WO2017041607A1 - 一种分析样品制备装置及分析样品制备方法 - Google Patents
一种分析样品制备装置及分析样品制备方法 Download PDFInfo
- Publication number
- WO2017041607A1 WO2017041607A1 PCT/CN2016/094635 CN2016094635W WO2017041607A1 WO 2017041607 A1 WO2017041607 A1 WO 2017041607A1 CN 2016094635 W CN2016094635 W CN 2016094635W WO 2017041607 A1 WO2017041607 A1 WO 2017041607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eccentric
- way bearing
- sample
- synchronous
- motor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B5/00—Other centrifuges
- B04B5/04—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
- B04B5/0407—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
- B04B5/0414—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes
- B04B5/0421—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes pivotably mounted
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/20—Mixing the contents of independent containers, e.g. test tubes
- B01F31/22—Mixing the contents of independent containers, e.g. test tubes with supporting means moving in a horizontal plane, e.g. describing an orbital path for moving the containers about an axis which intersects the receptacle axis at an angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B9/00—Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
- B04B9/08—Arrangement or disposition of transmission gearing ; Couplings; Brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B9/00—Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
- B04B9/12—Suspending rotary bowls ; Bearings; Packings for bearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F29/00—Mixers with rotating receptacles
- B01F29/15—Use of centrifuges for mixing
Definitions
- the present invention relates to an analytical sample preparation device, and more particularly to an apparatus for coupling an oscillation and a centrifugal to effect analysis sample preparation.
- Analytical sample preparation process usually involves two steps of extraction and purification: the purpose of extraction is to transfer the component to be tested in the sample to the liquid as much as possible to obtain a so-called extract; and the purification is to measure the component to be tested in the extract. Separation from the other components, the most basic purification step is to remove the sample remaining in the extract, which is usually done in a centrifugal manner. Analysis of the extraction process shows that the most important step in this step is to mix the solid and the liquid to achieve the transfer of the component to be tested from the solid to the liquid. There are many ways to achieve this, such as ultrasonic extraction, microwave extraction and mechanical shaking. Extraction, and the most widely used one is mechanical oscillation.
- Centrifugation is a purely mechanical method that uses high-speed rotation to achieve separation using centrifugal force. In most cases, the two operations of oscillation and centrifugation are quite different and need to be implemented using different devices, which not only increases the cost, but also requires the transfer of the sample, which is very inconvenient; if the two can be coupled in the same mechanical device. The realization will greatly simplify the preparation process of the analytical sample and greatly improve the efficiency.
- stepping motors to achieve oscillation and centrifugation functions.
- the method is realized by using a stepping motor as a driving source to reciprocate with a certain frequency and amplitude to achieve oscillation; one-way rotation to achieve centrifugation.
- This method can only achieve the same plane vibration, its frequency and angle will be significantly limited by the performance of the stepper motor, the vibration is often not enough; in addition, the stepper motor has a small load capacity, the one-way rotation speed is slow, resulting in processing samples The amount of sample and the centrifugal speed cannot fully meet the requirements for analytical sample preparation.
- the present invention provides a new device for oscillating and centrifugal coupling, which can realize the coupling of oscillation and centrifugal coupling in the same mechanical device, greatly simplifies the preparation process of the analytical sample, and greatly improves the efficiency. .
- An analytical sample preparation device comprising a base 1, an elastic coupling body 5, a set of synchronous one-way bearing inner rings 41 and a synchronous one-way bearing outer ring 42, a set of eccentric one-way bearing inner rings 61 and an eccentricity
- the one-way bearing outer ring 62, the base 1 is provided with a synchronous fixing ring 2 and a motor 31; wherein the motor 31 is located in the synchronous fixing ring 2, and the other end of the synchronous fixing ring 2 is connected and fixed to the synchronous one-way bearing inner ring 41, and the synchronization single
- the bearing outer ring 42 is connected to the lower end of the elastic coupling body 5, and the eccentric one-way bearing inner ring 61 is fixedly connected with the eccentric shaft 32 extending from the motor 31, and the eccentric one-way bearing outer ring 62 and the eccentric bushing 9 are connected.
- the connection is fixed, and the eccentric bushing 9 is respectively fixedly connected to the upper end of the sample tray 7 and the elastic coupling body 5; wherein the eccentric bushing 9, the eccentric shaft 32, the eccentric one-way bearing inner ring 61, and the eccentric one-way bearing outer ring 62 are formed.
- the overall center of mass is located on the extension line of the center line of the motor 31.
- the eccentric one-way bearing inner ring 61 and the eccentric one-way bearing outer ring 62 can only rotate in the set rotation direction A, and the synchronous one-way bearing inner ring 41 and the synchronous one-way bearing are external.
- the ring 42 is only rotatable in the opposite direction of the set rotational direction A of the motor 31.
- an angle between the eccentric shaft 32 and the extension line of the center line of the motor 31 is 1 to 10 degrees.
- the upper end of the elastic coupling body 5 is fixedly connected to the lower end of the eccentric bushing 9, and the sample tray 7 is fixedly connected to the upper end of the eccentric bushing 9.
- setting direction A is clockwise or counterclockwise.
- An analytical sample preparation method for analyzing a sample preparation device the steps of which are:
- the starter motor 31 rotates in the set direction A for a set time, and the motor 31 drives the eccentric one-way bearing inner ring 61 to rotate relative to the eccentric one-way bearing outer ring 62, so that the elastic coupling body 5 drives the sample tube to vibrate and realize the vibration extraction of the sample. ;
- control motor 31 rotates in the opposite direction of the set direction A for a set time, and the motor 31 drives the synchronous one-way bearing inner ring 41 to rotate relative to the synchronous one-way bearing outer ring 42, so that the elastic coupling body 5 drives The sample pan rotates to separate the sample from the extract in the sample tube.
- steps 2) and 3) are performed several times to finally realize separation of the sample and the extract in the sample tube.
- sample tubes are symmetrically placed in the sample tray 7.
- Fig. 1 The structure of the device of the present invention is shown in Fig. 1.
- 1 is a base, and a synchronous fixing ring 2 and a motor 31 are respectively fixed on the base.
- the synchronous fixing ring 2 is connected with the synchronous one-way bearing inner ring 41 to serve both a supporting function and a fixing function, and the synchronous one-way bearing outer ring 42 is coupled with the elastic coupling body 5.
- A is clockwise or counterclockwise
- the resistance between the synchronous one-way bearing inner ring 41 and the synchronous one-way bearing outer ring 42 is extremely large, similar to the locking relationship.
- the synchronous one-way bearing inner ring 41 and the synchronous one-way bearing outer ring 42 are similar to the conventional bearing, and the resistance is extremely small, and the two can be arbitrarily shifted.
- An eccentric shaft 32 is extended on the motor 31.
- the upper portion of the eccentric shaft 32 is offset from the center line of the motor and presents an angle of 1 to 10°.
- the upper portion of the eccentric shaft 32 is coupled and fixed to the eccentric bearing inner ring 61.
- the eccentric one-way bearing The outer ring 62 is coupled and fixed to the eccentric bushing 9 (the bushing into which the eccentric shaft is placed).
- the eccentric one-way bearing rotates in the A direction
- the eccentric one-way bearing inner ring 61 and the eccentric one-way bearing outer ring 62 are similar to the conventional bearing, and the resistance is extremely small, and the two can be arbitrarily shifted;
- the motor 31 is rotated in the opposite direction of A
- the resistance between the eccentric one-way bearing inner ring 61 and the eccentric one-way bearing outer ring 62 is extremely large, similar to the locking relationship.
- the eccentric bushing 9 is coupled and fixed to the sample tray 7, and the eccentric bushing 9 and the sample disc 7 are respectively coupled and fixed to the elastic coupling body 5, or the three are commonly connected. At the same time, the mass of the eccentric bushing 9 is adjusted.
- a sample tube 8 is symmetrically mounted on the sample tray 7, and a sample 81 and an extract 82 are placed in the sample tube 8.
- the sample 81 and the extract 82 are first placed in the sample tube 8 and placed on the sample tray 7. Thereafter, the starter motor 31 is rotated in the A direction (A is clockwise or counterclockwise) to start vibration extraction, and the equivalent structure thereof is shown in FIG.
- the eccentric one-way bearing inner ring 61 and the eccentric one-way bearing outer ring 62 are similar to the conventional bearing, and the resistance is extremely small, and the two can be arbitrarily displaced, which is equivalent to the equivalent eccentric coupling of the ordinary bearing in FIG.
- the bearing 63; and the synchronous one-way bearing inner ring 41 and the synchronous one-way bearing outer ring 42 have a great resistance, similar to the locking relationship, equivalent to the fixed coupling in FIG.
- the 9-phase-connected sample tray 7 and the sample tube 8 mounted on the sample tray generate a 10-fold type vibration of a certain frequency, thereby driving the sample 81 and the extract liquid 82 to vibrate vigorously in the sample tube to be uniformly mixed, thereby realizing vibration extraction of the sample.
- the control motor 31 rotates and stops at the set position, so that the plane of the sample tray 7 is perpendicular to the center line of the motor 31, and then the motor 31 is started to rotate in the opposite direction of A to start centrifugal separation, and the equivalent structure is illustrated.
- Figure 3 the resistance between the eccentric one-way bearing inner ring 61 and the eccentric one-way bearing outer ring 62 is extremely large, similar to the locking relationship, equivalent to the fixed coupling in FIG. 3, so that the eccentric shaft 32, the eccentric bushing 9 and The elastic coupling body 5 is united, equivalent to the equivalent shaft coupling body 33 in FIG.
- the equivalent rotating shaft coupling 33 when rotating in the opposite direction to A, the equivalent rotating shaft coupling 33 is also rotated in the opposite direction to A by the motor 31, and the ordinary bearing associated with the synchronous fixed ring 2 is connected.
- the equivalent synchronous coupling bearing 43 does not hinder its movement; since the center of mass of the equivalent rotating shaft coupling body 33 falls on the extension line of the center line of the motor 31, the mass balance in the opposite direction to the A can be smoothly rotated at a high speed. Under this condition, the equivalent shaft coupling 33 drives the sample tray 7 associated therewith and the sample tube 8 mounted thereon to rotate smoothly at a high speed to generate a corresponding centrifugal force, so that the sample 81 and the extract 82 in the sample tube 8 are made. The separation was obtained by centrifugation.
- the structure of the present invention can be realized in a specific control mode by shaking and centrifuging in an appropriate procedure, and the two steps can be continuously operated, which greatly simplifies the preparation process of the analysis sample and greatly improves the efficiency. Since there is no limitation on the type of the motor 31 in the process, the high load and high rotation speed of the motor 31 can be simultaneously ensured, so the effects of oscillation and centrifugation are also greatly improved, and the requirements for analysis sample preparation can be fully satisfied; Without the use of special motors, the reliability of the device will increase significantly and maintenance costs will be greatly reduced, which is an important advantage of this structure.
- FIG. 1 Schematic diagram of the oscillating coupling centrifugal device, in which 1 is the base; 2 is the synchronous fixed ring; 31 is the motor, 32 is the eccentric shaft; 41 is the synchronous one-way bearing inner ring, 42 is the synchronous one-way bearing outer ring; 5 is the elastic The coupling body; 61 is an eccentric one-way bearing inner ring, 62 is an eccentric one-way bearing outer ring; 7 is a sample disk; 8 is a sample tube, 81 is a sample, 82 is an extract; 9 is an eccentric bushing.
- Figure 2 is an equivalent diagram of the oscillating coupling centrifugal device rotating in the direction A, where 1 is the base; 2 is the synchronous fixed ring; 31 is the motor, 32 is the eccentric shaft; 5 is the elastic coupling; 63 is equivalent eccentric coupling bearing; Sample tray; 8 is a sample tube, 81 is a sample, 82 is an extract; 9 is an eccentric bushing.
- Figure 3 is an equivalent diagram of the oscillating coupling centrifugal device rotating in the opposite direction of A, where 1 is the base; 2 is the synchronous fixed ring; 31 is the motor, 33 is the equivalent rotating shaft coupling; 43 is the equivalent synchronous coupling bearing; 7 is the sample Disk; 8 is a sample tube, 81 is a sample, 82 is an extract; 9 is an eccentric bushing.
- the setting procedure 1 is as follows: clockwise rotation realizes 8-shaped oscillation for 2 min, and then counterclockwise rotation realizes 5000 rpm centrifugation for 3 min
- the procedure 2 is: clockwise rotation realizes 8-shaped oscillation for 1 min, and then counterclockwise rotation realizes 500 rpm centrifugation for 2 min, and the running program After completion, the supernatant in the inner tube was directly passed through a 0.22 um filter and then determined by LC-MS/MS.
- the absolute recovery rate by the external calibration method using the oscillating coupling centrifugal treatment method is basically the same as that of the manual treatment method, and is higher than the above. 95%, and using the internal standard method to quantify the same as the manual treatment method can obtain relatively good recovery and precision results.
- the absolute recovery rate and the manual treatment when using the oscillating coupling centrifugal treatment method are not significant, both are higher than 75%, and Relatively good recovery and precision results can also be obtained when quantified by the internal standard method.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sampling And Sample Adjustment (AREA)
- Centrifugal Separators (AREA)
Abstract
一种分析样品制备装置及分析样品制备方法,包括底座(1),一弹性联接体(5),一组同步单向轴承内环(41)和同步单向轴承外环(42),一组偏心单向轴承内环(61)和偏心单向轴承外环(62),底座(1)上设有同步固定环(2)和电机(31);偏心单向轴承内环(61)与电机(31)上伸出的偏心轴(32)连接固定,偏心单向轴承外环(62)与偏心轴套(9)连接固定;其中,偏心轴套(9)、偏心轴(32)、偏心单向轴承内环(61)、偏心单向轴承外环(62)构成的整体的质心位于电机(31)中心线延长线上,偏心单向轴承内环(61)和偏心单向轴承外环(62)仅能沿方向A转动,同步单向轴承内环(41)和同步单向轴承外环(42)仅能沿方向A的反方向转动。
Description
本发明涉及一种分析样品制备装置,尤其涉及一种可将振荡和离心耦合来实现分析样品制备的装置。
分析样品制备过程通常包括提取和净化两个步骤:提取的目的在于将样品中的待测组分尽量转移到液体中,得到所谓的提取液;而净化则是要将提取液中待测组分和其他组分分离,最基本的净化步骤就是除去提取液中残留的样品,这通常以离心方式完成。分析提取过程可知,该步骤最重要的是使固体和液体充分混合,以实现待测组分从固体向液体中的转移,实现这种的方法有很多,如超声提取、微波提取和机械振摇提取,而其中使用最广的是机械振荡方式。而离心则是通过高速旋转,利用离心力来实现分离的方法,也是一种纯机械方式。大多数情况下,振荡和离心这两个操作差异较大,需使用不同的装置来实现,不但增加了费用,还需要进行样品的转移,非常不便;如能将两者耦合在同一机械装置中实现,则会大大简化分析样品的制备过程,大幅提高效率。
目前,国外有采用步进电机实现振荡和离心功能的报道,实现的方法是,用步进电机作为驱动源以一定的频率、幅度往复动作来实现振荡;单向转动来实现离心。这种方式只能实现同平面的振动,其频率和角度都会显著受到步进电机性能的限制,振动往往不够充分;另外,步进电机的带载能力小,单向旋转速度慢,造成处理样品量和离心转速上也不能完全满足分析样品制备的要求。
发明内容
针对现有技术存在的技术问题,本发明给出了一种振荡和离心耦合的新装置,其能够将振荡和离心耦合在同一机械装置中实现,大大简化了分析样品的制备过程,大幅提高效率。
本发明的技术方案为:
一种分析样品制备装置,其特征在于,包括底座1,一弹性联接体5,一组同步单向轴承内环41和同步单向轴承外环42,一组偏心单向轴承内环61和偏心单向轴承外环62,底座1上设有同步固定环2和电机31;其中,电机31位于同步固定环2内,同步固定环2另一端与同步单向轴承内环41连接固定,同步单向轴承外环42与弹性联接体5下端连接,偏心单向轴承内环61与电机31上伸出的偏心轴32连接固定,偏心单向轴承外环62与偏心轴套9
连接固定,偏心轴套9分别与样品盘7、弹性联接体5的上端连接固定;其中,偏心轴套9、偏心轴32、偏心单向轴承内环61、偏心单向轴承外环62构成的整体的质心位于电机31中心线延长线上,偏心单向轴承内环61和偏心单向轴承外环62仅能沿设定旋转方向A转动,同步单向轴承内环41和同步单向轴承外环42仅能沿电机31的设定旋转方向A的反方向转动。
进一步的,所述偏心轴32与电机31中心线延长线之间的夹角为1~10°。
进一步的,所述弹性联接体5的上端与所述偏心轴套9的下端连接固定,所述样品盘7与所述偏心轴套9的上端连接固定。
进一步的,所述设定方向A为顺时针或逆时针。
一种分析样品制备装置的分析样本制备方法,其步骤为:
1)将装有样品与提取液的样品管摆放到样品盘7中;
2)启动电机31沿设定方向A转动设定时间,电机31驱动偏心单向轴承内环61相对偏心单向轴承外环62转动,使得弹性联接体5带动样品管振动,实现样品的振动提取;
3)当振动过程结束后,控制电机31沿设定方向A的相反方向转动设定时间,电机31驱动同步单向轴承内环41相对同步单向轴承外环42转动,使得弹性联接体5带动样品盘转动,实现样品管中样品与提取液的分离。
进一步的,调整所述设定时间,执行步骤2)、3)若干次,最终实现样品管中样品与提取液的分离。
进一步的,所述样品管对称摆放到样品盘7中。
本发明的装置结构示意于图1,图中1为底座,底座上分别固定有同步固定环2和电机31。同步固定环2上与同步单向轴承内环41相联,既起支撑作用又起固定作用,同步单向轴承外环42则与弹性联接体5相联。该同步单向轴承在电机31向A方向(A为顺时针或逆时针)转动时,同步单向轴承内环41与同步单向轴承外环42之间阻力极大,类似于锁死的关系;而在电机31向A的相反方向转动时,同步单向轴承内环41与同步单向轴承外环42之间与常规轴承类似,阻力极小,两者之间可任意错动。电机31上伸出偏心轴32,偏心轴32的上部偏离电机中心线,与之呈现1~10°夹角,偏心轴32的上部与偏心单向轴承内环61联接并固定,偏心单向轴承的外环62与偏心轴套9(偏心轴放入的轴套)联接并固定。该偏心单向轴承在电机31向A方向转动时,偏心单向轴承内环61与偏心单向轴承外环62之间与常规轴承类似,阻力极小,两者之间可任意错动;而在电机31向A的相反方向转动时,偏心单向轴承内环61与偏心单向轴承外环62之间阻力极大,类似于锁死的关系。偏心轴套9与样品盘7联接并固定,偏心轴套9和样品盘7与弹性联接体5分别相联并固定,或三者共同联
接并固定;同时,偏心轴套9的质量经过调配,当与之联接的样品盘7与电机31中心线相垂直时,偏心轴32、偏心单向轴承内环61、偏心单向轴承外环62与偏心轴套9构成的整体的质心落在电机31中心线的延长线上。样品盘7上对称装有样品管8,样品管8中放有样品81和提取液82。
操作时先将样品81与提取液82放入样品管8中,并摆放到样品盘7上。之后,启动电机31向A方向(A为顺时针或逆时针)转动,开始振动提取,其等效结构示意于图2中。此时偏心单向轴承内环61与偏心单向轴承外环62之间与常规轴承类似,阻力极小,两者之间可任意错动,等效于图2中的普通轴承等效偏心联接轴承63;而同步单向轴承内环41与同步单向轴承外环42之间阻力极大,类似于锁死的关系,等效于图2中的固定联接。由图2的等效结构可知,该条件下,偏心轴套9被与底座1通过同步固定环2固定联接的弹性联接体5卡住,所以当电机31向A方向转动时,偏心轴套9不能随电机偏心轴32转动,只能在等效偏心联接轴承63的作用下呈现8字型摆动,产生激振力,在弹性联接体5的限定下产生一定频率的振动,使得与偏心轴套9相联接的样品盘7及安装在样品盘上的样品管8产生一定频率的8字型振动,从而带动样品81和提取液82在样品管中剧烈振动而混合均匀,实现样品的振动提取。
当振动过程结束后,控制电机31转动并在设定位置停止,使得样品盘7所在平面与电机31中心线垂直,之后启动电机31向A的相反方向转动,开始离心分离,其等效结构示意于图3中。此时偏心单向轴承内环61与偏心单向轴承外环62之间阻力极大,类似于锁死的关系,等效于图3中的固定联接,使得偏心轴32、偏心轴套9和弹性联接体5联成整体,等效于图3中的等效转轴联接体33。由于偏心轴套9的质量经过调配,在此位置时,偏心轴32、偏心单向轴承内环61、偏心单向轴承外环62与偏心轴套9构成的整体的质心落在电机31中心线的延长线上,相当于图3所示等效结构中等效转轴联接体33的质心也落在电机31中心线的延长线上。而同步单向轴承内环41与同步单向轴承外环42之间与常规轴承类似,阻力极小,两者之间可任意错动,等效于图3中的普通轴承等效同步联接轴承43。由图3的等效结构可知,当向与A相反方向转动时,等效转轴联接体33在电机31的带动下也向与A相反的方向转动,而与同步固定环2相联的普通轴承等效同步联接轴承43不会阻碍其运动;由于等效转轴联接体33的质心落在电机31的中心线延长线上,所以在与A相反的方向转动时质量平衡,可以高速平稳转动。此条件下,等效转轴联接体33会带动与之相联的样品盘7及其上安装的样品管8高速平稳转动,产生相应的离心力,而使样品管8中的样品81和提取液82通过离心得到分离。
与现有技术相比,本发明的积极效果为:
根据上述描述可知,本发明这种结构在特定的控制方式下,振荡和离心按适当程序实现,可以使两个步骤连续运行,可大大简化分析样品的制备过程,大幅提高效率。由于在过程中对电机31的种类没有限制,电机31的高负载和高转速均可得到同时保证,所以振荡和离心的效果也将得到大幅提升,完全可以满足分析样品制备的要求;另外,由于不使用特种电机,该装置的可靠性将会大幅上升,维护费用也会大幅降低,也是该种结构的重要优点。
图1振荡耦合离心装置示意图,图中1为底座;2为同步固定环;31为电机,32为偏心轴;41为同步单向轴承内环,42为同步单向轴承外环;5为弹性联接体;61为偏心单向轴承内环,62为偏心单向轴承外环;7为样品盘;8为样品管,81为样品,82为提取液;9为偏心轴套。
图2振荡耦合离心装置向A方向转动等效图,图中1为底座;2为同步固定环;31为电机,32为偏心轴;5为弹性联接体;63等效偏心联接轴承;7为样品盘;8为样品管,81为样品,82为提取液;9为偏心轴套。
图3振荡耦合离心装置向A相反方向转动等效图,图中1为底座;2为同步固定环;31为电机,33为等效转轴联接体;43为等效同步联接轴承;7为样品盘;8为样品管,81为样品,82为提取液;9为偏心轴套。
实施例
称取鸡肉样品2.0±0.05g(精确至0.01g)于50mL离心管中,分别加入适量的金刚烷胺、D15-金刚烷胺、金刚乙胺、D4-金刚乙胺、氯苯那敏、D4-氯苯那敏标准工作液,混匀后静置30min(振荡耦合离心处理方法直接将样品称入离心管套件的50mL外管中并添加标准工作液)。分别制备空白样品和平行添加20μg/L的样品,分别取空白和添加样品按下述两种方法处理,然后参照食品安全国家标准《动物源性食品中金刚烷胺和金刚乙胺残留量的测定液相色谱法-串联质谱法》征求意见稿的仪器条件上机测定。
(1)手动处理方法:加入1%乙酸乙腈溶液20mL,漩涡振荡3min,加入2g无水硫酸镁,涡旋30s,4000r/min离心5min。取上清液1mL加入50mg PSA涡旋30s,4000r/min离心3min。取上清过0.22um滤膜后上LC-MS/MS测定。
(2)自动处理方法:在离心管套件的50mL管中加入2g无水硫酸镁,20mL的1%乙酸乙腈混匀;内管中加入150mg PSA,将内管插入外管后置于离心装置中,设置程序1为:顺时针转动实现8字型振荡2min,再逆时针转动实现5000rpm离心3min,程序2为:顺时针转动实现8字型振荡1min,再逆时针转动实现500rpm离心2min,运行程序,完成后将内管中上清液直接过0.22um滤膜后上LC-MS/MS测定。
表1 鸡肉中金刚烷胺不同样品制备方法所得结果
由上表可知,对金刚烷胺而言,两个方法的基质效应之间无显著差别,采用振荡耦合离心处理方法以外标法定量时的绝对回收率与手动处理方法也基本一致,均高于95%,且用内标法定量时与手动处理方法一样可以获得相对较好的回收率和精密度结果。对金刚乙胺而言,两个方法的基质效应之间也无显著差别,采用振荡耦合离心处理方法以外标法定量时的绝对回收率与手动处理差别也不显著,均高于75%,且用内标法定量时也都可以获得相对较好的回收率和精密度结果。根据食品安全国家标准《动物源性食品中金刚烷胺残留量的测定液相色谱法-串联质谱法》征求意见稿所采用的同位素内标定量法,本实验中采用的样品振荡耦合离心处理方法与手动处理方法具有结果相似的检测效果。
Claims (7)
- 一种分析样品制备装置,其特征在于,包括底座(1),一弹性联接体(5),一组同步单向轴承内环(41)和同步单向轴承外环(42),一组偏心单向轴承内环(61)和偏心单向轴承外环(62),底座(1)上设有同步固定环(2)和电机(31);其中,电机(31)位于同步固定环(2)内,同步固定环(2)另一端与同步单向轴承内环(41)连接固定,同步单向轴承外环(42)与弹性联接体(5)下端连接,偏心单向轴承内环(61)与电机(31)上伸出的偏心轴(32)连接固定,偏心单向轴承外环(62)与偏心轴套(9)连接固定,偏心轴套(9)分别与样品盘(7)、弹性联接体(5)的上端连接固定;其中,偏心轴套(9)、偏心轴(32)、偏心单向轴承内环(61)、偏心单向轴承外环(62)构成的整体的质心位于电机(31)中心线延长线上,偏心单向轴承内环(61)和偏心单向轴承外环(62)仅能沿设定旋转方向A转动,同步单向轴承内环(41)和同步单向轴承外环(42)仅能沿电机(31)的设定旋转方向A的反方向转动。
- 如权利要求1所述的分析样品制备装置,其特征在于,所述偏心轴(32)与电机(31)中心线延长线之间的夹角为1~10°。
- 如权利要求1或2所述的分析样品制备装置,其特征在于,所述弹性联接体(5)的上端与所述偏心轴套(9)的下端连接固定,所述样品盘(7)与所述偏心轴套(9)的上端连接固定。
- 如权利要求1或2所述的分析样品制备装置,其特征在于,所述设定方向A为顺时针或逆时针。
- 一种基于权利要求1所述分析样品制备装置的分析样本制备方法,其步骤为:1)将装有样品与提取液的样品管摆放到样品盘(7)中;2)启动电机(31)沿设定方向A转动设定时间,电机(31)驱动偏心单向轴承内环(61)相对偏心单向轴承外环(62)转动,使得弹性联接体(5)带动样品管振动,实现样品的振动提取;3)当振动过程结束后,控制电机(31)沿设定方向A的相反方向转动设定时间,电机(31)驱动同步单向轴承内环(41)相对同步单向轴承外环(42)转动,使得弹性联接体(5)带动样品盘转动,实现样品管中样品与提取液的分离。
- 如权利要求5所述的方法,其特征在于,调整所述设定时间,执行步骤2)、3)若干次,最终实现样品管中样品与提取液的分离。
- 如权利要求5或6所述的方法,其特征在于,所述样品管对称摆放到样品盘(7)中。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16843545.1A EP3348989B1 (en) | 2015-09-11 | 2016-08-11 | Analysis sample preparation device and analysis sample preparation method |
US15/561,298 US10258997B2 (en) | 2015-09-11 | 2016-08-11 | Device and a method for preparing analysis samples using selective modes of vibrational oscillations and centrifugal rotations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510579053.8A CN105115809B (zh) | 2015-09-11 | 2015-09-11 | 一种分析样品制备装置及分析样品制备方法 |
CN201510579053.8 | 2015-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017041607A1 true WO2017041607A1 (zh) | 2017-03-16 |
Family
ID=54663849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/094635 WO2017041607A1 (zh) | 2015-09-11 | 2016-08-11 | 一种分析样品制备装置及分析样品制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10258997B2 (zh) |
EP (1) | EP3348989B1 (zh) |
CN (1) | CN105115809B (zh) |
WO (1) | WO2017041607A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804196A (zh) * | 2022-04-30 | 2022-07-29 | 西南民族大学 | 一种纳米氧化钛纳米片制备方法及木材表面处理工艺 |
US11406989B2 (en) * | 2018-04-25 | 2022-08-09 | Zymo Research Corporation | Apparatus and methods centrifugal and magnetic sample isolation |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105115809B (zh) * | 2015-09-11 | 2017-07-28 | 北京本立科技有限公司 | 一种分析样品制备装置及分析样品制备方法 |
CN106645092B (zh) * | 2017-02-24 | 2023-09-19 | 北京本立科技有限公司 | 一种基于离心的液芯波导拉曼光谱检测装置 |
CN109991049B (zh) * | 2017-12-29 | 2024-03-01 | 同方威视技术股份有限公司 | 用于食品安全检测的前处理装置以及前处理方法 |
CN110090710B (zh) * | 2019-05-13 | 2020-06-16 | 浙江大学 | 一种研磨离心一体机 |
CN117451463B (zh) * | 2023-12-22 | 2024-03-22 | 质谱生物科技有限公司 | 一种检测血清中精神类药物的样品前处理设备 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990130A (en) * | 1990-07-02 | 1991-02-05 | Becton, Dickinson And Company | Multiple motion centrifuge |
US20050277538A1 (en) * | 2004-06-14 | 2005-12-15 | Michael Sherman | Automated device for homogenization and resuspension of substances, disintegration of cells, disruption of tissues and centrifugation of these media |
US20060177936A1 (en) * | 2005-02-07 | 2006-08-10 | Shneider Alexander M | Apparatus and methods for chemical and biochemical sample preparation |
JP2007237036A (ja) * | 2006-03-07 | 2007-09-20 | Taitec Corp | 理化学機器における攪拌,スピンダウン装置 |
CN103041933A (zh) * | 2013-01-22 | 2013-04-17 | 中国检验检疫科学研究院 | 便携式涡旋离心一体机 |
WO2013113849A1 (en) * | 2012-01-31 | 2013-08-08 | Quantifoil Instruments Gmbh | Mechanism for generating an orbital motion or a rotation motion by inversing a drive direction of a drive unit |
GB2518878A (en) * | 2013-10-04 | 2015-04-08 | Stratec Biomedical Ag | An apparatus and method for producing an orbital movement in a plane for a fluid sample |
CN105115809A (zh) * | 2015-09-11 | 2015-12-02 | 北京本立科技有限公司 | 一种分析样品制备装置及分析样品制备方法 |
CN205091174U (zh) * | 2015-09-11 | 2016-03-16 | 北京本立科技有限公司 | 一种分析样品制备装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1284904B (de) * | 1965-05-04 | 1968-12-05 | Kloeckner Humboldt Deutz Ag | Schwingzentrifuge |
US5045047A (en) * | 1989-07-17 | 1991-09-03 | Zymark Corporation | Automated centrifuge |
US5567050A (en) * | 1994-08-23 | 1996-10-22 | Savant Instruments, Inc. | Apparatus and method for rapidly oscillating specimen vessels |
US5564826A (en) * | 1995-09-27 | 1996-10-15 | Robbins Scientific Corporation | Reciprocating bath shaker |
US5769538A (en) * | 1996-06-27 | 1998-06-23 | Sherman; Michael | Mixer having means for periodically mechanically striking liquid-containing tubes to induce motion of the tubes |
CN2381396Y (zh) * | 1999-07-19 | 2000-06-07 | 张光明 | 双轴心交换式振动离心机 |
US7108651B2 (en) * | 2001-04-20 | 2006-09-19 | Hitachi Koko Co., Ltd. | Centrifuge having multiple rotors |
JP3662556B2 (ja) * | 2002-07-17 | 2005-06-22 | 安井器械株式会社 | 破砕試料の処理方法 |
JP4279545B2 (ja) * | 2002-12-11 | 2009-06-17 | 安井器械株式会社 | 破砕および遠心分離方法 |
JP4911434B2 (ja) * | 2007-06-21 | 2012-04-04 | 日立工機株式会社 | 細胞洗浄遠心機およびそれに用いられる細胞洗浄ロータ |
EP2809436B1 (en) * | 2012-01-31 | 2016-04-06 | Quantifoil Instruments Gmbh | Cog-based mechanism for generating an orbital shaking motion and apparatus and method for mixing |
FR3007671B1 (fr) * | 2013-07-01 | 2015-07-17 | Chopin Technologies | Dispositif de secouage. |
FR3007670B1 (fr) * | 2013-07-01 | 2017-01-06 | Chopin Tech | Dispositif de secouage et de centrifugation. |
CN203886684U (zh) * | 2014-06-10 | 2014-10-22 | 苏州培英实验设备有限公司 | 离心振荡混匀一体机 |
US20180104684A1 (en) * | 2016-10-16 | 2018-04-19 | Centech Corp. | Automated sample mixing and centrifuging apparatus |
-
2015
- 2015-09-11 CN CN201510579053.8A patent/CN105115809B/zh active Active
-
2016
- 2016-08-11 EP EP16843545.1A patent/EP3348989B1/en active Active
- 2016-08-11 WO PCT/CN2016/094635 patent/WO2017041607A1/zh active Application Filing
- 2016-08-11 US US15/561,298 patent/US10258997B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990130A (en) * | 1990-07-02 | 1991-02-05 | Becton, Dickinson And Company | Multiple motion centrifuge |
US20050277538A1 (en) * | 2004-06-14 | 2005-12-15 | Michael Sherman | Automated device for homogenization and resuspension of substances, disintegration of cells, disruption of tissues and centrifugation of these media |
US20060177936A1 (en) * | 2005-02-07 | 2006-08-10 | Shneider Alexander M | Apparatus and methods for chemical and biochemical sample preparation |
JP2007237036A (ja) * | 2006-03-07 | 2007-09-20 | Taitec Corp | 理化学機器における攪拌,スピンダウン装置 |
WO2013113849A1 (en) * | 2012-01-31 | 2013-08-08 | Quantifoil Instruments Gmbh | Mechanism for generating an orbital motion or a rotation motion by inversing a drive direction of a drive unit |
CN103041933A (zh) * | 2013-01-22 | 2013-04-17 | 中国检验检疫科学研究院 | 便携式涡旋离心一体机 |
GB2518878A (en) * | 2013-10-04 | 2015-04-08 | Stratec Biomedical Ag | An apparatus and method for producing an orbital movement in a plane for a fluid sample |
CN105115809A (zh) * | 2015-09-11 | 2015-12-02 | 北京本立科技有限公司 | 一种分析样品制备装置及分析样品制备方法 |
CN205091174U (zh) * | 2015-09-11 | 2016-03-16 | 北京本立科技有限公司 | 一种分析样品制备装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11406989B2 (en) * | 2018-04-25 | 2022-08-09 | Zymo Research Corporation | Apparatus and methods centrifugal and magnetic sample isolation |
CN114804196A (zh) * | 2022-04-30 | 2022-07-29 | 西南民族大学 | 一种纳米氧化钛纳米片制备方法及木材表面处理工艺 |
CN114804196B (zh) * | 2022-04-30 | 2023-09-05 | 西南民族大学 | 一种纳米氧化钛纳米片制备方法及木材表面处理工艺 |
Also Published As
Publication number | Publication date |
---|---|
EP3348989A4 (en) | 2019-04-24 |
EP3348989B1 (en) | 2020-09-30 |
US10258997B2 (en) | 2019-04-16 |
US20180200732A1 (en) | 2018-07-19 |
CN105115809B (zh) | 2017-07-28 |
EP3348989A1 (en) | 2018-07-18 |
CN105115809A (zh) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017041607A1 (zh) | 一种分析样品制备装置及分析样品制备方法 | |
WO2021007842A1 (zh) | 一种管式发光试剂震荡混匀装置及方法 | |
CN106374689A (zh) | 一种将分体式永磁力矩电机装在基座体内的方法及装置 | |
NL2029775B1 (en) | Method for detecting multiple advanced glycation end products in dairy products | |
CN209715420U (zh) | 一种离心沉淀器 | |
CN205091174U (zh) | 一种分析样品制备装置 | |
CN103041933A (zh) | 便携式涡旋离心一体机 | |
TWI696496B (zh) | 手動離心裝置、具該裝置之系統及分離血液之方法 | |
CN205484357U (zh) | 一种酶标板离心和震荡混匀器 | |
CN104056730A (zh) | 一种新型离心机 | |
CN208805411U (zh) | 一种样液混匀离心一体机 | |
CN208729600U (zh) | 一种精密减速器性能检测装置可调输入端快装夹具 | |
CN207839201U (zh) | 血液检测用离心装置 | |
CN204644239U (zh) | 蛋白透析装置 | |
CN207231873U (zh) | 一种分析样品制备装置 | |
CN205613589U (zh) | 一种沉降式离心机 | |
CN207020189U (zh) | 一种离合装置及包括此离合装置的全自动免疫分析仪 | |
CN209283015U (zh) | 一种用于纺织类的闭环式混合式步进电机 | |
CN106002054A (zh) | 一种用于分体式金属风叶碰焊的装夹装置 | |
CN203425932U (zh) | 一种适用于原油水分测定的离心机用水平转子 | |
JPH11183455A (ja) | 高速向流クロマトグラフ | |
CN214416708U (zh) | 一种血液离心机 | |
CN109187160A (zh) | 混匀装置 | |
CN213994902U (zh) | 一种紫杉醇萃取用溶解提取装置 | |
CN209061141U (zh) | 一种螯合剂反应釜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16843545 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15561298 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |