WO2017043425A1 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
WO2017043425A1
WO2017043425A1 PCT/JP2016/075852 JP2016075852W WO2017043425A1 WO 2017043425 A1 WO2017043425 A1 WO 2017043425A1 JP 2016075852 W JP2016075852 W JP 2016075852W WO 2017043425 A1 WO2017043425 A1 WO 2017043425A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
rolling bearing
resin
resin main
cage
Prior art date
Application number
PCT/JP2016/075852
Other languages
French (fr)
Japanese (ja)
Inventor
貴行 鈴木
清茂 山内
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017043425A1 publication Critical patent/WO2017043425A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles

Definitions

  • This invention relates to a rolling bearing suitable for a revolving part such as a planetary rotating body provided in a planetary reduction gear, and more particularly to guiding a cage.
  • a rolling bearing includes a cage for maintaining a circumferential interval between rolling elements.
  • pockets for storing rolling elements are formed at equal intervals in the circumferential direction.
  • the type of cage include a press cage formed of a steel plate (for example, Patent Literature 1 below) and a resin cage formed of a resin (for example, Patent Literature 2 below).
  • a rolling element guide method for example, Patent Document 2 that guides the cage by a rolling element
  • a bearing ring guide method for example, a guide that guides the cage by a race ring (outer ring or inner ring)
  • the following patent documents 1, 3 are employed.
  • JP 2004-293730 A JP 2005-69282 A JP 2008-196582 A
  • the lubricating oil inside the cage and bearings must have a rolling bearing that revolves integrally with the planetary rotating body in addition to centrifugal force due to rotation around the bearing center axis of the cage. Centrifugal force also acts. The centrifugal force due to the revolution causes a load region in the rolling bearing, and causes deformation and eccentricity of the cage, and bias of the lubricating oil inside the bearing.
  • a final reduction gear is disposed inside the wheel rim.
  • this final reduction gear generally has a structure in which planetary reduction gears are combined in a plurality of stages, and the output from the final stage planetary reduction gears is transmitted to the wheel rim.
  • the planetary rotating body provided in the planetary reduction gear is composed of a planetary gear or a planetary roller that revolves while rotating between a ring gear and a sun gear, and is supported on a carrier shaft via a rolling bearing (for example, Patent Document 3). .
  • the press cage is excellent in deformation resistance when a strong centrifugal acceleration is applied, but self-lubricating property cannot be expected on a metal surface such as a guided surface guided by rolling elements or bearing parts of a bearing ring. There is anxiety about using it in an environment where the lubricant is diluted.
  • the resin cage is superior in sliding property to the guided surface and lighter in weight than the press cage, so that the bearing component (the bearing ring or the roller that can come into contact with the cage in the radial direction) due to strong centrifugal acceleration.
  • the aggressiveness to the moving body is small, and it is advantageous for bearing damage as a result.
  • As the deformation for example, in the case of the raceway guide method, there is an elliptical deformation caused by the guided surface of the cage being pressed against the cage guide surface of the raceway.
  • the rolling element guide method elliptic deformation due to a tensile force acting on the cage in accordance with the revolution speed difference between the rolling elements can be mentioned.
  • the problem to be solved by the present invention is that the cage of the rolling bearing is light in weight, and the slidability of the guided surface is good, but the cage deformation that derails the guide clearance It is to suppress.
  • the present invention provides a rolling bearing comprising a cage having pockets formed at predetermined intervals in the circumferential direction and a bearing component for guiding the cage, wherein the cage is arranged in the circumferential direction. It consists of a resin body part in which openings corresponding to the pockets are formed at predetermined intervals, and a covering part fixed to the resin body part, and the covering part has a smaller water absorption rate and smaller than the resin body part. It has at least one of the three properties of linear expansion coefficient and high elastic modulus, and the guided surface guided by the bearing component among the surfaces of the cage is from the resin surface formed on the covering portion. Is adopted.
  • a retainer can be reduced in weight by employ
  • the covering portion fixed to the resin main body portion has a smaller water absorption rate than the resin main body portion, it is possible to suppress expansion deformation due to water absorption on the guided surface formed of the resin surface formed in the covering portion. it can.
  • coated part has a small linear expansion coefficient compared with the resin main-body part, the expansion deformation by a temperature rise can be suppressed in the to-be-guided surface which consists of the resin surface formed in the coating
  • the covering portion has a higher elastic modulus than the resin main body portion
  • the guided surface made of the resin surface formed on the covering portion
  • deformation due to centrifugal acceleration or a difference in revolution speed between rolling elements is suppressed. be able to.
  • the slidability of the guided surface is good because it consists of the resin surface of the covering portion.
  • the present invention employs the above-described configuration, and the cage of the rolling bearing is lightweight, and the slidability of the guided surface is good, but the cage deformation that detracts from the guide clearance is suppressed. can do.
  • Sectional drawing which shows the structure of the rolling bearing which concerns on 1st embodiment of this invention. Sectional view taken along line II-II in FIG. Sectional drawing which shows the structure of the rolling bearing which concerns on 2nd embodiment of this invention. Sectional drawing which shows the structure of the rolling bearing which concerns on 3rd embodiment of this invention. Sectional drawing which shows the structure of the planetary reduction gear incorporating the rolling bearing which concerns on either embodiment. Sectional view taken along line VI-VI in FIG.
  • the rolling bearing according to the first embodiment includes an inner ring 1, an outer ring 2, a plurality of rolling elements 3 interposed between the two wheels 1 and 2, and the rolling elements 3 around the rolling elements 3. And a cage 4 equally arranged in the direction.
  • the center axis of both wheels 1 and 2 and the center axis of the cage 4 coincide with the bearing center axis of the rolling bearing.
  • the inner ring 1 is a bearing part having a raceway surface on the outer peripheral side.
  • the outer ring 2 is a bearing component having a raceway surface on the inner peripheral side.
  • the rolling element 3 consists of a tapered roller.
  • the rolling bearing of the first embodiment is a single-row tapered roller bearing.
  • An inner ring assembly is constituted by the inner ring 1, the plurality of rolling elements 3 and the cage 4.
  • the rolling element 3 may be a cylindrical roller or a spherical roller, may be a ball, and may be arranged in a double row.
  • the cage 4 is a cage type cage. Pockets 5 are formed in the retainer 4 at predetermined intervals in the circumferential direction.
  • the pocket 5 is a space for accommodating the rolling elements 3.
  • the retainer 4 includes a resin main body 6 in which openings 6 a corresponding to the pockets 5 are formed at predetermined intervals in the circumferential direction, and a covering portion 7 fixed to the resin main body 6.
  • the opening 6a has a shape on the premise that the shape of the pocket 5 is completed by fixing the covering portion 7 to the resin main body portion 6.
  • the covering portion 7 is made of a resin molding layer fixed on the entire surface of the resin main body portion 6.
  • the covering portion 7 is fixed over the entire circumference in the circumferential direction of the resin main body portion 6.
  • the covering portion 7 is fixed to the resin main body portion 6 so as to enclose each partition portion of the resin main body portion 6 that separates the openings 6a and 6a in the circumferential direction.
  • the pocket inner surface portion 7 a that receives the rolling elements 3 in the circumferential direction is made of a resin surface formed on the covering portion 7.
  • the guided surface 7 b guided by the bearing component among the surfaces of the cage 4 is also made of a resin surface formed on the covering portion 7.
  • a bearing part that guides the cage 4 includes an outer ring 2.
  • the guided surface 7 b slides on the cage guide surface 2 a formed on the outer ring 2.
  • the resin main body 6 is made of polyamide (PA).
  • the covering portion 7 is formed of an epoxy resin.
  • polyamide (PA) has a water absorption rate of 2 [%], a linear expansion coefficient of 2 to 7 [ ⁇ 10 ⁇ 5 / ° C.], and a tensile modulus of elasticity of about 8000 [MPa].
  • the epoxy resin has a water absorption rate of 0.2 [%], a linear expansion coefficient of 1 to 5 [ ⁇ 10 ⁇ 5 / ° C.], and a tensile elastic modulus of about 20000 [MPa]. Therefore, the covering portion 7 formed of epoxy resin has a clearly smaller water absorption rate and higher elastic modulus than the resin main body portion 6 formed of polyamide (PA), and has the same linear expansion coefficient. In particular, by using an epoxy resin having a linear expansion coefficient of less than 2 [ ⁇ 10 ⁇ 5 / ° C.], the covering portion 7 has a smaller linear expansion coefficient than the resin main body portion 6.
  • epoxy resin has better self-lubricating properties than polyamide (PA). For this reason, the slidability of the surface of the epoxy resin formed on the covering portion 7 is superior to that of the polyamide (PA) surface of the resin main body portion 6.
  • coated part 7 should just be comprised so that it may have at least 1 property among three properties of a small water absorption rate, a small linear expansion coefficient, and a high elasticity modulus compared with the resin main-body part 6.
  • FIG. Examples of other resin materials that can be used for forming the resin main body 6 include engineering plastics such as polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT).
  • Examples of the resin material that can be used for forming the covering portion 7 include polyamideimide (PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), Super engineering plastics such as polyethersulfone (PES), polyimide (PI), and polyetherimide (PEI) can be mentioned.
  • PAI polyamideimide
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PSF polysulfone
  • Super engineering plastics such as polyethersulfone (PES), polyimide (PI), and polyetherimide (PEI) can be mentioned.
  • PES polyethersulfone
  • PI polyimide
  • PEI polyetherimide
  • the resin body portion is formed of polyamide (PA) and the covering portion is formed of polyamideimide (PAI), the resin body portion has a clearly smaller water absorption rate than that of the resin body portion and has the same linear expansion coefficient or A covering portion having a high linear expansion coefficient can be formed.
  • PA polyamide
  • PAI polyamideimide
  • the retainer 4 can be manufactured by, for example, disposing the resin main body portion 6 in the cavity and transfer molding the covering portion 7.
  • the rolling bearing of the first embodiment is as described above, and most of the cage 4 is constituted by the resin main body portion 6 in which openings 6a corresponding to the pockets 5 are formed at predetermined intervals in the circumferential direction. Therefore, the cage 4 can be reduced in weight as compared with the case where the whole is made of an iron-based material. This is less offensive to the bearing component (the outer ring 2 or the rolling element 3 that can come into contact with the cage 4 in the radial direction) due to strong centrifugal acceleration, resulting in an advantage against bearing damage.
  • the cage 4 includes a resin main body portion 6 and a covering portion 7 fixed to the resin main body portion 6.
  • the covering portion 7 is smaller in water absorption than the resin main body portion 6.
  • the guided surface 7 b guided by the bearing component (outer ring 2) is made of the resin surface formed on the covering portion 7, so that the entire cage is the same as the resin main body portion 6.
  • expansion deformation of the guided surface 7b due to water absorption can be suppressed. That is, by reducing the guide clearance between the guided surface 7b and the cage guide surface 2a, it is possible to prevent an increase in rotational torque and an increase in the amount of heat generated in the sliding contact area of the both surfaces 7b, 2a.
  • the covering portion 7 has a smaller linear expansion coefficient than the resin main body portion 6, and the guided surface 7 b is made of a resin surface formed on the covering portion 7.
  • the entirety is formed of the same resin material as that of the resin main body 6, the expansion deformation of the guided surface 7b due to the temperature rise can be suppressed. This is also effective in preventing an increase in rotational torque and an increase in heat generation due to a decrease in guide clearance.
  • the covering portion 7 has a higher elastic modulus than the resin main body portion 6 and the guided surface 7b is made of a resin surface formed on the covering portion 7. Therefore, the entire cage As compared with the case where is formed of the same resin material as that of the resin main body 6, the elliptical deformation of the cage 4 due to the centrifugal acceleration or the difference in the revolution speed between the rolling elements can be suppressed. This is equivalent to suppressing uneven distribution of guide clearances and pocket clearances (clearance between the pockets 5 and the rolling elements 3) due to elliptical deformation, thereby preventing a situation where proper cage guidance is hindered. It will also be a thing.
  • the rolling bearing of the first embodiment includes each partition portion that separates the openings 6a and 6a in the circumferential direction in the surface of the resin main body portion 6, the covering portion 7 includes the water absorption and temperature described above.
  • the expansion deformation of the pocket inner surface portions 7a, 7a due to the rise can be suppressed, the deformation of the column of the cage 4 due to the above-described centrifugal acceleration and the revolution speed difference can be suppressed, and the elliptical deformation of the cage 4 can be suppressed.
  • the rolling bearing of the first embodiment is composed of a resin surface in which the guided surface 7b guided by the bearing component (the bearing ring 2) is formed on the covering portion 7 among the surfaces of the cage 4, the guided bearing is provided.
  • the slidability of the surface 7b is good.
  • the rolling bearing of the first embodiment is formed of a resin molding layer in which the covering portion 7 is fixed on the entire surface of the resin main body portion 6, the above-described elliptic deformation of the cage 4 can be most effectively suppressed. it can.
  • the covering portion 7 is compared with the resin main body portion 6. Therefore, it is possible to obtain the covering portion 7 having a small water absorption rate, a small linear expansion coefficient, and a high elastic modulus and having excellent slidability.
  • PA polyamide
  • the cage 4 since the cage 4 is guided by the raceway ring 2, it is not necessary to set the pocket clearance as narrow as in the rolling element guide system. Even when the cage 4 is elliptically deformed due to the revolution speed difference, strong contact between the cage 4 and the rolling element 3 can be prevented.
  • the bearing part for guiding the cage 4 is composed of the outer ring 2, compared with the case where the cage is guided by the inner ring 1, the covered bearing formed on the outer circumference of the cage 4.
  • the circumferential length of the guide surface 7b and the cage guide surface 2a is increased, the peripheral speed difference and the contact surface pressure at the sliding contact portion of the both surfaces 7b, 2a are reduced, and the lubricating oil is moved to the outer ring 2 side by centrifugal force.
  • the guided surface 7b is unlikely to be short of lubricating oil, which is advantageous in preventing wear and seizure of the guided surface 7b.
  • the rolling bearing of the first embodiment is resistant to the above-described elliptical deformation on the outer diameter side of the cage because the covering portion 7 is continuous over the entire outer periphery of the resin main body portion 6. Excellent resistance to elliptical deformation compared to resistance to elliptical deformation on the inner diameter side of the vessel.
  • the raceway guide system is exemplified, but when the rolling element guide system is used, the cage 4 is guided by the rolling element 3 in contact with the pocket inner surface portions 7a and 7a of the covering portion 7.
  • the pocket clearance and the clearance between the bearing ring and the cage may be set, and the illustration and explanation thereof will be omitted.
  • the opening 6a is a precondition for completing the shape of the pocket 5 by fixing the covering portion 7, but the opening may be a pocket.
  • the covering portion 7 is a resin molding layer that covers the entire surface of the resin main body portion 6.
  • the resin main body portion of the resin main body portion is formed so that at least the resin surface that becomes the guided surface 7b is formed on the covering portion. It may be fixed to the part.
  • FIG. 3 shows a second embodiment as an example. In the following, only differences from the first embodiment will be described.
  • the cage 10 of the second embodiment shown in FIG. 3 covers only the outer peripheral surface, the inner peripheral surface and the side surface of the resin main body 11 on one side in the axial direction (large diameter side in the illustrated example) over the entire circumference.
  • the covering portion 12 is fixed to the surface.
  • the rolling bearing of the second embodiment forms a pocket as shown in FIG. 2 as the opening of the resin main body 11, the pocket size at the time of manufacturing the cage is suppressed while suppressing deformation of the guided surface 12a during the operation of the bearing. There is an advantage that it is easy to stabilize.
  • the resin body 11 is covered from three sides of the inner diameter side, the outer diameter side, and one side surface in order to improve the fixability of the covering portion 12 to be fixed to a part of the resin body portion 11. .
  • irregularities such as grooves and dimples may be formed on the surface portion of the resin main body portion 11 covered with the covering portion 12.
  • the covering portion is a resin molding layer made of a single resin material, but the covering portion may be composed of a plurality of materials.
  • FIG. 4 shows a third embodiment as an example.
  • the cage 20 of the third embodiment shown in FIG. 4 has a covering part 22 made of an annular part fitted to the resin main body part 21.
  • the range in which the covering portion 22 is fitted is the same as in the second embodiment.
  • the covering portion 22 includes an annular core 23 made of iron and a coating layer 24 fixed to the annular core 23.
  • iron refers to iron-based materials such as pure iron, steel (including stainless steel), and cast iron.
  • the linear expansion coefficient and elastic modulus as a whole of the covering portion 22 are sufficiently high to suppress the elliptical deformation of the cage 20 due to the nature of the iron of the annular core 23 occupying most of the covering portion 22. Can be secured.
  • the coating layer 24 is made of polyamideimide (PAI) or polytetrafluoroethylene (PTFE).
  • PAI polyamideimide
  • PTFE polytetrafluoroethylene
  • the resin surface of the coating layer 24 becomes a guided surface.
  • Polyamideimide (PAI) is excellent in wear resistance in addition to good dimensional stability (particularly low water absorption) and slidability.
  • Polytetrafluoroethylene (PTFE) also has good dimensional stability (water absorption: substantially 0 [%]), and good slidability can be obtained even if it is adopted. As described above, it has a water absorption rate of 0.2 [%] suitable as a guided surface, and has good slidability.
  • the rolling bearing according to the third embodiment is suitable when priority is given to the diversity of the material selection of the covering portion since the covering portion 22 is a separately-made annular part fitted to the resin main body portion 21.
  • a coating portion satisfying the above-mentioned three properties cannot be obtained with only polyamideimide (PAI) or polytetrafluoroethylene (PTFE), an iron annular cored bar 23 and a coating layer such as polyamideimide (PAI)
  • PAI polyamideimide
  • FIG. 5 and 6 illustrate a planetary speed reducer incorporating the rolling bearing 100 according to any one of the above-described embodiments.
  • a plurality of planetary rotating bodies 105 as planetary gears meshing with both gears 102, 104 are arranged between a sun gear 102 attached to the input shaft 101 and an internal gear 104 fixed to the housing 103.
  • Each planetary rotator 105 is rotatably supported with respect to the carrier 107 connected to the output shaft 106, and the revolving motion of the planetary rotator 105 revolving while rotating between the sun gear 102 and the internal gear 104 is It is output to the output shaft 106 via the carrier 107.
  • a pair of rolling bearings 100 are disposed between the planetary rotating body 105 and the carrier 107 provided in the planetary reduction gear.
  • the outer ring of each rolling bearing 100 is attached to the planetary rotator 105 and rotates integrally with the planetary rotator 105.
  • the inner ring of each rolling bearing 100 is attached to a support shaft 108 provided on the carrier 107 and is stationary with respect to the outer ring.
  • the planetary speed reducer shown in the figure performs the first speed reduction of the final speed reducer provided inside the wheel rim of the super large dump truck.
  • the super large dump truck is intended for mines and has a load capacity of 300 t or more.
  • the revolution diameter of the roller bearing 100 revolving around the sun gear 102 is about 500 mm
  • the revolution speed is about 500 rpm
  • the bearing rotation speed at this time is about 1300 rpm
  • the maximum centrifugal acceleration is about 75 G. Assumed.
  • the rolling bearing 100 suppresses elliptical deformation of the cage, absorbs the moisture of the lubricating oil supplied to the rolling bearing 100, and expands the guided surface of the cage due to the temperature rise of the lubricating oil. Therefore, abnormal wear on the guided surface of the cage and the inner surface of the pocket is possible even in a usage environment where strong centrifugal acceleration is applied, such as the final reduction gear of an ultra-large dump truck. Can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This retainer (4) comprises: a resin main body part (6) in which openings (6a) corresponding to pockets (5) are formed at predetermined intervals in the circumferential direction; and a cover part (7) fixed to the resin main body part (6). The cover part (7) has the following three characteristics, i.e., a smaller water absorption rate, a smaller linear expansivity, and a higher elastic modulus compared to the resin main body part (6). A guided surface (7b) of the retainer is constituted by a resin surface formed on the cover part (7).

Description

転がり軸受Rolling bearing
 この発明は、遊星減速機に備わる遊星回転体のような公転部位に好適な転がり軸受に関し、特に、保持器を案内することに関する。 This invention relates to a rolling bearing suitable for a revolving part such as a planetary rotating body provided in a planetary reduction gear, and more particularly to guiding a cage.
 一般に、転がり軸受は、転動体間の周方向間隔を保つための保持器を備える。保持器には、転動体を収めるポケットが周方向に均等間隔で形成されている。保持器の種類としては、鋼板によって形成されたプレス保持器と(例えば、下記特許文献1)、樹脂によって形成された樹脂保持器とが挙げられる(例えば、下記特許文献2)。保持器を案内する方式としては、転動体によって保持器を案内する転動体案内方式(例えば、特許文献2)、又は軌道輪(外輪又は内輪)によって保持器を案内する軌道輪案内方式(例えば、下記特許文献1、3)が採用されている。 Generally, a rolling bearing includes a cage for maintaining a circumferential interval between rolling elements. In the cage, pockets for storing rolling elements are formed at equal intervals in the circumferential direction. Examples of the type of cage include a press cage formed of a steel plate (for example, Patent Literature 1 below) and a resin cage formed of a resin (for example, Patent Literature 2 below). As a method for guiding the cage, a rolling element guide method (for example, Patent Document 2) that guides the cage by a rolling element, or a bearing ring guide method (for example, a guide that guides the cage by a race ring (outer ring or inner ring)) (for example, The following patent documents 1, 3) are employed.
特開2004-293730号JP 2004-293730 A 特開2005-69282号公報JP 2005-69282 A 特開2008-196582号公報JP 2008-196582 A
 しかしながら、公転する部位に使用される場合、保持器や軸受内部の潤滑油には、保持器の軸受中心軸周りの回転による遠心力のほかに、転がり軸受が遊星回転体と一体に公転することによる遠心力も作用する。公転による遠心力は、転がり軸受に負荷域を生じさせると共に、保持器の変形や偏心、軸受内部の潤滑油の偏りを生じさせる原因となる。 However, when used in revolving parts, the lubricating oil inside the cage and bearings must have a rolling bearing that revolves integrally with the planetary rotating body in addition to centrifugal force due to rotation around the bearing center axis of the cage. Centrifugal force also acts. The centrifugal force due to the revolution causes a load region in the rolling bearing, and causes deformation and eccentricity of the cage, and bias of the lubricating oil inside the bearing.
 例えば、ダンプトラック等では、ホイールリムの内側に終減速装置が配置されている。この終減速装置は、大きな減速比を得るため、一般に、遊星減速機を複数段に組み合わせた構造であり、最終段の遊星減速機からの出力をホイールリムに伝達するようになっている。その遊星減速機に備わる遊星回転体は、リングギア及びサンギア間で自転しながら公転する遊星歯車又は遊星ローラからなり、転がり軸受を介してキャリヤの軸に支持されている(例えば、特許文献3)。 For example, in a dump truck or the like, a final reduction gear is disposed inside the wheel rim. In order to obtain a large reduction ratio, this final reduction gear generally has a structure in which planetary reduction gears are combined in a plurality of stages, and the output from the final stage planetary reduction gears is transmitted to the wheel rim. The planetary rotating body provided in the planetary reduction gear is composed of a planetary gear or a planetary roller that revolves while rotating between a ring gear and a sun gear, and is supported on a carrier shaft via a rolling bearing (for example, Patent Document 3). .
 本願発明者らが現行の超大型ダンプの終減速装置における使用環境を調べたところ、転がり軸受の公転直径が500mm前後になり、その公転速度が500rpmを超え、軸受回転速度が1300rpm程度になり、最大の遠心加速度が約75Gになっていた。このような強い遠心加速度が作用すると、軸受内部の潤滑油が負荷域で希薄になり、負荷域と周方向反対側へ偏る傾向が顕著であった。 When the inventors of the present application examined the use environment in the final reduction gear of the current ultra-large dump truck, the revolution diameter of the rolling bearing was around 500 mm, the revolution speed exceeded 500 rpm, and the bearing rotation speed became about 1300 rpm. The maximum centrifugal acceleration was about 75G. When such strong centrifugal acceleration is applied, the lubricating oil inside the bearing becomes dilute in the load region, and the tendency to deviate to the opposite side in the circumferential direction from the load region is remarkable.
 プレス保持器は、強い遠心加速度が作用した際の耐変形性に優れるが、転動体又は軌道輪の軸受部品によって案内される被案内面等の金属表面において自己潤滑性に期待できず、負荷域で潤滑油が希薄になる環境での使用に不安がある。 The press cage is excellent in deformation resistance when a strong centrifugal acceleration is applied, but self-lubricating property cannot be expected on a metal surface such as a guided surface guided by rolling elements or bearing parts of a bearing ring. There is anxiety about using it in an environment where the lubricant is diluted.
 一方、樹脂保持器は、プレス保持器に比して、被案内面の摺動性に優れると共に軽量になるため、強い遠心加速度による軸受部品(保持器に径方向に接触し得る軌道輪又は転動体)への攻撃性が小さく、結果的に軸受損傷に対して有利となるが、遠心加速度が作用した際に変形し易く、被案内面と軸受部品との間の案内すきまを適切な範囲に保つことができない可能性がある。その変形として、例えば、軌道輪案内方式の場合、軌道輪の保持器案内面に保持器の被案内面が押し付けられたことによる楕円変形が挙げられる。また、転動体案内方式の場合、転動体間の公転速度差に伴って保持器に作用する引っ張り力による楕円変形が挙げられる。 On the other hand, the resin cage is superior in sliding property to the guided surface and lighter in weight than the press cage, so that the bearing component (the bearing ring or the roller that can come into contact with the cage in the radial direction) due to strong centrifugal acceleration. The aggressiveness to the moving body is small, and it is advantageous for bearing damage as a result. However, it is easy to be deformed when centrifugal acceleration is applied, and the guide clearance between the guided surface and the bearing parts is within an appropriate range. It may not be possible to keep. As the deformation, for example, in the case of the raceway guide method, there is an elliptical deformation caused by the guided surface of the cage being pressed against the cage guide surface of the raceway. In the case of the rolling element guide method, elliptic deformation due to a tensile force acting on the cage in accordance with the revolution speed difference between the rolling elements can be mentioned.
 また、樹脂保持器の場合、遠心加速度の作用以外にも、温度上昇又は吸水による膨張が生じる。この膨張変形も案内すきまを狂わせる原因になる。 In addition, in the case of a resin cage, in addition to the effect of centrifugal acceleration, temperature rise or expansion due to water absorption occurs. This expansion deformation also causes the guide clearance to go wrong.
 上記の背景に鑑み、この発明が解決しようとする課題は、転がり軸受の保持器が軽量であって、その被案内面の摺動性が良好でありながら、案内すきまを狂わせるような保持器変形を抑制することにある。 In view of the above-mentioned background, the problem to be solved by the present invention is that the cage of the rolling bearing is light in weight, and the slidability of the guided surface is good, but the cage deformation that derails the guide clearance It is to suppress.
 上記の課題を達成するため、この発明は、ポケットが周方向に所定間隔で形成された保持器と、前記保持器を案内する軸受部品とを備える転がり軸受において、前記保持器が、周方向に所定間隔で前記ポケットに対応の開口が形成された樹脂本体部と、前記樹脂本体部に固着された被覆部とからなり、前記被覆部が、前記樹脂本体部に比して小さな吸水率、小さな線膨張率及び高い弾性率の三性質のうち、少なくとも一つの性質をもっており、前記保持器の表面のうち、前記軸受部品によって案内される被案内面が、前記被覆部に形成された樹脂表面からなる構成を採用したものである。 To achieve the above object, the present invention provides a rolling bearing comprising a cage having pockets formed at predetermined intervals in the circumferential direction and a bearing component for guiding the cage, wherein the cage is arranged in the circumferential direction. It consists of a resin body part in which openings corresponding to the pockets are formed at predetermined intervals, and a covering part fixed to the resin body part, and the covering part has a smaller water absorption rate and smaller than the resin body part. It has at least one of the three properties of linear expansion coefficient and high elastic modulus, and the guided surface guided by the bearing component among the surfaces of the cage is from the resin surface formed on the covering portion. Is adopted.
 上記構成によれば、周方向に所定間隔でポケットに対応の開口が形成された樹脂本体部の採用により、保持器を軽量にすることができる。その樹脂本体部に固着された被覆部が樹脂本体部に比して小さな吸水率をもっている場合、その被覆部に形成された樹脂表面からなる被案内面において、吸水による膨張変形を抑制することができる。
 また、被覆部が樹脂本体部に比して小さな線膨張率をもっている場合、その被覆部に形成された樹脂表面からなる被案内面において、温度上昇による膨張変形を抑制することができる。
 また、被覆部が樹脂本体部に比して高い弾性率をもっている場合、その被覆部に形成された樹脂表面からなる被案内面において、遠心加速度や転動体間の公転速度差による変形を抑制することができる。
 また、被案内面の摺動性は、被覆部の樹脂表面からなるので、良好である。
According to the said structure, a retainer can be reduced in weight by employ | adopting the resin main-body part by which the opening corresponding to a pocket was formed in the circumferential direction at predetermined intervals. When the covering portion fixed to the resin main body portion has a smaller water absorption rate than the resin main body portion, it is possible to suppress expansion deformation due to water absorption on the guided surface formed of the resin surface formed in the covering portion. it can.
Moreover, when the coating | coated part has a small linear expansion coefficient compared with the resin main-body part, the expansion deformation by a temperature rise can be suppressed in the to-be-guided surface which consists of the resin surface formed in the coating | coated part.
In addition, when the covering portion has a higher elastic modulus than the resin main body portion, on the guided surface made of the resin surface formed on the covering portion, deformation due to centrifugal acceleration or a difference in revolution speed between rolling elements is suppressed. be able to.
Further, the slidability of the guided surface is good because it consists of the resin surface of the covering portion.
 このように、この発明は、上記構成の採用により、転がり軸受の保持器が軽量であって、その被案内面の摺動性が良好でありながら、案内すきまを狂わせるような保持器変形を抑制することができる。 As described above, the present invention employs the above-described configuration, and the cage of the rolling bearing is lightweight, and the slidability of the guided surface is good, but the cage deformation that detracts from the guide clearance is suppressed. can do.
この発明の第一実施形態に係る転がり軸受の構成を示す断面図Sectional drawing which shows the structure of the rolling bearing which concerns on 1st embodiment of this invention. 図1中のII-II線の断面図Sectional view taken along line II-II in FIG. この発明の第二実施形態に係る転がり軸受の構成を示す断面図Sectional drawing which shows the structure of the rolling bearing which concerns on 2nd embodiment of this invention. この発明の第三実施形態に係る転がり軸受の構成を示す断面図Sectional drawing which shows the structure of the rolling bearing which concerns on 3rd embodiment of this invention. いずれかの実施形態に係る転がり軸受を組み込んだ遊星減速機の構成を示す断面図Sectional drawing which shows the structure of the planetary reduction gear incorporating the rolling bearing which concerns on either embodiment. 図5中のVI-VI線の断面図Sectional view taken along line VI-VI in FIG.
 以下、この発明の第一実施形態を添付図面に基づいて説明する。図1、図2に示すように、第一実施形態に係る転がり軸受は、内輪1と、外輪2と、これら両輪1,2間に介在する複数の転動体3と、これら転動体3を周方向に等配する保持器4とを備える。両輪1,2の中心軸及び保持器4の中心軸は、この転がり軸受の軸受中心軸に一致している。以下、軸受中心軸に沿った方向のことを単に「軸方向」といい、その中心軸に直角な方向のことを単に「径方向」といい、その中心軸周りの円周方向のことを単に「周方向」という。 Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. As shown in FIGS. 1 and 2, the rolling bearing according to the first embodiment includes an inner ring 1, an outer ring 2, a plurality of rolling elements 3 interposed between the two wheels 1 and 2, and the rolling elements 3 around the rolling elements 3. And a cage 4 equally arranged in the direction. The center axis of both wheels 1 and 2 and the center axis of the cage 4 coincide with the bearing center axis of the rolling bearing. Hereinafter, the direction along the bearing central axis is simply referred to as “axial direction”, the direction perpendicular to the central axis is simply referred to as “radial direction”, and the circumferential direction around the central axis is simply referred to as “circumferential direction”. It is called “circumferential direction”.
 内輪1は、外周側に軌道面を有する軸受部品になっている。外輪2は、内周側に軌道面を有する軸受部品になっている。 The inner ring 1 is a bearing part having a raceway surface on the outer peripheral side. The outer ring 2 is a bearing component having a raceway surface on the inner peripheral side.
 転動体3は、円すいころからなる。 The rolling element 3 consists of a tapered roller.
 第一実施形態の転がり軸受は、単列円すいころ軸受になっている。内輪1、複数の転動体3及び保持器4によって内輪アセンブリが構成されている。なお、転動体3は、円筒ころ、球面ころにしてもよく、また、玉にしてもよく、複列に配置されてもよい。 The rolling bearing of the first embodiment is a single-row tapered roller bearing. An inner ring assembly is constituted by the inner ring 1, the plurality of rolling elements 3 and the cage 4. In addition, the rolling element 3 may be a cylindrical roller or a spherical roller, may be a ball, and may be arranged in a double row.
 保持器4は、かご形保持器になっている。保持器4には、ポケット5が周方向に所定間隔で形成されている。ポケット5は、転動体3を収める空間になっている。 The cage 4 is a cage type cage. Pockets 5 are formed in the retainer 4 at predetermined intervals in the circumferential direction. The pocket 5 is a space for accommodating the rolling elements 3.
 保持器4は、周方向に所定間隔でポケット5に対応の開口6aが形成された樹脂本体部6と、樹脂本体部6に固着された被覆部7とからなる。 The retainer 4 includes a resin main body 6 in which openings 6 a corresponding to the pockets 5 are formed at predetermined intervals in the circumferential direction, and a covering portion 7 fixed to the resin main body 6.
 開口6aは、樹脂本体部6に被覆部7を固着することでポケット5の形状を完成させる前提の形状になっている。 The opening 6a has a shape on the premise that the shape of the pocket 5 is completed by fixing the covering portion 7 to the resin main body portion 6.
 被覆部7は、樹脂本体部6の全面に定着させられた樹脂成形層からなる。 The covering portion 7 is made of a resin molding layer fixed on the entire surface of the resin main body portion 6.
 その結果、被覆部7は、樹脂本体部6の周方向全周に亘って固着されている。 As a result, the covering portion 7 is fixed over the entire circumference in the circumferential direction of the resin main body portion 6.
 また、被覆部7は、樹脂本体部6のうち、開口6a,6a同士を周方向に分離する各仕切り部分を内包している態様で樹脂本体部6に固着されている。 Further, the covering portion 7 is fixed to the resin main body portion 6 so as to enclose each partition portion of the resin main body portion 6 that separates the openings 6a and 6a in the circumferential direction.
 また、保持器4の表面のうち、転動体3を周方向に受けるポケット内面部7aは、被覆部7に形成された樹脂表面からなる。 Further, among the surfaces of the cage 4, the pocket inner surface portion 7 a that receives the rolling elements 3 in the circumferential direction is made of a resin surface formed on the covering portion 7.
 また、保持器4の表面のうち、軸受部品によって案内される被案内面7bも、被覆部7に形成された樹脂表面からなる。保持器4を案内する軸受部品は、外輪2からなる。被案内面7bは、外輪2に形成された保持器案内面2aを滑る。 Also, the guided surface 7 b guided by the bearing component among the surfaces of the cage 4 is also made of a resin surface formed on the covering portion 7. A bearing part that guides the cage 4 includes an outer ring 2. The guided surface 7 b slides on the cage guide surface 2 a formed on the outer ring 2.
 樹脂本体部6は、ポリアミド(PA)によって形成されている。被覆部7は、エポキシ樹脂によって形成されている。 The resin main body 6 is made of polyamide (PA). The covering portion 7 is formed of an epoxy resin.
 例えば、ポリアミド(PA)では、吸水率:2[%]、線膨張係数:2~7[×10-5/℃]、引張弾性率:8000[MPa]程度になる。一方、エポキシ樹脂では、吸水率:0.2[%]、線膨張係数:1~5[×10-5/℃]、引張弾性率:20000[MPa]程度となる。したがって、エポキシ樹脂で形成された被覆部7は、ポリアミド(PA)で形成された樹脂本体部6に比して明らかに小さな吸水率及び高い弾性率をもち、同程度の線膨張率をもっている。特に、線膨張係数が2[×10-5/℃]未満のエポキシ樹脂の採用により、樹脂本体部6に比して小さな線膨張率をもっている被覆部7となっている。 For example, polyamide (PA) has a water absorption rate of 2 [%], a linear expansion coefficient of 2 to 7 [× 10 −5 / ° C.], and a tensile modulus of elasticity of about 8000 [MPa]. On the other hand, the epoxy resin has a water absorption rate of 0.2 [%], a linear expansion coefficient of 1 to 5 [× 10 −5 / ° C.], and a tensile elastic modulus of about 20000 [MPa]. Therefore, the covering portion 7 formed of epoxy resin has a clearly smaller water absorption rate and higher elastic modulus than the resin main body portion 6 formed of polyamide (PA), and has the same linear expansion coefficient. In particular, by using an epoxy resin having a linear expansion coefficient of less than 2 [× 10 −5 / ° C.], the covering portion 7 has a smaller linear expansion coefficient than the resin main body portion 6.
 また、エポキシ樹脂は、ポリアミド(PA)よりも優れた自己潤滑性をもつ。このため、被覆部7に形成されたエポキシ樹脂表面の摺動性は、樹脂本体部6のポリアミド(PA)表面よりも優れる。 Also, epoxy resin has better self-lubricating properties than polyamide (PA). For this reason, the slidability of the surface of the epoxy resin formed on the covering portion 7 is superior to that of the polyamide (PA) surface of the resin main body portion 6.
 なお、被覆部7は、樹脂本体部6に比して小さな吸水率、小さな線膨張率及び高い弾性率の三性質のうち、少なくとも一つの性質をもっているように構成すればよい。樹脂本体部6の形成に利用可能な他の樹脂材料としては、ポリアセタール(POM)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)といったエンジニアリングプラスチックが挙げられる。また、被覆部7の形成に利用可能な樹脂材料としては、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)といったスーパーエンジニアリングプラスチックが挙げられる。例えば、ポリアミドイミドでは、吸水率:0.2[%]、線膨張係数:3[×10-5/℃]、引張弾性率:5000[MPa]程度となる。したがって、樹脂本体部をポリアミド(PA)で形成し、被覆部をポリアミドイミド(PAI)で形成する場合、樹脂本体部に比して明らかに小さな吸水率をもち、かつ同程度の線膨張率又は高い線膨張率をもっている被覆部を形成することができる。 In addition, the coating | coated part 7 should just be comprised so that it may have at least 1 property among three properties of a small water absorption rate, a small linear expansion coefficient, and a high elasticity modulus compared with the resin main-body part 6. FIG. Examples of other resin materials that can be used for forming the resin main body 6 include engineering plastics such as polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Examples of the resin material that can be used for forming the covering portion 7 include polyamideimide (PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), Super engineering plastics such as polyethersulfone (PES), polyimide (PI), and polyetherimide (PEI) can be mentioned. For example, in the case of polyamideimide, the water absorption rate is 0.2 [%], the linear expansion coefficient is 3 [× 10 −5 / ° C.], and the tensile modulus is about 5000 [MPa]. Therefore, when the resin body portion is formed of polyamide (PA) and the covering portion is formed of polyamideimide (PAI), the resin body portion has a clearly smaller water absorption rate than that of the resin body portion and has the same linear expansion coefficient or A covering portion having a high linear expansion coefficient can be formed.
 保持器4は、例えば、樹脂本体部6をキャビティ内に配置し、被覆部7をトランスファ成形することによって製造することができる。 The retainer 4 can be manufactured by, for example, disposing the resin main body portion 6 in the cavity and transfer molding the covering portion 7.
 第一実施形態の転がり軸受は、上述のようなものであり、周方向に所定間隔でポケット5に対応の開口6aが形成された樹脂本体部6で保持器4の大部分を構成しているので、全体を鉄系材料で形成した場合に比して、保持器4を軽量にすることができる。このことは、強い遠心加速度による軸受部品(保持器4に径方向に接触し得る外輪2又は転動体3)への攻撃性が小さく、結果的に軸受損傷に対して有利となる。 The rolling bearing of the first embodiment is as described above, and most of the cage 4 is constituted by the resin main body portion 6 in which openings 6a corresponding to the pockets 5 are formed at predetermined intervals in the circumferential direction. Therefore, the cage 4 can be reduced in weight as compared with the case where the whole is made of an iron-based material. This is less offensive to the bearing component (the outer ring 2 or the rolling element 3 that can come into contact with the cage 4 in the radial direction) due to strong centrifugal acceleration, resulting in an advantage against bearing damage.
 また、第一実施形態の転がり軸受は、保持器4が樹脂本体部6と、樹脂本体部6に固着された被覆部7とからなり、被覆部7が樹脂本体部6に比して小さな吸水率をもっており、保持器4の表面のうち、軸受部品(外輪2)によって案内される被案内面7bが被覆部7に形成された樹脂表面からなるので、保持器全体を樹脂本体部6と同じ樹脂材料で形成した場合に比して、吸水による被案内面7bの膨張変形を抑制することができる。すなわち、被案内面7bと保持器案内面2a間の案内すきま減少によって当該両面7b,2aの滑り接触域での回転トルク増大及び発熱量の増加を防止することができる。 In the rolling bearing of the first embodiment, the cage 4 includes a resin main body portion 6 and a covering portion 7 fixed to the resin main body portion 6. The covering portion 7 is smaller in water absorption than the resin main body portion 6. Of the surface of the cage 4, the guided surface 7 b guided by the bearing component (outer ring 2) is made of the resin surface formed on the covering portion 7, so that the entire cage is the same as the resin main body portion 6. Compared to the case of forming with a resin material, expansion deformation of the guided surface 7b due to water absorption can be suppressed. That is, by reducing the guide clearance between the guided surface 7b and the cage guide surface 2a, it is possible to prevent an increase in rotational torque and an increase in the amount of heat generated in the sliding contact area of the both surfaces 7b, 2a.
 さらに、第一実施形態の転がり軸受は、被覆部7が樹脂本体部6に比して小さな線膨張率をもっており、被案内面7bが被覆部7に形成された樹脂表面からなるので、保持器全体を樹脂本体部6と同じ樹脂材料で形成した場合に比して、温度上昇による被案内面7bの膨張変形を抑制することができる。このことも、案内すきま減少による回転トルク増大及び発熱量の増加を防止することに有効である。 Further, in the rolling bearing of the first embodiment, the covering portion 7 has a smaller linear expansion coefficient than the resin main body portion 6, and the guided surface 7 b is made of a resin surface formed on the covering portion 7. Compared to the case where the entirety is formed of the same resin material as that of the resin main body 6, the expansion deformation of the guided surface 7b due to the temperature rise can be suppressed. This is also effective in preventing an increase in rotational torque and an increase in heat generation due to a decrease in guide clearance.
 さらに、第一実施形態の転がり軸受は、被覆部7が樹脂本体部6に比して高い弾性率をもっており、被案内面7bが被覆部7に形成された樹脂表面からなるので、保持器全体を樹脂本体部6と同じ樹脂材料で形成した場合に比して、遠心加速度や転動体間の公転速度差による保持器4の楕円変形を抑制することができる。このことは、楕円変形による案内すきまやポケットすきま(ポケット5と転動体3との間のすきま)の不等配を抑制することに相当するので、適正な保持器案内が妨げられる事態を防止することにもなる。 Further, in the rolling bearing of the first embodiment, the covering portion 7 has a higher elastic modulus than the resin main body portion 6 and the guided surface 7b is made of a resin surface formed on the covering portion 7. Therefore, the entire cage As compared with the case where is formed of the same resin material as that of the resin main body 6, the elliptical deformation of the cage 4 due to the centrifugal acceleration or the difference in the revolution speed between the rolling elements can be suppressed. This is equivalent to suppressing uneven distribution of guide clearances and pocket clearances (clearance between the pockets 5 and the rolling elements 3) due to elliptical deformation, thereby preventing a situation where proper cage guidance is hindered. It will also be a thing.
 さらに、第一実施形態の転がり軸受は、被覆部7が樹脂本体部6の表面のうち、開口6a,6a同士を周方向に分離する各仕切り部分を内包しているので、前述の吸水、温度上昇によるポケット内面部7a,7aの膨張変形を抑制し、前述の遠心加速度や公転速度差による保持器4の柱の変形を抑制し、ひいては保持器4の楕円変形を抑制することができる。 Furthermore, since the rolling bearing of the first embodiment includes each partition portion that separates the openings 6a and 6a in the circumferential direction in the surface of the resin main body portion 6, the covering portion 7 includes the water absorption and temperature described above. The expansion deformation of the pocket inner surface portions 7a, 7a due to the rise can be suppressed, the deformation of the column of the cage 4 due to the above-described centrifugal acceleration and the revolution speed difference can be suppressed, and the elliptical deformation of the cage 4 can be suppressed.
 さらに、第一実施形態の転がり軸受は、保持器4の表面のうち、軸受部品(軌道輪2)によって案内される被案内面7bが被覆部7に形成された樹脂表面からなるので、被案内面7bの摺動性が良好である。 Furthermore, since the rolling bearing of the first embodiment is composed of a resin surface in which the guided surface 7b guided by the bearing component (the bearing ring 2) is formed on the covering portion 7 among the surfaces of the cage 4, the guided bearing is provided. The slidability of the surface 7b is good.
 さらに、第一実施形態の転がり軸受は、被覆部7が樹脂本体部6の全面に定着させられた樹脂成形層からなるので、前述の保持器4の楕円変形を最も効果的に抑制することができる。 Furthermore, since the rolling bearing of the first embodiment is formed of a resin molding layer in which the covering portion 7 is fixed on the entire surface of the resin main body portion 6, the above-described elliptic deformation of the cage 4 can be most effectively suppressed. it can.
 さらに、第一実施形態の転がり軸受は、樹脂本体部6がポリアミド(PA)によって形成されており、被覆部7がエポキシ樹脂によって形成されているので、被覆部7を樹脂本体部6に比して小さな吸水率、小さな線膨張率及び高い弾性率をもち、優れた摺動性を有する被覆部7にすることができる。 Further, in the rolling bearing of the first embodiment, since the resin main body portion 6 is formed of polyamide (PA) and the covering portion 7 is formed of epoxy resin, the covering portion 7 is compared with the resin main body portion 6. Therefore, it is possible to obtain the covering portion 7 having a small water absorption rate, a small linear expansion coefficient, and a high elastic modulus and having excellent slidability.
 さらに、第一実施形態の転がり軸受は、保持器4が軌道輪2によって案内されるので、ポケットすきまを転動体案内方式のように狭く設定する必要がなく、遠心加速度の作用や転動体3間の公転速度差によって保持器4が楕円変形した場合でも、保持器4と転動体3の強い接触を防ぐことができる。 Furthermore, in the rolling bearing of the first embodiment, since the cage 4 is guided by the raceway ring 2, it is not necessary to set the pocket clearance as narrow as in the rolling element guide system. Even when the cage 4 is elliptically deformed due to the revolution speed difference, strong contact between the cage 4 and the rolling element 3 can be prevented.
 さらに、第一実施形態の転がり軸受は、保持器4を案内する軸受部品が外輪2からなるので、保持器を内輪1によって案内する場合に比して、保持器4の外周に形成された被案内面7b、保持器案内面2aの周長が長くなって当該両面7b,2aの滑り接触部における周速差及び接触面圧が小さくなると共に、潤滑油が遠心力によって外輪2側へ移動するため、被案内面7bで潤滑油が不足しにくく、被案内面7bの摩耗や焼付きの防止に有利である。 Further, in the rolling bearing of the first embodiment, since the bearing part for guiding the cage 4 is composed of the outer ring 2, compared with the case where the cage is guided by the inner ring 1, the covered bearing formed on the outer circumference of the cage 4. The circumferential length of the guide surface 7b and the cage guide surface 2a is increased, the peripheral speed difference and the contact surface pressure at the sliding contact portion of the both surfaces 7b, 2a are reduced, and the lubricating oil is moved to the outer ring 2 side by centrifugal force. For this reason, the guided surface 7b is unlikely to be short of lubricating oil, which is advantageous in preventing wear and seizure of the guided surface 7b.
 さらに、第一実施形態の転がり軸受は、被覆部7が樹脂本体部6の外周全周に亘って連続しているので、保持器外径側で前述の楕円変形に抵抗することになり、保持器内径側で楕円変形に抵抗する場合に比して楕円変形への抵抗性に優れる。 Furthermore, the rolling bearing of the first embodiment is resistant to the above-described elliptical deformation on the outer diameter side of the cage because the covering portion 7 is continuous over the entire outer periphery of the resin main body portion 6. Excellent resistance to elliptical deformation compared to resistance to elliptical deformation on the inner diameter side of the vessel.
 上述の第一実施形態では、軌道輪案内方式を例示したが、転動体案内方式にする場合、被覆部7のポケット内面部7a,7aに接する転動体3によって保持器4が案内されるようにポケットすきま及び軌道輪と保持器間のすきまを設定すればよく、その図示説明を省略する。 In the first embodiment described above, the raceway guide system is exemplified, but when the rolling element guide system is used, the cage 4 is guided by the rolling element 3 in contact with the pocket inner surface portions 7a and 7a of the covering portion 7. The pocket clearance and the clearance between the bearing ring and the cage may be set, and the illustration and explanation thereof will be omitted.
 また、上述の第一実施形態では、開口6aが被覆部7の固着でポケット5の形状を完成させる前提の態様となっているが、開口をポケットにしてもよい。また、第一実施形態では、被覆部7を樹脂本体部6の全面を覆う樹脂成形層としたが、被覆部に少なくとも被案内面7bとなる樹脂表面を形成するように、樹脂本体部の一部に定着させてもよい。その一例としての第二実施形態を図3に示す。なお、以下では、第一実施形態との相違点を述べるに留める。 In the above-described first embodiment, the opening 6a is a precondition for completing the shape of the pocket 5 by fixing the covering portion 7, but the opening may be a pocket. Further, in the first embodiment, the covering portion 7 is a resin molding layer that covers the entire surface of the resin main body portion 6. However, the resin main body portion of the resin main body portion is formed so that at least the resin surface that becomes the guided surface 7b is formed on the covering portion. It may be fixed to the part. FIG. 3 shows a second embodiment as an example. In the following, only differences from the first embodiment will be described.
 図3に示す第二実施形態の保持器10は、樹脂本体部11の軸方向片側(図示例では大径側)の外周面、内周面及び側面のみを周方向全周に亘って覆うように定着させられた被覆部12を有する。 The cage 10 of the second embodiment shown in FIG. 3 covers only the outer peripheral surface, the inner peripheral surface and the side surface of the resin main body 11 on one side in the axial direction (large diameter side in the illustrated example) over the entire circumference. The covering portion 12 is fixed to the surface.
 第二実施形態の転がり軸受は、図2に示すようなポケットを樹脂本体部11の開口として形成するため、軸受運転中の被案内面12aの変形を抑制しつつ、保持器製造時のポケット寸法を安定させ易い利点がある。 Since the rolling bearing of the second embodiment forms a pocket as shown in FIG. 2 as the opening of the resin main body 11, the pocket size at the time of manufacturing the cage is suppressed while suppressing deformation of the guided surface 12a during the operation of the bearing. There is an advantage that it is easy to stabilize.
 なお、図示例では、樹脂本体部11の一部に定着させる被覆部12の固定性を良好にするため、樹脂本体部11を内径側、外径側及び片側面の三方から覆うようにしている。被覆部12の固定性を高めるため、被覆部12で覆う樹脂本体部11の表面部分に溝やディンプルのような凹凸状を形成してもよい。 In the illustrated example, the resin body 11 is covered from three sides of the inner diameter side, the outer diameter side, and one side surface in order to improve the fixability of the covering portion 12 to be fixed to a part of the resin body portion 11. . In order to improve the fixing property of the covering portion 12, irregularities such as grooves and dimples may be formed on the surface portion of the resin main body portion 11 covered with the covering portion 12.
 上述の第一、第二実施形態では、被覆部を単一の樹脂材料からなる樹脂成形層としたが、被覆部を複数の材料で構成してもよい。その一例としての第三実施形態を図4に示す。 In the first and second embodiments described above, the covering portion is a resin molding layer made of a single resin material, but the covering portion may be composed of a plurality of materials. FIG. 4 shows a third embodiment as an example.
 図4に示す第三実施形態の保持器20は、樹脂本体部21に嵌め合わされた環状部品からなる被覆部22を有する。被覆部22を嵌め合わせる範囲は、第二実施形態と同様である。 The cage 20 of the third embodiment shown in FIG. 4 has a covering part 22 made of an annular part fitted to the resin main body part 21. The range in which the covering portion 22 is fitted is the same as in the second embodiment.
 被覆部22は、鉄によって形成された環状芯金23と、環状芯金23に定着させられたコーティング層24とからなる。ここで、鉄とは、純鉄、鋼(ステンレスを含む)、鋳鉄といった鉄系材料のことをいう。 The covering portion 22 includes an annular core 23 made of iron and a coating layer 24 fixed to the annular core 23. Here, iron refers to iron-based materials such as pure iron, steel (including stainless steel), and cast iron.
 鉄では、吸水率:実質的に0[%]、線膨張係数:1[×10-5/℃]、引張弾性率:206000[MPa]程度になる。したがって、被覆部22の全体としての線膨張率及び弾性率は、被覆部22の大部分を占める環状芯金23の鉄の性質により、保持器20の楕円変形を抑制するのに十分な程度に確保することができる。 In iron, the water absorption rate is substantially 0 [%], the linear expansion coefficient is 1 [× 10 −5 / ° C.], and the tensile elastic modulus is about 206000 [MPa]. Therefore, the linear expansion coefficient and elastic modulus as a whole of the covering portion 22 are sufficiently high to suppress the elliptical deformation of the cage 20 due to the nature of the iron of the annular core 23 occupying most of the covering portion 22. Can be secured.
 コーティング層24は、ポリアミドイミド(PAI)又はポリテトラフルオロエチレン(PTFE)によって形成されている。コーティング層24の樹脂表面が被案内面となる。ポリアミドイミド(PAI)は、良好な寸法安定性(特に低吸水率)、摺動性に加え耐摩耗性に優れる。また、ポリテトラフルオロエチレン(PTFE)も良好な寸法安定性(吸水率:実質的に0[%])をもち、採用しても良好な摺動性が得られる。前述のように被案内面として好適な吸水率:0.2[%]をもち、良好な摺動性をもっている。 The coating layer 24 is made of polyamideimide (PAI) or polytetrafluoroethylene (PTFE). The resin surface of the coating layer 24 becomes a guided surface. Polyamideimide (PAI) is excellent in wear resistance in addition to good dimensional stability (particularly low water absorption) and slidability. Polytetrafluoroethylene (PTFE) also has good dimensional stability (water absorption: substantially 0 [%]), and good slidability can be obtained even if it is adopted. As described above, it has a water absorption rate of 0.2 [%] suitable as a guided surface, and has good slidability.
 第三実施形態の転がり軸受は、被覆部22を樹脂本体部21に嵌合される別作りの環状部品にしているので、被覆部の材料選択の多様性を優先したいときに好適である。例えば、ポリアミドイミド(PAI)やポリテトラフルオロエチレン(PTFE)のみで前述の三性質を満足する被覆部が得られないときは、鉄製の環状芯金23と、ポリアミドイミド(PAI)等のコーティング層24とから被覆部22を構成することにより、前述の三性質を満足させることができる。 The rolling bearing according to the third embodiment is suitable when priority is given to the diversity of the material selection of the covering portion since the covering portion 22 is a separately-made annular part fitted to the resin main body portion 21. For example, when a coating portion satisfying the above-mentioned three properties cannot be obtained with only polyamideimide (PAI) or polytetrafluoroethylene (PTFE), an iron annular cored bar 23 and a coating layer such as polyamideimide (PAI) The above-mentioned three properties can be satisfied by configuring the covering portion 22 from 24.
 図5、図6は、上述のいずれかの実施形態に係る転がり軸受100を組み込んだ遊星減速機を例示している。この遊星減速機は、入力軸101に取り付けた太陽歯車102と、ハウジング103に固定された内歯車104との間に両歯車102、104に噛み合う遊星歯車としての遊星回転体105が複数個配置され、出力軸106に連結されたキャリヤ107に対して各遊星回転体105が回転自在に支持され、太陽歯車102と内歯車104との間で自転しながら公転する遊星回転体105の公転運動が、キャリヤ107を介して出力軸106に出力されるものである。 5 and 6 illustrate a planetary speed reducer incorporating the rolling bearing 100 according to any one of the above-described embodiments. In this planetary reduction gear, a plurality of planetary rotating bodies 105 as planetary gears meshing with both gears 102, 104 are arranged between a sun gear 102 attached to the input shaft 101 and an internal gear 104 fixed to the housing 103. Each planetary rotator 105 is rotatably supported with respect to the carrier 107 connected to the output shaft 106, and the revolving motion of the planetary rotator 105 revolving while rotating between the sun gear 102 and the internal gear 104 is It is output to the output shaft 106 via the carrier 107.
 転がり軸受100は、この遊星減速機に備わる遊星回転体105とキャリヤ107との間に一対で配置されている。各転がり軸受100の外輪は、遊星回転体105に取り付けられ、遊星回転体105と一体に回転する。各転がり軸受100の内輪は、キャリヤ107に設けられた支持軸108に取り付けられ、外輪に対して静止する。 A pair of rolling bearings 100 are disposed between the planetary rotating body 105 and the carrier 107 provided in the planetary reduction gear. The outer ring of each rolling bearing 100 is attached to the planetary rotator 105 and rotates integrally with the planetary rotator 105. The inner ring of each rolling bearing 100 is attached to a support shaft 108 provided on the carrier 107 and is stationary with respect to the outer ring.
 図示の遊星減速機は、超大型ダンプトラックのホイールリムの内側に設けられた終減速装置の第一段目の減速を行うものとなっている。その超大型ダンプトラックは、鉱山用であって積載量300t以上のものを想定している。ころ軸受100の使用環境として、太陽歯車102周りに公転するころ軸受100の公転直径は500mm程度、その公転速度は500rpm程度、このときの軸受回転速度は1300rpm程度、最大の遠心加速度は75G程度を想定している。 The planetary speed reducer shown in the figure performs the first speed reduction of the final speed reducer provided inside the wheel rim of the super large dump truck. The super large dump truck is intended for mines and has a load capacity of 300 t or more. As the usage environment of the roller bearing 100, the revolution diameter of the roller bearing 100 revolving around the sun gear 102 is about 500 mm, the revolution speed is about 500 rpm, the bearing rotation speed at this time is about 1300 rpm, and the maximum centrifugal acceleration is about 75 G. Assumed.
 転がり軸受100は、前述のように、保持器の楕円変形を抑制すると共に、転がり軸受100に供給される潤滑油の水分を吸水したり、潤滑油の温度上昇によって保持器の被案内面が膨張することを抑制することが可能なものなので、超大型ダンプトラックの終減速装置のような強い遠心加速度が作用する使用環境であっても、保持器の被案内面やポケット内面部での異常摩耗を防止することができる。 As described above, the rolling bearing 100 suppresses elliptical deformation of the cage, absorbs the moisture of the lubricating oil supplied to the rolling bearing 100, and expands the guided surface of the cage due to the temperature rise of the lubricating oil. Therefore, abnormal wear on the guided surface of the cage and the inner surface of the pocket is possible even in a usage environment where strong centrifugal acceleration is applied, such as the final reduction gear of an ultra-large dump truck. Can be prevented.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. Accordingly, the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 内輪
2 外輪
2a 保持器案内面
3 転動体
4、10、20 保持器
5 ポケット
6、11、21 樹脂本体部
6a 開口
7、12、22 被覆部
7a ポケット内面部
7b、12a 被案内面
23 環状芯金
24 コーティング層
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 2a Cage guide surface 3 Rolling body 4, 10, 20 Cage 5 Pocket 6, 11, 21 Resin body part 6a Opening 7, 12, 22 Covering part 7a Pocket inner surface part 7b, 12a Guided surface 23 Annular Core 24 coating layer

Claims (9)

  1.  ポケット(5)が周方向に所定間隔で形成された保持器(4、10、20)と、前記保持器(4、10、20)を案内する軸受部品とを備える転がり軸受において、
     前記保持器(4、10、20)が、周方向に所定間隔で前記ポケット(5)に対応の開口(6a)が形成された樹脂本体部(6、11、21)と、前記樹脂本体部(6、11、21)に固着された被覆部(7、12、22)とからなり、
     前記被覆部(7、12、22)が、前記樹脂本体部(6、11、21)に比して小さな吸水率、小さな線膨張率及び高い弾性率の三性質のうち、少なくとも一つの性質をもっており、
     前記保持器(4、10、20)の表面のうち、前記軸受部品によって案内される被案内面(7b、12a)が、前記被覆部(7、12、22)に形成された樹脂表面からなることを特徴とする転がり軸受。
    In a rolling bearing comprising a cage (4, 10, 20) in which pockets (5) are formed at predetermined intervals in the circumferential direction, and a bearing component for guiding the cage (4, 10, 20),
    The retainer (4, 10, 20) includes a resin main body (6, 11, 21) in which openings (6a) corresponding to the pockets (5) are formed at predetermined intervals in the circumferential direction, and the resin main body. (6, 11, 21) and a covering portion (7, 12, 22) fixed to
    The covering portion (7, 12, 22) has at least one property among three properties of a small water absorption rate, a small linear expansion coefficient and a high elastic modulus as compared with the resin main body portion (6, 11, 21). And
    Of the surfaces of the cages (4, 10, 20), guided surfaces (7b, 12a) guided by the bearing parts are made of resin surfaces formed on the covering portions (7, 12, 22). A rolling bearing characterized by that.
  2.  前記被覆部(7、12、22)が、前記樹脂本体部(6、11、21)に比して高い弾性率をもっており、かつ前記樹脂本体部(6、11、21)の周方向全周に亘って固着されている請求項1に記載の転がり軸受。 The covering portion (7, 12, 22) has a higher elastic modulus than the resin main body portion (6, 11, 21), and the entire circumference in the circumferential direction of the resin main body portion (6, 11, 21). The rolling bearing according to claim 1, which is fixed over the entire area.
  3.  前記被覆部(7)が、前記樹脂本体部(6)の表面のうち、前記開口(6a)同士を周方向に分離する各仕切り部分を内包している請求項1又は2に記載の転がり軸受。 The rolling bearing according to claim 1, wherein the covering portion (7) includes each partition portion that separates the openings (6 a) in the circumferential direction out of the surface of the resin main body portion (6). .
  4.  前記被覆部(7、12)が、前記樹脂本体部(6、11)の一部又は全面に定着させられた樹脂成形層からなる請求項1から3のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 3, wherein the covering portion (7, 12) is formed of a resin molding layer fixed to a part or the entire surface of the resin main body portion (6, 11).
  5.  前記樹脂本体部(6、11)が、ポリアミドによって形成されており、
     前記被覆部(7、12)が、エポキシ樹脂によって形成されている請求項4に記載の転がり軸受。
    The resin main body (6, 11) is made of polyamide,
    The rolling bearing according to claim 4, wherein the covering portions (7, 12) are formed of an epoxy resin.
  6.  前記被覆部(22)が、前記樹脂本体部(21)に嵌め合わされた環状部品からなる請求項2に記載の転がり軸受。 The rolling bearing according to claim 2, wherein the covering portion (22) is formed of an annular part fitted into the resin main body portion (21).
  7.  前記被覆部(22)が、鉄によって形成された環状芯金(23)と、前記環状芯金(23)に定着させられたコーティング層(24)とからなり、
     前記コーティング層(24)が、ポリアミドイミド又はポリテトラフルオロエチレンによって形成されている請求項6に記載の転がり軸受。
    The covering portion (22) comprises an annular cored bar (23) formed of iron and a coating layer (24) fixed on the annular cored bar (23),
    The rolling bearing according to claim 6, wherein the coating layer is made of polyamideimide or polytetrafluoroethylene.
  8.  前記被覆部(7、12、22)が、前記樹脂本体部(6、11、21)の外周全周に亘って連続している請求項1から7のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 7, wherein the covering portion (7, 12, 22) is continuous over the entire outer periphery of the resin main body portion (6, 11, 21).
  9.  遊星減速機に備わる遊星回転体(105)とキャリヤ(107)との間に配置される請求項1から8のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 8, wherein the rolling bearing is disposed between a planetary rotating body (105) and a carrier (107) provided in the planetary reduction gear.
PCT/JP2016/075852 2015-09-10 2016-09-02 Rolling bearing WO2017043425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178381 2015-09-10
JP2015178381A JP2017053450A (en) 2015-09-10 2015-09-10 Rolling bearing

Publications (1)

Publication Number Publication Date
WO2017043425A1 true WO2017043425A1 (en) 2017-03-16

Family

ID=58239587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075852 WO2017043425A1 (en) 2015-09-10 2016-09-02 Rolling bearing

Country Status (2)

Country Link
JP (1) JP2017053450A (en)
WO (1) WO2017043425A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024013998A (en) * 2022-07-21 2024-02-01 Ntn株式会社 Ball bearing with outer ring guide holder and eccentric rotation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009636A (en) * 2003-06-20 2005-01-13 Nsk Ltd Rolling bearing
WO2008087926A1 (en) * 2007-01-15 2008-07-24 Jtekt Corporation Conical roller bearing
JP2011025586A (en) * 2009-07-28 2011-02-10 Nsk Ltd Machine component constituted by including polymeric material
JP2011043226A (en) * 2009-08-24 2011-03-03 Nsk Ltd Retainer and roller bearing equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009636A (en) * 2003-06-20 2005-01-13 Nsk Ltd Rolling bearing
WO2008087926A1 (en) * 2007-01-15 2008-07-24 Jtekt Corporation Conical roller bearing
JP2011025586A (en) * 2009-07-28 2011-02-10 Nsk Ltd Machine component constituted by including polymeric material
JP2011043226A (en) * 2009-08-24 2011-03-03 Nsk Ltd Retainer and roller bearing equipped with the same

Also Published As

Publication number Publication date
JP2017053450A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5441713B2 (en) Housing for ball bearing
EP2952763B1 (en) Multipoint contact ball bearing
US8985860B2 (en) Prong type resin cage for double row roller bearing and double row roller bearing
WO2012070642A1 (en) Spacer for radial needle bearing
JP2004508511A (en) Roller bearing for perturbation without retainer
JP2017009016A (en) Angular ball bearing
JP2016109253A (en) Rolling bearing
JP2008106869A (en) Ball bearing
WO2016132983A1 (en) Tapered roller bearing
JP2008196583A (en) Tapered roller bearing for planetary roller
JP2017115977A (en) Roller bearing
WO2017043425A1 (en) Rolling bearing
JP2007292093A (en) Deep groove ball bearing
JP2009074679A (en) Self-aligning roller bearing
JP5636887B2 (en) Tandem angular contact ball bearings
JP2011002077A (en) Rolling bearing
WO2019146768A1 (en) Angular ball bearing
JP2006112555A (en) Roller bearing with aligning ring
JP2014105809A (en) Retainer for rolling bearing
JP6064783B2 (en) Rolling bearing
JP2010025191A (en) Self-aligning roller bearing
JP2012172784A (en) Ball bearing
JP2013061040A (en) Self-aligning rolling bearing
WO2017043414A1 (en) Roller bearing
JP2009180235A (en) Automatic self-aligning roller bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844286

Country of ref document: EP

Kind code of ref document: A1