second reflection part 160b is provided.
  • the divided photodiode 170 (measurement light detector in the present invention) has a plus-side light-receiving element and a minus-side light-receiving element on the light-receiving surface, and a detection signal (not shown) corresponding to the illuminance of light applied to each light-receiving element.
  • the signal processing unit measures the refractive index of the sample solution and the concentration of components contained in the solution based on the detection signal.
  • the measurement light emitted from the light source 110 passes through the slits arranged in the axial direction of the flow cell 150 of the condenser lens 120 and the slit plate 130, is converted into parallel light by the collimator lens 140, and is incident on the flow cell 150.
  • FIG. 3 is a diagram for explaining the reflection of the measurement light by the first reflector 160a and the second reflector 160b.
  • the measurement light incident on the flow cell 150 has an axial direction of the flow cell 150 (z-axis direction in FIG. 3B) at an angle corresponding to the refractive index of air and the material of the flow cell 150 and the incident angle of the measurement light at the incident portion 150c. And is incident on the flow cell 150.
  • the measurement light incident on the flow cell 150 is reflected between the second reflecting portion 160b and the first reflecting portion 160a as shown in FIG. 3B and between the two cells while traveling in the axial direction of the flow cell 150.
  • the partition wall 150e is passed three times or more (six times in FIG. 3).
  • an angle ⁇ corresponding to the refractive index difference between the mobile phase flowing in the reference solution cell 150a and the mobile phase including the sample flowing in the sample solution cell 150b is shown in FIG. ) Is refracted in the y-axis direction. Then, the light is refracted at an angle corresponding to the refractive index of the material of the flow cell 150 and the air and the incident angle of the measurement light in the emission part 150 d and emitted from the flow cell 150.
  • Measurement light emitted from the flow cell 150 forms an image on the split photodiode 170 by the collimator lens 140. Since the imaging position at this time changes according to the above-described refracted angle (6 ⁇ ⁇ ), the differential refractive index detector in the present embodiment is 3 in comparison with the conventional technique in which the partition wall 150e is passed only twice. Double sensitivity can be obtained.
  • the measurement light is configured to pass through the partition wall 150e in the flow cell 150 six times.
  • the number of times the measurement light passes through the partition can be increased by elongating the flow cell in the axial direction, for example.
  • the flow cell is lengthened, the size of the flow cell increases, and the arrangement of components such as a light source and a detector needs to be changed in accordance with the flow cell, so that the entire differential refractive index detector becomes large.
  • the inclination angle of the incident portion is reduced, or the distance between the first reflecting portion and the second reflecting portion (the thickness of the flow cell) is reduced. be able to.
  • count of passing a partition can be increased, without changing the existing arrangement
  • the first reflecting portion and the second reflecting portion are provided on the outer wall surface of the flow cell, but may be provided on the inner wall surface of the flow cell, that is, the wall surfaces of the reference solution cell and the sample solution cell.
  • FIG. 4 shows a schematic configuration diagram of the differential refractive index detector in the present embodiment.
  • the configuration of the flow cell, the first reflection unit, and the second reflection unit is different from that of the first embodiment, but the other configurations are the same, and thus description thereof will be omitted as appropriate.
  • FIG. 5A is a top view of the flow cell 250
  • FIG. 5B is a cross-sectional view taken along the line AA of FIG. 5A.
  • a reference solution cell 250a and a sample solution cell 250b both having a right triangular prism shape are juxtaposed so as to share a hypotenuse, and a partition wall 250e is provided between the two cells.
  • a mobile phase is passed through the reference solution cell 250a, and a mobile phase or a mobile phase containing a sample is passed through the sample solution cell 250b.
  • an incident part 250c and an emission part 250d are provided on the upper and lower parts of the outer wall surface of the flow cell 250 on the collimator lens 240 side.
  • the first reflecting portion 260a is provided in parallel to the surface of the reference solution cell 250a on the triangular prism on the collimator lens 240 side (the yz plane in FIG. 5A).
  • the 2nd reflection part 260b is provided so that the 1st reflection part 260a may be opposed on both sides of the flow cell 250.
  • the second reflecting portion 260b is inclined with respect to the first reflecting portion 260a (a state rotated by a predetermined angle around the y axis in FIG. 5B).
  • the measurement light emitted from the light source 210 passes through the condensing lens 220 and the slit arranged in the axial direction of the flow cell 250 of the slit plate 230, is converted into parallel light by the collimating lens 240, and is incident on the flow cell 250.
  • the measurement light incident on the flow cell 250 has an axial direction of the flow cell 250 (z-axis direction in FIG. 5B) at an angle corresponding to the refractive index of air and the material of the flow cell 250 and the incident angle of the measurement light at the incident part 250c. And is incident on the flow cell 250.
  • the measurement light that has entered the flow cell 250 is reflected between the second reflector 260b and the first reflector 260a, and passes through the partition 150e between the cells three or more times while traveling in the axial direction of the flow cell 250. .
  • the measurement light passes through the partition wall 250e, the measurement light in FIG.
  • 5A is shown by an angle ⁇ corresponding to the refractive index difference between the mobile phase flowing in the reference solution cell 250a and the mobile phase including the sample flowing in the sample solution cell 250b. Since it is refracted in the y-axis direction, the total number of passes is refracted by n ⁇ ⁇ . Then, the light is refracted at an angle corresponding to the material of the flow cell 250 and the refractive index of the air at the emission part 250 d and emitted from the flow cell 250.
  • the light emitted from the flow cell 250 forms an image on the split photodiode 270 by the collimator lens 240. Since the imaging position at this time changes according to the above-described refracted angle (n ⁇ ⁇ ), the differential refractive index detector in the present embodiment obtains higher sensitivity than the conventional technique in which the flow cell is passed only twice. be able to.
  • the differential refractive index detector of the present embodiment may have a structure in which the first reflection unit 260a and the second reflection unit 260b are provided integrally with the flow cell 250. At this time, the outer surface of the flow cell 250 provided with the second reflection part 260b is shaped to match the inclination of the second reflection part 260b, so that the second reflection part 260b is inclined and the structure is integrated with the flow cell 250. can do.
  • FIG. 6 is a schematic configuration diagram of the differential refractive index detector according to the present embodiment.
  • the differential refractive index detector includes a light source 310, a condenser lens 320, a slit plate 330, a first collimator lens 340a, a flow cell 350, a second collimator lens 340b, and a split photodiode 370.
  • the condenser lens 320 and the slit plate 330 are arranged in the irradiation direction of the light source 310, the first collimating lens 340a is arranged on the front surface of the flow cell 350, and the second collimating lens 340b is arranged on the rear surface of the flow cell 350.
  • the focus of the condensing lens 320 is adjusted so that it may become the position of the collimating lens 340a.
  • FIG. 7A is a top view of the flow cell 350
  • FIG. 7B is a cross-sectional view taken along the line AA of FIG. 7A.
  • a reference solution cell 350a and a sample solution cell 350b both having a right triangular prism shape are juxtaposed so as to share a hypotenuse, and a partition wall 350e is provided between the two cells.
  • a mobile phase is passed through the reference solution cell 350a, and a mobile phase or a mobile phase containing a sample is passed through the sample solution cell 350b.
  • the first reflecting portion 360a is arranged on the outer wall surface of the flow cell 350 on the first collimating lens 340a side
  • the second reflecting portion 360b is arranged on the outer wall surface on the second collimating lens 340b side so that the reflecting surface faces the inside of the flow cell 350. Is provided.
  • the first reflecting portion 360 a and the second reflecting portion 360 b are provided on the entire one surface of the outer wall of the flow cell 350.
  • the first reflecting unit 360a and the second reflecting unit 360a, 360b have two reflecting surfaces arranged in parallel.
  • the first reflecting portion 360a and the second reflecting portion 360b are arranged at positions shifted in the height direction (z-axis direction) of the flow cell, and the incident portion 350c is disposed above the first reflecting portion 360a, and the second reflecting portion.
  • the emission part 350d is provided in the lower part of 360b, respectively.
  • the incident part 350c is inclined so that its normal line is directed toward the center side of the outer wall surface provided with the second reflecting part 360b, and the emitting part 350d is the center of the outer wall face provided with the first reflecting part 360a. Inclined to the side.
  • the split photodiode 370 has a plus-side light-receiving element and a minus-side light-receiving element on the light-receiving surface, and transmits a detection signal corresponding to the illuminance of light irradiated to each light-receiving element to a signal processing unit (not shown).
  • the signal processing unit measures the refractive index of the sample solution and the concentration of components contained in the solution based on the detection signal.
  • Measurement light emitted from the light source 310 passes through a slit arranged in the axial direction of the flow cell 350 of the condensing lens 320 and the slit plate 330, is converted into parallel light by the collimating lens 340, and is incident on the flow cell 350.
  • the measurement light incident on the flow cell 350 has an axial direction of the flow cell 350 (z-axis direction in FIG. 7B) at an angle corresponding to the refractive index of the air and the material of the flow cell 350 and the incident angle of the measurement light at the incident portion 350c. And is incident on the flow cell 350.
  • the measurement light incident on the flow cell 350 is reflected between the second reflection unit 360b and the first reflection unit 360a, and passes through the partition wall three times or more while traveling in the axial direction of the flow cell 350.
  • the measurement light of FIG. 7A is shown by an angle ⁇ corresponding to the refractive index difference between the mobile phase flowing in the reference solution cell 350a and the mobile phase including the sample flowing in the sample solution cell 350b.
  • the total number of passes is refracted by n ⁇ ⁇ . Then, the light is refracted at an angle corresponding to the refractive index of the material of the flow cell 350 and the air and the incident angle of the measurement light in the emission part 350 d and emitted from the flow cell 350.
  • Measurement light emitted from the flow cell 350 forms an image on the split photodiode 370 by the second collimating lens 340b. Since the imaging position at this time changes according to the above-described refracted angle (n ⁇ ⁇ ), the differential refractive index detector in the present embodiment has higher sensitivity than the conventional technique in which the partition 150e is passed only twice. Obtainable.
  • the measurement light is reduced by reducing the angle of inclination of the incident part or reducing the distance (flow cell thickness) between the first reflecting part and the second reflecting part.
  • the number of times that passes through the partition wall can be increased.
  • both the first and second reflecting portions are provided on the wall surface of the flow cell, but both or one of them may be provided at a position away from the wall surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a differential refractive index detector having a high sensitivity. The differential refractive index detector comprises: a flow cell 150 that includes a sample solution cell 150b and a reference solution cell 150a separated from each other by a separation wall 150e; and two reflection parts 160a, 160b that are disposed so as to oppose each other with the sample solution cell 150b and the reference solution cell 150a interposed therebetween such that measurement light is directed to a measurement light detector 170 after passing through the separation wall 150e three or more times, whereby the number of times the measurement light is refracted by the flow cell 150 can be set to three or more, and thus, a sensitivity higher than hitherto can be achieved.

Description

示差屈折率検出器Differential refractive index detector
 本発明は、液体クロマトグラフなどの分析装置で検出器として用いられる示差屈折率検出器に関する。 The present invention relates to a differential refractive index detector used as a detector in an analyzer such as a liquid chromatograph.
 示差屈折率検出器は、試料溶液と参照溶液の屈折率差を利用して該試料溶液の屈折率や該試料溶液に含まれる成分の濃度を検出するもので、隔壁で仕切られた2つのセルからなるフローセルと、光源からの光をスリットを介してフローセルに導く光学系と、フローセルを通過した光を受光素子に導き、該受光素子上にスリット像を結像させる光学系とを有している。フローセルの一方のセルには参照溶液が、他方のセルには試料溶液が流通するようになっており、光源からの光はフローセルの2つのセルを順に通過した後、受光素子に入射する。このとき、参照溶液と試料溶液の屈折率差に応じて、フローセルを通過する光の経路が変化して受光素子上に形成されるスリット像が変位するため、その変位量から試料溶液の屈折率、或いは試料溶液の成分濃度等を求めることができる(特許文献1及び2)。 The differential refractive index detector detects the refractive index of the sample solution and the concentration of the components contained in the sample solution using the difference in refractive index between the sample solution and the reference solution. A flow cell comprising: an optical system that guides light from a light source to the flow cell through a slit; and an optical system that guides light that has passed through the flow cell to a light receiving element and forms a slit image on the light receiving element. Yes. A reference solution flows through one cell of the flow cell, and a sample solution flows through the other cell. Light from the light source sequentially passes through the two cells of the flow cell and then enters the light receiving element. At this time, the path of light passing through the flow cell changes according to the difference in refractive index between the reference solution and the sample solution, and the slit image formed on the light receiving element is displaced. Alternatively, the component concentration of the sample solution can be obtained (Patent Documents 1 and 2).
 図8に示すように、示差屈折率検出器では、通常、フローセル550の後方にミラー560を配置し、光源510からの光がフローセル550内を2回通過するように構成される。つまり、フローセル550に入射した光は、参照溶液と試料溶液の屈折率差に応じた角度θだけ屈折し、フローセル550から出射され、ミラー560で反射されることで再び2つのセルを通過することで、さらに角度θだけ屈折してフローセル550から出射される(図9)。これにより前記スリット像の変位量を大きくしている。 As shown in FIG. 8, the differential refractive index detector is usually configured such that a mirror 560 is disposed behind the flow cell 550, and light from the light source 510 passes through the flow cell 550 twice. That is, the light incident on the flow cell 550 is refracted by an angle θ corresponding to the difference in refractive index between the reference solution and the sample solution, is emitted from the flow cell 550, is reflected by the mirror 560, and passes through the two cells again. Then, the light is further refracted by an angle θ and emitted from the flow cell 550 (FIG. 9). Thereby, the displacement amount of the slit image is increased.
 特許文献3の示差屈折率検出器では、フローセルに試料溶液が通過する1つのセルと、参照溶液が通過する2つのセルを設けている。これにより光がフローセルを1度通過する間に2回の屈折を発生させて、通常の示差屈折率検出器よりも検出器の感度を向上させている。 In the differential refractive index detector of Patent Document 3, one cell through which the sample solution passes and two cells through which the reference solution passes are provided in the flow cell. As a result, the light is refracted twice while passing through the flow cell once, and the sensitivity of the detector is improved as compared with a normal differential refractive index detector.
特開平05-288676号公報Japanese Patent Laid-Open No. 05-288676 特開2008-268233号公報JP 2008-268233 A 国際公開WO2006/121195号公報International Publication WO2006 / 121195
 示差屈折率検出器は参照溶液と試料溶液の屈折率差が大きければスリット像が大きく変位するため、試料の屈折率や濃度を精度良く測定することができる。しかし、試料溶液中の試料の濃度が低い場合や試料に含まれる成分の屈折率が参照溶液の屈折率に近い場合には、前記屈折率差が小さく、スリット像がほとんど変位しないため、試料の屈折率や濃度を精度良く測定することが困難となる。特許文献3のように感度を向上させた示差屈折率検出器が提案されているが、より屈折率差が小さい試料を測定するため、さらに感度の高い示差屈率検出器が求められていた。 The differential refractive index detector can accurately measure the refractive index and concentration of the sample because the slit image is greatly displaced if the difference in refractive index between the reference solution and the sample solution is large. However, when the concentration of the sample in the sample solution is low or when the refractive index of the component contained in the sample is close to the refractive index of the reference solution, the refractive index difference is small and the slit image is hardly displaced. It becomes difficult to accurately measure the refractive index and density. Although a differential refractive index detector with improved sensitivity as in Patent Document 3 has been proposed, a differential refractive index detector with higher sensitivity has been demanded in order to measure a sample with a smaller refractive index difference.
 本発明が解決しようとする課題は、高い感度を有する示差屈折率検出器を提供することである。 The problem to be solved by the present invention is to provide a differential refractive index detector having high sensitivity.
 上記課題を解決するために成された本発明に係る示差屈折率検出器は、
 隔壁によって仕切られた試料溶液セルと参照溶液セルを有するフローセルと、
 測定光が、前記隔壁を3回以上通過した後、測定光検出器に向かうように、前記試料溶液セル及び前記参照溶液セルを挟んで対向して配置された2つの反射部と
 を備えることを特徴とする。
The differential refractive index detector according to the present invention made to solve the above problems is
A flow cell having a sample solution cell and a reference solution cell partitioned by a partition;
And two reflecting portions arranged opposite to each other with the sample solution cell and the reference solution cell interposed therebetween so that the measurement light passes through the partition wall three times or more and then travels toward the measurement light detector. Features.
 本発明に係る示差屈折率検出器では、2つの反射部が試料溶液セルと参照溶液セルを挟んで対向して配置されており、フローセルに入射した測定光は2つの反射部の間で反射され、試料溶液セルと参照溶液セルの間の隔壁を3回以上通過した後に測定光検出器に向かう。測定光は該隔壁を通過する度に、これら2つのセルに収容されている試料溶液と参照溶液の屈折率差に応じた角度θだけ屈折するが、本発明に係る示差屈折率検出器ではこのように従来よりも隔壁を通過する回数が多くなるため、測定光が屈折する角度もその回数に応じて大きくなる。測定光検出器はこの測定光の屈折角を検出し、これに基づき試料溶液の屈折率や該溶液に含まれる成分の濃度が測定される。 In the differential refractive index detector according to the present invention, the two reflecting portions are arranged to face each other with the sample solution cell and the reference solution cell interposed therebetween, and the measurement light incident on the flow cell is reflected between the two reflecting portions. After passing through the partition wall between the sample solution cell and the reference solution cell three times or more, it goes to the measuring light detector. Each time the measurement light passes through the partition wall, it is refracted by an angle θ corresponding to the difference in refractive index between the sample solution and the reference solution contained in these two cells. In the differential refractive index detector according to the present invention, As described above, since the number of times of passing through the partition wall is larger than in the conventional case, the angle at which the measurement light is refracted also increases in accordance with the number of times. The measurement light detector detects the refraction angle of the measurement light, and based on this, the refractive index of the sample solution and the concentration of the component contained in the solution are measured.
 上記示差屈折率検出器は、前記2つの反射部の一方または両方が、前記フローセルの、試料溶液セルと参照溶液セルを挟む2つの壁面の一方または両方の壁面に設けられる構成とすることができる。 The differential refractive index detector may be configured such that one or both of the two reflecting portions are provided on one or both of the two wall surfaces sandwiching the sample solution cell and the reference solution cell of the flow cell. .
 従来、フローセルと反射部を別に設けていたため、これらをそれぞれ固定するための固定具が必要であった。また、反射部を配置するスペースも必要であった。2つの反射部の一方または両方をフローセルの壁面に設けることで、反射部を固定するための固定具やスペースが不要となるため、示差屈折率検出器を小型化することができる。このような反射部は、フローセルに鏡を接着したり、フローセルに金属を蒸着して構成することができる。 Conventionally, since the flow cell and the reflection portion are provided separately, a fixture for fixing each of them is necessary. In addition, a space for arranging the reflecting portion is also required. By providing one or both of the two reflecting portions on the wall surface of the flow cell, a fixture or a space for fixing the reflecting portion is not required, and the differential refractive index detector can be miniaturized. Such a reflection part can be configured by adhering a mirror to the flow cell or by depositing metal on the flow cell.
 2つの反射部の両方が前記フローセルの試料溶液セルと参照溶液セルを挟む両方の壁面に設けられる構成とした場合、測定光が入射する側の壁面の反射部又は測定光が測定光検出器に向けて出射する側の壁面の反射部が他方の壁面の反射部よりも、測定光の反射を繰り返す方向に関して短く設定されていることが望ましい。 In the case where both of the two reflecting parts are provided on both wall surfaces sandwiching the sample solution cell and the reference solution cell of the flow cell, the reflecting part or measuring light on the wall surface on which the measuring light is incident enters the measuring light detector. It is desirable that the reflecting portion of the wall surface on the outgoing side is set shorter than the reflecting portion of the other wall surface in the direction in which the measurement light is repeatedly reflected.
 このように設定することにより、測定光をその短く設定された部分からフローセルに入射し又は出射することができるため、光源と測定光検出器を含めた全体の示差屈折率検出器の寸法を小さくすることができる。 By setting in this way, the measurement light can enter or exit the flow cell from the short set portion, so the overall differential refractive index detector including the light source and the measurement light detector can be reduced in size. can do.
 また、そのように一方の壁面の反射部を他方の壁面の反射部よりも短く設定した場合、短く設定した方の壁面の反射部を設けていない部分を、その法線が他方の壁面の反射部の中央側に向かうように傾斜させることが望ましい。 In addition, when the reflecting portion of one wall surface is set shorter than the reflecting portion of the other wall surface, the normal line is the reflection of the other wall surface of the portion not provided with the reflecting portion of the shorter wall surface. It is desirable to incline toward the center side of the part.
 このような構成とすることにより、測定光が入射する側の壁面の反射部を短くした場合は、その壁面の反射部を設けていない部分から入射した光は他方の壁面の反射部の中央側に向かうように屈折されるため、光源からの入射光を、該他方の壁面の反射部の法線に関してより低い角度で入射することができ、光源の位置を測定光検出器に近づけることができるようになる。これも、光源と測定光検出器を含めた全体の示差屈折率検出器の寸法を小さくすることにつながる。測定光が出射する側の壁面の反射部を短くした場合も同様である。 By adopting such a configuration, when the reflecting portion of the wall surface on which the measurement light is incident is shortened, the light incident from the portion of the wall surface where the reflecting portion is not provided is on the center side of the reflecting portion of the other wall surface. Because the light is refracted toward the light source, the incident light from the light source can be incident at a lower angle with respect to the normal of the reflection portion of the other wall surface, and the position of the light source can be brought closer to the measurement light detector. It becomes like this. This also leads to a reduction in the size of the entire differential refractive index detector including the light source and the measurement light detector. The same applies when the reflecting portion of the wall surface on the side from which the measurement light is emitted is shortened.
 本発明に係る示差屈折率検出器によれば、フローセルに入射した測定光は試料溶液セルと参照溶液セルの間の隔壁を3回以上通過し、通過する度に試料溶液と参照溶液の屈折率差に応じた角度だけ屈折する。測定光が隔壁を通過する回数を従来技術よりも多くすることで、測定光の屈折する角度を増加させ、試料溶液の屈折率及び濃度を高い感度で測定することができる。 According to the differential refractive index detector according to the present invention, the measurement light incident on the flow cell passes through the partition wall between the sample solution cell and the reference solution cell at least three times, and every time it passes, the refractive index of the sample solution and the reference solution. Refraction is made at an angle corresponding to the difference. By increasing the number of times the measurement light passes through the partition wall as compared with the prior art, the angle at which the measurement light is refracted can be increased, and the refractive index and concentration of the sample solution can be measured with high sensitivity.
本発明の第1の実施形態に係る示差屈折率検出器の概略構成図。1 is a schematic configuration diagram of a differential refractive index detector according to a first embodiment of the present invention. 本発明の第1の実施形態に係る示差屈折率検出器のフローセルの構造を説明する図。FIG. 3 is a diagram illustrating the structure of a flow cell of the differential refractive index detector according to the first embodiment of the present invention. 本発明の第1の実施形態に係る示差屈折率検出器の第1反射部及び第2反射部による測定光の反射を説明する図。FIG. 4 is a diagram for explaining reflection of measurement light by a first reflecting portion and a second reflecting portion of the differential refractive index detector according to the first embodiment of the present invention. 本発明の第2の実施形態に係る示差屈折率検出器の概略構成図。FIG. 5 is a schematic configuration diagram of a differential refractive index detector according to a second embodiment of the present invention. 本発明の第2の実施形態に係る示差屈折率検出器のフローセルの構造を説明する図。The figure explaining the structure of the flow cell of the differential refractive index detector which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る示差屈折率検出器の概略構成図。FIG. 5 is a schematic configuration diagram of a differential refractive index detector according to a third embodiment of the present invention. 本発明の第3の実施形態に係る示差屈折率検出器のフローセルの構造を説明する図。The figure explaining the structure of the flow cell of the differential refractive index detector which concerns on the 3rd Embodiment of this invention. 従来技術における示差屈折率検出器の概略構成図。The schematic block diagram of the differential refractive index detector in a prior art. 従来技術における示差屈折率検出器の反射部による測定光の反射を説明する図。The figure explaining reflection of the measurement light by the reflection part of the differential refractive index detector in a prior art.
 以下、本発明を実施する形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の第1の実施形態に係る示差屈折率検出器の概略構成図である。示差屈折率検出器は光源110と、集光レンズ120と、スリット板130と、コリメートレンズ140と、フローセル150と、分割フォトダイオード170を備えている。 FIG. 1 is a schematic configuration diagram of a differential refractive index detector according to a first embodiment of the present invention. The differential refractive index detector includes a light source 110, a condenser lens 120, a slit plate 130, a collimator lens 140, a flow cell 150, and a split photodiode 170.
 集光レンズ120及びスリット板130は光源110の光の照射方向に配置されており、コリメートレンズ140はフローセル150の前面に配置される。集光レンズ120の焦点はコリメートレンズ140の位置となるように調整されている。 The condenser lens 120 and the slit plate 130 are arranged in the light irradiation direction of the light source 110, and the collimating lens 140 is arranged in front of the flow cell 150. The focal point of the condensing lens 120 is adjusted to be the position of the collimating lens 140.
 フローセル150の構造を図2に示す。図2(a)はフローセル150の上面図、図2(b)は図2(a)のA-A断面図を示す。フローセル150内には、共に直角三角柱の形状をした参照溶液セル150aと試料溶液セル150bが、斜辺を共有するように並立され、両セルの間には隔壁150eが設けられている。図示しない液体クロマトグラフ装置から、参照溶液セル150aには移動相が、試料溶液セル150bには移動相又は試料を含む移動相が、それぞれ通液される。 The structure of the flow cell 150 is shown in FIG. 2A is a top view of the flow cell 150, and FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A. In the flow cell 150, a reference solution cell 150a and a sample solution cell 150b both having a right triangular prism shape are juxtaposed so as to share a hypotenuse, and a partition wall 150e is provided between the two cells. From a liquid chromatograph apparatus (not shown), a mobile phase is passed through the reference solution cell 150a, and a mobile phase or a mobile phase containing a sample is passed through the sample solution cell 150b.
 フローセル150のコリメートレンズ側の外壁面とそれに対向する外壁面には、第1反射部160aと第2反射部160bがそれぞれ反射面がフローセル150の内部に向くように、設けられている。第2反射部160bは、フローセル150の外壁面の一つの面の全体に設けられている。第1反射部160aは第2反射部160bよりも、フローセル150の高さ方向(z軸方向)(フローセルの軸方向と呼ぶ。)に関して短い構造である。また、第1反射部160a及び第2反射部160bは反射面が互いに平行に配置される。 The first reflecting portion 160a and the second reflecting portion 160b are provided on the outer wall surface on the collimating lens side of the flow cell 150 and the outer wall surface facing the collimating lens so that the reflecting surfaces face the inside of the flow cell 150, respectively. The second reflecting portion 160 b is provided on the entire outer surface of the flow cell 150. The first reflection unit 160a has a shorter structure than the second reflection unit 160b in the height direction (z-axis direction) of the flow cell 150 (referred to as the flow cell axial direction). In addition, the reflective surfaces of the first reflective unit 160a and the second reflective unit 160b are arranged in parallel to each other.
 図2(b)に示すように、フローセル150のコリメートレンズ150側の外壁の上部及び下部には入射部150cと出射部150dが設けられ、これら入射部150cと出射部150dの間が第1反射部160aとなっている。入射部150c及び出射部150dは、その法線が第2反射部160bが設けられた壁面の中央側に向かうように傾斜している。 As shown in FIG. 2B, an incident part 150c and an emission part 150d are provided on the upper and lower parts of the outer wall of the flow cell 150 on the collimator lens 150 side, and a first reflection is provided between the incidence part 150c and the emission part 150d. Part 160a. The incidence part 150c and the emission part 150d are inclined so that the normal line is directed toward the center of the wall surface on which the second reflection part 160b is provided.
 分割フォトダイオード170(本発明における測定光検出器)は受光面にプラス側受光素子とマイナス側受光素子を有し、それぞれの受光素子に照射される光の照度に応じた検出信号を図示しない信号処理部に送信する。信号処理部はこの検出信号に基づき試料溶液の屈折率や該溶液に含まれる成分の濃度を測定する。 The divided photodiode 170 (measurement light detector in the present invention) has a plus-side light-receiving element and a minus-side light-receiving element on the light-receiving surface, and a detection signal (not shown) corresponding to the illuminance of light applied to each light-receiving element. Send to the processing unit. The signal processing unit measures the refractive index of the sample solution and the concentration of components contained in the solution based on the detection signal.
 次に、この示差屈折率検出器の動作について、図1から図3を参照しつつ説明する。 Next, the operation of this differential refractive index detector will be described with reference to FIGS.
 光源110から発せられた測定光は、集光レンズ120及びスリット板130のフローセル150の軸方向に配置されたスリットを通過し、コリメートレンズ140により平行光とされてフローセル150に入射される。 The measurement light emitted from the light source 110 passes through the slits arranged in the axial direction of the flow cell 150 of the condenser lens 120 and the slit plate 130, is converted into parallel light by the collimator lens 140, and is incident on the flow cell 150.
 図3は、第1反射部160a及び第2反射部160bによる測定光の反射について説明する図である。フローセル150に入射した測定光は、入射部150cにおいて空気とフローセル150の材料の屈折率と、測定光の入射角度に応じた角度でフローセル150の軸方向(図3(b)のz軸方向)に屈折し、フローセル150内に入射する。フローセル150内に入射した測定光は、図3(b)に示すように第2反射部160bと第1反射部160aの間で反射され、フローセル150の軸方向に進む間に、両セルの間の隔壁150eを3回以上通過する(図3では6回。)。また、測定光は、隔壁150eを通過する度に、参照溶液セル150a内を流れる移動相と、試料溶液セル150bを流れる試料を含む移動相の屈折率差に応じた角度θだけ図3(a)のy軸方向に屈折する。そして出射部150dにおいてフローセル150の材料と空気の屈折率と、測定光の入射角度に応じた角度で屈折し、フローセル150から出射される。 FIG. 3 is a diagram for explaining the reflection of the measurement light by the first reflector 160a and the second reflector 160b. The measurement light incident on the flow cell 150 has an axial direction of the flow cell 150 (z-axis direction in FIG. 3B) at an angle corresponding to the refractive index of air and the material of the flow cell 150 and the incident angle of the measurement light at the incident portion 150c. And is incident on the flow cell 150. The measurement light incident on the flow cell 150 is reflected between the second reflecting portion 160b and the first reflecting portion 160a as shown in FIG. 3B and between the two cells while traveling in the axial direction of the flow cell 150. The partition wall 150e is passed three times or more (six times in FIG. 3). Further, each time the measurement light passes through the partition wall 150e, an angle θ corresponding to the refractive index difference between the mobile phase flowing in the reference solution cell 150a and the mobile phase including the sample flowing in the sample solution cell 150b is shown in FIG. ) Is refracted in the y-axis direction. Then, the light is refracted at an angle corresponding to the refractive index of the material of the flow cell 150 and the air and the incident angle of the measurement light in the emission part 150 d and emitted from the flow cell 150.
 フローセル150から出射された測定光はコリメートレンズ140により分割フォトダイオード170上に結像する。このときの結像位置は上述の屈折した角度(6×θ)に応じて変化するため、本実施形態における示差屈折率検出器では、隔壁150eを2回だけ通過させる従来技術と比較して3倍の感度を得ることができる。 Measurement light emitted from the flow cell 150 forms an image on the split photodiode 170 by the collimator lens 140. Since the imaging position at this time changes according to the above-described refracted angle (6 × θ), the differential refractive index detector in the present embodiment is 3 in comparison with the conventional technique in which the partition wall 150e is passed only twice. Double sensitivity can be obtained.
 本実施形態では測定光がフローセル150内の隔壁150eを6回通過する構成としたが、3回以上であれば通過回数を適宜変更することは当然可能である。測定光が隔壁を通過する回数は、例えばフローセルをその軸方向に長くすることで増やすことができる。しかしフローセルを長くすると、フローセルのサイズが大きくなり、また、このフローセルに合わせて光源や検出器等の構成品の配置も変更する必要があるため、示差屈折率検出器全体が大きくなる。フローセルの長さを変更せずに通過回数を多くするためには、入射部の傾斜角を小さくしたり、第1反射部と第2反射部の距離(フローセルの厚さ)を小さくしたりすることができる。このようにすることで、光源や検出器などの既存の配置を変更せずに隔壁を通過する回数を多くすることができる。 In the present embodiment, the measurement light is configured to pass through the partition wall 150e in the flow cell 150 six times. However, it is naturally possible to change the number of passes as long as it is three times or more. The number of times the measurement light passes through the partition can be increased by elongating the flow cell in the axial direction, for example. However, if the flow cell is lengthened, the size of the flow cell increases, and the arrangement of components such as a light source and a detector needs to be changed in accordance with the flow cell, so that the entire differential refractive index detector becomes large. In order to increase the number of passes without changing the length of the flow cell, the inclination angle of the incident portion is reduced, or the distance between the first reflecting portion and the second reflecting portion (the thickness of the flow cell) is reduced. be able to. By doing in this way, the frequency | count of passing a partition can be increased, without changing the existing arrangement | positioning, such as a light source and a detector.
 また、本実施形態では第1反射部と第2反射部をフローセルの外壁面に設けたが、フローセルの内壁面、すなわち参照溶液セルと試料溶液セルの壁面に設けてもよい。 In the present embodiment, the first reflecting portion and the second reflecting portion are provided on the outer wall surface of the flow cell, but may be provided on the inner wall surface of the flow cell, that is, the wall surfaces of the reference solution cell and the sample solution cell.
 次に第2の実施形態に係る示差屈折率検出器について図4、図5を参照しつつ説明する。図4に本実施形態における示差屈折率検出器の概略構成図を示す。本実施形態では第1の実施形態と比較してフローセル、第1反射部及び第2反射部の構成が異なるが、それ以外の構成は同一であるため、適宜説明を省略する。 Next, a differential refractive index detector according to the second embodiment will be described with reference to FIGS. FIG. 4 shows a schematic configuration diagram of the differential refractive index detector in the present embodiment. In the present embodiment, the configuration of the flow cell, the first reflection unit, and the second reflection unit is different from that of the first embodiment, but the other configurations are the same, and thus description thereof will be omitted as appropriate.
 フローセル250の構造を図5に示す。図5(a)はフローセル250の上面図、図5(b)は図5(a)のA-A断面図を示す。フローセル250内には、共に直角三角柱の形状をした参照溶液セル250aと試料溶液セル250bが、斜辺を共有するように並立され、両セルの間には隔壁250eが設けられている。図示しない液体クロマトグラフ装置から、参照溶液セル250aには移動相が、試料溶液セル250bには移動相又は試料を含む移動相が、それぞれ通液される。 The structure of the flow cell 250 is shown in FIG. 5A is a top view of the flow cell 250, and FIG. 5B is a cross-sectional view taken along the line AA of FIG. 5A. In the flow cell 250, a reference solution cell 250a and a sample solution cell 250b both having a right triangular prism shape are juxtaposed so as to share a hypotenuse, and a partition wall 250e is provided between the two cells. From a liquid chromatograph apparatus (not shown), a mobile phase is passed through the reference solution cell 250a, and a mobile phase or a mobile phase containing a sample is passed through the sample solution cell 250b.
 図5(b)に示すように、フローセル250のコリメートレンズ240側の外壁面の上部及び下部には、入射部250cと出射部250dが設けられている。フローセル250から離れた位置に、第1反射部260aが三角柱上の参照溶液セル250aのコリメートレンズ240側の面(図5(a)のy-z平面)に平行に設けられている。また、フローセル250を挟んで第1反射部260aと対向するように第2反射部260bが設けられている。第2反射部260bは、第1反射部260aに対して傾斜している(図5(b)のy軸周りに所定角度だけ回転した状態)。 As shown in FIG. 5B, an incident part 250c and an emission part 250d are provided on the upper and lower parts of the outer wall surface of the flow cell 250 on the collimator lens 240 side. At a position away from the flow cell 250, the first reflecting portion 260a is provided in parallel to the surface of the reference solution cell 250a on the triangular prism on the collimator lens 240 side (the yz plane in FIG. 5A). Moreover, the 2nd reflection part 260b is provided so that the 1st reflection part 260a may be opposed on both sides of the flow cell 250. The second reflecting portion 260b is inclined with respect to the first reflecting portion 260a (a state rotated by a predetermined angle around the y axis in FIG. 5B).
 次に示差屈折率検出器の動作について、図5を参照しつつ説明する。 Next, the operation of the differential refractive index detector will be described with reference to FIG.
 光源210から発せられた測定光は、集光レンズ220及びスリット板230のフローセル250の軸方向に配置されたスリットを通過し、コリメートレンズ240により平行光とされてフローセル250に入射される。 The measurement light emitted from the light source 210 passes through the condensing lens 220 and the slit arranged in the axial direction of the flow cell 250 of the slit plate 230, is converted into parallel light by the collimating lens 240, and is incident on the flow cell 250.
 フローセル250に入射した測定光は、入射部250cにおいて空気とフローセル250の材料の屈折率と、測定光の入射角度に応じた角度でフローセル250の軸方向(図5(b)のz軸方向)に屈折し、フローセル250内に入射する。フローセル250内に入射した測定光は、第2反射部260bと第1反射部260aの間で反射され、フローセル250の軸方向に進む間に、両セルの間の隔壁150eを3回以上通過する。測定光は、隔壁250eを通過する度に、参照溶液セル250a内を流れる移動相と、試料溶液セル250bを流れる試料を含む移動相の屈折率差に応じた角度θだけ図5(a)のy軸方向に屈折するため、通過した回数をnとすると合計でn×θだけ屈折する。そして出射部250dにおいてフローセル250の材料と空気の屈折率に応じた角度で屈折し、フローセル250から出射される。 The measurement light incident on the flow cell 250 has an axial direction of the flow cell 250 (z-axis direction in FIG. 5B) at an angle corresponding to the refractive index of air and the material of the flow cell 250 and the incident angle of the measurement light at the incident part 250c. And is incident on the flow cell 250. The measurement light that has entered the flow cell 250 is reflected between the second reflector 260b and the first reflector 260a, and passes through the partition 150e between the cells three or more times while traveling in the axial direction of the flow cell 250. . When the measurement light passes through the partition wall 250e, the measurement light in FIG. 5A is shown by an angle θ corresponding to the refractive index difference between the mobile phase flowing in the reference solution cell 250a and the mobile phase including the sample flowing in the sample solution cell 250b. Since it is refracted in the y-axis direction, the total number of passes is refracted by n × θ. Then, the light is refracted at an angle corresponding to the material of the flow cell 250 and the refractive index of the air at the emission part 250 d and emitted from the flow cell 250.
 フローセル250から出射された光はコリメートレンズ240により分割フォトダイオード270上に結像する。このときの結像位置は上述の屈折した角度(n×θ)に応じて変化するため、本実施形態における示差屈折率検出器では、フローセルを2回だけ通過させる従来技術よりも高い感度を得ることができる。 The light emitted from the flow cell 250 forms an image on the split photodiode 270 by the collimator lens 240. Since the imaging position at this time changes according to the above-described refracted angle (n × θ), the differential refractive index detector in the present embodiment obtains higher sensitivity than the conventional technique in which the flow cell is passed only twice. be able to.
 本実施形態の示差屈折率検出器は、第1反射部260a及び第2反射部260bをフローセル250と一体に設ける構造としてもよい。このとき、第2反射部260bが設けられるフローセル250の外面を第2反射部260bの傾斜に合わせた形状とすることで、第2反射部260bを傾斜させた状態でフローセル250と一体の構造とすることができる。 The differential refractive index detector of the present embodiment may have a structure in which the first reflection unit 260a and the second reflection unit 260b are provided integrally with the flow cell 250. At this time, the outer surface of the flow cell 250 provided with the second reflection part 260b is shaped to match the inclination of the second reflection part 260b, so that the second reflection part 260b is inclined and the structure is integrated with the flow cell 250. can do.
 次に第3の実施形態に係る示差屈折率検出器について図6、図7を参照しつつ説明する。 Next, a differential refractive index detector according to a third embodiment will be described with reference to FIGS.
 図6は本実施形態に係る示差屈折率検出器の概略構成図である。示差屈折率検出器は光源310と、集光レンズ320と、スリット板330と、第1コリメートレンズ340aと、フローセル350と、第2コリメートレンズ340bと、分割フォトダイオード370を備えている。 FIG. 6 is a schematic configuration diagram of the differential refractive index detector according to the present embodiment. The differential refractive index detector includes a light source 310, a condenser lens 320, a slit plate 330, a first collimator lens 340a, a flow cell 350, a second collimator lens 340b, and a split photodiode 370.
 集光レンズ320及びスリット板330は光源310の照射方向に配置されており、第1コリメートレンズ340aはフローセル350の前面に、第2コリメートレンズ340bはフローセル350の背面にそれぞれ配置される。集光レンズ320の焦点はコリメートレンズ340aの位置となるように調整されている。 The condenser lens 320 and the slit plate 330 are arranged in the irradiation direction of the light source 310, the first collimating lens 340a is arranged on the front surface of the flow cell 350, and the second collimating lens 340b is arranged on the rear surface of the flow cell 350. The focus of the condensing lens 320 is adjusted so that it may become the position of the collimating lens 340a.
 フローセル350の構造を図7に示す。図7(a)はフローセル350の上面図、図7(b)は図7(a)のA-A断面図を示す。フローセル350内には、共に直角三角柱の形状をした参照溶液セル350aと試料溶液セル350bが、斜辺を共有するように並立され、両セルの間には隔壁350eが設けられている。図示しない液体クロマトグラフ装置から、参照溶液セル350aには移動相が、試料溶液セル350bには移動相又は試料を含む移動相が、それぞれ通液される。 The structure of the flow cell 350 is shown in FIG. 7A is a top view of the flow cell 350, and FIG. 7B is a cross-sectional view taken along the line AA of FIG. 7A. In the flow cell 350, a reference solution cell 350a and a sample solution cell 350b both having a right triangular prism shape are juxtaposed so as to share a hypotenuse, and a partition wall 350e is provided between the two cells. From a liquid chromatograph apparatus (not shown), a mobile phase is passed through the reference solution cell 350a, and a mobile phase or a mobile phase containing a sample is passed through the sample solution cell 350b.
 フローセル350の第1コリメートレンズ340a側の外壁面には、第1反射部360aが、第2コリメートレンズ340b側の外壁面には第2反射部360bがそれぞれ反射面がフローセル350の内部に向くように、設けられている。第1反射部360a及び第2反射部360bは、フローセル350の外壁の一つの面の全体に設けられている。また、第1反射部360a及び第2反射部360a、360bは、2つの反射面が平行に配置される。第1反射部360aと第2反射部360bはフローセルの高さ方向(z軸方向)にずらした位置に配置されており、第1反射部360aの上部には入射部350cが、第2反射部360bの下部には出射部350dがそれぞれ設けられている。入射部350cはその法線が第2反射部360bが設けられた外壁面の中央側に向かうように傾斜し、出射部350dはその法線が第1反射部360aが設けられた外壁面の中央側に向かうように傾斜している。 The first reflecting portion 360a is arranged on the outer wall surface of the flow cell 350 on the first collimating lens 340a side, and the second reflecting portion 360b is arranged on the outer wall surface on the second collimating lens 340b side so that the reflecting surface faces the inside of the flow cell 350. Is provided. The first reflecting portion 360 a and the second reflecting portion 360 b are provided on the entire one surface of the outer wall of the flow cell 350. In addition, the first reflecting unit 360a and the second reflecting unit 360a, 360b have two reflecting surfaces arranged in parallel. The first reflecting portion 360a and the second reflecting portion 360b are arranged at positions shifted in the height direction (z-axis direction) of the flow cell, and the incident portion 350c is disposed above the first reflecting portion 360a, and the second reflecting portion. The emission part 350d is provided in the lower part of 360b, respectively. The incident part 350c is inclined so that its normal line is directed toward the center side of the outer wall surface provided with the second reflecting part 360b, and the emitting part 350d is the center of the outer wall face provided with the first reflecting part 360a. Inclined to the side.
 分割フォトダイオード370は受光面にプラス側受光素子とマイナス側受光素子を有し、それぞれの受光素子に照射される光の照度に応じた検出信号を図示しない信号処理部に送信する。信号処理部はこの検出信号に基づき試料溶液の屈折率や該溶液に含まれる成分の濃度を測定する。 The split photodiode 370 has a plus-side light-receiving element and a minus-side light-receiving element on the light-receiving surface, and transmits a detection signal corresponding to the illuminance of light irradiated to each light-receiving element to a signal processing unit (not shown). The signal processing unit measures the refractive index of the sample solution and the concentration of components contained in the solution based on the detection signal.
 次に本実施形態に係る示差屈折率検出器の動作について、図6、図7を参照しつつ説明する。 Next, the operation of the differential refractive index detector according to this embodiment will be described with reference to FIGS.
 光源310から発せられた測定光は、集光レンズ320及びスリット板330のフローセル350の軸方向に配置されたスリットを通過し、コリメートレンズ340により平行光とされてフローセル350に入射される。 Measurement light emitted from the light source 310 passes through a slit arranged in the axial direction of the flow cell 350 of the condensing lens 320 and the slit plate 330, is converted into parallel light by the collimating lens 340, and is incident on the flow cell 350.
 フローセル350に入射した測定光は、入射部350cにおいて空気とフローセル350の材料の屈折率と、測定光の入射角度に応じた角度でフローセル350の軸方向(図7(b)のz軸方向)に屈折し、フローセル350内に入射する。フローセル350内に入射した測定光は、第2反射部360bと第1反射部360aの間で反射され、フローセル350の軸方向に進む間に、隔壁を3回以上通過する。測定光は、隔壁350eを通過する度に、参照溶液セル350a内を流れる移動相と、試料溶液セル350bを流れる試料を含む移動相の屈折率差に応じた角度θだけ図7(a)のy軸方向に屈折するため、通過した回数をnとすると合計でn×θだけ屈折する。そして出射部350dにおいてフローセル350の材料と空気の屈折率と、測定光の入射角度に応じた角度で屈折し、フローセル350から出射される。 The measurement light incident on the flow cell 350 has an axial direction of the flow cell 350 (z-axis direction in FIG. 7B) at an angle corresponding to the refractive index of the air and the material of the flow cell 350 and the incident angle of the measurement light at the incident portion 350c. And is incident on the flow cell 350. The measurement light incident on the flow cell 350 is reflected between the second reflection unit 360b and the first reflection unit 360a, and passes through the partition wall three times or more while traveling in the axial direction of the flow cell 350. When the measurement light passes through the partition wall 350e, the measurement light of FIG. 7A is shown by an angle θ corresponding to the refractive index difference between the mobile phase flowing in the reference solution cell 350a and the mobile phase including the sample flowing in the sample solution cell 350b. Since it is refracted in the y-axis direction, the total number of passes is refracted by n × θ. Then, the light is refracted at an angle corresponding to the refractive index of the material of the flow cell 350 and the air and the incident angle of the measurement light in the emission part 350 d and emitted from the flow cell 350.
 フローセル350から出射された測定光は第2コリメートレンズ340bにより分割フォトダイオード370上に結像する。このときの結像位置は上述の屈折した角度(n×θ)に応じて変化するため、本実施形態における示差屈折率検出器では、隔壁150eを2回だけ通過させる従来技術よりも高い感度を得ることができる。 Measurement light emitted from the flow cell 350 forms an image on the split photodiode 370 by the second collimating lens 340b. Since the imaging position at this time changes according to the above-described refracted angle (n × θ), the differential refractive index detector in the present embodiment has higher sensitivity than the conventional technique in which the partition 150e is passed only twice. Obtainable.
 本実施形態でも第1の実施形態と同様に、入射部の傾斜角を小さくしたり、第1反射部及び第2反射部の距離(フローセルの厚さ)を小さくしたりすることで、測定光が隔壁を通過する回数を多くすることができる。 In the present embodiment, similarly to the first embodiment, the measurement light is reduced by reducing the angle of inclination of the incident part or reducing the distance (flow cell thickness) between the first reflecting part and the second reflecting part. The number of times that passes through the partition wall can be increased.
 なお、上記実施形態は一例であって、本発明の趣旨に沿って適宜変形や修正を行えることは明らかである。例えば、第1の実施形態において、第1及び第2反射部の両方をフローセルの壁面に設けたが、両方又はいずれか一方を壁面から離れた位置に設ける構成としてもよい。 It should be noted that the above-described embodiment is an example, and it is obvious that appropriate changes and modifications can be made in accordance with the spirit of the present invention. For example, in the first embodiment, both the first and second reflecting portions are provided on the wall surface of the flow cell, but both or one of them may be provided at a position away from the wall surface.
110、210、310、510…光源
120、220、320、520…集光レンズ
130、230、330、530…スリット板
140、240、540…コリメートレンズ
150、250、350、550…フローセル
 150a、250a、350a、550a…参照溶液セル
 150b、250b、350b、550b…試料溶液セル
 150c、250c、350c…入射部
 150d、250d、350d…出射部
160a、260a、360a…第1反射部
160b、260b、360b…第2反射部
170、270、370、570…分割フォトダイオード
340a…第1コリメートレンズ
340b…第2コリメートレンズ
110, 210, 310, 510 ... Light sources 120, 220, 320, 520 ... Condensing lenses 130, 230, 330, 530 ... Slit plates 140, 240, 540 ... Collimating lenses 150, 250, 350, 550 ... Flow cells 150a, 250a 350a, 550a ... Reference solution cells 150b, 250b, 350b, 550b ... Sample solution cells 150c, 250c, 350c ... Incident part 150d, 250d, 350d ... Emission parts 160a, 260a, 360a ... First reflecting parts 160b, 260b, 360b ... 2nd reflection part 170,270,370,570 ... division | segmentation photodiode 340a ... 1st collimating lens 340b ... 2nd collimating lens

Claims (4)

  1.  隔壁によって仕切られた試料溶液セルと参照溶液セルを有するフローセルと、
     測定光が、前記隔壁を3回以上通過した後、測定光検出器に向かうように、前記試料溶液セル及び前記参照溶液セルを挟んで対向して配置された2つの反射部と
     を備えることを特徴とする示差屈折率検出器。
    A flow cell having a sample solution cell and a reference solution cell partitioned by a partition;
    And two reflecting portions arranged opposite to each other with the sample solution cell and the reference solution cell interposed therebetween so that the measurement light passes through the partition wall three times or more and then travels toward the measurement light detector. Characteristic differential refractive index detector.
  2.  前記2つの反射部の一方または両方が、前記フローセルの、試料溶液セルと参照溶液セルを挟む2つの壁面の一方または両方の壁面に設けられることを特徴とする請求項1に記載の示差屈折率検出器。 2. The differential refractive index according to claim 1, wherein one or both of the two reflecting portions are provided on one or both of two wall surfaces between the sample solution cell and the reference solution cell of the flow cell. Detector.
  3.  前記2つの反射部の両方が前記フローセルの試料溶液セルと参照溶液セルを挟む両方の壁面に設けられ、
     前記測定光が入射する側の壁面の反射部又は前記測定光が前記測定光検出器に向けて出射する側の壁面の前記反射部が他方の壁面の反射部よりも、前記測定光の反射を繰り返す方向に関して短く設定されていることを特徴とする請求項2に記載の示差屈折率検出器。
    Both of the two reflecting portions are provided on both wall surfaces sandwiching the sample solution cell and the reference solution cell of the flow cell,
    The reflection portion of the wall surface on which the measurement light is incident or the reflection portion of the wall surface on the side where the measurement light is emitted toward the measurement light detector reflects the measurement light more than the reflection portion of the other wall surface. The differential refractive index detector according to claim 2, wherein the differential refractive index detector is set to be short with respect to a repeating direction.
  4.  前記短く設定した方の壁面の前記反射部を設けていない部分を、その法線が他方の壁面の前記反射部の中央側に向かうように傾斜させることを特徴とする請求項3に記載の示差屈折率検出器。 4. The differential according to claim 3, wherein a portion of the shorter wall surface where the reflection portion is not provided is inclined such that a normal line thereof is directed toward a center side of the reflection portion of the other wall surface. Refractive index detector.
PCT/JP2015/076450 2015-09-17 2015-09-17 Differential refractive index detector WO2017046913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076450 WO2017046913A1 (en) 2015-09-17 2015-09-17 Differential refractive index detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076450 WO2017046913A1 (en) 2015-09-17 2015-09-17 Differential refractive index detector

Publications (1)

Publication Number Publication Date
WO2017046913A1 true WO2017046913A1 (en) 2017-03-23

Family

ID=58288329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076450 WO2017046913A1 (en) 2015-09-17 2015-09-17 Differential refractive index detector

Country Status (1)

Country Link
WO (1) WO2017046913A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110385A (en) * 1975-03-25 1976-09-29 Toyo Soda Mfg Co Ltd
JPH0361559U (en) * 1989-10-19 1991-06-17
JPH0552748U (en) * 1991-12-11 1993-07-13 株式会社島津製作所 Differential refractometer
JPH05288676A (en) * 1992-04-09 1993-11-02 Shimadzu Corp Parallax refractometer
JP2007121322A (en) * 2007-02-13 2007-05-17 Japan Science & Technology Agency Prism for measuring total reflection absorption, and total reflection absorbing apparatus using the same
JP2008268233A (en) * 2008-07-30 2008-11-06 Shimadzu Corp Differential refractive index detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110385A (en) * 1975-03-25 1976-09-29 Toyo Soda Mfg Co Ltd
JPH0361559U (en) * 1989-10-19 1991-06-17
JPH0552748U (en) * 1991-12-11 1993-07-13 株式会社島津製作所 Differential refractometer
JPH05288676A (en) * 1992-04-09 1993-11-02 Shimadzu Corp Parallax refractometer
JP2007121322A (en) * 2007-02-13 2007-05-17 Japan Science & Technology Agency Prism for measuring total reflection absorption, and total reflection absorbing apparatus using the same
JP2008268233A (en) * 2008-07-30 2008-11-06 Shimadzu Corp Differential refractive index detector

Similar Documents

Publication Publication Date Title
US10458781B2 (en) Sample shape measuring method and sample shape measuring apparatus
JP5674050B2 (en) Optical displacement meter
CN102183359B (en) Method and device for detecting collimation of light beams
CN110715909A (en) Multi-channel multi-reflection gas detection device
JP2015166686A (en) photoelectric encoder
JP7348730B2 (en) Sample measuring device and sample measuring method
US7859687B2 (en) Detection apparatus and toner detection apparatus using the same
JP2009128073A (en) Optical unit
WO2017046913A1 (en) Differential refractive index detector
US9632023B2 (en) V-block refractometer
CN115388766A (en) Automatic focusing method for ellipsometry system
JP6750734B2 (en) Flow cell and detector equipped with the flow cell
CN106500891B (en) Glass surface stress detection device and detection prism used for same
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
WO2017119063A1 (en) Differential refractive index detector
US20240102936A1 (en) Optical device
WO2018070469A1 (en) Spectroscope, and microscope provided with same
WO2010007811A1 (en) Optical unit
CN111256619A (en) Collimated light beam detection device
JP4122514B2 (en) Spectrometer
JP2014025897A (en) Spectroscopic optical system and spectroscopic measurement apparatus
JP7226561B2 (en) Liquid chromatograph detector
JP2006132972A (en) Defect detecting method and defect detecting device of optical part
US20220283027A1 (en) Optoelectronic measuring device for measuring the intensity of electromagnetic radiation in a frequency-resolved manner
WO2015151717A1 (en) Light detection device and light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP