WO2017044577A1 - Systems and methods for graphene based layer transfer - Google Patents

Systems and methods for graphene based layer transfer Download PDF

Info

Publication number
WO2017044577A1
WO2017044577A1 PCT/US2016/050701 US2016050701W WO2017044577A1 WO 2017044577 A1 WO2017044577 A1 WO 2017044577A1 US 2016050701 W US2016050701 W US 2016050701W WO 2017044577 A1 WO2017044577 A1 WO 2017044577A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphene
substrate
graphene layer
crystalline
Prior art date
Application number
PCT/US2016/050701
Other languages
French (fr)
Inventor
Jeehwan Kim
Original Assignee
Massachusetts Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute Of Technology filed Critical Massachusetts Institute Of Technology
Priority to KR1020187010014A priority Critical patent/KR20180051602A/en
Priority to EP16845018.7A priority patent/EP3347914A4/en
Priority to EP22179687.3A priority patent/EP4105966A3/en
Priority to JP2018512205A priority patent/JP6938468B2/en
Priority to CN201680059078.8A priority patent/CN108140552A/en
Publication of WO2017044577A1 publication Critical patent/WO2017044577A1/en
Priority to US15/914,295 priority patent/US10770289B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02642Mask materials other than SiO2 or SiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • devices are usually fabricated from functional semiconductors, such as III-N semiconductors, III-V semiconductors, II- VI semiconductors, and Ge.
  • the lattice constants of these functional semiconductors typically do not match the lattice constants of silicon substrates.
  • lattice constant mismatch between a substrate and an epitaxial layer on the substrate can introduce strain into the epitaxial layer, thereby preventing epitaxial growth of thicker layers without defects. Therefore, non-silicon substrates are usually employed as seeds for epitaxial growth of most functional semiconductors.
  • non-Si substrates with lattice constants matching those of functional materials can be costly and therefore limit the development of non-Si electronic/photonic devices.
  • One method to address the high cost of non-silicon substrates is the "layer-transfer” technique, in which functional device layers are grown on lattice-matched substrates and then removed and transferred to other substrates. The remaining lattice-matched substrates can then be reused to fabricate another device layer, thereby reducing the cost.
  • a layer-transfer method it can be desirable for a layer-transfer method to have the following properties: 1) substrate reusability; 2) a minimal substrate refurbishment step after the layer release; 3) a fast release rate; and 4) precise control of release thickness.
  • the chemical lift-off technique can be used for lifting off devices layers made of III-V semiconductors from GaAs wafers.
  • a sacrificial layer of AlAs is usually epitaxially inserted between the device layer and the substrate.
  • Chemical lift-off technique selectively etches the sacrificial layer in a wet-chemical solution to release the device layers.
  • the optical lift-off technique usually uses a high-power laser to irradiate the back of the lattice-matched substrate (e.g., a transparent sapphire or SiC substrate) and selectively heat the device-substrate interface, causing decomposition of the interface and release of the device layer (e.g., III-N film).
  • This technique can reduce the cost of manufacturing III-N-based light emitting diodes (LEDs) and address the problem of heat accumulation from the device by transferring released III-Ns to a substrate that has high thermal conductivity.
  • optical lift-off has its own limitations.
  • Controlled spalling can have a higher throughput than optical lift-off.
  • high-stress films also referred to as "stressors"
  • stressors are deposited on the epitaxial film, inducing fracture below the epilayers and resulting in the separation of active materials from the substrate.
  • a Kn shear mode can initiate a crack and a Ki opening mode can allow the propagation of the crack parallel to the interface between the epilayer and the substrate.
  • strain energy sufficient to reach the critical Ki can be provided, leading to fracture of the film/substrate interface. Because the exfoliation occurs via crack propagation, the spalling process can cause rapid release of films.
  • controlled spalling is not mature enough to be used for commercial manufacturing for at least the following reasons.
  • the critical Ni thickness under 1 GPa tensile stress to initiate spalling of a GaAs film is about 1.5 /mi, which can induce spalling of the GaAs film itself if the GaAs is about 10 /mi thick.
  • Embodiments of the present invention include apparatus, systems, and methods for nanofabrication.
  • a method of manufacturing a semiconductor device includes forming a graphene layer on a first substrate and transferring the graphene layer from the first substrate to a second substrate. The method also includes forming a single-crystalline film on the graphene layer.
  • a method of semiconductor processing includes forming a graphene monolayer on a silicon carbide substrate and transferring the graphene monolayer from the silicon carbide substrate to a semiconductor substrate.
  • the method also includes forming a plurality of holes in the graphene monolayer and forming a first single-crystalline layer of semiconductor material on the graphene monolayer.
  • the semiconductor substrate acts as a seed for the first single-crystalline layer of semiconductor material.
  • the method also includes removing the first single-crystalline layer of semiconductor material from the graphene monolayer and forming a second single-crystalline layer of semiconductor material on the graphene monolayer.
  • the semiconductor substrate acts as a seed for the second single- crystalline layer of semiconductor material.
  • the method further includes removing the second single-crystalline layer of semiconductor material from the graphene monolayer.
  • a method of semiconductor processing includes forming a graphene layer on a first substrate and transferring the graphene layer from the first substrate to a second substrate. The method also includes depositing a semiconductor layer on the graphene layer and depositing a stressor layer on the semiconductor layer. The stressor layer causes propagation of a crack between the semiconductor layer and the graphene layer. The method further includes disposing a flexible tape on the stressor layer and pulling the semiconductor layer and the stressor layer off the graphene layer with the flexible tape.
  • FIGS. 1 A-ID illustrate a method of fabricating a semiconductor device using a graphene-based layer transfer process.
  • FIG. 2 is a graph showing materials that can be used to fabricate devices using the graphene-based technique illustrated in FIGS. 1 A-ID, as well as the lattice constant and lattice mismatch of these materials.
  • FIGS. 3 A-3F illustrate a method of graphene-based layer fabrication and transfer using a stressor layer and tape.
  • FIG. 4A-4B show the effects of graphene layer thickness and the underlying substrates on the growth of device layers on the graphene layer.
  • FIGS. 5A-5E illustrate a method of graphene-based layer transfer using a thin graphene layer.
  • FIG. 6A shows high-resolution X-ray diffraction (HRXRD) scans of GaN grown on graphene disposed on Si0 2 substrate.
  • FIG. 6B shows HRXRD scans of GaN grown on graphene disposed on SiC substrate.
  • FIGS. 7A-7C illustrate three configurations of graphene-based fabrication techniques using graphene layers of different thicknesses.
  • FIGS. 8A-8H illustrate a method of graphene-based layer fabrication and transfer using porous graphene, corresponding to the configuration shown in FIG. 7C.
  • FIGS. 9 A and 9B are scanning electron microscope (SEM) images of Ge and GaAs epilayers, respectively, grown on damaged graphene.
  • FIGS. 10A and 10B are SEM images of the Ge and GaAs epilayers shown in FIGS. 9 A and 9B, respectively, after release from the substrate.
  • FIGS. 11 A-l 1H illustrate a method of fabricating light emitting diodes using a graphene-based layer fabrication and transfer technique.
  • FIGS. 12A-12G illustrate a method of fabricating GaAs solar cells using a graphene- based layer fabrication and transfer technique.
  • FIGS. 13A-13E illustrate a method of fabrication multi -junction solar cells using a graphene-based layer fabrication and transfer technique.
  • FIGS. 14A-14C illustrate a method of fabrication transistors using a graphene-based layer fabrication and transfer technique.
  • FIGS. 15A-15F illustrate a method of hetero-integration using a graphene-based layer fabrication and transfer technique.
  • FIGS. 16A-16F illustrate a method of preparing a platform for fabricating III-V devices using a graphene-based layer fabrication and transfer technique.
  • a layer-transfer process it can be desirable for a layer-transfer process to have substrate reusability, minimal needs for post-release treatment, a fast release rate, precise control of release interfaces, and universality for a wide range of device materials.
  • Conventional layer-transfer processes may exhibit some of the desired properties. For example, layer release is much faster for mechanical lift-off than for chemical or optical lift-off, whereas the release location can be better controlled in chemical and optical lift-off.
  • conventional layer-transfer methods suffer from rough surface formation after layer release, thereby limiting substrate reusability. In fact, the process cost to refurbish the substrate surface in conventional layer-transfer methods typically exceeds the substrate cost, so practical applications in manufacturing can be
  • each conventional method usually works for a limited number of specific materials (e.g., chemical lift-off for III-V materials, whose lattice is close to that of GaAs, and optical lift-off for materials that can be grown on transparent substrates). Therefore, it is also challenging to make universal use of these methods.
  • GBLT graphene-based layer transfer
  • graphene serves as a reusable and universal platform for growing device layers and also serves a release layer that allows fast, precise, and repeatable release at the graphene surface.
  • GBLT has several advantages. First, because graphene is a crystalline film, it is a suitable substrate for growing epitaxial over-layers. Second, graphene' s weak interaction with other materials can substantially relax the lattice mismatching rule for epitaxial growth, potentially permitting the growth of most semiconducting films with low defect densities.
  • the epilayer (e.g., functional devices) grown on a graphene substrate can be easily and precisely released from the substrate owing to graphene' s weak van der Waals interactions, which permits rapid mechanical release of epilayers without post-release reconditioning of the released surface.
  • graphene' s mechanical robustness can maximize its reusability for multiple growth/release cycles.
  • FIGS. 1 A-1D illustrate a method 100 of fabricating a device layer using graphene as a platform.
  • a graphene layer 120 is fabricated on a first substrate 110, such as a Si substrate, SiC substrate, or copper foil.
  • the fabricated graphene layer 120 is then removed from the first substrate 110 as shown in FIG. IB.
  • the removed graphene layer 120 is then disposed on a second substrate 130, such as a Ge substrate, as shown in FIG. 1C.
  • FIG. ID shows that an epilayer 140 (e.g., a single crystalline film to have high electrical and optical device performance) is then fabricated on the graphene layer 120.
  • the epilayer 140 is also referred to as a device layer or a functional layer in this application.
  • the graphene layer 120 can be fabricated on the first substrate 110 via various methods
  • the graphene layer 120 can include an epitaxial graphene with a single- crystalline orientation and the substrate 110 can include a (0001) 4H-SiC wafer with a silicon surface.
  • the fabrication of the graphene layer 120 can include multistep annealing steps.
  • a first annealing step can be performed in H 2 gas for surface etching and vicinalization, and a second annealing step can be performed in Ar for graphitization at high temperature (e.g., about 1,575 °C).
  • the graphene layer 120 can be grown on the first substrate 110 via a chemical vapor deposition (CVD) process.
  • the substrate 110 can include a nickel substrate or a copper substrate.
  • the substrate 100 can include an insulating substrate of Si0 2 , Hf0 2 , A1 2 0 3 , Si 3 N 4 , and practically any other high temperature compatible planar material by CVD.
  • the firs substrate 110 can be any substrate that can hold the graphene layer 120 and the fabrication can include a mechanical exfoliation process.
  • the first substrate 110 can function as a temporary holder for the graphene layer 120.
  • a carrier film can be attached to the graphene layer 120.
  • the carrier film can include a thick film of Poly(methyl methacrylate) (PMMA) or a thermal release tape and the attachment can be achieved via a spin-coating process.
  • PMMA Poly(methyl methacrylate)
  • the carrier film can be dissolved (e.g., in acetone) for further fabrication of the epilayer 140 on the graphene layer 120.
  • a stamp layer including an elastomeric material such as
  • PDMS polydimethylsiloxane
  • a self-release transfer method can be used to transfer the graphene layer 120 to the second substrate 130.
  • a self-release layer is first spun- cast over the graphene layer 120.
  • An elastomeric stamp is then placed in conformal contact with the self-release layer.
  • the first substrate 110 can be etched away to leave the combination of the stamp layer, the self-release layer, and the graphene layer. After this combination is placed on the second substrate 130, the stamp layer can be removed mechanically and the self-release layer can be dissolved under mild conditions in a suitable solvent.
  • the release layer can include polystyrene (PS), poly(isobutylene) (PIB) and Teflon AF (poly [4,5 -difluoro-2,2- bis(trifluoromethyl)-l,3-dioxole-co-tetrafluoroethylene]).
  • PS polystyrene
  • PIB poly(isobutylene)
  • Teflon AF poly [4,5 -difluoro-2,2- bis(trifluoromethyl)-l,3-dioxole-co-tetrafluoroethylene]
  • the epilayer 140 can include a III-V semiconductor, Si, Ge, III-N semiconductor, SiC, SiGe, and II- VI semiconductors, among others.
  • the lattice of the second substrate 130 is matched to the epilayer 140, in which case the second substrate 130 functions as the seed for the growth of the epilayer 140 if the graphene layer 120 is porous or thin enough (e.g., if the graphene layer 120 is one layer thick). Sandwiching the graphene layer 120 between the second substrate 130 and the epilayer 140 can facilitate quick and damage-free release and transfer of the epilayer 140.
  • the graphene layer 120 can be thick enough (e.g., several layers thick) to function as a seed to grow the epilayer 140, in which case the epilayer 140 can be latticed-matched to the graphene layer 120.
  • This example also allows repeated use of the second substrate 130.
  • the second substrate 130 together with the graphene layer 120 can function as the seed to grow the epilayer 140.
  • Using graphene as the seed to fabricate the epilayer 140 can also increase the tolerance over mismatch of lattice constant between the epilayer material and graphene.
  • (2D) materials e.g., graphene
  • quasi-2D layered crystals typically have no dangling bonds and interact with material above them via weak van der Waals like forces. Due to the weak interaction, an epilayer can grow from the beginning with its own lattice constant forming an interface with a small amount of defects. This kind of growth can be referred to as
  • VDWE Van Der Waals Epitaxy
  • VDWE VDWE
  • the lattice mismatch can be about 0% to about 70% (e.g., about 0%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, and about 70%, including any values and sub ranges in between).
  • the epilayer 140 includes a 2D material system. In another example, the epilayer 140 includes a 3D material system. The flexibility to fabricate both 2D and 3D material systems allows fabrication of a wide range of optical, opto-electronic, and photonic devices known in the art.
  • FIG. 2 is a graph showing materials that can be deposited on the graphene layer 120 to form the epilayer 140.
  • FIG. 2 also shows the lattice constants of these materials and the mismatch of of these lattice constants with respect to graphene. These materials include SiC, A1N, GaN, InN, GaP, A1P, Silicon, AlAs, Ge, GaAs, and InP. These materials listed on FIG. 2 are for illustrative purposes only. In practice, other materials with similar lattice mismatches with respect to graphene can also be used to form the epilayer 140.
  • the fabrication of the epilayer 140 can be carried out using semiconductor fabrication technique known in the art. For example, low-pressure Metal-Organic Chemical Vapor
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the epilayer 140 e.g., a GaN film
  • the graphene layer 120 and the second substrate 130 can be baked (e.g., under H 2 for >15 min at > 1,100 °C) to clean the surface.
  • the deposition of the epilayer 140 including GaN can be performed at, for example, 200 mbar.
  • Trimethylgallium, ammonia, and hydrogen can be used as the Ga source, nitrogen source, and carrier gas, respectively.
  • a modified two-step growth can be employed to obtain flat GaN epitaxial films on the epitaxial graphene 120.
  • the first step can be carried out at a growth temperature of 1, 100 °C for few minutes where guided nucleation at terrace edges can be promoted.
  • the second growth step can be carried out at an elevated temperature of 1,250 °C to promote the lateral growth.
  • Vertical GaN growth rate in this case can be around 20 nm per min.
  • FIGS. 3 A-3F illustrate a method 300 of graphene-based layer transfer.
  • FIG. 3 A shows that a graphene layer 320 is formed or disposed on a donor wafer 310, which may be a single- crystalline wafer.
  • the graphene layer 320 can include epitaxial graphene grown on the donor wafer 310 as known in the art.
  • the graphene layer 320 can be exfoliated and transferred to the donor wafer 310 from another wafer (not shown).
  • any of the graphene transfer techniques described above with reference with FIGS. 1 A-1D can be used here to prepare the graphene layer 320 disposed on the donor wafer 320.
  • FIG. 3B shows that an epilayer 330 is epitaxially grown on the graphene layer 320.
  • the epilayer 330 can include an electronic layer, a photonic layer, or any other functional device layer.
  • Methods to fabricate the epilayer 330 can include any methods and techniques described above with respect to FIGS. 1 A-1D.
  • FIG. 3C shows that a stressor 340 is disposed on the epilayer 330.
  • the stressor 330 can include a high-stress metal film such as a Ni film.
  • the Ni stressor can be deposited in an evaporator at a vacuum level of 1 ⁇ 10 "5 Torr.
  • FIG. 3D shows that a tape layer 350 is disposed on the stressor 340 for handling the stressor 340.
  • Using the tape 350 and the stressor 340 can mechanically exfoliate the epilayer 330 from the graphene layer 320 at a fast release rate by applying high strain energy to the interface between the epilayer 330 and the graphene layer 320.
  • the release rate can be fast at least due to the weak van der Waals bonding between graphene and other materials such as the epilayer 330.
  • the released epilayer 330, together with the stressor 340 and the tape layer 350 are disposed on a host wafer 360.
  • the tape 340 and the stressor 340 are removed, leaving the epilayer 330 for further processing such as forming more sophisticated devices or depositing additional materials on the epilayer 330.
  • the tape layer 350 and the stressor 340 can be etched away by a FeC -based solution.
  • the remaining donor wafer 310 and the graphene layer 320 can be reused for next cycle of epilayer fabrication.
  • the graphene layer 320 can also be released.
  • a new graphene layer can be disposed on the donor wafer 310 before next cycle of epilayer fabrication.
  • the graphene layer 320 protects the donor wafer 310 from damage, thereby allowing multiple uses and reducing cost.
  • CMP chemical-mechanical planarization
  • GBLT can increase or maximize reusability because it creates an atomically smooth release surface.
  • layer release can occur precisely at the interface between the epilayer 330 and the graphene layer 320 because graphene' s weak van der Waals force does not permit strong bonding to adjacent materials. This allows the graphene layer 320 to be reused for multiple growth/exfoliation cycles without the need for a polishing step and without damaging the graphene, due to its mechanical robustness.
  • GBLT can ensure a fast release rate and universal application for different materials. Because the epilayer 330 is mechanically released from the weak graphene surface, the layer release rate in GBLT can be high. Whereas conventional layer-transfer methods are limited to specific materials, GBLT can be universally applied because VDWE can overcome extremely high lattice mismatch and most semiconductor films can be epitaxially grown on graphene.
  • the devices made of the epilayer 330 can have higher electron or hole mobility.
  • AN optoelectronic device made of the epilayer 330 can also have an enhanced optical response.
  • the material of the stressor 340 it can be desirable for the material of the stressor 340 to provide enough strain energy to the
  • epilayer/graphene interfaces to promote damage-free exfoliation/transfer.
  • One concern for the mechanical release process can be the bending of epilayer 330 during exfoliation and self- exfoliation during deposition of the stressor 340. If the radius of curvature is reduced during exfoliation, strain energy can increase in the epilayer 330. When the strain energy reaches a critical point, cracks can form. Also, if strain energy in the stressor exceeds the
  • the epilayer 330 may be delaminated during stressor deposition.
  • the transfer of epilayers on graphene can be performed by a feedback loop control.
  • any covalently -bonded substrate surface immediately below the graphene may affect the epitaxial growth of the device layer by, for example, altering the crystalline orientation of the device layer. Therefore, it can be beneficial to understand the effect of the underlying substrate on the growth of the device layer so as to, for example, reduce defect density on the device layer as well as to control the properties such as crystalline orientation of the device layer.
  • FIGS. 4A-4B show schematics of graphene-based fabrication systems to illustrate the effect of underlying substrates on the growth of device layers.
  • FIG. 4A shows a system 401 including a substrate 41 1 and a graphene layer 421 disposed on the substrate 411.
  • a device layer 431 is fabricated on the graphene layer 421.
  • the substrate 411 has a potential field 441 (e.g., via van De Waals force or other atomic or molecular forces) indicated by arrows in FIG. 4A.
  • the graphene layer 421 includes only a single monolayer of graphene (i.e., the graphene layer 421 is one atom thick) and the potential field 441 reaches beyond the graphene layer 421 and can interact with the device layer 431.
  • the potential field 441 which depends on the material properties (such as crystalline orientation) of the substrate 411, can affect the growth of the device layer 431.
  • the graphene layer 421 also has its own potential field (not shown in FIG. 4A), which may similarly influence the growth of the device layer 431.
  • the net result can be that the device layer 431 includes films 43 la and 43 lb having two different orientations such as (100) and (111) orientations.
  • the substrate force can be strong enough to overcome graphene field, in which case single-crystalline films that resembles substrates can be grown.
  • FIG. 4B shows a system 402 including a substrate 412 and a graphene layer 422 disposed on the substrate 412.
  • a device layer 432 is fabricated on the graphene layer 422.
  • the substrate 412 has a potential field 442 indicated by arrows in FIG. 4B.
  • the graphene layer 422 in FIG. 4B includes multiple stacks of monolayer graphene (i.e., the graphene layer 422 is more than one atom thick). Accordingly, the potential field 442 may interact only with the graphene layer 422 and may not reach the device layer 432. In other words, the VDWE of the device layer 432 occurs outside the potential field 442 of the substrate 412. In this case, the potential field of the graphene layer 422 affects the growth of the device layer 432.
  • FIGS. 4A-4B illustrate that the effect of the substrates (e.g., 411 and 412) on the growth of the device layers (e.g., 431 and 432) depend on the distance between them.
  • the thickness of the graphene layers (e.g., 421 and 422) sandwiched between the substrates and the device layers determines the interaction strength.
  • the underlying substrates may not have any effect on the epitaxial growth of the device layers.
  • This critical distance can be verified using high-resolution X-ray diffraction (HRXRD) to monitor the crystalline orientation of the epilayer as a function of graphene thicknesses, because the epilayer can resemble the graphene lattice beyond the critical distance.
  • HRXRD high-resolution X-ray diffraction
  • FIGS. 5A-5E illustrate a method 500 of graphene-based layer transfer using thin graphene layers.
  • a donor wafer 510a is provided to grow a graphene layer 520 (shown in FIG. 5B).
  • FIG. 5B shows that the graphene layer 520 is then transferred to a second wafer 510b, which can include III-N semiconductors, II-IV semiconductors, III-V
  • a film 530 is grown epitaxially above the graphene layer 520. Since the graphene layer 520 is sufficiently thin in this case, the growth of the film 530 is seeded by the second wafer 510b underneath the graphene layer 520.
  • a stressor 540 is deposited on the film 530 to facilitate subsequent layer transfer.
  • the stressor 540 can include high stress metal materials such as nickel.
  • a tape layer 550 is disposed on the stressor 540 so as to handle the stressor 540 for releasing the film 530 from the graphene layer 520 and the second wafer 510b.
  • the graphene layer 520 is thin enough and the graphene seeding effect can disappear while substrate seeding effect is strong. In this manner, one can make any releasable films via the method 500.
  • FIGS. 6A-6B show variations of cry stall ographic orientation of epilayers grown on graphene using different underlying substrates.
  • FIG. 6A shows ⁇ - 2 ⁇ scans in HRXRD of GaN on graphene/Si0 2 (graphene on Si0 2 substrate).
  • FIG. 6B shows ⁇ - 2 ⁇ scans of GaN on graphene/SiC (graphene on SiC substrate).
  • the epitaxial graphene as used in FIG. 6A can be exfoliated from the SiC and then transferred to amorphous Si0 2 -coated Si substrates. Then GaN can be grown on the substrate.
  • the HRXRD ⁇ - 2 ⁇ scan reveals that the GaN film grown on epitaxial graphene on top of Si0 2 is (0002)- textured polycrystalline, while the GaN film grown on epitaxial graphene on top of SiC has a single (0002) orientation (see FIG. 6A and FIG. 6B).
  • the material (or the crystalline orientation) of the substrate can be employed to control the epitaxial orientation of the device layer.
  • the epitaxial registry In practical applications of graphene-based layer fabrication and transfer, it can be beneficial for the epitaxial registry to be tunable to either the graphene or the substrate so as to obtain high-quality single-crystalline films on graphene.
  • direct epitaxy on the graphene or remote epitaxy seeded from the substrate can be achieved.
  • graphene plays a role as a seed as well as a release layer.
  • remote epitaxy seeded from the substrate graphene becomes a release layer only, while the substrate works as a seed.
  • FIGS. 7A-7C show schematics of three different types of graphene-based layer fabrication systems using graphene layers of different thicknesses. In applications, users can choose to use one of these systems based on the desired interaction strength between the device layer and the underlying substrate, or alternatively depending on the desired interaction strength between the device layer and the graphene. These three options can provide great flexibility to accommodate different fabrication tasks.
  • FIG. 7A shows a system 701 (also referred to as Type I system) including a substrate
  • both the graphene layer 721 and the substrate 711 interact with the epilayer 731, as indicated by the arrows in FIG. 7 A.
  • the epitaxial graphene 721 (e.g., a monolayer graphene) can be grown on a SiC substrate for use in a type I system.
  • a SiC substrate for use in a type I system.
  • This substrate can be employed for growing single-crystalline wurtzite III-N (or SiC) films since the lattice mismatch between III-N semiconductors and graphene is small.
  • This epitaxial graphene/SiC substrate can also be used to grow (111) cubic III-V, Si, and Ge films because both graphene and SiC become seeds for the (111) orientation.
  • the substrate 711 includes germanium (Ge) to epitaxially grow the graphene layer 721.
  • the lattice mismatch between Ge and other cubic materials is typically smaller than the lattice mismatch between SiC and the cubic materials.
  • the graphene layer 721 can be grown on the Ge substrate 711 via MOCVD techniques.
  • graphene can be directly grown on other semiconductor wafers such as GaAs InP, and GaN.
  • FIG. 7B shows a system 702 (also referred to as Type II system) including a substrate
  • the thickness of the graphene layer 722 is substantially equal to or larger than the critical distance of interaction between the substrate 712 and the epilayer 732. Therefore, the epilayer 732 only interacts with the epitaxial graphene 722, which provides pure VDWE.
  • This Type II system can be suitable to grow III-N semiconductor films or SiC single-crystalline films because its lattice mismatch to graphene is not substantially high. Copper foils can be used to fabricate poly-crystalline graphene of large sizes (e.g., greater than 8", greater than 12", or more).
  • FIG. 7C shows a system 703 (also referred to as Type III system) including a substrate
  • the graphene layer 723 works only as a release layer and epitaxial growth is seeded only from the substrate 713.
  • Substrate materials with the same or a similar lattice to the epilayer 733 can be used.
  • the graphene layer 723 does not participate in determining the crystalline orientation of the epilayer 733. Accordingly, the graphene layer 723 can include either single-crystalline graphene or polycrystalline graphene.
  • the Type III system assigns registry of the epilayer 733 to the substrate.
  • One advantage of this configuration is that high-quality epilayers can be grown on lattice-matching substrates just like in homoepitaxy, while the epilayers can be released from the graphene surface.
  • the substrate has polarity such as III-V substrates, III-N substrates, II- V substrates, and/or Ionic bonded substrate (e.g., Oxide, perovskite), pristine graphene can be transferred onto the wafer and epilayer can have the same crystallinity as that of the wafer and the grown film can be ready to be exfoliated.
  • the substrate can have no polarity (e.g., group IV), damaging graphene can help promote substrate/epilayer interaction.
  • FIGS. 8A-8H illustrate a method 800 of graphene-based layer fabrication and transfer using graphene with periodic holes, which is referred to as porous graphene hereafter.
  • the method 800 can be implemented with the Type III system, in which the graphene functions as a release layer and the substrate seeds the epitaxial growth of one or more functional layers.
  • a graphene layer 820 is disposed on a substrate 810.
  • the graphene layer 820 can be grown on the substrate 810 via, for example, chemical vapor deposition.
  • the graphene layer 820 can be transferred to the substrate 810.
  • a porous film 830 e.g., oxide, nitride, or photoresist film
  • the porous film 830 has a high density of pinholes (e.g., about one hole per square micron).
  • the porous film 830 can include any film with holes to allow subsequent processing shown in FIGS. 8C-8H.
  • FIG. 8C dry etching using Ar plasma or 0 2 plasma is carried out to open up the pinholes in the porous film 830.
  • This etching creates a plurality of holes 835 in the porous film 830, allowing the ions in the etching plasma to transmit through the porous film 830 and arrive at the graphene layer 820.
  • the etching plasma then etches the portion of the graphene layer 820 directly underneath the pinholes 835 in the porous film 830. Ions in the etching plasma can damage the graphene layer 820 by creating a plurality of holes 825 in the graphene layer 820, which now becomes a porous graphene layer 820.
  • the etching of the porous film 830 and the etching of the graphene layer 820 can be achived with the same etching plasma. In another example, the etching of the porous film 830 and the etching of the graphene layer 820 can be achieved with different etching plasmas.
  • the porous film 830 is removed, leaving the now-porous graphene layer 820 exposed to further processing.
  • the porous film 830 includes photoresist material and can be removed by acetone.
  • the porous film 830 includes oxide or nitride and can be removed by hydrogen fluoride (HF).
  • FIG. 8E also shows that an epilayer 840 is grown on the porous graphene layer 820. The growth starts from the area where the holes 825 were created. The holes 825 allow direction interaction of the substrate 810 with the epilayer 840, thereby allowing the substrate 810 to guide the crystalline orientation of the epilayer 840. The growth of the epilayer 840 then extends to cover the entire graphene layer 820, forming a planar epilayer 840.
  • the formed epilayer 840 is released from the graphene layer 820 and the substrate 810.
  • the released epilayer 840 is transferred to a target substrate 850, as shown in FIG. 8H, for further processing, such as forming a functional device.
  • the graphene layer 820 and the substrate 810, after the release of the epilayer 840 shown in FIG. 8G, is then reused to fabricate another epilayer, and the cycle can be repeated multiple times.
  • FIGS. 9 A and 9B are scanning electron microscopy (SEM) images of the Ge and GaAs films, respectively, grown on damaged graphene. Although pits appear on the surface due to limited nucleation on the graphene and incomplete impingement of the growth fronts, planar (100) crystals completely seeded from the substrate are observed.
  • FIGS. 10A and 10B are SEM images of the Ge and GaAs films shown in FIG. 9 A and 9B, respectively, after being exfoliated using a Ni stressor.
  • the smooth exfoliated surface implies precise release of the layer from the graphene, and this is confirmed by observing the trace of graphene-like wrinkles during wet transfer.
  • This porous graphene approach as illustrated in FIGS. 8A-8H and experimentally investigated in FIGS. 9A-9B and FIGS. 10A-10B can be applied to several other material systems.
  • InP films can be fabricated on damaged graphene disposed on InP wafers.
  • Si films can be grown on damaged graphene disposed on Si wafers.
  • GaN films can be grown on damaged graphene disposed on GaN wafers. The epitaxial registry of the epilayer can be tuned to the substrate to secure successful epitaxial growth through the graphene onto the substrate.
  • the graphene-based layer fabrication and transfer technique can be used to fabricate various functional devices based on the epilayers grown on graphene.
  • III-N high electron mobility transistors HEMTs
  • the transistors can then be transferred to a polycrystalline diamond substrate for heat dissipation.
  • GaN power devices can also be constructed from these films.
  • flexible GaAs solar cells can be fabricated from III-V epilayers.
  • Optoelectronic devices integrated with Si integrated circuits can also be constructed from III-V epilayers.
  • Ge- based LEDs and photodetectors can be fabricated by growing IV epilayers on graphene, exfoliating them, stretching the freestanding Ge to tensile-strained Ge, and transferring them to Si integrated circuits.
  • Ge can be grown on 12" Si wafer and then used as a seed to grow single-crystalline graphene. Then III-V optoelectronic materials can be grown on graphene on Ge/Si wafers without any dislocations.
  • FIGS. 11 A-l 1H illustrate a method 1100 of fabricating light emitting diodes (LEDs) using graphene-based layer transfer techniques described above.
  • a graphene layer 1120 is grown on a substrate 1110 (e.g., a 6" SiC substrate). Then the graphene layer 1120 is released from the substrate 1110, as shown in FIG. 1 IB, and transferred to a target substrate 1130, as shown in FIG. 11C.
  • the target substrate 1130 can be less expensive than, for example, the SiC wafer used in FIG. 11 A.
  • an LED stack 1140 (e.g., a visible LED stack) is fabricated on the graphene layer 1120.
  • the LED stack 1140 includes three periods of Ill-nitride multi-quantum wells (InGaN well and GaN barrier) sandwiched between p-GaN and n-GaN layers.
  • Ill-nitride multi-quantum wells InGaN well and GaN barrier
  • other types of LED stacks can also be grown on the graphene layer 1120.
  • the fabricated LED stack 1140 can then be processed in at least two ways.
  • an electrode 1150 can be deposited on the LED stack 1140 to form an electrical contact.
  • thin Ni/Au 5 nm/5 nm
  • the LED stack 1140 may be removed from the substrate 1130.
  • a stressor layer 1160 is disposed on the LED stack 1140 to release the LED stack 1140 from the target substrate 1130 and the graphene 1120.
  • the combination of stressor layer 1160 and the LED stack 1140 is flipped and placed on a second target substrate 1135, as shown in FIG. 11G.
  • the stressor layer 1160 is in contact with the second target substrate 1135 and the LED stack 1140 is exposed for further processing.
  • FIG. 11G shows that LED mesas 1145 are etched from the LED stack 1140.
  • additional electrical contacts 1170 are integrated with the LED mesas 1145 and the stressor layer 1160.
  • the graphene layer 1120 can seed the growth of the LED stack 1140 and the target substrate 1130 may not have any effect on the growth of the LED stack 1140.
  • type III seeding e.g., illustrated in FIG. 7C
  • the graphene layer 1120 can be thin and the target substrate 1130 can seed the growth of the LED stack 1140.
  • the target substrate 1130 can include GaN substrates.
  • FIGS. 12A-12G illustrate a method 1200 of fabricating GaAs solar cells using graphene-based layer transfer technique.
  • a graphene layer 1220 e.g. a single- crystalline graphene layer
  • a substrate 1210 e.g., a 6" SiC wafer
  • the graphene layer 1220 is transferred to a target substrate 1230 as seen in FIG. 12B.
  • FIG. 12C shows that a GaAs solar cell 1240 is fabricated on the graphene layer 1220 via, for example, epitaxial growth techniques known in the art.
  • FIG. 12D shows that a stressor layer 1250 is then deposited on the solar cell 1240 to facilitate subsequent device transfer.
  • a tape layer 1260 is disposed on the stressor 1250 to help handle the device transfer as seen in FIG. 12E.
  • the solar cell 1240 After release from the target substrate 1230, the solar cell 1240 becomes free standing and can be processed in two ways. In one way, as illustrated in FIG. 12F, the solar cell 1240 can be placed on metal 1240 for subsequent module fabrication. The solar cell 1240 can be placed on the metal 1240 via direct bonding or any other techniques known in the art. Alternatively, as illustrated in FIG. 12G, the free standing solar cell 1240, together with the stressor layer 1250 and the tape layer 1260, form a lightweight and flexible solar cell assembly in their own. This flexible solar cell assembly can be easily integrated into other systems, including power electronic devices.
  • the graphene layer 1220 can seed the growth of the solar cell 1240 and the target substrate 1230 may not have any effect on the growth of the solar cell 1240.
  • type III seeding e.g., illustrated in FIG. 7C
  • the graphene layer 1220 can be thin and the target substrate 1230 can seed the growth of the solar cell 1240.
  • the target substrate 1230 can include GaAs substrates.
  • FIGS. 13A-13E illustrate a method 1300 of fabricating multi -junction solar cells using graphene-based layer transfer technique.
  • the method 1300 starts by disposing a graphene layer 1320 on a glass substrate 1310 having a transparent conductive oxide (TCO) surface, as shown in FIG. 13 A.
  • TCO transparent conductive oxide
  • the graphene layer 1320 can be transferred to the glass substrate 1310 via any method described in this application or any other method known in the art.
  • FIG. 13B shows that three material layers are deposited on the graphene layer 1320, including an InGaP layer 1330, a GaAs layer 1340 on the InGaP layer 1330, and a second graphene layer 1350 on the GaAs layer 1340.
  • FIG. 13C shows that an InGaAs layer 1360 is deposited on the second graphene layer 1350.
  • the second graphene layer 1350 can help lattice- matching during the fabrication of the InGaAs layer 1360.
  • Metal contacts 1370 are then placed on the InGaAs layer 1360 for electrical conduction, as shown in FIG. 13D. Then in FIG.
  • the stack of InGaP layer 1330, the GaAs layer 1340, the second graphene layer 1350, and the InGaAs layer 1350 are etched into two solar cell mesas 1380, each of which is underneath a respective metal contact 1370.
  • FIGS. 14A-14C illustrate a method 1400 of fabricating transistors.
  • a graphene layer 1420 is disposed on a substrate 1410 such as a SiC wafer.
  • An InGaAs layer 1430 is deposited on the graphene layer 1420.
  • the InGaAs layer 1430 is transferred to a silicon wafer 1440 with an oxide layer 1450 disposed on the surface of the silicon wafer 1440, as shown in FIG. 14B.
  • An A1 2 0 3 layer 1470 is then deposited on the InGaAs layer 1430 as the top gate dielectric.
  • a gate 1480 is fabricated on the A1 2 0 3 layer 1470 to form a transistor, as shown in FIG. 14C.
  • the graphene layer 1420 can seed the growth of the InGaAs layer 1430 and the silicon wafer 1440 may not have any effect on the growth of the InGaAs layer 1430.
  • type III seeding e.g., illustrated in FIG. 7C
  • the graphene layer 1420 can be thin and the silicon wafer 1440 be replaced by an InP substrate so as to seed the growth of the InGaAs layer 1430.
  • FIGS. 15A-15F illustrate a method 1500 of forming heterostructure using graphene- based layer transfer technique.
  • a graphene layer 1520 e.g., a monolayer graphene
  • a substrate 1510 such as a SiC wafer.
  • An h-BN layer 1530 i.e., hexagonal form boron nitride
  • FIG. 15B shows that a stressor layer 1540 (e.g., a nickel film) is coated on the h-BN layer 1530 and a tape layer 1550 is disposed on the stressor layer 1540.
  • a stressor layer 1540 e.g., a nickel film
  • the tape layer 1550 and the stressor layer 1540 can transfer the h-BN layer 1530 to a second substrate including a silicon wafer 1560 with an oxide layer 1565 (e.g., silicon oxide) on the top, as illustrated in FIG. 15C.
  • FIG. 15C also shows that the stressor layer 1540 and the tape layer 1550 are etched away, leaving the h- BN layer 1530 for further processing.
  • FIG. 15D a MoS 2 layer 1570 is deposited on the h-BN layer 1530, and a second h- BN layer 1580 is deposited on the MoS 2 layer 1570 so as to form h-BN/MoS 2 heterostructure.
  • FIG. 15F shows that an Hf() 3 layer 1590 is deposited on the second h-BN layer 1580 as top gate dielectric and a top gate 1595 is deposited on the Hf0 3 layer 1590 for electrical conduction.
  • FIGS. 16A-16F illustrate a method 1600 of preparing a platform for fabricating III-V devices using graphene-based layer fabrication and transfer technique.
  • FIG. 16A shows a 12" silicon wafer 1610.
  • a relaxed Ge film 1620 is then disposed on the wafer 1610 via, for example, epitaxial growth, as shown in FIG. 12B.
  • the Ge film 1620 then functions as seed to grow a graphene layer 1630 epitaxially, as seen in FIG. 16C.
  • the graphene layer 1630 can include single crystalline graphene.
  • the graphene layer 1630 is pattered via, for example, lithography techniques known in the art. The patterning results in gaps 1635 in the graphene layer 1630. In other words, the graphene layer 1630 can be patterned into isolated and smaller pieces of graphene layers.
  • device layers 1640 are fabricated on the graphene layer 1620.
  • the device layers 1640 can include, for example, III-V materials or structures such as metal- oxide-semiconductor field-effect transistor (MOSFET), lasers, or any other structure known in the art.
  • MOSFET metal- oxide-semiconductor field-effect transistor
  • the devices layers 1640 then function as platforms to form additional devices 1650, as shown in FIG. 1610.
  • inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein.
  • any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
  • a computer may be embodied in any of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a tablet computer. Additionally, a computer may be embedded in a device not generally regarded as a computer but with suitable processing capabilities, including a Personal Digital Assistant (PDA), a smart phone or any other suitable portable or fixed electronic device.
  • PDA Personal Digital Assistant
  • a computer may have one or more input and output devices. These devices can be used, among other things, to present a user interface. Examples of output devices that can be used to provide a user interface include printers or display screens for visual presentation of output and speakers or other sound generating devices for audible presentation of output.
  • Examples of input devices that can be used for a user interface include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets.
  • a computer may receive input information through speech recognition or in other audible format.
  • Such computers may be interconnected by one or more networks in any suitable form, including a local area network or a wide area network, such as an enterprise network, and intelligent network (EST) or the Internet.
  • networks may be based on any suitable technology and may operate according to any suitable protocol and may include wireless networks, wired networks or fiber optic networks.
  • the various methods or processes may be coded as software that is executable on one or more processors that employ any one of a variety of operating systems or platforms. Additionally, such software may be written using any of a number of suitable programming languages and/or programming or scripting tools, and also may be compiled as executable machine language code or intermediate code that is executed on a framework or virtual machine.
  • inventive concepts may be embodied as a computer readable storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other non- transitory medium or tangible computer storage medium) encoded with one or more programs that, when executed on one or more computers or other processors, perform methods that implement the various embodiments of the invention discussed above.
  • the computer readable medium or media can be transportable, such that the program or programs stored thereon can be loaded onto one or more different computers or other processors to implement various aspects of the present invention as discussed above.
  • program or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of embodiments as discussed above. Additionally, it should be appreciated that according to one aspect, one or more computer programs that when executed perform methods of the present invention need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present invention.
  • Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • functionality of the program modules may be combined or distributed as desired in various embodiments.
  • data structures may be stored in computer-readable media in any suitable form.
  • data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields with locations in a computer-readable medium that convey relationship between the fields.
  • any suitable mechanism may be used to establish a relationship between information in fields of a data structure, including through the use of pointers, tags or other mechanisms that establish relationship between data elements.
  • inventive concepts may be embodied as one or more methods, of which an example has been provided.
  • the acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
  • a reference to "A and/or B", when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
  • the phrase "at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
  • This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified.
  • “at least one of A and B" can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A graphene-based layer transfer (GBLT) technique is disclosed. In this approach, a device layer including a III-V semiconductor, Si, Ge, III-N semiconductor, SiC, SiGe, or II-VI semiconductor is fabricated on a graphene layer, which in turn is disposed on a substrate. The graphene layer or the substrate can be lattice-matched with the device layer to reduce defect in the device layer. The fabricated device layer is then removed from the substrate via, for example, a stressor attached to the device layer. In GBLT, the graphene layer serves as a reusable and universal platform for growing device layers and also serves a release layer that allows fast, precise, and repeatable release at the graphene surface.

Description

Systems and Methods for Graphene Based Layer Transfer
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S.
Application No. 62/215,223, filed September 8, 2015, entitled "GRAPHENE-BASED LAYER TRANSFER PROCESS FOR ADVANCED COST-EFFICIENT ELECTRONICS/
PHOTONICS," which is hereby incorporated herein by reference in its entirety.
[0002] This application also claims the priority benefit under 35 U.S.C. § 119(e) of U.S.
Application No. 62/335,784, filed May 13, 2016, entitled "DISLOCATION-FREE III-V
INTEGRATION ON A SI WAFER," which is hereby incorporated herein by reference in its entirety.
[0003] This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S.
Application No. 62/361,717, filed July 13, 2016, entitled "COST-EFFECTIVE LAYER- TRANSFER TECHNIQUE FOR ALL ELECTRONIC/PHOTONIC/MAGNETIC
MATERIALS," which is hereby incorporated herein by reference in its entirety.
BACKGROUND
[0004] In advanced electronic and photonic technologies, devices are usually fabricated from functional semiconductors, such as III-N semiconductors, III-V semiconductors, II- VI semiconductors, and Ge. The lattice constants of these functional semiconductors typically do not match the lattice constants of silicon substrates. As understood in the art, lattice constant mismatch between a substrate and an epitaxial layer on the substrate can introduce strain into the epitaxial layer, thereby preventing epitaxial growth of thicker layers without defects. Therefore, non-silicon substrates are usually employed as seeds for epitaxial growth of most functional semiconductors. However, non-Si substrates with lattice constants matching those of functional materials can be costly and therefore limit the development of non-Si electronic/photonic devices.
[0005] One method to address the high cost of non-silicon substrates is the "layer-transfer" technique, in which functional device layers are grown on lattice-matched substrates and then removed and transferred to other substrates. The remaining lattice-matched substrates can then be reused to fabricate another device layer, thereby reducing the cost. To significantly reduce manufacturing costs, it can be desirable for a layer-transfer method to have the following properties: 1) substrate reusability; 2) a minimal substrate refurbishment step after the layer release; 3) a fast release rate; and 4) precise control of release thickness.
[0006] Conventional methods to remove and transfer a device layer from a lattice-matched substrate include chemical lift-off (also referred to as epitaxial lift-off or ELO), optical lift-off (also referred to as laser lift-off or LLO, and mechanical lift-off (also referred to as controlled spalling). Unfortunately, none of these methods has the four desired properties at the same time.
[0007] The chemical lift-off technique can be used for lifting off devices layers made of III-V semiconductors from GaAs wafers. A sacrificial layer of AlAs is usually epitaxially inserted between the device layer and the substrate. Chemical lift-off technique selectively etches the sacrificial layer in a wet-chemical solution to release the device layers.
[0008] Despite its continuous development over the last three decades, chemical lift-off still has several disadvantages. For example, the release rate is slow owing to slow penetration of chemical etchant through the sacrificial layer (e.g., typically a few days to release a single 8-inch wafer). Second, etching residues tend to become surface contamination after release. Third, chemical lift-off has limited reusability owing to the chemical mechanical planarization (CMP) performed after release to recover the roughened substrate surface into an epi-ready surface. Fourth, it can be challenging to handle released epilayers in the chemical solution.
[0009] The optical lift-off technique usually uses a high-power laser to irradiate the back of the lattice-matched substrate (e.g., a transparent sapphire or SiC substrate) and selectively heat the device-substrate interface, causing decomposition of the interface and release of the device layer (e.g., III-N film). This technique can reduce the cost of manufacturing III-N-based light emitting diodes (LEDs) and address the problem of heat accumulation from the device by transferring released III-Ns to a substrate that has high thermal conductivity.
[0010] However, optical lift-off has its own limitations. First, because the molten III- N/substrate interface can make the substrate rough, a reconditioning step is usually carried out before reuse, thereby reducing the reusability to less than five times. Second, local
pressurization at the interface caused by high-power thermal irradiation can induce cracks or dislocations. Third, the laser scanning speed can be too slow to permit high-throughput. [0011] Controlled spalling can have a higher throughput than optical lift-off. In this technique, high-stress films (also referred to as "stressors") are deposited on the epitaxial film, inducing fracture below the epilayers and resulting in the separation of active materials from the substrate. When sufficient tensile stress is applied to the interface, a Kn shear mode can initiate a crack and a Ki opening mode can allow the propagation of the crack parallel to the interface between the epilayer and the substrate. By controlling the internal stress and thickness of the stressor, strain energy sufficient to reach the critical Ki can be provided, leading to fracture of the film/substrate interface. Because the exfoliation occurs via crack propagation, the spalling process can cause rapid release of films.
[0012] However, controlled spalling is not mature enough to be used for commercial manufacturing for at least the following reasons. First, because crack propagation generally occurs through cleavage planes that are not always aligned normal to the surface, the surface may need polishing for reuse. Second, a thick stressor is usually used to provide enough energy to separate strong covalent bonds, particularly when working with high Young' s modulus materials like III-N semiconductors. Third, the internal stress of the stressor may only be controlled in a narrow range, which constrains the achievable thickness of the resulting spalled film. For example, because the maximum internal stress in a typical Ni stressor is about 1 GPa, the critical Ni thickness under 1 GPa tensile stress to initiate spalling of a GaAs film is about 1.5 /mi, which can induce spalling of the GaAs film itself if the GaAs is about 10 /mi thick.
Therefore, when using a Ni stressor it can be challenging to make a GaAs film less than 10 /mi thick, but typically most devices use films that are much thinner.
SUMMARY
[0013] Embodiments of the present invention include apparatus, systems, and methods for nanofabrication. In one example, a method of manufacturing a semiconductor device includes forming a graphene layer on a first substrate and transferring the graphene layer from the first substrate to a second substrate. The method also includes forming a single-crystalline film on the graphene layer.
[0014] In another example, a method of semiconductor processing includes forming a graphene monolayer on a silicon carbide substrate and transferring the graphene monolayer from the silicon carbide substrate to a semiconductor substrate. The method also includes forming a plurality of holes in the graphene monolayer and forming a first single-crystalline layer of semiconductor material on the graphene monolayer. The semiconductor substrate acts as a seed for the first single-crystalline layer of semiconductor material. The method also includes removing the first single-crystalline layer of semiconductor material from the graphene monolayer and forming a second single-crystalline layer of semiconductor material on the graphene monolayer. The semiconductor substrate acts as a seed for the second single- crystalline layer of semiconductor material. The method further includes removing the second single-crystalline layer of semiconductor material from the graphene monolayer.
[0015] In yet another example, a method of semiconductor processing includes forming a graphene layer on a first substrate and transferring the graphene layer from the first substrate to a second substrate. The method also includes depositing a semiconductor layer on the graphene layer and depositing a stressor layer on the semiconductor layer. The stressor layer causes propagation of a crack between the semiconductor layer and the graphene layer. The method further includes disposing a flexible tape on the stressor layer and pulling the semiconductor layer and the stressor layer off the graphene layer with the flexible tape.
[0016] It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] The skilled artisan will understand that the drawings primarily are for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein. The drawings are not necessarily to scale; in some instances, various aspects of the inventive subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements). [0018] FIGS. 1 A-ID illustrate a method of fabricating a semiconductor device using a graphene-based layer transfer process.
[0019] FIG. 2 is a graph showing materials that can be used to fabricate devices using the graphene-based technique illustrated in FIGS. 1 A-ID, as well as the lattice constant and lattice mismatch of these materials.
[0020] FIGS. 3 A-3F illustrate a method of graphene-based layer fabrication and transfer using a stressor layer and tape.
[0021] FIG. 4A-4B show the effects of graphene layer thickness and the underlying substrates on the growth of device layers on the graphene layer.
[0022] FIGS. 5A-5E illustrate a method of graphene-based layer transfer using a thin graphene layer.
[0023] FIG. 6A shows high-resolution X-ray diffraction (HRXRD) scans of GaN grown on graphene disposed on Si02 substrate.
[0024] FIG. 6B shows HRXRD scans of GaN grown on graphene disposed on SiC substrate.
[0025] FIGS. 7A-7C illustrate three configurations of graphene-based fabrication techniques using graphene layers of different thicknesses.
[0026] FIGS. 8A-8H illustrate a method of graphene-based layer fabrication and transfer using porous graphene, corresponding to the configuration shown in FIG. 7C.
[0027] FIGS. 9 A and 9B are scanning electron microscope (SEM) images of Ge and GaAs epilayers, respectively, grown on damaged graphene.
[0028] FIGS. 10A and 10B are SEM images of the Ge and GaAs epilayers shown in FIGS. 9 A and 9B, respectively, after release from the substrate.
[0029] FIGS. 11 A-l 1H illustrate a method of fabricating light emitting diodes using a graphene-based layer fabrication and transfer technique.
[0030] FIGS. 12A-12G illustrate a method of fabricating GaAs solar cells using a graphene- based layer fabrication and transfer technique.
[0031] FIGS. 13A-13E illustrate a method of fabrication multi -junction solar cells using a graphene-based layer fabrication and transfer technique.
[0032] FIGS. 14A-14C illustrate a method of fabrication transistors using a graphene-based layer fabrication and transfer technique. [0033] FIGS. 15A-15F illustrate a method of hetero-integration using a graphene-based layer fabrication and transfer technique.
[0034] FIGS. 16A-16F illustrate a method of preparing a platform for fabricating III-V devices using a graphene-based layer fabrication and transfer technique.
DETAILED DESCRIPTION
[0035] Graphene-Based Layer Growth
[0036] As described above, it can be desirable for a layer-transfer process to have substrate reusability, minimal needs for post-release treatment, a fast release rate, precise control of release interfaces, and universality for a wide range of device materials. Conventional layer-transfer processes may exhibit some of the desired properties. For example, layer release is much faster for mechanical lift-off than for chemical or optical lift-off, whereas the release location can be better controlled in chemical and optical lift-off. However, conventional layer-transfer methods suffer from rough surface formation after layer release, thereby limiting substrate reusability. In fact, the process cost to refurbish the substrate surface in conventional layer-transfer methods typically exceeds the substrate cost, so practical applications in manufacturing can be
challenging. In addition, each conventional method usually works for a limited number of specific materials (e.g., chemical lift-off for III-V materials, whose lattice is close to that of GaAs, and optical lift-off for materials that can be grown on transparent substrates). Therefore, it is also challenging to make universal use of these methods.
[0037] To address the shortcomings in conventional layer-transfer methods, systems and methods described herein employ a graphene-based layer transfer (GBLT) approach to fabricate devices. In this approach, functional devices are fabricated on a graphene layer, which in turn is disposed on a substrate that is lattice-matched to the functional device layers. In one example, the graphene layer is deposited directly on the lattice-matched substrate. In another example, the graphene layer is transferred to the lattice-matched substrate from another substrate. The fabricated functional devices can then be removed from the lattice-matched substrate via, for example, a stressor attached to the functional devices.
[0038] In this GBLT approach, graphene serves as a reusable and universal platform for growing device layers and also serves a release layer that allows fast, precise, and repeatable release at the graphene surface. Compared to conventional methods, GBLT has several advantages. First, because graphene is a crystalline film, it is a suitable substrate for growing epitaxial over-layers. Second, graphene' s weak interaction with other materials can substantially relax the lattice mismatching rule for epitaxial growth, potentially permitting the growth of most semiconducting films with low defect densities. Third, the epilayer (e.g., functional devices) grown on a graphene substrate can be easily and precisely released from the substrate owing to graphene' s weak van der Waals interactions, which permits rapid mechanical release of epilayers without post-release reconditioning of the released surface. Fourth, graphene' s mechanical robustness can maximize its reusability for multiple growth/release cycles.
[0039] Implementation of GBLT for general material systems can have a significant impact on both the scientific community and industry because GBLT has the potential to fabricate devices without the expensive millimeter-thick, single-crystalline wafers used in current semiconductor processing. Moreover, the entire functional device can be transferred from the graphene layer, for additional flexible functions.
[0040] FIGS. 1 A-1D illustrate a method 100 of fabricating a device layer using graphene as a platform. As shown in FIG. 1 A, a graphene layer 120 is fabricated on a first substrate 110, such as a Si substrate, SiC substrate, or copper foil. The fabricated graphene layer 120 is then removed from the first substrate 110 as shown in FIG. IB. The removed graphene layer 120 is then disposed on a second substrate 130, such as a Ge substrate, as shown in FIG. 1C. FIG. ID shows that an epilayer 140 (e.g., a single crystalline film to have high electrical and optical device performance) is then fabricated on the graphene layer 120. The epilayer 140 is also referred to as a device layer or a functional layer in this application.
[0041] The graphene layer 120 can be fabricated on the first substrate 110 via various methods In one example, the graphene layer 120 can include an epitaxial graphene with a single- crystalline orientation and the substrate 110 can include a (0001) 4H-SiC wafer with a silicon surface. The fabrication of the graphene layer 120 can include multistep annealing steps. A first annealing step can be performed in H2 gas for surface etching and vicinalization, and a second annealing step can be performed in Ar for graphitization at high temperature (e.g., about 1,575 °C).
[0042] In another example, the graphene layer 120 can be grown on the first substrate 110 via a chemical vapor deposition (CVD) process. The substrate 110 can include a nickel substrate or a copper substrate. Alternatively, the substrate 100 can include an insulating substrate of Si02, Hf02, A1203, Si3N4, and practically any other high temperature compatible planar material by CVD.
[0043] In yet another example, the firs substrate 110 can be any substrate that can hold the graphene layer 120 and the fabrication can include a mechanical exfoliation process. In this example, the first substrate 110 can function as a temporary holder for the graphene layer 120.
[0044] Various methods can also be used to transfer the graphene layer 120 from the first substrate 110 to the second substrate. In one example, a carrier film can be attached to the graphene layer 120. The carrier film can include a thick film of Poly(methyl methacrylate) (PMMA) or a thermal release tape and the attachment can be achieved via a spin-coating process. After the combination of the carrier film and the graphene layer 120 is disposed on the second substrate 130, the carrier film can be dissolved (e.g., in acetone) for further fabrication of the epilayer 140 on the graphene layer 120.
[0045] In another example, a stamp layer including an elastomeric material such as
polydimethylsiloxane (PDMS) can be attached to the graphene layer 120 and the first substrate can be etched away, leaving the combination of the stamp layer and the graphene layer 120. After the stamp layer and the graphene layer 120 are placed on the second substrate 130, the stamp layer can be removed by mechanical detachment, producing a clean surface of the graphene layer 120 for further processing.
[0046] In yet another example, a self-release transfer method can be used to transfer the graphene layer 120 to the second substrate 130. In this method, a self-release layer is first spun- cast over the graphene layer 120. An elastomeric stamp is then placed in conformal contact with the self-release layer. The first substrate 110 can be etched away to leave the combination of the stamp layer, the self-release layer, and the graphene layer. After this combination is placed on the second substrate 130, the stamp layer can be removed mechanically and the self-release layer can be dissolved under mild conditions in a suitable solvent. The release layer can include polystyrene (PS), poly(isobutylene) (PIB) and Teflon AF (poly [4,5 -difluoro-2,2- bis(trifluoromethyl)-l,3-dioxole-co-tetrafluoroethylene]).
[0047] The epilayer 140 can include a III-V semiconductor, Si, Ge, III-N semiconductor, SiC, SiGe, and II- VI semiconductors, among others. In one example, the lattice of the second substrate 130 is matched to the epilayer 140, in which case the second substrate 130 functions as the seed for the growth of the epilayer 140 if the graphene layer 120 is porous or thin enough (e.g., if the graphene layer 120 is one layer thick). Sandwiching the graphene layer 120 between the second substrate 130 and the epilayer 140 can facilitate quick and damage-free release and transfer of the epilayer 140.
[0048] In another example, the graphene layer 120 can be thick enough (e.g., several layers thick) to function as a seed to grow the epilayer 140, in which case the epilayer 140 can be latticed-matched to the graphene layer 120. This example also allows repeated use of the second substrate 130. In yet another example, the second substrate 130 together with the graphene layer 120 can function as the seed to grow the epilayer 140.
[0049] Using graphene as the seed to fabricate the epilayer 140 can also increase the tolerance over mismatch of lattice constant between the epilayer material and graphene.
Without being bound by any particular theory or mode of operation, surfaces of two-dimensional
(2D) materials (e.g., graphene) or quasi-2D layered crystals typically have no dangling bonds and interact with material above them via weak van der Waals like forces. Due to the weak interaction, an epilayer can grow from the beginning with its own lattice constant forming an interface with a small amount of defects. This kind of growth can be referred to as
Van Der Waals Epitaxy (VDWE). The lattice matching condition can be drastically relaxed for
VDWE, allowing a large variety of different heterostructures even for highly lattice mismatched systems.
[0050] In practice, the lattice mismatch can be about 0% to about 70% (e.g., about 0%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, and about 70%, including any values and sub ranges in between).
[0051] In one example, the epilayer 140 includes a 2D material system. In another example, the epilayer 140 includes a 3D material system. The flexibility to fabricate both 2D and 3D material systems allows fabrication of a wide range of optical, opto-electronic, and photonic devices known in the art.
[0052] FIG. 2 is a graph showing materials that can be deposited on the graphene layer 120 to form the epilayer 140. FIG. 2 also shows the lattice constants of these materials and the mismatch of of these lattice constants with respect to graphene. These materials include SiC, A1N, GaN, InN, GaP, A1P, Silicon, AlAs, Ge, GaAs, and InP. These materials listed on FIG. 2 are for illustrative purposes only. In practice, other materials with similar lattice mismatches with respect to graphene can also be used to form the epilayer 140. [0053] The fabrication of the epilayer 140 can be carried out using semiconductor fabrication technique known in the art. For example, low-pressure Metal-Organic Chemical Vapor
Deposition (MOCVD) can be used to grow the epilayer 140 (e.g., a GaN film) on the graphene layer 120, which in turn is disposed on the second substrate 130 (e.g., a SiC substrate). In this example, the graphene layer 120 and the second substrate 130 can be baked (e.g., under H2 for >15 min at > 1,100 °C) to clean the surface. Then the deposition of the epilayer 140 including GaN can be performed at, for example, 200 mbar. Trimethylgallium, ammonia, and hydrogen can be used as the Ga source, nitrogen source, and carrier gas, respectively. A modified two-step growth can be employed to obtain flat GaN epitaxial films on the epitaxial graphene 120. The first step can be carried out at a growth temperature of 1, 100 °C for few minutes where guided nucleation at terrace edges can be promoted. The second growth step can be carried out at an elevated temperature of 1,250 °C to promote the lateral growth. Vertical GaN growth rate in this case can be around 20 nm per min.
[0054] Graphene-Based Layer Transfer
[0055] FIGS. 3 A-3F illustrate a method 300 of graphene-based layer transfer. FIG. 3 A shows that a graphene layer 320 is formed or disposed on a donor wafer 310, which may be a single- crystalline wafer. For example, the graphene layer 320 can include epitaxial graphene grown on the donor wafer 310 as known in the art. Alternatively, the graphene layer 320 can be exfoliated and transferred to the donor wafer 310 from another wafer (not shown). In yet another example, any of the graphene transfer techniques described above with reference with FIGS. 1 A-1D can be used here to prepare the graphene layer 320 disposed on the donor wafer 320.
[0056] FIG. 3B shows that an epilayer 330 is epitaxially grown on the graphene layer 320. The epilayer 330 can include an electronic layer, a photonic layer, or any other functional device layer. Methods to fabricate the epilayer 330 can include any methods and techniques described above with respect to FIGS. 1 A-1D.
[0057] FIG. 3C shows that a stressor 340 is disposed on the epilayer 330. For example, the stressor 330 can include a high-stress metal film such as a Ni film. In this example, the Ni stressor can be deposited in an evaporator at a vacuum level of 1 χ 10"5 Torr.
[0058] FIG. 3D shows that a tape layer 350 is disposed on the stressor 340 for handling the stressor 340. Using the tape 350 and the stressor 340 can mechanically exfoliate the epilayer 330 from the graphene layer 320 at a fast release rate by applying high strain energy to the interface between the epilayer 330 and the graphene layer 320. The release rate can be fast at least due to the weak van der Waals bonding between graphene and other materials such as the epilayer 330.
[0059] In FIG. 3E, the released epilayer 330, together with the stressor 340 and the tape layer 350 are disposed on a host wafer 360. In FIG. 3F, the tape 340 and the stressor 340 are removed, leaving the epilayer 330 for further processing such as forming more sophisticated devices or depositing additional materials on the epilayer 330. In one example, the tape layer 350 and the stressor 340 can be etched away by a FeC -based solution.
[0060] In the method 300, after the release of the epilayer 330 shown in FIG. 3D, the remaining donor wafer 310 and the graphene layer 320 can be reused for next cycle of epilayer fabrication. Alternatively, the graphene layer 320 can also be released. In this case, a new graphene layer can be disposed on the donor wafer 310 before next cycle of epilayer fabrication. In either case, the graphene layer 320 protects the donor wafer 310 from damage, thereby allowing multiple uses and reducing cost.
[0061] In contrast, conventional processes usually include chemical-mechanical planarization (CMP) after release to recondition the wafer surface. CMP can consume relatively thick materials, and repeated CMPs increase the chance of breaking a wafer. GBLT can increase or maximize reusability because it creates an atomically smooth release surface. In GBLT, layer release can occur precisely at the interface between the epilayer 330 and the graphene layer 320 because graphene' s weak van der Waals force does not permit strong bonding to adjacent materials. This allows the graphene layer 320 to be reused for multiple growth/exfoliation cycles without the need for a polishing step and without damaging the graphene, due to its mechanical robustness. In addition, GBLT can ensure a fast release rate and universal application for different materials. Because the epilayer 330 is mechanically released from the weak graphene surface, the layer release rate in GBLT can be high. Whereas conventional layer-transfer methods are limited to specific materials, GBLT can be universally applied because VDWE can overcome extremely high lattice mismatch and most semiconductor films can be epitaxially grown on graphene.
[0062] Furthermore, by having highly strained freestanding epilayer 330 after release as shown in FIG. 3D, the devices made of the epilayer 330 can have higher electron or hole mobility. AN optoelectronic device made of the epilayer 330 can also have an enhanced optical response. [0063] For mechanical release of the epilayer 330 from the graphene layer 320, it can be desirable for the material of the stressor 340 to provide enough strain energy to the
epilayer/graphene interfaces to promote damage-free exfoliation/transfer. One concern for the mechanical release process can be the bending of epilayer 330 during exfoliation and self- exfoliation during deposition of the stressor 340. If the radius of curvature is reduced during exfoliation, strain energy can increase in the epilayer 330. When the strain energy reaches a critical point, cracks can form. Also, if strain energy in the stressor exceeds the
epilayer/graphene interface energy, the epilayer 330 may be delaminated during stressor deposition. To address this concern, the transfer of epilayers on graphene can be performed by a feedback loop control.
[0064] Effects of Substrate Field On the Epilayer
[0065] In the methods illustrated in FIGS. 1 A-1D and FIGS. 3A-3F, device layers are fabricated on a graphene layer. Since graphene typically is on the order of one atom thick (e.g., on the order of 3 A), any covalently -bonded substrate surface immediately below the graphene may affect the epitaxial growth of the device layer by, for example, altering the crystalline orientation of the device layer. Therefore, it can be beneficial to understand the effect of the underlying substrate on the growth of the device layer so as to, for example, reduce defect density on the device layer as well as to control the properties such as crystalline orientation of the device layer.
[0066] FIGS. 4A-4B show schematics of graphene-based fabrication systems to illustrate the effect of underlying substrates on the growth of device layers. FIG. 4A shows a system 401 including a substrate 41 1 and a graphene layer 421 disposed on the substrate 411. A device layer 431 is fabricated on the graphene layer 421. The substrate 411 has a potential field 441 (e.g., via van De Waals force or other atomic or molecular forces) indicated by arrows in FIG. 4A. In this case, the graphene layer 421 includes only a single monolayer of graphene (i.e., the graphene layer 421 is one atom thick) and the potential field 441 reaches beyond the graphene layer 421 and can interact with the device layer 431. As a result, the potential field 441, which depends on the material properties (such as crystalline orientation) of the substrate 411, can affect the growth of the device layer 431. At the same time, the graphene layer 421 also has its own potential field (not shown in FIG. 4A), which may similarly influence the growth of the device layer 431. The net result can be that the device layer 431 includes films 43 la and 43 lb having two different orientations such as (100) and (111) orientations. Alternatively, the substrate force can be strong enough to overcome graphene field, in which case single-crystalline films that resembles substrates can be grown.
[0067] FIG. 4B shows a system 402 including a substrate 412 and a graphene layer 422 disposed on the substrate 412. A device layer 432 is fabricated on the graphene layer 422. The substrate 412 has a potential field 442 indicated by arrows in FIG. 4B. In contrast to the graphene layer 421 in FIG. 4 A, the graphene layer 422 in FIG. 4B includes multiple stacks of monolayer graphene (i.e., the graphene layer 422 is more than one atom thick). Accordingly, the potential field 442 may interact only with the graphene layer 422 and may not reach the device layer 432. In other words, the VDWE of the device layer 432 occurs outside the potential field 442 of the substrate 412. In this case, the potential field of the graphene layer 422 affects the growth of the device layer 432.
[0068] FIGS. 4A-4B illustrate that the effect of the substrates (e.g., 411 and 412) on the growth of the device layers (e.g., 431 and 432) depend on the distance between them. In other words, the thickness of the graphene layers (e.g., 421 and 422) sandwiched between the substrates and the device layers determines the interaction strength. After a critical distance, the underlying substrates may not have any effect on the epitaxial growth of the device layers. This critical distance can be verified using high-resolution X-ray diffraction (HRXRD) to monitor the crystalline orientation of the epilayer as a function of graphene thicknesses, because the epilayer can resemble the graphene lattice beyond the critical distance.
[0069] FIGS. 5A-5E illustrate a method 500 of graphene-based layer transfer using thin graphene layers. In FIG. 5 A, a donor wafer 510a is provided to grow a graphene layer 520 (shown in FIG. 5B). FIG. 5B shows that the graphene layer 520 is then transferred to a second wafer 510b, which can include III-N semiconductors, II-IV semiconductors, III-V
semiconductors, and IV semiconductors.
[0070] In FIG. 5C, a film 530 is grown epitaxially above the graphene layer 520. Since the graphene layer 520 is sufficiently thin in this case, the growth of the film 530 is seeded by the second wafer 510b underneath the graphene layer 520. In FIG. 5D, a stressor 540 is deposited on the film 530 to facilitate subsequent layer transfer. The stressor 540 can include high stress metal materials such as nickel. In FIG. 5E, a tape layer 550 is disposed on the stressor 540 so as to handle the stressor 540 for releasing the film 530 from the graphene layer 520 and the second wafer 510b. In the method 500, the graphene layer 520 is thin enough and the graphene seeding effect can disappear while substrate seeding effect is strong. In this manner, one can make any releasable films via the method 500.
[0071] FIGS. 6A-6B show variations of cry stall ographic orientation of epilayers grown on graphene using different underlying substrates. FIG. 6A shows ω - 2Θ scans in HRXRD of GaN on graphene/Si02 (graphene on Si02 substrate). FIG. 6B shows ω - 2Θ scans of GaN on graphene/SiC (graphene on SiC substrate).
[0072] To eliminate the epitaxial relation between the epitaxial graphene and the SiC substrate, the epitaxial graphene as used in FIG. 6A can be exfoliated from the SiC and then transferred to amorphous Si02-coated Si substrates. Then GaN can be grown on the substrate. The HRXRD ω - 2Θ scan reveals that the GaN film grown on epitaxial graphene on top of Si02 is (0002)- textured polycrystalline, while the GaN film grown on epitaxial graphene on top of SiC has a single (0002) orientation (see FIG. 6A and FIG. 6B). This implies that the substrate right below the graphene layer plays a role in determining epitaxial orientation. Accordingly, the material (or the crystalline orientation) of the substrate can be employed to control the epitaxial orientation of the device layer.
[0073] Control of Seeding Locations in Graphene-Based Layer Fabrication and Transfer
[0074] In practical applications of graphene-based layer fabrication and transfer, it can be beneficial for the epitaxial registry to be tunable to either the graphene or the substrate so as to obtain high-quality single-crystalline films on graphene. With this control of the seeding location, direct epitaxy on the graphene or remote epitaxy seeded from the substrate can be achieved. In direct epitaxy on the graphene, graphene plays a role as a seed as well as a release layer. In remote epitaxy seeded from the substrate, graphene becomes a release layer only, while the substrate works as a seed.
[0075] FIGS. 7A-7C show schematics of three different types of graphene-based layer fabrication systems using graphene layers of different thicknesses. In applications, users can choose to use one of these systems based on the desired interaction strength between the device layer and the underlying substrate, or alternatively depending on the desired interaction strength between the device layer and the graphene. These three options can provide great flexibility to accommodate different fabrication tasks. [0076] FIG. 7A shows a system 701 (also referred to as Type I system) including a substrate
711 and a graphene layer 721 grown on the substrate 711. An epilayer 731 is then grown on the graphene layer 721. In the type I system 701, both the graphene layer 721 and the substrate 711 interact with the epilayer 731, as indicated by the arrows in FIG. 7 A.
[0077] In one example, the epitaxial graphene 721 (e.g., a monolayer graphene) can be grown on a SiC substrate for use in a type I system. In this example, because the crystallographic orientations of graphene and SiC are aligned, they can both offer a hexagonal seed for <0001> wurtzite structures. This substrate can be employed for growing single-crystalline wurtzite III-N (or SiC) films since the lattice mismatch between III-N semiconductors and graphene is small. This epitaxial graphene/SiC substrate can also be used to grow (111) cubic III-V, Si, and Ge films because both graphene and SiC become seeds for the (111) orientation.
[0078] In another example, the substrate 711 includes germanium (Ge) to epitaxially grow the graphene layer 721. The lattice mismatch between Ge and other cubic materials is typically smaller than the lattice mismatch between SiC and the cubic materials. In this example, the graphene layer 721 can be grown on the Ge substrate 711 via MOCVD techniques. In yet another example, graphene can be directly grown on other semiconductor wafers such as GaAs InP, and GaN.
[0079] FIG. 7B shows a system 702 (also referred to as Type II system) including a substrate
712 and a graphene layer 722 grown on the substrate 712. An epilayer 732 is then grown on the graphene layer 722. In the type II system 702, the thickness of the graphene layer 722 is substantially equal to or larger than the critical distance of interaction between the substrate 712 and the epilayer 732. Therefore, the epilayer 732 only interacts with the epitaxial graphene 722, which provides pure VDWE. This Type II system can be suitable to grow III-N semiconductor films or SiC single-crystalline films because its lattice mismatch to graphene is not substantially high. Copper foils can be used to fabricate poly-crystalline graphene of large sizes (e.g., greater than 8", greater than 12", or more).
[0080] FIG. 7C shows a system 703 (also referred to as Type III system) including a substrate
713 and a graphene layer 723 grown on the substrate 713. An epilayer 733 is then grown on the graphene layer 723. In the type III system 703, the graphene layer 723 works only as a release layer and epitaxial growth is seeded only from the substrate 713. Substrate materials with the same or a similar lattice to the epilayer 733 can be used. The graphene layer 723 does not participate in determining the crystalline orientation of the epilayer 733. Accordingly, the graphene layer 723 can include either single-crystalline graphene or polycrystalline graphene.
[0081] The Type III system assigns registry of the epilayer 733 to the substrate. One advantage of this configuration is that high-quality epilayers can be grown on lattice-matching substrates just like in homoepitaxy, while the epilayers can be released from the graphene surface. To accomplish this, it can be desirable for the graphene layer 723 to be substantially transparent to the epilayer 733 during growth. This can be achieved by amorphizing or damaging the graphene via ions (e.g., via dry etching). The damages in the graphene layer 723 can allow direct interaction of the epilayer 733 and the substrate 713 through the graphene layer 723 such that the graphene layer 723 does not guide the crystalline orientation of the epilayer 733.
[0082] In one example, the substrate has polarity such as III-V substrates, III-N substrates, II- V substrates, and/or Ionic bonded substrate (e.g., Oxide, perovskite), pristine graphene can be transferred onto the wafer and epilayer can have the same crystallinity as that of the wafer and the grown film can be ready to be exfoliated. In another example, the substrate can have no polarity (e.g., group IV), damaging graphene can help promote substrate/epilayer interaction.
[0083] FIGS. 8A-8H illustrate a method 800 of graphene-based layer fabrication and transfer using graphene with periodic holes, which is referred to as porous graphene hereafter. The method 800 can be implemented with the Type III system, in which the graphene functions as a release layer and the substrate seeds the epitaxial growth of one or more functional layers.
[0084] In FIG. 8 A, a graphene layer 820 is disposed on a substrate 810. The graphene layer 820 can be grown on the substrate 810 via, for example, chemical vapor deposition.
Alternatively, the graphene layer 820 can be transferred to the substrate 810. A porous film 830 (e.g., oxide, nitride, or photoresist film) is then disposed on the graphene layer 820 as shown in FIG. 8B. The porous film 830 has a high density of pinholes (e.g., about one hole per square micron). Alternatively, the porous film 830 can include any film with holes to allow subsequent processing shown in FIGS. 8C-8H.
[0085] In FIG. 8C, dry etching using Ar plasma or 02 plasma is carried out to open up the pinholes in the porous film 830. This etching creates a plurality of holes 835 in the porous film 830, allowing the ions in the etching plasma to transmit through the porous film 830 and arrive at the graphene layer 820. The etching plasma then etches the portion of the graphene layer 820 directly underneath the pinholes 835 in the porous film 830. Ions in the etching plasma can damage the graphene layer 820 by creating a plurality of holes 825 in the graphene layer 820, which now becomes a porous graphene layer 820. In one example, the etching of the porous film 830 and the etching of the graphene layer 820 can be achived with the same etching plasma. In another example, the etching of the porous film 830 and the etching of the graphene layer 820 can be achieved with different etching plasmas.
[0086] In FIG. 8E, the porous film 830 is removed, leaving the now-porous graphene layer 820 exposed to further processing. In one example, the porous film 830 includes photoresist material and can be removed by acetone. In another example, the porous film 830 includes oxide or nitride and can be removed by hydrogen fluoride (HF). FIG. 8E also shows that an epilayer 840 is grown on the porous graphene layer 820. The growth starts from the area where the holes 825 were created. The holes 825 allow direction interaction of the substrate 810 with the epilayer 840, thereby allowing the substrate 810 to guide the crystalline orientation of the epilayer 840. The growth of the epilayer 840 then extends to cover the entire graphene layer 820, forming a planar epilayer 840.
[0087] In FIG. 8G, the formed epilayer 840 is released from the graphene layer 820 and the substrate 810. The released epilayer 840 is transferred to a target substrate 850, as shown in FIG. 8H, for further processing, such as forming a functional device. The graphene layer 820 and the substrate 810, after the release of the epilayer 840 shown in FIG. 8G, is then reused to fabricate another epilayer, and the cycle can be repeated multiple times.
[0088] FIGS. 9 A and 9B are scanning electron microscopy (SEM) images of the Ge and GaAs films, respectively, grown on damaged graphene. Although pits appear on the surface due to limited nucleation on the graphene and incomplete impingement of the growth fronts, planar (100) crystals completely seeded from the substrate are observed.
[0089] FIGS. 10A and 10B are SEM images of the Ge and GaAs films shown in FIG. 9 A and 9B, respectively, after being exfoliated using a Ni stressor. The smooth exfoliated surface implies precise release of the layer from the graphene, and this is confirmed by observing the trace of graphene-like wrinkles during wet transfer.
[0090] This porous graphene approach as illustrated in FIGS. 8A-8H and experimentally investigated in FIGS. 9A-9B and FIGS. 10A-10B can be applied to several other material systems. In one example, InP films can be fabricated on damaged graphene disposed on InP wafers. In another exmaple, Si films can be grown on damaged graphene disposed on Si wafers. In yet another exmaple, GaN films can be grown on damaged graphene disposed on GaN wafers. The epitaxial registry of the epilayer can be tuned to the substrate to secure successful epitaxial growth through the graphene onto the substrate.
[0091] Fabrication of Functional Flexible Devices and Hetero-integration
[0092] The graphene-based layer fabrication and transfer technique can be used to fabricate various functional devices based on the epilayers grown on graphene. In one example, III-N high electron mobility transistors (HEMTs) can be fabricated from III-N epilayers. The transistors can then be transferred to a polycrystalline diamond substrate for heat dissipation. GaN power devices can also be constructed from these films. In another example, flexible GaAs solar cells can be fabricated from III-V epilayers. Optoelectronic devices integrated with Si integrated circuits can also be constructed from III-V epilayers. In yet another example, Ge- based LEDs and photodetectors can be fabricated by growing IV epilayers on graphene, exfoliating them, stretching the freestanding Ge to tensile-strained Ge, and transferring them to Si integrated circuits. In yet another example, Ge can be grown on 12" Si wafer and then used as a seed to grow single-crystalline graphene. Then III-V optoelectronic materials can be grown on graphene on Ge/Si wafers without any dislocations.
[0093] FIGS. 11 A-l 1H illustrate a method 1100 of fabricating light emitting diodes (LEDs) using graphene-based layer transfer techniques described above. In FIG. 11 A, a graphene layer 1120 is grown on a substrate 1110 (e.g., a 6" SiC substrate). Then the graphene layer 1120 is released from the substrate 1110, as shown in FIG. 1 IB, and transferred to a target substrate 1130, as shown in FIG. 11C. The target substrate 1130 can be less expensive than, for example, the SiC wafer used in FIG. 11 A.
[0094] In FIG. 1 ID, an LED stack 1140 (e.g., a visible LED stack) is fabricated on the graphene layer 1120. In this example, the LED stack 1140 includes three periods of Ill-nitride multi-quantum wells (InGaN well and GaN barrier) sandwiched between p-GaN and n-GaN layers. As readily appreciated by those of skill in the art, other types of LED stacks can also be grown on the graphene layer 1120.
[0095] The fabricated LED stack 1140 can then be processed in at least two ways. In one way, as illustrated in FIG. 1 IE, an electrode 1150 can be deposited on the LED stack 1140 to form an electrical contact. For example, thin Ni/Au (5 nm/5 nm) can be deposited on the LED stack 1140 and then annealed at 500 °C for 10 min. This yields an LED that includes the substrate 1130.
[0096] Alternatively, as illustrated in FIG. 1 IF, the LED stack 1140 may be removed from the substrate 1130. To remove the LED stack 1140 from the substrate 1130, a stressor layer 1160 is disposed on the LED stack 1140 to release the LED stack 1140 from the target substrate 1130 and the graphene 1120. Then, the combination of stressor layer 1160 and the LED stack 1140 is flipped and placed on a second target substrate 1135, as shown in FIG. 11G. The stressor layer 1160 is in contact with the second target substrate 1135 and the LED stack 1140 is exposed for further processing. For example, FIG. 11G shows that LED mesas 1145 are etched from the LED stack 1140. In FIG. 1 IF, additional electrical contacts 1170 are integrated with the LED mesas 1145 and the stressor layer 1160.
[0097] In one example, the graphene layer 1120 can seed the growth of the LED stack 1140 and the target substrate 1130 may not have any effect on the growth of the LED stack 1140. In another example, type III seeding (e.g., illustrated in FIG. 7C) can be used. In this case, the graphene layer 1120 can be thin and the target substrate 1130 can seed the growth of the LED stack 1140. The target substrate 1130 can include GaN substrates.
[0098] FIGS. 12A-12G illustrate a method 1200 of fabricating GaAs solar cells using graphene-based layer transfer technique. In FIG. 12A, a graphene layer 1220 (e.g. a single- crystalline graphene layer) is fabricated on a substrate 1210 (e.g., a 6" SiC wafer). Then the graphene layer 1220 is transferred to a target substrate 1230 as seen in FIG. 12B. FIG. 12C shows that a GaAs solar cell 1240 is fabricated on the graphene layer 1220 via, for example, epitaxial growth techniques known in the art. FIG. 12D shows that a stressor layer 1250 is then deposited on the solar cell 1240 to facilitate subsequent device transfer. A tape layer 1260 is disposed on the stressor 1250 to help handle the device transfer as seen in FIG. 12E.
[0099] After release from the target substrate 1230, the solar cell 1240 becomes free standing and can be processed in two ways. In one way, as illustrated in FIG. 12F, the solar cell 1240 can be placed on metal 1240 for subsequent module fabrication. The solar cell 1240 can be placed on the metal 1240 via direct bonding or any other techniques known in the art. Alternatively, as illustrated in FIG. 12G, the free standing solar cell 1240, together with the stressor layer 1250 and the tape layer 1260, form a lightweight and flexible solar cell assembly in their own. This flexible solar cell assembly can be easily integrated into other systems, including power electronic devices.
[0100] In one example, the graphene layer 1220 can seed the growth of the solar cell 1240 and the target substrate 1230 may not have any effect on the growth of the solar cell 1240. In another example, type III seeding (e.g., illustrated in FIG. 7C) can be used. In this case, the graphene layer 1220 can be thin and the target substrate 1230 can seed the growth of the solar cell 1240. The target substrate 1230 can include GaAs substrates.
[0101] FIGS. 13A-13E illustrate a method 1300 of fabricating multi -junction solar cells using graphene-based layer transfer technique. The method 1300 starts by disposing a graphene layer 1320 on a glass substrate 1310 having a transparent conductive oxide (TCO) surface, as shown in FIG. 13 A. The graphene layer 1320 can be transferred to the glass substrate 1310 via any method described in this application or any other method known in the art.
[0102] FIG. 13B shows that three material layers are deposited on the graphene layer 1320, including an InGaP layer 1330, a GaAs layer 1340 on the InGaP layer 1330, and a second graphene layer 1350 on the GaAs layer 1340. FIG. 13C shows that an InGaAs layer 1360 is deposited on the second graphene layer 1350. The second graphene layer 1350 can help lattice- matching during the fabrication of the InGaAs layer 1360. Metal contacts 1370 are then placed on the InGaAs layer 1360 for electrical conduction, as shown in FIG. 13D. Then in FIG. 13E, the stack of InGaP layer 1330, the GaAs layer 1340, the second graphene layer 1350, and the InGaAs layer 1350 are etched into two solar cell mesas 1380, each of which is underneath a respective metal contact 1370.
[0103] FIGS. 14A-14C illustrate a method 1400 of fabricating transistors. In FIG. 14A, a graphene layer 1420 is disposed on a substrate 1410 such as a SiC wafer. An InGaAs layer 1430 is deposited on the graphene layer 1420. Then the InGaAs layer 1430 is transferred to a silicon wafer 1440 with an oxide layer 1450 disposed on the surface of the silicon wafer 1440, as shown in FIG. 14B. An A1203 layer 1470 is then deposited on the InGaAs layer 1430 as the top gate dielectric. A gate 1480 is fabricated on the A1203 layer 1470 to form a transistor, as shown in FIG. 14C.
[0104] In one example, the graphene layer 1420 can seed the growth of the InGaAs layer 1430 and the silicon wafer 1440 may not have any effect on the growth of the InGaAs layer 1430. In another example, type III seeding (e.g., illustrated in FIG. 7C) can be used. In this case, the graphene layer 1420 can be thin and the silicon wafer 1440 be replaced by an InP substrate so as to seed the growth of the InGaAs layer 1430.
[0105] FIGS. 15A-15F illustrate a method 1500 of forming heterostructure using graphene- based layer transfer technique. In FIG. 15 A, a graphene layer 1520 (e.g., a monolayer graphene) is disposed on a substrate 1510 such as a SiC wafer. An h-BN layer 1530 (i.e., hexagonal form boron nitride) is then epitaxially grown on the graphene layer 1520. FIG. 15B shows that a stressor layer 1540 (e.g., a nickel film) is coated on the h-BN layer 1530 and a tape layer 1550 is disposed on the stressor layer 1540. As described before, the tape layer 1550 and the stressor layer 1540 can transfer the h-BN layer 1530 to a second substrate including a silicon wafer 1560 with an oxide layer 1565 (e.g., silicon oxide) on the top, as illustrated in FIG. 15C. FIG. 15C also shows that the stressor layer 1540 and the tape layer 1550 are etched away, leaving the h- BN layer 1530 for further processing.
[0106] In FIG. 15D, a MoS2 layer 1570 is deposited on the h-BN layer 1530, and a second h- BN layer 1580 is deposited on the MoS2 layer 1570 so as to form h-BN/MoS2 heterostructure. FIG. 15F shows that an Hf()3 layer 1590 is deposited on the second h-BN layer 1580 as top gate dielectric and a top gate 1595 is deposited on the Hf03 layer 1590 for electrical conduction.
[0107] FIGS. 16A-16F illustrate a method 1600 of preparing a platform for fabricating III-V devices using graphene-based layer fabrication and transfer technique. FIG. 16A shows a 12" silicon wafer 1610. A relaxed Ge film 1620 is then disposed on the wafer 1610 via, for example, epitaxial growth, as shown in FIG. 12B. The Ge film 1620 then functions as seed to grow a graphene layer 1630 epitaxially, as seen in FIG. 16C. The graphene layer 1630 can include single crystalline graphene.
[0108] In FIG. 16D, the graphene layer 1630 is pattered via, for example, lithography techniques known in the art. The patterning results in gaps 1635 in the graphene layer 1630. In other words, the graphene layer 1630 can be patterned into isolated and smaller pieces of graphene layers. In FIG. 16E, device layers 1640 are fabricated on the graphene layer 1620. The device layers 1640 can include, for example, III-V materials or structures such as metal- oxide-semiconductor field-effect transistor (MOSFET), lasers, or any other structure known in the art. The devices layers 1640 then function as platforms to form additional devices 1650, as shown in FIG. 1610.
[0109] Conclusion [0110] While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
[0111] The above-described embodiments can be implemented in any of numerous ways. For example, embodiments of designing and making the technology disclosed herein may be implemented using hardware, software or a combination thereof. When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers.
[0112] Further, it should be appreciated that a computer may be embodied in any of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a tablet computer. Additionally, a computer may be embedded in a device not generally regarded as a computer but with suitable processing capabilities, including a Personal Digital Assistant (PDA), a smart phone or any other suitable portable or fixed electronic device.
[0113] Also, a computer may have one or more input and output devices. These devices can be used, among other things, to present a user interface. Examples of output devices that can be used to provide a user interface include printers or display screens for visual presentation of output and speakers or other sound generating devices for audible presentation of output.
Examples of input devices that can be used for a user interface include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets. As another example, a computer may receive input information through speech recognition or in other audible format.
[0114] Such computers may be interconnected by one or more networks in any suitable form, including a local area network or a wide area network, such as an enterprise network, and intelligent network (EST) or the Internet. Such networks may be based on any suitable technology and may operate according to any suitable protocol and may include wireless networks, wired networks or fiber optic networks.
[0115] The various methods or processes (outlined herein may be coded as software that is executable on one or more processors that employ any one of a variety of operating systems or platforms. Additionally, such software may be written using any of a number of suitable programming languages and/or programming or scripting tools, and also may be compiled as executable machine language code or intermediate code that is executed on a framework or virtual machine.
[0116] In this respect, various inventive concepts may be embodied as a computer readable storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other non- transitory medium or tangible computer storage medium) encoded with one or more programs that, when executed on one or more computers or other processors, perform methods that implement the various embodiments of the invention discussed above. The computer readable medium or media can be transportable, such that the program or programs stored thereon can be loaded onto one or more different computers or other processors to implement various aspects of the present invention as discussed above.
[0117] The terms "program" or "software" are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of embodiments as discussed above. Additionally, it should be appreciated that according to one aspect, one or more computer programs that when executed perform methods of the present invention need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present invention.
[0118] Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
[0119] Also, data structures may be stored in computer-readable media in any suitable form. For simplicity of illustration, data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields with locations in a computer-readable medium that convey relationship between the fields. However, any suitable mechanism may be used to establish a relationship between information in fields of a data structure, including through the use of pointers, tags or other mechanisms that establish relationship between data elements.
[0120] Also, various inventive concepts may be embodied as one or more methods, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
[0121] All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
[0122] The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one."
[0123] The phrase "and/or," as used herein in the specification and in the claims, should be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with "and/or" should be construed in the same fashion, i.e., "one or more" of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to "A and/or B", when used in conjunction with open-ended language such as "comprising" can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
[0124] As used herein in the specification and in the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating items in a list, "or" or "and/or" shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as "only one of or "exactly one of," or, when used in the claims, "consisting of," will refer to the inclusion of exactly one element of a number or list of elements. In general, the term "or" as used herein shall only be interpreted as indicating exclusive alternatives (i.e., "one or the other but not both") when preceded by terms of exclusivity, such as "either," "one of," "only one of," or "exactly one of." "Consisting essentially of," when used in the claims, shall have its ordinary meaning as used in the field of patent law.
[0125] As used herein in the specification and in the claims, the phrase "at least one," in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, "at least one of A and B" (or, equivalently, "at least one of A or B," or, equivalently "at least one of A and/or B") can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc. [0126] In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving," "holding,"
"composed of," and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of and "consisting essentially of shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims

1. A method of manufacturing a semiconductor device, the method comprising:
forming a graphene layer on a first substrate;
transferring the graphene layer from the first substrate to a second substrate; and forming a single-crystalline film on the graphene layer.
2. The method of claim 1, wherein the first substrate comprises silicon carbide and the graphene layer comprises a single-crystalline graphene layer.
3. The method of claim 1, wherein the first substrate comprises a copper foil and the graphene layer comprises a poly-crystalline graphene layer.
4. The method of claim 1, wherein the first substrate comprises a silicon substrate and forming the graphene layer comprises:
forming a germanium layer on the silicon substrate; and
forming the graphene layer on the germanium layer.
5. The method of claim 1, wherein the graphene layer consists of a single layer of graphene and forming the single-crystalline film on the graphene layer comprises using the second substrate as a seed for the single-crystalline film and using the graphene layer as a release layer.
6. The method of claim 5, wherein the graphene layer comprises poly-crystalline graphene and the first substrate comprises a copper foil.
7. The method of claim 1, wherein the graphene layer comprises more than one layer of graphene and forming the single-crystalline film on the graphene layer comprises using the graphene layer as a seed for the single-crystalline film.
8. The method of claim 7, wherein the graphene layer comprises single-crystalline graphene.
9. The method of claim 1, wherein forming the single-crystalline film on the graphene layer comprises using a combination of the second substrate and the graphene layer as a seed for the single-crystalline film.
10. The method of claim 1, wherein forming the single-crystalline film comprises depositing material of the second substrate on the graphene layer.
11. The method of claim 1, further comprising:
forming a plurality of holes in the graphene layer, and
wherein forming the single-crystalline film comprises depositing material in the plurality of holes and on the graphene layer.
12. The method of claim 1, further comprising:
removing the single-crystalline film from the graphene film.
13. The method of claim 12, wherein removing the single-crystalline film from the graphene film comprises exfoliating the single-crystalline film.
14. The method of claim 12, wherein removing the single-crystalline film from the graphene film comprises:
forming a metal stressor on the single-crystalline film;
disposing a flexible tape on the metal stressor; and
pulling the single-crystalline film and the metal stressor off the graphene layer with the flexible tape.
15. The method of claim 12, further comprising:
depositing the single-crystalline film on a third substrate.
16. The method of claim 12, further comprising:
forming another single-crystalline film on the graphene layer.
17. The method of claim 1, further comprising:
depositing material on the single-crystalline film.
18. The method of claim 1, further comprising:
removing the single-crystalline film and the graphene layer from the second substrate.
19. A semiconductor device formed by the method of claim 1.
20. A method of semiconductor processing, the method comprising:
forming a graphene monolayer on a silicon carbide substrate;
transferring the graphene monolayer from the silicon carbide substrate to a
semiconductor substrate;
forming a plurality of holes in the graphene monolayer;
forming a first single-crystalline layer of semiconductor material on the graphene monolayer, the semiconductor substrate acting as a seed for the first single-crystalline layer of semiconductor material;
removing the first single-crystalline layer of semiconductor material from the graphene monolayer;
forming a second single-crystalline layer of semiconductor material on the graphene monolayer, the semiconductor substrate acting as a seed for the second single-crystalline layer of semiconductor material; and
removing the second single-crystalline layer of semiconductor material from the graphene monolayer.
21. The method of claim 20, wherein removing the first single-crystalline layer of semiconductor material from the graphene monolayer comprises exfoliating the first single- crystalline layer of semiconductor material.
22. The method of claim 20, further comprising:
forming a plurality of holes in the graphene monolayer, and
wherein forming the first single-crystalline layer of semiconductor material comprises depositing material in the plurality of holes.
23. A device formed by the method of claim 20.
24. A method of semiconductor processing, the method comprising:
forming a graphene layer on a first substrate;
transferring the graphene layer from the first substrate to a second substrate;
depositing a semiconductor layer on the graphene layer;
depositing a stressor layer on the semiconductor layer, the stressor layer causing propagation of a crack between the semiconductor layer and the graphene layer; and disposing a flexible tape on the stressor layer; and
pulling the semiconductor layer and the stressor layer off the graphene layer with the flexible tape.
PCT/US2016/050701 2015-09-08 2016-09-08 Systems and methods for graphene based layer transfer WO2017044577A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187010014A KR20180051602A (en) 2015-09-08 2016-09-08 Graphene-based layer delivery system and method
EP16845018.7A EP3347914A4 (en) 2015-09-08 2016-09-08 Systems and methods for graphene based layer transfer
EP22179687.3A EP4105966A3 (en) 2015-09-08 2016-09-08 Systems and methods for graphene based layer transfer
JP2018512205A JP6938468B2 (en) 2015-09-08 2016-09-08 Systems and methods for graphene-based layer transfer
CN201680059078.8A CN108140552A (en) 2015-09-08 2016-09-08 The system and method for layer transfer based on graphene
US15/914,295 US10770289B2 (en) 2015-09-08 2018-03-07 Systems and methods for graphene based layer transfer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562215223P 2015-09-08 2015-09-08
US62/215,223 2015-09-08
US201662335784P 2016-05-13 2016-05-13
US62/335,784 2016-05-13
US201662361717P 2016-07-13 2016-07-13
US62/361,717 2016-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/914,295 Continuation US10770289B2 (en) 2015-09-08 2018-03-07 Systems and methods for graphene based layer transfer

Publications (1)

Publication Number Publication Date
WO2017044577A1 true WO2017044577A1 (en) 2017-03-16

Family

ID=58240052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/050701 WO2017044577A1 (en) 2015-09-08 2016-09-08 Systems and methods for graphene based layer transfer

Country Status (6)

Country Link
US (1) US10770289B2 (en)
EP (2) EP4105966A3 (en)
JP (1) JP6938468B2 (en)
KR (1) KR20180051602A (en)
CN (1) CN108140552A (en)
WO (1) WO2017044577A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517555A (en) * 2017-12-29 2018-09-11 西安电子科技大学 The method for obtaining large-area high-quality flexible self-supporting monocrystalline oxide film based on Van der Waals extension
WO2018195412A1 (en) * 2017-04-21 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating photovoltaic devices via remote epitaxy
WO2018195152A1 (en) * 2017-04-18 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating semiconductor devices via remote epitaxy
CN108767659A (en) * 2018-06-04 2018-11-06 清华大学 A method of utilizing two-dimensional material interlayer epitaxial growth laser
WO2019099461A1 (en) * 2017-11-14 2019-05-23 Massachusetts Institute Of Technology Epitaxial growth and transfer via patterned two-dimensional (2d) layers
GB201913701D0 (en) 2019-09-23 2019-11-06 Crayonano As Composition of matter
US10517155B2 (en) 2017-02-24 2019-12-24 Massachusetts Institute Of Technology Methods and apparatus for vertically stacked multicolor light-emitting diode (LED) display
WO2019246515A1 (en) * 2018-06-22 2019-12-26 Massachusetts Institute Of Technology Systems and methods for growth of silicon carbide over a layer comprising graphene and/or hexagonal boron nitride and related articles
WO2021009325A1 (en) 2019-07-16 2021-01-21 Crayonano As Nanowire device
US10903073B2 (en) 2016-11-08 2021-01-26 Massachusetts Institute Of Technology Systems and methods of dislocation filtering for layer transfer
WO2021046269A1 (en) 2019-09-04 2021-03-11 Massachusetts Institute Of Technology Multi-regional epitaxial growth and related systems and articles
CN112802559A (en) * 2021-01-29 2021-05-14 华南理工大学 Method for rapidly debugging graphene-ion average force potential field in aqueous solution based on thermodynamic cycle principle
US11063073B2 (en) 2017-02-24 2021-07-13 Massachusetts Institute Of Technology Apparatus and methods for curved focal plane array
JP2022504927A (en) * 2018-10-16 2022-01-13 マサチューセッツ インスティテュート オブ テクノロジー Epitaxy template with carbon buffer on sublimated SIC substrate
US11355393B2 (en) 2018-08-23 2022-06-07 Massachusetts Institute Of Technology Atomic precision control of wafer-scale two-dimensional materials
EP4141951A4 (en) * 2020-05-18 2023-09-27 Huawei Technologies Co., Ltd. Nitride epitaxial wafer, manufacturing method therefor, and semiconductor component
DE112021006661T5 (en) 2021-01-25 2023-10-05 Rohm Co., Ltd. SEMICONDUCTOR SUBSTRATE AND PRODUCTION METHOD OF THE SEMICONDUCTOR SUBSTRATE
DE112021006001T5 (en) 2020-12-10 2023-11-09 Rohm Co., Ltd. SEMICONDUCTOR SUBSTRATE AND PRODUCTION METHOD OF THE SEMICONDUCTOR SUBSTRATE
WO2024121176A1 (en) 2022-12-08 2024-06-13 Soitec Structure comprising a high thermal conductivity boron arsenide layer, and method of manufacture
FR3146242A1 (en) 2023-02-27 2024-08-30 Soitec SEMICONDUCTOR STRUCTURE FOR FORMING VERTICAL CAVITY LASER DIODES

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166881B (en) * 2018-07-25 2020-09-29 深圳市华星光电半导体显示技术有限公司 Flexible display device and preparation method thereof
CN109166790B (en) * 2018-07-28 2022-04-22 西安交通大学 Method for stripping perovskite oxide piezoelectric film on graphene by using metal stress layer
CN112740359B (en) * 2018-10-02 2022-07-12 株式会社菲尔尼克斯 Method for manufacturing semiconductor element and semiconductor substrate
WO2020072867A1 (en) * 2018-10-05 2020-04-09 Massachusetts Institute Of Technology Methods, apparatus, and systems for remote epitaxy using stitched graphene
WO2020072871A1 (en) * 2018-10-05 2020-04-09 Massachusetts Institute Of Technology Methods, apparatus, and systems for manufacturing gan templates via remote epitaxy
KR102232618B1 (en) * 2019-02-14 2021-03-29 전북대학교산학협력단 Manufacturing method for hexagonal boron nitride thin film and opto-electronic elements comprising thin film prepared from the same
CN110010729A (en) * 2019-03-28 2019-07-12 王晓靁 Full-color InGaN base LED of RGB and preparation method thereof
CN110164811A (en) * 2019-05-23 2019-08-23 芜湖启迪半导体有限公司 A kind of production method for the method and GaN HEMT device that silicon carbide substrates are recycled
US11289582B2 (en) * 2019-05-23 2022-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Single-crystal hexagonal boron nitride layer and method forming same
CN110491826B (en) * 2019-07-31 2020-09-29 北京工业大学 Transfer method of compound semiconductor single crystal thin film layer and preparation method of single crystal GaAs-OI composite wafer
CN114245932A (en) 2019-08-01 2022-03-25 罗姆股份有限公司 Semiconductor substrate, semiconductor device, and methods for manufacturing them
CN111009602B (en) * 2020-01-03 2023-03-28 王晓靁 Epitaxial substrate with 2D material interposer, preparation method and manufacturing assembly
JP7490960B2 (en) * 2020-01-15 2024-05-28 日本電気株式会社 Production method
EP4131346A4 (en) * 2020-03-23 2023-04-19 Mitsubishi Electric Corporation Nitride semiconductor device, and method for manufacturing same
KR20230007321A (en) 2020-04-20 2023-01-12 에베 그룹 에. 탈너 게엠베하 Carrier substrate, manufacturing method of carrier substrate, and method of transferring transfer layer from carrier substrate to product substrate
JP7519072B2 (en) 2020-05-01 2024-07-19 学校法人 名城大学 Semiconductor manufacturing method
CN112038220B (en) * 2020-08-31 2023-02-03 上海华力集成电路制造有限公司 Method for improving wafer edge deformation in wafer bonding process
KR102607828B1 (en) * 2021-05-28 2023-11-29 아주대학교산학협력단 Monolithic 3d integrated circuit and method of fabricating thereof
KR102590568B1 (en) * 2021-07-06 2023-10-18 한국과학기술연구원 Heterojunction semiconductor substrate, manufactring method thereof and electronic devices using the same
CN113644168B (en) * 2021-08-12 2024-04-23 王晓靁 Manufacturing method of RGB InGaN-based micro LED and manufactured device
KR102702223B1 (en) * 2021-10-27 2024-09-04 서울대학교산학협력단 Manufacturing method of thin film by using surface functionalized graphene and thin film manufactured by using the same
KR20240027469A (en) * 2022-08-23 2024-03-04 한국광기술원 Manufacturing method of micro vertical led display
GB2624846A (en) * 2022-09-02 2024-06-05 Paragraf Ltd A method of forming a semiconductor or dielectric layer on a substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244662A1 (en) * 2010-03-31 2011-10-06 Samsung Electronics Co., Ltd. Method of manufacturing graphene by using germanium layer
WO2013088948A1 (en) * 2011-12-16 2013-06-20 株式会社豊田自動織機 METHOD FOR GROWING SiC CRYSTAL AND SiC CRYSTAL SUBSTRATE
US20130285016A1 (en) * 2012-04-25 2013-10-31 Yang Wei Epitaxial structure
US20140220764A1 (en) * 2013-02-05 2014-08-07 International Business Machines Corporation Thin film wafer transfer and structure for electronic devices
US20150084074A1 (en) * 2013-09-26 2015-03-26 International Business Machines Corporation Gallium nitride material and device deposition on graphene terminated wafer and method of forming the same
US20150228728A1 (en) * 2013-05-15 2015-08-13 International Business Machines Corporation Formation of large scale single crystalline graphene

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236947A (en) 1979-05-21 1980-12-02 General Electric Company Fabrication of grown-in p-n junctions using liquid phase epitaxial growth of silicon
DE3176676D1 (en) 1980-04-10 1988-04-07 Massachusetts Inst Technology Methods of producing sheets of crystalline material and devices amde therefrom
GB8912498D0 (en) 1989-05-31 1989-07-19 De Beers Ind Diamond Diamond growth
US5264071A (en) 1990-06-13 1993-11-23 General Electric Company Free standing diamond sheet and method and apparatus for making same
US5308661A (en) 1993-03-03 1994-05-03 The Regents Of The University Of California Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate
US5527559A (en) 1994-07-18 1996-06-18 Saint Gobain/Norton Industrial Ceramics Corp. Method of depositing a diamond film on a graphite substrate
US5641381A (en) 1995-03-27 1997-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preferentially etched epitaxial liftoff of InP material
US5792254A (en) 1996-06-12 1998-08-11 Saint-Gobain/Norton Industrial Ceramics Corp. Production of diamond film
US6566256B1 (en) 1999-04-16 2003-05-20 Gbl Technologies, Inc. Dual process semiconductor heterostructures and methods
US7786421B2 (en) 2003-09-12 2010-08-31 California Institute Of Technology Solid-state curved focal plane arrays
WO2006015185A2 (en) 2004-07-30 2006-02-09 Aonex Technologies, Inc. GaInP/GaAs/Si TRIPLE JUNCTION SOLAR CELL ENABLED BY WAFER BONDING AND LAYER TRANSFER
US7619257B2 (en) 2006-02-16 2009-11-17 Alcatel-Lucent Usa Inc. Devices including graphene layers epitaxially grown on single crystal substrates
US7755079B2 (en) 2007-08-17 2010-07-13 Sandia Corporation Strained-layer superlattice focal plane array having a planar structure
ATE486981T1 (en) 2007-12-21 2010-11-15 Condias Gmbh METHOD FOR APPLYING A DIAMOND LAYER TO A GRAPHITE SUBSTRATE
US8916890B2 (en) 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
US8193078B2 (en) 2008-10-28 2012-06-05 Athenaeum, Llc Method of integrating epitaxial film onto assembly substrate
WO2010059131A1 (en) 2008-11-19 2010-05-27 Agency For Science, Technology And Research Method of at least partially releasing an epitaxial layer
US8629353B2 (en) 2009-03-05 2014-01-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method using patterned array with separated islands
JP5091920B2 (en) * 2009-06-23 2012-12-05 株式会社沖データ Manufacturing method of semiconductor wafer
JP5070247B2 (en) * 2009-06-23 2012-11-07 株式会社沖データ Semiconductor device manufacturing method and semiconductor device
US8507797B2 (en) 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
US8629065B2 (en) 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
US8450779B2 (en) * 2010-03-08 2013-05-28 International Business Machines Corporation Graphene based three-dimensional integrated circuit device
US8933436B2 (en) 2010-10-13 2015-01-13 The Regents Of The University Of Michigan Ordered organic-organic multilayer growth
US20120141799A1 (en) * 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor
US9065010B2 (en) 2011-06-28 2015-06-23 Universal Display Corporation Non-planar inorganic optoelectronic device fabrication
US8367556B1 (en) 2011-12-01 2013-02-05 International Business Machines Corporation Use of an organic planarizing mask for cutting a plurality of gate lines
WO2013126927A2 (en) 2012-02-26 2013-08-29 Solexel, Inc. Systems and methods for laser splitting and device layer transfer
US8906772B2 (en) 2012-04-16 2014-12-09 Uchicago Argonne, Llc Graphene layer formation at low substrate temperature on a metal and carbon based substrate
CN103378239B (en) 2012-04-25 2016-06-08 清华大学 Epitaxial structure
CN103374751B (en) * 2012-04-25 2016-06-15 清华大学 The preparation method with the epitaxial structure of micro-structure
US8936961B2 (en) 2012-05-26 2015-01-20 International Business Machines Corporation Removal of stressor layer from a spalled layer and method of making a bifacial solar cell using the same
EP2679540A1 (en) 2012-06-29 2014-01-01 Graphenea, S.A. Method of manufacturing a graphene monolayer on insulating substrates
US9096050B2 (en) 2013-04-02 2015-08-04 International Business Machines Corporation Wafer scale epitaxial graphene transfer
WO2014186731A1 (en) 2013-05-16 2014-11-20 United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Integrated multi-color light emitting device made with hybrid crystal structure
WO2014190352A1 (en) * 2013-05-24 2014-11-27 The University Of North Carolina At Charlotte Growth of semiconductors on hetero-substrates using graphene as an interfacial layer
JP2014237570A (en) * 2013-06-10 2014-12-18 日本電信電話株式会社 Method of producing nitride semiconductor substrate
US9284640B2 (en) 2013-11-01 2016-03-15 Advanced Graphene Products Sp. Z.O.O. Method of producing graphene from liquid metal
TWI681565B (en) 2014-01-15 2020-01-01 美國密西根州立大學 Non-destructive wafer recycling for epitaxial lift-off thin-film device using a superlattice epitaxial layer
WO2015156874A2 (en) 2014-01-15 2015-10-15 The Regents Of The Univerity Of Michigan Integration of epitaxial lift-off solar cells with mini-parabolic concentrator arrays via printing method
DE102015213426B4 (en) 2014-07-25 2022-05-05 Semiconductor Energy Laboratory Co.,Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US10119201B2 (en) 2014-10-15 2018-11-06 The University Of Melbourne Method of fabricating a diamond membrane
KR102374118B1 (en) 2014-10-31 2022-03-14 삼성전자주식회사 Graphene layer, method of forming the same, device including graphene layer and method of manufacturing the device
CN104393128B (en) * 2014-11-19 2017-03-15 江苏巨晶新材料科技有限公司 A kind of nitride LED epitaxial structure of use SiC substrate and preparation method thereof
US9530643B2 (en) 2015-03-12 2016-12-27 International Business Machines Corporation Selective epitaxy using epitaxy-prevention layers
US10494713B2 (en) 2015-04-16 2019-12-03 Ii-Vi Incorporated Method of forming an optically-finished thin diamond film, diamond substrate, or diamond window of high aspect ratio
DE102015111453B4 (en) * 2015-07-15 2022-03-10 Infineon Technologies Ag A semiconductor device and a method of forming a semiconductor device
US9991113B2 (en) 2016-06-03 2018-06-05 Massachusetts Institute Of Technology Systems and methods for fabricating single-crystalline diamond membranes
KR20190073558A (en) 2016-11-08 2019-06-26 메사추세츠 인스티튜트 오브 테크놀로지 Dislocation filtering systems and methods for layer delivery
WO2018156877A1 (en) 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Apparatus and methods for curved focal plane array
WO2018156876A1 (en) 2017-02-24 2018-08-30 Kim, Jeehwan Methods and apparatus for vertically stacked multicolor light-emitting diode (led) display
JP2020520552A (en) 2017-04-18 2020-07-09 マサチューセッツ インスティテュート オブ テクノロジー System and method for fabricating semiconductor devices via remote epitaxy
WO2018195412A1 (en) 2017-04-21 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating photovoltaic devices via remote epitaxy
US20200286786A1 (en) 2017-11-14 2020-09-10 Massachusetts Institute Of Technology Epitaxial growth and transfer via patterned two-dimensional (2d) layers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244662A1 (en) * 2010-03-31 2011-10-06 Samsung Electronics Co., Ltd. Method of manufacturing graphene by using germanium layer
WO2013088948A1 (en) * 2011-12-16 2013-06-20 株式会社豊田自動織機 METHOD FOR GROWING SiC CRYSTAL AND SiC CRYSTAL SUBSTRATE
US20130285016A1 (en) * 2012-04-25 2013-10-31 Yang Wei Epitaxial structure
US20140220764A1 (en) * 2013-02-05 2014-08-07 International Business Machines Corporation Thin film wafer transfer and structure for electronic devices
US20150228728A1 (en) * 2013-05-15 2015-08-13 International Business Machines Corporation Formation of large scale single crystalline graphene
US20150084074A1 (en) * 2013-09-26 2015-03-26 International Business Machines Corporation Gallium nitride material and device deposition on graphene terminated wafer and method of forming the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3347914A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903073B2 (en) 2016-11-08 2021-01-26 Massachusetts Institute Of Technology Systems and methods of dislocation filtering for layer transfer
US10517155B2 (en) 2017-02-24 2019-12-24 Massachusetts Institute Of Technology Methods and apparatus for vertically stacked multicolor light-emitting diode (LED) display
US11063073B2 (en) 2017-02-24 2021-07-13 Massachusetts Institute Of Technology Apparatus and methods for curved focal plane array
WO2018195152A1 (en) * 2017-04-18 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating semiconductor devices via remote epitaxy
WO2018195412A1 (en) * 2017-04-21 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating photovoltaic devices via remote epitaxy
WO2019099461A1 (en) * 2017-11-14 2019-05-23 Massachusetts Institute Of Technology Epitaxial growth and transfer via patterned two-dimensional (2d) layers
CN108517555B (en) * 2017-12-29 2020-08-04 西安电子科技大学 Method for obtaining large-area high-quality flexible self-supporting monocrystalline oxide film based on Van der Waals epitaxy
CN108517555A (en) * 2017-12-29 2018-09-11 西安电子科技大学 The method for obtaining large-area high-quality flexible self-supporting monocrystalline oxide film based on Van der Waals extension
CN108767659A (en) * 2018-06-04 2018-11-06 清华大学 A method of utilizing two-dimensional material interlayer epitaxial growth laser
WO2019246515A1 (en) * 2018-06-22 2019-12-26 Massachusetts Institute Of Technology Systems and methods for growth of silicon carbide over a layer comprising graphene and/or hexagonal boron nitride and related articles
JP2021527618A (en) * 2018-06-22 2021-10-14 マサチューセッツ インスティテュート オブ テクノロジー Systems and methods for the growth of silicon carbide on layers with graphene and / or hexagonal boron nitride and related articles.
US20210125826A1 (en) * 2018-06-22 2021-04-29 Massachusetts Institute Of Technology Systems and methods for growth of silicon carbide over a layer comprising graphene and/or hexagonal boron nitride and related articles
US11355393B2 (en) 2018-08-23 2022-06-07 Massachusetts Institute Of Technology Atomic precision control of wafer-scale two-dimensional materials
JP2022504927A (en) * 2018-10-16 2022-01-13 マサチューセッツ インスティテュート オブ テクノロジー Epitaxy template with carbon buffer on sublimated SIC substrate
WO2021009325A1 (en) 2019-07-16 2021-01-21 Crayonano As Nanowire device
WO2021046269A1 (en) 2019-09-04 2021-03-11 Massachusetts Institute Of Technology Multi-regional epitaxial growth and related systems and articles
WO2021058605A1 (en) 2019-09-23 2021-04-01 Crayonano As Composition of matter
GB201913701D0 (en) 2019-09-23 2019-11-06 Crayonano As Composition of matter
EP4141951A4 (en) * 2020-05-18 2023-09-27 Huawei Technologies Co., Ltd. Nitride epitaxial wafer, manufacturing method therefor, and semiconductor component
DE112021006001T5 (en) 2020-12-10 2023-11-09 Rohm Co., Ltd. SEMICONDUCTOR SUBSTRATE AND PRODUCTION METHOD OF THE SEMICONDUCTOR SUBSTRATE
DE112021006661T5 (en) 2021-01-25 2023-10-05 Rohm Co., Ltd. SEMICONDUCTOR SUBSTRATE AND PRODUCTION METHOD OF THE SEMICONDUCTOR SUBSTRATE
CN112802559A (en) * 2021-01-29 2021-05-14 华南理工大学 Method for rapidly debugging graphene-ion average force potential field in aqueous solution based on thermodynamic cycle principle
CN112802559B (en) * 2021-01-29 2022-03-29 华南理工大学 Method for rapidly debugging graphene-ion average force potential field in aqueous solution based on thermodynamic cycle principle
WO2024121176A1 (en) 2022-12-08 2024-06-13 Soitec Structure comprising a high thermal conductivity boron arsenide layer, and method of manufacture
FR3143044A1 (en) 2022-12-08 2024-06-14 Soitec STRUCTURE COMPRISING A LAYER OF BORON ARSENIDE OF HIGH THERMAL CONDUCTIVITY AND MANUFACTURING METHOD
FR3146242A1 (en) 2023-02-27 2024-08-30 Soitec SEMICONDUCTOR STRUCTURE FOR FORMING VERTICAL CAVITY LASER DIODES
WO2024179735A1 (en) 2023-02-27 2024-09-06 Soitec Semiconductor structure for forming vertical-cavity laser diodes

Also Published As

Publication number Publication date
EP3347914A1 (en) 2018-07-18
KR20180051602A (en) 2018-05-16
JP2018535536A (en) 2018-11-29
EP4105966A3 (en) 2023-06-21
CN108140552A (en) 2018-06-08
US20180197736A1 (en) 2018-07-12
US10770289B2 (en) 2020-09-08
EP3347914A4 (en) 2019-09-25
EP4105966A2 (en) 2022-12-21
JP6938468B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US10770289B2 (en) Systems and methods for graphene based layer transfer
US10517155B2 (en) Methods and apparatus for vertically stacked multicolor light-emitting diode (LED) display
US10903073B2 (en) Systems and methods of dislocation filtering for layer transfer
Qi et al. Fast growth of strain-free AlN on graphene-buffered sapphire
TWI681565B (en) Non-destructive wafer recycling for epitaxial lift-off thin-film device using a superlattice epitaxial layer
US9064698B1 (en) Thin-film gallium nitride structures grown on graphene
US20200043790A1 (en) Systems and methods for fabricating semiconductor devices via remote epitaxy
TW201225171A (en) Method of manufacturing a semiconductor device
Qu et al. Long-range orbital hybridization in remote epitaxy: The nucleation mechanism of GaN on different substrates via single-layer graphene
Min et al. Toward large-scale Ga2O3 membranes via quasi-Van Der Waals epitaxy on epitaxial graphene layers
KR20170128777A (en) Strain relief through pre-patterned mesas Epitaxial lift-off
WO2020072867A1 (en) Methods, apparatus, and systems for remote epitaxy using stitched graphene
US20210351033A1 (en) Epitaxial growth template using carbon buffer on sublimated sic substrate
WO2013187078A1 (en) Semiconductor substrate, method of manufacturing semiconductor substrate, and method of manufacturing composite substrate
JPWO2013187076A1 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and composite substrate manufacturing method
JP2014216356A (en) Semiconductor substrate, semiconductor substrate manufacturing method and composite substrate manufacturing method
JP2014090121A (en) Composite substrate manufacturing method
JP2014003106A (en) Composite substrate and composite substrate manufacturing method
JP2014003104A (en) Composite substrate manufacturing method and composite substrate
KR20240071347A (en) Compound semiconductor device and method for manufacturing the same
Han Multiplication of Freestanding Compound Semiconductor Membranes from a Single Wafer by Alternating Growth with 2D Materials
JP2014209527A (en) Composite substrate manufacturing method and composite substrate
JP2014090122A (en) Composite substrate manufacturing method
KR20240114863A (en) Substrate, semiconductor devices and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018512205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187010014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016845018

Country of ref document: EP