JP2009180235A - Automatic self-aligning roller bearing - Google Patents

Automatic self-aligning roller bearing Download PDF

Info

Publication number
JP2009180235A
JP2009180235A JP2008017165A JP2008017165A JP2009180235A JP 2009180235 A JP2009180235 A JP 2009180235A JP 2008017165 A JP2008017165 A JP 2008017165A JP 2008017165 A JP2008017165 A JP 2008017165A JP 2009180235 A JP2009180235 A JP 2009180235A
Authority
JP
Japan
Prior art keywords
peripheral surface
cage
guide wheel
inner ring
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017165A
Other languages
Japanese (ja)
Inventor
Keisuke Torii
敬介 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008017165A priority Critical patent/JP2009180235A/en
Publication of JP2009180235A publication Critical patent/JP2009180235A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4688Cages for rollers or needles with rolling elements with smaller diameter than the load carrying rollers, e.g. cages with counter-rotating spacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • F16C2240/82Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD
    • F16C2240/84Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD with full complement of balls or rollers, i.e. sum of clearances less than diameter of one rolling element

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce heating and vibration caused by operation, and to restrain abrasion by suppressing abrasion when a cage 5 and a guide ring 6 relatively rotate, when operating an automatic self-aligning roller bearing 1a. <P>SOLUTION: A radial needle bearing 15 is incorporated between the cage 5 and the guide ring 6, and the cage 5 and the guide ring 6 are relatively rotated via the radial needle bearing 15. This constitution can solve the problem by preventing an inner peripheral surface of a rim 10 constituting the cage 5 and an outer peripheral surface of the guide ring 6 from slidingly contacting with each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、各種機械装置に組み込まれ、例えばハウジングの内側に回転軸を支承する、自動調心ころ軸受の改良に関する。具体的には、案内輪と、保持器及び内輪とが相対回転する際の摩擦低減を図るものである。特に、本発明に係る自動調心ころ軸受は、振動荷重や衝撃荷重が加わる中で高速回転を要求される、製紙機械装置の回転支持部に好ましく使用できる。   The present invention relates to an improvement in a self-aligning roller bearing that is incorporated in various mechanical devices and supports a rotating shaft inside a housing, for example. Specifically, friction reduction is achieved when the guide wheel, the cage and the inner ring rotate relative to each other. In particular, the self-aligning roller bearing according to the present invention can be preferably used in a rotation support portion of a papermaking machine device that requires high-speed rotation while a vibration load or an impact load is applied.

例えば重量の嵩む軸をハウジングの内側に回転自在に支承する為に従来から、特許文献1〜2に記載された様な自動調心ころ軸受が使用されている。図5は、これら特許文献1〜2に記載される等により、従来から広く知られている自動調心ころ軸受1を示している。この自動調心ころ軸受1は、互いに同心に組み合わされた外輪2と内輪3との間に、複数の球面ころ4、4を転動自在に配列して成る。そして、保持器5と案内輪6とにより、これら各球面ころ4、4の位置並びに姿勢を規制している。   For example, in order to rotatably support a heavy shaft on the inside of a housing, a self-aligning roller bearing as described in Patent Documents 1 and 2 has been used. FIG. 5 shows a self-aligning roller bearing 1 that has been widely known so far, as described in Patent Documents 1 and 2, for example. The self-aligning roller bearing 1 includes a plurality of spherical rollers 4 and 4 arranged in a freely rollable manner between an outer ring 2 and an inner ring 3 that are concentrically combined with each other. The cage 5 and the guide wheel 6 regulate the position and posture of each of the spherical rollers 4 and 4.

上記外輪2の内周面には、単一の中心を有する球状凹面である、外輪軌道7を形成している。又、内輪3の外周面の幅方向(図5の左右方向)両側には、それぞれが上記外輪軌道7と対向する(上記各球面ころ4、4の自転軸に関して対称な母線形状を有する)、1対の内輪軌道8、8を形成している。又、これら両内輪軌道8、8の母線形状の曲率半径は、上記外輪軌道7の母線形状の曲率半径と等しい。尚、図示の例の場合、上記内輪3の外周面の軸方向両端部に、それぞれ外向フランジ状の鍔部9、9を形成している。又、上記各球面ころ4、4は、その最大径部が各球面ころ4、4の軸方向中間部に存在するビヤ樽型(一般的には最大径部が軸方向中央部にある対称形)で、上記外輪軌道7と上記1対の内輪軌道8、8との間に、2列に亙って転動自在に配列されている。上記各球面ころ4、4の外周面の母線形状の曲率半径は、上記外輪軌道7及び上記両内輪軌道8、8の母線形状の曲率半径よりも少しだけ小さい。   An outer ring raceway 7, which is a spherical concave surface having a single center, is formed on the inner peripheral surface of the outer ring 2. Further, on both sides of the outer peripheral surface of the inner ring 3 in the width direction (left and right direction in FIG. 5), each faces the outer ring raceway 7 (having a symmetric bus shape with respect to the rotation axis of each of the spherical rollers 4 and 4). A pair of inner ring raceways 8 and 8 are formed. The radius of curvature of the bus bar shape of the inner ring raceways 8 and 8 is equal to the radius of curvature of the bus bar shape of the outer ring raceway 7. In the case of the illustrated example, flange portions 9 and 9 having outward flange shapes are formed at both axial ends of the outer peripheral surface of the inner ring 3, respectively. The spherical rollers 4 and 4 have a beer barrel shape in which the maximum diameter portion exists in the middle portion in the axial direction of each spherical roller 4 and 4 (generally, a symmetrical shape in which the maximum diameter portion is in the axial center). Thus, the outer ring raceway 7 and the pair of inner ring raceways 8, 8 are arranged so as to roll freely in two rows. The radius of curvature of the bus bar shape of the outer peripheral surface of each of the spherical rollers 4 and 4 is slightly smaller than the radius of curvature of the bus bar shape of the outer ring raceway 7 and the inner ring raceways 8 and 8.

上記保持器5は、真鍮の如き銅系合金の様に自己潤滑性を有する金属製の素材に削り加工を施す事により、或いは、合成樹脂を射出成形する事により、全体を一体に造られたもので、円環状のリム部10と、このリム部10の軸方向両側面から互いに反対方向に突出した複数本の柱部11、11とを備える。そして、円周方向に隣り合う柱部11、11の側面と上記リム部10の軸方向側面とにより三方を囲まれる部分を、それぞれ上記各球面ころ4、4を保持する為のポケット12、12としている。   The cage 5 was made as a whole by cutting a metal material having self-lubricating properties such as a copper-based alloy such as brass, or by injection molding a synthetic resin. In this configuration, the rim portion 10 includes an annular rim portion 10 and a plurality of column portions 11 and 11 projecting in opposite directions from both axial side surfaces of the rim portion 10. Then, pockets 12 and 12 for holding the respective spherical rollers 4 and 4 are respectively surrounded by three sides surrounded by the side surfaces of the column portions 11 and 11 adjacent in the circumferential direction and the axial side surface of the rim portion 10. It is said.

更に、前記案内輪6は、銅系合金の如き自己潤滑性を有する金属、含油メタル、合成樹脂等の、摩擦係数の低い材料により、全体を円環状に形成している。上記案内輪6は、軸方向幅が外径側で大きく内径側で小さい、断面台形で、上記内輪3の軸方向中間部の外径よりも少しだけ大きい内径と、上記保持器5のリム部10の内径よりも少しだけ小さい外径とを有する。この様な案内輪6は、上記内輪3の軸方向中間部外周面と上記リム部10の内周面との間に、これら内輪3及びリム部10に対する相対回転を可能に設置している。この様に、上記案内輪6の外周面をこのリム部10の内周面に、この案内輪6の内周面を上記内輪3の軸方向中間部外周面に、それぞれ近接対向させて、上記保持器5の径方向の位置決めを(内輪案内により)図っている。又、この状態で上記案内輪6の軸方向両側面13、13は、上記各球面ころ4、4の軸方向内端面(自動調心ころ軸受1の幅方向中央側の端面。本明細書及び特許請求の範囲全体で同じ。)14、14と実質的に(対向する部分の周方向両端同士を結ぶ面同士が)平行になる。   Further, the guide wheel 6 is formed in an annular shape as a whole by a material having a low coefficient of friction, such as a metal having self-lubricating properties such as a copper alloy, an oil-impregnated metal, or a synthetic resin. The guide wheel 6 has a trapezoidal cross section with an axial width that is larger on the outer diameter side and smaller on the inner diameter side, and an inner diameter that is slightly larger than the outer diameter of the intermediate portion in the axial direction of the inner ring 3, and the rim portion of the cage 5 And an outer diameter that is slightly smaller than the inner diameter of 10. Such a guide wheel 6 is installed between the inner peripheral surface of the inner ring 3 and the inner peripheral surface of the rim portion 10 so as to be able to rotate relative to the inner ring 3 and the rim portion 10. In this way, the outer peripheral surface of the guide wheel 6 is opposed to the inner peripheral surface of the rim portion 10, and the inner peripheral surface of the guide wheel 6 is opposed to the outer peripheral surface of the intermediate portion in the axial direction of the inner ring 3. The retainer 5 is positioned in the radial direction (by inner ring guide). Further, in this state, both side surfaces 13 and 13 of the guide wheel 6 in the axial direction are the inner end surfaces in the axial direction of the spherical rollers 4 and 4 (end surfaces on the center side in the width direction of the self-aligning roller bearing 1. The same applies to the entire claims.) 14 and 14 are substantially parallel to each other (surfaces connecting the circumferential ends of the opposing portions).

上述の様に構成される自動調心ころ軸受1により、例えばハウジングの内側に回転軸を支承する場合、前記外輪2をハウジングに内嵌固定し、上記内輪3を回転軸に外嵌固定する。この回転軸と共にこの内輪3が回転する場合には、上記各球面ころ4、4が転動して、この回転を許容する。上記ハウジングの軸心と上記回転軸の軸心とが不一致の場合、上記外輪2の内側で上記内輪3が調心する(外輪2の中心軸に対し内輪3の中心軸を傾斜させる)事で、この不一致を補償する。この場合に於いて、前記外輪軌道7は単一球面状に形成されている為、上記各球面ころ4、4の転動は、不一致補償後に於いても、円滑に行なわれる。又、これら各球面ころ4、4は、それぞれの軸方向内端面14、14と上記案内輪6の軸方向両側面13、13との係合に基づいて姿勢を制御される。即ち、上記各球面ころ4、4の自転中心軸が本来の位置からずれるスキューを抑え、これら各球面ころ4、4の転動面と上記外輪軌道7及び前記両内輪軌道8、8との転がり接触部での摩擦を抑える。   For example, when the rotating shaft is supported inside the housing by the self-aligning roller bearing 1 configured as described above, the outer ring 2 is fitted and fixed to the housing, and the inner ring 3 is fixed to the rotating shaft. When the inner ring 3 rotates together with the rotating shaft, the spherical rollers 4 and 4 roll to allow this rotation. When the shaft center of the housing and the shaft center of the rotary shaft do not match, the inner ring 3 is aligned inside the outer ring 2 (the central axis of the inner ring 3 is inclined with respect to the central axis of the outer ring 2). To compensate for this discrepancy. In this case, since the outer ring raceway 7 is formed in a single spherical shape, the rolling of the spherical rollers 4 and 4 is performed smoothly even after the mismatch compensation. The postures of the spherical rollers 4 and 4 are controlled based on the engagement between the axial inner end surfaces 14 and 14 and the axial side surfaces 13 and 13 of the guide wheel 6. That is, the skew in which the rotation center axes of the spherical rollers 4 and 4 are deviated from their original positions is suppressed, and the rolling surfaces of the spherical rollers 4 and 4 and the outer ring raceway 7 and the inner ring raceways 8 and 8 roll. Reduce friction at the contact area.

上述の様な従来構造の自動調心ころ軸受1の場合、保持器5の径方向に関する位置決めを、案内輪6を用いた内輪案内により図る事に基づき、次の様な問題を生じる可能性がある。以下、前記図5に加えて、図6を参照しつつ説明する。尚、この図6中、案内輪6の軸方向側面13と球面ころ4の軸方向内端面14との間には隙間を描いているが、実際の使用状態ではこれら両面13、14は摺接する。   In the case of the self-aligning roller bearing 1 having the conventional structure as described above, the positioning of the cage 5 in the radial direction may be caused by the inner ring guide using the guide wheel 6 to cause the following problems. is there. Hereinafter, description will be made with reference to FIG. 6 in addition to FIG. In FIG. 6, a gap is drawn between the side surface 13 in the axial direction of the guide wheel 6 and the inner end surface 14 in the axial direction of the spherical roller 4, but these surfaces 13, 14 are in sliding contact in actual use. .

転がり軸受の分野で広く知られている様に、上記保持器5を構成するリム部10の内周面と上記内輪3の外周面との相対速度は、回転軸の回転速度が速くなるにつれて大きくなる。この為、上記自動調心ころ軸受1を、例えば製紙機械装置の様に、高速回転する機械装置の回転支持部に組み込む場合、上記リム部10の内周面と上記案内輪6の外周面との係合部(滑り接触部)、及び、この案内輪6の内周面と上記内輪3の軸方向中間部外周面との係合部に作用する滑り摩擦は相当に大きくなる。従って、上記自動調心ころ軸受1の運転に伴う発熱(摩擦熱)及び振動(摩擦振動)が大きくなり、高速運転を行なう上で不利になる。   As is widely known in the field of rolling bearings, the relative speed between the inner peripheral surface of the rim portion 10 constituting the cage 5 and the outer peripheral surface of the inner ring 3 increases as the rotational speed of the rotary shaft increases. Become. For this reason, when the self-aligning roller bearing 1 is incorporated in a rotation support portion of a machine device that rotates at high speed, such as a papermaking machine device, the inner peripheral surface of the rim portion 10 and the outer peripheral surface of the guide wheel 6 The sliding friction acting on the engaging portion (sliding contact portion) and the engaging portion between the inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial direction intermediate portion of the inner ring 3 is considerably increased. Therefore, heat generation (friction heat) and vibration (friction vibration) associated with the operation of the self-aligning roller bearing 1 are increased, which is disadvantageous for high speed operation.

更に、滑り接触面となる、上記リム部10の内周面、上記案内輪6の内外両周面、及び、上記内輪3の軸方向中間部外周面に生じる摩耗が多くなる。この為、軸受内部に充填されたグリースを劣化させたり、各球面ころ4、4の転動面や外輪軌道7及び内輪軌道8、8に摩耗を生じさせる等して、軸受性能を低下させる可能性がある。従って、製紙機械装置の回転支持部の様に、振動荷重や衝撃荷重が加わる厳しい使用条件下では、上記自動調心ころ軸受1の信頼性及び耐久性を長期間に亙り確保する事が難しくなる。   Furthermore, wear that occurs on the inner peripheral surface of the rim portion 10, the inner and outer peripheral surfaces of the guide wheel 6, and the axially intermediate portion outer peripheral surface of the inner ring 3, which become sliding contact surfaces, increases. For this reason, it is possible to deteriorate the bearing performance by deteriorating the grease filled in the bearing or causing wear on the rolling surfaces of the spherical rollers 4 and 4 and the outer ring raceway 7 and the inner ring raceways 8 and 8. There is sex. Therefore, it is difficult to ensure the reliability and durability of the self-aligning roller bearing 1 over a long period of time under severe use conditions in which vibration load or impact load is applied, such as a rotation support portion of a papermaking machine. .

特開平11−2250号公報Japanese Patent Laid-Open No. 11-2250 特開2005−24026号公報JP-A-2005-24026

本発明は、上述の様な事情に鑑み、案内輪と、保持器及び内輪とが相対回転する際の摩擦低減を図り、運転に伴う発熱及び振動を低減すると共に、摩耗の発生を抑制できる自動調心ころ軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is intended to reduce friction when the guide wheel, the cage and the inner ring rotate relative to each other, reduce heat generation and vibration associated with operation, and reduce the occurrence of wear. The invention was invented to realize a spherical roller bearing.

本発明の自動調心ころ軸受は、前述した従来から知られている自動調心ころ軸受と同様に、外輪と、内輪と、複数個の球面ころと、保持器と、案内輪とから成る。
このうちの外輪は、球状凹面である外輪軌道を、その内周面に形成している。
又、上記内輪は、この外輪軌道と対向する1対の内輪軌道を、その外周面に形成している。
又、上記各球面ころは、上記外輪軌道と上記両内輪軌道との間に、2列に分けて、両列毎に複数個ずつ、転動自在に設けられている。
又、上記保持器は、円環状であって、上記各球面ころを転動自在に保持する複数のポケットを、円周方向複数個所に設けている。
更に、上記案内輪は、上記保持器の内周面と上記内輪の軸方向中間部外周面との間に配置されており、上記両列の球面ころの互いに対向する軸方向内端面同士の間に挟持されている。
尚、上記保持器としては、前記図5に示した様な、円環状のリム部と複数本の柱部とを備えるものの他、金属板をプレス成形して成る、所謂プレス保持器を使用する事もできる。
The self-aligning roller bearing of the present invention includes an outer ring, an inner ring, a plurality of spherical rollers, a cage, and a guide wheel, as in the conventional self-aligning roller bearings.
Among these, the outer ring forms an outer ring raceway having a spherical concave surface on the inner peripheral surface thereof.
The inner ring has a pair of inner ring raceways opposed to the outer ring raceway formed on the outer peripheral surface thereof.
Each of the spherical rollers is provided in two rows between the outer ring raceway and the inner ring raceways so as to be freely rotatable in each row.
The retainer has an annular shape, and is provided with a plurality of pockets in the circumferential direction at a plurality of pockets for rotatably holding the spherical rollers.
Furthermore, the guide wheel is disposed between the inner peripheral surface of the cage and the outer peripheral surface in the axial intermediate portion of the inner ring, and between the axial inner end surfaces of the two rows of spherical rollers facing each other. Is sandwiched between.
As the cage, a so-called press cage formed by press-molding a metal plate is used in addition to an annular rim portion and a plurality of column portions as shown in FIG. You can also do things.

特に、本発明の自動調心ころ軸受に於いては、上記案内輪と、上記保持器と上記内輪とのうちの少なくとも一方の部材との間に、ラジアルニードル軸受(所謂ケージ&ローラ形、シェル形、ソリッド形、総ころ形を含む)を組み込む。   In particular, in the self-aligning roller bearing of the present invention, a radial needle bearing (so-called cage and roller type, shell) is provided between the guide wheel and at least one member of the cage and the inner ring. Shape, solid, and full complement).

上述の様な構成を有する本発明の自動調心ころ軸受によれば、運転時に、案内輪と、保持器と内輪とのうちの少なくとも一方の部材とを、ラジアルニードル軸受を介して相対回転させる事ができる。この為、上記案内輪の周面と、上記少なくとも一方の部材の周面である相手周面(保持器の内周面、内輪の軸方向中間部外周面)とが滑り摩擦する事を防止できる。従って、自動調心ころ軸受の運転に伴う発熱及び振動を低減できると共に、摩耗を抑制できる。   According to the self-aligning roller bearing of the present invention having the above-described configuration, at the time of operation, the guide wheel and at least one member of the cage and the inner ring are relatively rotated via the radial needle bearing. I can do things. For this reason, it is possible to prevent sliding friction between the peripheral surface of the guide wheel and the peripheral surface (the inner peripheral surface of the cage and the outer peripheral surface in the axial direction of the inner ring) that is the peripheral surface of the at least one member. . Therefore, heat generation and vibration associated with the operation of the self-aligning roller bearing can be reduced, and wear can be suppressed.

[実施の形態の第1例]
図1〜2は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、保持器5と案内輪6との間に、ラジアルニードル軸受15を組み込んだ点にある。その他の部分の構成及び作用は、前述した従来構造と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention. The feature of this example is that a radial needle bearing 15 is incorporated between the cage 5 and the guide wheel 6. Since the configuration and operation of the other parts are the same as those of the conventional structure described above, overlapping illustrations and explanations are omitted or simplified, and the following description will focus on the characteristic parts of this example.

本例の自動調心ころ軸受1aは、上記保持器5を構成するリム部10の内周面と、上記案内輪6の外周面との間に、上記ラジアルニードル軸受15を組み込んでいる。このラジアルニードル軸受15は、図2に示す様に、複数本のニードル16、16と、これら各ニードル16、16を転動自在に保持する為の保持器17とから成る。そして、上記リム部10の内周面を外輪軌道18とし、上記案内輪6の外周面を内輪軌道19として、上記各ニードル16、16の転動面を、これら外輪軌道18及び内輪軌道19に転がり接触させている。   In the self-aligning roller bearing 1 a of this example, the radial needle bearing 15 is incorporated between the inner peripheral surface of the rim portion 10 constituting the cage 5 and the outer peripheral surface of the guide wheel 6. As shown in FIG. 2, the radial needle bearing 15 includes a plurality of needles 16 and 16 and a holder 17 for holding the needles 16 and 16 so as to roll freely. The inner peripheral surface of the rim portion 10 is an outer ring raceway 18, the outer peripheral surface of the guide wheel 6 is an inner ring raceway 19, and the rolling surfaces of the needles 16, 16 are the outer ring raceway 18 and the inner ring raceway 19. Rolling contact.

上述の様に、本例の場合には、上記ラジアルニードル15として、所謂ケージ&ローラ形のものを使用している。この為、別途ラジアルニードル軸受用外輪及び内輪を設ける必要をなくして、その分、上記リム部10及び上記案内輪6の径方向に関する肉厚の減少を抑えている。尚、本例の場合には、上記リム部10の内周面に上記外輪軌道18を直接形成する為、上記保持器5を銅系合金、ステンレス鋼の如き鉄系合金等の金属材製としている。又、上記案内輪6に就いても、その外周面に上記内輪軌道19を直接形成する為、やはり銅系合金、鉄系合金等の金属材製としている。又、上記案内輪6の内周面と内輪3の軸方向中間部外周面との間には、上述の様なラジアルニードル軸受は設けずに、前述した従来構造の場合と同様に、これら両周面を近接対向させている。   As described above, in the case of this example, a so-called cage and roller type is used as the radial needle 15. For this reason, it is not necessary to separately provide an outer ring and an inner ring for radial needle bearings, and accordingly, a reduction in thickness in the radial direction of the rim portion 10 and the guide wheel 6 is suppressed. In the case of this example, in order to directly form the outer ring raceway 18 on the inner peripheral surface of the rim portion 10, the cage 5 is made of a metal material such as an iron alloy such as a copper alloy or stainless steel. Yes. Further, the guide ring 6 is also made of a metal material such as a copper alloy or an iron alloy in order to directly form the inner ring raceway 19 on the outer peripheral surface thereof. Further, the radial needle bearing as described above is not provided between the inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial direction intermediate portion of the inner ring 3, and both of these are provided in the same manner as in the conventional structure described above. The peripheral surfaces are close to each other.

上述の様な構成を有する本例の自動調心ころ軸受1aの場合、運転時に、上記保持器5と上記案内輪6とを、上記ラジアルニードル軸受15を介して相対回転させる事ができる。この為、上記保持器5を構成するリム部10の内周面と上記案内輪6の外周面とが滑り摩擦する事を防止できる。本例の場合、上記リム部10の内周面と上記案内輪6の外周面とは、前記各ニードル16、16の転動面と転がり摩擦する。但し、この転がり摩擦は、上記滑り摩擦に比べて十分に小さくなる。従って、本例の場合には、上記リム部10の内周面と上記案内輪6の外周面との間部分で生じる発熱及び振動を十分に抑えられると共に、上記リム部10の内周面及び上記案内輪6の外周面の摩耗を抑えられる。   In the case of the self-aligning roller bearing 1a of the present example having the above-described configuration, the cage 5 and the guide wheel 6 can be relatively rotated via the radial needle bearing 15 during operation. For this reason, it is possible to prevent sliding friction between the inner peripheral surface of the rim portion 10 constituting the cage 5 and the outer peripheral surface of the guide wheel 6. In this example, the inner peripheral surface of the rim portion 10 and the outer peripheral surface of the guide wheel 6 are in rolling friction with the rolling surfaces of the needles 16 and 16. However, this rolling friction is sufficiently smaller than the sliding friction. Therefore, in the case of this example, heat generation and vibration generated between the inner peripheral surface of the rim portion 10 and the outer peripheral surface of the guide wheel 6 can be sufficiently suppressed, and the inner peripheral surface of the rim portion 10 and Wear of the outer peripheral surface of the guide wheel 6 can be suppressed.

更に、上記保持器5を構成するリム部10の内周面と上記案内輪6の外周面との間に作用する摩擦を低減できる事に伴い、この案内輪6と前記内輪3との相対速度を低く抑えられる。この為、この案内輪6の内周面と上記内輪3の軸方向中間部外周面との係合部(滑り接触部)に作用する滑り摩擦を、前述した従来構造の場合に比べて小さくできる。この為、上記係合部で生じる発熱及び振動を抑えられると共に、上記案内輪6の内周面及び上記内輪3の軸方向中間部外周面に生じる摩耗を抑えられる。   Further, since the friction acting between the inner peripheral surface of the rim portion 10 constituting the cage 5 and the outer peripheral surface of the guide wheel 6 can be reduced, the relative speed between the guide wheel 6 and the inner ring 3 can be reduced. Can be kept low. Therefore, the sliding friction acting on the engaging portion (sliding contact portion) between the inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial direction of the inner ring 3 can be reduced as compared with the conventional structure described above. . Therefore, heat generation and vibration generated in the engaging portion can be suppressed, and wear generated on the inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial intermediate portion of the inner ring 3 can be suppressed.

以上の様に、本例の自動調心ころ軸受1aによれば、前述した従来構造の自動調心ころ軸受1(図5参照)に比べて、運転に伴う発熱及び振動を低減できると共に、摩耗の発生を抑えられる。又、動トルクの低減も図れる。この為、高速運転を行なう上で有利になると共に、軸受性能が低下する事を防止できる。従って、本例の自動調心ころ軸受1aは、製紙機械装置の回転支持部の様な厳しい使用条件下に於いても十分な耐久性を得られて、長期間に亙り十分な信頼性を確保できる。   As described above, according to the self-aligning roller bearing 1a of the present example, compared to the above-described self-aligning roller bearing 1 having a conventional structure (see FIG. 5), heat generation and vibration associated with operation can be reduced, and wear is reduced. Can be suppressed. Also, the dynamic torque can be reduced. For this reason, it becomes advantageous when performing high-speed driving | operation, and it can prevent that bearing performance falls. Therefore, the self-aligning roller bearing 1a of the present example can obtain sufficient durability even under severe use conditions such as a rotation support portion of a paper machine, and ensure sufficient reliability over a long period of time. it can.

尚、本例の自動調心ころ軸受1aを組み立てる際には、例えば、上記保持器5と上記案内輪6との間に、前記ラジアルニードル軸受15を組み込み、1つの中間部品(サブアセンブリー)とする。その後、この中間部品を、外輪2(前記図5参照)の内周面と上記内輪3の外周面との間に組み込む。この様な組み立て方法を採用すれば、上記ラジアルニードル軸受15の組み込み作業を、広い空間内で行なう事ができると共に、上記各部材5、6、15をまとめて取り扱う事ができる為、作業効率の向上を図れる。   When assembling the self-aligning roller bearing 1a of the present example, for example, the radial needle bearing 15 is incorporated between the cage 5 and the guide wheel 6, and one intermediate component (subassembly). And Thereafter, this intermediate part is assembled between the inner peripheral surface of the outer ring 2 (see FIG. 5) and the outer peripheral surface of the inner ring 3. If such an assembling method is adopted, the assembly work of the radial needle bearing 15 can be performed in a wide space and the members 5, 6, 15 can be handled together, so that the work efficiency can be improved. Improvements can be made.

[実施の形態の第2例]
図3は、本発明の実施の形態の第2例を示している。本例の特徴は、案内輪6と内輪3との間に、ラジアルニードル軸受15aを組み込んだ点にある。その他の部分の構成及び作用は、上述した実施の形態の第1例、及び、前述した従来構造の場合と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Second Example of Embodiment]
FIG. 3 shows a second example of the embodiment of the present invention. The feature of this example is that a radial needle bearing 15 a is incorporated between the guide wheel 6 and the inner ring 3. Since the configuration and operation of the other parts are the same as those of the first example of the embodiment described above and the conventional structure described above, overlapping illustrations and descriptions are omitted or simplified, and the features of this example are described below. The explanation will focus on the part.

本例の場合にも、上述した実施の形態の第1例の場合と同様に、上記ラジアルニードル軸受15aを、複数本のニードル16aと、これら各ニードル16aを転動自在に保持する為の保持器17aとから構成している。そして、上記案内輪6の内周面を外輪軌道18aとし、上記内輪3の軸方向中間部外周面を内輪軌道19aとして、上記各ニードル16aの転動面を、これら外輪軌道18a及び内輪軌道19aに転がり接触させている。尚、本例の場合にも、上記案内輪6を銅系合金、鉄系合金等の金属材製としているが、保持器5に就いては、合成樹脂製としている。又、上記案内輪6の外周面とこの保持器5を構成するリム部10の内周面との間には、上述の様なラジアルニードル軸受は設けずに、前述した従来構造の場合と同様に、これら両周面を直接近接対向させている。   Also in this example, as in the case of the first example of the above-described embodiment, the radial needle bearing 15a is held by a plurality of needles 16a and the needles 16a for holding the needles 16a in a rollable manner. And a container 17a. The inner peripheral surface of the guide wheel 6 is an outer ring raceway 18a, the outer peripheral surface in the axial direction of the inner ring 3 is an inner ring raceway 19a, and the rolling surface of each needle 16a is the outer ring raceway 18a and the inner ring raceway 19a. It is in contact with rolling. In the case of this example as well, the guide wheel 6 is made of a metal material such as a copper alloy or an iron alloy, but the cage 5 is made of a synthetic resin. Further, the radial needle bearing as described above is not provided between the outer peripheral surface of the guide wheel 6 and the inner peripheral surface of the rim portion 10 constituting the cage 5, and is the same as in the case of the conventional structure described above. In addition, these two peripheral surfaces are directly opposed to each other.

上述の様な構成を有する本例の自動調心ころ軸受1bの場合、運転時に、上記案内輪6と上記内輪3とを、上記ラジアルニードル軸受15aを介して相対回転させる事ができる。この為、上記案内輪6の内周面と上記内輪3の軸方向中間部外周面とが滑り摩擦する事を防止できる。上記案内輪6の内周面と上記内輪3の軸方向中間部外周面とは、上記各ニードル16aの転動面と転がり接触するが、この転がり接触に伴う摩擦(転がり摩擦)は、上記滑り摩擦に比べて十分に小さくなる。従って、上記案内輪6の内周面と上記内輪3の軸方向中間部外周面との間部分で生じる発熱及び振動を十分に抑えられると共に、上記案内輪6の内周面及び上記内輪3の軸方向中間部外周面の摩耗を抑えられる。   In the case of the self-aligning roller bearing 1b of the present example having the above-described configuration, the guide wheel 6 and the inner ring 3 can be relatively rotated through the radial needle bearing 15a during operation. For this reason, it is possible to prevent sliding friction between the inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial direction intermediate portion of the inner ring 3. The inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial intermediate portion of the inner ring 3 are in rolling contact with the rolling surface of each needle 16a. The friction (rolling friction) associated with the rolling contact is the slip Small enough compared to friction. Therefore, heat generation and vibration generated between the inner peripheral surface of the guide wheel 6 and the outer peripheral surface in the axial intermediate portion of the inner ring 3 can be sufficiently suppressed, and the inner peripheral surface of the guide wheel 6 and the inner ring 3 can be prevented. Wear on the outer peripheral surface of the intermediate portion in the axial direction can be suppressed.

更に、上記案内輪6の内周面と上記内輪3の軸方向中間部外周面との間に作用する摩擦を低減できる事に伴い、前記保持器5を構成するリム部10と上記案内輪6との相対速度を低く抑えられる。この為、これらリム部10の内周面と案内輪6の外周面との係合部(滑り接触部)に作用する滑り摩擦を、前述した従来構造の場合に比べて小さくできる。この結果、上記係合部で生じる発熱及び振動を抑えられると共に、上記リム部10の内周面及び上記案内輪6の外周面に生じる摩耗を抑えられる。
以上の様に、本例の自動調心ころ軸受1bの場合にも、前述した従来構造の自動調心ころ軸受1(図5参照)に比べて、運転に伴う発熱及び振動を低減できると共に、摩耗を抑えられる。
Further, as the friction acting between the inner peripheral surface of the guide wheel 6 and the outer peripheral surface of the axial intermediate portion of the inner ring 3 can be reduced, the rim portion 10 constituting the retainer 5 and the guide wheel 6 can be reduced. And the relative speed can be kept low. For this reason, the sliding friction which acts on the engaging part (sliding contact part) of the inner peripheral surface of these rim | limb parts 10 and the outer peripheral surface of the guide wheel 6 can be made small compared with the case of the conventional structure mentioned above. As a result, heat generation and vibration generated in the engaging portion can be suppressed, and wear generated on the inner peripheral surface of the rim portion 10 and the outer peripheral surface of the guide wheel 6 can be suppressed.
As described above, in the case of the self-aligning roller bearing 1b of this example, heat generation and vibration associated with operation can be reduced as compared with the self-aligning roller bearing 1 having the conventional structure (see FIG. 5). Wear can be suppressed.

[実施の形態の第3例]
図4は、本発明の実施の形態の第3例を示している。本例の特徴は、保持器5を構成するリム部10と案内輪6との間部分、及び、この案内輪6と内輪3との間部分に、それぞれラジアルニードル軸受15、15aを組み込む点にある。その他の部分の構成及び作用は、上述した実施の形態の第1〜2例、及び、前述した従来構造の場合と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Third example of embodiment]
FIG. 4 shows a third example of the embodiment of the present invention. The feature of this example is that radial needle bearings 15 and 15a are incorporated in a portion between the rim portion 10 and the guide wheel 6 constituting the cage 5 and a portion between the guide wheel 6 and the inner ring 3, respectively. is there. Since the configuration and operation of other parts are the same as those in the first and second examples of the above-described embodiment and the conventional structure described above, overlapping illustrations and explanations are omitted or simplified. The description will focus on the features of

上述の様な構成を有する本例の自動調心ころ軸受1cの場合、運転時に、上記保持器5と上記案内輪6とを、上記ラジアルニードル軸受15を介して相対回転させる事ができると共に、この案内輪6と上記内輪3とを、上記ラジアルニードル軸受15aを介して相対回転させる事ができる。この為、上記保持器5を構成するリム部10の内周面と上記案内輪6の外周面とが滑り摩擦する事を防止できると共に、この案内輪6の内周面と上記内輪3の軸方向中間部外周面とが滑り摩擦する事を防止できる。
従って、本例の自動調心ころ軸受1cの場合にも、前述した従来構造の自動調心ころ軸受1(図5参照)に比べて、運転に伴う発熱及び振動を低減できると共に、摩耗の発生を抑制できる。
In the case of the self-aligning roller bearing 1c of the present example having the above-described configuration, the cage 5 and the guide wheel 6 can be relatively rotated through the radial needle bearing 15 during operation. The guide wheel 6 and the inner ring 3 can be rotated relative to each other via the radial needle bearing 15a. Therefore, it is possible to prevent sliding friction between the inner peripheral surface of the rim portion 10 constituting the cage 5 and the outer peripheral surface of the guide wheel 6, and the inner peripheral surface of the guide wheel 6 and the shaft of the inner ring 3. It is possible to prevent sliding friction with the outer circumferential surface of the direction intermediate portion.
Therefore, in the case of the self-aligning roller bearing 1c of this example, the heat generation and vibration associated with the operation can be reduced and the occurrence of wear as compared with the self-aligning roller bearing 1 having the conventional structure (see FIG. 5). Can be suppressed.

尚、上述した実施の形態の各例に於いては、一方の列の球面ころ4と、他方の列の球面ころ4とを、一体の保持器5により保持する構造のみを示したが、これら一方の列の球面ころ4と、他方の列の球面ころ4とを、それぞれ独立の保持器により保持する事もできる。即ち、図7に示す様に、一方の列の球面ころ4を保持する為の保持器5aと、他方の列の球面ころ4を保持する為の保持器5aとを、相対回転を可能に互いに独立させる事ができる。この様な構成を採用すれば、両列の球面ころ4、4の公転速度に差が生じた場合でも、これら両列の球面ころ4、4を保持している保持器5a、5aが独立して回転する。即ち、自動調心ころ軸受は、両列の球面ころ4、4のうち、一方の列が他方の列に比べて大きな荷重を支承して運転される場合が多い。この場合には、これら両列の球面ころ4、4の公転速度に差が生じる。この様な場合に、これら両列の球面ころ4、4を保持する保持器5a、5aは、それぞれ独立して回転する為、公転速度が速い列の球面ころ4が、同じく遅い列の球面ころ4を引き摺ったり、公転速度が遅い列の球面ころ4が、同じく速い列の球面ころ4の公転運動に対して制動を加える事がなくなる。この結果、動トルク並びに運転に伴う発熱を低く抑えられる。   In each example of the above-described embodiment, only the structure in which the spherical roller 4 in one row and the spherical roller 4 in the other row are held by an integrated cage 5 is shown. The spherical rollers 4 in one row and the spherical rollers 4 in the other row can be held by independent cages. That is, as shown in FIG. 7, the cage 5a for holding the spherical rollers 4 in one row and the cage 5a for holding the spherical rollers 4 in the other row can be rotated relative to each other. Can be independent. By adopting such a configuration, even when there is a difference in the revolution speed between the spherical rollers 4 and 4 in both rows, the cages 5a and 5a holding the spherical rollers 4 and 4 in both rows are independent. Rotate. That is, the self-aligning roller bearing is often operated while one row of the spherical rollers 4 and 4 in both rows bears a larger load than the other row. In this case, a difference occurs in the revolution speed of the spherical rollers 4 and 4 in both rows. In such a case, the cages 5a and 5a for holding the spherical rollers 4 and 4 in both rows rotate independently of each other, so that the spherical roller 4 in the row with the high revolution speed is replaced with the spherical roller in the slow row. The spherical roller 4 in the row with the slow revolving speed is not applied to the revolving motion of the spherical roller 4 in the same fast row. As a result, the dynamic torque and the heat generated by the operation can be kept low.

尚、上述の様に、一方の列の球面ころ4と他方の列の球面ころ4とを、それぞれ独立の保持器5a、5aにより保持する場合、これら両保持器5a、5aの内径側に配置するラジアルニードル軸受15(図1、4参照)は、前述した実施の形態の第1例、第3例の場合と同様に1つでも良いし、上記各保持器5a、5a毎にそれぞれ1つずつ、合計2つでも良い。この様に、2つのラジアルニードル軸受を配置すれば、上記各保持器5a、5aが互いに独立して回転する際に、これら各保持器5a、5aを構成するリム部の内周面と、上記各ラジアルニードル軸受を構成する各ニードル16(図1、4参照)の転動面との転がり接触部での摩擦を低く抑えられる。   As described above, when the spherical rollers 4 in one row and the spherical rollers 4 in the other row are held by independent cages 5a and 5a, they are arranged on the inner diameter side of these cages 5a and 5a. The number of radial needle bearings 15 (see FIGS. 1 and 4) may be one as in the case of the first and third examples of the embodiment described above, or one for each of the cages 5a and 5a. A total of two may be sufficient. In this way, if two radial needle bearings are arranged, when the cages 5a and 5a rotate independently of each other, the inner peripheral surface of the rim part constituting the cages 5a and 5a, and the above Friction at the rolling contact portion with the rolling surface of each needle 16 (see FIGS. 1 and 4) constituting each radial needle bearing can be kept low.

又、上述した実施の形態の各例に於いては、ラジアルニードル軸受15、15aとして、軌道輪を省略したケージ&ローラ形のラジアルニードル軸受を示して説明したが、本発明に使用するラジアルニードル軸受は、この様な構成に限定されるものではない。即ち、保持器を省略した総ころ軸受の他、軌道輪を備えたシェル形やソリッド型のラジアルニードル軸受を使用する事もできる。尚、軌道輪を備えたラジアルニードル軸受を用いる場合には、保持器及び案内輪を銅系合金、鉄系合金等の金属材製ではなく、合成樹脂製とする事もできる。   In each example of the embodiment described above, the radial needle bearings 15 and 15a have been described as cage and roller type radial needle bearings in which the bearing rings are omitted, but the radial needles used in the present invention are described. The bearing is not limited to such a configuration. That is, in addition to the full roller bearing in which the cage is omitted, a shell-type or solid-type radial needle bearing provided with a bearing ring can be used. In addition, when using the radial needle bearing provided with the bearing ring, the cage and the guide ring may be made of a synthetic resin instead of a metal material such as a copper alloy or an iron alloy.

本発明の実施の形態の第1例を示す、図6に相当する図。The figure equivalent to FIG. 6 which shows the 1st example of embodiment of this invention. 同じくラジアルニードル軸受を抜き出して示す断面図。Sectional drawing which similarly extracts and shows a radial needle bearing. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the same 3 examples. 従来から知られている自動調心ころ軸受の1例を示す半部断面図。The half part sectional view which shows an example of the self-aligning roller bearing known conventionally. 同じく外輪及び一方の列の球面ころを省略して示す、図5のイ部拡大模式図。FIG. 6 is an enlarged schematic view of the portion “a” in FIG. 5, omitting the outer ring and the spherical rollers in one row. 本発明の対象となる自動調心ころ軸受の別例を示す半部断面図。The half part sectional view which shows another example of the self-aligning roller bearing used as the object of this invention.

符号の説明Explanation of symbols

1、1a〜1c 自動調心ころ軸受
2 外輪
3 内輪
4 球面ころ
5、5a 保持器
6 案内輪
7 外輪軌道
8 内輪軌道
9 鍔部
10 リム部
11 柱部
12 ポケット
13 軸方向側面
14 軸方向内端面
15、15a ラジアルニードル軸受
16、16a ニードル
17、17a 保持器
18、18a 外輪軌道
19、19a 内輪軌道
DESCRIPTION OF SYMBOLS 1, 1a-1c Self-aligning roller bearing 2 Outer ring 3 Inner ring 4 Spherical roller 5, 5a Cage 6 Guide wheel 7 Outer ring raceway 8 Inner ring raceway 9 Grow part 10 Rim part 11 Column part 12 Pocket 13 Axial side surface 14 Axial direction inside End face 15, 15a Radial needle bearing 16, 16a Needle 17, 17a Cage 18, 18a Outer ring race 19, 19a Inner ring race

Claims (1)

球状凹面である外輪軌道を内周面に形成した外輪と、この外輪軌道と対向する1対の内輪軌道を外周面に形成した内輪と、これら外輪軌道と内輪軌道との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられた球面ころと、これら各球面ころを転動自在に保持する複数のポケットを、円周方向複数個所に設けた円環状の保持器と、この保持器の内周面と上記内輪の軸方向中間部外周面との間に配置され、上記両列の球面ころの互いに対向する軸方向内端面同士の間に挟持された案内輪とを備えた自動調心ころ軸受に於いて、この案内輪と、上記保持器と上記内輪とのうちの少なくとも一方の部材との間に、ラジアルニードル軸受が組み込まれている事を特徴とする自動調心ころ軸受。   An outer ring in which an outer ring raceway that is a spherical concave surface is formed on the inner peripheral surface, an inner ring in which a pair of inner ring races opposed to the outer ring raceway are formed on the outer peripheral surface, and the outer ring raceway and the inner ring raceway in two rows. Separately, an annular cage in which a plurality of spherical rollers are provided for each row, and a plurality of pockets for holding each of the spherical rollers is provided at a plurality of locations in the circumferential direction. And a guide wheel disposed between the inner peripheral surface of the cage and the outer peripheral surface in the axial direction intermediate portion of the inner ring and sandwiched between the axial inner end surfaces of the two rows of spherical rollers facing each other. A self-aligning roller bearing provided with a radial needle bearing is incorporated between the guide wheel and at least one member of the cage and the inner ring. Spherical roller bearing.
JP2008017165A 2008-01-29 2008-01-29 Automatic self-aligning roller bearing Pending JP2009180235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017165A JP2009180235A (en) 2008-01-29 2008-01-29 Automatic self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017165A JP2009180235A (en) 2008-01-29 2008-01-29 Automatic self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2009180235A true JP2009180235A (en) 2009-08-13

Family

ID=41034391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017165A Pending JP2009180235A (en) 2008-01-29 2008-01-29 Automatic self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2009180235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010052A3 (en) * 2011-07-14 2013-03-07 Davis-Standard, Llc Thrust rolling bearing for screw extruder with a cage guided on the shaft rolling elements
JP2016191429A (en) * 2015-03-31 2016-11-10 株式会社ジェイテクト Self-aligning roller bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668389B2 (en) 2000-11-07 2014-03-11 Davis-Standard, Llc Combination thrust flange and thrust plate
WO2013010052A3 (en) * 2011-07-14 2013-03-07 Davis-Standard, Llc Thrust rolling bearing for screw extruder with a cage guided on the shaft rolling elements
JP2016191429A (en) * 2015-03-31 2016-11-10 株式会社ジェイテクト Self-aligning roller bearing

Similar Documents

Publication Publication Date Title
JP5375969B2 (en) Rotation support device for pinion shaft
JP5286962B2 (en) Rolling bearing with aligning ring and roll device for continuous casting machine using the same
JPH08296653A (en) Automatic aligning roller bearing having cage
JP2016109253A (en) Rolling bearing
US20050058381A1 (en) Roller bearing
JP2008014411A (en) Rolling bearing lubricating structure
JP4661424B2 (en) Rotation support
JP2007278406A (en) Roller bearing with cage
JP2009074600A (en) Roller bearing
JP2009074679A (en) Self-aligning roller bearing
JP2016138572A (en) Thrust roller bearing
JP2008267400A (en) Ball bearing
JP2009180235A (en) Automatic self-aligning roller bearing
JP2011085153A (en) Rolling bearing
JP2006112555A (en) Roller bearing with aligning ring
JP2010025191A (en) Self-aligning roller bearing
JP2010025183A (en) Self-aligning roller bearing
JP2010209955A (en) Roller bearing
JP2017078480A (en) Self-aligning roller bearing
JP2015132320A (en) Self-aligning roller bearing
JP3550712B2 (en) Ball bearing device
JP2012172784A (en) Ball bearing
JP2009210078A (en) Self-aligning roller bearing
WO2017043425A1 (en) Rolling bearing
JP2013061040A (en) Self-aligning rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100315