WO2017045605A1 - 用于检测空气中的颗粒物的传感器及其制造方法 - Google Patents

用于检测空气中的颗粒物的传感器及其制造方法 Download PDF

Info

Publication number
WO2017045605A1
WO2017045605A1 PCT/CN2016/098988 CN2016098988W WO2017045605A1 WO 2017045605 A1 WO2017045605 A1 WO 2017045605A1 CN 2016098988 W CN2016098988 W CN 2016098988W WO 2017045605 A1 WO2017045605 A1 WO 2017045605A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
light
air
detecting
passage
Prior art date
Application number
PCT/CN2016/098988
Other languages
English (en)
French (fr)
Inventor
耶尔沃利诺·艾莉娜
圣阿加塔·法比奥
董明智
张国旗
Original Assignee
北京代尔夫特电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京代尔夫特电子科技有限公司 filed Critical 北京代尔夫特电子科技有限公司
Publication of WO2017045605A1 publication Critical patent/WO2017045605A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the present disclosure relates to the field of particulate matter detection in the air, for example, to a sensor for detecting particulate matter in the air and a method of manufacturing the same.
  • sensors that can be used to detect particulate matter in the air, particularly fine particulate matter, such as PM2.5, are hot.
  • the main methods are: through the air quality report issued by the national environmental protection department, the report update period is as short as 1 hour, the report information and data It can be obtained through the relevant website or through the mobile app. Alternatively, it can also be obtained by an air quality detecting device which is generally used for indoor air quality detection in a home or office area.
  • the data of the air quality report issued by the national environmental protection department has the disadvantages of non-real-time and non-reality.
  • the data reflects only the air quality at the time of the air sampling location, and the local air quality is not enough to represent the real-time air at the user's location. Quality, but only for reference. For example, in a big city like Beijing, the local air quality is affected by many factors. At this time, the non-real-time and non-field characteristics of the data are more obvious.
  • various air quality inspection equipments have the defects of large volume and weight, being inconvenient to carry, and low detection accuracy.
  • a sensor for detecting particulate matter in air comprising: an upper portion, a particle filter disposed on a back side of the upper portion, each of which is axially symmetrically disposed a light source cavity and a plurality of detection chambers, and a penetrating portion formed on the upper portion
  • An air inlet and an air outlet that enter and exit the air to be tested ; and a lower portion that is fixedly coupled to the inner side of the upper portion, the inner side of the lower portion is formed with an electric circuit, and a range corresponding to the light source chamber and the detection chamber
  • a plurality of light-emitting elements and a plurality of light detecting elements are respectively axially symmetrically disposed on the inner side of the lower portion; wherein the shaft is a shaft formed by a center line of the air inlet and a center of the air outlet.
  • the plurality of light-emitting elements are axially symmetrically disposed with respect to the center line of the air inlet and the air outlet, and the plurality of light detecting elements are caused to detect the airflow formed by the air to be measured by the sensor. It is not affected by factors such as the tilt of the sensor, the position change, and the way the air flows. Moreover, since the average value of the plurality of detection outputs of the symmetrical position is taken as the final detection result, the detection accuracy is improved. Alternatively, when a symmetric set of detecting elements is employed, when one of the elements is damaged, the other group can continue to operate, thereby improving the robustness of the detecting device.
  • the present disclosure employs a "virtual" particle filter, that is, the particle filter includes: a first channel, which is an initial channel through which the air to be tested first passes after entering the air inlet, and the first channel passes through Measuring the airflow formed by the air to obtain a predetermined flow rate; a second passage, the plurality of passages formed symmetrically between the first passage and the plurality of detection chambers; and a third passage formed in the A passage between a passage and an air outlet.
  • This kind of screening method can be screened without setting a specific aperture screen, so that when screening with a screen is used, large particles will accumulate in the mesh of the screen, blockage occurs for a long time, and the screen needs to be replaced regularly. defect.
  • the effect of simplifying the sensor structure and saving manufacturing costs can be obtained.
  • the senor of the present disclosure includes: an incident light collimator, which is formed in an axisymmetric manner between the light source cavity and the detection cavity, and is configured to collimate light emitted by the light emitting element .
  • the senor of the present disclosure includes an airflow generating device configured to form an airflow within the sensor.
  • the size of the air inlet is smaller than the size of the air outlet.
  • a detecting apparatus for detecting particulate matter in air comprising the sensor according to the first aspect of the present disclosure, and a driving circuit for outputting signals of the plurality of light detecting elements The calculation is performed, and the average value is taken as the detection result.
  • the detecting apparatus is characterized in further comprising a display device arranged to display the detection result.
  • a detection device may be a wearable device. That is, the sensor is suitable for making Built-in wearable air quality detection devices are also suitable for integration into wearable electronic devices such as smartphones, watches, bracelets and more.
  • a method of manufacturing the sensor according to the first aspect of the present disclosure comprising the step of forming a structure on an upper portion, using a silicon oxide film as a mask, a silicon substrate Etching is performed to obtain a structure formed on the inner side of the upper portion, and an air inlet and an air outlet penetrating through; a step of forming a structure on the lower portion: depositing a metal film with a silicon oxide film as a mask The silicon substrate is etched to obtain a structure formed on the inner side of the lower portion, and a desired circuit; a plurality of light emitting elements and a plurality of light detecting element fixing steps: respectively, a light source chip as a light emitting element and a light detecting chip of the light detecting element is fixed to the inner side of the lower portion; and an upper portion and a lower portion fixing step: aligning the inner side of the upper portion and the inner side of the lower portion to securely connect the two together.
  • a sensor for detecting particulate matter in air includes: a first portion including a particle filter, a plurality of light source cavities, a plurality of detection cavities, an intake through hole, and an air outlet through hole; And a second portion fixedly coupled to the first portion, including a circuit, a plurality of light emitting elements, and a plurality of light detecting elements; wherein the first portion and the second portion pass through the connecting face and the second portion of the first portion a connection surface fixedly connected; the particle filter is disposed in a connection surface of the first portion; the circuit, the plurality of light emitting elements and the plurality of light detecting elements are disposed on a connection surface of the second portion;
  • the light-emitting elements are configured to emit light and are respectively disposed corresponding to the plurality of light source cavities; the plurality of light detecting elements are configured to detect light scattered by the air in the detecting cavity, and are respectively corresponding to the plurality of detecting cavities
  • the shaft is an axis formed by
  • the manufacturing method of the sensor of the above configuration of the present disclosure since the sensor has a substantially axisymmetric structure, the manufacturing process is simple, the manufacturing precision is lowered, and the manufacturing cost is reduced.
  • the sensor of the present disclosure a method of manufacturing the same, and a detecting apparatus including the same are described below in conjunction with the accompanying drawings and embodiments of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a system of a detection system to which a sensor is applied according to an embodiment of the present disclosure
  • FIG. 2 is a structural diagram of a sensor and a circuit of an embodiment of the present disclosure
  • 3a is a schematic plan view showing a first portion of a sensor of an embodiment of the present disclosure
  • Figure 3b is a schematic view showing the structure of a particle filter of the first part of the sensor of the embodiment
  • 3c is a schematic plan view showing a second portion of the sensor of the embodiment of the present disclosure.
  • FIG. 4 is a flow chart of a method of manufacturing a sensor of an embodiment of the present disclosure.
  • a Chinese utility model patent CN204044033U discloses a device for detecting particulate matter in the air and a wearable device comprising the same.
  • the means for detecting particulate matter in the air mainly comprises: an upper portion and a lower portion made of a silicon-based material; a measuring chamber formed between the upper and lower portions; and at least one light-emitting element and at least one photosensitive element.
  • the measuring chamber comprises upper and lower surfaces parallel to each other, and side surfaces inclined with respect to the upper and lower surfaces.
  • the light emitting element is disposed in the measurement chamber and includes a first side having an emission port for emitting light in a direction parallel to the upper surface and toward the side surface.
  • the photosensitive element is also located in the measurement chamber and disposed adjacent to a second side of the light emitting element, the second side being opposite the first side.
  • the above device solves the disadvantages of the air detecting device in the related art being bulky and inconvenient to carry.
  • the structure of the above device the structure is relatively complicated, and the positions of the measuring chambers need to have a certain position and a relative inclination relationship, and the positions of the light-emitting elements and the photosensitive elements in the measuring chamber are also relatively strict. Requirements, otherwise it will affect the accuracy of the measurement results.
  • embodiments of the present disclosure provide an air quality detecting device that is simple in structure, easy to manufacture, small in size, low in power consumption, and high in precision, and a manufacturing method thereof.
  • the detecting device includes a sensor 1, a driving circuit 2, and a display device 3 connectable for displaying related detection data or information.
  • the sensor 1 is used for detecting a particulate matter having a predetermined size in the air, such as PM2.5, and its structure and manufacturing method will be described below.
  • the drive circuit 2 is electrically connected to the sensor 1.
  • the drive circuit 2 can include, for example, control circuitry for controlling the sensor, and a power supply for powering the sensor and control circuitry.
  • the control circuit includes, for example, a light source control circuit that controls illumination of the light-emitting elements in the sensor, and a light detection element control circuit that receives the detection signal output by the light-detecting element of the sensor and performs corresponding arithmetic processing.
  • the control circuit can provide a pulse illuminating signal to the red laser chip and read the output current of the photodiode at a certain frequency.
  • the drive circuit can also implement control to display the value of the above-described particulate matter concentration as a result of the detection to the display device 3 of the peripheral device in some form.
  • the display device 3 may be a liquid crystal display, or other intelligent display device, which is configured to display a detection result obtained by the operation of the driving circuit 2 for display, which may be a certain number of particles in the air.
  • the mass concentration for example, the concentration data of PM2.5; or the intensity of the optical signal scattered by the particles to the photodetecting element, or the like.
  • the sensor 1 includes a first portion and a second portion, and a connecting surface of the first portion is fixedly coupled to a connecting surface of the second portion.
  • the first part mainly forms a flow passage of the air to be tested, and comprises a particle filter formed on the connecting portion of the first portion, a plurality of light source cavities and a plurality of detecting cavities respectively disposed substantially in an axisymmetric manner, and respectively entering and discharging as air to be tested.
  • the second portion includes a plurality of light emitting elements, a plurality of light detecting elements, and a circuit, and the like, wherein the light emitting element is disposed at a position corresponding to the light source cavity in the first portion, and the light detecting element is disposed at a position corresponding to the detecting cavity of the first portion,
  • the symmetry axis mentioned above is an axis formed by the center of the intake through hole and the center of the outlet through hole.
  • Figure 3 (a) is a schematic plan view of the first portion 11 of the sensor
  • Figure 3 (b) A schematic view of the structure of the particle filter 12 of the first portion 11
  • FIG. 3(c) is a schematic plan view of the second portion 12 of the sensor.
  • the first portion 11 may include an air inlet 111, a particle filter 112, two detection chambers 113 disposed substantially symmetrically, two light source chambers 114 disposed substantially symmetrically, and an air outlet 115 through which air flows.
  • the air inlet 111, the particle filter 112, the two detecting chambers 113, and the air outlet 115 constitute an air flow passage through which the air to be detected flows and is subjected to detection.
  • the lower portion 12 includes electronic components such as the light-emitting element 121 and the light detecting element 122 for realizing detection. Where the light emitting element 121 may be disposed at a position corresponding to the light source cavity 114 of the upper portion 11, the light detecting element 122 may be disposed at a position corresponding to the detecting cavity 113 on the upper portion 11.
  • the particle filter 12 may be a screen that is disposed at an appropriate location in the air passage behind the air inlet 111.
  • the particle filter can also be a "virtual" screen, and the present disclosure provides an optional virtual particle filter 112 that is part of the air passage in the first portion.
  • the particle filter 112 of the present disclosure includes a first channel L1, a second channel L2, and a third channel L3.
  • the first channel may be a microchannel.
  • the thickness of the silicon wafer is 500 um, and the width and depth of the microchannel may be 200 um, and the length may be Above 1mm. It should be noted that this is merely illustrative and not limiting.
  • the particles carried in the air will enter different channels with the airflow.
  • the larger mass of the large particles will continue to go straight into the third channel due to the larger inertia, while the finer particles with smaller mass will change relatively easily.
  • the direction of motion therefore, will turn into the second channel with the airflow and into the detection chamber 113 through the second channel.
  • the airflow in the second and third passages eventually flows out of the air outlet through holes 115.
  • the preliminary screening of the particulate matter in the air to be tested is achieved by the particle filter 112 as set forth in Figures 3a and 3b.
  • This kind of particle screening is also called “virtual" screening.
  • the particle filter uses the aerodynamic principle of the particles to change the trajectory of the particles to achieve the particle. Screening of objects. By adopting this kind of virtual screening method, it is not necessary to set a screen with a specific aperture in the upper part, thereby avoiding the use of the screen for screening, large particles will accumulate at the mesh of the screen, and blockage occurs for a long time, and the screen needs to be replaced regularly. Defects such as the net.
  • the "virtual" filter of the present disclosure thus simplifies the sensor structure and saves sensor manufacturing costs.
  • the air inlet 111 is designed to be smaller than the air outlet 115, so that the air to be tested is easy to form an air flow having a certain flow velocity between the air inlet 111 and the air outlet 115 of the sensor 1.
  • a narrow channel such as a microchannel
  • the channel can function as a light collimator, that is, the narrow channel becomes the incident of the light emitting element 121.
  • the light collimator is such that light having a certain dispersion angle emitted from the light-emitting element 121 is collimated through the passage to enter the detection chamber 113 in a nearly linear manner.
  • the light collimator is not necessarily a component, and its form is not limited to the narrow passage described above, but it can also be realized by providing a micro-optical element having a collimating function, such as a collimating lens, on the optical path.
  • two light-emitting elements 121 such as laser diodes, or other light-emitting diodes, are arranged substantially axially symmetrically.
  • the light emitting element 121 may exist in the form of a light source chip. According to the size relationship of the light-emitting element 121 and the light source cavity 114, the light-emitting element 121 may be directly disposed on the surface of the substrate forming the lower portion of the sensor 1, or a groove may be formed on the substrate, and the light-emitting element is disposed in the groove. .
  • the position of the light-emitting element 121 on the substrate is in the range of the light source cavity 114 formed on the upper portion 11 of the sensor 1, and is optionally aligned with the position of the incident light collimator.
  • the light-emitting element 121 can also be disposed at other locations within the range of the light source cavity as needed, by directing the light emitted by the light-emitting element to the incident light collimator by means of a micro-optical element.
  • the light detecting element 122 is disposed substantially axially symmetrically, and the light detecting element 122 can be a photodiode, or any other type of photosensitive element that accomplishes the purposes of the present disclosure. Also, it may exist in the form of a photodetector chip.
  • a groove is formed on the substrate of the lower portion, and the light detecting element 122 is disposed in the groove, thereby appropriately reducing the thickness of the lower portion, and the groove has a certain light collecting effect, thereby improving the sensitivity of light detection.
  • the light detecting element 122 is optionally disposed within the range of the detection chamber 113 on the first portion 12 on the substrate of the lower portion, optionally in focus with the incident light collimator.
  • the light detecting element 122 is disposed in alignment with the incident light collimator and is located at a position of the detecting chamber 113 opposite to the incident collimator.
  • the above location is not restrictive and can be adopted accordingly.
  • a circuit (not shown) is provided on the surface of the substrate of the lower portion 12, thereby realizing connection of the light-emitting element 121 and the light detecting element 122 with, for example, the driving circuit 2 and the like.
  • the structures of the upper portion 11 and the lower portion 12 of the sensor 1 of the present disclosure are formed on a corresponding substrate, and the material of the substrate may be a silicon wafer or a polymer material.
  • an optical anti-reflection film may be disposed on the substrate as needed to reduce reflection of light from the surface of the cavity and the like, thereby causing interference to the normal operation of the photodetecting element.
  • the sensor 1 detects the concentration of fine particles in the air to be tested containing the fine particles entering the two detection chambers 113 by the principle of optical scattering.
  • Light emitted from the light-emitting element 121 is incident on the detection cavity 113 through the incident light collimator.
  • the light When there is no particulate matter in the air to be detected to scatter the light, the light is emitted almost directly from the detecting chamber 113, and no light is scattered and irradiated onto the light detecting element 122; conversely, when the air to be detected carries the particulate matter, flows through When the cavity 113 is detected, the particles in the air to be detected will scatter the light incident on the light-emitting element, and due to the randomness of the direction of propagation of the scattered light, light will be irradiated onto the light detecting element 122, and the light detecting element 122 will receive The light is converted into an electrical signal.
  • the light detecting element 122 is electrically connected to the driving circuit 2 through a circuit and transmits an electrical signal to the driving circuit.
  • the driving circuit performs arithmetic processing on the signal outputted by the light detecting element 122, that is, a detection result characterizing the air quality to be tested can be obtained.
  • the detection result of the air quality may be the number of particles or the mass concentration in a certain size range in the air, or the intensity of the optical signal of the particle scattering light detecting element 122.
  • the sensor 1 comprises two light detecting elements 122.
  • the driving circuit may take an average value of the detection signals respectively output by the two light detecting elements 122 as a detection result, or may select one of the output detection signals as a detection result. Alternatively, in the normal case, if the output values of the two photodetecting elements 122 are similar, it can be considered that the responses of the two photodetecting elements are normal.
  • the moving circuit can take the average of the two as the detection result.
  • the driving circuit analyzes that the value of the detection result of one of the photodetecting elements is abnormal, it can be judged that the photodetecting element responds to the abnormality, and the value of the other photodetecting element is taken as the detection result.
  • the above judgment basis can be determined as needed during the calibration process of the sensor.
  • an airflow generating device may be disposed in the sensor.
  • the airflow generating device may select a mini exhaust fan and fix the mini exhaust fan at the air outlet 115 of the sensor 1; or
  • the airflow generating device may be a combination of an air guiding tube and an air extracting device, and one end of the air guiding tube is fixed at the air outlet 115, and the other end is connected to the air extracting device.
  • the pumping speed of the airflow generating device may be adjusted according to the size of the particulate matter screened by the particle filter 112 inside the sensor, thereby adjusting the flow rate of the air to be detected, so that the air to be detected entering the particle filter has a specific flow rate. Achieve the purpose of screening particles of a specific size.
  • the plurality of light emitting elements are symmetrically disposed with respect to the air inlet and the air outlet, and the plurality of light detecting elements enable the detection of the airflow formed by the sensor to be measured Not affected by factors such as the tilt of the sensor. Moreover, since the average value of the plurality of detection outputs of the symmetrical position is taken as the final detection result, the detection accuracy is improved. Alternatively, when a symmetric set of detecting elements is employed, when one of the elements is damaged, the other group can continue to operate, thereby improving the robustness of the detecting device.
  • a method of manufacturing a sensor of an embodiment of the present disclosure will be described below with reference to FIG. 4, taking a silicon substrate as an upper part and a lower part forming the sensor, the method includes:
  • a step of forming a corresponding structure on the upper portion etching the silicon substrate by using a silicon oxide film as a mask to obtain a structure formed on the inner side of the upper portion, and an air inlet and an air outlet penetrating through ;
  • Forming a corresponding structure on the lower portion etching the silicon substrate on which the metal thin film is deposited by using a silicon oxide film as a mask to obtain a structure formed on the inner side of the lower portion, and a required circuit;
  • a plurality of light emitting elements and a plurality of light detecting element fixing steps respectively fixing a light source chip as a light emitting element and a light detecting chip as a light detecting element to the inner side of the lower portion;
  • Upper and lower portion bonding steps aligning the inner side of the upper portion with the inner side of the lower portion to secure the upper and lower portions together.
  • the silicon oxide film is image-deposited on both sides of the silicon substrate, and the silicon oxide film is used as a mask, and the mask on the inner side of the upper portion is first lighted.
  • the initial material is a double-sided polished silicon substrate.
  • a silicon oxide film is deposited on both sides of the silicon substrate, and the silicon oxide film is patterned and etched by photolithography.
  • the connection surface of the silicon substrate is etched to obtain a structure on the back side of the upper portion 11.
  • photolithography is performed on the non-joining surface of the silicon substrate to obtain a through-hole 111 and an air outlet 115.
  • the silicon oxide film remaining on the surface of the silicon substrate is removed, that is, the structure of the upper portion of the sensor 11 is obtained.
  • an optical anti-reflection film such as a silicon nitride film, is also deposited on the surface of the silicon substrate to reduce interference with the reflected light and improve the detection accuracy of the sensor.
  • a corresponding structure formed on the inner side of the lower portion 12 is obtained, for example, including a groove structure for placing a photodetecting element, and the like.
  • a metal film is deposited, and the metal film is photolithographically and etched to form a desired circuit and an electrode.
  • the initial material is a double-sided polished silicon substrate.
  • a silicon nitride film is deposited on both sides of the silicon wafer, and a silicon nitride film on the upper surface is photolithographically patterned with a patterned silicon nitride film as a mask. The material is etched to obtain a groove structure for placing the photodetecting element.
  • the silicon nitride film is removed.
  • an optical anti-reflection film may be deposited on the surface of the silicon substrate.
  • a metal film for example, aluminum, is deposited on the surface of the optical anti-reflection film; the metal film is photolithographically and etched to obtain the desired circuit and electrode.
  • the imaged silicon nitride film can be used as a mask material, and the silicon substrate is etched to obtain a groove structure for placing the detecting element, and The optical reflective film is deposited on the silicon substrate to reduce interference with reflected light and improve the detection accuracy of the sensor. It should be noted that the thickness of the silicon nitride film in different applications is different. In the manufacturing process of the sensor, the thickness of the silicon nitride film can be flexibly set within a prescribed range according to actual needs.
  • the step of fixing the light-emitting element and the light-detecting element using a light source chip as a light-emitting element
  • the light detecting chip of the light detecting element is fixed to the silicon substrate of the lower portion by, for example, a conductive adhesive, and the electrical connection between the chip and the silicon substrate is completed by, for example, wire bonding.
  • wire bonding Of course, other electric power can also be used.
  • the connection method for example, a conductive solder can be used instead of the conductive paste.
  • a chip that does not require wire bonding can be selected, and only a conductive paste or solder is directly fixed on the silicon substrate for electrical connection, and wire bonding is omitted.
  • the upper part and the lower part are fixedly connected: the inner side of the upper part is aligned with the inner side of the lower part, and the inner side of the upper part and the inner side of the lower part are bonded with an adhesive, thereby achieving a fixed connection between the upper part and the lower part.
  • an adhesive thereby achieving a fixed connection between the upper part and the lower part.
  • other methods can also be used to make the connection between the two parts, such as gold-gold bonding.
  • the sensor body portion manufactured by the above method has a size of 17 mm * 12 mm and a thickness of only 1 mm. Moreover, since the sensor has a symmetrical structure, the manufacturing method is simple, the manufacturing precision is reduced, and the manufacturing cost is saved.
  • the upper portion, the upper portion of the upper portion, the lower portion, and the lower portion of the upper portion are not limited to the orientation of the sensor components, but merely the manner in which the different components of the sensor are named.
  • the upper portion may also be referred to as the first portion and the lower portion may also be referred to as the second portion.
  • the inner side of the upper portion may also be referred to as the connecting surface of the first portion, and the inner side of the lower portion may also be referred to as the connecting surface of the second portion.
  • the first portion and the second portion are fixedly connected by the connecting face of the first portion and the connecting face of the second portion.
  • the sensor of the present disclosure and the detecting device including the same, and the manufacturing method of the sensor have been described above, but the present disclosure is not limited thereto. Various changes and modifications of the present disclosure are possible to those skilled in the art.
  • the sensor for detecting particulate matter in the air of the embodiment of the present disclosure has the advantages of simple structure, easy manufacture, small volume, low power consumption, and high precision.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种用于检测空气中的颗粒物的传感器(1)及制造方法,以及包含该传感器(1)的检测装置。所述传感器(1)包括:上部分(11)和下部分(12),其中,上部分(11)包括,设置在该上部分(11)里侧上的颗粒筛选器(112),分别轴对称地设置的多个光源腔(114)和多个探测腔(113),以及形成在该上部分(11)上的贯穿的、分别作为待测空气进入和排出的进气口(111)和出气口(115);下部分(12)包括,该下部分(12)的里侧上形成的电路(2),以及在对应于所述光源腔(114)和探测腔(113)的范围内,在其里侧分别轴对称地设置的多个发光元件(121)和多个光检测元件(122);其中对称轴为进气口(111)中心与出气口(115)中心连线形成的轴。

Description

用于检测空气中的颗粒物的传感器及其制造方法 技术领域
本公开涉及空气中颗粒物检测领域,例如涉及一种用于检测空气中的颗粒物的传感器及其制造方法。
背景技术
随着科技的进步,生活水平的提高,人们对健康问题越发关注。其中就包括人们对污染防范的意识逐渐加强,越来越关注所居住环境的污染问题。空气污染作为一个不可被忽视的较为严重污染情况,也日益受到更多关注。相应地,可用于检测空气中的颗粒物,特别是细颗粒物,例如PM2.5的含量的传感器炙手可热。
目前,人们获得环境中的空气质量数据,例如PM2.5浓度数据的途径主要有:通过国家环保部门定期发布的空气质量报告获得,该报告更新的周期最短为1小时,该报告的信息及数据可以通过相关网站获取或通过手机APP查询。或者还可以通过空气质量检测设备获得,该空气质量检测设备通常可用于家庭或办公区的室内空气质量检测。
国家环保部门发布的空气质量报告的数据存在非实时性和非实地性的缺点,该数据所反映的仅仅是空气采样地点当时、当地的空气质量,不足以代表使用者所在位置处的实时的空气质量,而仅能用于参考。例如对于北京这样的大城市,局部的空气质量受很多因素的影响,此时该数据的非实时性和非实地性较为明显。此外各种空气质量检查设备存在体积和重量大、不便于携带,以及检测精度不高等缺陷。
鉴于以上情况,有必要提出一种结构简单、易于制造,且体积小、功耗低、精度高的空气质量检测设备。
发明内容
根据本公开的第一方面,提供一种用于检测空气中的颗粒物的传感器,所述传感器包括:上部分,在该上部分的里侧上设置有颗粒物筛选器,分别轴对称地设置多个光源腔和多个探测腔,和形成在该上部分上的贯穿的、分别作为 待测空气进入和排出的进气口和出气口;以及与上部分的里侧固定连接的下部分,该下部分的里侧形成有电路,以及在对应于所述光源腔和探测腔的范围内,在该下部分的里侧分别轴对称地设置多个发光元件和多个光检测元件;其中所述轴为进气口中心与出气口中心连线形成的轴。
根据本公开的具有以上结构的传感器,由于相对于进气口和出气口的中心连线,轴对称地设置多个发光元件,以及多个光检测元件,使得传感器对待测空气形成的气流的检测不受传感器的倾斜、位置变化以及空气流动方式等因素的影响。且由于取对称位置的多个检测输出的平均值作为最终检测结果,使得检测精度提高。可选地,当采用对称组的检测元件时,当其中一组元件损坏,另一组仍可继续工作,从而可提高了检测设备的鲁棒性。
可选地,本公开采用“虚拟”颗粒筛选器,即所述颗粒筛选器包括:第一通道,其为待测空气从进气口进入后首先经过的初始通道,经过该第一通道的待测空气形成的气流获得一预定流速;第二通道,其为所述轴对称地形成在第一通道和所述多个探测腔之间的多个通道;以及第三通道,其为形成在第一通道与出气口之间的通道。
采用该种筛选方式,可无需设置特定孔径的筛网进行筛选,从而避免了使用筛网进行筛选时,大颗粒物会在筛网的网眼处堆积,长时间使用发生堵塞,需要定期更换筛网等缺陷。可取得了简化传感器结构、节约制造成本的效果。
可选地,本公开的传感器,包括:入射光准直器,其为以所述轴对称的方式形成在所述光源腔与探测腔之间通道,设置为对发光元件发出的光进行准直。
可选地,为使得待测空气的流速达到测量需要,或根据所检测颗粒物的大小设置相应的空气流速,本公开的传感器包括,气流发生装置,设置为在所述传感器内形成气流。
可选地,为提高待测空气在传感器内的流速根据本公开的传感器,所述进气口的大小小于出气口大小。
根据本公开的第二方面,提供一种用于检测空气中的颗粒物的检测设备,其包括根据本公开第一方面所述的传感器,以及驱动电路,用于对多个光检测元件输出的信号进行运算,取其平均值作为检测结果。
为便于检测结果的展示和获取,根据本公开第二方面的所述检测设备,其特征在于还包括显示设备,设置为显示所述检测结果。
根据本公开所述的检测设备,其可以是可穿戴设备。即所述传感器适合制 造随身可穿戴的空气质量检测装置,也适合集成到可穿戴电子设备,如智能手机、手表、手环等。
根据本公开的第三方面,提供一种制造根据本公开第一方面的所述传感器的方法,所述方法包括:在上部分上形成结构的步骤,以氧化硅薄膜为掩模,对硅基板进行刻蚀,得到形成在所述上部分的所述里侧的结构,以及贯穿的进气口和出气口;在下部分上形成结构的步骤:以氧化硅薄膜为掩模,对沉积了金属薄膜的硅基板进行刻蚀,得到形成在所述下部分的所述里侧的结构,以及所需电路;多个发光元件以及多个光检测元件固定步骤:分别将作为发光元件的光源芯片和作为光检测元件的光线探测器芯片固定到下部分的所述里侧;以及上部分和下部分固定步骤:将所述上部分的里侧面和下部分里侧面对准,实现将两者固定连接在一起。
根据本公开的第三方面,提供一种用于检测空气中的颗粒物的传感器,包括:第一部分,包括颗粒筛选器、多个光源腔、多个探测腔、进气通孔和出气通孔;以及第二部分,与所述第一部分固定连接,包括电路、多个发光元件和多个光检测元件;其中,所述第一部分和第二部分通过所述第一部分的连接面和第二部分的连接面固定连接;所述颗粒筛选器设置在所述第一部分的连接面内;所述电路、多个发光元件和多个光检测元件设置在所述第二部分的连接面上;所述多个发光元件用于发出光线,并与所述多个光源腔分别对应设置;所述多个光检测元件用于检测经过探测腔中的空气散射后的光线,并与多个探测腔分别对应设置;所述轴为进气通孔中心与出气通孔中心连线形成的轴。
根据本公开的以上结构的传感器的制造方法,由于所述传感器具有大致轴对称的结构,因此,制造工艺简单,降低了对制造精度的要求,从而降低了制造成本。
以下结合附图以及本公开的实施方式,对本公开的传感器及其制造方法,以及包含该传感器的检测设备做相关描述。
附图说明
此处所说明的附图用来提供对本公开的理解,构成本公开的一部分,其用于解释本公开,并不构成对本公开的不当限定。
图1是本公开实施例应用了传感器的检测系统的系统结构示意图;
图2是本公开实施例的传感器及电路结构图;
图3a是本公开实施例传感器的第一部分的平面结构示意图;
图3b是本公开是实施例传感器的第一部分的颗粒筛选器的结构示意图;
图3c是本公开实施例传感器的第二部分的平面结构示意图;
图4是本公开实施例传感器制造方法的流程图。
实施方式
为使本公开的目的和技术方案更加清楚,下面将结合本公开的实施例及相应的附图对本公开技术方案进行清楚、完整地描述。需要指出的是,显然,所描述的实施例仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
中国实用新型专利CN204044033U公开了一种用于检测空气中的颗粒物的装置及包括该装置的可穿戴设备。其中所述用于检测空气中的颗粒物的装置主要包括:由硅基材料制成的上部部分和下部部分;形成在上述上、下部部分之间的测量室;以及至少一个发光元件和至少一个感光元件。其中,所述测量室包括互相平行的上、下表面,以及相对所述上、下表面倾斜的侧表面。并且所述发光元件设置在所述测量室中且包括具有发射口的第一侧面,所述发射口用于沿着平行于所述上表面且朝着所述侧表面的方向发射光。所述感光元件也位于所述测量室中,且邻近所述发光元件的第二侧面而设置,所述第二侧面与所述第一侧面相对。
上述装置解决了相关技术中空气检测设备体积大、不便于携带等缺点。然而根据上述装置的结构可以看到,其结构较为复杂,构成测量室的各表面之间需要具有一定的位置及相对倾斜关系,且发光元件及感光元件在测量室中位置的设定也有较为严格要求,否则将影响到测量结果的精度。
针对上述问题,本公开实施例提出了一种结构简单、易于制造,且体积小、功耗低、精度高的空气质量检测设备以及其制造方法。
结合图1,对应用了本公开的传感器的空气颗粒物检测设备的构成示意图作 相关说明。如图1所示,所述检测设备包括传感器1,驱动电路2,以及可连接用以显示相关检测数据或信息的显示设备3。其中,传感器1用于检测空气中的具有预定大小的颗粒物,例如PM2.5,其结构及制造方法将在下文做相关描述。
驱动电路2与传感器1电连接。该驱动电路2可包括,例如用于控制所述传感器的控制电路,以及用于为传感器和控制电路供电的电源。可选地,控制电路包括,例如控制传感器中的发光元件发光的光源控制电路,以及接收传感器的光检测元件输出的检测信号并进行相应的运算处理的光检测元件控制电路。举例来说,在发光元件采用650nm的红光激光芯片,光检测元件采用光电二极管的情况下,控制电路可以提供脉冲发光信号给红光激光芯片,以及以一定频率读取光电二极管的输出电流,经运算处理后得到待测空气中所含某尺寸范围的颗粒物的浓度,并将该浓度数值作为检测结果。所述驱动电路还可实现控制,以将作为检测结果的上述颗粒物浓度的数值以某种形式显示到外设的显示设备3上。
显示设备3,例如可以为液晶显示器,或其他智能显示设备,其设置为显示经驱动电路2运算处理后获得的用于显示的检测结果,该检测结果可以是空气中某范围大小的颗粒个数或者质量浓度,例如PM2.5的浓度数据;也可以是经颗粒物散射到光检测元件的光信号的强度等。
下面结合图2,对本公开实施例的传感器立体结构示意图作相关说明。如图2所示,所述传感器1包括第一部分和第二部分,且该第一部分的连接面与第二部分的连接面固定连接。第一部分主要形成待测空气的流通通道,包括在该第一部分连接面上形成的颗粒筛选器,分别大致轴对称设置的多个光源腔和多个探测腔,以及分别作为待测空气进入和排出的进气通孔和出气通孔等结构。第二部分包括多个发光元件、多个光检测元件以及电路等结构,其中发光元件设置在与第一部分中的光源腔对应的位置,光检测元件设置在与第一部分的探测腔对应的位置,上述提到的对称轴为进气通孔中心与出气通孔中心连线形成的轴。
以下结合图3(a)-3(c)对所述传感器的第一和第二部分的结构及其工作原理进行说明。图3(a)为传感器的第一部分11的平面结构示意图,图3(b) 为第一部分11的颗粒筛选器12的结构示意图;图3(c)为传感器第二部分12的平面结构示意图。
其中,第一部分11可包括空气进气口111、颗粒筛选器112、大致轴对称设置的两个探测腔113、大致轴对称设置的两个光源腔114,以及空气流出的出气口115。其中,进气口111、颗粒筛选器112、两探测腔113、以及出气口115构成待检测空气在上部分中流通并经受检测的气流通道。下部分12包括用于实现检测的发光元件121和光检测元件122等电子元件。其中发光元件121可设置在对应于上部分11的光源腔114的位置处,光检测元件122可设置在对应于上部分11上的探测腔113的位置处。
待检测空气从进气口111进入到传感器,经过颗粒筛选器112。在本公开中,颗粒筛选器12可以选用筛网,设置在进气口111之后的空气通道中的适当位置处。此外,颗粒筛选器还可以一种“虚拟”的筛网,本公开提出一种可选的虚拟颗粒筛选器112,该颗粒筛选器112为第一部分中空气通道的一部分。如图3a和3b所示,本公开中的颗粒筛选器112包括第一通道L1、第二通道L2和第三通道L3。该第一通道可以是微通道,举例来说,如果采用普通硅片材料制作本公开传感器的第一部分11,硅片厚度为500um,则所述微通道的宽度和深度可选为200um,长度则在1mm以上。需要说明的是,此仅为举例说明,而非限制性的。空气从进气通孔进入通过第一通道后,获得一定的流速。当气流到达第一通道的末端时,该气流将沿三个方向前进,即沿着如图3b所示的第二通道方向和第三通道方向前进,也就是说,通过第一通道后,获得预定流速的气流将直行(第三通道方向)或转弯(第二通道方向)。从而,空气中携带的颗粒物会随着气流进入不同的通道,其中,质量较大的大颗粒物由于惯性较大,因此继续将直行进入第三通道,而质量较小的细颗粒物则相对容易地改变运动方向,因此随气流将拐弯进入第二通道,并通过第二通道进入到探测腔113。第二通道和第三通道中的气流最终从出气通孔115流出。
以上,通过如图3a和图3b所设置的颗粒筛选器112,实现了对待测空气中的颗粒物的初步筛选。此种颗粒筛选也称“虚拟”筛选,该颗粒筛选器利用颗粒物的空气动力学原理,对颗粒物的运动轨迹进行定向改变,从而实现对颗粒 物的筛选。采用该种虚拟筛选方式,无需在上部分中设置特定孔径的筛网,从而避免了使用筛网进行筛选时,大颗粒物会在筛网的网眼处堆积,长时间使用发生堵塞,需要定期更换筛网等缺陷。因此本公开的“虚拟”筛选器简化了传感器的简化了传感器结构、节约了传感器的制造成本。
同时,可选地,进气口111设计的比出气口115小,从而使得待测空气易于在传感器1的进气口111与出气口115之间形成具有一定流速的气流。
此外,可选地,在光源腔114与探测腔113之间设置有一段狭窄的通道,例如微通道,该通道能够起到光线准直器的作用,即,该狭窄通道成为发光元件121的入射光准直器,使得从发光元件121发出的具有一定分散角度的光通过该通道后被准直,以便以近乎直线的方式进入探测腔113。当然,所述光线准直器并非必须设置的元件,而其形式也不限于上述狭窄通道,其也可以通过在光路上设置具有准直功能的微光学元件,例如准直透镜来实现。
如图3c所示,在传感器1的下部分12上,大致轴对称地设置有两个发光元件121,例如激光二极管,或者其他的发光二极管。该发光元件121可以以光源芯片的方式存在。根据发光元件121及光源腔114的尺寸关系,该发光元件121可以直接设置于形成传感器1的下部分的基板的表面,或者在所述基板上形成凹槽,将该发光元件设置在凹槽中。该发光元件121在所述基板上的位置正对形成在传感器1上部分11上的光源腔114的范围内,且可选对准所述入射光准直器的位置。当然,该发光元件121也可以根据需要设置在光源腔范围内的其它位置,通过利用微光学元件将该发光元件发出的光引导至入射光准直器。
类似的,大致轴对称地设置光检测元件122,该光检测元件122可以是光敏二极管,或者其它任何类型能实现本公开检测目的的感光元件。并且,其可以以光探测器芯片的形式存在。可选地,在下部分的基板上形成凹槽,将该光检测元件122设置在凹槽中,从而适当降低下部分的厚度,同时凹槽起到一定的聚光效果,提高了光检测的灵敏度。并且,该光检测元件122可选设置在下部分的基板上正对第一部分12上的探测腔113的范围内,可选与所述入射光准直器对焦。可选地,该光检测元件122设置在对准上述入射光准直器,且位于探测腔113的与入射准直器相对的位置。上述位置并非限制性的,也可通过相应 的设置反射镜、透镜等光学元件将光束引导到所述光检测元件122上,从而该光检测元件可以根据设计需要而设置在任意可行位置,以尽量避免入射光线直接照射到光检测元件表面为原则。
另外,为实现必要的信号传输及电源供给等,下部分12的基板表面相应地设置有电路(未示出),从而实现发光元件121和光检测元件122与例如驱动电路2等的电路连接。
本公开的传感器1的上部分11和下部分12的结构形成在对应的基板上,所述基板的材料可以是硅片或聚合物材料。此外,还可以根据需要在基板上设置光学减反射膜,以减少因腔体内表面等的光线反射,对光检测元件的正常工作造成干扰。
接下来,描述传感器1对筛除了大颗粒物的待测空气进行颗粒物检测的方法。传感器1利用光学散射原理,对进入到两探测腔113内的包含细颗粒物的待测空气中细颗粒物的浓度进行检测。发光元件121发出的光经所述入射光准直器后入射到探测腔113。当待检测空气中没有颗粒物对光线进行散射时,光线几乎直接从探测腔113射出,而不会有光线经散射照射到光检测元件122上;相反地,当待检测空气中携带颗粒物,流经探测腔113时,待检测空气中的颗粒物会对发光元件入射的光线进行散射,而由于散射光线传播方向的随机性,将会有光线照射到光检测元件122上,光检测元件122将接收到的光线转换为电信号。可选地,光检测元件122通过电路与驱动电路2电连接,并将电信号传输至驱动电路。驱动电路对所述光检测元件122输出的信号进行运算处理,即可以得到表征待测空气质量的检测结果。作为表征所述空气质量的检测结果,可以是空气中某尺寸范围内的颗粒物个数或者质量浓度,也可以是所述颗粒物散射道光检测元件122的光信号的强度等。
如图3a-3c所示,传感器1包括两个光检测元件122。驱动电路可以取两个光检测元件122分别输出的检测信号的平均值作为检测结果,或者可以任选其中一个的输出的检测信号作为检测结果。可选地,在通常情况下,两个光检测元件122的输出结果数值相近,则可以认为两个光检测元件的响应均正常,驱 动电路可取两者的平均值作为检测结果。当驱动电路分析确定其中一个光检测元件的检测结果数值明显异常时,可判断该光检测元件响应异常,则取另一光检测元件的数值作为检测结果。以上判断依据可以在所述传感器的标定过程中根据需要确定。
另外,为了形成传感器测量需要的气流,可在传感器中设置气流发生装置,例如,该气流发生装置可以选用迷你抽气扇,并将该迷你抽气扇固定在传感器1的出气口115处;或者该气流发生装置可以是导气管和抽气装置的组合,将该导气管的一端固定在出气口115处,另一端与抽气装置连接。
可选地,可以根据传感器内部的颗粒筛选器112所筛选的颗粒物的尺寸调整气流发生装置的抽气速度,从而调整待检测空气的流速,使进入颗粒筛选器的待检测空气具有特定的流速,实现筛选特定尺寸粒子的目的。
以上本公开所述的传感器及应用了该传感器的检测设备,由于相对于进气口和出气口对称地设置多个发光元件,以及多个光检测元件,使得传感器对待测空气形成的气流的检测不受传感器的倾斜等因素的影响。且由于取对称位置的多个检测输出的平均值作为最终检测结果,使得检测精度提高。可选地,当采用对称组的检测元件时,当其中一组元件损坏,另一组仍可继续工作,从而提高了检测设备的鲁棒性。
以下结合图4说明本公开实施例的传感器的制造方法。如图4所示,以硅基板作为形成所述传感器的上部分和下部分为例,所述方法包括:
在上部分上形成对应结构的步骤:以氧化硅薄膜为掩膜板,对硅基板进行刻蚀,得到形成在所述上部分的所述里侧的结构,以及贯穿的进气口和出气口;
在下部分上形成对应结构的步骤:以氧化硅薄膜为掩膜板,对沉积了金属薄膜的硅基板进行刻蚀,得到形成在所述下部分的所述里侧的结构,以及所需电路;
多个发光元件以及多个光检测元件固定步骤:分别将作为发光元件的光源芯片和作为光检测元件的光线探测器芯片固定到下部分的所述里侧;以及
上部分和下部分粘合步骤:将所述上部分的里侧面和下部分的里侧面对准,以实现将上部分和下部分固定在一起。
可选地,在上部分上形成对应结构的步骤中,在硅基板两侧图像化沉积氧化硅薄膜,并以该氧化硅薄膜为掩膜板,首先对上部分里侧面上的掩膜进行光刻,得到形成在所述上部分11的里侧的传感器结构,例如,多个光源腔、多个探测腔以及入射光准直器等结构;然后对上部分外侧面上的掩膜进行光刻,得到贯穿的进气口和出气口。
可选地,初始材料为双面抛光硅基板,清洗后,在该硅基板两侧沉积氧化硅薄膜,利用光刻技术对氧化硅薄膜进行图形化刻蚀。接下来,以该图像化的氧化硅薄膜做为掩模,对硅基板的连接面进行刻蚀,从而得到上部分11里侧的结构。接下来,再对硅基板非连接面进行光刻,得到贯穿的进气口111和出气口115。最后,去掉硅基板表面剩余的氧化硅薄膜,即得到所述传感器11的上部分的结构。可选地,还在硅基板表面沉积光学减反射膜,例如,氮化硅薄膜,以减少干扰反射光,提高该传感器的检测精度。
接下来描述形成下部分的步骤:在经过双面抛光的硅基板,对图像化沉积在其两侧的氧化硅薄膜进行光刻,并以该氧化硅薄膜为掩模材料对硅基板进行刻蚀,得到形成在所述下部分12的里侧的对应结构,例如,包括用于放置光检测元件的凹槽结构等。最后沉积金属薄膜,对金属薄膜进行光刻和刻蚀,形成所需电路及电极等。
可选地,初始材料为双面抛光硅基板,清洗后,在硅片两侧沉积氮化硅薄膜,对上表面的氮化硅薄膜进行光刻,以图形化的氮化硅薄膜作为掩模材料,对硅基板进行刻蚀,得到用于放置光检测元件的凹槽结构。接下来,去掉氮化硅薄膜。可选地,可在硅基板表面沉积光学减反射膜。最后在光学减反射膜表面沉积金属薄膜,例如,铝;对金属薄膜进行光刻和刻蚀,得到所需的电路和电极。本领域普通技术人员应该理解,本公开实施例的技术方案中,既可以将图像化的氮化硅薄膜作为掩膜材料,对硅基板进行刻蚀得到放置检测元件的凹槽结构,又可以作为光学反射膜,沉积在硅基板上,减少干扰反射光,提高传感器的检测精度。需要注意的是,不同用途中的氮化硅薄膜的厚度不同。在传感器的制造过程中,可根据实际需求在规定范围内灵活设定氮化硅薄膜的厚度。
在发光元件以及光检测元件固定步骤中:将作为发光元件的光源芯片和作 为光检测元件的光线探测器芯片通过,例如导电胶,固定到下部分的硅基板上,并利用,例如引线键合的方式,完成芯片和硅基板的电连接,当然,也可采用其他电连接方式,例如可以使用导电焊料替代导电胶。另外,可以选用无需引线键合的芯片,只需导电胶或焊料直接固定在硅基板上实现电连接,省略引线键合。
上部分和下部分固定连接步骤:将得到的上部分里侧面与下部分的里侧面对准,用胶粘剂将上部分里侧面和下部分里侧面粘结,从而实现上部分和下部分的固定连接。当然,也可以使用其他方法进行两部分之间的连接,如金-金键合等。
上述方法制造的传感器主体部分,尺寸为17mm*12mm,厚度仅为1mm。且由于所述传感器具有对称结构,从而使得制造方法简单,降低了对制造精度的要求,节约了制造成本。
需要说明的是,上述技术方案中的上部分、上部分里侧面、下部分和下部分里侧面并非对传感器构成部件的方位限定,而只是对传感器的不同部件进行命名的方式。显然,该上部分也可称为第一部分,下部分也可称为第二部分。以及上部分的里侧面也可称为第一部分的连接面,下部分的里侧面也可称为第二部分的连接面。该第一部分和第二部分通过第一部分的连接面和第二部分的连接面实现固定连接。
以上对本公开的传感器及包含该传感器的检测设备、以及所述传感器的制造方法进行了描述,然而本公开并不限于此。对于本领域的技术人员来说,本公开可以有各种更改和变化。
工业实用性
本公开实施例的用于检测空气中颗粒物的传感器,具有结构简单、易于制造,且体积小、功耗低、精度高的优点。

Claims (16)

  1. 一种用于检测空气中的颗粒物的传感器,包括:
    上部分,在该上部分的里侧上设置有颗粒筛选器,分别大致轴对称地设置有多个光源腔和多个探测腔,和形成在该上部分上的贯穿的、分别作为待测空气进入和出去的进气口和出气口;以及
    与上部分的里侧固定连接的下部分,该下部分的里侧形成有电路,以及在对应于所述光源腔和探测腔的范围内,在该下部分里侧分别大致轴对称地设置多个发光元件和多个光检测元件;
    其中所述轴为进气通孔中心与出气通孔中心的连线。
  2. 如权利要求1所述的传感器,其中,所述颗粒筛选器包括:
    第一通道,其为待测空气从进气口进入后首先经过的初始通道,经过所述第一通道的待测空气形成的气流获得一预定流速;
    第二通道,其为所述轴对称地形成在第一通道和所述多个探测腔之间的多个通道;以及
    第三通道,其为形成在第一通道与出气口之间的通道。
  3. 如权利要求1或2所述的传感器,还包括:
    入射光准直器,形成在对称轴同一侧的光源腔与探测腔之间,设置为对发光元件发出的光进行准直。
  4. 如权利要求3所述的传感器,还包括:
    气流发生装置,设置为在所述传感器内形成待测空气气流。
  5. 如权利要求1或2所述的传感器,其中,
    所述进气口的大小小于出气口大小,和/或
    所述传感器的上部分和下部分均由硅基板形成,和/或
    所述传感器的下部分的里侧形成有凹槽,所述光检测元件设置在所述凹槽中。
  6. 一种用于检测空气中的颗粒物的检测设备,包括:
    根据权利要求1-5任一项所述的传感器,以及
    驱动电路,设置为对多个光检测元件输出的信号进行运算,取多个光检测元件输出信号的平均值作为检测结果;或者
    取任一个光检测元件输出的信号作为检测结果。
  7. 如权利要求6所述的检测设备,还包括,
    显示装置,设置为显示所述检测结果。
  8. 如权利要求6或7所述的检测设备,其中,
    所述检测设备为可穿戴设备。
  9. 一种制造传感器的方法,包括:
    在上部分上形成结构的步骤:以氧化硅薄膜为掩膜,对硅基板进行刻蚀,得到形成在所述上部分的所述里侧的结构,以及贯穿的进气口和出气口;
    在下部分上形成结构的步骤:以氧化硅薄膜为掩膜,对沉积了金属薄膜的硅基板进行刻蚀,得到形成在所述下部分的所述里侧的结构,以及电路;
    多个发光元件以及多个光检测元件固定步骤:分别将作为发光元件的光源芯片和作为光检测元件的光线探测器芯片固定并电连接到下部分的所述里侧;以及
    上部分和下部分固定步骤:将所述上部分的里侧面和下部分的里侧面对准,以实现将两者固定连接在一起。
  10. 如权利要求9所述的方法,其中,
    所述以氧化硅薄膜为掩膜,对硅基板进行刻蚀包括:以氧化硅薄膜为掩膜,对图像化沉积在所述硅基板两侧的氧化硅薄膜进行刻蚀,和/或
    上部分和下部分固定连接步骤包括:通过胶粘剂或金-金键合将所述上部分和下部分粘合在一起,和/或
    形成下部分的步骤中,所述下部分里侧的结构包括用于放置所述光检测元件的凹槽,和/或
    发光元件以及光检测元件固定步骤包括,利用导电胶或导电焊料将所述发光元件和光检测元件固定并电连接到所述下部分里侧。
  11. 一种用于检测空气中的颗粒物的传感器,包括:
    第一部分,包括颗粒筛选器、多个光源腔、多个探测腔、进气通孔和出气通孔;以及
    第二部分,与所述第一部分固定连接,包括电路、多个发光元件和多个光检测元件;其中,
    所述第一部分和第二部分通过所述第一部分的连接面和第二部分的连接面固定连接;
    所述颗粒筛选器设置在所述第一部分的连接面内;
    所述电路、多个发光元件和多个光检测元件设置在所述第二部分的连接面上;
    所述多个发光元件用于发出光线,并与所述多个光源腔分别对应设置;
    所述多个光检测元件用于检测经过探测腔中的空气散射后的光线,并与多个探测腔分别对应设置;
    所述轴为进气通孔中心与出气通孔中心连线形成的轴。
  12. 如权利要求11所述的传感器,其中,所述颗粒筛选器包括:
    第一通道,其为待测空气从进气通孔进入后首先经过的初始通道,经过所述第一通道的待测空气形成的气流获得一预定流速;
    第二通道,其为所述轴对称地形成在第一通道和所述多个探测腔之间的多个通道;以及
    第三通道,其为形成在第一通道与出气通孔之间的通道。
  13. 如权利要求11或12所述的传感器,还包括:
    入射光准直器,形成在所述轴同侧的光源腔与探测腔之间,设置为对发光元件发出的光进行准直。
  14. 如权利要求13所述的传感器,还包括:
    气流发生装置,设置为在所述传感器内形成待测空气气流。
  15. 如权利要求11或12所述的传感器,其中,
    所述进气通孔的大小小于出气通孔大小,和/或
    所述传感器的第一部分和第二部分均由硅基板形成,和/或
    所述传感器的第二部分连接面上形成有凹槽,所述光检测元件设置在所述凹槽中。
  16. 如权利要求11-15任一项所述的传感器,其中,
    所述多个光源腔轴大致轴对称设置,多个探测腔轴大致轴对称设置。
PCT/CN2016/098988 2015-09-17 2016-09-14 用于检测空气中的颗粒物的传感器及其制造方法 WO2017045605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510595745.1A CN105136637B (zh) 2015-09-17 2015-09-17 用于检测空气中的颗粒物的传感器及其制造方法
CN201510595745.1 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017045605A1 true WO2017045605A1 (zh) 2017-03-23

Family

ID=54722067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098988 WO2017045605A1 (zh) 2015-09-17 2016-09-14 用于检测空气中的颗粒物的传感器及其制造方法

Country Status (2)

Country Link
CN (1) CN105136637B (zh)
WO (1) WO2017045605A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195728A (zh) * 2018-02-01 2018-06-22 山东诺方电子科技有限公司 一种基于多核颗粒物传感器技术的控制系统及其控制方法
CN110426330A (zh) * 2019-07-29 2019-11-08 中国农业大学 畜禽舍颗粒物浓度监测设备
CN111307679A (zh) * 2020-03-10 2020-06-19 淮阴师范学院 一种书库环境检测仪
CN113155710A (zh) * 2021-04-29 2021-07-23 山东交通学院 一种沥青拌合楼粗骨料形态质量检测系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136637B (zh) * 2015-09-17 2017-10-17 深圳代尔夫特电子科技有限公司 用于检测空气中的颗粒物的传感器及其制造方法
CN105520288A (zh) * 2016-01-29 2016-04-27 张银虎 具粉尘检测功能的智能手环
CN107305178B (zh) * 2016-04-20 2022-04-05 华邦电子股份有限公司 粒子感测装置、以及具有粒子感测装置的电子设备
US10094776B2 (en) * 2016-07-18 2018-10-09 Honeywell International Inc. Dust sensor with mass separation fluid channels and fan control
CN108562525A (zh) * 2018-06-15 2018-09-21 古盼 空气检测装置
CN108872029B (zh) * 2018-08-29 2021-06-15 杭州震弘环境科技有限公司 气体浊度处理节点
TWI677677B (zh) * 2018-09-27 2019-11-21 財團法人工業技術研究院 懸浮粒子感測裝置
CN109406355A (zh) * 2018-11-06 2019-03-01 深圳益杉创新科技有限公司 颗粒物检测装置
CN112577863A (zh) * 2019-09-27 2021-03-30 研能科技股份有限公司 气体检测模块

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966462A (en) * 1989-02-15 1990-10-30 The United States Of America As Represented By The United States Department Of Energy Series cell light extinction monitor
CN103439233A (zh) * 2013-08-30 2013-12-11 苏州奥德克光电有限公司 烟道粉尘浓度检测系统
CN103760076A (zh) * 2014-01-09 2014-04-30 中国人民解放军海军医学研究所 一种气溶胶监测报警仪及其检测方法
CN204044033U (zh) * 2014-07-24 2014-12-24 常州市武进区半导体照明应用技术研究院 用于检测空气中颗粒的装置以及包括该装置的可穿戴设备
CN104655533A (zh) * 2013-11-18 2015-05-27 中山欧麦克仪器设备有限公司 一种双通道颗粒物自动监测装置
CN104914026A (zh) * 2015-06-12 2015-09-16 艾欧史密斯(中国)热水器有限公司 粉尘浓度检测方法及粉尘浓度传感器
CN105136637A (zh) * 2015-09-17 2015-12-09 北京代尔夫特电子科技有限公司 用于检测空气中的颗粒物的传感器及其制造方法
CN205038126U (zh) * 2015-09-17 2016-02-17 北京代尔夫特电子科技有限公司 用于检测空气中的颗粒物的传感器及检测设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758401B2 (ja) * 2007-07-20 2011-08-31 株式会社日本自動車部品総合研究所 粒子濃度検出装置
CN101487786A (zh) * 2008-01-18 2009-07-22 南京理工大学 可吸入粉尘浓度测量传感器
EP3885743A1 (en) * 2008-06-10 2021-09-29 Xtralis Technologies Ltd Particle detection
CN103575624A (zh) * 2012-08-06 2014-02-12 金济远 光学粒子测量装置
CN103852405B (zh) * 2014-02-24 2016-11-16 深圳市芯通信息科技有限公司 一种分层式颗粒浓度测量装置及方法
CN103837451A (zh) * 2014-02-28 2014-06-04 苏州亿利安机电科技有限公司 一种用于在线监测粉尘浓度的粉尘传感器
CN104266948A (zh) * 2014-10-20 2015-01-07 崔海林 颗粒物传感器及颗粒物监测方法
CN104697912A (zh) * 2015-03-13 2015-06-10 上海钧谐电子科技有限公司 Pm2.5 检测器及其检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966462A (en) * 1989-02-15 1990-10-30 The United States Of America As Represented By The United States Department Of Energy Series cell light extinction monitor
CN103439233A (zh) * 2013-08-30 2013-12-11 苏州奥德克光电有限公司 烟道粉尘浓度检测系统
CN104655533A (zh) * 2013-11-18 2015-05-27 中山欧麦克仪器设备有限公司 一种双通道颗粒物自动监测装置
CN103760076A (zh) * 2014-01-09 2014-04-30 中国人民解放军海军医学研究所 一种气溶胶监测报警仪及其检测方法
CN204044033U (zh) * 2014-07-24 2014-12-24 常州市武进区半导体照明应用技术研究院 用于检测空气中颗粒的装置以及包括该装置的可穿戴设备
CN104914026A (zh) * 2015-06-12 2015-09-16 艾欧史密斯(中国)热水器有限公司 粉尘浓度检测方法及粉尘浓度传感器
CN105136637A (zh) * 2015-09-17 2015-12-09 北京代尔夫特电子科技有限公司 用于检测空气中的颗粒物的传感器及其制造方法
CN205038126U (zh) * 2015-09-17 2016-02-17 北京代尔夫特电子科技有限公司 用于检测空气中的颗粒物的传感器及检测设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195728A (zh) * 2018-02-01 2018-06-22 山东诺方电子科技有限公司 一种基于多核颗粒物传感器技术的控制系统及其控制方法
CN110426330A (zh) * 2019-07-29 2019-11-08 中国农业大学 畜禽舍颗粒物浓度监测设备
CN110426330B (zh) * 2019-07-29 2024-05-07 中国农业大学 畜禽舍颗粒物浓度监测设备
CN111307679A (zh) * 2020-03-10 2020-06-19 淮阴师范学院 一种书库环境检测仪
CN113155710A (zh) * 2021-04-29 2021-07-23 山东交通学院 一种沥青拌合楼粗骨料形态质量检测系统及方法
CN113155710B (zh) * 2021-04-29 2022-11-01 山东交通学院 一种沥青拌合楼粗骨料形态质量检测系统及方法

Also Published As

Publication number Publication date
CN105136637B (zh) 2017-10-17
CN105136637A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017045605A1 (zh) 用于检测空气中的颗粒物的传感器及其制造方法
TWI759400B (zh) 垂直腔表面發射雷射低發散角近接感測器
TWI439683B (zh) 光譜儀的可拆卸週邊裝置
US7525655B2 (en) Optical design of a particulate measurement system
US20070222984A1 (en) Optical Design of a Measurement System Having Mulitiple Sensor or Multiple Light Source Paths
AU2007230750A1 (en) Measurement of light from a predefined scatter angle from particulate matter in a media
US11255787B2 (en) Laminated fluorescent sensor comprising a sealable sensor housing and an optical sensing system
CN108426833A (zh) 一种基于盒形气室结构的全集成式红外气体传感器
CN106323823A (zh) 粒子测量装置
CN205038126U (zh) 用于检测空气中的颗粒物的传感器及检测设备
US11513050B2 (en) Particulate matter sensor
JP2018128323A (ja) 光学式ガスセンサおよびガス検知器
JP2007175415A (ja) 光学センサ及びそのセンサ部
WO2019244325A1 (ja) 粒子検出装置
US20070222985A1 (en) Dual Function Measurement System
JP2009300257A (ja) 測定用光学系
CN108872100A (zh) 一种多次增强光谱高精度氨气检测装置及检测方法
CN108318439A (zh) 一种基于椭圆形气室结构的全集成式红外气体传感器
CN108007921A (zh) 一种增强拉曼光谱信号的装置
CN209841624U (zh) 一种微型激光pm2.5浓度蓝牙传感器
EP2010889A2 (en) Self calibrating measurement system
WO2016082416A1 (zh) 一种回复反射测量装置
JP3638807B2 (ja) タバコ煙粒子計測装置
TWI687668B (zh) 氣體品質監測器
Sato et al. Integrated parallel flow cytometry device with time gated spads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845719

Country of ref document: EP

Kind code of ref document: A1