WO2017041402A1 - 一种浮标式高频地波雷达系统 - Google Patents

一种浮标式高频地波雷达系统 Download PDF

Info

Publication number
WO2017041402A1
WO2017041402A1 PCT/CN2016/000307 CN2016000307W WO2017041402A1 WO 2017041402 A1 WO2017041402 A1 WO 2017041402A1 CN 2016000307 W CN2016000307 W CN 2016000307W WO 2017041402 A1 WO2017041402 A1 WO 2017041402A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
signal
ground wave
wave radar
Prior art date
Application number
PCT/CN2016/000307
Other languages
English (en)
French (fr)
Inventor
许家勤
曹俊
陈智会
吴雄斌
邱克勇
陈媛媛
宋国胜
李秀
王鹏
李�杰
Original Assignee
湖北中南鹏力海洋探测系统工程有限公司
许家勤
曹俊
陈智会
吴雄斌
邱克勇
陈媛媛
宋国胜
李秀
王鹏
李�杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中南鹏力海洋探测系统工程有限公司, 许家勤, 曹俊, 陈智会, 吴雄斌, 邱克勇, 陈媛媛, 宋国胜, 李秀, 王鹏, 李�杰 filed Critical 湖北中南鹏力海洋探测系统工程有限公司
Publication of WO2017041402A1 publication Critical patent/WO2017041402A1/zh
Priority to US15/916,272 priority Critical patent/US10768287B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0218Very long range radars, e.g. surface wave radar, over-the-horizon or ionospheric propagation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/874Combination of several systems for attitude determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/882Radar or analogous systems specially adapted for specific applications for altimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0218Very long range radars, e.g. surface wave radar, over-the-horizon or ionospheric propagation systems
    • G01S2013/0227OTH, Over-The-Horizon radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the technical field of marine environmental monitoring.
  • the detection distance is generally 200km, and the short-range ground wave radar equipment is closer to the detection range.
  • the international marine law stipulates that 200 nautical miles is the exclusive economic zone. Therefore, the ground wave of the shore base is fully utilized. It is obviously difficult for radar equipment to meet the needs of monitoring the exclusive economic zone.
  • China’s deep sea development plan clarifies the state’s strategy for collecting information on the remote sea. Therefore, it is necessary to realize monitoring of the distant sea, and develop a system of buoy-type HF ground wave radar to realize real-time monitoring of the offshore sea beyond 200 km, which is the best supplement to the existing shore-based wave radar.
  • the construction of an unattended ground wave radar system platform with fully automated working capacity is especially important for the marine environment monitoring of the service strategy.
  • high-frequency ground wave radar still has obvious deficiencies in detecting distance, accuracy and applicability of detection elements, mainly in the following five aspects:
  • the effective coverage of the radar is insufficient.
  • Coastal economic activities and disaster prevention and mitigation requirements have a good understanding of the state of the ocean within hundreds of kilometers or even thousands of kilometers, and the currently effective detection range of ground wave radar is usually within 150km.
  • the detection distance is to be increased, it is usually achieved by reducing the operating frequency and increasing the transmission power. Reducing the operating frequency means that the radar antenna scale, the complexity of the equipment increase, and the resolution of the result and the accuracy of the result are reduced, and the detection capability of the medium and short-scale gravity wave information is weakened.
  • Increasing the transmission power reduces the reliability of the equipment and the applicability of the electromagnetic environment. What is important is that the detection distance increases rapidly as the transmission power increases.
  • the detection distance is only increased. 30 to 40km, radar operating cost and detection distance are index The relationship has risen. Therefore, relying solely on the ground wave radar itself does not have a large role in increasing the detection range.
  • the distributed radar network, sky-ground wave integrated detection, and buoy-type high-frequency ground wave radar can greatly improve the detection range of high-frequency radar systems, and expand the detection range of ocean monitoring radars. Effective Ways.
  • a radar system that can obtain non-backscattering information on the sea surface, that is, a distributed high-frequency radar system with multiple transmission and multiple reception modes, which is combined into a large radar system by coherent methods in multiple radars located at different locations. . It is not a simple synthesis of multiple single-station radar inversion results. It acquires more comprehensive physical quantity information at the original signal level, which can greatly improve the accuracy of wind, wave and current detection to ensure high frequency ground in China.
  • the wave radar ocean exploration has fully entered the level of operational application.
  • the buoy type HF ground wave radar can also provide a large amount of detection information, which is based on far-sea detection, which makes up for the shortage of shore-based radar far-sea data.
  • the radar system has insufficient anti-interference ability.
  • High-frequency radars operate in the frequency bands with strong interference, especially ionospheric interference, radio frequency interference, and transient shock interference.
  • Ionospheric interference is the most serious problem faced by ground wave radar in the middle and low latitudes, and it is the application of ground wave radar.
  • One of the main difficulties is that there is no effective universal ionospheric interference suppression method in the world.
  • the ionospheric interference is high and the signal characteristics are very complex. A large number of studies at home and abroad have shown that ionospheric interference is difficult to suppress in a single radar.
  • the only choice for the ability of the radar to resist ionospheric interference is to avoid the interference problem of the ionospheric F-layer.
  • the received echo spectrum does not have the interference of the ionospheric F-layer in the ordinary wave radar echo spectrum.
  • the electron density change or motion of the ionospheric reflection point during the sky wave propagation will produce the translation and broadening of the spectrum, which can be compensated by the sea surface information obtained by the ground wave.
  • the detection method of the traditional high-frequency ground wave radar system is too single to obtain refined detection results.
  • most of the high-frequency ground wave radars for ocean exploration are located near the coastline.
  • the choice of the site is often restricted by objective factors. It can only receive its own backscattered echoes.
  • the detection method is single and the accuracy of the results is not high. .
  • the distributed HF radar system can provide a variety of detection methods, which is conducive to the near-shore fine observation.
  • the high-frequency radio frequency band is already very crowded, and the frequency resources are very valuable.
  • Medium and long-range radars usually operate in the 5 to 15 MHz band, which has concentrated a large number of civilian communication channels.
  • Adopt In the traditional single-station radar detection each radar station in the same sea area must work at different working frequencies to avoid mutual interference. Therefore, the current high-frequency frequency resources can no longer support more single-station radars to join the ocean monitoring, which has become one of the most important social factors restricting the promotion and application of ground wave radar.
  • Distributed HF radar networking can solve this problem just as well. All radars in the same sea area use the same frequency, which greatly saves the frequency occupancy of the radar network, and also reduces the possibility of interference, which is the over-the-horizon. The popularization and application of radar in marine environmental monitoring has created favorable conditions.
  • the buoy type HF ground wave radar can overcome the above defects and can break through the limitation that the traditional wave radar can only be laid along the coastline. By receiving the sky-ground hybrid path echo, the detection range is extended to the far sea area, greatly enhancing the radar system deployment. Flexibility. At the same time, the system is scalable and has the potential to further accommodate radar nodes, making it possible for diverse applications.
  • the present invention provides a buoy type high frequency ground wave radar system, which has two working modes of ground wave and sky wave detection, and can detect sea areas of any distance, and is suitable for remote sea detection.
  • the technical solution of the present invention is that the system includes a buoy platform, a sky wave transmitting subsystem, a ground wave radar subsystem, and an attitude measuring subsystem; the system is used for ground wave radar inversion of sea wind and wave current.
  • the buoy platform is the sea carrier of the ground wave radar.
  • the sky wave transmitting subsystem is disposed on the shore base for transmitting high frequency electromagnetic waves, which are refracted to the sea surface by the ionosphere and then reflected by the sea surface, and received as a sky wave signal by the ground wave radar subsystem.
  • the attitude measurement subsystem measures the attitude data of the buoy platform in real time.
  • the ground wave radar subsystem uses ground wave radar to receive the ground wave signal on the one hand, and receives the sky wave signal on the one hand; the ground wave signal is directly processed to form the ground wave Doppler spectrum; for the sky wave signal, it is ionized in the frequency domain. After the layer disturbance compensation, the sky wave Doppler spectrum is formed; the ground wave radar subsystem reconstructs the actual geographic coordinate system according to the attitude data measured by the attitude measurement subsystem, and then the ground wave Doppler spectrum or sky in the reconstructed actual geographic coordinate system.
  • the Podolre spectrum reverses the wind and wave data.
  • the sky wave transmitting subsystem and the ground wave radar subsystem are time synchronized by means of GPS synchronous networking.
  • the buoy platform is composed of a main floating body and an instrument cabin
  • the main floating body comprises three connecting floating body frames, twelve sets of connecting bridges and six buoyancy pods.
  • the three floating body frames are arranged in parallel, and two adjacent floating body frames are respectively connected by six sets of connecting bridges, and two buoyant chambers are fixed at both ends of the bottom of each floating body frame.
  • the buoyancy frame and the connecting bridge are made of stainless steel material;
  • the buoyancy cabin is a cabin structure, the steel frame is used as a supporting skeleton, the surface is made of glass reinforced plastic, and the buoyant material is filled inside;
  • the instrument cabin is disposed on the main floating body.
  • the sky wave transmitting subsystem is composed of an antenna module, an all solid state transmitting module, an excitation source module, a first GPS synchronous networking module, an ionospheric analysis module, and a sky wave emission control module;
  • the block is a logarithmic periodic antenna array.
  • Each antenna in the antenna array emits a high frequency linear frequency modulated continuous wave signal, which is a high frequency electromagnetic wave;
  • the all solid state transmitting module includes a plurality of power amplifier components, and the number of power amplifier components is the same as the number of antennas in the antenna array.
  • Each power amplifier component outputs a high frequency linear frequency modulated continuous wave signal corresponding to one antenna;
  • the excitation source module includes a plurality of excitation sources, the number of excitation sources is consistent with the number of power amplifier components, and each excitation source outputs a high frequency corresponding to one power amplifier component.
  • the linear frequency modulated continuous wave signal is used as an excitation;
  • the excitation source module receives the excitation control signal of the sky wave emission control module to perform the excitation output;
  • the first GPS synchronization networking module includes a GPS signal receiver and a frequency source correction circuit; wherein the GPS signal receiver receives Obtaining the signal of the GPS satellite and modulating the second pulse signal input to the frequency source correction circuit, and the correction signal of the frequency source correction circuit is input to the excitation source module to calibrate each excitation source;
  • the ionospheric analysis module includes an ionospheric drop detector and Analysis sub-module, wherein the ionospheric drop detector is set in the sky wave emission subsystem and ionization At the midpoint of the inter-propagation path, the analysis sub-module acquires the drop data in the ionospheric drop tester, establishes the ionospheric model, and analyzes and calculates the ionospheric disturbance information; the ionosphe
  • the sky wave emission control module acquires the spectrum signal of the sky wave signal received by the ground wave radar from the Internet, and the spectrum signal of the sky wave signal received by the ground wave radar. Matching the spectrum signal of the signal emitted by the antenna module, and adjusting the excitation control signal according to the matching information to control the output of the excitation source, thereby finally causing the spectrum signal of the sky wave signal received by the ground wave radar and the signal emitted by the antenna module The spectrum signals match.
  • the antenna module is composed of five horizontally polarized logarithmic periodic antenna elements arranged in a 1 ⁇ 5 line array, and the height of the single logarithmic period antenna is 12 m, and each logarithmic period antenna is 20 meters apart. Each logarithmic period antenna transmits a 2 kW chirped continuous wave signal.
  • the excitation source comprises five excitation sources respectively corresponding to five power amplifier components; the excitation source is composed of a digital direct frequency synthesizer DDS and a DDS-based transmitting component, and the excitation control signal controls the DDS generated in each excitation source to meet the needs
  • the signal waveform acts as an excitation and is output through a DDS-based transmit component.
  • the ground wave radar subsystem adds a second GPS synchronization networking module and a sky wave receiving module to the structure of the ground wave radar; the second GPS synchronization networking module matches the first GPS synchronization networking module, and after the two are synchronized The second GPS synchronization networking module sends the synchronization signal to the sky wave receiving module; the ground wave radar subsystem acquires ionospheric disturbance information in the Internet; the sky wave receiving module determines whether the received signal is a sky wave signal according to the synchronization signal, if received The signal is a sky wave signal, and the sky wave signal is subjected to analog-to-digital AD conversion and Fourier transform FFT to obtain a frequency domain signal of the sky wave signal, and then the ionospheric disturbance compensation of the frequency domain signal of the sky wave signal is compensated according to the ionospheric disturbance information.
  • the spectral signal of the sky wave signal is sent to the Internet on the one hand, and the FFT is used to form the sky wave Doppler spectrum on the other
  • the attitude measurement control subsystem includes an attitude sensing module and a dual GPS antenna;
  • the sense module is placed at the center of gravity of the buoy platform, the two-point antenna of the dual GPS antenna and the antenna connector of the attitude sensor module are perpendicular to each other, and the two-point connection of the dual GPS antenna is parallel to one side of the buoy platform; the GPS of the dual GPS antenna.
  • the information is transmitted to the attitude sensing module, and the attitude sensing module acquires the angle, angular velocity and angular acceleration of the buoy platform under the three coordinate axes of x, y and z according to the GPS information, and the true north information of the buoy platform;
  • the strip edge is the xy plane, and the direction perpendicular to the buoy platform is the z-axis.
  • the system further comprises an intelligent power supply control subsystem for intelligently supplying power to the ground wave radar subsystem;
  • the intelligent power supply control subsystem comprises a main control circuit, a communication circuit, a sampling circuit, a driving circuit and an interface circuit, and a host computer control
  • the unit, the power module and the water inlet alarm unit arranged on the buoy type HF ground wave radar.
  • the power module supplies power to each device of the buoy type high frequency ground wave radar through different voltage ports;
  • the sampling circuit collects the temperature of the power module and the power supply voltage of each device on the buoy type high frequency ground wave radar, and sends it as a sampling signal to the main device.
  • the control circuit receives the sampling signal sent by the sampling circuit, the water inlet alarm signal sent by the water inlet alarm unit, and the control command sent by the upper computer control unit through the communication circuit; and the main control circuit sequentially passes the driving circuit and the interface circuit. Sending power-off control signals to the power module to control the on/off of each voltage port of the power module; the main control circuit determines whether the water tank of the water inlet alarm unit is in water according to the water inlet state signal sent by the water inlet alarm unit.
  • the main control circuit When there is water in the cabin, the main control circuit sends a power-off control signal to the power module through the driving circuit, and controls the power module to delay power-off, and turns off all voltage ports of the power module; otherwise, the power module supplies power to each device normally;
  • the temperature limit of the power module is set in the main control circuit, and the main control circuit is based on the sampling circuit If the temperature of the power module exceeds the set temperature limit, the main control circuit determines that the power module is working abnormally, and sends a power-off control signal to the power module through the driving circuit.
  • the power module is controlled to delay power off, and all voltage ports of the power module are turned off; otherwise, the power module supplies power normally for each device; the range value of the working voltage of each device on the buoy type high frequency ground wave radar is set in the main control circuit.
  • the main control circuit compares the power supply voltage of each device sent by the sampling circuit with the voltage range value corresponding to the device; if the working voltage of the device is within the set working voltage range, the power module is normal for each device. Power supply; if the working voltage of the equipment is not within the set working voltage range, the corresponding equipment is powered off; the main control circuit can control the on/off of the equipment on the buoy type high frequency ground wave radar according to the control command sent by the upper computer control unit.
  • the control command includes a real-time control command and a working time period control command, when the main control circuit receives a certain
  • the device is powered on and off immediately by the driving circuit; when the main control circuit receives the working time control command for a certain device, the corresponding device is powered on at the corresponding time in the instruction. And power off.
  • the sampling circuit collects the power of the power module in real time and sends it as a sampling signal to the main control circuit; the main control circuit controls the selected device according to the power of the power module; specifically: the selected device is pre-stored in the main control circuit Corresponding power supply port, when the power of the power module is greater than or equal to the threshold set internally by the main control circuit, indicating that the current power is sufficient, the device is turned on by the driving circuit; When the amount is less than the set threshold, the device is turned off by the drive circuit.
  • the upper computer control unit provides an interface for human-computer interaction.
  • the operator can remotely log in to realize the direct on/off control of the selected devices on the radar or set the working time period of each device on the radar to automatically turn off the power.
  • the power module includes: a solar panel group, an energy storage type battery pack, and an integrated power source; the integrated power source is provided with a solar controller, a power conversion submodule, and a power conversion control submodule.
  • the solar panel and the energy storage battery pack are respectively connected to the power conversion sub-module through the solar controller, and the power conversion sub-module converts the voltage outputted by the solar panel or the energy storage battery pack under the control of the power conversion control sub-module. Then provided to the ground wave radar subsystem through the power output interface
  • the solar controller compares the power converted by the solar panel with the power requirement of the set ground wave radar subsystem to determine the power supply mode of the power system, specifically: when the solar panel converts electricity to meet the load power demand On the basis of ensuring that the power supply requirements of the ground wave radar subsystem are met, the remaining electrical energy is charged to the energy storage battery pack through the solar controller; when the energy converted by the solar panel cannot meet the power supply requirements of the ground wave radar subsystem, the solar energy The controller controls the energy storage type battery pack to release power to supply power to the ground wave radar subsystem.
  • the solar controller controls the output current of the solar energy storage group to charge the energy storage battery pack according to the collected voltage state of the energy storage type battery pack, thereby controlling the energy storage type battery pack. Charging speed; when the energy storage type battery pack is used to supply power to the load, the output current of the energy storage type battery pack is controlled by the power conversion control sub-module.
  • the solar panel includes 4N solar panels, N is an integer greater than 1; wherein each N solar panels is a solar panel unit; when connecting, the N solar panels in the solar panel unit are connected in parallel, and then 4 solar panel units are connected. Parallel; 4N solar panels are evenly distributed in four directions in the southeast and northwest, and each solar panel unit contains the same number of solar panels oriented in different directions.
  • the energy storage type battery pack includes more than one battery unit, each battery unit includes 2M energy storage type batteries, and M is an integer greater than one; each energy storage type battery in each battery unit is connected in parallel and then in series. The wiring method is adopted, and the battery units are connected in parallel.
  • the system has two working modes of ground wave and sky wave detection, which can detect sea areas at any distance and is suitable for remote sea detection.
  • the system fully considers the sea condition of high-frequency ground wave radar deployed on the sea, and carries out the reliability design of the buoy platform. Considering the size of the floating body and the convenience of transportation, three floating body frames are used as the main frame connection, and the floating frame is also adopted. The buoyancy cabin is arranged below, and the buoy platform has certain wave-like property, stability, and resistance to five-level Shanghai.
  • the present invention fully considers that when the ground wave radar is disposed on the sea surface, the attitude measurement control subsystem is used to measure and obtain the buoy due to the change of the reference surface caused by the wind and wave shaking.
  • the platform is in real-time pose, thus re-establishing the actual geographic coordinate system to achieve more accurate and objective wind and wave data inversion.
  • the invention fully considers the problem that the shore base and the buoy platform time are not synchronized, and synchronizes the time of the shore base and the buoy platform by means of GPS synchronous networking, thereby realizing time synchronization between the two places, so as to be able to data on sky waves and ground waves. Time-sharing reception and processing offers the possibility.
  • the system can realize solar self-power supply and self-power supply control, so that the unmanned duty can be fully realized, and the shore-based personnel monitoring can be realized.
  • Figure 1 is a diagram showing the composition of the system of the present invention.
  • FIG. 2 is a structural diagram of the buoy platform
  • Figure 3 is a structural diagram of the sky wave transmitting subsystem
  • Figure 4 is a structural diagram of the intelligent power supply control subsystem.
  • Embodiment 1 provides a buoy type high frequency ground wave radar system, as shown in FIG. 1 , the system includes a buoy platform, a sky wave transmitting subsystem, a ground wave radar subsystem, and an attitude measuring subsystem; Inversion of the sea wind and waves in the ground wave radar.
  • the buoy platform is an offshore carrier of ground wave radar, and its structure is not limited, and can be used as a carrier for ground wave radar to be disposed at sea.
  • the sky wave transmitting subsystem is disposed on the shore base for transmitting high frequency electromagnetic waves, which are refracted to the sea surface by the ionosphere and then reflected by the sea surface, and received as a sky wave signal by the ground wave radar subsystem.
  • the attitude measurement subsystem measures the attitude data of the buoy platform in real time.
  • the ground wave radar subsystem uses ground wave radar to receive the ground wave signal on the one hand, and receives the sky wave signal on the one hand; the ground wave signal is directly processed to form the ground wave Doppler spectrum; for the sky wave signal, it is ionized in the frequency domain. After the layer disturbance compensation, the sky wave Doppler spectrum is formed; the ground wave radar subsystem reconstructs the actual geographic coordinate system according to the attitude data measured by the attitude measurement subsystem, and then the ground wave Doppler spectrum or sky in the reconstructed actual geographic coordinate system.
  • the Podolre spectrum reverses the wind and wave data.
  • the sky wave transmitting subsystem and the ground wave radar subsystem are time synchronized by means of GPS synchronous networking.
  • the system has two working modes of ground wave and sky wave detection, which can detect sea areas at any distance and is suitable for remote sea detection.
  • Embodiment 2 According to the solution given in Embodiment 1 above, for the function of the buoy platform therein, in this embodiment, in order to enable the buoy platform to have certain wave-like property, stability, and resistance to five-level In the case of Shanghai, the following implementations are given:
  • the buoy platform is composed of a main floating body and an instrument cabin.
  • the main floating body includes three connecting floating body frames, twelve sets of connecting bridges and six buoyancy pods.
  • the three floating body frames are arranged in parallel, and two adjacent floating body frames are respectively connected by six sets of connecting bridges, and two buoyant chambers are fixed at both ends of the bottom of each floating body frame.
  • the buoyancy frame and connecting bridge are made of stainless steel.
  • the buoyancy tank is a cabin structure, using a steel frame as a support skeleton, the surface is made of FRP, and the interior is filled with no buoyancy material; the instrument cabin is placed on the main floating body.
  • the system fully considers the sea condition of HF ground wave radar on the sea, and carries out the reliability design of the buoy platform. Considering the size of the floating body and the convenience of transportation, three floating body frames are used as the main frame connection, and the floating frame is set under the frame. Buoyant cabin, the buoy platform has a certain wave-like, stable, and can withstand five grades in Shanghai.
  • Embodiment 3 According to the sky wave transmitting subsystem given in Embodiment 1, as shown in FIG. 3, this embodiment provides a specific implementation form, and in specific implementation, it may not be limited to this form.
  • the sky wave transmitting subsystem in this embodiment is composed of an antenna module, an all solid state transmitting module, an excitation source module, a first GPS synchronous networking module, an ionospheric analysis module, and a sky wave emission control module.
  • the antenna module is a logarithmic periodic antenna array, and each antenna in the antenna array emits a high frequency linear frequency modulated continuous wave signal, which is a high frequency electromagnetic wave.
  • the antenna module is composed of five horizontally polarized logarithmic periodic antenna elements arranged in a 1 ⁇ 5 line array, and the height of the single logarithmic period antenna is about 12 m.
  • Each logarithmic period antenna is 20 meters apart, and each logarithmic period antenna transmits a 2 kW chirped continuous wave signal.
  • the all-solid-state transmitting module includes a plurality of power amplifier components.
  • the number of power amplifier components is the same as the number of antennas in the antenna array, and each power amplifier component outputs a high-frequency linear frequency modulated continuous wave signal corresponding to one antenna.
  • the excitation source module includes a plurality of excitation sources, the number of excitation sources is consistent with the number of power amplifier components, and each excitation source outputs a high frequency linear frequency modulated continuous wave signal as an excitation to a power amplifier component; the excitation source module receives the excitation of the sky wave emission control module.
  • the control signal is used to output the excitation.
  • the excitation source includes five excitation sources respectively corresponding to five power amplifier components; the excitation source is composed of a digital direct frequency synthesizer DDS and a DDS-based transmitting component, and the excitation control signal controls the satisfaction of the DDS in each excitation source.
  • the desired signal waveform is used as an excitation and is output through a DDS based transmit component.
  • the first GPS synchronization networking module includes a GPS signal receiver and a frequency source correction circuit; wherein the GPS signal receiver receives the signal of the GPS satellite and adjusts the second pulse signal input to the frequency source correction circuit, and the correction signal input of the frequency source correction circuit
  • the excitation sources are calibrated to the excitation source module.
  • the ionospheric analysis module comprises an ionospheric drop detector and an analysis sub-module, wherein the ionospheric drop detector is disposed at a midpoint of the sky wave transmitting subsystem and the ionosphere propagation path, and the analysis sub-module acquires a vertical measurement in the ionospheric drip gauge Data (such as electron density at each level of the ionosphere, electromagnetic field distribution), establish ionospheric modes Type, and analyze and calculate ionospheric disturbance information; ionospheric disturbance information is forwarded to the Internet through the skywave emission control module.
  • ionospheric drop detector is disposed at a midpoint of the sky wave transmitting subsystem and the ionosphere propagation path
  • the analysis sub-module acquires a vertical measurement in the ionospheric drip gauge Data (such as electron density at each level of the ionosphere, electromagnetic field distribution), establish ionospheric modes Type
  • the ground wave radar forwards the spectrum signal of the sky wave signal it receives to the Internet.
  • the sky wave emission control module obtains the spectrum signal of the sky wave signal received by the ground wave radar from the Internet, and the spectrum of the sky wave signal received by the ground wave radar.
  • the signal is matched with the spectrum signal of the signal emitted by the antenna module, and the excitation control signal is adjusted according to the matching information to control the output of the excitation source, thereby finally causing the spectrum signal of the sky wave signal received by the ground wave radar and the signal emitted by the antenna module.
  • the spectral signals match.
  • Embodiment 4 The ground wave radar subsystem adds a second GPS synchronization networking module and a sky wave receiving module to the structure of the ground wave radar;
  • the second GPS synchronization networking module is matched with the first GPS synchronization networking module, and after synchronization, the second GPS synchronization networking module sends the synchronization signal to the sky wave receiving module.
  • the ground wave radar subsystem acquires ionospheric disturbance information in the Internet.
  • the sky wave receiving module determines whether the received signal is a sky wave signal according to the synchronization signal. If the received signal is a sky wave signal, performing analog-to-digital AD conversion and Fourier transform FFT on the sky wave signal, obtaining a frequency domain signal of the sky wave signal, and then The ionospheric disturbance information performs ionospheric disturbance compensation on the frequency domain signal of the sky wave signal.
  • the spectrum signal of the compensated sky wave signal is sent to the Internet on the one hand, and the FFT is formed on the other hand to form the sky wave Doppler spectrum. The reason why ionospheric disturbance compensation is performed is because the ionosphere is a time-space variable dispersion channel.
  • the height, density and thickness of the ionosphere show temporal and seasonal changes with the influence of the sun, and the ionosphere is multi-mode.
  • the path effect, space-time random disturbance, ionospheric traveling disturbance and ionospheric tilt have a very important influence on the coordinate registration of the sky-wave over-the-horizon radar, the precise positioning of the target and the track tracking.
  • the ground wave radar directly processes the ground wave Doppler spectrum.
  • the system can not only accurately give standard time information, geographic location latitude and longitude information, etc., but also realize time and frequency synchronization in different places.
  • the realization of these functions relies on the embedded control processing unit. It is realized by external high-performance hardware circuit, which improves the measurement accuracy of the system and enriches the functions of the system.
  • the attitude measurement control subsystem includes a posture sensing module and a dual GPS antenna; the attitude sensing module is disposed at a center of gravity of the buoy platform The two-point connection of the dual GPS antenna and the orientation of the antenna module of the attitude sensing module are perpendicular to each other.
  • the two-point connection of the dual GPS antenna is parallel to one side of the buoy platform; the dual GPS antenna
  • the GPS information is transmitted to the attitude sensing module, and the attitude sensing module acquires the angle, the angular velocity and the angular acceleration of the buoy platform under the three coordinate axes of x, y and z according to the GPS information, and the true north information of the buoy platform; wherein the buoy platform The two sides are the xy plane, and the direction perpendicular to the buoy platform is the z-axis.
  • Embodiment 6 This embodiment is based on the above-mentioned Embodiment 1, and provides an intelligent power supply control subsystem for intelligent power supply of the ground wave radar subsystem in consideration of the power supply problem at sea; the intelligent power supply control subsystem
  • the utility model comprises a main control circuit, a communication circuit, a sampling circuit, a driving circuit and an interface circuit, a host computer control unit, a power supply module and a water inlet alarm unit arranged on the buoy type high frequency ground wave radar.
  • the power modules supply power to the various devices of the buoy type high frequency ground wave radar through different voltage ports.
  • the sampling circuit collects the temperature of the power module and the power supply voltage of each device on the buoy type high frequency ground wave radar, and sends it as a sampling signal to the main control circuit.
  • the main control circuit receives the sampling signal sent by the sampling circuit, the water inlet alarm signal sent by the water inlet alarm unit, and the control command sent by the upper computer control unit through the communication circuit; and the main control circuit sequentially passes the driving circuit and the interface circuit to the power module.
  • the power-off control signal is sent to control the on/off of each voltage port of the power module.
  • the main control circuit determines whether the water body of the water inlet alarm unit is in the water according to the water inlet state signal sent by the water inlet alarm unit. When the cabin body enters the water, the main control circuit sends a power failure control to the power module through the driving circuit. Signal, control the power module to delay power off, turn off all voltage ports of the power module; otherwise, the power module supplies power to each device.
  • the temperature limit of the power module is set in the main control circuit, and the main control circuit determines whether the power module works normally according to the temperature of the power module sent by the sampling circuit; when the temperature of the power module exceeds the set temperature limit, The main control circuit judges that the power module is working abnormally, and sends a power-off control signal to the power module through the driving circuit, and controls the power module to delay power-off, and turns off all voltage ports of the power module; otherwise, the power module supplies power to each device normally.
  • the main control circuit is provided with a range value of the working voltage of each device on the buoy type high-frequency ground wave radar, and the main control circuit compares the power supply voltage of each device sent by the sampling circuit with the voltage range value corresponding to the device; If the operating voltage of the device is within its set operating voltage range, the power module supplies power to each device normally; if the device operating voltage is not within the set operating voltage range, the corresponding device is powered off.
  • the main control circuit can control the on/off of the device on the buoy type high frequency ground wave radar according to the control instruction sent by the upper computer control unit; the control command includes a real time control command and a working time period control command, when the main control circuit receives a certain When the real-time control command of the device is immediately executed, the device is powered on and off by the driving circuit; when the main control circuit receives the control command for the working time of a certain device, the corresponding device is performed at the corresponding time in the instruction. Power on and off.
  • the sampling circuit collects the power of the power module in real time and sends it as a sampling signal to the main control circuit; the main control circuit controls the selected device according to the power of the power module; specifically: the main control circuit Pre-storing the corresponding power supply port of the selected device.
  • the power of the power module is greater than or equal to the threshold set by the main control circuit, indicating that the current power is sufficient, the device is turned on by the driving circuit; when the power supply is less than the set threshold When the device is turned off by the drive circuit.
  • the upper computer control unit provides an interface for human-computer interaction.
  • the operator can remotely log in to realize the direct on/off control of the selected devices on the radar or set the working time period of each device on the radar to automatically turn off the power.
  • the power module includes: a solar panel, an energy storage battery pack and an integrated power supply;
  • the solar power controller, the power conversion sub-module and the power conversion control sub-module are arranged in the power source; the solar panel group and the energy storage type battery pack are respectively connected to the power conversion sub-module through the solar controller, and the power conversion sub-module is in the power conversion control sub-controller
  • the voltage output from the solar panel or the energy storage battery pack is converted under the control of the module, and then supplied to the ground wave radar subsystem through the power output interface.
  • the solar controller compares the power converted by the solar panel with the power requirement of the set ground wave radar subsystem to determine the power supply mode of the power system, specifically: when the solar panel converts electricity to meet the load power demand On the basis of ensuring that the power supply requirements of the ground wave radar subsystem are met, the remaining electrical energy is charged to the energy storage battery pack through the solar controller; when the energy converted by the solar panel cannot meet the power supply requirements of the ground wave radar subsystem, the solar energy The controller controls the energy storage type battery pack to release power to supply power to the ground wave radar subsystem.
  • the solar controller controls the output current of the solar energy storage group to charge the energy storage battery pack according to the collected voltage state of the energy storage type battery pack, thereby controlling the energy storage type battery pack. Charging speed; when the energy storage type battery pack is used to supply power to the load, the output current of the energy storage type battery pack is controlled by the power conversion control sub-module.
  • the solar panel includes 4N solar panels, N is an integer greater than 1; wherein each N solar panels is a solar panel unit; when connecting, the N solar panels in the solar panel unit are connected in parallel, and then 4 solar panel units are connected. Parallel; 4N solar panels are evenly distributed in four directions of southeast and northwest, and each solar panel unit contains the same number of solar panels oriented in different directions;
  • the energy storage type battery pack includes more than one battery unit, each battery unit includes 2M energy storage type batteries, and M is an integer greater than one; each energy storage type battery in each battery unit is connected in parallel and then in series. The wiring method is adopted, and the battery units are connected in parallel.

Abstract

一种浮标式高频地波雷达系统,采用浮标平台作为地波雷达的海上载体;将天波发射子系统设置于岸基,发射出高频电磁波、经电离层折射和海面反射后形成天波信号;姿态测量子系统实时测量获得浮标平台的姿态数据;地波雷达子系统采用地波雷达接收地波信号,处理形成地波多普勒谱;同时接收天波信号,在频域对其进行电离层扰动补偿后再处理形成天波多普勒谱;地波雷达子系统依据姿态测量子系统测量的姿态数据重建实际地理坐标系,然后在重建的实际地理坐标系中将地波或者天波多普勒谱反演出风浪流数据;天波发射子系统与地波雷达子系统通过GPS同步组网的方式进行时间同步。该系统能够探测任意距离的海域,适用于远海探测。

Description

一种浮标式高频地波雷达系统 技术领域
本发明属于海洋环境监测技术领域。
背景技术
人类与海洋的经济关系正沿着“点-线-面-体”的次序不断深入发展,并且这种发展有着加速的趋势。海洋变得越来越重要,海洋对人类的影响也越来越大,从人类的生存层面直至经济层面,甚至上升到政治和国际关系层面。然而,人类对海洋的监测能力始终落后于人类的海洋实践活动,目前基本还停留在“点”和“线”的层面上,远远不能满足对海洋“面”和“体”的实时监测的需要。
海洋监测能力的薄弱是长期影响我国发展海洋经济、预防海洋灾害、维护国家安全和统一的重大问题。高频地波雷达作为一种大面积、全天候、低成本的非接触式岸基遥感设备,是实现海洋“面”的层面上实时监测的最好工具。但要实现全国沿海主要海区的有效监管,需要在沿海地区布设几十部甚至上百部不同类型的地波雷达组成雷达网络进行探测。这不仅弥补了我国常规海洋监测仪器能力不足,大大提高了我国周边海域海洋环境实时监测的能力,实现我国海洋监测能力“代”的跨越,同时也可节约大量基础建设投入经费。
现有岸基中远程地波雷达设备探测距离一般为200km,近程的地波雷达设备探测距离就更近,而国际海洋法规定200海里为专属经济区,所以,完全利用岸基的地波雷达设备显然难以满足监测专属经济区的需求,我国深远海发展规划里明确了国家对远海情报资料收集战略。因此,必须实现对远海进行监测,研制开发浮标式高频地波雷达等系统实现对200km以外的外海进行实时监测,是对现有的岸基地波雷达的一个最好补充。建设具有全自动化工作能力的无人值守地波雷达系统平台,对于服务战略大通道的海洋环境监测尤为重要。
目前高频地波雷达在探测距离、探测要素的精度以及适用性等方面还存在明显的不足,主要表现在以下五个方面:
A、雷达有效覆盖范围不足。沿岸经济活动和防灾减灾要求对数百公里甚至数千公里内的海洋状态有较好的了解,而目前应用的地波雷达比较有效的探测范围通常在150km以内。如果要增加探测距离,通常采用降低工作频率和增加发射功率的办法实现。降低工作频率意味着雷达天线尺度、设备复杂度的增加,以及结果分辨率和结果精度的降低,对中、短尺度重力波信息的探测能力减弱。增加发射功率则降低了设备的可靠性和电磁环境方面的适用性,而且重要的是探测距离随着发射功率递增的速度是迅速下降的关系,如把功率由10kW提高到100kW,探测距离仅仅增加30~40km,雷达运行成本与探测距离呈指数 关系上升。因此,仅仅依靠地波雷达本身并不能在提高探测距离上有较大的作为。利用天波的远距离传播机制,通过分布式雷达组网、天-地波一体化探测、浮标式高频地波雷达可以大幅度提高高频雷达系统的探测距离,是拓展海洋监测雷达探测距离的有效途径。
B、探测信息量不足,导致结果准确性和可靠性不高。迄今为止,国内所有海洋探测用地波雷达均属于收发共站的单站雷达,雷达仅从海面的后向散射回波中提取信息,而后向散射回波所包含的信息尤其是有关物理参量的方向信息(如流向、风向和浪向等)极为有限,导致所探测参量的方向误差较大,严重降低雷达探测的准确性,致使结果无法应用。这一点在近年高频地波雷达对比试验和实际应用中表现得很明显,是制约地波雷达进一步推广应用的基础技术瓶颈。因此急需发展可以获取海面非后向散射信息的雷达系统,即“多发多收”模式的分布式高频雷达系统,由位于不同地点的多部雷达通过相参的方式组合成一个大的雷达系统。它不是简单的多部单站雷达反演结果的综合,它在原始信号层面即获取了较为全面的物理量信息,能较大程度提高风、浪、流探测的准确性,以确保我国高频地波雷达海洋探测全面进入业务化应用程度。同时,浮标式高频地波雷达也能够提供大量的探测信息,这些信息是基于远海探测,弥补了岸基雷达远海数据量不足的问题。
C、雷达系统抗干扰能力不足。高频雷达工作在强干扰的频段,特别是电离层干扰、射频干扰、和瞬态冲击干扰严重,其中电离层干扰是中低纬度地区地波雷达面临的最严重问题,是制约地波雷达应用的主要困难之一,目前国际上尚无有效的通用电离层干扰抑制方法。电离层干扰强度高,信号特性十分复杂。国内外大量研究表明,电离层干扰很难在单台雷达内得到抑制,“多发多收”的分布式高频雷达系统、结合电离层垂测仪及斜测仪的探测信息几乎成为提高超视距雷达抗电离层干扰能力的唯一选择。采用天波传播、地波接收实现远距离探测的一大优势是避开了电离层F层的干扰问题,所接收到的回波谱中不存在通常地波雷达回波谱中的电离层F层的干扰,当然天波传播过程中电离层反射点电子密度变化或运动会产生谱的平移和展宽,这种影响可以通过地波所获取的海面信息所补偿。
D、传统高频地波雷达系统探测方式过于单一,无法获取精细化探测结果。现阶段绝大多数的海洋探测用高频地波雷达都布设于海岸线附近,其场地的选择往往受到客观因素的制约,只能接收自身的后向散射回波,探测手段单一、结果精度不高。分布式高频雷达系统能够提供多种探测方式,有利于实现近岸的精细化观测。
E、目前高频无线电频段已经十分拥挤,频率资源十分宝贵。中、远程雷达通常工作在5~15MHz频段,这个频段已集中了大量的民用通信频道。采用 传统的单站雷达探测时,同一海区的每个雷达站必须工作在不同的工作频率上,才能避免相互干扰。因此目前高频段的频率资源已无法支撑更多的单站雷达加入海洋监测,这已成为制约地波雷达推广应用的最重要的社会因素之一。而分布式高频雷达组网则正好可以解决这一问题,同一海区的所有雷达都使用同一频率,极大地节省了雷达网的频率占用,同时也降低了被干扰的可能性,为超视距雷达在海洋环境监测上的推广应用创造了有利条件。
浮标式高频地波雷达可以克服以上缺陷,能够突破传统地波雷达仅能沿海岸线布设的限制,通过接收天-地混合路径回波,将探测范围扩展至远海区域,大大增强雷达系统部署的灵活性。同时,该系统具有可拓展性,具备进一步接纳雷达节点的潜力,为多样性的应用提供了可能。
发明内容
有鉴于此,本发明提供了一种浮标式高频地波雷达系统,具有地波和天波两种探测的工作模式,能够探测任意距离的海域,适用于远海探测。
为了达到上述目的,本发明的技术方案为:该系统包括浮标平台、天波发射子系统、地波雷达子系统以及姿态测量子系统;该系统用于地波雷达的海上风浪流反演。
浮标平台为地波雷达的海上载体。
天波发射子系统设置于岸基,用于发射出高频电磁波,该高频电磁波经电离层折射至海面、再经海面反射、作为天波信号被地波雷达子系统接收。
姿态测量子系统实时测量获得浮标平台的姿态数据。
地波雷达子系统采用地波雷达一方面接收地波信号,一方面接收天波信号;其中对于地波信号,直接将其处理形成地波多普勒谱;对于天波信号,在频域对其进行电离层扰动补偿后再处理形成天波多普勒谱;地波雷达子系统依据姿态测量子系统测量的姿态数据重建实际地理坐标系,然后在重建的实际地理坐标系中将地波多普勒谱或者天波多普勒谱反演出风浪流数据。
天波发射子系统与地波雷达子系统通过GPS同步组网的方式进行时间同步。
进一步地,浮标平台由主浮体和仪器舱组成,主浮体包括三个连接浮体框架、十二组连接桥及六个浮力舱体。三个浮体框架并联排布、并且两相邻浮体框架之间分别采用6组连接桥相互连接,每个浮体框架底部两端均固定两个浮力舱体。浮力框架和连接桥采用不锈钢材料加工制成;浮力舱体为舱体结构,使用钢架作为支撑骨架、表面为玻璃钢、内部填充浮力材料;仪器舱设置于主浮体上。
进一步地,天波发射子系统由天线模块、全固态发射模块、激励源模块、第一GPS同步组网模块、电离层分析模块以及天波发射控制模块组成;天线模 块为对数周期天线阵,天线阵中每个天线均发射高频线性调频连续波信号即为高频电磁波;全固态发射模块包括多个功放组件,功放组件的数量与天线阵中天线数量一致,每个功放组件对应向一个天线输出高频线性调频连续波信号;激励源模块中包括多个激励源,激励源的数量与功放组件数量一致,每个激励源对应向一个功放组件输出高频线性调频连续波信号作为激励;激励源模块接收天波发射控制模块的激励控制信号,进行激励的输出;第一GPS同步组网模块包括GPS信号接收机和频率源校正电路;其中GPS信号接收机接收获得GPS卫星的信号并调解出秒脉冲信号输入至频率源校正电路,频率源校正电路的校正信号输入至激励源模块中对各激励源进行校频;电离层分析模块包括电离层垂测仪和分析子模块,其中电离层垂测仪设置于天波发射子系统与电离层间传播路径中点处,分析子模块获取电离层垂测仪中的垂测数据,建立电离层模型,并分析计算电离层扰动信息;电离层扰动信息通过天波发射控制模块转发至互联网中;地波雷达将其所接收的天波信号的频谱信号转发至互联网中,天波发射控制模块从互联网中获取地波雷达所接收的天波信号的频谱信号,并将地波雷达所接收的天波信号的频谱信号与天线模块发射出的信号的频谱信号进行匹配,并依据匹配信息调整激励控制信号以控制激励源的输出,从而最终使得地波雷达所接收的天波信号的频谱信号与天线模块发射出的信号的频谱信号相匹配。
进一步地,天线模块由5部水平极化的对数周期天线单元排列组成,为1×5线阵排列,单部对数周期天线的架高为12m,每部对数周期天线相距20米,每部对数周期天线发射2kW线性调频连续波信号。
进一步地,激励源包括五个激励源分别对应五个功放组件;激励源由数字式直接频率综合器DDS和基于DDS的发射组件组成,激励控制信号控制每个激励源中DDS产生的满足需要的信号波形作为激励,并通过基于DDS的发射组件输出。
进一步地,地波雷达子系统是在地波雷达的结构上增加第二GPS同步组网模块以及天波接收模块;第二GPS同步组网模块与第一GPS同步组网模块匹配,二者同步后第二GPS同步组网模块将同步信号发送至天波接收模块;地波雷达子系统在互联网中获取电离层扰动信息;天波接收模块依据同步信号判断所接收的信号是否为天波信号,若所接收的信号为天波信号,对天波信号进行模数AD转换和傅里叶变换FFT,获得天波信号的频域信号,然后依据电离层扰动信息对天波信号的频域信号进行电离层扰动补偿将补偿后的天波信号的频谱信号一方面发至互联网中,另一方面进行2次FFT形成天波多普勒谱;若为地波信号,则地波雷达直接处理获得地波多普勒谱。
进一步地,姿态测量控制子系统包括姿态传感模块和双GPS天线;姿态传 感模块设置于浮标平台的重心位置处,双GPS天线两点连线和姿态传感模块天线接插件的方向相互垂直,双GPS天线两点连线与浮标平台其中一边平行;双GPS天线的GPS信息传给姿态传感模块,姿态传感模块依据GPS信息获取浮标平台在x、y和z三个坐标轴下的角度、角速度和角加速度以及浮标平台的真北信息;其中以浮标平台的两条边为xy面,以垂直于浮标平台的方向为z轴。
进一步地,该系统还包括智能供电控制子系统,用于为地波雷达子系统进行智能供电;智能供电控制子系统包括主控电路、通信电路、采样电路、驱动电路和接口电路、上位机控制单元、电源模块和设置在浮标式高频地波雷达上的进水报警单元。电源模块分别通过不同的电压端口为浮标式高频地波雷达的各个设备供电;采样电路采集电源模块的温度以及浮标式高频地波雷达上各设备的供电电压,并作为采样信号发送给主控电路;主控电路接收采样电路发送的采样信号、进水报警单元所发送的进水报警信号、上位机控制单元通过通信电路所发送的控制指令;同时主控电路依次通过驱动电路和接口电路向电源模块发送通断电控制信号,分别控制电源模块各电压端口的通断;主控电路依据进水报警单元发来的进水状态信号,判断该进水报警单元所在舱体是否进水,当有舱体进水时,主控电路通过驱动电路向电源模块发送断电控制信号,控制电源模块进行延时断电,关闭电源模块的所有电压端口;否则,电源模块为各设备正常供电;主控电路内设置有电源模块的温度限值,主控电路依据采样电路发来的电源模块的温度,判断电源模块的工作是否正常;当电源模块的温度超过所设定的温度限值时,主控电路判断电源模块工作异常,通过驱动电路向电源模块发送断电控制信号,控制电源模块进行延时断电,关闭电源模块的所有电压端口;否则,电源模块为各设备正常供电;主控电路内设置有浮标式高频地波雷达上每个设备工作电压的范围值,主控电路依据采样电路发来的各设备的供电电压,与该设备对应的电压范围值进行比对;若设备的工作电压在其设定的工作电压范围内,则电源模块为各设备正常供电;若设备工作电压不在设定的工作电压范围内,则给相应设备断电;主控电路能够依据上位机控制单元所发送的控制指令控制浮标式高频地波雷达上设备的通断电;控制命令包括实时控制命令和工作时间段控制命令,当主控电路接收到对某个设备的实时控制命令时,立即通过驱动电路对该设备进行通断电操作;当主控电路收到对某个设备的工作时间段控制命令时,则在指令中对应的时刻对相应设备进行通电和断电。
采样电路实时采集电源模块的电量,并作为采样信号发送给主控电路;主控电路依据电源模块的电量对选定的设备进行通断电控制;具体为:主控电路中预存所选定设备的对应的供电端口,当电源模块的电量大于等于主控电路内部设定的阈值时,表明当前电量充足,则通过驱动电路开启该设备;当电源电 量小于设定的阈值时,则通过驱动电路关闭该设备。
上位机控制单元提供人机交互的接口,操作员通过远程登录,实现对雷达上选定设备的直接通断电控制或者设置雷达上各个设备的工作时间段,让其自动通断电。
进一步地,电源模块包括:太阳能板组、储能型蓄电池组和一体化电源;一体化电源内设置有太阳能控制器、电源转换子模块和电源转换控制子模块。太阳能板组和储能型蓄电池组分别通过太阳能控制器与电源转换子模块相连,电源转换子模块在电源转换控制子模块的控制下对太阳能板组或储能型蓄电池组输出的电压进行转换,然后通过电源输出接口提供给地波雷达子系统
太阳能控制器对太阳能板组转化的电能与设定的地波雷达子系统的供电需求进行比对,以确定该电源系统的供电方式,具体为:当太阳能板组转化的电能够满足负载供电需求时,在保证满足地波雷达子系统供电需求的基础上,剩余的电能通过太阳能控制器给储能型蓄电池组充电;当太阳能板组转化的电能不能满足地波雷达子系统供电需求时,太阳能控制器控制储能型蓄电池组释放电能给地波雷达子系统供电。
在对储能型蓄电池组进行充电时,太阳能控制器依据采集到的储能型蓄电池组的电压状态,控制太阳能板组对储能型蓄电池组充电的输出电流,从而控制储能型蓄电池组的充电速度;在采用储能型蓄电池组对负载供电时,通过电源转换控制子模块控制储能型蓄电池组的输出电流。
太阳能板组包括4N块太阳能板,N为大于1的整数;其中每N块太阳能板为一个太阳能板单元;连接时先将太阳能板单元中的N块太阳能板并联,然后将4个太阳能板单元并联;4N块太阳能板按照东南西北四个方向均匀分布,且每个太阳能板单元中都含有相同数量不同方向朝向的太阳能板。
储能型蓄电池组包括一个以上蓄电池单元,每个蓄电池单元包括2M个储能型蓄电池,M为大于1的整数;每个蓄电池单元内的各储能型蓄电池之间采用先两两并联再串联的接线方式,蓄电池单元之间采用并联接线方式。
有益效果:
1、本系统具有地波和天波两种工作模式探测,能够探测任意距离的海域,适用于远海探测。
2、本系统充分考虑到海上布设高频地波雷达的海况问题,对浮标平台进行了可靠性设计,综合考虑到浮体尺寸以及运输便利性,采用三个浮体框架作为主框架连接,同时浮体框架下设置浮力舱体,该浮标平台具有一定的随波性、稳定性、并能够抗五级以上海况。
3、本发明充分考虑到将地波雷达布设于海面时,由于风浪摇动产生的参考面的变化,因此增加了姿态测量控制子系统用于测量获得浮标 平台实时位姿,从而重新建立实际地理坐标系,以实现更加准确、客观的风浪流数据反演。
4、本发明充分考虑到岸基与浮标平台时间不同步的问题,通过GPS同步组网的方式对岸基与浮标平台的时间进行同步,从而实现两地时间同步,为能够对天波和地波数据分时接收和处理提供了可能性。
5、本系统能够实现太阳能自供电和自供电控制,从而能够完全实现无人化值守,而且能够实现岸基人员监控。
附图说明
图1为本发明系统组成图;
图2为浮标平台结构图;
图3为天波发射子系统的组成结构图;
图4为智能供电控制子系统组成结构图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
实施例1、本发明提供了一种浮标式高频地波雷达系统,如图1所示,该系统包括浮标平台、天波发射子系统、地波雷达子系统以及姿态测量子系统;该系统用于地波雷达的海上风浪流反演。
浮标平台为地波雷达的海上载体,其结构无需限定,能够作为地波雷达在海上布设的载体使用即可。
天波发射子系统设置于岸基,用于发射出高频电磁波,该高频电磁波经电离层折射至海面、再经海面反射、作为天波信号被地波雷达子系统接收。
姿态测量子系统实时测量获得浮标平台的姿态数据。
地波雷达子系统采用地波雷达一方面接收地波信号,一方面接收天波信号;其中对于地波信号,直接将其处理形成地波多普勒谱;对于天波信号,在频域对其进行电离层扰动补偿后再处理形成天波多普勒谱;地波雷达子系统依据姿态测量子系统测量的姿态数据重建实际地理坐标系,然后在重建的实际地理坐标系中将地波多普勒谱或者天波多普勒谱反演出风浪流数据。
天波发射子系统与地波雷达子系统通过GPS同步组网的方式进行时间同步。
本系统具有地波和天波两种工作模式探测,能够探测任意距离的海域,适用于远海探测。
实施例2、依据上述实施例1中给出的方案,针对其中的浮标平台的作用,本实施例中为了能够使得浮标平台具有一定的随波性、稳定性、并能够抗五级 以上海况,给出如下实施方式:
如图2所示,浮标平台由主浮体和仪器舱组成,主浮体包括三个连接浮体框架、十二组连接桥及六个浮力舱体。
三个浮体框架并联排布、并且两相邻浮体框架之间分别采用6组连接桥相互连接,每个浮体框架底部两端均固定两个浮力舱体。
浮力框架和连接桥采用不锈钢材料加工制成。
浮力舱体为舱体结构,使用钢架作为支撑骨架、表面为玻璃钢、内部填无浮力材料;仪器舱设置于主浮体上。
本系统充分考虑到海上布设高频地波雷达的海况问题,对浮标平台进行了可靠性设计,综合考虑到浮体尺寸以及运输便利性,采用三个浮体框架作为主框架连接,同时浮体框架下设置浮力舱体,该浮标平台具有一定的随波性、稳定性、并能够抗五级以上海况。
实施例3、依据实施例1中给出的天波发射子系统,如图3所示,本实施例给出了一种具体的实施形式,而在具体实施时,可以不局限于该形式。
本实施例中的天波发射子系统由天线模块、全固态发射模块、激励源模块、第一GPS同步组网模块、电离层分析模块以及天波发射控制模块组成。
天线模块为对数周期天线阵,天线阵中每个天线均发射高频线性调频连续波信号即为高频电磁波。为了进一步说明天线阵的排布,特举例如下:天线模块由5部水平极化的对数周期天线单元排列组成,为1×5线阵排列,单部对数周期天线的架高为12m左右,每部对数周期天线相距20米,每部对数周期天线发射2kW线性调频连续波信号。
全固态发射模块包括多个功放组件,功放组件的数量与天线阵中天线数量一致,每个功放组件对应向一个天线输出高频线性调频连续波信号。
激励源模块中包括多个激励源,激励源的数量与功放组件数量一致,每个激励源对应向一个功放组件输出高频线性调频连续波信号作为激励;激励源模块接收天波发射控制模块的激励控制信号,进行激励的输出。针对上述举例,激励源包括五个激励源分别对应五个功放组件;激励源由数字式直接频率综合器DDS和基于DDS的发射组件组成,激励控制信号控制每个激励源中DDS严生的满足需要的信号波形作为激励,并通过基于DDS的发射组件输出。
第一GPS同步组网模块包括GPS信号接收机和频率源校正电路;其中GPS信号接收机接收获得GPS卫星的信号并调解出秒脉冲信号输入至频率源校正电路,频率源校正电路的校正信号输入至激励源模块中对各激励源进行校频。
电离层分析模块包括电离层垂测仪和分析子模块,其中电离层垂测仪设置于天波发射子系统与电离层间传播路径中点处,分析子模块获取电离层垂测仪中的垂测数据(比如电离层每个层面的电子密度、电磁场分布),建立电离层模 型,并分析计算电离层扰动信息;电离层扰动信息通过天波发射控制模块转发至互联网中。
地波雷达将其所接收的天波信号的频谱信号转发至互联网中,天波发射控制模块从互联网中获取地波雷达所接收的天波信号的频谱信号,并将地波雷达所接收的天波信号的频谱信号与天线模块发射出的信号的频谱信号进行匹配,并依据匹配信息调整激励控制信号以控制激励源的输出,从而最终使得地波雷达所接收的天波信号的频谱信号与天线模块发射出的信号的频谱信号相匹配。
实施例4、地波雷达子系统是在地波雷达的结构上增加第二GPS同步组网模块以及天波接收模块;
第二GPS同步组网模块与第一GPS同步组网模块匹配,二者同步后第二GPS同步组网模块将同步信号发送至天波接收模块。
地波雷达子系统在互联网中获取电离层扰动信息。
天波接收模块依据同步信号判断所接收的信号是否为天波信号,若所接收的信号为天波信号,对天波信号进行模数AD转换和傅里叶变换FFT,获得天波信号的频域信号,然后依据电离层扰动信息对天波信号的频域信号进行电离层扰动补偿将补偿后的天波信号的频谱信号一方面发至互联网中,另一方面进行2次FFT形成天波多普勒谱。之所以要进行电离层扰动补偿是因为:电离层是时空多变的色散信道,电离层的高度、密度和厚度会随着太阳的影响而呈现时间和季节性的变化,电离层的多模多径效应、时空随机扰动、电离层行进式扰动和电离层倾斜对天波超视距雷达坐标配准、目标精确定位和航迹跟踪都有着非常重要的影响。
若为地波信号,则地波雷达直接处理获得地波多普勒谱。
使用GPS模块的原因:考虑到用于天地组网探测采取多基地模式,收发分置,在系统的联网观测过程中,要获得准确的信号群时延信息和多普勒信息,就必须保证发射端和接收端之间具备严格的时间同步和频率同步特性。因此,不同台站之间的时间和频率同步功能需要借助时间频率同步装置才能达到。基于此多基地天地组网探测系统时频同步装置采用基于GPS的新型时间频率同步模块。和一般的GPS接收系统不同的是,该系统不仅能够准确的给出标准时间信息、地理位置经纬度信息等,还能够实现异地的时间频率同步,这些功能的实现都依托嵌入式的控制处理单元辅以外部高性能的硬件电路实现,提高了系统的测量精度、丰富了系统的功能。
实施例5、根据上述实施例,本实施例中对姿态测量控制子系统进行详细描述:姿态测量控制子系统包括姿态传感模块和双GPS天线;姿态传感模块设置于浮标平台的重心位置处,双GPS天线两点连线和姿态传感模块天线接插件的方向相互垂直,双GPS天线两点连线与浮标平台其中一边平行;双GPS天线的 GPS信息传给姿态传感模块,姿态传感模块依据GPS信息获取浮标平台在x、y和z三个坐标轴下的角度、角速度和角加速度以及浮标平台的真北信息;其中以浮标平台的两条边为xy面,以垂直于浮标平台的方向为z轴。
实施例6、本实施例是在上述实施例1的基础上,考虑到海上工作的供电问题,提供了智能供电控制子系统,用于为地波雷达子系统进行智能供电;智能供电控制子系统包括主控电路、通信电路、采样电路、驱动电路和接口电路、为上位机控制单元、电源模块和设置在浮标式高频地波雷达上的进水报警单元。
电源模块分别通过不同的电压端口为浮标式高频地波雷达的各个设备供电。
采样电路采集电源模块的温度以及浮标式高频地波雷达上各设备的供电电压,并作为采样信号发送给主控电路。
主控电路接收采样电路发送的采样信号、进水报警单元所发送的进水报警信号、上位机控制单元通过通信电路所发送的控制指令;同时主控电路依次通过驱动电路和接口电路向电源模块发送通断电控制信号,分别控制电源模块各电压端口的通断。
主控电路依据进水报警单元发来的进水状态信号,判断该进水报警单元所在舱体是否进水,当有舱体进水时,主控电路通过驱动电路向电源模块发送断电控制信号,控制电源模块进行延时断电,关闭电源模块的所有电压端口;否则,电源模块为各设备正常供电。
主控电路内设置有电源模块的温度限值,主控电路依据采样电路发来的电源模块的温度,判断电源模块的工作是否正常;当电源模块的温度超过所设定的温度限值时,主控电路判断电源模块工作异常,通过驱动电路向电源模块发送断电控制信号,控制电源模块进行延时断电,关闭电源模块的所有电压端口;否则,电源模块为各设备正常供电。
主控电路内设置有浮标式高频地波雷达上每个设备工作电压的范围值,主控电路依据采样电路发来的各设备的供电电压,与该设备对应的电压范围值进行比对;若设备的工作电压在其设定的工作电压范围内,则电源模块为各设备正常供电;若设备工作电压不在设定的工作电压范围内,则给相应设备断电。
主控电路能够依据上位机控制单元所发送的控制指令控制浮标式高频地波雷达上设备的通断电;控制命令包括实时控制命令和工作时间段控制命令,当主控电路接收到对某个设备的实时控制命令时,立即通过驱动电路对该设备进行通断电操作;当主控电路收到对某个设备的工作时间段控制命令时,则在指令中对应的时刻对相应设备进行通电和断电。
采样电路实时采集电源模块的电量,并作为采样信号发送给主控电路;主控电路依据电源模块的电量对选定的设备进行通断电控制;具体为:主控电路 中预存所选定设备的对应的供电端口,当电源模块的电量大于等于主控电路内部设定的阈值时,表明当前电量充足,则通过驱动电路开启该设备;当电源电量小于设定的阈值时,则通过驱动电路关闭该设备。
上位机控制单元提供人机交互的接口,操作员通过远程登录,实现对雷达上选定设备的直接通断电控制或者设置雷达上各个设备的工作时间段,让其自动通断电。
为了能够适应海上环境,本实施例中提出了一种太阳能和储能一体化的电源模块,如图4所示,该电源模块包括:太阳能板组、储能型蓄电池组和一体化电源;一体化电源内设置有太阳能控制器、电源转换子模块和电源转换控制子模块;太阳能板组和储能型蓄电池组分别通过太阳能控制器与电源转换子模块相连,电源转换子模块在电源转换控制子模块的控制下对太阳能板组或储能型蓄电池组输出的电压进行转换,然后通过电源输出接口提供给地波雷达子系统。
太阳能控制器对太阳能板组转化的电能与设定的地波雷达子系统的供电需求进行比对,以确定该电源系统的供电方式,具体为:当太阳能板组转化的电能够满足负载供电需求时,在保证满足地波雷达子系统供电需求的基础上,剩余的电能通过太阳能控制器给储能型蓄电池组充电;当太阳能板组转化的电能不能满足地波雷达子系统供电需求时,太阳能控制器控制储能型蓄电池组释放电能给地波雷达子系统供电。
在对储能型蓄电池组进行充电时,太阳能控制器依据采集到的储能型蓄电池组的电压状态,控制太阳能板组对储能型蓄电池组充电的输出电流,从而控制储能型蓄电池组的充电速度;在采用储能型蓄电池组对负载供电时,通过电源转换控制子模块控制储能型蓄电池组的输出电流。
太阳能板组包括4N块太阳能板,N为大于1的整数;其中每N块太阳能板为一个太阳能板单元;连接时先将太阳能板单元中的N块太阳能板并联,然后将4个太阳能板单元并联;4N块太阳能板按照东南西北四个方向均匀分布,且每个太阳能板单元中都含有相同数量不同方向朝向的太阳能板;
储能型蓄电池组包括一个以上蓄电池单元,每个蓄电池单元包括2M个储能型蓄电池,M为大于1的整数;每个蓄电池单元内的各储能型蓄电池之间采用先两两并联再串联的接线方式,蓄电池单元之间采用并联接线方式。
综上,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种浮标式高频地波雷达系统,其特征在于,该系统包括浮标平台、天波发射子系统、地波雷达子系统以及姿态测量子系统;该系统用于地波雷达的海上风浪流反演;
    所述浮标平台为地波雷达的海上载体;
    所述天波发射子系统设置于岸基,用于发射出高频电磁波,该高频电磁波经电离层折射至海面、再经海面反射、作为天波信号被地波雷达子系统接收;
    所述姿态测量子系统实时测量获得浮标平台的姿态数据;
    所述地波雷达子系统采用地波雷达一方面接收地波信号,一方面接收天波信号;其中对于地波信号,直接将其处理形成地波多普勒谱;对于天波信号,在频域对其进行电离层扰动补偿后再处理形成天波多普勒谱;地波雷达子系统依据姿态测量子系统测量的姿态数据重建实际地理坐标系,然后在重建的实际地理坐标系中将地波多普勒谱或者天波多普勒谱反演出风浪流数据;
    所述天波发射子系统与所述地波雷达子系统通过GPS同步组网的方式进行时间同步。
  2. 如权利要求1所述的一种浮标式高频地波雷达系统,其特征在于,所述浮标平台由主浮体和仪器舱组成,所述主浮体包括三个连接浮体框架、十二组连接桥及六个浮力舱体;
    所述三个浮体框架并联排布、并且两相邻浮体框架之间分别采用6组连接桥相互连接,每个浮体框架底部两端均固定两个浮力舱体;
    所述浮力框架和所述连接桥采用不锈钢材料加工制成;
    所述浮力舱体为舱体结构,使用钢架作为支撑骨架、表面为玻璃钢、内部填充浮力材料;
    所述仪器舱设置于主浮体上。
  3. 如权利要求1所述的一种浮标式高频地波雷达系统,其特征在于,所述天波发射子系统由天线模块、全固态发射模块、激励源模块、第一GPS同步组网模块、电离层分析模块以及天波发射控制模块组成;
    所述天线模块为对数周期天线阵,天线阵中每个天线均发射高频线性调频连续波信号即为高频电磁波;
    所述全固态发射模块包括多个功放组件,功放组件的数量与天线阵中天线数量一致,每个功放组件对应向一个天线输出高频线性调频连续波信号;
    所述激励源模块中包括多个激励源,激励源的数量与功放组件数量一致,每个激励源对应向一个功放组件输出高频线性调频连续波信号作为激励;所述激励源模块接收天波发射控制模块的激励控制信号,进行激励的输出;
    所述第一GPS同步组网模块包括GPS信号接收机和频率源校正电路;其中 GPS信号接收机接收获得GPS卫星的信号并调解出秒脉冲信号输入至频率源校正电路,频率源校正电路的校正信号输入至激励源模块中对各激励源进行校频;
    所述电离层分析模块包括电离层垂测仪和分析子模块,其中所述电离层垂测仪设置于天波发射子系统与电离层间传播路径中点处,分析子模块获取电离层垂测仪中的垂测数据,建立电离层模型,并分析计算电离层扰动信息;所述电离层扰动信息通过天波发射控制模块转发至互联网中;
    地波雷达将其所接收的天波信号的频谱信号转发至互联网中,所述天波发射控制模块从互联网中获取地波雷达所接收的天波信号的频谱信号,并将地波雷达所接收的天波信号的频谱信号与天线模块发射出的信号的频谱信号进行匹配,并依据匹配信息调整激励控制信号以控制激励源的输出,从而最终使得地波雷达所接收的天波信号的频谱信号与天线模块发射出的信号的频谱信号相匹配。
  4. 如权利要求3所述的一种浮标式高频地波雷达系统,其特征在于,所述天线模块由5部水平极化的对数周期天线单元排列组成,为1×5线阵排列,单部对数周期天线的架高为12m,每部对数周期天线相距20米,每部对数周期天线发射2kW线性调频连续波信号。
  5. 如权利要求4所述的一种浮标式高频地波雷达系统,其特征在于,所述激励源包括五个激励源分别对应五个功放组件;
    所述激励源由数字式直接频率综合器DDS和基于DDS的发射组件组成,所述激励控制信号控制每个激励源中DDS产生的满足需要的信号波形作为激励,并通过基于DDS的发射组件输出。
  6. 如权利要求3所述的一种浮标式高频地波雷达系统,其特征在于,所述地波雷达子系统是在地波雷达的结构上增加第二GPS同步组网模块以及天波接收模块;
    所述第二GPS同步组网模块与所述第一GPS同步组网模块匹配,二者同步后第二GPS同步组网模块将同步信号发送至天波接收模块;
    地波雷达子系统在互联网中获取所述电离层扰动信息;
    天波接收模块依据同步信号判断所接收的信号是否为天波信号,若所接收的信号为天波信号,对天波信号进行模数AD转换和傅里叶变换FFT,获得天波信号的频域信号,然后依据所述电离层扰动信息对天波信号的频域信号进行电离层扰动补偿将补偿后的天波信号的频谱信号一方面发至互联网中,另一方面进行2次FFT形成天波多普勒谱;
    若为地波信号,则地波雷达直接处理获得地波多普勒谱。
  7. 如权利要求1所述的一种浮标式高频地波雷达系统,其特征在于,所述姿态测量控制子系统包括姿态传感模块和双GPS天线;姿态传感模块设置于浮 标平台的重心位置处,双GPS天线两点连线和姿态传感模块天线接插件的方向相互垂直,双GPS天线两点连线与浮标平台其中一边平行;双GPS天线的GPS信息传给姿态传感模块,姿态传感模块依据GPS信息获取浮标平台在x、y和z三个坐标轴下的角度、角速度和角加速度以及浮标平台的真北信息;
    其中以浮标平台的两条边为xy面,以垂直于浮标平台的方向为z轴。
  8. 如权利要求1所述的一种浮标式高频地波雷达系统,其特征在于,该系统还包括智能供电控制子系统,用于为所述地波雷达子系统进行智能供电;所述智能供电控制子系统包括主控电路、通信电路、采样电路、驱动电路和接口电路、上位机控制单元、电源模块和设置在浮标式高频地波雷达上的进水报警单元;
    所述电源模块分别通过不同的电压端口为浮标式高频地波雷达的各个设备供电;
    所述采样电路采集电源模块的温度以及浮标式高频地波雷达上各设备的供电电压,并作为采样信号发送给主控电路;
    所述主控电路接收采样电路发送的采样信号、进水报警单元所发送的进水报警信号、上位机控制单元通过通信电路所发送的控制指令;同时所述主控电路依次通过驱动电路和接口电路向电源模块发送通断电控制信号,分别控制电源模块各电压端口的通断;
    所述主控电路依据进水报警单元发来的进水状态信号,判断该进水报警单元所在舱体是否进水,当有舱体进水时,主控电路通过驱动电路向电源模块发送断电控制信号,控制电源模块进行延时断电,关闭电源模块的所有电压端口;否则,电源模块为各设备正常供电;
    所述主控电路内设置有电源模块的温度限值,所述主控电路依据采样电路发来的电源模块的温度,判断电源模块的工作是否正常;当电源模块的温度超过所设定的温度限值时,主控电路判断电源模块工作异常,通过驱动电路向电源模块发送断电控制信号,控制电源模块进行延时断电,关闭电源模块的所有电压端口;否则,电源模块为各设备正常供电;
    所述主控电路内设置有浮标式高频地波雷达上每个设备工作电压的范围值,所述主控电路依据采样电路发来的各设备的供电电压,与该设备对应的电压范围值进行比对;若设备的工作电压在其设定的工作电压范围内,则电源模块为各设备正常供电;若设备工作电压不在设定的工作电压范围内,则给相应设备断电;
    所述主控电路能够依据上位机控制单元所发送的控制指令控制浮标式高频地波雷达上设备的通断电;所述控制命令包括实时控制命令和工作时间段控制命令,当主控电路接收到对某个设备的实时控制命令时,立即通过驱动电路对 该设备进行通断电操作;当主控电路收到对某个设备的工作时间段控制命令时,则在指令中对应的时刻对相应设备进行通电和断电。
    所述采样电路实时采集电源模块的电量,并作为采样信号发送给主控电路;所述主控电路依据电源模块的电量对选定的设备进行通断电控制;具体为:所述主控电路中预存所选定设备的对应的供电端口,当电源模块的电量大于等于主控电路内部设定的阈值时,表明当前电量充足,则通过驱动电路开启该设备;当电源电量小于设定的阈值时,则通过驱动电路关闭该设备。
    所述上位机控制单元提供人机交互的接口,操作员通过远程登录,实现对雷达上选定设备的直接通断电控制或者设置雷达上各个设备的工作时间段,让其自动通断电。
  9. 如权利要求8所述的一种浮标式高频地波雷达系统,其特征在于,所述电源模块包括:太阳能板组、储能型蓄电池组和一体化电源;所述一体化电源内设置有太阳能控制器、电源转换子模块和电源转换控制子模块;所述太阳能板组和储能型蓄电池组分别通过所述太阳能控制器与电源转换子模块相连,所述电源转换子模块在电源转换控制子模块的控制下对太阳能板组或储能型蓄电池组输出的电压进行转换,然后通过电源输出接口提供给地波雷达子系统;
    所述太阳能控制器对太阳能板组转化的电能与设定的地波雷达子系统的供电需求进行比对,以确定该电源系统的供电方式,具体为:当太阳能板组转化的电能够满足负载供电需求时,在保证满足地波雷达子系统供电需求的基础上,剩余的电能通过太阳能控制器给储能型蓄电池组充电;当太阳能板组转化的电能不能满足地波雷达子系统供电需求时,所述太阳能控制器控制储能型蓄电池组释放电能给地波雷达子系统供电;
    在对所述储能型蓄电池组进行充电时,所述太阳能控制器依据采集到的储能型蓄电池组的电压状态,控制太阳能板组对储能型蓄电池组充电的输出电流,从而控制储能型蓄电池组的充电速度;在采用储能型蓄电池组对负载供电时,通过所述电源转换控制子模块控制储能型蓄电池组的输出电流。
    所述太阳能板组包括4N块太阳能板,N为大于1的整数;其中每N块太阳能板为一个太阳能板单元;连接时先将所述太阳能板单元中的N块太阳能板并联,然后将4个太阳能板单元并联;4N块所述太阳能板按照东南西北四个方向均匀分布,且每个太阳能板单元中都含有相同数量不同方向朝向的太阳能板;
    所述储能型蓄电池组包括一个以上蓄电池单元,每个蓄电池单元包括2M个储能型蓄电池,M为大于1的整数;每个蓄电池单元内的各储能型蓄电池之间采用先两两并联再串联的接线方式,蓄电池单元之间采用并联接线方式。
PCT/CN2016/000307 2015-09-09 2016-06-16 一种浮标式高频地波雷达系统 WO2017041402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/916,272 US10768287B2 (en) 2015-09-09 2018-03-08 Buoy-type high frequency ground-wave radar system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510568167.2 2015-09-09
CN201510568167.2A CN105607053B (zh) 2015-09-09 2015-09-09 一种浮标式高频地波雷达系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/916,272 Continuation US10768287B2 (en) 2015-09-09 2018-03-08 Buoy-type high frequency ground-wave radar system

Publications (1)

Publication Number Publication Date
WO2017041402A1 true WO2017041402A1 (zh) 2017-03-16

Family

ID=55987130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000307 WO2017041402A1 (zh) 2015-09-09 2016-06-16 一种浮标式高频地波雷达系统

Country Status (3)

Country Link
US (1) US10768287B2 (zh)
CN (1) CN105607053B (zh)
WO (1) WO2017041402A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110667780A (zh) * 2019-08-23 2020-01-10 中国人民解放军32181部队 雷达的布置方法与布置系统
CN112098989A (zh) * 2020-08-17 2020-12-18 西安电子科技大学 一种非接触式周戒雷达控制系统、方法、装置及应用
CN112162277A (zh) * 2020-09-29 2021-01-01 哈尔滨工业大学 一种基于混合传播高频地波雷达的飞机目标高度估计方法
CN114674374A (zh) * 2022-04-15 2022-06-28 中山火炬职业技术学院 一种基于物联网的控制系统
CN115113226A (zh) * 2022-06-27 2022-09-27 桂林理工大学 一种用于机载LiDAR装置的高频POS系统
US11953580B2 (en) 2018-06-29 2024-04-09 The University Of Birmingham Over the horizon radar (OTH) system and method
CN115113226B (zh) * 2022-06-27 2024-05-17 桂林理工大学 一种用于机载LiDAR装置的高频POS系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607053B (zh) * 2015-09-09 2018-05-04 湖北中南鹏力海洋探测系统工程有限公司 一种浮标式高频地波雷达系统
CN107607919B (zh) * 2017-08-31 2020-01-24 武汉大学 一种浮标基/船基高频地波雷达接收天线方向图测量方法
CN107643514B (zh) * 2017-09-12 2019-12-10 武汉大学 一种基于直达波的浮标基/船载雷达的阵列校准方法
DE102018203117A1 (de) * 2018-03-01 2019-09-05 Robert Bosch Gmbh Radarsensorsystem und Verfahren zum Betreiben eines Radarsensorsystems
CN109188356B (zh) * 2018-09-30 2020-08-18 西安理工大学 一种应用于罗兰系统的天波定位方法
CN109143231B (zh) * 2018-10-29 2023-03-28 河海大学 基于循环对消的数字电视无源双基地雷达目标检测方法
CN109709542B (zh) * 2019-01-08 2023-01-03 武汉大学 一种轻便式高频地波雷达系统
CN110488721A (zh) * 2019-09-11 2019-11-22 中国科学院海洋研究所 一种浮标上的数据采集器
CN111007490B (zh) * 2019-12-05 2022-03-15 武汉大学 一种基于浮标地理信息的天波超视距雷达坐标配准方法
CN111260900B (zh) * 2020-01-08 2021-12-28 中国电子科技集团公司电子科学研究院 一种基于浮标的多体制异构数据处理系统
CN111352083B (zh) * 2020-01-17 2022-04-01 武汉大学 一种高频地波雷达多接收通道增益自动校准方法及装置
CN111537972B (zh) * 2020-05-14 2021-04-09 中国海洋大学 船载高频地波雷达运动参数辨识与运动补偿方法
WO2022005619A2 (en) * 2020-05-18 2022-01-06 The Regents Of The University Of Colorado, A Body Corporate Ocean surface wind direction retrieval from reflected radio signals on space-borne platforms
CN111736120B (zh) * 2020-05-28 2022-07-26 哈尔滨工业大学 一种基于天波传播校正源信号的阵列误差校正方法
CN111947726A (zh) * 2020-08-13 2020-11-17 中水智联(深圳)技术有限公司 一种低功耗多功能雷达流量计
CN112415495B (zh) * 2020-11-06 2024-02-13 海鹰企业集团有限责任公司 一种海底混响信号模拟方法
CN112363141B (zh) * 2020-11-12 2023-04-21 三门峡职业技术学院 一种多站天波雷达海面舰船目标位置与速度的解算方法
CN112882018B (zh) * 2021-01-13 2022-07-26 哈尔滨工业大学(威海) 一种海洋和电离层一体化探测高频雷达系统及其控制方法
CN113777603B (zh) * 2021-08-26 2023-08-04 哈尔滨工业大学(威海) 海洋和电离层一体化探测接收系统控制及信号处理系统
US11885653B2 (en) 2021-09-24 2024-01-30 Hydro Radar, LLC Flow and level monitoring fluid system including nadir-facing and angle flow sensors with MIMO phase radar sensors
CN114252858B (zh) * 2021-12-23 2022-09-06 南京雷电信息技术有限公司 一种雷达目标激励系统
CN115158550A (zh) * 2022-06-20 2022-10-11 北京星网船电科技有限公司 一种可变深主动探测声学浮标及其供能系统、供能方法
CN116736287B (zh) * 2023-06-19 2024-04-05 哈尔滨工业大学 基于多探测模式的地波多径目标跟踪方法
CN117388853B (zh) * 2023-12-08 2024-02-23 山东省科学院海洋仪器仪表研究所 一种走航式雷达波浪监测系统及监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078446A (ja) * 2008-09-25 2010-04-08 Toshiba Corp レーダシステム
CN103245933A (zh) * 2013-04-17 2013-08-14 武汉大学 一种浮标式高频超视距雷达运动补偿方法
CN103698760A (zh) * 2014-01-13 2014-04-02 武汉大学 一种分布式高频超视距雷达系统
CN103760552A (zh) * 2014-01-26 2014-04-30 湖北中南鹏力海洋探测系统工程有限公司 浮标式高频地波雷达
CN203673066U (zh) * 2014-01-26 2014-06-25 湖北中南鹏力海洋探测系统工程有限公司 浮标式高频地波雷达
CN105607053A (zh) * 2015-09-09 2016-05-25 湖北中南鹏力海洋探测系统工程有限公司 一种浮标式高频地波雷达系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894662A (en) * 1982-03-01 1990-01-16 Western Atlas International, Inc. Method and system for determining position on a moving platform, such as a ship, using signals from GPS satellites
WO1985002023A1 (en) * 1983-10-24 1985-05-09 Offshore Navigation, Inc. High frequency spread spectrum positioning system and method therefor
US8995222B2 (en) * 2010-05-06 2015-03-31 Bp Corporation North America Inc. System and method for accurate determination of ocean bottom seismometer positioning and timing
US8259003B2 (en) * 2010-05-14 2012-09-04 Massachusetts Institute Of Technology High duty cycle radar with near/far pulse compression interference mitigation
US20130050024A1 (en) * 2011-08-25 2013-02-28 Embry-Riddle Aeronautical University, Inc. Bistatic radar system using satellite-based transmitters with ionospheric compensation
WO2015108859A1 (en) * 2014-01-14 2015-07-23 Westerngeco Llc Interferometry-based imaging and inversion
US9423495B1 (en) * 2014-02-20 2016-08-23 Raytheon Company Ship-based over-the-horizon radar
JP2017511885A (ja) * 2014-02-26 2017-04-27 コーエン, クラーク, エマーソンCOHEN, Clark, Emerson 性能及びコストが改善されたグローバルナビゲーション衛星システムアーキテクチャ
CN103869293B (zh) * 2014-03-31 2016-03-02 武汉大学 一种实现同时接收天波和地波超视距雷达信号的方法
EP3234636A4 (en) * 2014-12-17 2018-09-05 Venkata Guruprasad Chirp travelling wave solutions and spectra
EP3289430B1 (en) * 2015-04-27 2019-10-23 Snap-Aid Patents Ltd. Estimating and using relative head pose and camera field-of-view

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078446A (ja) * 2008-09-25 2010-04-08 Toshiba Corp レーダシステム
CN103245933A (zh) * 2013-04-17 2013-08-14 武汉大学 一种浮标式高频超视距雷达运动补偿方法
CN103698760A (zh) * 2014-01-13 2014-04-02 武汉大学 一种分布式高频超视距雷达系统
CN103760552A (zh) * 2014-01-26 2014-04-30 湖北中南鹏力海洋探测系统工程有限公司 浮标式高频地波雷达
CN203673066U (zh) * 2014-01-26 2014-06-25 湖北中南鹏力海洋探测系统工程有限公司 浮标式高频地波雷达
CN105607053A (zh) * 2015-09-09 2016-05-25 湖北中南鹏力海洋探测系统工程有限公司 一种浮标式高频地波雷达系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953580B2 (en) 2018-06-29 2024-04-09 The University Of Birmingham Over the horizon radar (OTH) system and method
CN110667780A (zh) * 2019-08-23 2020-01-10 中国人民解放军32181部队 雷达的布置方法与布置系统
CN110667780B (zh) * 2019-08-23 2023-07-14 中国人民解放军32181部队 雷达的布置系统
CN112098989A (zh) * 2020-08-17 2020-12-18 西安电子科技大学 一种非接触式周戒雷达控制系统、方法、装置及应用
CN112098989B (zh) * 2020-08-17 2023-12-22 西安电子科技大学 一种非接触式周戒雷达控制系统、方法、装置及应用
CN112162277A (zh) * 2020-09-29 2021-01-01 哈尔滨工业大学 一种基于混合传播高频地波雷达的飞机目标高度估计方法
CN112162277B (zh) * 2020-09-29 2022-05-24 哈尔滨工业大学 一种基于混合传播高频地波雷达的飞机目标高度估计方法
CN114674374A (zh) * 2022-04-15 2022-06-28 中山火炬职业技术学院 一种基于物联网的控制系统
CN115113226A (zh) * 2022-06-27 2022-09-27 桂林理工大学 一种用于机载LiDAR装置的高频POS系统
CN115113226B (zh) * 2022-06-27 2024-05-17 桂林理工大学 一种用于机载LiDAR装置的高频POS系统

Also Published As

Publication number Publication date
CN105607053B (zh) 2018-05-04
CN105607053A (zh) 2016-05-25
US20180196132A1 (en) 2018-07-12
US10768287B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2017041402A1 (zh) 一种浮标式高频地波雷达系统
AU2018260938B2 (en) Real-time autonomous weather and space weather monitoring
CN104765032B (zh) 岸基阵列gnss反射信号潮汐与多波浪参数综合探测系统
CN104391281A (zh) 提高天波雷达海面船舶目标跟踪定位精度的方法
CN101986100A (zh) 基于差分gps的输电线路导线舞动与风偏在线监测系统
CN206788371U (zh) 一种基于星基差分增强技术的深远海波浪和潮位测量浮标
CN110855343A (zh) 一种水声定位与授时浮标及其工作方法
CN201653423U (zh) 水流跟踪测量浮标
CN207965138U (zh) 一种无人机雷达测定流速系统
CN103162750A (zh) 基于vhf/uhf便携式雷达河流流量监测装置
CN103760552A (zh) 浮标式高频地波雷达
CN106840113A (zh) 一种基于星基差分增强技术的深远海波浪和潮位测量方法
CN104316899A (zh) 一种空中无线电监测智能机器人
CN102338879A (zh) 方位追踪方法、方位追踪装置及系统
CN110824417B (zh) 用于输电线路巡视的多旋翼无人机室外声电联合定位方法
CN103245950A (zh) 配接于多功能雷达的气象终端
CN204422744U (zh) 一种空中无线电监测智能机器人
CN204314450U (zh) 空中无线电监测智能机器人
CN216746293U (zh) 一种基于北斗定位的铁路桥涵位移及水位综合监测系统
CN106053490A (zh) 一种基于4g信号的无源雷达大气水汽反演法
CN105136117A (zh) 一种基于北斗通信系统电塔倾斜监测系统
CN107036679B (zh) 一种用于峡谷水道水位测量装置和方法
CN116990596B (zh) 一种基于海上平台的闪电定位探测系统及方法
CN107861139A (zh) 基于北斗导航定位的无人船海上阳光资源的统计系统
CN210376698U (zh) 一种基于窄带通信的定位仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843346

Country of ref document: EP

Kind code of ref document: A1