JP2013061040A - Self-aligning rolling bearing - Google Patents

Self-aligning rolling bearing Download PDF

Info

Publication number
JP2013061040A
JP2013061040A JP2011200987A JP2011200987A JP2013061040A JP 2013061040 A JP2013061040 A JP 2013061040A JP 2011200987 A JP2011200987 A JP 2011200987A JP 2011200987 A JP2011200987 A JP 2011200987A JP 2013061040 A JP2013061040 A JP 2013061040A
Authority
JP
Japan
Prior art keywords
guide wheel
curved surface
axial direction
rim portion
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011200987A
Other languages
Japanese (ja)
Inventor
Mikiko Shirai
幹子 白井
Yohei Kashiwakura
洋平 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011200987A priority Critical patent/JP2013061040A/en
Publication of JP2013061040A publication Critical patent/JP2013061040A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a structure that can prevent a guide ring 8b from being axially excessively displaced to suppress or prevent friction between end faces of spherical rollers 4, 4 and the side face of the guide ring 8b.SOLUTION: The outer circumferential surface of a guide ring 8b is formed into a projecting curved surface 14 with an outer diameter at the center in an axial direction made larger than an outer diameter at both ends in the axial direction. The inner circumferential surface of a rim part 9a of a retainer 7b is formed into a recessed curved surface 13 with an inner diameter at the center in an axial direction made larger than an inner diameter at both ends in the axial direction. By engaging the recessed curved surface 13 with the projecting curved surface 14, the guide ring 8b is supported inside the rim part 9a to be relatively rotatable with respect to the retainer 7b, while suppressing displacement of the guide ring in the axial direction of the retainer 7b.

Description

この発明は、各種機械装置に組み込んで、例えばハウジングの内側に回転軸を支承する自動調心ころ軸受の改良に関する。具体的には、各球面ころの軸方向端面と、これら各球面ころを保持する保持器の姿勢を安定させる為の案内輪の軸方向側面との擦れ合いを抑制若しくは防止して、優れた耐久性を有する自動調心ころ軸受の実現を意図したものである。   The present invention relates to an improvement in a self-aligning roller bearing that is incorporated in various mechanical devices and supports a rotating shaft inside a housing, for example. Specifically, it has excellent durability by suppressing or preventing friction between the axial end surface of each spherical roller and the axial side surface of the guide wheel for stabilizing the posture of the cage that holds each spherical roller. It is intended to realize a self-aligning roller bearing having the characteristics.

例えば重量の嵩む軸をハウジングの内側に回転自在に支承する為に従来から、特許文献1〜3に記載された様な自動調心ころ軸受が使用されている。図6〜7は、自動調心ころ軸受の従来構造の第1例を示している。この自動調心ころ軸受1は、互いに同心に組み合わされた外輪2と内輪3との間に、複数の球面ころ4、4を転動自在に配列して成る。このうちの外輪2の内周面には、単一の中心を有する球状凹面である外輪軌道5を形成している。又、前記内輪3の外周面の幅方向(図6〜7の左右方向)両側には、それぞれが前記外輪軌道5と対向する、1対の内輪軌道6、6を形成している。又、前記各球面ころ4、4は、それぞれの最大径部が軸方向中央部にある対称形で、前記外輪軌道5と前記両内輪軌道6、6との間に、2列に亙って転動自在に配列されている。そして、1対の保持器7、7により、前記各球面ころ4、4の分離防止を図っている。又、これら両保持器7、7の大径側端部内周面を、前記内輪3の中間部周囲に回転自在に配置した案内輪8の外周縁に近接させる事で、これら両保持器7、7を案内(径方向の変位を抑えた状態で回転自在に支持)している。更に、前記案内輪8の両側面は、前記各球面ころ4、4の軸方向内端面に近接対向させて、これら各球面ころ4、4を案内し、これら各球面ころ4、4の回転中心軸が正規の状態から傾斜する(スキューする)事を防止している。   For example, a self-aligning roller bearing as described in Patent Documents 1 to 3 is conventionally used to rotatably support a heavy shaft on the inside of a housing. 6 to 7 show a first example of a conventional structure of a self-aligning roller bearing. The self-aligning roller bearing 1 includes a plurality of spherical rollers 4 and 4 arranged in a freely rollable manner between an outer ring 2 and an inner ring 3 that are concentrically combined with each other. An outer ring raceway 5 that is a spherical concave surface having a single center is formed on the inner circumferential surface of the outer ring 2. Further, a pair of inner ring raceways 6 and 6 are formed on both sides of the outer peripheral surface of the inner ring 3 in the width direction (left and right direction in FIGS. 6 to 7) to face the outer ring raceway 5. Each of the spherical rollers 4 and 4 has a symmetric shape in which the respective maximum diameter portions are in the central portion in the axial direction, and extends in two rows between the outer ring raceway 5 and the inner ring raceways 6 and 6. It is arranged so that it can roll freely. The pair of cages 7 and 7 prevent the spherical rollers 4 and 4 from being separated. Further, by bringing the inner peripheral surfaces of the large-diameter side end portions of both the cages 7 and 7 close to the outer peripheral edge of the guide wheel 8 that is rotatably arranged around the intermediate portion of the inner ring 3, the cages 7 and 7 7 is guided (supported so as to be rotatable in a state where radial displacement is suppressed). Further, both side surfaces of the guide wheel 8 are close to and opposed to the inner end surfaces in the axial direction of the spherical rollers 4, 4 to guide the spherical rollers 4, 4, and the rotational centers of the spherical rollers 4, 4. The shaft is prevented from tilting (skewing) from the normal state.

上述の様な構造を有する自動調心ころ軸受1により、例えばハウジングの内側に回転軸を支承する場合、前記外輪2をこのハウジングに内嵌固定し、前記内輪3をこの回転軸に外嵌固定する。この内輪3がこの回転軸と共に回転する場合には、前記各球面ころ4、4が転動して、この回転を許容する。この回転軸の軸心と前記ハウジングの軸心とが不一致の場合、前記内輪3が前記外輪2の内側で調心する(この外輪2の中心軸に対しこの内輪3の中心軸を傾斜させる)事で、この不一致を補償する。この場合に、前記外輪軌道5のうちで前記各球面ころ4、4の転動面が転がり接触する位置が変化する。この外輪軌道5は単一球面状に形成されている為、前記複数の球面ころ4、4の転動は、不一致補償後(転がり接触する位置の変化後)に於いても、円滑に行われる。   For example, when the rotating shaft is supported inside the housing by the self-aligning roller bearing 1 having the above-described structure, the outer ring 2 is fitted and fixed to the housing, and the inner ring 3 is fixed to the rotating shaft. To do. When the inner ring 3 rotates together with the rotating shaft, the spherical rollers 4 and 4 roll to allow this rotation. When the axis of the rotating shaft and the axis of the housing do not coincide, the inner ring 3 is aligned inside the outer ring 2 (the central axis of the inner ring 3 is inclined with respect to the central axis of the outer ring 2). To compensate for this discrepancy. In this case, the position where the rolling surfaces of the spherical rollers 4 and 4 are in rolling contact with each other in the outer ring raceway 5 changes. Since the outer ring raceway 5 is formed in a single spherical shape, the rolling of the plurality of spherical rollers 4 and 4 is performed smoothly even after the mismatch compensation (after the change of the position of contact with rolling). .

次に、図8に示した自動調心ころ軸受1aは、従来構造の第2例を示している。この第2例の構造の場合には、1個の保持器7aにより、両列に配置された各球面ころ4、4を転動自在に保持している。この為に、この保持器7aは、これら両列の球面ころ4、4同士の間に配置された円環状のリム部9の軸方向両側面に、それぞれ複数本ずつの柱部10の基端部をそれぞれ連続させている。そして、円周方向に隣り合う柱部10の周方向側面と前記リム部9の軸方向側面とにより囲まれる部分を、前記各球面ころ4、4を転動自在に保持する為のポケット11としている。案内輪8aは、前記リム部9の内周面と、内輪3の中間部外周面との間に配置している。   Next, the self-aligning roller bearing 1a shown in FIG. 8 shows a second example of a conventional structure. In the case of the structure of the second example, the spherical rollers 4 and 4 arranged in both rows are rotatably held by one cage 7a. For this purpose, the retainer 7a is provided on the both sides in the axial direction of the annular rim portion 9 disposed between the spherical rollers 4 and 4 in both rows, and the base ends of the plurality of column portions 10 respectively. Each part is continuous. And the part enclosed by the circumferential side surface of the column part 10 adjacent to the circumferential direction and the axial direction side surface of the said rim | limb part 9 is made into the pocket 11 for holding each said spherical roller 4 and 4 so that rolling is possible. Yes. The guide wheel 8 a is disposed between the inner peripheral surface of the rim portion 9 and the outer peripheral surface of the intermediate portion of the inner ring 3.

上述した様な構造の自動調心ころ軸受1、1aの場合、運転時には、前記各球面ころ4、4の端面と前記案内輪8、8aの側面とが、摺接しながら相対回転する。又、従来構造の場合にこの案内輪8、8aは、特に軸方向に拘束されておらず、軸方向に変位する。この為、前記各球面ころ4、4の端面と前記案内輪8、8aの側面との摺接部の面圧が過度に上昇し、これら各摺接部で著しい摩耗が進行する可能性がある。この様な摩耗の進行は、自動調心ころ軸受1、1aの内部でのがたつきを大きくしたり、発生した摩耗粉による損傷を発生させる原因となる為、抑制若しくは防止する必要がある。   In the case of the self-aligning roller bearings 1 and 1a having the above-described structure, during operation, the end surfaces of the spherical rollers 4 and 4 and the side surfaces of the guide wheels 8 and 8a rotate relative to each other while being in sliding contact. In the case of the conventional structure, the guide wheels 8 and 8a are not particularly restricted in the axial direction and are displaced in the axial direction. For this reason, the surface pressure of the sliding contact portion between the end surface of each of the spherical rollers 4 and 4 and the side surface of the guide wheels 8 and 8a excessively increases, and there is a possibility that remarkable wear may progress at each sliding contact portion. . Such progress of wear increases rattling within the self-aligning roller bearings 1 and 1a and causes damage due to the generated wear powder. Therefore, it is necessary to suppress or prevent such wear.

この様な事情に鑑みて、特許文献1には、各球面ころの端面と案内輪の側面とのうちで相手面と接触する部分に存在する境界部分を滑らかな凸曲面とし、この境界部分で接触面圧が過度に上昇(エッヂロードが発生)するのを防止する構造が記載されている。又、特許文献2には、案内輪の側面に周方向溝を設け、この周方向溝に捕集した潤滑油により、各球面ころの端面と案内輪の側面との摺接部に油膜を形成し、これら各面同士の擦れ合い部の摩擦を軽減する構造が記載されている。更に、特許文献3には、各球面ころの端面と案内輪の側面との間にスラスト転がり軸受を設置し、これら各面同士の摩擦状態を滑り摩擦から転がり摩擦に変更する構造が記載されている。   In view of such circumstances, Patent Document 1 discloses that a boundary portion existing in a portion in contact with the mating surface of the end surface of each spherical roller and the side surface of the guide wheel is a smooth convex curved surface. A structure that prevents the contact surface pressure from excessively rising (edge load) is described. In Patent Document 2, a circumferential groove is provided on the side surface of the guide wheel, and an oil film is formed on the sliding contact portion between the end surface of each spherical roller and the side surface of the guide wheel by the lubricating oil collected in the circumferential groove. And the structure which reduces the friction of the friction part of each of these surfaces is described. Further, Patent Document 3 describes a structure in which a thrust rolling bearing is installed between the end surface of each spherical roller and the side surface of the guide wheel, and the friction state between these surfaces is changed from sliding friction to rolling friction. Yes.

上述の様な特許文献1〜3に記載された従来構造のうち、特許文献1に記載された構造の場合には、エッヂロードに基づく過度な摩耗は防止できても、案内輪の軸方向変位に基づく、各球面ころの端面と案内輪の側面との擦れ合い面の面圧上昇を抑える事はできず、摩耗防止効果が、必ずしも十分とは言えない。又、前記特許文献2に記載された従来構造にしても、同様の理由により、摩耗防止効果が、必ずしも十分とは言えない。更に、前記特許文献3に記載された従来構造の場合には、構造が複雑で、コストが嵩む事が避けられず、又、小型の自動調心ころ軸受に適用する事は難しい。   Among the conventional structures described in Patent Documents 1 to 3 as described above, in the case of the structure described in Patent Document 1, the excessive displacement due to the edge load can be prevented, but the axial displacement of the guide wheels can be prevented. Therefore, the increase in the surface pressure of the friction surface between the end face of each spherical roller and the side face of the guide wheel cannot be suppressed, and the wear preventing effect is not always sufficient. Further, even with the conventional structure described in Patent Document 2, the effect of preventing wear is not always sufficient for the same reason. Further, in the case of the conventional structure described in Patent Document 3, it is inevitable that the structure is complicated and the cost is increased, and it is difficult to apply to a small self-aligning roller bearing.

特開2007−100934号公報Japanese Patent Laid-Open No. 2007-100934 特開2007−315450号公報JP 2007-315450 A 特開2009−210078号公報JP 2009-210078 A

本発明は、上述の様な事情に鑑みて、各球面ころの端面と案内輪の側面との擦れ合いを抑制若しくは防止できる構造を実現すべく発明したものである。   The present invention has been invented to realize a structure capable of suppressing or preventing the friction between the end face of each spherical roller and the side face of the guide wheel in view of the above-described circumstances.

本発明の自動調心ころ軸受は、外輪と、内輪と、複数の球面ころと、保持器と、案内輪とを備える。
このうちの外輪は、単一の中心を有する球状凹面である外輪軌道を、その内周面に形成している。
又、前記内輪は、前記外輪軌道と対向する1対の内輪軌道を、その外周面に形成している。
又、前記各球面ころは、前記外輪軌道と前記両内輪軌道との間に、2列に亙って転動自在に設けられている。
又、前記保持器は、前記両列の球面ころ同士の間に配置された円環状のリム部、及び、このリム部の軸方向両側面にそれぞれの基端部を連続させた、これら両側面毎に複数本ずつの柱部とから成る。そして、円周方向に隣り合う柱部の周方向側面と前記リム部の軸方向側面とにより囲まれる部分を、前記各球面ころを転動自在に保持する為のポケットとしている。
更に、前記案内輪は、円環状で、前記リム部の内周面と前記内輪の外周面との間で、前記両列のころ同士の間の環状隙間に設けられている。
The self-aligning roller bearing of the present invention includes an outer ring, an inner ring, a plurality of spherical rollers, a cage, and a guide ring.
Of these, the outer ring forms an outer ring raceway, which is a spherical concave surface having a single center, on its inner peripheral surface.
Further, the inner ring forms a pair of inner ring raceways opposed to the outer ring raceway on the outer peripheral surface thereof.
The spherical rollers are provided between the outer ring raceway and the inner ring raceways so as to roll freely in two rows.
Further, the retainer includes an annular rim portion disposed between the spherical rollers in both rows, and both side surfaces in which the respective base end portions are connected to both axial side surfaces of the rim portion. Each column consists of multiple pillars. And the part enclosed by the circumferential side surface of the column part adjacent to the circumferential direction and the axial direction side surface of the said rim | limb part is made into the pocket for hold | maintaining each said spherical roller so that rolling is possible.
Further, the guide wheel has an annular shape, and is provided in an annular gap between the two rows of rollers between the inner peripheral surface of the rim portion and the outer peripheral surface of the inner ring.

特に、本発明の自動調心ころ軸受に於いては、前記案内輪の外周面を、軸方向中央部の外径が軸方向両端部の外径よりも大きくなった凸曲面とすると共に、前記リム部の内周面を、軸方向中央部の内径が軸方向両端部の内径よりも大きくなった凹曲面としている。そして、この凹曲面と前記凸曲面とを係合させる事により、前記案内輪を前記リム部の内径側に、前記保持器の軸方向に関する変位を抑えた状態で、この保持器に対する相対回転を可能に支持している。   In particular, in the self-aligning roller bearing of the present invention, the outer peripheral surface of the guide wheel is a convex curved surface in which the outer diameter of the central portion in the axial direction is larger than the outer diameters of both end portions in the axial direction. The inner peripheral surface of the rim portion is a concave curved surface in which the inner diameter at the central portion in the axial direction is larger than the inner diameters at both end portions in the axial direction. Then, by engaging the concave curved surface with the convex curved surface, the guide wheel is moved toward the inner diameter side of the rim portion, and the relative rotation with respect to the cage is suppressed in a state where displacement in the axial direction of the cage is suppressed. I support it as possible.

上述の様に構成する本発明の自動調心ころ軸受を実施する場合に、例えば請求項2に記載した発明の様に、前記凹曲面を、前記保持器の中心軸上の点を曲率中心とする部分球状凹面とする。又、前記凸曲面を、前記案内輪の中心軸上の点を曲率中心とする部分球状凸面とする。
この様な請求項2に記載した発明を実施する場合に好ましくは、請求項3に記載した発明の様に、前記案内輪の外周面の径方向反対側2箇所位置に、互いに平行な直線縁部を形成する。又、これら両直線縁部の間隔を、前記部分球状凹面の軸方向両端部の内径以下とする。
When the self-aligning roller bearing of the present invention configured as described above is implemented, for example, as in the invention described in claim 2, the concave curved surface is a point on the central axis of the cage as the center of curvature. The partial spherical concave surface. The convex curved surface is a partially spherical convex surface having a center of curvature at a point on the central axis of the guide wheel.
When carrying out the invention described in claim 2, it is preferable that, as in the invention described in claim 3, linear edges parallel to each other are provided at two positions on the radially opposite side of the outer peripheral surface of the guide wheel. Forming part. Further, the interval between the two straight edge portions is set to be equal to or smaller than the inner diameter of both end portions in the axial direction of the partial spherical concave surface.

上述の様に構成する本発明の自動調心ころ軸受によれば、案内輪が軸方向に過度に変位するのを防止して、各球面ころの端面と案内輪の側面との擦れ合いを抑制若しくは防止できる。
即ち、本発明の構造によれば、前記案内輪の外周面に存在する凸曲面と、保持器のリム部の内周面に存在する凹曲面との係合に基づき、この保持器に対する前記案内輪の軸方向変位量が規制される。前記各球面ころはこの保持器のポケット内に、軸方向の変位を規制された状態で保持されているので、これら各球面ころと前記案内輪との軸方向に関する相対変位を規制して、これら球面ころの端面とこの案内輪の側面との擦れ合いを抑制若しくは防止できる。
特に、請求項2、3に記載した発明の構造を採用すれば、前記案内輪に無理な力を加える事なく、容易に組み立てられ、しかも、前記保持器に対する前記案内輪の軸方向変位を僅少に抑えられる構造を実現できる。
According to the self-aligning roller bearing of the present invention configured as described above, the guide wheel is prevented from being excessively displaced in the axial direction, and the friction between the end surface of each spherical roller and the side surface of the guide wheel is suppressed. Or it can be prevented.
That is, according to the structure of the present invention, the guide to the cage is based on the engagement between the convex curved surface existing on the outer peripheral surface of the guide wheel and the concave curved surface existing on the inner peripheral surface of the rim portion of the cage. The amount of axial displacement of the wheel is regulated. Since each spherical roller is held in a pocket of the cage in a state in which axial displacement is restricted, the relative displacement in the axial direction between each spherical roller and the guide wheel is restricted, and Rubbing between the end surface of the spherical roller and the side surface of the guide wheel can be suppressed or prevented.
In particular, if the structure of the invention described in claims 2 and 3 is adopted, the guide wheel can be easily assembled without applying an excessive force, and the axial displacement of the guide wheel relative to the cage is small. A structure that can be suppressed to a low level can be realized.

本発明の実施の形態の第1例を示す部分断面図。The fragmentary sectional view which shows the 1st example of embodiment of this invention. 各部の寸法関係を説明する為の、図1の中央部拡大図。The center part enlarged view of FIG. 1 for demonstrating the dimensional relationship of each part. 案内輪を図1、2の側方である、軸方向から見た正面図。The front view which looked at the guide wheel from the axial direction which is the side of FIGS. この案内輪を保持器のリム部の内径側に組み込む作業を説明する為の略断面図。FIG. 5 is a schematic cross-sectional view for explaining an operation for incorporating this guide wheel into the inner diameter side of the rim portion of the cage. 本発明の実施の形態の第2例を示す部分断面図。The fragmentary sectional view which shows the 2nd example of embodiment of this invention. 従来構造の第1例を示す、自動調心ころ軸受の部分切断斜視図。The partial cutaway perspective view of the self-aligning roller bearing which shows the 1st example of conventional structure. 同じく部分断面図。Similarly partial sectional view. 従来構造の第2例を示す、自動調心ころ軸受の部分断面図。The fragmentary sectional view of the self-aligning roller bearing which shows the 2nd example of conventional structure.

[実施の形態の第1例]
図1〜4は、全請求項に対応する、本発明の実施の形態の第1例を示している。本例の自動調心ころ軸受1bは、外輪2と、内輪3と、複数の球面ころ4、4と、保持器7bと、案内輪8bとを備える。これら各構成部材のうち、外輪2と、内輪3と、各球面ころ4、4との構成に就いては、前述の図6〜8に示した構造を含めて、従来から広く知られている自動調心ころ軸受と同様であるから、図示並びに説明を、省略若しくは簡略にし、以下、本例の特徴部分である、前記保持器7b及び前記案内輪8bに就いて説明する。
[First example of embodiment]
1 to 4 show a first example of an embodiment of the present invention corresponding to all claims. The self-aligning roller bearing 1b of this example includes an outer ring 2, an inner ring 3, a plurality of spherical rollers 4, 4, a cage 7b, and a guide ring 8b. Among these components, the configuration of the outer ring 2, the inner ring 3, and the spherical rollers 4, 4 has been widely known in the past, including the structures shown in FIGS. Since it is the same as the self-aligning roller bearing, the illustration and description will be omitted or simplified, and the retainer 7b and the guide wheel 8b, which are features of this example, will be described below.

この保持器7bは、真鍮等の自己潤滑性を有する金属材料に切削加工を施す事により、或いは、高機能樹脂等の、必要とする強度、剛性、及び耐油性を有する高分子材料を射出成形する事により、一体に造られている。何れの方法により造る場合でも、前記保持器7bは、リム部9aと、複数本の柱部10a、10aとを備える。このうちのリム部9aは、前記自動調心ころ軸受1bの組立状態で、前記外輪2の内周面と前記内輪3の外周面との間の環状空間12の軸方向中間部の径方向外寄り部分に、両列の球面ころ4、4同士の間に挟持する状態で、前記外輪2及び内輪3に対する回転を自在に配置している。又、前記各柱部10a、10aは、前記リム部9aの軸方向両側面から、前記環状空間12の両端開口に向け、円周方向に関して等間隔で突出形成している。そして、円周方向に隣り合う柱部10a、10aの周方向側面と前記リム部9aの軸方向側面とにより囲まれる各ポケット内に、前記各球面ころ4、4を転動自在に保持している。   This cage 7b is formed by cutting a metal material having self-lubricating properties such as brass, or by injection molding a polymer material having the required strength, rigidity and oil resistance, such as a high-performance resin. By doing so, it is built in one. Regardless of which method is used, the cage 7b includes a rim portion 9a and a plurality of column portions 10a and 10a. Of these, the rim portion 9a is in the assembled state of the self-aligning roller bearing 1b, and is radially outside the axial intermediate portion of the annular space 12 between the inner peripheral surface of the outer ring 2 and the outer peripheral surface of the inner ring 3. A rotation with respect to the outer ring 2 and the inner ring 3 is freely arranged in a state of being sandwiched between the spherical rollers 4 and 4 in both rows at the side portion. Further, each of the pillar portions 10a and 10a is formed to protrude from both side surfaces in the axial direction of the rim portion 9a toward both end openings of the annular space 12 at equal intervals in the circumferential direction. The spherical rollers 4 and 4 are rotatably held in pockets surrounded by the circumferential side surfaces of the column portions 10a and 10a adjacent in the circumferential direction and the axial side surface of the rim portion 9a. Yes.

更に、前記案内輪8bは、前記保持器7bを構成するのと同様の金属材料或いは高機能樹脂、或いは含油メタル等の低摩擦材により全体を円環状に形成しており、前記リム部9aの内周面と前記内輪3の中間部外周面との間に、これらリム部9a及び内輪3に対する回転を自在に配置している。又、この状態で、前記案内輪8bの外周面と内周面とを、それぞれ前記リム部9aの内周面と前記内輪3の中間部外周面とに近接若しくは摺接させる事により、前記保持器7bを案内(径方向の変位を抑えた状態で、回転自在に支持)している。尚、本例の場合、前記案内輪8bの軸方向に関する幅寸法を、内径側に向かう程狭くする事により、図1〜2に示した中立状態で、互いに対向する、前記案内輪8bの軸方向両側面と前記各球面ころ4、4の端面とが、平行な状態で十分に離隔する様にしている。   Further, the guide wheel 8b is formed in an annular shape as a whole by a low friction material such as a metal material, a high-functional resin, or an oil-impregnated metal which is the same as that constituting the cage 7b, and the rim portion 9a Between the inner peripheral surface and the outer peripheral surface of the intermediate portion of the inner ring 3, rotation with respect to the rim portion 9a and the inner ring 3 is freely arranged. Further, in this state, the outer peripheral surface and the inner peripheral surface of the guide wheel 8b are brought close to or in sliding contact with the inner peripheral surface of the rim portion 9a and the outer peripheral surface of the intermediate portion of the inner ring 3, respectively. The container 7b is guided (supported rotatably in a state in which radial displacement is suppressed). In the case of this example, the width of the guide wheel 8b in the axial direction becomes narrower toward the inner diameter side, so that the shafts of the guide wheel 8b facing each other in the neutral state shown in FIGS. Both side surfaces in the direction and the end surfaces of the spherical rollers 4 and 4 are sufficiently separated in a parallel state.

特に、本例の自動調心ころ軸受1bの場合には、前記リム部9aの内周面の軸方向中間部に全周に亙り、内径側に突出する突出部13を形成している。これと共に、この突出部13の内周面を全周に亙り、軸方向中央部の内径が軸方向両端部の内径よりも大きくなった、部分球面状の凹曲面14としている。又、前記案内輪8bの外周面を、軸方向中央部の外径が軸方向両端部の外径よりも大きくなった、部分球面状の凸曲面15と、それぞれが特許請求の範囲に記載した直線縁部に相当する、1対の平坦面16、16とから構成している。そして、前記凹曲面14と前記凸曲面15とを係合させる事により、前記保持器7bに対する前記案内輪8bの軸方向変位を抑えている。   In particular, in the case of the self-aligning roller bearing 1b of the present example, a protruding portion 13 that protrudes toward the inner diameter side is formed over the entire circumference in the axially intermediate portion of the inner peripheral surface of the rim portion 9a. At the same time, the inner peripheral surface of the projecting portion 13 is formed over the entire circumference to form a partially spherical concave curved surface 14 in which the inner diameter of the central portion in the axial direction is larger than the inner diameters of both end portions in the axial direction. Further, the outer peripheral surface of the guide wheel 8b includes a partially spherical convex curved surface 15 in which the outer diameter of the central portion in the axial direction is larger than the outer diameter of both end portions in the axial direction. It is composed of a pair of flat surfaces 16 and 16 corresponding to straight edge portions. Then, by engaging the concave curved surface 14 and the convex curved surface 15, axial displacement of the guide wheel 8 b with respect to the cage 7 b is suppressed.

即ち、本例の場合、前記凹曲面14の曲率半径Rの中心は、前記リム部9aの中心軸上で、且つ、このリム部9aの軸方向中央部に存在する。又、前記凸曲面15の曲率半径rの中心は、前記案内輪8bの中心軸上で、且つ、この案内輪8bの軸方向中央部に存在する。又、前記凸曲面15の曲率半径rは、前記凹曲面14の曲率半径Rよりも僅かに小さく(r<R)している。具体的には、前記案内輪8bのうち、前記凸曲面15に対応する部分の外径D15(=2r=この案内輪8bの最大外径)が、前記凹曲面14の軸方向両端部の内径d14(=前記リム部9aの最小内径)よりも大きく(D15>d14)なる程度に、小さく(r<R)している。そして、この様な寸法関係を採用する事により、前記凹曲面14と前記凸曲面15との係合に基づいて、前記保持器7bに対する前記案内輪8bの軸方向変位を抑えられる様にしている。 That is, in the case of this example, the center of the radius of curvature R of the concave curved surface 14 exists on the central axis of the rim portion 9a and in the axial center of the rim portion 9a. Further, the center of the radius of curvature r of the convex curved surface 15 exists on the central axis of the guide wheel 8b and at the center in the axial direction of the guide wheel 8b. The curvature radius r of the convex curved surface 15 is slightly smaller than the curvature radius R of the concave curved surface 14 (r <R). Specifically, the outer diameter D 15 (= 2r = maximum outer diameter of the guide wheel 8b) of the portion corresponding to the convex curved surface 15 of the guide wheel 8b is set at the axial end portions of the concave curved surface 14. It is smaller (r <R) than the inner diameter d 14 (= the minimum inner diameter of the rim portion 9a) (D 15 > d 14 ). By adopting such a dimensional relationship, the axial displacement of the guide wheel 8b relative to the cage 7b can be suppressed based on the engagement between the concave curved surface 14 and the convex curved surface 15. .

又、本例の場合、前記両平坦面16、16は、前記案内輪8bの外周面の径方向反対側2箇所位置に、互いに平行に形成されている。又、これら両平坦面16、16同士の間隔である、前記案内輪8bの幅W16は、前記凹曲面14の軸方向両端部の内径d14(=前記リム部9aの最小内径)よりも小さく(W16<d14)している。 In the case of this example, the flat surfaces 16, 16 are formed in parallel with each other at two positions on the outer peripheral surface of the guide wheel 8b on the radially opposite side. The width W16 of the guide wheel 8b, which is the distance between the flat surfaces 16 and 16, is larger than the inner diameter d14 of the both ends in the axial direction of the concave curved surface 14 (= the minimum inner diameter of the rim portion 9a). It is small (W 16 <d 14 ).

それぞれが上述の様な構成を有する、前記保持器7bのリム部9aと前記案内輪8bとは、図4に示す様にして、互いに組み合わせる。即ち、前記両平坦面16、16を前記リム部9aの直径方向(図4の表裏方向両側)に配置した状態で、図4に鎖線で示す様に、前記案内輪8bをこのリム部9aの内径側に挿入する。この挿入作業は、これら案内輪8bとリム部9aとの中心軸同士を直交させた状態で行う。そして、これら両部材8b、9aの中心点同士が一致するまで、この案内輪8bをこのリム部9aの内径側に挿入したならば、図4に矢印αで示す様に、これら両部材8b、9aの中心軸同士が一致するまで回動させる。この結果、このうちのリム部9aの内径側に前記案内輪8bが、軸方向の変位を抑えられた状態で、相対回転を自在に組み付けられる。この様な組み付け作業は、前記案内輪8bに無理な力を加える事なく、容易に行える。   The rim portion 9a of the cage 7b and the guide wheel 8b, each having the above-described configuration, are combined with each other as shown in FIG. That is, with the both flat surfaces 16 and 16 being arranged in the diameter direction of the rim portion 9a (both sides in the front and back direction in FIG. 4), the guide wheel 8b is connected to the rim portion 9a as shown by a chain line in FIG. Insert on the inner diameter side. This insertion operation is performed in a state where the central axes of the guide wheel 8b and the rim portion 9a are orthogonal to each other. Then, if the guide wheel 8b is inserted into the inner diameter side of the rim portion 9a until the center points of both the members 8b and 9a coincide with each other, as shown by an arrow α in FIG. Rotate until the central axes of 9a coincide. As a result, the guide wheel 8b can be freely rotated relative to the inner diameter side of the rim portion 9a with the axial displacement suppressed. Such assembling work can be easily performed without applying an excessive force to the guide wheel 8b.

更に、本例の場合には、図1〜2に示した組立後の自動調心ころ軸受1bの運転時に、この自動調心ころ軸受1bの調心量(前記外輪2の中心軸と前記内輪3の中心軸との傾斜角度)が、想定される範囲内で適宜変化する場合でも、常に、前記各球面ころ4、4の端面と前記案内輪8bの側面とが擦れ合うのを防止できる様に、各部の寸法を規制している。この点に就いて、以下に詳しく説明する。   Further, in the case of this example, during the operation of the assembled self-aligning roller bearing 1b shown in FIGS. 1 and 2, the amount of alignment of the self-aligning roller bearing 1b (the center axis of the outer ring 2 and the inner ring) 3) so that the end surfaces of the spherical rollers 4 and 4 and the side surfaces of the guide wheels 8b can always be prevented from rubbing even when the inclination angle with respect to the central axis 3 is appropriately changed within an assumed range. The dimensions of each part are regulated. This point will be described in detail below.

本例の場合、相対的に見て、前記各球面ころ4、4の端面は、前記リム部9aの側面に接触する位置まで、軸方向に関して前記案内輪8b側に移動できる。これに対して、この案内輪8bの側面は、前記凹曲面14と前記凸曲面15とが軸方向に係合する位置まで、軸方向に関して前記各球面ころ4、4側に移動できる。更に、前記案内輪8bは、前記リム部9aに対して、この案内輪8bの内周面と前記内輪3の中間部外周面とが噛み合う状態になるまで、前記凹曲面14の曲率方向(図1のβ方向)に回転可能である。従って、前記案内輪8bの側面は、このβ方向に関する回転可能な範囲で、このβ方向に関して前記各球面4、4側に移動できる。そこで、本例の場合には、以上に述べた様な各移動が起こった場合でも、前記各球面ころ4、4の端面と前記案内輪8bの側面とが擦れ合う事を防止できる様に、各部の寸法を規制している。   In the case of this example, when viewed relatively, the end surfaces of the spherical rollers 4 and 4 can move toward the guide wheel 8b in the axial direction to a position where they contact the side surface of the rim portion 9a. On the other hand, the side surface of the guide wheel 8b can move toward the spherical rollers 4 and 4 in the axial direction until the concave curved surface 14 and the convex curved surface 15 are engaged with each other in the axial direction. Further, the guide wheel 8b is in the direction of curvature of the concave curved surface 14 until the inner peripheral surface of the guide wheel 8b and the outer peripheral surface of the intermediate portion of the inner ring 3 are engaged with the rim portion 9a (see FIG. 1 β direction). Therefore, the side surface of the guide wheel 8b can move toward the spherical surfaces 4 and 4 with respect to the β direction within a rotatable range with respect to the β direction. Therefore, in the case of this example, even when each movement as described above occurs, each part can be prevented so that the end surfaces of the spherical rollers 4 and 4 and the side surface of the guide wheel 8b can be prevented from rubbing. The dimensions of the are regulated.

具体的には、前記凸曲面15の曲率半径rを、前記凹曲面14の曲率半径Rに十分に近づける(「R−r」を十分に小さくする)事により、これら凹曲面14と凸曲面15との係合に基づく、前記案内輪8bの軸方向の変位規制機能を高めている。これにより、この案内輪8bの側面が、軸方向に関して前記各球面ころ4、4側に移動する量を十分に抑えている。又、前記案内輪8bの内径寸法d8bを前記内輪3の中間部の外径寸法D3に十分に近づける(「D3−d8b」を十分に小さくする)事により、これら案内輪8bの内周面と内輪3の外周面との係合に基づく、この案内輪8bの前記β方向の回転規制機能を高めている。これにより、この案内輪8bの側面が、このβ方向に関して前記各球面ころ4、4側に移動する量を十分に抑えている。更に、前記凸曲面15の軸方向に関する幅寸法W15を、前記凹曲面14の軸方向に関する幅寸法W14よりも小さく(W15<W14)する事により、図1〜2に示した中立状態で、前記案内輪8bの側面と前記各球面ころ4、4の端面との間に存在する隙間の軸方向寸法を十分に確保している。そして、以上の寸法規制を行う事により、この隙間が、前記各移動が起こった場合でも、常に喪失しない様にしている。 Specifically, by making the radius of curvature r of the convex curved surface 15 sufficiently close to the radius of curvature R of the concave curved surface 14 (making “R−r” sufficiently small), the concave curved surface 14 and the convex curved surface 15. The function of restricting the displacement of the guide wheel 8b in the axial direction based on the engagement is enhanced. Thus, the amount of movement of the side surface of the guide wheel 8b toward the spherical rollers 4 and 4 in the axial direction is sufficiently suppressed. Further, by making the inner diameter d 8b of the guide wheel 8b sufficiently close to the outer diameter D 3 of the intermediate portion of the inner ring 3 (“D 3 -d 8b ” is made sufficiently small), these guide wheels 8b The rotation restricting function of the guide wheel 8b in the β direction based on the engagement between the inner peripheral surface and the outer peripheral surface of the inner ring 3 is enhanced. Thereby, the amount of movement of the side surface of the guide wheel 8b toward the spherical rollers 4 and 4 in the β direction is sufficiently suppressed. Furthermore, the width W 15 in the axial direction of the convex curved surface 15, by less than the width W 14 in the axial direction of the concave curved surface 14 (W 15 <W 14) , shown in Figures 1-2 neutral In this state, the axial dimension of the gap existing between the side surface of the guide wheel 8b and the end surfaces of the spherical rollers 4 and 4 is sufficiently secured. By performing the above dimensional regulation, this gap is not always lost even when each of the above movements occurs.

上述の様に、本例の自動調心ころ軸受1bによれば、運転時に、前記案内輪8bの側面と前記各球面ころ4、4の端面とが擦れ合う事を防止できる。この為、これら案内輪8bの側面と各球面ころ4、4の端面との対向部分が摩耗する事を防止でき、延いては、前記自動調心ころ軸受1bの寿命延長を図れる。尚、前記各球面ころ4、4のスキュー防止には、これら各球面ころ4、4の転動面若しくは軸方向端面と、前記保持器7bのポケット11a、11aの内面との係合により図る。   As described above, according to the self-aligning roller bearing 1b of this example, it is possible to prevent the side surface of the guide wheel 8b and the end surfaces of the spherical rollers 4 and 4 from rubbing during operation. For this reason, it is possible to prevent the facing portions between the side surfaces of the guide wheels 8b and the end surfaces of the spherical rollers 4 and 4 from being worn, thereby extending the life of the self-aligning roller bearing 1b. The spherical rollers 4 and 4 are prevented from skewing by engaging the rolling surfaces or axial end surfaces of the spherical rollers 4 and 4 with the inner surfaces of the pockets 11a and 11a of the cage 7b.

尚、上述した実施の形態の第1例の場合には、前記自動調心ころ軸受1bを構成する各部材同士の寸法を規制する事により、前記案内輪8bの側面と前記各球面ころ4、4の端面との間に存在する隙間が、前記各部材間の移動が起こった場合でも、常に喪失しない様にする事で、前記案内輪8bの側面と前記各球面ころ4、4の端面とが擦れ合う事を、完全に防止できる構成を採用した。但し、本発明を実施する場合には、上述した第1例の変形例として、前記各部材同士の寸法規制を緩和する事により、前記案内輪8bの側面と前記各球面ころ4、4の端面とが擦れ合う事を、多少(擦れ合い部の面圧が過大にならない程度に)許容する構成を採用する事もできる。この様な構成を採用する場合には、前記案内輪8bの側面と前記各球面ころ4、4の端面との対向部分が摩耗する事を抑制でき、やはり、前記自動調心ころ軸受1bの寿命延長を図れる。   In the case of the first example of the above-described embodiment, the side surfaces of the guide wheels 8b and the spherical rollers 4 are controlled by restricting the dimensions of the members constituting the self-aligning roller bearing 1b. 4 so that the gap between the end faces of the guide member 8 and the end faces of the spherical rollers 4 and 4 are not lost even when movement between the members occurs. Adopted a configuration that can completely prevent rubbing. However, when the present invention is implemented, as a modification of the first example described above, the side surface of the guide wheel 8b and the end surfaces of the spherical rollers 4 and 4 are relaxed by relaxing the dimensional restriction between the members. It is also possible to adopt a configuration that allows a slight amount of friction (so that the surface pressure of the rubbing portion does not become excessive). In the case of adopting such a configuration, it is possible to suppress wear of the facing portion between the side surface of the guide wheel 8b and the end surfaces of the spherical rollers 4 and 4, and the life of the self-aligning roller bearing 1b is also maintained. Can be extended.

[実施の形態の第2例]
図5は、請求項1にのみ対応する、本発明の実施の形態の第2例を示している。本例の場合には、保持器7cを構成するリム部9bの内周面-の軸方向中間部に設けた突出部13aの内周面を、全周に亙り、断面V字形の凹曲面14aとしている。これに対して、案内輪8cの外周面を、断面V字形の凸曲面15aとしている。この案内輪8cを前記リム部9bの内径側に組み込み可能とすべく、この凸曲面15a及び前記凹曲面14aの断面形状(V字形)の角度等を規制する。その他の部分の構成及び作用は、上述した実施の形態の第1例(及びその変形例)と同様であるから、重複する説明は省略する。
[Second Example of Embodiment]
FIG. 5 shows a second example of the embodiment of the present invention, which corresponds only to claim 1. In the case of this example, the inner peripheral surface of the projecting portion 13a provided at the axially intermediate portion of the inner peripheral surface of the rim portion 9b constituting the cage 7c extends over the entire circumference and has a concave curved surface 14a having a V-shaped cross section. It is said. On the other hand, the outer peripheral surface of the guide wheel 8c is a convex curved surface 15a having a V-shaped cross section. In order to be able to incorporate the guide wheel 8c into the inner diameter side of the rim portion 9b, the angle of the cross-sectional shape (V-shape) of the convex curved surface 15a and the concave curved surface 14a is restricted. Since the configuration and operation of the other parts are the same as those in the first example (and the modifications thereof) of the above-described embodiment, a duplicate description is omitted.

1、1a、1b 自動調心ころ軸受
2 外輪
3 内輪
4 球面ころ
5 外輪軌道
6 内輪軌道
7、7a、7b、7c 保持器
8、8a、8b、8c 案内輪
9、9a、9b リム部
10、10a 柱部
11、11a ポケット
12 環状空間
13、13a 突出部
14、14a 凹曲面
15、15a 凸曲面
16 平坦面
1, 1a, 1b Spherical roller bearing 2 Outer ring 3 Inner ring 4 Spherical roller 5 Outer ring raceway 6 Inner ring raceway 7, 7a, 7b, 7c Cage 8, 8a, 8b, 8c Guide wheel 9, 9a, 9b Rim part 10, 10a Pillar part 11, 11a Pocket 12 Annular space 13, 13a Protruding part 14, 14a Concave surface 15, 15a Convex surface 16 Flat surface

Claims (3)

単一の中心を有する球状凹面である外輪軌道を、その内周面に形成した外輪と、前記外輪軌道と対向する1対の内輪軌道を、その外周面に形成した内輪と、前記外輪軌道とこれら両内輪軌道との間に、2列に亙って転動自在に設けられた複数の球面ころと、これら両列の球面ころ同士の間に配置された円環状のリム部及びこのリム部の軸方向両側面にそれぞれの基端部を連続させた、これら両側面毎に複数本ずつの柱部から成り、円周方向に隣り合う柱部の周方向側面と前記リム部の軸方向側面とにより囲まれる部分を、前記各球面ころを転動自在に保持する為のポケットとした保持器と、前記リム部の内周面と前記内輪の外周面との間で、前記両列のころ同士の間の環状隙間に設けられた円環状の案内輪とを備えた自動調心ころ軸受に於いて、
この案内輪の外周面を、軸方向中央部の外径が軸方向両端部の外径よりも大きくなった凸曲面とすると共に、前記リム部の内周面を、軸方向中央部の内径が軸方向両端部の内径よりも大きくなった凹曲面とし、この凹曲面と前記凸曲面とを係合させる事により、前記案内輪を前記リム部の内径側に、前記保持器の軸方向に関する変位を抑えた状態で、この保持器に対する相対回転を可能に支持した事を特徴とする自動調心ころ軸受。
An outer ring raceway that is a spherical concave surface having a single center, an outer ring formed on an inner circumferential surface thereof, a pair of inner ring raceways opposed to the outer ring raceway, an inner ring formed on an outer circumferential surface thereof, and the outer ring raceway, A plurality of spherical rollers provided so as to be able to roll in two rows between the inner ring raceways, an annular rim portion disposed between the spherical rollers in both rows, and the rim portion The base end portions are connected to both side surfaces in the axial direction, and each side surface includes a plurality of column portions, the circumferential side surfaces of the column portions adjacent to each other in the circumferential direction, and the axial side surfaces of the rim portion. And a roller surrounded by a roller for holding the spherical rollers in a rollable manner, and the rollers in both rows between the inner peripheral surface of the rim portion and the outer peripheral surface of the inner ring. In a self-aligning roller bearing provided with an annular guide wheel provided in an annular gap between them ,
The outer peripheral surface of the guide wheel is a convex curved surface in which the outer diameter of the axial central portion is larger than the outer diameters of both axial end portions, and the inner peripheral surface of the rim portion is the inner diameter of the axial central portion. A concave curved surface that is larger than the inner diameter at both axial ends, and by engaging the concave curved surface with the convex curved surface, the guide wheel is displaced toward the inner diameter side of the rim portion in the axial direction of the cage. A self-aligning roller bearing characterized by being supported so as to be capable of relative rotation with respect to the cage in a state where pressure is suppressed.
前記凹曲面が、前記保持器の中心軸上の点を曲率中心とする部分球状凹面であり、前記凸曲面が、前記案内輪の中心軸上の点を曲率中心とする部分球状凸面である、請求項1に記載した自動調心ころ軸受。   The concave curved surface is a partial spherical concave surface having a point on the central axis of the cage as a center of curvature, and the convex curved surface is a partial spherical convex surface having a point on the central axis of the guide wheel as a center of curvature. The self-aligning roller bearing according to claim 1. 前記案内輪の外周面の径方向反対側2箇所位置に互いに平行な直線縁部が形成されていて、これら両直線縁部の間隔が、前記部分球状凹面の軸方向両端部の内径よりも小さい、請求項2に記載した自動調心ころ軸受。


Straight edge portions parallel to each other are formed at two positions on the outer circumferential surface of the guide wheel on the opposite side in the radial direction, and the distance between the two straight edge portions is smaller than the inner diameters of both end portions in the axial direction of the partial spherical concave surface. A self-aligning roller bearing according to claim 2.


JP2011200987A 2011-09-14 2011-09-14 Self-aligning rolling bearing Withdrawn JP2013061040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011200987A JP2013061040A (en) 2011-09-14 2011-09-14 Self-aligning rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200987A JP2013061040A (en) 2011-09-14 2011-09-14 Self-aligning rolling bearing

Publications (1)

Publication Number Publication Date
JP2013061040A true JP2013061040A (en) 2013-04-04

Family

ID=48185874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200987A Withdrawn JP2013061040A (en) 2011-09-14 2011-09-14 Self-aligning rolling bearing

Country Status (1)

Country Link
JP (1) JP2013061040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191429A (en) * 2015-03-31 2016-11-10 株式会社ジェイテクト Self-aligning roller bearing
EP3385552A1 (en) * 2017-04-07 2018-10-10 Jtekt Corporation Self-aligning roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191429A (en) * 2015-03-31 2016-11-10 株式会社ジェイテクト Self-aligning roller bearing
EP3385552A1 (en) * 2017-04-07 2018-10-10 Jtekt Corporation Self-aligning roller bearing
CN108691892A (en) * 2017-04-07 2018-10-23 株式会社捷太格特 Self-aligning roller bearing
US10527091B2 (en) 2017-04-07 2020-01-07 Jtekt Corporation Self-aligning roller bearing

Similar Documents

Publication Publication Date Title
KR101953941B1 (en) Cross roller bearing
JP2007303608A (en) Double-row roller bearing with cage
JP2016109253A (en) Rolling bearing
JP4661424B2 (en) Rotation support
JP2007278406A (en) Roller bearing with cage
JP2009074679A (en) Self-aligning roller bearing
JP2013061040A (en) Self-aligning rolling bearing
JP7186580B2 (en) slewing bearing
JP2015102144A (en) Self-aligning roller bearing
JP2008267400A (en) Ball bearing
JP6141606B2 (en) Spherical roller bearing
JP2011085153A (en) Rolling bearing
JP2010025191A (en) Self-aligning roller bearing
JP2009174669A (en) Self-alignment roller bearing
JP2018091399A (en) Holder for rolling bearing, and rolling bearing including the same
JP2008064230A (en) Thrust bearing
WO2017043425A1 (en) Rolling bearing
JP5012383B2 (en) Radial roller bearing with cage
JP2009180235A (en) Automatic self-aligning roller bearing
JP2009210078A (en) Self-aligning roller bearing
JP6205690B2 (en) Tandem type double row angular contact ball bearing
JP6269021B2 (en) Radial roller bearing cage
JP2013002486A (en) Bearing retainer
WO2014189042A1 (en) Conical roller bearing
JP5747486B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202