WO2017043087A1 - 糞便試料から物質を抽出する方法 - Google Patents
糞便試料から物質を抽出する方法 Download PDFInfo
- Publication number
- WO2017043087A1 WO2017043087A1 PCT/JP2016/004104 JP2016004104W WO2017043087A1 WO 2017043087 A1 WO2017043087 A1 WO 2017043087A1 JP 2016004104 W JP2016004104 W JP 2016004104W WO 2017043087 A1 WO2017043087 A1 WO 2017043087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- organic solvent
- substances
- sample
- stool sample
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4055—Concentrating samples by solubility techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6848—Methods of protein analysis involving mass spectrometry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/0038—Devices for taking faeces samples; Faecal examination devices
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
- G01N2001/386—Other diluting or mixing processes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4055—Concentrating samples by solubility techniques
- G01N2001/4061—Solvent extraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N2030/062—Preparation extracting sample from raw material
Definitions
- the present invention relates to a method for extracting a substance from a stool sample, particularly suitable for performing analysis such as metabolome analysis using mass spectrometry or nuclear magnetic resonance spectroscopy, metagenome analysis using a next-generation sequencer,
- the present invention relates to a method for extracting a substance from a stool sample.
- the intestinal flora plays an important role in maintaining human homeostasis by degrading indigestible polysaccharides, producing essential nutrients such as vitamins, building the immune system, and controlling the growth of pathogenic bacteria. is there.
- various intestinal diseases such as colorectal cancer (Non-Patent Documents 1 and 2), metabolic diseases such as type 2 diabetes (Non-Patent Document 3), obesity It is suggested that it leads to the onset (nonpatent literature 4) etc.
- the intestinal microflora is a presence that can have both positive and negative effects on the human body.
- Non-patent Document 5 Non-patent Document 5
- the relationship between the gut microbiota and our health has been pointed out, but there are still many unclear points about the mechanism that the gut microbiota affects the human body.
- the physiological function of the intestinal flora has been clarified by obtaining the composition and genetic information of the intestinal flora by metagenomic analysis and metatranscriptome analysis of the intestinal flora.
- Non-patent Document 7 It has also been reported that chain fatty acids activate systemic energy metabolism and prevent obesity (Non-patent Document 7). On the other hand, it has also been reported that secondary bile acids produced by intestinal bacteria by decomposing primary bile acids promote the onset of liver cancer (Non-patent Document 8). Thus, metabolites produced from the intestinal flora have both positive and negative functions. Metabolomic analysis of intestinal metabolites is based on "elucidation of interaction mechanism between host and intestinal flora", “search for new functional substances of metabolites produced from intestinal flora”, “intestinal metabolite profile It is considered useful for evaluation of the intestinal environment.
- Non-Patent Document 9 mouse stool is dissolved in a phosphate buffered saline (PBS) solution, and the supernatant is analyzed by capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS: Capillary Electrophoresis). It describes a method of measuring metabolites by measuring with -Time of Flight Mass Spectrometry. However, there are few reports on intestinal metabolites, and it is difficult to say that a method for measuring intestinal metabolites has been established.
- PBS phosphate buffered saline
- Patent Document 10 a method of extracting a metabolite using a mixed solvent of water / methanol
- Patent Document 11 a method of extracting a metabolite by liquid-liquid distribution using a mixed solvent of chloroform / methanol
- Patent Document 1 describes a method for extracting a metabolite from cells in the presence of methanol, chloroform, and water.
- Non-patent Document 12 when extracting a metabolite from cells having cell walls such as bacteria and plants, a method of physically crushing the cells with zirconia beads or the like and extracting with a solvent such as methanol is used (Non-patent Document 12). ).
- An object of the present invention is to provide a more practical method for extracting a substance from a stool sample. More specifically, the problem of the present invention is that a metabolome analysis using mass spectrometry or nuclear magnetic resonance spectroscopy, a metagenome analysis using a next-generation sequencer, etc. It is to provide a method for extracting a substance.
- E Solvent containing a hydrophobic organic solvent:
- F Solvent containing a hydrophilic organic solvent and a hydrophobic organic solvent:
- G Solvent consisting of water:
- the present inventors have found that various substances can be extracted by using an aqueous solvent in combination with a hydrophilic organic solvent and / or a hydrophobic organic solvent. Furthermore, the present inventors have found that when stool samples are suspended in a solvent, metabolites such as amino acids can be more efficiently extracted by crushing and suspending treatment using beads. In addition, the present inventors separate the substance extracted from the stool sample by capillary electrophoresis or chromatography, and use it for mass spectrometry and / or nuclear magnetic resonance spectroscopy, thereby providing the one or more kinds of substances. And the concentration of the one or more substances is measured and cluster analysis is performed on the measured data. The substance profile is classified into clusters (groups) for each characteristic substance. I found what I could do. The present inventors have found these things further and have completed the present invention.
- the present inventors compared the case where water was used as an aqueous solvent with the case where a PBS solution was used, and found that more types of metabolites could be detected using water. .
- the present inventors have also found that when a PBS solution is used and a sample is concentrated and subjected to mass spectrometry, current flows excessively due to the influence of salt concentration, and accurate measurement cannot be performed. The present inventors have found these things further and have completed the present invention.
- the present invention (1) A method for extracting one or more substances from a stool sample, Step A of suspending the stool sample in any of the following solvents (a) to (g) to obtain a suspension:
- E Solvent containing a hydrophobic organic solvent:
- G Solvent consisting of water: Step B of separating the liquid layer containing the solvent from the suspension: and Step C for obtaining one or more substances after removing proteins from the liquid layer:
- the method of extracting the substance of (4) The method for extracting a substance according to (2) or (3) above, wherein the bead diameter in step A-1 is in the range of 0.02 to 0.5 mm, (5) Before the step A or the step A-1, the method further includes a step X of crushing the dried stool sample with beads to obtain a dried stool piece, and the dried stool piece is used as the stool of the step A or the step A-1.
- the present invention also provides: (12) A method of identifying one or more substances in a stool sample and measuring the concentration, composition or ratio of the one or more substances,
- the one or more substances extracted by the method according to any one of (1) to (11) above are separated by chromatography or capillary electrophoresis, and subjected to mass spectrometry and / or nuclear magnetic resonance spectroscopy.
- Step P for identifying the one or more substances by measuring and measuring the concentration, composition or ratio of the one or more substances A method characterized by including: (13) A method of classifying a plurality of objects into two or more clusters, For each stool sample obtained from a plurality of subjects, two or more substances are identified by performing the method described in (12) above, and the concentration, composition or ratio of the two or more substances is determined.
- Process Q to measure and Cluster analysis is performed on the concentration, composition, or ratio data of the two or more substances obtained in the step Q, and the plurality of objects are classified into two or more clusters according to the similarity of the substance profile S:
- one or more substances can be efficiently extracted from a stool sample.
- more types of substances can be extracted from a stool sample. Therefore, according to the present invention, a method for extracting a substance in a stool sample suitable for performing analysis such as metabolome analysis using mass spectrometry or nuclear magnetic resonance spectroscopy, metagenome analysis using a next-generation sequencer, etc. Can be provided.
- FIG. 6 is a diagram showing profiles of (cationic) metabolites detected in extracted samples 1 to 5; Hierarchical clustering of samples and metabolites was performed using Pearson's correlation coefficient.
- the character string before the hyphen represents the type of the extracted sample (extracted samples 1 to 5), and the number after the hyphen represents the difference in stool used.
- the heat map represents the Z-score of each metabolite, with black representing high concentration, light gray representing low concentration, and white representing below detection limit.
- FIG. 6 is a diagram showing the result of comparing the number of metabolites detected in extracted samples 1 to 5.
- PAM Partitioning
- [1] to [3] in the figure respectively indicate Butyrate (butyric acid), Cholate (cholic acid) and Thiamine (vitamin B1), and the ellipses centered on [1] to [3] are the butyric acid group, A cholic acid group and a vitamin B1 group are shown.
- FIG. 3 is a diagram showing the results of analyzing changes in metabolite profiles with respect to storage at ⁇ 80 ° C. when stool samples are stored at room temperature for 1 to 2 days.
- “I” in the figure indicates a metabolite in which an increase in concentration was observed when the stool sample was stored at room temperature for 1 to 2 days, and “II” represents when the stool sample was stored at room temperature for 1 day.
- III indicates decreased concentration when stool samples were stored at room temperature for 1-2 days Indicates a metabolite.
- Metabolites are extracted by the methanol / chloroform method from stool samples stored at -80 ° C immediately after collection or stored at room temperature, 4 ° C or -20 ° C for 1-2 days, and the detected metabolites are used. It is a figure which shows the result of having performed the principal component analysis. Fecal samples were placed in various organic solvents (100% methanol [100% MeOH], 50% methanol [50% MeOH], or methanol / chloroform [MeOH / CHCl 3 ]) at room temperature or in the absence of an organic solvent. It is a figure which shows the result of having performed the principal component analysis using the detected metabolite preserve
- the shape of the plot indicates the type of organic solvent used for storage, and the color indicates the storage temperature.
- a stool sample is stored in 100% methanol [100% MeOH] or methanol / chloroform [MeOH / CHCl 3 ]) or in the absence of an organic solvent at room temperature, 4 ° C. or ⁇ 80 ° C. for 2 days. It is a figure which shows the result of having performed the principal component analysis using the metabolite detected at the time.
- the shape of the plot indicates the type of organic solvent used for storage, and the color indicates the storage temperature.
- the “method for extracting one or more substances from a stool sample” of the present invention refers to one or more substances from a stool sample.
- B Solvent containing aqueous solvent and hydrophobic organic solvent:
- C A solvent containing an aqueous solvent, a hydrophilic organic solvent, and a hydrophobic organic solvent:
- D Solvent containing a hydrophilic organic solvent:
- E Solvent containing a hydrophobic organic solvent:
- F Solvent containing a hydrophilic organic solvent and a hydrophobic organic solvent:
- G Solvent consisting of water: Step B of separating the liquid layer containing the solvent from the suspension: and Step C for obtaining one or more substances after removing proteins from the liquid layer: As long as it contains, there is no particular limitation.
- the biological species from which the “fecal sample” in the present invention is derived is not particularly limited, and examples thereof include mammals such as humans, mice, rats, cows, sheep, horses, monkeys, among which humans are preferable. It is done.
- the “substance” in the present invention is not particularly limited as long as it is a substance contained in a stool sample, and includes a hydrophilic substance, a lipophilic substance, an amphiphilic substance, and more specifically, acidic, neutral or basic. Hydrophilic substances, acidic, neutral or basic lipophilic substances, acidic, neutral or basic amphiphilic substances.
- Preferred “substances” in the present invention include intestinal metabolites; nucleic acids such as DNA and RNA; bile acids such as cholic acid and deoxycholic acid; short-chain fatty acids such as acetic acid, propionic acid and butyric acid; lactic acid and succinic acid.
- Organic acids such as acids; amino acids; carbohydrates such as monosaccharides, disaccharides and trisaccharides; uremic toxins such as indoxyl sulfate; lipids such as fatty acids and neutral fats;
- intestinal metabolite in this specification refers to a substance produced by synthesis and / or decomposition based on a substance taken from the outside by an organism (host) and / or intestinal bacteria from which a stool sample is derived. It means a substance that exists or has existed in the intestine (preferably in the large intestine) of the host.
- Specific examples of intestinal metabolites include short-chain fatty acids having 2 to 6 carbon atoms; amino acids; vitamins; polyamines; nucleic acids; bile acids; carbohydrates; Preferred are the substances listed in Table 5. According to the extraction method of the present invention, intestinal metabolites can be more comprehensively extracted from a stool sample.
- Step A in the extraction method of the present invention is not particularly limited as long as it is a step of obtaining a suspension by suspending the stool sample in any of the solvents (a) to (g).
- aqueous solvent examples include water such as purified water; buffered aqueous solution; aqueous solution containing a pH adjuster; and the like. From the viewpoint of extracting more types of intestinal metabolites, water is preferable. . In addition, when the extract extracted using a buffered aqueous solution containing salt is subjected to mass spectrometry, excessive current may flow during measurement, which may hinder the measurement. As water, water is preferable to a buffered aqueous solution.
- the pH of the buffered aqueous solution or the aqueous solution containing the pH adjusting agent can be appropriately set according to the properties of one or more substances that are the purpose of extraction.
- the pH can be in the range of 6-8.
- the buffer aqueous solution include a phosphate buffer aqueous solution, a tris-hydrochloride buffer aqueous solution, and a Good buffer aqueous solution.
- these aqueous solvents commercially available ones may be used, or those prepared using reagents may be used.
- hydrophilic organic solvent means an organic solvent having a solubility in water of more than 20 g / 100 g (20 ° C.).
- the “hydrophilic organic solvent” is not particularly limited as long as it is a hydrophilic organic solvent, and is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, 1 type or 2 or more types selected from the group which consists of tetrahydrofuran and diethylene glycol can be mentioned, Among these, 1 type or 2 selected from the group which consists of methanol, ethanol, propanol, isopropanol, acetonitrile, dimethyl sulfoxide, and acetone is mentioned.
- hydrophilic solvents Commercially available ones may be used, or ones prepared using reagents may be used.
- the “hydrophobic organic solvent” means an organic solvent having a solubility in water of 20 g / 100 g (20 ° C.) or less.
- the “hydrophobic organic solvent” is not particularly limited as long as it is a hydrophobic organic solvent, and is selected from the group consisting of chloroform, hexane, ether, diethyl ether, benzene, phenol, and isoamyl alcohol, or 2 or more types can be mentioned, among which 1 type or 2 or more types selected from the group consisting of chloroform, hexane, and diethyl ether can be mentioned preferably, among which chloroform and hexane can be mentioned more preferably.
- these hydrophobic solvents commercially available solvents may be used, or those prepared using reagents may be used.
- the following solvents (a1) to (f1) can be preferably mentioned, and the following solvents (a2) to (f2) can be more preferably mentioned.
- A1 A solvent containing an aqueous solvent and a hydrophilic organic solvent and not containing a hydrophobic organic solvent:
- B1 A solvent containing an aqueous solvent and a hydrophobic organic solvent and not containing a hydrophilic organic solvent:
- C1 A solvent containing an aqueous solvent, a hydrophilic organic solvent, and a hydrophobic organic solvent:
- D1 A solvent containing a hydrophilic organic solvent and not containing an aqueous solvent or a hydrophobic organic solvent:
- E1 A solvent containing a hydrophobic organic solvent and not containing an aqueous solvent or a hydrophilic organic solvent:
- F1 A solvent containing a hydrophilic organic solvent and a hydrophobic organic solvent and not containing an aqueous solvent:
- A2 A solvent comprising an aqueous solvent and a hydrophilic organic solvent:
- B2 A solvent comprising an aqueous solvent and a hydrophobic organic solvent:
- C2 A solvent comprising an aqueous solvent, a hydrophilic organic solvent, and a hydrophobic organic solvent:
- D2 A solvent comprising a hydrophilic organic solvent:
- E2 A solvent comprising a hydrophobic organic solvent:
- F2 A solvent comprising a hydrophilic organic solvent and a hydrophobic organic solvent:
- the content of the aqueous solvent or the hydrophilic organic solvent in the solvents (a), (a1) and (a2) is not particularly limited, depending on the properties of one or more substances that are the purpose of extraction.
- a solvent having an aqueous solvent content in the range of 10 to 90% by weight and a hydrophilic organic solvent content in the range of 90 to 10% by weight can be mentioned.
- a solvent having an aqueous solvent content in the range of 10 to 50% by weight and a hydrophilic organic solvent content in the range of 90 to 50% by weight can be preferably exemplified.
- the weight ratio of the aqueous solvent to the hydrophilic organic solvent in the solvents (a), (a1) and (a2) is not particularly limited, and the properties of one or more substances that are the purpose of extraction are not limited. However, it can be set within a range of 1: 9 to 9: 1, and preferably within a range of 1: 9 to 5: 1.
- Preferable embodiments of the solvents (a), (a1) and (a2) include methanol aqueous solutions having a methanol concentration in the range of 10 to 90% by weight.
- An aqueous methanol solution within the range of wt% can be preferably mentioned, and an aqueous methanol solution having a methanol concentration of 50 wt% can be more preferred.
- the content of the aqueous solvent or the hydrophobic organic solvent in the solvents (b), (b1) and (b2) is not particularly limited, depending on the properties of one or more substances that are the purpose of extraction.
- a solvent having an aqueous solvent content in the range of 10 to 90% by weight and a hydrophobic organic solvent content in the range of 90 to 10% by weight may be mentioned.
- preferred is a solvent having an aqueous solvent content in the range of 10 to 50% by weight and a hydrophobic organic solvent content in the range of 90 to 50% by weight.
- the weight ratio of the aqueous solvent to the hydrophobic organic solvent in the solvents (b), (b1) and (b2) is not particularly limited, and the properties of one or more substances that are the purpose of extraction are not limited. However, it can be set within a range of 1: 9 to 9: 1, and preferably within a range of 1: 9 to 5: 1.
- the content of the aqueous solvent, the hydrophilic organic solvent, and the hydrophobic organic solvent in the solvents (c), (c1), and (c2) is not particularly limited, and may be one or more kinds of substances that are intended for extraction.
- the content can be appropriately set according to the properties and the like, for example, the content of the aqueous solvent is in the range of 5 to 85% by weight, the content of the hydrophilic organic solvent is in the range of 5 to 85% by weight, and And a solvent having a hydrophobic organic solvent content in the range of 5 to 85% by weight.
- the aqueous solvent content is in the range of 5 to 60% by weight, and the hydrophilic organic solvent content is in the range of 5 to 85% by weight.
- a solvent having a hydrophobic organic solvent content of 10 to 70% by weight and a hydrophobic organic solvent content of 10 to 70% by weight can be preferably used.
- the aqueous solvent content is 5 to 30% by weight.
- the content of hydrophilic organic solvent is 30 to 0 is the weight% range, and can be the content of the hydrophobic organic solvent is exemplified more preferably the solvent is in the range of 30 to 50 wt%.
- the weight ratio of the aqueous solvent to the hydrophilic organic solvent in the solvents (c), (c1) and (c2), the weight ratio of the aqueous solvent to the hydrophobic organic solvent, and the hydrophilic organic solvent to the hydrophobic solvent are examples of the weight ratio of the aqueous solvent to the hydrophobic organic solvent.
- the weight ratio with the organic solvent is not particularly limited, and can be set as appropriate according to the properties of one or more substances that are the purpose of extraction.
- the weight ratio of the aqueous solvent to the hydrophilic organic solvent can be, for example, in the range of 1: 9 to 9: 1, and preferably in the range of 1: 9 to 4: 6.
- the weight ratio of the solvent to the hydrophobic organic solvent can be, for example, in the range of 1: 9 to 9: 1, and can preferably be in the range of 1: 9 to 4: 6.
- the weight ratio of the organic solvent to the hydrophobic organic solvent can be, for example, in the range of 1: 9 to 9: 1, and particularly in the range of 3: 7 to 7: 3.
- the water content is in the range of 5 to 85% by weight and the methanol content is in the range of 5 to 85% by weight.
- a solvent having a chloroform content in the range of 5 to 85% by weight including a water content in the range of 5 to 60% by weight and a methanol content of 10 to 70% by weight. %, And a solvent having a chloroform content in the range of 10 to 70% by weight is preferable.
- the water content is in the range of 5 to 30% by weight
- a solvent having a content of 30 to 50% by weight and a chloroform content of 30 to 50% by weight can be mentioned more preferably.
- the content of the hydrophilic organic solvent in the solvents (d) and (d1) is not particularly limited and can be appropriately set according to the properties of one or more substances that are the purpose of extraction.
- a solvent having a hydrophilic solvent content in the range of 80 to 100% by weight can be mentioned, and among them, a solvent having a hydrophilic organic solvent content in the range of 95 to 100% by weight is preferable. Can do.
- the content of the hydrophobic organic solvent in the solvents (e) and (e1) is not particularly limited, and can be appropriately set depending on the properties of one or more substances that are the purpose of extraction.
- a solvent having a hydrophobic solvent content in the range of 80 to 100% by weight can be mentioned, and among them, a solvent having a hydrophobic organic solvent content in the range of 95 to 100% by weight is preferably mentioned. Can do.
- the content of the hydrophilic organic solvent and the hydrophobic organic solvent in the solvents (f), (f1), and (f2) is not particularly limited, depending on the properties of one or more substances that are the purpose of extraction.
- a solvent having a hydrophilic solvent content in the range of 10 to 90% by weight and a hydrophobic organic solvent content in the range of 90 to 10% by weight may be used.
- preferred is a solvent having a hydrophilic solvent content in the range of 30 to 70% by weight and a hydrophobic organic solvent content in the range of 70 to 30% by weight.
- the weight ratio of the hydrophilic solvent to the hydrophobic organic solvent in the solvents (f), (f1) and (f2) is not particularly limited. Although it can be appropriately set according to the properties, for example, it can be in the range of 1: 9 to 9: 1, and among them, it can be in the range of 3: 7 to 7: 3.
- the stool sample When the stool sample is suspended in any of the solvents (a) to (g), the stool sample may be added and suspended in the solvent, or the solvent may be added to the stool sample. It may be added and suspended.
- the method for suspending the stool sample in the solvent is not particularly limited, and examples thereof include a method of suspending the stool sample in the solvent by shaking and / or stirring the solvent and the stool sample. Among them, the solvent and the stool sample are agitated with an ultrasonic or pressure homogenizer to suspend the stool sample in the solvent, the solvent and the stool sample (preferably A method of suspending the stool sample in the solvent by shaking and / or stirring the container containing them with a vortex mixer is preferred.
- Step A-1 Step A-1: Obtaining a suspension by crushing and suspending a stool sample with beads in any of the solvents (a) to (g) above
- the physiological functions of the intestinal flora have recently been obtained by obtaining the composition and genetic information of the intestinal flora by metagenomic analysis and metatranscriptome analysis of the intestinal flora. Is becoming clear.
- the metabolite profile including the metabolite accumulated in the intestinal bacteria can be obtained by crushing with beads, a more accurate metabolomic analysis can be performed. It is considered that the physiological function of the intestinal flora can be elucidated in more detail by integrating the results of this highly accurate metabolome analysis and the above-described genetic information.
- the method for obtaining a suspension by crushing and suspending the stool sample with beads in the solvent in the step A-1 is not particularly limited, and the solvent, the stool sample and the beads coexist. Then, the above-mentioned solvent, the stool sample and the beads are shaken and / or stirred to crush and suspend the stool sample with beads to obtain a suspension. Among them, the solvent, The stool sample and the beads (preferably a container containing them) are shaken and / or agitated with a cell crushing device such as a vortex mixer or Shake master NEO (manufactured by Biomedical Science Co., Ltd.). A method of obtaining a suspension by crushing and suspending treatment with is preferred.
- the material of the beads in the step A-1 is not particularly limited as long as the stool sample can be crushed (preferably, microorganisms in the stool sample can be crushed), but zirconia (zirconium dioxide), zirconium, quartz, silica, stainless steel, Examples thereof include magnesium oxide, titanium oxide, manganese oxide, magnesium, titanium, and manganese.
- the shape of the beads in the above step A-1 is not particularly limited as long as the stool sample can be crushed (preferably, microorganisms in the stool sample can be crushed). it can.
- the size of the beads in step A-1 is not particularly limited as long as the stool sample can be crushed (preferably, microorganisms in the stool sample can be crushed).
- the length of the longest part of the bead is 0.
- a suitable range is 0.02 to 0.5 mm, preferably 0.05 to 0.3 mm.
- the diameter of the beads is preferably in the range of 0.02 to 0.5 mm, preferably in the range of 0.05 to 0.3 mm.
- the amount of beads added in the above step A-1 is not particularly limited as long as the stool sample can be crushed (preferably, the microorganism in the stool sample can be crushed), and is preferably within the range of 1 mg to 1 g per 1 mL of solvent, for example. May be in the range of 10 to 800 mg, more preferably in the range of 40 to 600 mg.
- the beads in the step A-1 the beads exemplified in the step X described later may be used in combination with the beads exemplified in the step A-1.
- the extraction method of the present invention may not further include the following step X, but the step A or the point that the amount of each stool sample used for extraction can be made as uniform as possible by obtaining a dried stool piece. It is preferable to further include the following step X before step A-1. Step X: Step X of obtaining a dried stool piece by crushing a dried stool sample with beads
- step X the dried stool pieces obtained in step X are used as the stool sample in step A or step A-1.
- the material of the beads in the above step X is not particularly limited as long as the stool sample can be crushed, and specific examples include the materials listed as the materials of the beads in A-1.
- the material of the beads in the above step X may be the same as or different from the material of the beads in the above A-1.
- the shape of the beads in the above-mentioned step X is not particularly limited as long as the stool sample can be crushed, but a substantially spherical shape can be mentioned, and a spherical shape can be preferably mentioned.
- the shape of the beads in the step X may be the same as or different from the shape of the beads in the above A-1.
- the size of the beads in the above step X is not particularly limited as long as the stool sample can be crushed.
- the length of the longest part of the beads is in the range of 0.6 to 15 mm, preferably 1.5 to 9 mm.
- the range is preferably mentioned.
- the diameter of the beads is preferably in the range of 0.6 to 15 mm, preferably in the range of 1.5 to 9 mm.
- the amount of beads added in the above step X is not particularly limited as long as the stool sample can be crushed.
- it is within the range of 1 mg to 1 g, preferably within the range of 50 to 500 mg per 10 mg (converted to dry weight) of the stool sample. be able to.
- step A and step A-1 in the extraction method of the present invention varies depending on the characteristics of the substance targeted for extraction, but a suitable mode can be selected according to the characteristics.
- a suitable mode can be selected according to the characteristics.
- the solvent is not limited to an aqueous solvent. It is preferable to use a hydrophilic organic solvent in combination.
- the solvent is a hydrophilic organic solvent. It is preferable not to use them together, and it is preferable to use only an aqueous solvent.
- Process Y The extraction method of the present invention may not further include the following step Y. However, after the stool sample is collected, the stool sample is not frozen until the substance is extracted from the stool sample. In the case of storage, it is preferable to further include the following step Y before step A or step A-1 from the viewpoint of suppressing the change in the metabolite profile in the stool sample during storage.
- Process Y The collected stool sample is stored in the following solvent (h) or (i): Process Y: (H) a solvent containing an aqueous solvent and a hydrophilic organic solvent of 75% by weight or more: (I) a solvent comprising an aqueous solvent, a hydrophilic organic solvent and a hydrophobic organic solvent:
- step Y the stool sample stored in step Y is used as the stool sample in step A or step A-1.
- aqueous solvent examples include “aqueous solvent” and “hydrophilicity in the solvent of the above step A, respectively.
- examples mentioned in “Organic solvent” and “Hydrophobic organic solvent” and preferred examples can be given.
- the “aqueous solvent”, “hydrophilic organic solvent” and “hydrophobic organic solvent” used as the solvent in the above step Y are the “aqueous solvent” and “hydrophilic organic solvent” used as the solvent in the above step A or step A-1.
- “Hydrophobic organic solvent” may be the same as or different from each other.
- the following solvents (h1) and (i1) can be preferably mentioned, and the following solvents (h2) and (i2) can be more preferably mentioned.
- H1 A solvent that contains an aqueous solvent and 75% by weight or more of a hydrophilic organic solvent and does not contain a hydrophobic organic solvent:
- I1 A solvent containing an aqueous solvent, a hydrophilic organic solvent, and a hydrophobic organic solvent:
- H2 A solvent comprising an aqueous solvent and a hydrophilic organic solvent of 75% by weight or more:
- I2 A solvent comprising an aqueous solvent, a hydrophilic organic solvent, and a hydrophobic organic solvent:
- the solvent (h) is a solvent containing an aqueous solvent and a hydrophilic organic solvent, and the content of the hydrophilic organic solvent in the solvent is 75% by weight or more.
- the content of the hydrophilic organic solvent in the solvents (h), (h1) and (h2) is not particularly limited as long as it is 75% by weight or more, but is preferably 80% by weight or more, more preferably 85% by weight. More preferably, 90% by weight or more, more preferably 95% by weight or more, and still more preferably 98% by weight or more.
- the content of the aqueous solvent in the solvents (h), (h1) and (h2) is not particularly limited as long as it is less than 25% by weight, and is appropriately set according to the content of the hydrophilic organic solvent. Examples thereof include less than 20% by weight, less than 15% by weight, less than 10% by weight, less than 5% by weight, and less than 2% by weight.
- the weight ratio of the hydrophilic organic solvent to the aqueous solvent in the solvents (h), (h1) and (h2) is not particularly limited as long as it is higher than 3 times, but is higher than 3 times and 100 times or lower. Can be mentioned.
- the methanol concentration is 75% by weight or more (preferably 80% by weight or more, more preferably 85% by weight or more, further preferably 90% by weight). % Or more, more preferably 95% by weight or more, and still more preferably 98% by weight or more) and less than 100% by weight methanol aqueous solution or 100% by weight methanol solution. Among them, 100% by weight methanol solution is more preferable. Can be mentioned.
- the content of the aqueous solvent, the hydrophilic organic solvent and the hydrophobic organic solvent in the solvents (i), (i1) and (i2) is not particularly limited and can be set as appropriate.
- the content is in the range of 1 to 40% by weight, the content of the hydrophilic organic solvent is in the range of 10 to 95% by weight, and the content of the hydrophobic organic solvent is in the range of 5 to 60% by weight.
- the content of the aqueous solvent is in the range of 1 to 25% by weight
- the content of the hydrophilic organic solvent is in the range of 20 to 90% by weight
- the hydrophobic organic solvent A solvent having a content in the range of 10 to 50% by weight can be preferably mentioned.
- the content of the aqueous solvent is in the range of 1 to 15% by weight and the content of the hydrophilic organic solvent is 40 to 80% by weight. And the inclusion of a hydrophobic organic solvent. There may be mentioned more preferably the solvent is in the range of 15 to 45 wt%. Further, the weight ratio of the aqueous solvent to the hydrophilic organic solvent in the solvents (i), (i1) and (i2), the weight ratio of the aqueous solvent to the hydrophobic organic solvent, and the hydrophilic organic solvent to the hydrophobic solvent. The weight ratio with the organic solvent is not particularly limited and can be set as appropriate.
- the weight ratio of the aqueous solvent to the hydrophilic organic solvent can be, for example, in the range of 1:30 to 1: 3, and preferably in the range of 1:20 to 1: 5.
- the weight ratio of the solvent to the hydrophobic organic solvent can be, for example, in the range of 1:15 to 1: 1.5, and preferably in the range of 1:10 to 1: 2.5.
- the weight ratio of the hydrophilic organic solvent to the hydrophobic organic solvent can be, for example, in the range of 6: 1 to 2: 3, and particularly in the range of 4: 1 to 1: 1. it can.
- the water content is in the range of 1 to 40% by weight, and the methanol content is in the range of 10 to 95% by weight.
- a solvent having a chloroform content in the range of 5 to 60% by weight Among them, the water content is in the range of 1 to 25% by weight and the methanol content is in the range of 20 to A solvent having a content of 90% by weight and a chloroform content of 10 to 50% by weight can be preferably mentioned.
- the content of water is 1 to 15% by weight
- More preferred examples include a solvent having a methanol content in the range of 40 to 80% by weight and a chloroform content in the range of 15 to 45% by weight.
- the stool sample is included in the solvent (h) or (i).
- the method is not particularly limited, and for example, the solvent (h) or (i) may be added to the stool sample, or the stool sample may be added to the solvent (h) or (i). Good.
- fluctuation changes More preferably, it is 30 degrees C or less. More preferably, it is 25 ° C. or less, more preferably 20 ° C. or less, further preferably 15 ° C. or less, more preferably 10 ° C. or less, further preferably 5 ° C. or less, more preferably 0 ° C. or less, and further preferably ⁇ 5 ° C. or less. More preferably, it is ⁇ 15 ° C. or lower, more preferably ⁇ 20 ° C.
- the significance of the present invention is that the metabolite profile in the stool sample immediately after collection is suppressed from changing.
- examples of the temperature during storage include 0 ° C. or higher, 3 ° C. or higher, 4 ° C. or higher, 6 ° C. or higher, and 10 ° C. or higher.
- the temperature range at the time of storage in the step (Y) is more specifically within a range of ⁇ 90 to 40 ° C., within a range of ⁇ 90 to 30 ° C., within a range of ⁇ 80 to 30 ° C., and ⁇ 80 to 25 Examples thereof include a range of °C, a range of -60 to 20 °C, and the like.
- the preferred storage temperature range is more specifically within the range of 0 to 40 ° C., within the range of 0 to 30 ° C., within the range of 0 to 25 ° C., Within the range of 0 to 20 ° C, within the range of 0 to 15 ° C, within the range of 0 to 10 ° C, within the range of 0 to 5 ° C, within the range of 3 to 25 ° C, within the range of 3 to 20 ° C, 3 to Within 15 ° C, within 3-10 ° C, within 3-5 ° C, within 4-25 ° C, within 4-20 ° C, within 4-15 ° C, within 4-10 ° C In the range of 4 to 5 ° C, in the range of 6 to 25 ° C, in the range of 6 to 20 ° C, in the range of 6 to 15 ° C, in the range of 6 to 10 ° C, and the like.
- the period of storage in the above step (Y) is not particularly limited and can be appropriately set according to the temperature at the time of storage. For example, when the storage temperature is less than 0 ° C., 1 minute to 1 month In the range of 20 minutes to 3 weeks, in the range of 1 hour to 2 weeks, etc. When the storage temperature is 0 ° C. or higher, the range of 1 minute to 7 days, 20 minutes to 3 For example, within the range of 1 day to 2 days.
- the stool sample stored in Step Y can be used as the stool sample in Step A or Step A-1.
- the method for using the stool sample after storage in Step Y as the stool sample in Step A or Step A-1 is not particularly limited, and the solvent used for storage in Step Y (hereinafter simply referred to as “storage solvent”) is also displayed. )) May or may not be removed after storage in step Y.
- a storage solvent Is preferably not removed.
- the storage solvent is used as it is as the extraction solvent.
- Step A and step A-1 may be performed.
- the storage solvent contains one or more solvents selected from the group consisting of an aqueous solvent, a hydrophilic organic solvent, and a hydrophobic organic solvent.
- the storage solvent is preferably changed to the extraction solvent.
- the storage solvent of (h) above may be used as the extraction solvent of (a) as it is, or by adding an aqueous solvent, a hydrophilic organic solvent, etc.
- the changed solvent may be used as the extraction solvent of (a) above, or the solvent whose composition has been changed from the storage solvent by adding a hydrophobic organic solvent or the like to the storage solvent, etc. It may be used as an extraction solvent.
- the storage solvent (i) may be used as it is as the extraction solvent (c), or may be composed of the storage solvent by adding an aqueous solvent, a hydrophilic organic solvent, a hydrophobic organic solvent, or the like. You may use the solvent which changed etc. as the extraction solvent of said (c).
- Step B in the extraction method of the present invention is not particularly limited as long as it is a step of separating the liquid layer containing the solvent from the suspension obtained in Step A or Step A-1.
- a method for separating the liquid layer from the suspension is not particularly limited, but a method of separating the supernatant by centrifuging the suspension can be mentioned as a preferred example. Centrifugation of the suspension can be performed using a commercially available centrifuge.
- Step C in the extraction method of the present invention is not particularly limited as long as it is a step of obtaining one or more substances after removing the protein from the liquid layer fractionated in Step B above.
- the method for removing the protein from the liquid layer collected in the step B is not particularly limited, and a method for removing the protein in the liquid layer using a filter such as an ultrafiltration filter or a reverse osmosis filter is preferable. be able to. Commercially available ultrafiltration filters and reverse osmosis filters can be used.
- the liquid obtained by removing the protein in the liquid layer contains one or more substances extracted from the stool sample. From the viewpoint of the storage stability of the extracted substance, it is preferable to dry the liquid. Such a dried substance can be used by adding and dissolving a solvent such as water again when subjected to mass spectrometry or nuclear magnetic resonance spectroscopy. In addition, when adding the solvent, it is preferable to add an internal standard substance for mass spectrometry or nuclear magnetic resonance spectroscopy.
- chromatography in Step P include liquid chromatography and gas chromatography, with liquid chromatography being preferred. Separation of substances by chromatography or capillary electrophoresis (CE: Capillary Electrophoresis) can be performed by a conventional method using a commercially available chromatograph (chromatography apparatus) or a capillary electrophoresis apparatus.
- chromatography apparatus chromatography apparatus
- capillary electrophoresis apparatus chromatography apparatus
- the mass spectrometry described above is a method in which a substance is converted into gaseous ions using an ion source (ionization), and the substance ionized by moving in a vacuum and using electromagnetic force or by a time-of-flight difference is analyzed in the analysis unit. It is a measuring method using a mass spectrometer that can be separated and detected according to the above.
- an EI method, a CI method, an FD method, an FAB method, a MALDI method, an ESI method, or the like can be selected as appropriate, and an ionized substance is separated in an analysis unit.
- a separation method such as a magnetic field deflection type, a quadrupole type, an ion trap type, a time of flight (TOF) type, a Fourier transform ion cyclotron resonance type, or the like can be appropriately selected.
- tandem mass spectrometry (MS / MS) or triple quadrupole mass spectrometry combining two or more mass spectrometry methods can be used.
- a conventionally known mass spectrometry using a commercially available mass spectrometer can be used.
- a detection part and a data processing method can also be selected suitably.
- Suitable mass spectrometry methods in the above step P include capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS), gas chromatography-mass spectrometry (GC-MS), liquid chromatography- Examples include mass spectrometry (LC-MS: “Lipid” Chromatography-Mass “Spectrometry”, among which CE-TOFMS is preferred.
- CE-TOFMS is excellent in measuring ionic low-molecular compounds, has high resolution, and can simultaneously measure a wider variety of metabolites.
- CE-TOFMS can measure, for example, about 90% of major metabolites in E. coli (Ohashi, Y., et al.
- CE-TOFMS is not necessarily suitable for the measurement of neutral substances and fat-soluble substances, but it also contains short-chain fatty acids, amino acids, some vitamins, polyamines, etc., which are main substances as intestinal metabolites. Since it can be measured, it is suitable for profiling of intestinal metabolites.
- GC-MS is excellent for measuring volatile substances such as short-chain fatty acids, there are some substances such as some amino acids that cannot be measured.
- LC-MS can measure various metabolites, it is necessary to select an optimum column and measurement method for each substance to be measured, and the completeness in one measurement is inferior to CE-TOFMS.
- the substance can be used as an internal standard.
- the internal standard substance include methionine sulfone, D-camphor 10-sulfonic acid [CSA], 2-morpholinoethane sulfonic acid [MES], 3-aminopyrrolidine, and trimesate.
- the internal standard substance is preferably labeled with a stable isotope or fluorescence so that it can be distinguished from the substance in the stool sample.
- the internal standard substance may be added to the stool sample before extracting one or more substances, or may be added to the sample after extracting one or more substances from the stool sample. Good.
- the above-mentioned nuclear magnetic resonance spectroscopy is a method in which one or more kinds of substances are placed in a strong magnetic field, and a pulsed radio wave is irradiated to molecules having the same nuclear spin orientation to cause nuclear magnetic resonance. Thereafter, the molecular structure is analyzed by detecting a signal generated when the molecule returns to the original stable state.
- the method of nuclear magnetic resonance spectroscopy is not particularly limited, and may be Fourier transform NMR, continuous wave NMR, one-dimensional NMR, or two-dimensional NMR. There may be. Nuclear magnetic resonance analysis can be performed by a conventional method using a commercially available nuclear magnetic resonance apparatus.
- ⁇ Method of classifying multiple objects into two or more clusters As the “method for classifying a plurality of objects into two or more clusters” of the present invention (hereinafter also referred to as “classification method of the present invention”), For each stool sample obtained from a plurality of subjects, two or more kinds of substances are identified by performing the above-described identification / measurement method of the present invention, and the concentration, composition or ratio of the two or more kinds of substances Measuring step Q: and Cluster analysis is performed on the concentration, composition, or ratio data of the two or more substances obtained in the step Q, and the plurality of objects are classified into two or more clusters according to the similarity of the substance profile S: As long as it contains, there is no particular limitation.
- the “subject” in the classification method of the present invention means an organism that is a collection source of a stool sample. Although it does not restrict
- the “cluster” classified in the classification method of the present invention is the presence or absence of any one or two or more (preferably one) substance among the one or two or more kinds in the stool sample, and the concentration is high or low.
- step Q in the classification method of the present invention two or more substances are identified by performing the above-described identification and measurement method of the present invention for each stool sample obtained from a plurality of subjects, and There is no particular limitation as long as it is a step of measuring the concentration, composition or ratio of two or more substances.
- step S in the classification method of the present invention, a cluster analysis is performed on the data of the concentration, composition, or ratio of the two or more substances obtained in step Q, and the plurality of objects are determined according to the similarity of the substance profiles.
- the method of cluster analysis in step S is not particularly limited as long as a plurality of objects can be classified into two or more clusters, and may be hierarchical clustering or division optimization clustering.
- Preferable examples of the optimization clustering include PAM clustering (partitioning around medoid clustering). These cluster analyzes can be performed by commercially available software.
- “Similarity of substance profile” in the above step S is the kind of two or more kinds of substances identified in the above step Q, and the concentration, composition or ratio of two or more kinds of substances measured in the above step Q. Degree of similarity between one object and another object. Such similarity can be evaluated by commercially available cluster analysis software or the like.
- the number of clusters to be classified is not particularly limited, for example, the number of clusters derived based on Calinski-Harabaszbas (CH) index can be preferably cited. However, when an error occurs when dividing into the number of clusters derived based on CH index, it can be preferably cited that the number of clusters is one more than the number of clusters derived.
- CH index Calinski-Harabaszbas
- the classification method of the present invention may not further include the step R between the step Q and the step S, but may further include the step R.
- the step R is not particularly limited as long as it is a step of standardizing data on the concentration, composition or ratio of the two or more substances obtained in the step Q. Standardization of such data can be performed using commercially available software or the like.
- a PBS solution was added to the precipitate after removing the supernatant a at a rate of 100 ⁇ L per 10 mg of stool sample, and the mixture was stirred with a vortex mixer, and then the supernatant (supernatant b) was recovered.
- the supernatant a and the supernatant b were each subjected to protein removal using an ultrafiltration filter with a molecular weight cut off of 5 kDa, and the filtrate diluted twice with MilliQ water was used for measurement.
- Extracted sample 1 was obtained by adding the concentrations obtained from supernatant a and supernatant b after the measurement.
- step [5] 100 ⁇ L of PBS solution is added to 10 mg of stool sample to the precipitate after removing supernatant b, and the mixture is stirred with a vortex mixer, and then 10,800 ⁇ g at 10 Centrifuged for minutes. Thereafter, the washing step for removing the supernatant was repeated twice to remove extracellular metabolites and internal standard substances. Add 100 ⁇ L of 50% methanol solution / MilliQ water containing 3 types of internal standard substances, 3 mm zirconia beads (TOMY) 3 pieces, and about 0.1 g of 0.1 mm zirconia beads (TOMY) to the precipitate.
- TOMY 3 mm zirconia beads
- the cells were disrupted by stirring at 1,500 rpm for 10 minutes. Thereafter, the mixture was centrifuged at 17,800 ⁇ g for 5 minutes to recover the supernatant (“extracted sample 2”).
- the extracted sample 2 was subjected to protein removal using an ultrafiltration filter having a molecular weight cut off of 5 kDa, and the filtrate was dried at 40 ° C. for 3 hours with a vacuum dryer (manufactured by LABCONCO), and then re-dissolved in 50 ⁇ L of MilliQ water. The dissolved one was used for measurement.
- the extracted sample 5 was subjected to protein removal using an ultrafiltration filter with a molecular weight cut off of 5 kDa, and the filtrate was dried at 40 ° C. for 3 hours with a vacuum dryer (manufactured by LABCONCO), and then redissolved in 50 ⁇ L of MilliQ water. What was done was used for the measurement.
- CE-TOFMS 1-1-2 Metabolite Measurement and Analysis by CE-TOFMS Extracted samples were measured in the positive ion mode of CE-TOFMS (Agilent Technologies). The measurement by CE-TOFMS is described in the literature (Hirayama, A., et al. "Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry.” Cancer research; 69 (11) 2009, pp. 4918-4925.). The data measured by CE-TOFMS is the analysis software Master Hands (Sugimoto, M., et al.
- Cluster I 45 types of metabolites (Table 2) were classified.
- Such metabolite group of cluster I was detected at the highest concentration in extract sample 4 (with bead crushing treatment).
- This cluster I contained 15 amino acids and 3 dipeptides.
- the metabolite of cluster I tended to be detected at a higher concentration in extraction sample 4 (with bead crushing treatment) than in extracted sample 3 (without bead crushing treatment) (FIG. 3).
- these metabolites are also present outside the cells, but a certain amount is also present in the cells, and it is thought that the amount detected was increased by crushing the cells with beads.
- these metabolites of cluster I tend to be detected at a higher concentration in extracted sample 4 (extracted with PBS) than extracted sample 5 (extracted with methanol), and are therefore less likely to elute into methanol. Was shown (FIG. 3).
- Such a cluster II metabolite group was detected at a high concentration particularly in the extracted sample 5. Since these metabolites tend to be extracted at the highest concentration under the condition that the beads are crushed and methanol is added, they are considered to be metabolites that are abundant in bacterial cells and easily dissolved in methanol.
- This cluster contained nucleic acid components such as guanine, cytidine, and adenosine, and vitamins such as thiamine and pyridoxal.
- Cluster 52 contains 52 types of metabolites (Table 4).
- Such a cluster III metabolite group had a small detection amount in the extraction sample 2 and was detected to the same extent in the extraction samples 1 and 3 to 5. Moreover, since there was little difference in the detection amount in the extraction sample 3 (without bead crushing treatment) and the extraction sample 4 (with bead crushing treatment), it was shown that these metabolites are present in the cells in a small amount. In addition, comparing extracted sample 4 (extracted with PBS) and extracted sample 5 (extracted with methanol), there is no significant difference in the detected concentration. It was shown that there is.
- Cluster 21 was classified into 21 types of metabolites (Table 5).
- extraction sample 2 detects metabolites contained in bacterial cells that are present in feces but are not lysed. However, the concentration of metabolite detected in extraction sample 2 is generally low. Therefore, it is considered that the amount of metabolites contained in such cells is very small compared to the whole.
- the results of hierarchical clustering showed that the extracted sample 1 and the extracted sample 3 are similar.
- the difference between the extraction methods of the extraction sample 1 and the extraction sample 3 is that the extraction sample 3 was stirred while the extraction sample 1 was not stirred, and the conditions such as the extraction solvent were the same.
- the beads of the extraction sample 3 were not used, it was considered that the cells were not crushed.
- the results of this study show that fecal metabolites are mainly present outside the cells, and as a result, extraction sample 1 and extraction sample 3 are considered to have similar extraction conditions.
- Extraction sample 4 was the method by which similar metabolite profiles were obtained following extraction sample 1 and extraction sample 3.
- the extracted sample 3 and the extracted sample 4 had similar metabolite profiles except for amino acids belonging to cluster I, although there was a difference in the presence or absence of bead crushing.
- Extraction sample 5 was classified into a different cluster from extraction sample 1, extraction sample 3, and extraction sample 4.
- Extraction sample 1, strip extraction sample 3 and extraction sample 4 do not contain methanol in the solvent, but extraction sample 5 contains methanol in the solvent, so that the difference in solvent may affect the metabolite profile from which the difference is obtained. Indicated.
- Extraction sample 3 and extraction sample 4 differ in the presence or absence of crushing by beads, and extraction sample 4 and extraction sample 5 differ in the presence or absence of methanol addition, but the difference between extraction sample 3 and extraction sample 4 is greater than that of extraction sample 4 and extraction sample 4. This indicates that the difference between the extracted samples 5 is larger, and it was shown that the presence or absence of methanol had a greater effect than the presence or absence of bead crushing.
- the cation metabolite profile in feces obtained by CE-TOFMS is affected by the presence or absence of disruption of cells by the solvent and beads used for extraction.
- Comparison of the metabolite profiles of the supernatant fraction, the precipitate fraction, and the whole fecal suspension revealed that various metabolites were contained in the supernatant fraction.
- the amino acid concentration was particularly susceptible to the extraction conditions, and the cells were crushed and tended to be detected at the highest concentration in the extracted sample 4 to which no methanol was added.
- the most types of metabolites were detected in the extracted sample 5 in which methanol was added and the cells were crushed using beads.
- Metabolite extraction 2 Based on the conditions under which the extracted sample 5 was obtained, further examination of metabolite extraction conditions was performed. That is, similarly to the conditions under which the extracted sample 5 was obtained, when metabolites were extracted using methanol as a solvent (hereinafter referred to as “methanol method”), and when metabolites were extracted using methanol and chloroform as solvents ( Hereinafter, the difference in detectable metabolites was analyzed by CE-TOFMS.
- the extracted sample Me was subjected to protein removal using an ultrafiltration filter with a molecular weight cut off of 5 kDa, and the filtrate was dried at 40 ° C. for 3 hours with a vacuum dryer (manufactured by LABCONCO), and then two kinds of internal standard substances (200 ⁇ M). 100 ⁇ L of MilliQ water containing 3-aminopyrrolidine and 200 ⁇ M trimesate) was added, and the mixture was thoroughly stirred and redissolved and used for the measurement.
- 2-1-2 Methanol / Chloroform Method Three types of internal standard substances (20 ⁇ M methionine sulfone, 20 ⁇ M D-camphor) were added to 10 mg of the stool sample stirred in step [2] of the “2-1-1 methanol method”. 500 ⁇ L of 100% methanol containing 10-sulfonic acid [CSA] and 20 ⁇ M 2-morpholinoethanesulfonic acid [MES]) and 0.1 g of 0.1 mm zirconia beads (TOMY) were added, and 500 ⁇ L of chloroform was further added. And after adding 200 microliters MilliQ water, the cell crushing process was performed by stirring for 10 minutes at 1,500 rpm using Shake master NEO (made by a biomedical science company).
- Shake master NEO made by a biomedical science company.
- extracted sample MeCr was subjected to protein removal using an ultrafiltration filter with a molecular weight cut off of 5 kDa.
- the filtrate was dried at 40 ° C. for 3 hours with a vacuum dryer (manufactured by LABCONCO), and then two kinds of internal standard substances (200 ⁇ M). 100 ⁇ L of MilliQ water containing 3-aminopyrrolidine and 200 ⁇ M trimesate) was added, and the mixture was thoroughly stirred and redissolved and used for the measurement.
- the profile of the metabolite extracted by the methanol method was very similar to the profile of the metabolite extracted by the methanol / chloroform method.
- the concentration of metabolites detected by the methanol method was generally higher than that of the methanol / chloroform method. That is, the metabolites in which a difference of 1.5 times or more was recognized between the two methods were the 29 types of substances shown in Table 8. Among them, the metabolites with higher concentrations detected by the methanol / chloroform method were detected. While there were 4 types of substances, there were 25 types of metabolites with higher concentrations detected by extraction with the methanol method (Table 8).
- the values in the second and third columns from the left in Table 8 are the concentrations of the respective metabolites detected in “Me (extracted sample Me)” and “MeCr (extracted sample MeCr)” (relative values to the internal standard substance). ).
- the numerical values in the first column from the right in the table indicate the concentration of each metabolite detected in “MeCr (extracted sample MeCr)” with respect to the concentration of each metabolite detected in “Me (extracted sample Me)”.
- the concentration ratio (MeCr / Me) is shown.
- the composition of the human intestinal microflora is considered to be divided into two or three enterotypes according to the characteristics of eating habits. Therefore, stool samples were collected 9 times for each subject from 18 healthy subjects, and all the metabolites detected in accordance with the method described in the section “2-1-1 Methanol Method” were used. According to the method described in Arumugam, M., et al. “Enterotypes of the human gut microbiome.” Nature; 473 (7346), 2011, pp.174-180.), Enterotypes by PAM clustering were classified. As a result of performing PAM clustering by setting the number of clusters suitable for classification to 3, it was possible to classify into Butyrate (butyric acid), Cholate (cholic acid), and Thiamine (vitamin B1) groups (FIG. 5).
- extracted sample PBS solution was collected.
- the extracted sample PBS solution was subjected to protein removal using an ultrafiltration filter with a molecular weight cut off of 5 kDa, and the filtrate was dried at 40 ° C. for 3 hours with a vacuum dryer (manufactured by LABCONCO). 20 ⁇ L of MilliQ water containing 200 ⁇ M 3-aminopyrrolidine and 200 ⁇ M trimesate) was added, and the mixture was well stirred and redissolved.
- concentration ratio of this solution is 15 times, and the PBS concentration of this solution is 15 ⁇ PBS. . MilliQ water was added to this solution, and the concentration ratio of this solution from the initial suspension of the stool sample was 10 times ( ⁇ 10), 5 times ( ⁇ 5), 1 time ( ⁇ 1), 0.2 Diluted to double ( ⁇ 0.2). These diluted solutions were analyzed by CE-TOFMS.
- FIG. 6 shows the number of types of metabolites detected in each dilution.
- a sample with a concentration ratio of 5 times or more PBS ⁇ 5, ⁇ 10, ⁇ 15
- PBS ⁇ 5, ⁇ 10, ⁇ 15 a sample with a concentration ratio of 5 times or more
- FIG. 7 indicates a metabolite in which an increase in concentration was observed when the stool sample was stored at room temperature for 1 to 2 days
- “II” represents a stool sample stored at room temperature for 1 day
- “III” indicates that the concentration decreased when stool samples are stored at room temperature for 1-2 days. Indicates the recognized metabolite.
- the concentration of 10 kinds of metabolites such as Butanoate (Butyrate) and Propionate increased more than twice
- concentration of 10 kinds of metabolites such as Cholate has a concentration of 1/2. It decreased to less than double (Fig. 7).
- the rate of increase / decrease in the concentration of the metabolite was higher when the storage period was 2 days than when stored at ⁇ 80 ° C.
- stool samples were prepared from various organic solvents (100% methanol [100% MeOH], 50% methanol [50% MeOH], or methanol / chloroform [MeOH / CHCl 3 ]).
- Method C a method of extracting a metabolite with a methanol / chloroform solution (“Method C” in Table 9) after storing a stool sample in the absence of an organic solvent was performed. Also, in each extraction method, immediately after adding a stool sample into various organic solvents (Methods 1 to 4), or immediately after storing the stool sample in the absence of an organic solvent (Method C), a sample was controlled. Used for. A detailed method is shown below.
- one or more substances can be efficiently extracted from a stool sample.
- more types of substances can be extracted from a stool sample. Therefore, according to the present invention, a method for extracting a substance in a stool sample suitable for performing analysis such as metabolome analysis using mass spectrometry or nuclear magnetic resonance spectroscopy, metagenome analysis using a next-generation sequencer, etc. Can be provided.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Sampling And Sample Adjustment (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
Abstract
Description
(A)以下の(a)~(g)のいずれかの溶媒中に前記糞便試料を懸濁して懸濁液を得る工程A:
(a)水性溶媒及び親水性有機溶媒を含む溶媒:
(b)水性溶媒及び疎水性有機溶媒を含む溶媒:
(c)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(d)親水性有機溶媒を含む溶媒:
(e)疎水性有機溶媒を含む溶媒:
(f)親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(g)水からなる溶媒:
(B)前記懸濁液から、前記溶媒を含む液層を分取する工程B:及び、
(C)前記液層からタンパク質を除去した後、1種又は2種以上の物質を得る工程C:
を含むと、上記課題を解決できることを見いだし、本発明を完成するに至った。
(h)水性溶媒及び高濃度(例えば75重量%以上)の親水性有機溶媒を含む溶媒:
(i)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(1)糞便試料から1種又は2種以上の物質を抽出する方法であって、
以下の(a)~(g)のいずれかの溶媒中に前記糞便試料を懸濁して懸濁液を得る工程A:
(a)水性溶媒及び親水性有機溶媒を含む溶媒:
(b)水性溶媒及び疎水性有機溶媒を含む溶媒:
(c)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(d)親水性有機溶媒を含む溶媒:
(e)疎水性有機溶媒を含む溶媒:
(f)親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(g)水からなる溶媒:
前記懸濁液から、前記溶媒を含む液層を分取する工程B:及び、
前記液層からタンパク質を除去した後、1種又は2種以上の物質を得る工程C:
を含むことを特徴とする、物質を抽出する方法や、
(2)工程Aが、(a)~(g)のいずれかの溶媒中で、糞便試料をビーズで破砕・懸濁処理して懸濁液を得る工程A-1であることを特徴とする上記(1)に記載の物質を抽出する方法や、
(3)溶媒が水性溶媒及び親水性有機溶媒を含み、かつ、前記溶媒中の水の含量が10~50重量%の範囲内であることを特徴とする上記(1)又は(2)に記載の物質を抽出する方法や、
(4)工程A-1におけるビーズの直径が、0.02~0.5mmの範囲内であることを特徴とする上記(2)又は(3)に記載の物質を抽出する方法や、
(5)工程A又は工程A-1より前に、乾燥した糞便試料をビーズで破砕処理して乾燥糞便小片を得る工程Xをさらに含み、前記乾燥糞便小片を工程A又は工程A-1の糞便試料として用いることを特徴とする上記(1)~(4)のいずれかに記載の物質を抽出する方法や、
(6)工程Xにおけるビーズの直径が、0.6~15mmの範囲内であることを特徴とする上記(5)に記載の物質を抽出する方法や、
(7)溶媒が、さらに疎水性有機溶媒を含むことを特徴とする上記(3)~(6)のいずれかに記載の物質を抽出する方法や、
(8)工程A又は工程A-1より前に、採取した糞便試料を以下の(h)又は(i)の溶媒中で保存する工程Yをさらに含み、該工程Yで保存後の糞便試料を工程A又は工程A-1の糞便試料として用いることを特徴とする上記(1)~(4)及び(7)のいずれかに記載の物質を抽出する方法:
(h)水性溶媒及び75重量%以上の親水性有機溶媒を含む溶媒:
(i)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:や、
(9)水性溶媒が、水、塩の水溶液、及び、緩衝水溶液からなる群から選択されることを特徴とする上記(1)~(8)のいずれかに記載の物質を抽出する方法や、
(10)親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン及びジエチレングリコールからなる群から選択される1種又は2種以上であることを特徴とする上記(1)~(9)のいずれかに記載の物質を抽出する方法や、
(11)疎水性有機溶媒が、クロロホルム、ヘキサン、エーテル、ジエチルエーテル、ベンゼン、フェノール、及びイソアミルアルコールからなる群から選択される1種又は2種以上であることを特徴とする上記(1)~(10)のいずれかに記載の物質を抽出する方法に関する。
(12)糞便試料中の1種又は2種以上の物質を同定し、及び、前記1種又は2種以上の物質の濃度、組成又は割合を測定する方法であって、
上記(1)~(11)のいずれかに記載の方法で抽出した前記1種又は2種以上の物質をクロマトグラフィー又はキャピラリー電気泳動で分離し、質量分析法及び/又は核磁気共鳴分光法に供することによって、前記1種又は2種以上の物質を同定し、及び、前記1種又は2種以上の物質の濃度、組成又は割合を測定する工程P:
を含むことを特徴とする、方法や、
(13)複数の対象を2以上のクラスターに分類する方法であって、
複数の対象から得られた糞便試料のそれぞれについて、上記(12)に記載の方法を行うことによって、2種以上の物質を同定し、及び、前記2種以上の物質の濃度、組成又は割合を測定する工程Q:及び、
前記工程Qで得られた前記2種以上の物質の濃度、組成又は割合のデータについてクラスター解析を行い、物質プロファイルの類似度によって、前記複数の対象を2以上のクラスターに分類する工程S:
を含むことを特徴とする、方法や、
(14)工程Qと工程Sの間に、前記工程Qで得られた前記2種以上の物質の濃度、組成又は割合のデータを標準化する工程Rをさらに含み、
前記工程Rで標準化したデータを、工程Sにおけるクラスター解析に用いることを特徴とする上記(13)に記載の方法に関する。
本発明の「糞便試料から1種又は2種以上の物質を抽出する方法」(以下、「本発明の抽出方法」とも表示する。)としては、糞便試料から1種又は2種以上の物質を抽出する方法であって、
以下の(a)~(g)のいずれかの溶媒中に前記糞便試料を懸濁して懸濁液を得る工程A:
(a)水性溶媒及び親水性有機溶媒を含む溶媒:
(b)水性溶媒及び疎水性有機溶媒を含む溶媒:
(c)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(d)親水性有機溶媒を含む溶媒:
(e)疎水性有機溶媒を含む溶媒:
(f)親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(g)水からなる溶媒:
前記懸濁液から、前記溶媒を含む液層を分取する工程B:及び、
前記液層からタンパク質を除去した後、1種又は2種以上の物質を得る工程C:
を含んでいる限り、特に制限されない。
本発明における「糞便試料」の由来となる生物種としては、特に制限されないが、例えば、ヒト、マウス、ラット、ウシ、ヒツジ、ウマ、サルなどの哺乳動物が挙げられ、中でも、ヒトが好ましく挙げられる。
本発明における「物質」としては、糞便試料中に含まれる物質である限り特に制限されないが、親水性物質、親油性物質、両親媒性物質が挙げられ、より詳しくは、酸性、中性又は塩基性の親水性物質、酸性、中性又は塩基性の親油性物質、酸性、中性又は塩基性の両親媒性物質が挙げられる。また、本発明における好ましい「物質」としては、腸内代謝物質;DNAやRNA等の核酸;コール酸やデオキシコール酸などの胆汁酸;酢酸やプロピオン酸、酪酸などの短鎖脂肪酸;乳酸やコハク酸などの有機酸;アミノ酸;単糖や二糖、三糖などの糖質;インドキシル硫酸などの尿毒素;脂肪酸や中性脂肪などの脂質;等が挙げられる。
本発明の抽出方法における工程Aとしては、上記(a)~(g)のいずれかの溶媒中に前記糞便試料を懸濁して懸濁液を得る工程である限り特に制限されない。
これらの溶媒における「水性溶媒」としては、精製水等の水;緩衝水溶液;pH調整剤を含む水溶液;等が挙げられるが、より多種類の腸内代謝物質を抽出する観点から、水が好ましい。また、塩を含む緩衝水溶液を用いて抽出した抽出液を濃縮して質量分析法に供した場合、測定の際に過剰な電流が流れて測定が妨げられる可能性があるため、上記の水性溶媒としては、緩衝水溶液よりも、水が好ましい。緩衝水溶液や、pH調整剤を含む水溶液のpHとしては、抽出目的である1種又は2種以上の物質の性質等に応じて適宜設定することができるが、例えば、pH4~10の範囲内や、pH6~8の範囲内とすることができる。上記の緩衝水溶液としては、例えば、リン酸塩緩衝水溶液、トリス-塩酸塩緩衝水溶液、グッド緩衝水溶液等を挙げることができる。これらの水性溶媒は、市販のものを用いてもよいし、試薬を用いて調製したものを用いてもよい。
(a1)水性溶媒及び親水性有機溶媒を含み、疎水性有機溶媒を含まない溶媒:
(b1)水性溶媒及び疎水性有機溶媒を含み、親水性有機溶媒を含まない溶媒:
(c1)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(d1)親水性有機溶媒を含み、水性溶媒及び疎水性有機溶媒を含まない溶媒:
(e1)疎水性有機溶媒を含み、水性溶媒及び親水性有機溶媒を含まない溶媒:
(f1)親水性有機溶媒及び疎水性有機溶媒を含み、水性溶媒を含まない溶媒:
(b2)水性溶媒及び疎水性有機溶媒からなる溶媒:
(c2)水性溶媒、親水性有機溶媒及び疎水性有機溶媒からなる溶媒:
(d2)親水性有機溶媒からなる溶媒:
(e2)疎水性有機溶媒からなる溶媒:
(f2)親水性有機溶媒及び疎水性有機溶媒からなる溶媒:
上記(a)~(g)のいずれかの溶媒中に糞便試料を懸濁する際には、上記溶媒中に上記糞便試料を添加して懸濁してもよいし、上記溶媒を上記糞便試料に添加して懸濁してもよい。上記溶媒中に上記糞便試料を懸濁する方法としては特に制限されず、上記溶媒及び上記糞便試料を振とう及び/又は攪拌することによって、上記糞便試料を上記溶媒中に懸濁する方法が挙げられ、中でも、上記溶媒及び上記糞便試料を、超音波式、圧力式等のホモジナイザーで攪拌することによって、上記糞便試料を上記溶媒中に懸濁する方法や、上記溶媒及び上記糞便試料(好ましくはこれらを含む容器)をボルテックスミキサーで振とう及び/又は攪拌することによって、上記糞便試料を上記溶媒中に懸濁する方法が好ましく挙げられる。
糞便試料からより多種の物質を抽出する観点や、糞便試料中の腸内細菌内からより多種の物質をより高濃度で抽出する観点から、上記工程Aの中でも、以下の工程A-1が好ましく挙げられる。
工程A-1:上記(a)~(g)のいずれかの溶媒中で、糞便試料をビーズで破砕・懸濁処理して懸濁液を得る工程A-1:
一方、ビーズでの破砕処理を行うことによって、腸内細菌内に蓄積している代謝物質を含めた代謝物質プロファイルを取得できれば、より精度の高いメタボローム解析を行うことができる。この高精度のメタボローム解析の結果と、前述の遺伝子情報を統合すれば、腸内細菌叢の生理的機能をより詳細に解明することができると考えられる。
本発明の抽出方法は、以下の工程Xをさらに有していなくてもよいが、乾燥糞便小片を得ることによって、抽出に用いる各糞便試料の量をできるだけ揃えることができる点で、工程A又は工程A-1より前に、以下の工程Xをさらに有していることが好ましい。
工程X:乾燥した糞便試料をビーズで破砕処理して乾燥糞便小片を得る工程X:
本発明の抽出方法は、以下の工程Yをさらに有していなくてもよいが、糞便試料を採取した後、その糞便試料から物質の抽出を行うまでの間、冷凍せずにその糞便試料を保存する場合には、保存中のその糞便試料における代謝物質プロファイルの変動を抑制する観点から、工程A又は工程A-1より前に、以下の工程Yをさらに有していることが好ましい。
工程Y:採取した糞便試料を以下の(h)又は(i)の溶媒中で保存する工程Y:
(h)水性溶媒及び75%重量以上の親水性有機溶媒を含む溶媒:
(i)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(h1)水性溶媒及び75%重量以上の親水性有機溶媒を含み、疎水性有機溶媒を含まない溶媒:
(i1)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(h2)水性溶媒及び75%重量以上の親水性有機溶媒からなる溶媒:
(i2)水性溶媒、親水性有機溶媒及び疎水性有機溶媒からなる溶媒:
上記工程(Y)において保存する際の温度範囲としてより具体的には、-90~40℃の範囲内、-90~30℃の範囲内、-80~30℃の範囲内、-80~25℃の範囲内、-60~20℃の範囲内などが挙げられる。また、本発明の意義がより多く享受する観点で好適な保存温度の範囲としてより具体的には、0~40℃の範囲内、0~30℃の範囲内、0~25℃の範囲内、0~20℃の範囲内、0~15℃の範囲内、0~10℃の範囲内、0~5℃の範囲内、3~25℃の範囲内、3~20℃の範囲内、3~15℃の範囲内、3~10℃の範囲内、3~5℃の範囲内、4~25℃の範囲内、4~20℃の範囲内、4~15℃の範囲内、4~10℃の範囲内、4~5℃の範囲内、6~25℃の範囲内、6~20℃の範囲内、6~15℃の範囲内、6~10℃の範囲内などが挙げられる。
本発明の抽出方法における工程Bとしては、上記工程A又は工程A-1で得た懸濁液から、上記溶媒を含む液層を分取する工程である限り特に制限されない。
上記懸濁液から、上記液層を分取する方法としては、特に制限されないが、例えば、上記懸濁液を遠心してその上清を分取する方法を好ましく挙げることができる。懸濁液の遠心は、市販の遠心分離装置を用いて行うことができる。
本発明の抽出方法における工程Cとしては、上記工程Bで分取した液層からタンパク質を除去した後、1種又は2種以上の物質を得る工程である限り特に制限されない。
上記工程Bで分取した液層からタンパク質を除去する方法としては、特に制限されず、限外濾過フィルターや、逆浸透フィルター等のフィルターを用いて上記液層のタンパク質を除去する方法を好ましく挙げることができる。限外濾過フィルターや、逆浸透フィルターは、市販のものを用いることができる。
本発明の「糞便試料中の1種又は2種以上の物質を同定し、及び、前記1種又は2種以上の物質の濃度、組成又は割合を測定する方法」(以下、「本発明の同定・測定方法」とも表示する。)としては、本発明の抽出方法で抽出した1種又は2種以上の物質をクロマトグラフィー又はキャピラリー電気泳動で分離し、質量分析法及び/又は核磁気共鳴分光法に供することによって、上記1種又は2種以上の物質を同定し、及び、上記1種又は2種以上の物質の濃度、組成又は割合を測定する工程P:を含んでいる限り、特に制限されない。上記工程Pにおける「クロマトグラフィー」としては、液体クロマトグラフィー、ガスクロマトグラフィーが挙げられ、液体クロマトグラフィーが好ましく挙げられる。クロマトグラフィーやキャピラリー電気泳動(CE:Capillary Electrophoresis)による物質の分離は、市販のクロマトグラフ(クロマトグラフィー用の装置)や、キャピラリー電気泳動装置を用いて、常法により行うことができる。
本発明の「複数の対象を2以上のクラスターに分類する方法」(以下、「本発明の分類方法」とも表示する。)としては、
複数の対象から得られた糞便試料のそれぞれについて、上記の本発明の同定・測定方法を行うことによって、2種以上の物質を同定し、及び、前記2種以上の物質の濃度、組成又は割合を測定する工程Q:及び、
前記工程Qで得られた前記2種以上の物質の濃度、組成又は割合のデータについてクラスター解析を行い、物質プロファイルの類似度によって、前記複数の対象を2以上のクラスターに分類する工程S:
を含んでいる限り、特に制限されない。
本発明の分類方法における「対象」とは、糞便試料の採取源である生物を意味する。かかる生物の種類としては、特に制限されないが、例えば、ヒト、マウス、ラット、ウシ、ヒツジ、ウマ、サルなどの哺乳動物が挙げられ、中でも、ヒトが好ましく挙げられる。
本発明の分類方法において分類する「クラスター」とは、糞便試料中の1種又は2種以上のうち、いずれか1種又は2種以上(好ましくは1種)の物質の有無や、濃度の高低などから選択される1種又は2種以上(好ましくは1種)の特性が共通する「対象の集団」を意味する。
本発明の分類方法における工程Qとしては、複数の対象から得られた糞便試料のそれぞれについて、上記の本発明の同定・測定方法を行うことによって、2種以上の物質を同定し、及び、前記2種以上の物質の濃度、組成又は割合を測定する工程である限り特に制限されない。
本発明の分類方法における工程Sとしては、前記工程Qで得られた前記2種以上の物質の濃度、組成又は割合のデータについてクラスター解析を行い、物質プロファイルの類似度によって、前記複数の対象を2以上のクラスターに分類する工程である限り特に制限されない。上記工程Sにおけるクラスター解析の手法としては、複数の対象を2以上のクラスターに分類できる限り特に制限されず、階層的クラスタリングであってもよいし、分割最適化クラスタリングであってもよく、該分割最適化クラスタリングとしては、PAMクラスタリング(partitioning around medoid clustering)を好ましく挙げることができる。これらのクラスター解析は、市販のソフトウェアにより行うことができる。
本発明の分類方法は、上記の工程Qと工程Sの間に工程Rをさらに含んでいなくてもよいが、工程Rをさらに含んでいてもよい。該工程Rとしては、上記工程Qで得られた上記2種以上の物質の濃度、組成又は割合のデータを標準化する工程である限り特に制限されない。かかるデータの標準化は、市販のソフトウェアなどを用いて行うことができる。
糞便試料中の腸内細菌の代謝物質を、キャピラリー電気泳動(capillary electrophoresis:CE)-飛行時間型質量分析計(Time-of-Flight mass spectrometer;TOFMS)(CE-TOFMS)を用いて検出するために、まず、代謝物質の抽出の条件検討を行った。
1-1-1 代謝物質の抽出法
〔1〕健常人から糞便試料を採取し、採取後直ちに-80℃で保存した。
〔2〕内部標準物質3種(20μM メチオニンスルホン、20μM D-カンファー10-スルホン酸[CSA]及び20μM 2-モルホリノエタンスルホン酸[MES])を含有する0.1×PBS溶液(以下、単に「PBS溶液」という)を、10mgの糞便試料あたり100μLの割合で加え、ハンディーホモジナイザー(SIGMA社製)で糞便試料全体が均一になるまで撹拌し、糞便懸濁液を調製した。
〔3〕糞便懸濁液を100μLずつ4本のスクリューキャップチューブ(バイオメディカルサイエンス社製)に分注し、以下の〔4〕~〔9〕に示す抽出条件(図1及び表1)により抽出サンプル1、及び2~5をそれぞれ得た。
〔4〕上記工程〔3〕で調製した糞便懸濁液100μLを、17,800×gで10分間遠心し、上清(上清a)を回収した。上清aを除いた後の沈殿物に、PBS溶液を、10mgの糞便試料あたり100μLの割合で加え、ボルテックスミキサーで撹拌した後、上清(上清b)を回収した。上清aと上清bを、それぞれ分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液をMilliQ水で2倍に希釈したものを測定に用いた。測定後、上清aと上清bから得られた濃度を足しあわせたものを抽出サンプル1とした。
〔5〕上記工程〔4〕において、上清bを除いた後の沈殿物に、10mgの糞便試料に対して100μLのPBS溶液を加え、ボルテックスミキサーで撹拌した後、17,800×gで10分間遠心分離した。その後、上清を取り除く洗浄工程を2度繰り返し、細胞外代謝物質と内部標準物質を除いた。沈殿物に、100μLの50%メタノール溶液/上記内部標準物質3種含有MilliQ水、3mmジルコニアビーズ(TOMY社製)3個、及び約0.1gの0.1mmジルコニアビーズ(TOMY社製)を加え、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500rpmで10分間撹拌することで細胞破砕処理を行った。その後、17,800×gで5分間遠心し、上清(「抽出サンプル2」)を回収した。抽出サンプル2を、分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、50μLのMilliQ水に再溶解したものを測定に用いた。
〔6〕上記工程〔3〕で調製した糞便懸濁液100μLに、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500rpmで10分間撹拌した。この際、ビーズの添加は行っていない。その後、17,800×gで5分間遠心し、上清(「抽出サンプル3」)を回収した。抽出サンプル3を、分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液をMilliQ水で2倍に希釈し測定に用いた。
〔7〕上記工程〔3〕で調製した糞便懸濁液100μLに、3mmジルコニアビーズ(TOMY社製)3個、及び0.1mmジルコニアビーズ(TOMY社製)約0.1gを加え、Shakemaster NEO(バイオメディカルサイエンス社製)を用いて、1,500 rpmで10分間撹拌することで細胞破砕処理を行った。その後、17,800×gで5分間遠心し、上清(「抽出サンプル4」)を回収した。抽出サンプル4を、分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、50μLのMilliQ水に再溶解したものを測定に用いた。
〔8〕上記工程〔3〕で調製した糞便懸濁液100μLに、100% メタノール溶液を100μL(最終濃度では50%のメタノール)、3mmジルコニアビーズ(TOMY社製)3個、及び0.1mmジルコニアビーズ(TOMY社製)約0.1g加え、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500rpmで10分間撹拌することで細胞破砕処理を行った。その後、17,800×gで5分間遠心し、上清(「抽出サンプル5」)を回収した。抽出サンプル5を分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、50μLのMilliQ水に再溶解したものを測定に用いた。
抽出サンプルはCE-TOFMS(Agilent Technologies社製)の陽イオンモードで測定を行った。CE-TOFMSによる測定は、文献(Hirayama, A., et al. "Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry." Cancer research;69(11)2009, pp.4918-4925.)に記載の方法にしたがって行った。CE-TOFMSにより測定したデータは、解析ソフトウェアMaster Hands(Sugimoto, M., et al. "Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles." Metabolomics : Official journal of the Metabolomic Society;6(1), 2010, pp.78-95.)を用いて、代謝物質の同定と濃度を算出した。抽出条件ごとの代謝物濃度を比較するため、各条件の代謝物濃度からZスコアを算出し(すなわち、各条件の代謝物濃度を標準化し)、MeV TM4 version 4.8(Saeed, A.I., et al. "TM4 microarray software suite." Methods in enzymology 2006;411:134-193.)を用いてヒートマップを作製し、代謝物質についてk-meansを用いたクラスタリングを行った。また、同定された代謝物質の種類とその濃度について、各抽出サンプル間で階層的クラスタリングを行った。
各抽出条件での代謝物質濃度を比較するため、各代謝物質の濃度をZスコアに変換し、得られた代謝物質の種類とその濃度を可視化し、代謝物質についてk-meansクラスタリングを行い、抽出条件ごとの特徴を反映したクラスターI~IVに分類した(図2)。
抽出サンプル5が得られた条件を基に、代謝物質抽出の条件検討をさらに行った。すなわち、抽出サンプル5が得られた条件と同様に、メタノールを溶媒として用い代謝物質を抽出した場合(以下、「メタノール法」という)と、メタノール及びクロロホルムを溶媒として用い代謝物質を抽出した場合(以下、「メタノール・クロロホルム法」という)とで、検出できる代謝物質の差異をCE-TOFMSにより分析した。
2-1-1 メタノール法
〔1〕健常人(男女計75名)から糞便試料をそれぞれ採取し、凍結乾燥処理した。
〔2〕凍結乾燥処理後の糞便試料に、3mmジルコニアビーズ(TOMY社製)4個を加え、Shake master NEO(バイオメディカルサイエンス社製)を用いて糞便試料全体が均一になるまで撹拌した。
〔3〕撹拌処理後の糞便試料10mgに対して、上記内部標準物質3種(20μM メチオニンスルホン、20μM D-カンファー10-スルホン酸[CSA]及び20μM 2-モルホリノエタンスルホン酸[MES])を含有する50%メタノールを400μL、及び0.1mmジルコニアビーズ(TOMY社製)を0.1g加え、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500 rpmで10分間撹拌することで細胞破砕処理を行った。その後、15,000rpm、4℃、5分間遠心し、上清(「抽出サンプルMe」)を回収した。抽出サンプルMeを分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、内部標準物質2種(200μM 3-アミノピロリジン及び200μMトリメセート)を含有するMilliQ水を100μL加え、よく攪拌して再溶解したものを測定に用いた。
上記「2-1-1 メタノール法」の工程〔2〕で撹拌処理した糞便試料10mgに対して、上記内部標準物質3種(20μM メチオニンスルホン、20μM D-カンファー10-スルホン酸[CSA]及び20μM 2-モルホリノエタンスルホン酸[MES])を含有する100%メタノールを500μL、及び0.1mmジルコニアビーズ(TOMY社製)を0.1g加え、さらに、500μLのクロロホルム及び200μLのMilliQ水を加えた後、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500rpmで10分間撹拌することで細胞破砕処理を行った。その後、15,000rpm、4℃、5分間遠心し、上清(「抽出サンプルMeCr」)を回収した。抽出サンプルMeCrを分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、内部標準物質2種(200μM 3-アミノピロリジン及び200μMトリメセート)を含有するMilliQ水を100μL加え、よく攪拌して再溶解したものを測定に用いた。
CE-TOFMSによる代謝物質の測定及び解析は、上記「1-1-2 CE-TOFMSによる代謝物質の測定及び解析」の項目に記載の方法に加えて陰イオンモードでも測定を行い、代謝物質濃度を算出した。
メタノール法で抽出された代謝物質のプロファイルと、メタノール・クロロホルム法で抽出された代謝物質のプロファイルとはよく類似していた。一方、かかる2種類の抽出方法で抽出された代謝物質の濃度について比較したところ、全体的にメタノール・クロロホルム法よりもメタノール法で抽出した方が検出される代謝物質の濃度は高かった。すなわち、両方法で1.5倍以上の差異が認められた代謝物質は、表8に示す29種類の物質であったが、そのうちメタノール・クロロホルム法で抽出した方が検出される濃度が高い代謝物質は4種類あったのに対して、メタノール法で抽出した方が検出される濃度が高い代謝物質は25種類もあった(表8)。
3-1-1 PBS溶液での抽出
〔1〕健常人から糞便試料を採取し、凍結乾燥処理した。
〔2〕凍結乾燥処理後の糞便試料10mgに対して、上記内部標準物質3種(20μM メチオニンスルホン、20μM D-カンファー10-スルホン酸[CSA]及び20μM 2-モルホリノエタンスルホン酸[MES])を含有する1×PBS溶液を500μL、3mmジルコニアビーズ(TOMY社製)4個、及び、約0.1gの0.1mmジルコニアビーズ(TOMY社製)を加え、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500rpmで5分間撹拌することで細胞破砕処理を行った。その後、15,000rpm、4℃、5分間遠心し、上清(「抽出サンプルPBS溶液」)を回収した。抽出サンプルPBS溶液を分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、内部標準物質2種(200μM 3-アミノピロリジン及び200μM トリメセート)を含有するMilliQ水を20μL加えてよく攪拌して再溶解した。この溶液の、糞便試料の最初の懸濁液からの濃縮率(以下、「この溶液の濃縮率」とも表示する。)は15倍であり、この溶液のPBS濃度は15×PBSとなっている。この溶液にMilliQ水を加え、この溶液の、糞便試料の最初の懸濁液からの濃縮率がそれぞれ10倍(×10)、5倍(×5)、1倍(×1)、0.2倍(×0.2)となるように希釈した。これらの希釈溶液を、CE-TOFMSにより分析した。
上記「3-1-1 PBS溶液での抽出」の工程〔2〕における「上記内部標準物質3種(20μM メチオニンスルホン、20μM D-カンファー10-スルホン酸[CSA]及び20μM 2-モルホリノエタンスルホン酸[MES])を含有する1×PBS溶液」に代えて、上記内部標準物質3種(20μM メチオニンスルホン、20μM D-カンファー10-スルホン酸[CSA]及び20μM 2-モルホリノエタンスルホン酸[MES])を含有するMilliQ水を用いて同様の抽出処理を行い、得られた各希釈溶液を、CE-TOFMSにより分析した。
上記3-1-1や3-1-2で得られた各希釈溶液の代謝物質の、CE-TOFMSによる測定及び解析は、上記「1-1-2 CE-TOFMSによる代謝物質の測定及び解析」の項目に記載の方法に加えて陰イオンモードでも測定を行い、代謝物質濃度を算出した。
各希釈液において検出された代謝物質の種類数を図6に示す。PBS溶液で抽出した場合は、5倍以上の濃縮率のサンプル(PBSの×5、×10、×15)では、塩濃度の影響で電流が過剰に流れてしまい、正確に測定することができなかった。PBS溶液で抽出した、×0.2や×1の希釈溶液(サンプル)と、水で抽出した、×0.2や×1の希釈溶液(サンプル)との間で、検出された代謝物質の種類数を比較したところ、水で抽出したサンプルは、PBSで抽出したサンプルよりも、割合として11~17%程度多い代謝物質が検出された(図6)。
糞便試料を採取してから、代謝物質を検出するまでの糞便試料の保存状態が、代謝物質の検出にどのような影響を及ぼすかについて検討した。具体的には、健常人から糞便試料を採取し、室温(20~25℃)で1~2日間保存した後、実施例2に記載の方法にしたがって、50%メタノールを溶媒として代謝物質を抽出し、CE-TOFMSにより代謝物質を測定した。測定は実施例1に記載の方法に加えて陰イオンモードでも測定を行った。なお、コントロールとして、健常人から糞便試料を採取した後、直ちに超低温フリーザー(-80℃)で保存したものを用いた。
冷凍設備のない場所で糞便試料を採取して、該糞便試料を遠方の分析施設まで移送する場合など、糞便試料を採取した後、直ちに冷凍保存することが困難な場合も考えられる。そこで、冷凍以外の保存方法を検討するために、糞便試料を、各種有機溶媒(100%メタノール[100%MeOH]、50%メタノール[50%MeOH]、又は、メタノール・クロロホルム[MeOH/CHCl3])中に保存した場合に、代謝物質プロファイルがどのように変動するかについて解析した。具体的には、糞便試料を100%メタノール液中で保存後、メタノール・クロロホルム液で代謝物質を抽出する方法(表9の「方法1」)、糞便試料を50%メタノール液中で保存後、メタノール・クロロホルム液で代謝物質を抽出する方法(表9の「方法2」)、糞便試料を50%メタノール液中で保存後、メタノール及びPCI(フェノール・クロロホルム・イソアミルアルコール;25:24:1)液で代謝物質を抽出する方法(表9の「方法3」)、並びに糞便試料をメタノール・クロロホルム液中で保存後、メタノール・クロロホルム液で代謝物質を抽出する方法(表9の「方法4」)を検討した。なお、コントロールとして、糞便試料を有機溶媒非存在下で保存後、メタノール・クロロホルム液で代謝物質を抽出する方法(表9の「方法C」)を行った。また、各々の抽出方法において、糞便試料を各種有機溶媒中に加えた直後(方法1~4)、もしくは糞便試料を有機溶媒非存在下(方法C)で直ちに-80℃で保存した試料をコントロールに用いた。詳細な方法を以下に示す。
〔1〕健常人から糞便試料を採取し、重量を測定し、保存用溶媒(表9の「保存用溶媒」)を添加した。
〔2〕室温(20~25℃)、4℃、又は-80℃で2日間保存した。
〔3〕代謝物質の抽出条件(表9の「抽出溶媒の組成」)となるように、添加用溶媒(表9の「添加用溶媒」)を保存用溶媒に添加した。またその際に、内部標準物質3種(1000μM メチオニンスルホン、1000μM D-カンファー10-スルホン酸[CSA]及び1000μM 2-モルホリノエタンスルホン酸[MES])を含有するMilliQ水を10μL添加した。
〔4〕3mmジルコニアビーズ(TOMY社製)3個、及び0.1mmジルコニアビーズ(TOMY社製)約0.1g加え、Shake master NEO(バイオメディカルサイエンス社製)を用いて、1,500rpmで10分間撹拌することで細胞破砕処理を行った。
〔5〕15,000rpm、4℃、5分間遠心し、上清を回収した後、分画分子量5kDaの限外濾過フィルターを用いてタンパク除去を行い、濾液を真空乾燥機(LABCONCO社製)で40℃、3時間乾固させた後、100μLの内部標準物質2種(200μM 3-アミノピロリジン及び200μM トリメセート)を含有するMilliQ水に再溶解し、実施例1に記載の方法にしたがって、CE-TOFMSにより代謝物質を測定した。
糞便試料を、有機溶媒非存在下(すなわち保存溶媒なし)(表9の「方法C」)で4℃又は室温で保存した場合、或いは50%メタノール液中(表9の「方法2」や「方法3」)で4℃又は室温で保存した場合は、それぞれ-80℃で保存した場合と比べ、代謝物質濃度の増減がより多く認められた(図11)。一方、糞便試料を、100%メタノール液中(表9の「方法1」)で4℃又は室温で保存した場合や、メタノール・クロロホルム液中(表9の「方法4」)で4℃又は室温で保存した場合は、それぞれ-80℃で保存した場合と類似の代謝物質プロファイルを示し、保存による代謝物質濃度の増減が抑制された(図11、図12)。
Claims (14)
- 糞便試料から1種又は2種以上の物質を抽出する方法であって、
以下の(a)~(g)のいずれかの溶媒中に前記糞便試料を懸濁して懸濁液を得る工程A:
(a)水性溶媒及び親水性有機溶媒を含む溶媒:
(b)水性溶媒及び疎水性有機溶媒を含む溶媒:
(c)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(d)親水性有機溶媒を含む溶媒:
(e)疎水性有機溶媒を含む溶媒:
(f)親水性有機溶媒及び疎水性有機溶媒を含む溶媒:
(g)水からなる溶媒:
前記懸濁液から、前記溶媒を含む液層を分取する工程B:及び、
前記液層からタンパク質を除去した後、1種又は2種以上の物質を得る工程C:
を含むことを特徴とする、物質を抽出する方法。 - 工程Aが、(a)~(g)のいずれかの溶媒中で、糞便試料をビーズで破砕・懸濁処理して懸濁液を得る工程A-1であることを特徴とする請求項1に記載の物質を抽出する方法。
- 溶媒が水性溶媒及び親水性有機溶媒を含み、かつ、前記溶媒中の水の含量が10~50重量%の範囲内であることを特徴とする請求項1又は2に記載の物質を抽出する方法。
- 工程A-1におけるビーズの直径が、0.02~0.5mmの範囲内であることを特徴とする請求項2又は3に記載の物質を抽出する方法。
- 工程A又は工程A-1より前に、乾燥した糞便試料をビーズで破砕処理して乾燥糞便小片を得る工程Xをさらに含み、前記乾燥糞便小片を工程A又は工程A-1の糞便試料として用いることを特徴とする請求項1~4のいずれかに記載の物質を抽出する方法。
- 工程Xにおけるビーズの直径が、0.6~15mmの範囲内であることを特徴とする請求項5に記載の物質を抽出する方法。
- 溶媒が、さらに疎水性有機溶媒を含むことを特徴とする請求項3~6のいずれかに記載の物質を抽出する方法。
- 工程A又は工程A-1より前に、採取した糞便試料を以下の(h)又は(i)の溶媒中で保存する工程Yをさらに含み、該工程Yで保存後の糞便試料を工程A又は工程A-1の糞便試料として用いることを特徴とする請求項1~4及び7のいずれかに記載の物質を抽出する方法。
(h)水性溶媒及び75重量%以上の親水性有機溶媒を含む溶媒:
(i)水性溶媒、親水性有機溶媒及び疎水性有機溶媒を含む溶媒: - 水性溶媒が、水、塩の水溶液、及び、緩衝水溶液からなる群から選択されることを特徴とする請求項1~8のいずれかに記載の物質を抽出する方法。
- 親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン及びジエチレングリコールからなる群から選択される1種又は2種以上であることを特徴とする請求項1~9のいずれかに記載の物質を抽出する方法。
- 疎水性有機溶媒が、クロロホルム、ヘキサン、エーテル、ジエチルエーテル、ベンゼン、フェノール、及びイソアミルアルコールからなる群から選択される1種又は2種以上であることを特徴とする請求項1~10のいずれかに記載の物質を抽出する方法。
- 糞便試料中の1種又は2種以上の物質を同定し、及び、前記1種又は2種以上の物質の濃度、組成又は割合を測定する方法であって、
請求項1~11のいずれかに記載の方法で抽出した前記1種又は2種以上の物質をクロマトグラフィー又はキャピラリー電気泳動で分離し、質量分析法及び/又は核磁気共鳴分光法に供することによって、前記1種又は2種以上の物質を同定し、及び、前記1種又は2種以上の物質の濃度、組成又は割合を測定する工程P:
を含むことを特徴とする、方法。 - 複数の対象を2以上のクラスターに分類する方法であって、
複数の対象から得られた糞便試料のそれぞれについて、請求項12に記載の方法を行うことによって、2種以上の物質を同定し、及び、前記2種以上の物質の濃度、組成又は割合を測定する工程Q:及び、
前記工程Qで得られた前記2種以上の物質の濃度、組成又は割合のデータについてクラスター解析を行い、物質プロファイルの類似度によって、前記複数の対象を2以上のクラスターに分類する工程S:
を含むことを特徴とする、方法。 - 工程Qと工程Sの間に、前記工程Qで得られた前記2種以上の物質の濃度、組成又は割合のデータを標準化する工程Rをさらに含み、
前記工程Rで標準化したデータを、工程Sにおけるクラスター解析に用いることを特徴とする請求項13に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16843954.5A EP3348988A4 (en) | 2015-09-11 | 2016-09-08 | PROCESS FOR EXTRACTION OF A SUBSTANCE FROM A CHAIR TEST |
SG11201802706YA SG11201802706YA (en) | 2015-09-11 | 2016-09-08 | Method for extracting substance from feces sample |
US15/758,087 US10927401B2 (en) | 2015-09-11 | 2016-09-08 | Method for extracting substance from feces sample |
JP2017538873A JP6849223B2 (ja) | 2015-09-11 | 2016-09-08 | 糞便試料から物質を抽出する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-179076 | 2015-09-11 | ||
JP2015179076 | 2015-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043087A1 true WO2017043087A1 (ja) | 2017-03-16 |
Family
ID=58239426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004104 WO2017043087A1 (ja) | 2015-09-11 | 2016-09-08 | 糞便試料から物質を抽出する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10927401B2 (ja) |
EP (1) | EP3348988A4 (ja) |
JP (1) | JP6849223B2 (ja) |
SG (1) | SG11201802706YA (ja) |
WO (1) | WO2017043087A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108009567A (zh) * | 2017-11-10 | 2018-05-08 | 电子科技大学 | 一种结合图像颜色及hog和svm的粪便性状的自动辨别方法 |
JP2019154382A (ja) * | 2018-03-15 | 2019-09-19 | 株式会社メタジェン | 糞便の保存方法 |
KR20210100816A (ko) * | 2020-02-07 | 2021-08-18 | 한국외국어대학교 연구산학협력단 | 핵자기공명분광법 시료용 전처리 방법 |
JP2022132804A (ja) * | 2021-03-01 | 2022-09-13 | 株式会社東芝 | ケミカルセンサモジュール及び疎水性の標的分子の検出方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111983076B (zh) * | 2020-08-17 | 2023-03-28 | 华熙生物科技股份有限公司 | 一种检测化妆品中依克多因的方法 |
CN113654860A (zh) * | 2021-07-28 | 2021-11-16 | 南京百奥菌生物技术有限公司 | 一种适用于粪便样本常温保存的保护液 |
CN115553286B (zh) * | 2022-09-23 | 2024-07-23 | 深圳微辰生命科技有限公司 | 一种粪便保存液、保存粪便的方法及乙腈在制备粪便保存液中的应用 |
CN115486439A (zh) * | 2022-09-23 | 2022-12-20 | 深圳微辰生命科技有限公司 | 粪便保存方法、乙醇在制备粪便保存液及短链脂肪酸检测试剂或试剂盒中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010064634A1 (ja) * | 2008-12-05 | 2010-06-10 | オリンパス株式会社 | 糞便試料の調製方法、糞便試料調製用溶液、及び採便用キット |
JP2012080853A (ja) * | 2010-10-15 | 2012-04-26 | National Agriculture & Food Research Organization | 抗酸菌dnaの抽出精製法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005778A (ja) | 2006-06-29 | 2008-01-17 | Human Metabolome Technologies Inc | 細胞からの代謝物質の抽出方法 |
EP2210936A1 (en) * | 2009-01-27 | 2010-07-28 | Curetis AG | Processing and analysis of viscous liquid biological samples |
WO2010132508A2 (en) * | 2009-05-11 | 2010-11-18 | Biomatrica, Inc. | Compositions and methods for biological sample storage |
JPWO2011004517A1 (ja) * | 2009-07-06 | 2012-12-13 | オリンパス株式会社 | 標的核酸の検出方法、及び大腸癌の検査方法 |
CA2843615C (en) * | 2011-08-02 | 2017-08-15 | The Procter & Gamble Company | Process for surfactant taste and/or odor improvement |
JP6173667B2 (ja) * | 2012-09-20 | 2017-08-02 | ヒューマン・メタボローム・テクノロジーズ株式会社 | 代謝物の抽出方法 |
-
2016
- 2016-09-08 EP EP16843954.5A patent/EP3348988A4/en not_active Withdrawn
- 2016-09-08 US US15/758,087 patent/US10927401B2/en active Active
- 2016-09-08 SG SG11201802706YA patent/SG11201802706YA/en unknown
- 2016-09-08 WO PCT/JP2016/004104 patent/WO2017043087A1/ja active Application Filing
- 2016-09-08 JP JP2017538873A patent/JP6849223B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010064634A1 (ja) * | 2008-12-05 | 2010-06-10 | オリンパス株式会社 | 糞便試料の調製方法、糞便試料調製用溶液、及び採便用キット |
JP2012080853A (ja) * | 2010-10-15 | 2012-04-26 | National Agriculture & Food Research Organization | 抗酸菌dnaの抽出精製法 |
Non-Patent Citations (9)
Title |
---|
AIKO UJIIE ET AL.: "Study on extraction of multiresidue pesticide analysis in fruit and vegetables", ANNUAL REPORT OF MIYAGI PREFECTURAL INSTITUTE OF PUBLIC HEALTH AND ENVIRONMENT, vol. 25, 2007, pages 58 - 61, XP009509017 * |
HIROTAKA OBANA ET AL.: "Effect of Dietary Fiber on Fecal and Urinary Excretion of Trp-P-2 in the Rat", FOOD HYG. SAF. SCI., vol. 33, no. 5, October 1992 (1992-10-01), pages 437 - 441, XP055518780 * |
HUMAN METABOLOME TECHNOLOGIES: "Metabolomics at HMT", THE PROCEEDINGS OF METABOLOMICS, 16 December 2011 (2011-12-16), XP009509013 * |
MARCOBAL, A. ET AL.: "metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice", THE ISME JOURNAL, vol. 7, pages 1933 - 1943, XP055373532 * |
MATSUMOTO, M. ET AL.: "Impact of Intestinal Microbiota on Intestinal Luminal Metabolome", NATURE SCIENTIFIC REPORTS, vol. 2, no. 233, 5 December 2012 (2012-12-05), pages 1 - 10, XP055518774 * |
MEGUMI SATO ET AL.: "Comparison of extraction methods of steroid hormones in feces", THE PROCEEDINGS OF NIHON UNIVERSITY FACULTY OF DENTISTRY, vol. 35, 2007, pages 49 - 56, XP009509014 * |
ROMICK-ROSENDALE, L.E. ET AL.: "NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin(Baytril", MAGNETIC RESONANCE IN CHEMISTRY, vol. 47, 18 September 2009 (2009-09-18), pages S36 - S46 * |
See also references of EP3348988A4 * |
YUMIKO NAKANISHI: "Evaluation of the effects of prebiotics on murine gut microbial ecology by multi-omic based network analysis", GRANTS-IN- AID FOR SCIENTIFIC RESEARCH KENKYU SEIKA HOKOKUSHO, 14 June 2015 (2015-06-14), XP055518771 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108009567A (zh) * | 2017-11-10 | 2018-05-08 | 电子科技大学 | 一种结合图像颜色及hog和svm的粪便性状的自动辨别方法 |
CN108009567B (zh) * | 2017-11-10 | 2021-11-02 | 电子科技大学 | 一种结合图像颜色及hog和svm的粪便性状的自动辨别方法 |
JP2019154382A (ja) * | 2018-03-15 | 2019-09-19 | 株式会社メタジェン | 糞便の保存方法 |
WO2019177166A1 (ja) | 2018-03-15 | 2019-09-19 | 株式会社メタジェン | 糞便の保存方法 |
CN111886331A (zh) * | 2018-03-15 | 2020-11-03 | 株式会社迈代新 | 一种保存粪便的方法 |
KR20210100816A (ko) * | 2020-02-07 | 2021-08-18 | 한국외국어대학교 연구산학협력단 | 핵자기공명분광법 시료용 전처리 방법 |
KR102351732B1 (ko) | 2020-02-07 | 2022-01-14 | 한국외국어대학교 연구산학협력단 | 핵자기공명분광법 시료용 전처리 방법 |
JP2022132804A (ja) * | 2021-03-01 | 2022-09-13 | 株式会社東芝 | ケミカルセンサモジュール及び疎水性の標的分子の検出方法 |
JP7465231B2 (ja) | 2021-03-01 | 2024-04-10 | 株式会社東芝 | ケミカルセンサモジュール及び疎水性の標的分子の検出方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3348988A1 (en) | 2018-07-18 |
JPWO2017043087A1 (ja) | 2018-08-16 |
SG11201802706YA (en) | 2018-05-30 |
US20180305736A1 (en) | 2018-10-25 |
JP6849223B2 (ja) | 2021-03-24 |
US10927401B2 (en) | 2021-02-23 |
EP3348988A4 (en) | 2019-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017043087A1 (ja) | 糞便試料から物質を抽出する方法 | |
Valdés et al. | Foodomics: Analytical opportunities and challenges | |
Samuel et al. | Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth | |
Wang et al. | Proteomic profiling of LPS‐induced macrophage‐derived exosomes indicates their involvement in acute liver injury | |
Zhong et al. | Hippocampal proteomic analysis reveals the disturbance of synaptogenesis and neurotransmission induced by developmental exposure to organophosphate flame retardant triphenyl phosphate | |
Neef et al. | Metabolic drug response phenotyping in colorectal cancer organoids by LC-QTOF-MS | |
Zhou et al. | Serum metabolic profiling of oocyst-induced Toxoplasma gondii acute and chronic infections in mice using mass-spectrometry | |
Hu et al. | Interaction network of extracellular vesicles building universal analysis via eye tears: iNEBULA | |
Menezes et al. | Bioprospection of natural sources of polyphenols with therapeutic potential for redox-related diseases | |
Yan et al. | Label-free mass spectrometry-based proteomics for investigating the therapeutic mechanism of Sijunzi decoction on spleen deficiency syndrome | |
Geßner et al. | Characterization of extracellular vesicles from preconditioned human adipose-derived stromal/stem cells | |
Zou et al. | Analysis of pharmacological mechanisms and targets mining of Wuzi-Yanzong-Wan for treating non-obstructive oligoasthenospermia | |
Matuszewska et al. | Mining the royal jelly proteins: combinatorial hexapeptide ligand library significantly improves the MS-based proteomic identification in complex biological samples | |
Tzora et al. | The “Crosstalk” between microbiota and metabolomic profile of kefalograviera cheese after the innovative feeding strategy of dairy sheep by omega-3 fatty acids | |
Wei et al. | Eucommia polysaccharides ameliorate aging-associated gut dysbiosis: a potential mechanism for life extension in Drosophila | |
Gauthier et al. | Urinary exosomes of patients with cystic fibrosis unravel CFTR-related renal disease | |
Dong et al. | Active peptides from Eupolyphaga sinensis walker attenuates experimental hyperlipidemia by regulating the gut microbiota and biomarkers in rats with dyslipidemia | |
Champion et al. | Qualitative and quantitative proteomics methods for the analysis of the Anopheles gambiae mosquito proteome | |
Larey et al. | High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia | |
Rosch et al. | Time series of chicken stool metagenomics and egg metabolomics in changing production systems: preliminary insights from a proof-of-concept | |
Chng et al. | Extracellular Vesicles and Their Mimetics: A Comparative Study of Their Pharmacological Activities and Immunogenicity Profiles | |
Urzì et al. | Heat inactivation of foetal bovine serum performed after EV‐depletion influences the proteome of cell‐derived extracellular vesicles | |
Luo et al. | Total Lipid Extracts of Honeybee Drone Larvae Are Modulated by Extraction Temperature and Display Consistent Anti-Inflammatory Potential | |
Sheng et al. | Quantitative biochemical phenotypic heterogeneity of macrophages after myelin debris phagocytosis at a single cell level by synchrotron radiation fourier transform infrared microspectroscopy | |
Wang et al. | The Predicted Proteomic Network Associated with the Antiarthritic Action of Qingfu Guanjieshu in Collagen‐II‐Induced Arthritis in Rats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16843954 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017538873 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201802706Y Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016843954 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15758087 Country of ref document: US |