WO2017043286A1 - マイクロ流路熱交換器 - Google Patents

マイクロ流路熱交換器 Download PDF

Info

Publication number
WO2017043286A1
WO2017043286A1 PCT/JP2016/074189 JP2016074189W WO2017043286A1 WO 2017043286 A1 WO2017043286 A1 WO 2017043286A1 JP 2016074189 W JP2016074189 W JP 2016074189W WO 2017043286 A1 WO2017043286 A1 WO 2017043286A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchanger
low
outlet
channel
Prior art date
Application number
PCT/JP2016/074189
Other languages
English (en)
French (fr)
Inventor
王 凱建
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN201680052352.9A priority Critical patent/CN108027282B/zh
Priority to EP16844149.1A priority patent/EP3348976B1/en
Priority to AU2016320033A priority patent/AU2016320033B2/en
Priority to CA2997606A priority patent/CA2997606C/en
Priority to US15/758,542 priority patent/US10365051B2/en
Publication of WO2017043286A1 publication Critical patent/WO2017043286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a micro flow channel heat exchanger configured by stacking a plurality of heat transfer plates in which a flow channel of a working fluid for heat exchange is formed.
  • the heat exchanger is used as an element of the refrigeration cycle and is an indispensable part for changing the temperature of the working fluid in the refrigeration cycle to the target temperature.
  • Such a micro-channel heat exchanger includes a stacked micro-channel heat exchanger.
  • This multi-layer micro-channel heat exchanger is configured, for example, by alternately stacking heat transfer plates with fine high-temperature channels formed on the surface and heat transfer plates with fine low-temperature channels formed on the surface.
  • heat transfer plates with fine high-temperature channels formed on the surface
  • heat transfer plates with fine low-temperature channels formed on the surface.
  • pressure-resistant metal plate By stacking a pressure-resistant metal plate on the top and bottom surfaces of the laminated body and applying pressure and heating in a vacuum state, each heat transfer plate and each metal plate are diffusion-bonded to each other and integrated (for example, non- Patent Document 1).
  • Structural characteristics when a laminated micro-channel heat exchanger is compared with a plate-type heat exchanger include that many channels can be formed in each layer and that a short channel can be formed. Thereby, the stacked micro-channel heat exchanger can be reduced in size as compared with the plate heat exchanger.
  • the laminated micro-channel heat exchanger has advantages over conventional heat exchangers in terms of heat transfer, reduced refrigerant charge, high pressure resistance, and heat resistance. For example, if the heat transfer rate between the working fluids via the heat transfer surface (plate) is high, the flow path shape loss is low, and the flow loss is the same as the plate heat exchanger, the flow area can be reduced, compressed The pressure loss of the working fluid can be reduced, the amount of working fluid charged in the refrigeration cycle can be reduced by reducing the volume of the entire heat exchanger, and so on.
  • ⁇ Temperature sensors are provided at the entrances and exits for the working fluid of the stacked micro-channel heat exchanger.
  • the purpose of providing the temperature sensor is to calculate the amount of heat exchanged by the heat exchanger based on the temperature measured by the temperature sensor, or to control the working fluid flowing out to the target temperature.
  • the temperature sensor must be able to accurately measure the temperature of the working fluid.
  • the heat exchange capability (heat transfer amount) of the heat exchanger can be obtained by the following equation from the temperature difference between the working fluid flowing in and the working fluid flowing out.
  • a temperature sensor such as a thermocouple is used to measure the temperature of the working fluid flowing through the inlet / outlet of the stacked micro-channel heat exchanger.
  • the thermoelectromotive force measured by the sensing point of the temperature sensor is transmitted to the thermoelectromotive force-temperature conversion circuit via the thermocouple wire connected to the sensing point.
  • the temperature sensor is fixed by solder or the like to the outer surface of the pipe attached to the inlet and outlet of the working fluid of the heat exchanger. In this case, since the sensing point of the temperature sensor is not in direct contact with the working fluid, the accurate temperature of the working fluid cannot be measured.
  • the measured temperature includes an error 1 due to heat conduction of the metal forming the heat exchanger, an error 2 due to a temperature difference between the temperature at the position where the temperature sensor is attached and the temperature of the working fluid flowing through the actual inlet / outlet, Due to the temperature difference between the temperature of the working fluid flowing near the center of the tube and the temperature of the working fluid flowing near the wall of the tube due to the temperature boundary layer of the working fluid flowing in each inlet / outlet pipe connected to the inlet / outlet, Measurement error 4 of the measurement method is included.
  • the plate type heat exchanger has an outer dimension of, for example, 95 (width) x 325 (length) x 81.96 (height) (mm), and has the same heat exchange capacity as this plate type heat exchanger. Since the external dimensions of the channel heat exchanger are larger than 80 (width) x 106 (length) x 43.2 (height) (mm), the surface area in contact with the surrounding air is large, and the heat in the air is plate heat exchange. It is easy to be disturbed by moving into the chamber or heat in the plate heat exchanger moving into the air. For this reason, there is a limit to measuring the actual temperature of the working fluid that is not affected by other influences such as disturbances.
  • the stacked micro-channel heat exchanger has a small surface area in contact with the surrounding air, and heat in the air moves into the heat exchanger body, or heat in the heat exchanger body moves into the air. Therefore, it is easier to measure the actual temperature of the working fluid than a plate heat exchanger. If the actual temperature of the working fluid can be measured, it is based on measurement errors when adjusting the indoor air temperature etc. to the set temperature in the stacked micro-channel heat exchanger used for air conditioners and floor heating. Useless energy for temperature adjustment is not consumed.
  • heat exchange is not performed as described above, instead of directly measuring the temperature of the working fluid flowing through the inlet / outlet of the heat exchanger body.
  • the surface temperature of the pipe connected to the inlet / outlet of the main body is measured.
  • the temperature of the working fluid flowing through the inlet for example, water
  • the surface temperature of the piping through which the working fluid connected to the inlet flows is In some cases, heat is transferred from the air into the pipe due to heat conduction on the metal surface, and the temperature is measured higher than the actual working fluid temperature.
  • the temperature of the working fluid flowing through the outlet is high, but the surface temperature of the piping through which the working fluid connected to the outlet flows is the actual temperature of the working fluid due to heat transfer to the air due to heat conduction on the metal surface. May be measured lower. These are errors due to the installation position of the temperature sensor (the above-mentioned errors 1 to 3).
  • the stacked micro-channel heat exchanger is small, heat is transferred between the outlet pipe and the inlet pipe due to heat conduction in the heat exchanger body, and the outlet pipe or inlet pipe with the lower temperature is used. May be measured at higher temperatures, while higher temperatures may be measured at lower temperatures.
  • the actual temperature of the working fluid cannot be measured.
  • thermocouple hot junction thermocouple hot junction
  • the detection signal of the temperature sensor is provided separately from the heat exchanger, and in order to transmit the signal detected by the sensor to a printed circuit board that is a control board for processing, a print signal is printed with each of the temperature sensors. It is necessary to connect the substrate individually with lead wires, and it takes time to connect these lead wires.
  • an object of the present invention is to provide a heat exchanger that can easily connect a temperature sensor that directly measures the temperature of a working fluid by touching the working fluid and a control board with lead wires. Is to provide.
  • a heat exchanger includes a plurality of high-temperature channel layers provided with high-temperature fluid channels and a plurality of low-temperature channel layers provided with low-temperature fluid channels.
  • a heat exchanger main body having an inlet and an outlet for the high-temperature fluid, an inlet and an outlet for the low-temperature fluid, Mounted at least with a plurality of temperature sensors fixed and inserted in the stacking direction of the heat exchanger body so that sensing points are arranged in the vicinity of the inlet and outlet of the hot fluid and the inlet and outlet of the cold fluid, respectively.
  • a control board In the stacking direction of the heat exchanger main body, a heat exchanger main body having an inlet and an outlet for the high-temperature fluid, an inlet and an outlet for the low-temperature fluid, Mounted at least with a plurality of temperature sensors fixed and inserted in the stacking direction of the heat exchanger body so that sensing points are arranged in the vicinity of the inlet and outlet of the hot fluid and the inlet
  • the heat exchanger according to the present invention may be one in which a display for displaying temperature data is mounted on the printed circuit board.
  • the heat exchanger according to the present invention may be one in which a transmission device that transmits temperature data to an external device by wire or wireless is mounted on the printed circuit board.
  • the printed circuit board may further include a heater disposed in the vicinity of the flow path of the low-temperature fluid of the heat exchanger body.
  • the operation of connecting the temperature sensor for directly measuring the temperature of the working fluid by touching the working fluid and the control board can be facilitated.
  • FIG. 2 is a partially exploded perspective view of the microchannel heat exchanger of FIG. 1. It is a perspective view which shows the structure of a high temperature heat exchanger plate in the microchannel heat exchanger of FIG. It is a perspective view which shows the structure of a low-temperature heat exchanger plate in the microchannel heat exchanger of FIG. It is a perspective view for demonstrating the high temperature channel of a high temperature channel layer in the microchannel heat exchanger of FIG. It is a perspective view for demonstrating the low temperature channel of a low temperature channel layer in the microchannel heat exchanger of FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 2 is a CC cross-sectional view in FIG. 1. It is a figure which shows the velocity distribution of the working fluid in the upstream area and downstream area of a rectification ring about the microchannel heat exchanger of FIG. It is a block diagram which shows the structure containing the electrical connection relation of each electronic component mounted in the printed circuit board of the microchannel heat exchanger of FIG. It is a figure which shows the display form of the temperature data in the microchannel heat exchanger of FIG. It is a partially exploded perspective view which shows the structure of the principal part of the 2nd microchannel heat exchanger of this invention.
  • FIG. 1 is a perspective view showing a microchannel heat exchanger according to a first embodiment of the present invention with a printed circuit board as a control board removed
  • FIG. 2 shows the microchannel heat exchanger of FIG. It is a perspective view which partially decomposes and shows a heat exchanger main part.
  • the micro-channel heat exchanger 1 includes a heat exchanger body 2, which is a channel layer laminate, a high-temperature side outer shell plate 3A, a low-temperature side outer shell plate 3B, and a high-temperature fluid.
  • a heat exchanger body 2 which is a channel layer laminate, a high-temperature side outer shell plate 3A, a low-temperature side outer shell plate 3B, and a high-temperature fluid.
  • 5A a high temperature outlet pipe 5B for flowing out the high temperature fluid
  • a low temperature inlet pipe 5C for flowing in the low temperature fluid
  • a low temperature outlet pipe 5D for flowing out the low temperature fluid
  • the printed circuit board 4 the high temperature inlet pipe 5A, the high temperature outlet pipe 5B, the low temperature inlet pipe 5C, and the low temperature outlet pipe 5D are collectively referred to as an inlet / outlet pipe.
  • the surface in the direction opposite to the direction of the Z-axis arrow of the heat exchanger body 2 is the “high-temperature side surface” or “lower surface”, and the surface of each member in the direction of the Z-axis arrow is “low-temperature side” “Surface” or "upper surface”.
  • a high temperature side shell plate 3A is joined to the high temperature side surface of the heat exchanger body 2, and a low temperature side shell plate 3B is joined to the low temperature side surface of the heat exchanger body 2.
  • the heat exchanger body 2 is configured by laminating a plurality of two types of heat transfer plates 2A and 2B alternately. The configuration of the two types of heat transfer plates will be described later.
  • the two types of heat transfer plates 2A and 2B, the high temperature side shell plate 3A, and the low temperature side shell plate 3B constituting the heat exchanger body 2 are made of the same type of metal plate having a high thermal conductivity, for example. More specifically, stainless steel or the like is used. After these metal plates are laminated, they are joined to each other by diffusion bonding to form a substantially rectangular parallelepiped laminate.
  • the plate thickness of the heat transfer plates 2A and 2B may be any thickness as long as a high-temperature channel or a low-temperature channel can be formed and diffusion bonding can be performed.
  • a high-temperature inlet header 21 that allows a high-temperature fluid, which is one of the working fluids, to flow into a high-temperature channel in the heat exchanger body 2, respectively.
  • a header 23 and a low-temperature outlet header 24 for allowing a low-temperature fluid to flow out from a low-temperature flow path in the heat exchanger body 2 are formed.
  • a high temperature inlet pipe 5A is inserted from the outside into the high temperature inlet header 21 and joined to the heat exchanger body 2 by welding or the like.
  • An external pipe (not shown) for allowing the high-temperature fluid to flow in is detachably connected to the outer end of the high-temperature inlet pipe 5A.
  • a high temperature outlet pipe 5B is inserted into the high temperature outlet header 22 from the outside, and is joined to the heat exchanger body 2 by welding or the like.
  • An external pipe (not shown) for allowing the high temperature fluid to flow out is detachably connected to the high temperature outlet pipe 5B.
  • a cold inlet pipe 5C is inserted from the outside into the cold inlet header 23 and joined to the heat exchanger body 2 by welding or the like.
  • An external pipe (not shown) for allowing a low-temperature fluid to flow in is detachably connected to the low-temperature inlet pipe 5C.
  • a low temperature outlet pipe 5D is inserted into the low temperature outlet header 24 from the outside, and is joined to the heat exchanger body 2 by welding or the like.
  • the low temperature outlet pipe 5D is detachably connected to an external pipe (not shown) for allowing the low temperature fluid to flow out.
  • the heat exchanger body 2 is configured by alternately stacking two types of heat transfer plates 2A and 2B. Grooves and notches are formed in these heat transfer plates 2A and 2B by etching. In the heat transfer plates 2A and 2B, since the working fluids flowing in the respective grooves are different, the groove patterns are different, but the notch portions are formed so as to be the respective header portions after the heat transfer plates 2A and 2B are stacked. Therefore, the shape of the notch is the same.
  • the process for forming grooves and notches in the heat transfer plates 2A and 2B is not limited to the etching process, and may be, for example, laser processing, precision press processing, cutting processing, or the like. Further, the edge of the groove may be formed by using additive manufacturing technology such as a 3D printer.
  • FIG. 3 and 4 are perspective views showing two types of heat transfer plates 2A and 2B.
  • the heat transfer plate 2A shown in FIG. 3 is a “high temperature heat transfer plate 2A”
  • the heat transfer plate 2B shown in FIG. 4 is a “low temperature heat transfer plate 2B”.
  • the high-temperature heat transfer plate 2A is provided with grooves 25A, 30A, 31A and notches 26A, 27A, 28A, 29A that form flow paths for high-temperature fluid, respectively.
  • the grooves 25A, 30A, 31A are provided only on one surface of the high temperature heat transfer plate 2A.
  • the depths of the grooves 25A, 30A, 31A may be uniform everywhere.
  • the notches 26A, 27A, 28A, and 29A are formed by removing predetermined portions corresponding to the four sides of the base material of the high-temperature heat transfer plate 2A by the thickness of the base material.
  • each of the cutout portions 26A, 27A, 28A, 29A of the high temperature heat transfer plate 2A is replaced with a first cutout portion 26A (high temperature distribution portion) and a second cutout portion 27A ( High temperature confluence portion), the third cutout portion 28A, and the fourth cutout portion 29A.
  • the first notch 26A is provided in a region between the first notch 26A and the second notch 27A provided at both ends in the Y-axis direction in the drawing.
  • a plurality of grooves 25 ⁇ / b> A, 30 ⁇ / b> A, and 31 ⁇ / b> A are formed to communicate with the second notch 27 ⁇ / b> A.
  • the number of the grooves 25A is three, but many grooves having a smaller width may be formed.
  • Each of the grooves 25A, 30A, 31A in the high-temperature heat transfer plate 2A includes a plurality of grooves 25A formed along the X-axis direction and two grooves 30A, 31A formed along the Y-axis direction. Is done.
  • One groove 30A of the two grooves 30A, 31A formed along the Y-axis direction communicates with one end of the first cutout portion 26A, and the other groove 31A has one end of the second cutout portion 27A.
  • a plurality of grooves 25A formed along the X-axis direction communicate between the two grooves 30A and 31A.
  • the positional relationship between the high temperature inlet header 21 and the high temperature outlet header 22 of the high temperature heat transfer plate 2A formed as described later and the low temperature inlet header 23 and the low temperature outlet header 24 of the low temperature heat transfer plate 2B is 90 degrees with respect to each other. To be different.
  • the low-temperature heat transfer plate 2B is provided with grooves 25B and notches 26B, 27B, 28B, and 29B that form low-temperature fluid flow paths.
  • the groove 25B is provided only on one surface of the low-temperature heat transfer plate 2B.
  • the depth of the groove 25B may be uniform everywhere.
  • the notches 26B, 27B, 28B, and 29B are formed by removing predetermined portions corresponding to the four sides of the base material of the low-temperature heat transfer plate 2B by the thickness of the base material.
  • the notches 26B, 27B, 28B, 29B of the low-temperature heat transfer plate 2B are replaced with the fifth notch 26B, the sixth notch 27B, and the seventh notch.
  • This is referred to as a section 28B (low temperature distribution section) and an eighth cutout section 29B (low temperature junction section).
  • the seventh notch portion 28B and the eighth notch portion 29B provided at both ends in the X-axis direction in the figure, the seventh notch portion 28B and the eighth notch portion 28B A plurality of grooves 25B communicating with the eight cutout portions 29B are formed.
  • the plurality of grooves 25B are formed at the same position in the Y-axis direction as the plurality of grooves 25A formed in the high-temperature heat transfer plate 2A.
  • the high temperature heat transfer plate 2A and the low temperature heat transfer plate 2B having the above-described configuration have the same orientation of the surfaces provided with the grooves 25A, 25B, 30A, 31A. Thus, a plurality of layers are alternately stacked. In this way, the heat exchanger body 2 is configured.
  • the first cutout portion 26A of the high temperature heat transfer plate 2A and the fifth cutout portion 26B of the low temperature heat transfer plate 2B include the high temperature heat transfer plate 2A and the low temperature heat transfer plate 2B.
  • the high temperature inlet header 21 is formed by alternately laminating a plurality of layers.
  • the second cutout portion 27A of the high temperature heat transfer plate 2A and the sixth cutout portion 27B of the low temperature heat transfer plate 2B are formed by alternately stacking a plurality of high temperature heat transfer plates 2A and low temperature heat transfer plates 2B.
  • the high temperature outlet header 22 is formed.
  • the third cutout portion 28A of the high temperature heat transfer plate 2A and the seventh cutout portion 28B of the low temperature heat transfer plate 2B are formed by alternately stacking a plurality of high temperature heat transfer plates 2A and low temperature heat transfer plates 2B.
  • the cold inlet header 23 is formed.
  • the fourth cutout portion 29A of the high temperature heat transfer plate 2A and the eighth cutout portion 29B of the low temperature heat transfer plate 2B are formed by alternately laminating a plurality of high temperature heat transfer plates 2A and low temperature heat transfer plates 2B.
  • the low temperature outlet header 24 is formed.
  • FIG. 5 is a perspective view showing a high-temperature channel in the heat exchanger body 2.
  • the high temperature flow path is formed between the grooves 25A, 30A, 31A of the high temperature heat transfer plate 2A and the lower surface of the low temperature heat transfer plate 2B.
  • the hot fluid flows from the hot inlet header 21 and is distributed to the plurality of grooves 25A through the grooves 30A.
  • the high temperature fluid that has passed through the plurality of grooves 25 ⁇ / b> A merges in the groove 31 ⁇ / b> A and flows out from the high temperature outlet header 22.
  • Such a flow of the high-temperature fluid is generated in the high-temperature channel layer corresponding to each high-temperature heat transfer plate 2A.
  • the high-temperature channel layer is formed by the grooves 25A, 30A, 31A of the high-temperature heat transfer plate 2A, the first notch portion 26A, and the second notch portion 27A.
  • FIG. 6 is a perspective view showing a low-temperature flow path in the heat exchanger body 2.
  • the low temperature flow path is formed between the groove 25B of the low temperature heat transfer plate 2B, the lower surface of the low temperature side outer shell plate 3B, and the lower surface of the high temperature heat transfer plate 2A.
  • the cryogenic fluid flows in from the cold inlet header 23 and out of the cold outlet header 24 through the plurality of grooves 25B.
  • Such a low-temperature fluid flow is generated in the low-temperature flow path layer corresponding to each low-temperature heat transfer plate 2B.
  • the low-temperature channel layer is formed by the grooves 25B of the low-temperature heat transfer plate 2B, the seventh cutout portion 28B, and the eighth cutout portion 29B.
  • heat exchange between the high-temperature fluid and the low-temperature fluid is performed via the high-temperature heat transfer plate 2A and the low-temperature heat transfer plate 2B. Is done.
  • an upper surface 4a (hereinafter referred to as “main surface”) of the printed circuit board 4 includes various integrated circuits 41, connectors 42 for connection to external wiring, and a transmission device.
  • a wireless module 43, a display 44, and a group of electronic components such as a plurality of temperature sensors 45A, 45B, 45C, 45D are mounted.
  • each of the electronic components including the connection between the plurality of temperature sensors 45A, 45B, 45C and 45D and the electromotive force processing circuit 411 (see FIG. 11) in the integrated circuit 41 is provided on the main surface 4a of the printed circuit board 4.
  • a wiring pattern 46 for electrically connecting the two is provided.
  • the printed circuit board 4 is fixed by a plurality of fixing screws 47 with a spacer 52 interposed between the printed circuit board 4 and the heat exchanger body 2. That is, the printed circuit board 4 is provided with a screw through hole 47a through which the fixing screw 47 is passed, and the heat exchanger body 2 is provided with a screw hole 51 for receiving the fixing screw 47 through the screw through hole 47a.
  • the temperature sensors 45A, 45B, 45C, 45D are respectively the temperatures of the hot fluid flowing through the hot inlet pipe 5A, the hot fluid flowing through the hot outlet pipe 5B, the cold fluid flowing through the cold inlet pipe 5C, and the cold fluid flowing through the cold outlet pipe 5D. It is for measuring.
  • FIG. 7 and 8 are cross-sectional views showing a mounting structure of the first temperature sensor 45A, in which the heat exchanger body 2 is cut along the cutting lines AA and BB shown in FIG.
  • FIG. 7 is an XZ sectional view when the temperature sensor 45A mounting structure is seen in the axial direction (fluid flow direction) in the high temperature inlet pipe 5A
  • FIG. 8 is a YZ sectional view thereof. Since the other temperature sensors 45B, 45C, and 45D have the same mounting structure, only the mounting structure of the first temperature sensor 45A will be described here. As shown in FIG.
  • the printed circuit board 4 to which the temperature sensors 45 ⁇ / b> A, 45 ⁇ / b> B, 45 ⁇ / b> C, 45 ⁇ / b> D are attached is attached to the upper surface of the heat exchanger body 2 with fixing screws 47.
  • the printed circuit board 4 is provided with a hole 48 for inserting a thermocouple which is the first temperature sensor 45A.
  • the low temperature side outer shell plate 3 ⁇ / b> B of the heat exchanger body 2 is provided with a hole portion 32 that communicates with the hole portion 48 of the printed circuit board 4. Further, a hole 33 communicating with the hole 32 of the low temperature side shell plate 3B is provided in a portion on the low temperature side shell plate 3B side of the high temperature inlet pipe 5A inserted into the inlet of the heat exchanger main body 2.
  • thermocouple wires 35, 35 of the first temperature sensor 45 ⁇ / b> A in the metal protective tube 34 are covered with an insulating / heat insulating member 36.
  • the thermocouple wires 35, 35 of the first temperature sensor 45A for example, those having a diameter of about 0.5 mm to 1 mm can be used, and it is desirable that the durability is enhanced by a ceramic thin film or the like.
  • the gap between the hole 48 of the printed circuit board 4 and the metal protective tube 34 is closed by the sealing material 61. Further, the hole 32 of the low temperature side shell 3 ⁇ / b> B is closed by the sealing material 62 from the lower side.
  • the mounting structure of the first temperature sensor 45A has been described above, but the mounting structure of the second temperature sensor 45B, the third temperature sensor 45C, and the fourth temperature sensor 45D is the same.
  • the hot contact point 37 of the first temperature sensor 45A directly touches the hot fluid flowing through the hot inlet pipe 5A at the inlet of the heat exchanger body 2, thereby flowing the hot fluid flowing into the heat exchanger body 2. Can be measured directly.
  • the temperature of each of the high-temperature fluid flowing out from the heat exchanger body 2, the low-temperature fluid flowing into the heat exchanger body 2, and the low-temperature fluid flowing out from the heat exchanger body 2 is set to the second temperature sensor 31B, the third temperature sensor 31B, and the third temperature sensor 31B. It can be directly measured by the temperature sensor 31C and the fourth temperature sensor 31D.
  • the working fluid flowing in each of the inlet / outlet pipes 5A, 5B, 5C, and 5D has a non-uniform temperature distribution due to the flow being decelerated in the vicinity of the inner wall of each of the inlet / outlet pipes 5A, 5B, 5C, and 5D. For this reason, even if the temperature of the working fluid is directly measured, an accurate temperature cannot always be measured.
  • a rectifying ring for forming a core region in which the speed and temperature of the working fluid are substantially constant is arranged in each of the inlet / outlet pipes 5A, 5B, 5C, and 5D of the heat exchanger body 2.
  • a hot junction of the temperature sensor was arranged in the core region formed in the downstream region of the rectifying ring.
  • a rectifying ring 71 is disposed in the high temperature inlet pipe 5A.
  • the rectifying ring 71 has an opening 71a coaxially with the high temperature inlet pipe 5A.
  • the diameter D on the inlet side of the opening 71a is equal to the inner diameter of the high temperature inlet pipe 5A, and the diameter d on the outlet side 71c is equal to that on the inlet side. It is about two thirds of the diameter D.
  • the entrance side of the opening part 71a to the exit side 71c it becomes a mortar-shaped taper surface. This structure is the same for the low-temperature inlet pipe 5C connected to the inlet of the heat exchanger body 2 through which the low-temperature fluid flows.
  • FIG. 9 is a YZ sectional view showing the high temperature outlet pipe 5B and the rectifying ring 71 connected to the outlet from which the high temperature fluid of the heat exchanger body 2 cut along the cutting line CC shown in FIG. 1 flows out.
  • a rectifying ring 71 is similarly disposed in the high temperature outlet pipe 5B connected to the outlet from which the high temperature fluid of the heat exchanger body 2 flows out.
  • This structure is the same for the low temperature outlet pipe 5D connected to the outlet of the heat exchanger body 2 through which the low temperature fluid flows out.
  • FIG. 10 is a diagram illustrating the velocity distribution of the working fluid in the upstream region and the downstream region of the rectifying ring 71.
  • the outlet side 71 c of the opening 71 a becomes the boundary 72 with the inlet of the heat exchanger body 2.
  • the working fluid that has flowed into the respective inlet / outlet pipes 5A, 5B, 5C, and 5D from the outside or the heat exchanger body 2 is decelerated near the inner wall of each of the inlet / outlet pipes 5A, 5B, 5C, and 5D in the upstream region of the rectifying ring 71.
  • a non-uniform velocity distribution is shown in which the velocity decreases as the distance from the central axis of each of the inlet / outlet pipes 5A, 5B, 5C, and 5D increases.
  • the working fluid that has flowed in the vicinity of the inner wall of each of the inlet / outlet pipes 5A, 5B, 5C, and 5D in the upstream region of the rectifying ring 71 is caused by the tapered surface 71b of the opening 71a of the rectifying ring 71.
  • the flow is guided in the direction toward the central axis of the rectifying ring 71 and is mixed with other flows passing near the center of the opening 71 a of the rectifying ring 71.
  • the speed of the working fluid is higher than the average speed of the working fluid in each of the inlet / outlet pipes 5A, 5B, 5C, and 5D in the upstream area of the rectifying ring 71 in the downstream area immediately after the opening 71a of the rectifying ring 71.
  • a substantially constant core region C is generated.
  • the diameter of the inlet side of the rectifying ring 71 is D and the diameter of the outlet side 71c is 2 / 3D, the distance from the outlet side 71c of the opening 71a of the rectifying ring 71 to a position 6D downstream.
  • a core region C is formed (a large temperature distribution region that is substantially uniform in both the radial and axial directions can be formed large, making it easier to install a thermocouple and to accurately measure the temperature of the fluid).
  • Outside the core region C is a velocity boundary layer and a temperature boundary layer.
  • the speed of the working fluid is substantially constant, and the temperature distribution is also substantially uniform. Therefore, by arranging the hot junction 37 of the temperature sensor in the core region C, the velocity boundary layer and the temperature boundary layer The temperature of the working fluid can be accurately measured without being affected.
  • the temperature sensors 45 ⁇ / b> A and 45 ⁇ / b> B are arranged such that the hot junction 37 is positioned at a distance of 2D downstream from the position of the outlet side 71 c of the opening 71 a of the rectifying ring 71. Arranged. Thereby, the temperature of the working fluid flowing into or out of the inlet or outlet of the heat exchanger body 2 can be accurately measured without being affected by the velocity boundary layer and the temperature boundary layer. Thereby, calculation of the amount of heat exchange heat, control to the target temperature of the working fluid which flows out, etc. can be performed more correctly.
  • the tapered surface 71b of the opening 71a may be a constant inclined surface in the cross section, but the present invention is not limited to this, and the area of the opening 71a is reduced. What is necessary is just to make it narrow gradually, and a sine wave front, a parabolic curved surface, or a hyperbolic surface may be sufficient.
  • the electromotive force processing circuit 411 generates temperature data corresponding to the output voltage between the thermocouple wires 35 and 35 of the temperature sensors 45A, 45B, 45C, and 45D and supplies the temperature data to the statistical processing circuit 412.
  • the statistical processing circuit 412 performs various statistical processes on the temperature data for each temperature sensor supplied from the electromotive force processing circuit 411.
  • the statistical processing circuit 412 calculates, for example, an average value, a maximum value, a minimum value, etc. of temperature data for each measurement time.
  • the statistical processing circuit 412 calculates an average value, a maximum value, a minimum value, etc. with conditions such as a specific time zone such as morning.
  • the statistical processing circuit 412 has a memory element and can store the calculation result.
  • the output processing circuit 413 can output the result of the statistical processing obtained from the statistical processing circuit 412 to an external device through the external output connector 42, or can transmit the result to an external device using the wireless module 43.
  • the display processing circuit 414 generates display data from the statistical processing result obtained from the statistical processing circuit 412 and outputs the display data to the display unit 44.
  • the display 44 is composed of, for example, a liquid crystal display panel, and includes a display screen along the main surface 4 a of the printed circuit board 4.
  • the display 44 displays the display data supplied from the display processing circuit 414 on the display screen.
  • FIG. 12 is a display screen of the display 44 showing the temperature of each working fluid at the high temperature fluid inlet, the high temperature fluid outlet, the low temperature fluid inlet, and the low temperature fluid outlet of the heat exchanger body 2 calculated at the same time. It is an example at the time of making it display on. Thus, each temperature can be visually confirmed through the display screen of the indicator 44 attached to the printed circuit board 4 of the microchannel heat exchanger 1.
  • the printed circuit board 4 on which the plurality of temperature sensors 45A, 45B, 45C, and 45D are mounted in advance is attached to the upper surface of the heat exchanger body 2, whereby the heat exchanger body A plurality of temperature sensors 45A, 45B, 45C, and 45D can be simultaneously installed in 2, and the temperature sensor can be easily attached.
  • the integrated circuit 41 including a circuit for processing data measured by the temperature sensors 45A, 45B, 45C, and 45D on the printed circuit board 4, the temperature sensors 45A, 45B, 45C, and 45D and the integrated circuit 41 are connected to the printed circuit board. 4 can be easily connected by the wiring pattern formed on the wiring 4.
  • the display 44 for displaying the temperature data measured by the temperature sensors 45A, 45B, 45C, and 45D is also mounted on the printed circuit board 4, it is necessary to connect an external monitor for visually checking the temperature data. Disappear. Furthermore, the external connection connector 42 and the wireless module 43 are also mounted on the printed circuit board 4, so that temperature data can be transmitted to an external device as needed.
  • the temperature sensors 45A, 45B, 45C, and 45D are mounted on the printed circuit board 4 in advance.
  • the present technology is not limited to this, and the temperature sensors 45A, 45B, 45C, and 45D are heat-exchanged.
  • the printed circuit board 4 may be attached to the heat exchanger main body 2 and the temperature sensors 45 ⁇ / b> A, 45 ⁇ / b> B, 45 ⁇ / b> C, 45 ⁇ / b> D may be mounted on the printed circuit board 4.
  • the technique of attaching the printed circuit board 4 to the heat exchanger body 2 as in the present technology is a micro flow channel heat exchanger in which the distance between the temperature sensors 45A, 45B, 45C, and 45D is short and the printed circuit board 4 can be miniaturized. This is advantageous for a small heat exchanger.
  • the printed circuit board 4 is fixed with a spacer 52 between the heat exchanger body 2 and a heat insulating sheet or an elastic cushion material instead of the spacer 52. Good. If not necessary, the printed circuit board 4 may be directly fixed to the heat exchanger body 2.
  • the outdoor heat exchanger When hot water is generated by exchanging heat between water and refrigerant in the micro-channel heat exchanger during hot water supply operation, the outdoor heat exchanger is frosted. A reverse defrosting operation is performed to melt this frost. In the reverse defrosting operation, the refrigerant flow in the refrigeration cycle is opposite to that in the hot water supply operation. Therefore, the refrigerant flowing into the micro-channel heat exchanger during the defrosting operation is low temperature. As a result, the water that has flowed into the micro-channel heat exchanger is cooled by the low-temperature refrigerant, becomes ice, and the water channel may be destroyed.
  • a heater 81 connected to the printed circuit board 4 is provided in the vicinity of the water channel 25B in the same manner as the temperature sensor. Arranged in the hole 82. Since the temperature sensors 45C and 45D are provided in the water flow path (the groove 25B forming the flow path of the low-temperature fluid), the temperature (zero degree) at which the water in the flow path 25B becomes ice can be detected. Therefore, when the values of the temperature sensors 45C and 45D become zero degrees or less (the temperature at which water becomes ice), the water flowing in the flow path 25B can be warmed to prevent freezing by operating the heater 81. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

この熱交換器は、高温流体の流路が設けられた複数の高温流路層と低温流体の流路が設けられた複数の低温流路層とが交互に積層されて形成された流路層積層体と、前記高温流体の入口および出口と、前記低温流体の入口および出口を有する熱交換器本体と、前記熱交換器本体の積層方向に固定され、前記高温流体の入口および出口と前記低温流体の入口および出口の各々の近傍に感知点が配置されるように前記熱交換器本体の前記積層方法に挿入された複数の温度センサーを少なくとも搭載する制御基板とを具備する。

Description

マイクロ流路熱交換器
 本発明は、熱交換用の作動流体の流路が形成された複数の伝熱板を積層して構成されるマイクロ流路熱交換器に関する。
 熱交換器は冷凍サイクルの一つの要素として使用され、冷凍サイクル内の作動流体の温度を目標温度に変えるための不可欠なパーツである。熱交換器には様々な種類が存在する。その中でマイクロ流路熱交換器の卓越した性能が認識されつつあり、実用化に向けて開発が進められている。
 このようなマイクロ流路熱交換器には積層型マイクロ流路熱交換器がある。この積層型マイクロ流路熱交換器は、例えば、表面に微細な高温流路が形成された伝熱板と、表面に微細な低温流路が形成された伝熱板を交互に積層して構成された積層体の上面と底面に耐圧用の金属板を重ねて、真空の状態で加圧・加熱することによって各伝熱板および各金属板が互いに拡散接合されて一体化される(例えば非特許文献1)。
 積層型マイクロ流路熱交換器をプレート式熱交換器と比較した場合の構造上の特徴としては、各層により多くの流路を形成できること、短流路を形成できることなどが挙げられる。これにより、積層型マイクロ流路熱交換器はプレート式熱交換器に比べ小型化が可能である。
 また、積層型マイクロ流路熱交換器は伝熱性、冷媒充填量の低減および高耐圧、耐熱面でも従来の熱交換器より優れた点を有する。例えば、伝熱面(板)を介した作動流体同士の熱通過率が高い、流路形状損失が低い、プレート式熱交換器と流動損失が同じ場合では流路面積を縮小できる、圧縮された作動流体の圧力損失を低減できる、熱交換器全体の容積減少による冷凍サイクルに充填される作動流体の量を減少させることができる、等である。
 積層型マイクロ流路熱交換器の作動流体が出入する出入口には温度センサーがそれぞれ設けられる。温度センサーを設ける目的は、温度センサーで測定した温度をもとに熱交換器で熱交換された熱量を算出したり、流出する作動流体を目標温度にまで制御したりするためである。
 この目的を達成するには、温度センサーが作動流体の温度を正確に測定できる必要がある。例えば、2つの作動流体の間で熱交換を行う場合、流入する作動流体と流出する作動流体の温度差から、熱交換器の熱交換能力(伝熱量)は次の式で求めることができる。 
 Q([J/s]=[W])
  =cp,l([J/kgK])×Gl([kg/s])×(TLow,out-TLow,in)([K])
  =cp,h([J/kgK])×Gh([kg/s])×(THigh,in-THigh,out)([K])
 Q:伝熱量[J/s]=[W] 
 cp,l:低温作動流体の比熱[J/kgK]
 cp,h:高温作動流体の比熱[J/kgK]
 Gl:低温作動流体の質量流量[kg/s]
 Gh:高温作動流体の質量流量[kg/s] 
 (TLow,out-TLow,in):(低温作動流体の熱交換器出口温度と低温作動流体の入口温度との温度差[K])
 (THigh,in-THigh,out):(高温作動流体の熱交換器入口温度と低温作動流体の出口温度との温度差[K])
 また、給湯機などでは、マイクロ流路熱交換器の出口を流れる作動流体の温度を正確に測定することは、作動流体が目標温度に達しているかを確認するために必要である。また、マイクロ流路熱交換器の入口を流れる作動流体の温度を正確に測定することは、貯湯タンクから流出した作動流体を加熱する必要があるかを確認するために必要であり、また作動流体を目標温度にまで加熱するために必要な熱量を導くためにも必要である。
 積層型マイクロ流路熱交換器の出入口を流れる作動流体の温度の測定には、熱電対などの温度センサーを用いている。温度センサーの感知点によって測定された熱起電力は、感知点に繋がっている熱電対素線を介して熱起電力-温度変換回路に伝達される。多くの場合、温度センサーは熱交換器の作動流体の入口および出口に取り付けられている配管の外表面に半田などで固定されている。この場合、温度センサーの感知点は作動流体と直接接していないため、作動流体の正確な温度を測定することができない。
 よって、測定した温度には、熱交換器を形成する金属の熱伝導による誤差1と、温度センサーを取り付けた位置の温度と実際の出入口を流れる作動流体の温度との温度差による誤差2と、出入口に接続される各出入口管内を流れる作動流体の温度境界層による管の中心付近を流れる作動流体の温度と管の壁面付近を流れる作動流体の温度との温度差による誤差3と、温度センサーによる測定方法の測定誤差4などが含まれる。
2013年度日本機械学会賞
 プレート式熱交換器は、外形寸法が例えば、95(幅)×325(長さ)×81.96(高さ)(mm)であり、このプレート式熱交換器と同じ熱交換能力を有する積層型マイクロ流路熱交換器の外形寸法80(幅)×106(長さ)×43.2(高さ)(mm)よりも大きいため、周囲の空気と接する表面積が大きく、空気中の熱がプレート式熱交換器内に移動したり、プレート式熱交換器内の熱が空気中に移動したりするなどして外乱を受けやすい。このため、外乱などの他の影響を受けていない作動流体の実際の温度を測定するには限界がある。
 一方、積層型マイクロ流路熱交換器は周囲の空気と接する表面積が小さく、空気中の熱が熱交換器本体内に移動したり、熱交換器本体内の熱が空気中に移動したりするなどの外乱が少ないため、プレート式熱交換器に比べ、作動流体の実際の温度を測定しやすい。作動流体の実際の温度を測定することができれば、エアコンや床暖房などに用いられている積層型マイクロ流路熱交換器において、室内空気の温度などを設定温度に調整する際、測定誤差に基づく温度調整のための無駄なエネルギーが消費されずにすむ。
 しかし、実際のエアコンや床暖房などに用いられている積層型マイクロ流路熱交換器では、熱交換器本体の出入口を流れる作動流体の温度を直接測定するのではなく、前述のように熱交換器本体の出入口に接続される配管の表面温度を測定している。例えば床暖房などに用いられているマイクロ流路熱交換器の場合、入口を流れる作動流体(例えば、水)の温度は低温であるが、入口に接続される作動流体が流れる配管の表面温度は、金属表面の熱伝導により空気中から熱が配管内に移動し、実際の作動流体の温度より高く測定される場合がある。また、出口を流れる作動流体の温度は高温であるが、出口に接続される作動流体が流れる配管の表面温度は、金属表面の熱伝導により空気中への熱の移動により実際の作動流体の温度より低く測定される場合がある。これらは、温度センサーの設置位置による誤差(上述の誤差1から3)である。
 また、積層型マイクロ流路熱交換器は小型であるため、熱交換器本体の熱伝導により出口管と入口管の間で熱の授受がされて、出口管または入口管のうち温度の低い方は温度が高く、一方温度の高い方は温度が低く測定されることがある。
 このように、積層型マイクロ流路熱交換器の出入口に接続される配管の表面に設置された温度センサーによる作動流体の温度を測定する方法では、作動流体の実際の温度を測定することができない。
 そこで、熱交換器本体の出入口を流れる作動流体の実際の温度を測定するために、熱交換器本体の出入口の配管内に温度センサーの感知点(熱電対の温接点)を差し込み、配管内を流れる作動流体に温度センサーの感知点を直に接触させることで、熱交換器本体の出入口を流れる作動流体の温度を直接測定する方法が検討されている。
 しかし、温度センサーの検出信号を、熱交換器とは別体で設けられていて、センサで検出した信号を処理する制御基板であるプリント基板に伝達するために、複数の温度センサーの各々とプリント基板とがリード線で個別に接続される必要があり、これらのリード線の接続作業に手間を要していた。
 以上のような事情に鑑み、本発明の目的は、作動流体の温度を作動流体に触れて直接測定する温度センサーと制御基板とをリード線で接続する作業を容易にすることのできる熱交換器を提供することにある。
 上記目的を達成するため、本発明の一形態に係る熱交換器は、高温流体の流路が設けられた複数の高温流路層と低温流体の流路が設けられた複数の低温流路層とが交互に積層されて形成された流路層積層体と、前記高温流体の入口および出口と、前記低温流体の入口および出口を有する熱交換器本体と、前記熱交換器本体の積層方向に固定され、前記高温流体の入口および出口と前記低温流体の入口および出口の各々の近傍に感知点が配置されるように前記熱交換器本体の積層方向に挿入される複数の温度センサーを少なくとも搭載する制御基板とを具備する。
 また、本発明に係る熱交換器は、温度データを表示する表示器が前記プリント基板に搭載されたものであってよい。
 さらに、本発明に係る熱交換器は、温度データを外部の機器に有線もしくは無線で送信する送信デバイスが前記プリント基板に搭載されたものであってよい。
 さらに、本発明に係る熱交換器は、前記熱交換器本体の前記低温流体の流路の近傍に配置されたヒーターが前記プリント基板にさらに具備されるものであってよい。
 本発明によれば、作動流体の温度を作動流体に触れて直接測定する温度センサーと制御基板とをリード線で接続する作業を容易化できる。
本発明の一実施形態に係るマイクロ流路熱交換器を示す斜視図である。 図1のマイクロ流路熱交換器を一部分解して示す斜視図である。 図1のマイクロ流路熱交換器において高温伝熱板の構成を示す斜視図である。 図1のマイクロ流路熱交換器において低温伝熱板の構成を示す斜視図である。 図1のマイクロ流路熱交換器において高温流路層の高温流路を説明するための斜視図である。 図1のマイクロ流路熱交換器において低温流路層の低温流路を説明するための斜視図である。 図1におけるA-A断面図である。 図1におけるB-B断面図である。 図1におけるC-C断面図である。 図1のマイクロ流路熱交換器について整流リングの上流域および下流域での作動流体の速度分布を示す図である。 図1のマイクロ流路熱交換器のプリント基板に実装された各電子部品の電気的な接続関係を含む構成を示すブロック図である。 図1のマイクロ流路熱交換器における温度データの表示形態を示す図である。 本発明の第2のマイクロ流路熱交換器の要部の構成を示す一部分解斜視図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の第1の実施形態に係るマイクロ流路熱交換器を、制御基板であるプリント基板を外した状態で示す斜視図、図2は図1のマイクロ流路熱交換器の熱交換器本体を一部分解して示す斜視図である。
 [全体の構成]
 これらの図に示すように、このマイクロ流路熱交換器1は、流路層積層体である熱交換器本体2と、高温側外殻板3Aと、低温側外殻板3Bと、高温流体を流入させる高温入口管5Aと、高温流体を流出させる高温出口管5Bと、低温流体を流入させる低温入口管5Cと、低温流体を流出させる低温出口管5Dと、プリント基板4とを有する。なお、以下の記載では、高温入口管5A、高温出口管5B、低温入口管5Cおよび低温出口管5Dを総称して出入口管と呼ぶ。
 図中、熱交換器本体2のZ軸の矢印の方向と反対の方向の面を「高温側の面」または「下面」、各部材の、Z軸の矢印の方向の面を「低温側の面」または「上面」とする。熱交換器本体2の高温側の面には高温側外殻板3Aが接合され、熱交換器本体2の低温側の面には低温側外殻板3Bが接合されている。
 熱交換器本体2は、2種類の伝熱板2A、2Bを交互に複数枚積層して構成される。2種類の伝熱板の構成については後で説明する。
 熱交換器本体2を構成する2種類の伝熱板2A、2Bと、高温側外殻板3Aと、低温側外殻板3Bは、例えば、熱伝導率が高い同じ種類の金属板からなる。より具体的には、ステンレス鋼などが用いられる。これらの金属板は積層された後、拡散接合によって互いに接合されることによって略直方体形状の積層体となる。なお、伝熱板2A、2Bの板厚は、高温流路または低温流路を形成できると共に、拡散接合が出来るものであれば、どのような厚みでもよい。
 以降、説明上の必要に応じて、マイクロ流路熱交換器1のZ軸に垂直な面を「主面」と呼び、主面以外のX軸やY軸に垂直な4つの面を「側面」と呼ぶこととする。
 図2に示すように、マイクロ流路熱交換器1の各側面には、各々、熱交換器本体2内の高温流路に作動流体の1つである高温流体を流入させる高温入口ヘッダ21と、熱交換器本体2内の高温流路から高温流体を流出させる高温出口ヘッダ22と、熱交換器本体2内の低温流路に作動流体の他の1つである低温流体を流入させる低温入口ヘッダ23と、熱交換器本体2内の低温流路から低温流体を流出させる低温出口ヘッダ24が形成されている。
 図1に示したように、高温入口ヘッダ21には外から高温入口管5Aが挿入され、溶接などによって熱交換器本体2に接合される。この高温入口管5Aの外側端部には、高温流体を流入させるための図示しない外部配管が着脱可能に接続される。高温出口ヘッダ22には外から高温出口管5Bが挿入され、熱交換器本体2に溶接などにより接合されている。この高温出口管5Bには、高温流体を流出させるための図示しない外部配管が着脱可能に接続される。低温入口ヘッダ23には外から低温入口管5Cが挿入され、熱交換器本体2に溶接などにより接合されている。この低温入口管5Cには低温流体を流入させるための図示しない外部配管が着脱可能に接続される。低温出口ヘッダ24には外から低温出口管5Dが挿入され、熱交換器本体2に溶接などにより接合されている。この低温出口管5Dには低温流体を流出させるための図示しない外部配管が着脱可能に接続される。
 [熱交換器本体2の構成]
 次に、熱交換器本体2の構成を説明する。
 前述したように、熱交換器本体2は、2種類の伝熱板2A、2Bを交互に複数枚積層して構成される。これらの伝熱板2A、2Bにはエッチング処理によって溝および切り欠き部が形成されている。伝熱板2A、2Bでは、それぞれの溝に流す作動流体が異なるので、溝のパターンは異なっているが、切り欠き部は、伝熱板2Aおよび2Bの積層後に各ヘッダ部となるように形成されるので、切り欠き部の形状は同一である。なお、伝熱板2Aおよび2Bに溝や切り欠き部を形成する処理はエッチング処理だけでなく、例えば、レーザ加工、精密プレス加工、切削加工などでもよい。また、3Dプリンターのような積層造形技術を用いることで溝のへりを形成してもよい。
 図3および図4は2種類の伝熱板2A、2Bを示す斜視図である。ここで、図3に示す伝熱板2Aは「高温伝熱板2A」、図4に示す伝熱板2Bは「低温伝熱板2B」である。
 (高温伝熱板2Aの構成)
 図3に示すように、高温伝熱板2Aには、高温流体の流路を形成する溝25A、30A、31Aおよび切り欠き部26A、27A、28A、29Aがそれぞれ設けられている。溝25A、30A、31Aは高温伝熱板2Aの一方の面にのみ設けられる。溝25A、30A、31Aの深さはどこも均一であってよい。切り欠き部26A、27A、28A、29Aは、高温伝熱板2Aの基材の4辺に各々対応する所定の部位を基材の厚み分除去することによって形成される。
 以後、説明の必要に応じて、高温伝熱板2Aの各々の切り欠き部26A、27A、28A、29Aを、第1の切り欠き部26A(高温分配部)、第2の切り欠き部27A(高温合流部)、第3の切り欠き部28A、および第4の切り欠き部29Aと呼ぶ。
 高温伝熱板2Aにおいて、図中Y軸方向の両端部にそれぞれ設けられる第1の切り欠き部26Aと第2の切り欠き部27Aとの間の領域には、これら第1の切り欠き部26Aと第2の切り欠き部27Aとの間を連通する複数の溝25A、30A、31Aが形成されている。なお、図3において、溝25Aの数は3本であるが、もっと幅の小さい数多くの溝を形成するようにしても良い。
 高温伝熱板2Aにおける上記の各溝25A、30A、31Aは、X軸方向に沿って形成された複数の溝25Aと、Y軸方向に沿って形成された2本の溝30A、31Aで構成される。Y軸方向に沿って形成された2本の溝30A、31Aのうち一方の溝30Aは一端が第1の切り欠き部26Aと連通し、他方の溝31Aは一端が第2の切り欠き部27Aと連通する。X軸方向に沿って形成された複数の溝25Aは各々2本の溝30A、31Aの間を連通する。これにより、後述のように形成される高温伝熱板2Aの高温入口ヘッダ21および高温出口ヘッダ22と、低温伝熱板2Bの低温入口ヘッダ23および低温出口ヘッダ24との位置関係を互いに90度異なるようにしている。
 (低温伝熱板2Bの構成)
 図4に示すように、低温伝熱板2Bには、低温流体の流路を形成する溝25Bおよび切り欠き部26B、27B、28B、29Bがそれぞれ設けられている。溝25Bは低温伝熱板2Bの一方の面にのみ設けられる。溝25Bの深さはどこも均一であってよい。切り欠き部26B、27B、28B、29Bは、低温伝熱板2Bの基材の4辺に各々対応する所定の部位を基材の厚み分除去することによって形成される。
 以後、説明の必要に応じて、低温伝熱板2Bの各々の切り欠き部26B、27B、28B、29Bを、第5の切り欠き部26B、第6の切り欠き部27B、第7の切り欠き部28B(低温分配部)、および第8の切り欠き部29B(低温合流部)と呼ぶ。
 低温伝熱板2Bにおいて、図中X軸方向の両端部にそれぞれ設けられる第7の切り欠き部28Bと第8の切り欠き部29Bとの間には、これら第7の切り欠き部28Bと第8の切り欠き部29Bとの間を連通する複数の溝25Bが形成されている。これら複数の溝25Bは、高温伝熱板2Aに形成された複数の溝25Aと、Y軸方向にて同じ位置に各々形成されている。
 (高温伝熱板2Aと低温伝熱板2Bとの積層構造)
 上記のような構成を有する高温伝熱板2Aおよび低温伝熱板2Bは、図5および図6に示すように、双方の溝25A、25B、30A、31Aが設けられた面の向きを一致させて、各々複数交互に重ね合わせて積層される。このようにして熱交換器本体2が構成される。
 この熱交換器本体2において、高温伝熱板2Aの第1の切り欠き部26Aと低温伝熱板2Bの第5の切り欠き部26Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、高温入口ヘッダ21を形成する。
 高温伝熱板2Aの第2の切り欠き部27Aと低温伝熱板2Bの第6の切り欠き部27Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、高温出口ヘッダ22を形成する。
 高温伝熱板2Aの第3の切り欠き部28Aと低温伝熱板2Bの第7の切り欠き部28Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、低温入口ヘッダ23を形成する。
 高温伝熱板2Aの第4の切り欠き部29Aと低温伝熱板2Bの第8の切り欠き部29Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、低温出口ヘッダ24を形成する。
 (高温流路と低温流路について)
 図5は熱交換器本体2における高温流路を示す斜視図である。
 高温流路は、高温伝熱板2Aの各溝25A、30A、31Aと低温伝熱板2Bの下面との間に形成される。高温流体は、高温入口ヘッダ21から流入し、溝30Aを通って複数の溝25Aに分配される。複数の溝25Aを通過した高温流体は溝31Aで合流し、高温出口ヘッダ22より流出する。このような高温流体の流れが各々の高温伝熱板2Aに対応する高温流路層において生じる。なお、高温流路層は、高温伝熱板2Aの各溝25A、30A、31Aと、第1の切り欠き部26Aと、第2の切り欠き部27Aとで形成される。
 図6は熱交換器本体2における低温流路を示す斜視図である。
 低温流路は、低温伝熱板2Bの溝25Bと低温側外殻板3Bの下面および高温伝熱板2Aの下面との間に形成される。低温流体は、低温入口ヘッダ23から流入し、複数の溝25Bを通って低温出口ヘッダ24から流出する。このような低温流体の流れが各々の低温伝熱板2Bに対応する低温流路層において生じる。なお、低温流路層は、低温伝熱板2Bの各溝25Bと、第7の切り欠き部28Bと、第8の切り欠き部29Bとで形成される。
 熱交換器本体2において高温流路層と低温流路層は交互に積層されているので、高温伝熱板2Aおよび低温伝熱板2Bを介して高温流体と低温流体との間での熱交換が行われる。
 [プリント基板4の構成]
 図1に示したように、プリント基板4の上側の面4a(以下「主面」と呼ぶ。)には、各種の集積回路41と、外部の配線との接続用のコネクタ42、送信デバイスである無線モジュール43、表示器44、および複数の温度センサー45A、45B、45C、45Dなどの電子部品群が実装される。また、プリント基板4の主面4aには、複数の温度センサー45A、45B、45C、45Dと集積回路41における起電力処理回路411(図11参照)との接続をはじめとする上記の各電子部品を電気的に接続する配線パターン46が設けられる。
 このプリント基板4は、熱交換器本体2との間にスペーサー52を挟んで複数の固定ネジ47で固定される。すなわち、プリント基板4には固定ネジ47を通すネジ通し孔47aが設けられ、熱交換器本体2にはネジ通し孔47aを通した固定ネジ47を受けるネジ孔51が設けられる。
 温度センサー45A、45B、45C、45Dは、高温入口管5Aを流れる高温流体、高温出口管5Bを流れる高温流体、低温入口管5Cを流れる低温流体および低温出口管5Dを流れる低温流体の各々の温度を測定するためのものである。
 [温度センサーの取り付け構造]
 図7および図8は、図1に示す切断線A-Aと切断線B-Bで熱交換器本体2を切断した第1の温度センサー45Aの取り付け構造を示す断面図である。図7は高温入口管5Aにおける軸方向(流体の流通方向)に温度センサー45Aの取り付け構造を見た場合のX-Z断面図であり、図8はそのY-Z断面図である。他の温度センサー45B、45C、45Dの取り付け構造も同様であるため、ここでは第1の温度センサー45Aの取り付け構造のみ説明する。図1に示すように、温度センサー45A、45B、45C、45Dが取付けられたプリント基板4は熱交換器本体2の上面に固定ネジ47で取付けられる。
 プリント基板4には、第1の温度センサー45Aである熱電対を差し込むための孔部48が設けられる。熱交換器本体2の低温側外殻板3Bには、プリント基板4の孔部48に連通する孔部32が設けられる。さらに、熱交換器本体2の入口に挿入された高温入口管5Aの低温側外殻板3B側の部位には、低温側外殻板3Bの孔部32に連通する孔部33が設けられる。
 プリント基板4と低温側外殻板3Bの各孔部48、32には、例えばステンレス製などの金属保護管34が配置される。金属保護管34内の第1の温度センサー45Aの熱電対素線35、35は絶縁・断熱部材36によって被覆される。第1の温度センサー45Aの熱電対素線35、35には例えば直径が0.5mmから1mm程度のものを用いることができ、セラミック薄膜などによって耐久性を高めたものであることが望ましい。第1の温度センサー45Aの熱電対素線35、35の先端に設けられた温接点37(温度センサーの感知点)は、高温入口管5A内を流通する流体に直接触れられるように配置される。温接点37は、流体からの圧力をできるだけ受けないよう、例えば、直径が0.5mmや1mm程度の球体であることが望ましい。
 プリント基板4の孔部48と金属保護管34との隙間はシール材61によって塞がれる。また、低温側外殻板3Bの孔部32は下側よりシール材62によって塞がれる。
 以上、第1の温度センサー45Aの取り付け構造を説明したが、第2の温度センサー45B、第3の温度センサー45C、第4の温度センサー45Dの取り付け構造も同様である。
 このように、第1の温度センサー45Aの温接点37が熱交換器本体2の入口の高温入口管5A内を流通する高温流体に直に触れることによって、熱交換器本体2に流入する高温流体の温度を直接測定することができる。同様に、熱交換器本体2より流出する高温流体、熱交換器本体2に流入する低温流体、熱交換器本体2より流出する低温流体の各々の温度を、第2の温度センサー31B、第3の温度センサー31C、第4の温度センサー31Dによって直接測定することができる。
 しかしながら、各出入口管5A、5B、5C、5D内を流れる作動流体は、各出入口管5A、5B、5C、5Dの内壁近傍では流れが減速されることによって不均一な温度分布が形成される。このため、作動流体の温度を直接測定しても必ずしも正確な温度が測定できるとは限らない。
 そこで、熱交換器本体2の各出入口管5A、5B、5C、5D内に作動流体の速度および温度が略一定となるコア領域を形成するための整流リングを配置した。この整流リングの下流域に形成されるコア領域に温度センサーの温接点を配置した。
 図7および図8に示したように、高温入口管5A内には整流リング71が配置される。整流リング71は高温入口管5Aに対して同軸に開口部71aを有し、この開口部71aの入口側の径Dは高温入口管5Aの内径と等しく、出口側71cの径dは入口側の径Dのおよそ三分の二の大きさである。そして開口部71aの入口側から出口側71cまでの間はすり鉢状のテーパー面となっている。この構造は、熱交換器本体2の低温流体が流入する入口に接続された低温入口管5Cについても同様である。
 図9は、図1に示す切断線C-Cで切断した熱交換器本体2の高温流体が流出する出口に接続された高温出口管5Bおよび整流リング71を示すY-Z断面図である。
 同図に示すように、熱交換器本体2の高温流体が流出する出口に接続された高温出口管5B内にも同様に整流リング71が配置される。
 この構造は、熱交換器本体2の低温流体が流出する出口に接続された低温出口管5Dについても同様である。
 図10は、整流リング71の上流域および下流域での作動流体の速度分布を示す図である。整流リング71が入口管に設けられている場合、開口部71aの出口側71cが熱交換器本体2の入口との境界72になる。
 外部もしくは熱交換器本体2より各出入口管5A、5B、5C、5Dに流入してきた作動流体は、整流リング71の上流域において各出入口管5A、5B、5C、5Dの内壁近傍で減速されることによって、各出入口管5A、5B、5C、5Dの中心軸からの距離が大きくなるに従って速度が低くなる不均一な速度分布を示す。整流リング71の上流域において各出入口管5A、5B、5C、5Dの内壁近傍を流れていた作動流体は、整流リング71の開口部71aのテーパー面71bによって各出入口管5A、5B、5C、5Dの中心軸に向かう方向に誘導され、整流リング71の開口部71aの中心付近を通過する他の流れと混ざり合う。この結果、整流リング71の開口部71aの直後の下流域に、作動流体の速度が整流リング71の上流域での各出入口管5A、5B、5C、5D内の作動流体の平均速度よりも高速で略一定のコア領域Cが発生する。一例として、整流リング71の入口側の径をDとし、出口側71cの径を2/3Dとしたとき、整流リング71の開口部71aの出口側71cから下流側に6D離れた位置までの間にコア領域Cが形成される(径方向でも軸方向でもほぼ均一な温度分布領域を大きく形成できることで、熱電対の設置がし易くなり、流体の温度の測定も正確になる)。コア領域Cの外は速度境界層および温度境界層である。このコア領域Cでは、作動流体の速度が略一定であり、温度分布も略均一であるから、このコア領域Cに温度センサーの温接点37を配置することによって、速度境界層および温度境界層の影響を受けることなく作動流体の温度を正確に測定することができる。
 本実施形態では、図8および図9に示すように、整流リング71の開口部71aの出口側71cの位置から下流側に2Dの距離の位置に温接点37がくるように温度センサー45A、45Bを配置した。これにより、速度境界層および温度境界層の影響を受けることなく、熱交換器本体2の入口または出口に流入または流出する作動流体の温度を正確に測定することができる。これにより、熱交換熱量の算出や、流出する作動流体の目標温度への制御などをより正確に行うことができる。
 なお、整流リング71の開口部71aの形状に関して、開口部71aのテーパー面71bは断面において一定の傾斜面であってよいが、本発明はこれに限定したものではなく、開口部71aの面積を徐々に狭くすればよく、サイン波面、放物曲線面、あるいは双曲線面であってもよい。
 [プリント基板4に実装された各種電子部品による機能的な構成]
 図11は、プリント基板4に実装された各電子部品の電気的な接続関係を含む構成を機能ブロック化して示す図である。
 同図に示すように、このプリント基板4は、上記の4つの温度センサー45A、45B、45C、45Dと、起電力処理回路411と、統計処理回路412と、出力処理回路413と、表示処理回路414と、外部接続用のコネクタ42と、無線モジュール43と、表示器44とを備える。ここで、起電力処理回路411と、統計処理回路412と、出力処理回路413と、表示処理回路414は1以上の集積回路41によって構成される。あるいは、各々が別々の集積回路41によって構成されもよい。
 起電力処理回路411は、各温度センサー45A、45B、45C、45Dの熱電対素線35、35間の出力電圧に対応する温度データを生成し、統計処理回路412に供給する。
 統計処理回路412は、起電力処理回路411より供給された温度センサー毎の温度データに対して各種の統計処理を行う。統計処理回路412は、例えば、測定時間毎の温度データの平均値、最大値、最小値などの算出を行う。あるいは、統計処理回路412は、朝などの特定の時間帯のような条件付きの平均値、最大値、最小値などの算出を行う。統計処理回路412は、メモリ素子を有し、上記演算結果を記憶することができる。
 出力処理回路413は、統計処理回路412より得た統計処理の結果を外部出力コネクタ42を通じて外部の機器に出力したり、無線モジュール43を使って外部の機器に送信したりすることができる。
 表示処理回路414は、統計処理回路412より得た統計処理の結果から表示用のデータを生成し、表示器44に出力する。
 表示器44は、例えば、液晶表示パネルなどで構成され、プリント基板4の主面4aに沿った表示画面を備える。表示器44は、表示処理回路414より供給された表示データを表示画面に表示する。
 図12は、同時刻に算出された熱交換器本体2の高温流体の入口、高温流体の出口、低温流体の入口、低温流体の出口での各々の作動流体の温度を表示器44の表示画面に表示させた場合の一例である。このようにマイクロ流路熱交換器1のプリント基板4に取り付けられた表示器44の表示画面を通して各温度を目視で確認することができる。
 以上のように、本実施形態によれば、複数の温度センサー45A、45B、45C、45Dを予め搭載したプリント基板4を熱交換器本体2の上面に取り付けるようにしたことによって、熱交換器本体2に複数の温度センサー45A、45B、45C、45Dを同時に設置することができ、温度センサーの取付け作業を容易に行うことができる。また、温度センサー45A、45B、45C、45Dが測定したデータを処理する回路を含む集積回路41をプリント基板4に搭載することによって、温度センサー45A、45B、45C、45Dと集積回路41をプリント基板4に形成された配線パターンで容易に接続することができる。さらに、温度センサー45A、45B、45C、45Dが測定した温度データを表示するための表示器44もプリント基板4に搭載したことにより、温度データを目視で確認するための外部モニターを接続する必要がなくなる。さらに、外部接続用のコネクタ42および無線モジュール43もプリント基板4に搭載したことにより、温度データを外部の機器に随時送信することができる。
 なお、本実施形態では温度センサー45A、45B、45C、45Dをプリント基板4に予め搭載しているが、本技術はこれに限定したものではなく、温度センサー45A、45B、45C、45Dを熱交換器本体2に取り付けた後に、プリント基板4を熱交換器本体2に取り付けてプリント基板4に温度センサー45A、45B、45C、45Dを搭載するようにしても良い。また、本技術のようにプリント基板4を熱交換器本体2に取り付ける技術は各温度センサー45A、45B、45C、45D間の距離が短くプリント基板4が小型化できるマイクロ流路熱交換器のような小型の熱交換器に有利である。
 また、本実施例ではプリント基板4は熱交換器本体2との間にスペーサー52を挟んで固定しているが、スペーサー52の代わりに断熱シートや弾性のあるクッション材を挟んで固定してもよい。また必要が無ければプリント基板4を直接熱交換器本体2に固定してもよい。
 [その他の実施形態]
 次に、第2の実施形態を説明する。なお、本実施形態のマイクロ流路熱交換器は、第1の実施形態のマイクロ流路熱交換器と各構成が同じであるため、各構成の説明は省略する。
 給湯運転時に、マイクロ流路熱交換器内で水と冷媒を熱交換させて温水を生成する場合、室外熱交換器には霜が付く。この霜を溶かすためにリバース除霜運転が行われる。リバース除霜運転では、冷凍サイクルの冷媒の流れが給湯運転と逆になる。
 そのため、除霜運転中にマイクロ流路熱交換器に流れ込む冷媒は低温である。これにより、マイクロ流路熱交換器内に流れ込んだ水は低温の冷媒によって冷却され、氷になり、水の流路を破壊するおそれがあった。
 そこで、図13に示すように、本実施形態のマイクロ流路熱交換器1Aでは、温度センサーと同じように、プリント基板4に接続されるヒーター81を水の流路25Bの近傍に設けられた孔部82に配置した。水の流路(低温流体の流路を形成する溝25B)内に温度センサー45C、45Dを設けているため、流路25B内の水が氷になる温度(零度)を検出することができる。よって、温度センサー45C、45Dの値が零度以下(水が氷になる温度)になった時、ヒーター81を作動させることで、流路25B内を流れる水を温めて凍結を防止することができる。
 その他、本技術は、上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 1…マイクロ流路熱交換器
 2…熱交換器本体
 2A…高温伝熱板
 2B…低温伝熱板
 3A…高温側外殻板
 3B…低温側外殻板
 4…プリント基板
 21…高温入口ヘッダ
 22…高温出口ヘッダ
 23…低温入口ヘッダ
 24…低温出口ヘッダ
 41…集積回路
 42…外部出力コネクタ
 43…無線モジュール
 44…表示器
 45A…第1の温度センサー
 45B…第2の温度センサー
 45C…第3の温度センサー
 45D…第4の温度センサー
 46…配線パターン

Claims (4)

  1.  高温流体の流路が設けられた複数の高温流路層と低温流体の流路が設けられた複数の低温流路層とが交互に積層されて形成された流路層積層体と、前記高温流体の入口および出口と、前記低温流体の入口および出口を有する熱交換器本体と、
     前記熱交換器本体の積層方向に固定され、前記高温流体の入口および出口と前記低温流体の入口および出口の各々の近傍に感知点が配置されるように前記熱交換器本体の前記積層方向に挿入される複数の温度センサーを少なくとも搭載するプリント基板と
     を具備するマイクロ流路熱交換器。
  2.  請求項1に記載の熱交換器であって、
     温度データを表示する表示器が前記プリント基板に搭載されたことを特徴とするマイクロ流路熱交換器。
  3.  請求項1または2に記載の熱交換器であって、
     温度データを外部の機器に有線もしくは無線で送信する送信デバイスが前記プリント基板に搭載されたマイクロ流路熱交換器。
  4.  請求項1ないし3のいずれか1項に記載の熱交換器であって、
     前記熱交換器本体の前記低温流体の流路の近傍に配置されたヒーターが前記プリント基板にさらに具備されるマイクロ流路熱交換器。
PCT/JP2016/074189 2015-09-09 2016-08-19 マイクロ流路熱交換器 WO2017043286A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680052352.9A CN108027282B (zh) 2015-09-09 2016-08-19 微流路热交换器
EP16844149.1A EP3348976B1 (en) 2015-09-09 2016-08-19 Microchannel heat exchanger
AU2016320033A AU2016320033B2 (en) 2015-09-09 2016-08-19 Microchannel heat exchanger
CA2997606A CA2997606C (en) 2015-09-09 2016-08-19 Microchannel heat exchanger
US15/758,542 US10365051B2 (en) 2015-09-09 2016-08-19 Microchannel heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-177800 2015-09-09
JP2015177800A JP6056928B1 (ja) 2015-09-09 2015-09-09 マイクロ流路熱交換器

Publications (1)

Publication Number Publication Date
WO2017043286A1 true WO2017043286A1 (ja) 2017-03-16

Family

ID=57756177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074189 WO2017043286A1 (ja) 2015-09-09 2016-08-19 マイクロ流路熱交換器

Country Status (7)

Country Link
US (1) US10365051B2 (ja)
EP (1) EP3348976B1 (ja)
JP (1) JP6056928B1 (ja)
CN (1) CN108027282B (ja)
AU (1) AU2016320033B2 (ja)
CA (1) CA2997606C (ja)
WO (1) WO2017043286A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012557A1 (de) * 2015-09-25 2017-03-30 Webasto SE Wärmetauscher und Fahrzeugheizgerät mit einem Wärmetauscher
US10766097B2 (en) * 2017-04-13 2020-09-08 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements
DE102017004671A1 (de) * 2017-05-16 2018-11-22 Degner Gmbh & Co. Kg Vorrichtung zum Kühlen, Wärmen oder Wärmeübertragen
JP2019086278A (ja) * 2017-11-03 2019-06-06 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド 一体型構造を含む印刷基板型熱交換器
JP7114964B2 (ja) * 2018-03-20 2022-08-09 株式会社富士通ゼネラル 積層体、積層体の製造方法、マイクロ流路熱交換器及びマイクロ流路熱交換器の製造方法
JP7206609B2 (ja) * 2018-03-26 2023-01-18 株式会社富士通ゼネラル 金属積層体及び金属積層体の製造方法
US11976888B2 (en) 2018-11-02 2024-05-07 Hs Marston Aerospace Limited Laminated heat exchangers
EP3680598A1 (de) * 2019-01-08 2020-07-15 Linde GmbH Verfahren zum herstellen eines plattenwärmetauschers sowie plattenwärmetauscher mit thermoelementen oder messwiderständen
JP7363570B2 (ja) 2020-02-25 2023-10-18 株式会社富士通ゼネラル 積層体
CN111595478A (zh) * 2020-06-01 2020-08-28 中国核动力研究设计院 一种微通道换热器出口温度测量装置及测量方法
CN112377941A (zh) * 2020-11-17 2021-02-19 天津大学合肥创新发展研究院 一种具有碳烟颗粒捕集功能的微通道烟气换热器
DE102021202044A1 (de) * 2021-03-03 2022-09-08 Heine Resistors Gmbh Verbesserte Strömungsführung in einem Wärmetauscher
WO2023076859A1 (en) * 2021-10-27 2023-05-04 Atieva, Inc. Cooler for power electronics
KR102527898B1 (ko) * 2021-12-02 2023-04-28 김태현 온도 제어용 밸브 시스템
CN114698230B (zh) * 2022-02-23 2023-05-12 中国电子科技集团公司第二十九研究所 一种内嵌微流道的印制电路板三维集成结构及其制备方法
US20240074124A1 (en) * 2022-08-29 2024-02-29 Atieva, Inc. Cooler for power electronics
CN115435517B (zh) * 2022-09-01 2023-09-19 珠海格力电器股份有限公司 一种液冷系统的控制方法、装置、液冷系统和存储介质
KR102664406B1 (ko) * 2023-02-21 2024-05-10 (주)제이티에스코리아 온도 컨트롤 밸브 시스템
CN116642353B (zh) * 2023-07-24 2023-10-24 中国核动力研究设计院 一种集流结构、换热芯体和换热器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047090A1 (ja) * 2011-09-28 2013-04-04 三菱重工オートモーティブサーマルシステムズ株式会社 熱媒体加熱装置およびそれを備えた車両用空調装置
JP2013178014A (ja) * 2012-02-28 2013-09-09 Noritz Corp ヒートポンプ用のプレート式熱交換器およびこれを備えた温水装置
JP2015158315A (ja) * 2014-02-24 2015-09-03 株式会社富士通ゼネラル マイクロ流路熱交換器
JP2015190705A (ja) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル マイクロ流路熱交換器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503908A (en) * 1979-10-01 1985-03-12 Rockwell International Corporation Internally manifolded unibody plate for a plate/fin-type heat exchanger
SE8006391L (sv) * 1980-09-12 1982-03-13 Jacob Weitman Sett att reglera en vermevexlare
DE3224635A1 (de) * 1981-10-23 1983-05-05 Mitsubishi Denki K.K., Tokyo Ventilationsvorrichtung
JPS60253795A (ja) * 1984-05-31 1985-12-14 Matsushita Electric Ind Co Ltd 積層式熱交換器
JP3858484B2 (ja) * 1998-11-24 2006-12-13 松下電器産業株式会社 積層式熱交換器
US6175688B1 (en) * 1998-07-10 2001-01-16 Belmont Instrument Corporation Wearable intravenous fluid heater
US6537506B1 (en) * 2000-02-03 2003-03-25 Cellular Process Chemistry, Inc. Miniaturized reaction apparatus
DE202005013835U1 (de) * 2005-09-01 2005-11-10 Syntics Gmbh Vorrichtung zum schnellen Aufheizen, Abkühlen, Verdampfen oder Kondensieren von Fluiden
KR101340725B1 (ko) * 2006-10-17 2013-12-12 엘지전자 주식회사 수냉식 공기조화기
US9417016B2 (en) * 2011-01-05 2016-08-16 Hs Marston Aerospace Ltd. Laminated heat exchanger
CN102062441A (zh) * 2011-01-28 2011-05-18 浙江中新能源发展有限公司 双循环式集中-分户太阳能热水系统用户工作站
US9395125B2 (en) * 2011-09-26 2016-07-19 Trane International Inc. Water temperature sensor in a brazed plate heat exchanger
DE102011118078A1 (de) * 2011-11-04 2013-05-08 Airbus Operations Gmbh Wärmetauscher, Kühlsystem sowie Verfahren zum Betreiben eines Wärmetauschers und eines Kühlsystems
US9211381B2 (en) * 2012-01-20 2015-12-15 Medical Solutions, Inc. Method and apparatus for controlling temperature of medical liquids
EP2878910B1 (en) * 2012-05-29 2019-07-31 Hangzhou Shenshi Energy Conservation Technology Co., Ltd. Micro-channel structure for heat exchanger, and integrated type micro-channel heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047090A1 (ja) * 2011-09-28 2013-04-04 三菱重工オートモーティブサーマルシステムズ株式会社 熱媒体加熱装置およびそれを備えた車両用空調装置
JP2013178014A (ja) * 2012-02-28 2013-09-09 Noritz Corp ヒートポンプ用のプレート式熱交換器およびこれを備えた温水装置
JP2015158315A (ja) * 2014-02-24 2015-09-03 株式会社富士通ゼネラル マイクロ流路熱交換器
JP2015190705A (ja) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル マイクロ流路熱交換器

Also Published As

Publication number Publication date
JP6056928B1 (ja) 2017-01-11
CA2997606A1 (en) 2017-03-16
US20180259273A1 (en) 2018-09-13
US10365051B2 (en) 2019-07-30
CA2997606C (en) 2021-02-09
JP2017053543A (ja) 2017-03-16
EP3348976A1 (en) 2018-07-18
EP3348976B1 (en) 2020-02-19
CN108027282A (zh) 2018-05-11
AU2016320033B2 (en) 2018-12-13
CN108027282B (zh) 2020-07-17
EP3348976A4 (en) 2019-06-05
AU2016320033A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6056928B1 (ja) マイクロ流路熱交換器
JP6107905B2 (ja) 熱交換器
US10458825B2 (en) Thermal flow-rate sensor
CN102859684B (zh) 散热装置及半导体装置
JP6094510B2 (ja) マイクロ流路熱交換器
JP6372130B2 (ja) マイクロ流路熱交換器
JP6361723B2 (ja) マイクロ流路熱交換器
ES2896350T3 (es) Método para producir un intercambiador de calor de placas, e intercambiador de calor de placas con termopares o resistores
US11745280B2 (en) Method for manufacturing a heat exchanger having a temperature probe
JP7114964B2 (ja) 積層体、積層体の製造方法、マイクロ流路熱交換器及びマイクロ流路熱交換器の製造方法
US20230400365A1 (en) System for determining a heat exchange coefficient
US20220082448A1 (en) Device for measuring temperatures in a heat exchanger
Khan et al. Experiments of ethylene glycol-water mixture in multi-port circular straight microchannel slab
Hessami Thermo-hydraulic performance of cross-corrugated plate heat exchangers
JP5524791B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2997606

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15758542

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016320033

Country of ref document: AU

Date of ref document: 20160819

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016844149

Country of ref document: EP