WO2017039066A1 - Electromagnet having multi-core structure - Google Patents

Electromagnet having multi-core structure Download PDF

Info

Publication number
WO2017039066A1
WO2017039066A1 PCT/KR2015/012554 KR2015012554W WO2017039066A1 WO 2017039066 A1 WO2017039066 A1 WO 2017039066A1 KR 2015012554 W KR2015012554 W KR 2015012554W WO 2017039066 A1 WO2017039066 A1 WO 2017039066A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
magnetic
winding
cores
magnetic flux
Prior art date
Application number
PCT/KR2015/012554
Other languages
French (fr)
Korean (ko)
Inventor
박승영
조영훈
최연석
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150123742A external-priority patent/KR101595505B1/en
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority claimed from KR1020150163319A external-priority patent/KR101804371B1/en
Publication of WO2017039066A1 publication Critical patent/WO2017039066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Definitions

  • the present invention relates to a high-efficiency electromagnet having a multi-core structure, and more particularly, to at least three cores, at least one magnetic flux hub, and a magnetic pole in an electromagnet generating a magnetic field by winding a coil in the core.
  • the present invention relates to a high efficiency electromagnet having a multi-core structure that improves efficiency by concentrating generated magnetic flux with one magnetic flux hub.
  • the electromagnet is operated by the ampere's law when the current flows through the circular coil, and the winding core located inside the coil exhibits the properties of the magnet.
  • the intensity of the electromagnet is proportional to the number of coil turns N and the current I flowing. Therefore, in order to obtain a large magnetic field with a constant current, it is common to increase the number of coil turns (H ⁇ ⁇ NI). Where ⁇ represents the magnetic permeability and N is Number of turns per unit length, where I is Indicates current.
  • the electrical resistance of the copper coil is a heat generating source, it is impossible to avoid the heat generation itself.
  • a cooling method is used.
  • a coil with a hollow that can flow cooling water for suppressing heat generation can be used.
  • the hollow formed coil has a problem that it is difficult to increase the number of windings because the thickness is thick.
  • a foil-type coil By using a foil-type coil and not using a coil with a hollow, it is manufactured in a pancake structure, so that the thermal conductivity is improved by increasing the contact area between the winding layers, and thus the cooling can be improved.
  • Such a pancake structure reduces the volume of the winding part by reducing the volume of the cooling part and reduces the magnetic resistance by reducing the length of the magnetic closure circuit.
  • the fancake structure using the foil-type coil also has a problem in that as the size of the winding portion increases, the size of the cooling portion increases so that the length of the magnetic circuit surrounding the winding portion increases.
  • a superconducting magnet using superconducting wire without electric resistance has been developed to obtain the ultra high magnetic field.
  • the electromagnet using a supersonic magnet has a limit that can be operated only below a critical temperature converted to superconductivity, and also has a problem in that operating costs increase rapidly because a vacuum coolant tank or a refrigerator must be provided.
  • a thick coil is used to obtain a large magnetic field with the same current, and there is a method of increasing the coil turn number (N).
  • increasing the coil turn number (N) increases the volume of the electromagnet and increases the manufacturing cost. Due to the increase in weight and volume, there is a problem of additionally increasing logistics costs, installation costs and management costs.
  • FIG. 1 is a view showing a cross section of a general electromagnet. Referring to FIG. 1, when the radius r C of the winding core 1 is increased to accommodate a large amount of magnetic flux, the outer diameter thereof is increased to increase the resistance R coil of the coil 2.
  • t CL represents the thickness of the coil layer 2.
  • FIG. 2 is a graph showing the tendency of electrical magnetic resistances appearing in a general electromagnet.
  • R coil R w / L + L total , and the resistance of the coil 2 increases rapidly.
  • R coil represents the resistance of the coil 2
  • R w / L represents the resistance per length of the coil 2
  • L total is the resistance of the entire coil (2).
  • the resistance of the entire coil 2 can be represented by the following equation (1).
  • FIG. 2 (b) is a graph showing the amount of power increase as the thickness of the coil layer increases.
  • the thickness of the coil 2 increases, and the electrical resistance increases in proportion to the increased thickness of the coil 2, thereby rapidly increasing the power consumption (heating). do.
  • the magnetic field performance of the electromagnet can be improved by increasing the number of turns of the electromagnet and increasing the radius of the magnetic pole core, but the efficiency of the electromagnet is lowered. As a result, the power consumption, manufacturing cost, and distribution cost are increased. A problem occurs.
  • FIG. 3 is a cross-sectional view of a coil wound around a common core.
  • the magnetic flux density output is important for the stimulus, but the total flux produced by the core is important for the core.
  • the total magnetic flux is the most important variable in the cross-sectional area of the core, and the coil winding amount or the thickness t CL of the coil winding layer is also an important variable.
  • it is not preferable that the thickness of the coil layer is infinitely thick in terms of the magnetic field (H) efficiency (H / P) relative to the power (P) and may cause a heat generation problem.
  • the sum of the core diameter (D core ) and the coil layer thickness (t CL ), that is, the coil outer diameter (2t CL) Smaller + D core ) is advantageous.
  • the core is too thin, the magnetic saturation reaches a small amount of current, making it difficult to reach the target total magnetic flux.
  • the angle of inclination is not variable in the protruding inclined structure for converging the magnetic field at the magnetic pole to improve the strength of the magnetic field, that is, in the tapered shape. Not only is it impossible to change the inclination angle, but there is a problem in that the inclined structure and the inclined structure that protrude according to the intended use have to be manufactured separately.
  • the present invention has been made to solve the conventional problems as described above, and an object of the present invention is to reduce the electrical and magnetic resistance, and to reduce power consumption, a multi-core structure based on a Halbach array. To provide a high efficiency electromagnet having a.
  • an object of the present invention is to provide an electromagnet having a multi-core structure that can reduce the number of coil turns in the multi-core structure to reduce the electrical resistance.
  • an object of the present invention is to provide the ability to accommodate the multi-core to the components (magnetic flux core) generated in the improved magnetic circuit structure, to perform the cooling function and to exchange the magnetic poles efficiency It is to provide a high efficiency electromagnet having a multi-core structure with increased.
  • an object of the present invention is to provide a high-efficiency electromagnet having a multi-core structure to improve the magnetism only by changing the structure by reducing the magnetic resistance by designing the winding core structure to increase the center thickness of the winding core using a ferromagnetic foil will be.
  • a high-efficiency electromagnet having a multi-core structure, at least three or more to generate a magnetic field when the coil is wound around the core and the voltage is applied to the coil through the electrode terminal
  • a plurality of winding core consisting of;
  • a pair of magnetic flux hubs configured to be symmetrical to face each other and to combine the plurality of winding cores to focus a magnetic field generated in the plurality of winding cores;
  • a pair of magnetic pole cores having a polarity by a magnetic field focused from the pair of magnetic flux hubs and symmetrically facing each other in a coupled state to the magnetic flux hubs
  • the plurality of magnetic flux hubs comprise: A plurality of core receiving portion for receiving the winding core;
  • a magnetic pole accommodating part configured to be provided inside the plurality of core accommodating parts to accommodate the magnetic pole cores;
  • a cooling unit configured to be formed outside or inside the magnetic flux hub to cool heat generated by the coil wound on the winding core, wherein the edge of the magnetic flux hub is configured
  • the plurality of winding cores may be configured to surround the magnetic pole cores and may be coupled to the magnetic flux hub such that axes of magnetic flux directions passing through the winding cores are parallel to each other.
  • the stimulus accommodating part includes: a stimulation tube configured to receive the stimulation core and have a barrel shape; A mounting adapter configured to receive the magnetic pole tube and couple the magnetic core to the magnetic flux hub; And a magnetic pole cover covering the magnetic pole tube and the magnetic pole core, and the mounting adapter and the magnetic pole cover coupled to the magnetic pole tube.
  • the magnetic pole core may be configured to accommodate a cross-sectional area of the magnetic pole core that satisfies the following equation.
  • S c represents the cross-sectional area per core
  • m represents the number of cores
  • C is the contact area between the magnetic flux hub and the magnetic poles.
  • the magnetic pole core may be configured such that the cross-sectional area of the magnetic pole core satisfies the following equation.
  • S c represents the cross-sectional area per core
  • m represents the number of cores
  • C is the cross-sectional area of the magnetic pole core
  • the magnetic flux hub may be configured such that the thickness of the magnetic flux hub satisfies the following equation.
  • r c is the radius of the magnetic core and T FH is the thickness of the magnetic flux hub.
  • the plurality of cores may be configured differently from the diameter of the central portion and the diameter of both ends, the diameter of the central portion may be configured larger than the diameter of the end.
  • the diameter of the central portion and the diameter of the both ends may be configured to be within the range of the following equation.
  • the plurality of winding cores may be configured such that a ratio of the length L c of the central part to the length L e of any one of the both ends is within the range of the following equation.
  • the plurality of winding cores may be configured such that a ratio between the thickness T CL of the coil wound on the core and the diameter D core of the core is within the range of the following equation.
  • the high efficiency electromagnet having a multi-core structure may be configured by winding the winding coil, and further including a cooling coil configured to form a hollow to flow a cooling fluid or cooling water.
  • the cooling coil may be disposed outside any one of the winding coil or between the coil and the core.
  • a pedestal for supporting the pair of magnetic flux hubs comprising: a cooling fin configured to be in contact with the winding coil; It may be configured to include; and a cooling water or a cooling water coolant circulating the inside of the pedestal.
  • the pedestal further comprises a pair of side cooling jackets for holding a winding core in a state in which each side is supported on both sides, the side cooling jacket, the cooling fins are interpolated to the outside; And a coolant or a coolant circulating inside the side cooling jacket.
  • the pedestal may further include a coolant hub configured to divide each coolant inlet and outlet into a coolant circulating each winding core into a pair and collect them into one pair.
  • the side cooling jacket and the pedestal may be configured by filling any one of grease, copper plate and indium thin plate (foil) between the winding core.
  • the magnetic pole core has a cylindrical inner core; An outer core core configured to be rotatable with the inner core core and surrounding the inner core core; A magnetic pole handle fixed to one side of the inner core core to reciprocally adjust the inner core core back and forth; And an outer core stimulation handle fixed to an outer circumferential surface of the outer core to reciprocally adjust the outer core back and forth.
  • the magnetic pole core may be configured to protrude the inner core core than the outer core to obtain a focused magnetic field.
  • the magnetic pole core may be configured to protrude the outer core core than the inner core core to obtain a uniform magnetic field.
  • the magnetic pole core may be configured to remove the inner core from the outer core to form a hollow formed magnetic pole.
  • an insulating film is formed between the coil wound around the core, and the insulating film may be formed of a material having insulation resistance and heat resistance.
  • the core accommodating unit may be coupled to the magnetic pole tube, the mounting adapter and the magnetic pole cover with screws to fix the magnetic flux hub, and the magnetic pole barrel, the mounting adapter, the magnetic pole cover, and the magnetic pole core may be detachable.
  • a high-efficiency electromagnet having a multi-core structure, the electromagnet for generating a magnetic field by winding a coil in the core, a support for the electromagnet; A coil wound around the core and configured to form a magnetic field when a voltage is applied to the coil through an electrode terminal for supplying power to the electromagnet; A pair of magnetic flux hubs supported by the pedestal and configured to face each other symmetrically and mechanically coupling the plurality of winding cores, and focusing a magnetic field generated in the winding cores; And a pair of magnetic pole cores supported in a connected state by the magnetic flux hub and disposed to face each other to have polarity by a magnetic field focused from the pair of magnetic flux hubs.
  • the plurality of winding cores may be configured to surround the magnetic pole cores and may be connected to each other such that an axis in a magnetic flux direction passing through the winding cores is disposed in parallel with the axis of the magnetic pole core.
  • the magnetic flux hub a plurality of core receiving portion for connecting and receiving the plurality of winding cores;
  • a magnetic pole accommodating part configured inside the plurality of core accommodating parts and accommodating magnetic poles; It may be configured to include; a cooling unit for cooling the heat generated by the coil wound on the core.
  • the cooling unit The cooling unit,
  • It may be configured to have a plurality of heat sinks formed to extend the contact surface with the air to the outside of the magnetic flux hub.
  • the cooling unit may be configured to form a passage of the cooling water circulating through the inside of the magnetic flux hub.
  • the pair of magnetic pole cores the cylindrical housing coupled to the receiving portion formed inside the magnetic flux hub; A magnetic pole engaging with a screw thread formed inside the housing; And a magnetic pole handle formed at an end of the magnetic pole to adjust the distance between the magnetic poles by rotating the magnetic poles.
  • Electromagnet having a multi-core structure according to the present invention by the above solution has the effect of having a high efficiency based on a Halbach array in order to reduce the electrical and magnetic resistance, and to reduce the power consumption.
  • the electromagnet having the multi-core structure according to the present invention can accommodate the multi-cores in the components (magnetic flux cores) generated in the improved magnetic circuit structure, perform cooling functions, and exchange magnetic poles. It has the effect of increasing the efficiency by granting the functionality.
  • the electromagnet having a multi-core structure by designing the winding core structure to increase the thickness of the center portion of the winding core using a ferromagnetic foil has the effect of improving the magnetism by only changing the structure by reducing the magnetic resistance.
  • the electromagnet having a multi-core structure according to the present invention has the effect of having an improved magnetic circuit structure by designing a simplified structure by thinning the winding layer.
  • the electromagnet having a multi-core structure according to the present invention, by providing a platform having a mounting adapter that can accommodate a variety of magnetic core to implement a magnetic core interchangeable electromagnet, there is an effect to increase the utilization and productivity.
  • FIG. 1 is a cross-sectional view of a typical electromagnet.
  • Figure 2 is a graph showing the electric and magnetoresistance tendency of a typical electromagnet.
  • FIG. 3 is a cross-sectional view of a coil wound around a common core
  • Figure 4 is a conceptual diagram of an electromagnet having a structure of the triple core form according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of an electromagnet having a structure of a quadruple core according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of an electromagnet having a structure of a six-core form according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of an electromagnet having a structure of a six-core form according to another embodiment of the present invention.
  • FIG. 8 is a conceptual diagram of an electromagnet having a structure of an eight-core structure according to an embodiment of the present invention.
  • FIG. 9 is a conceptual diagram of an electromagnet having a structure of a sixteen core form according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a cross section of a winding core wound on a core according to the embodiment of FIG. 5 of the present invention
  • FIG 11 is a perspective view and a partial perspective view showing a quad core electromagnet according to an embodiment of the present invention.
  • FIG. 12 is a view showing a core accommodating part according to an embodiment of the present invention.
  • Figure 13 is a cross-sectional view showing a connection state of the core accommodating portion and the winding core according to an embodiment of the present invention.
  • FIG 14 is an assembled perspective view showing the assembled state of the magnetic flux hub and the magnetic pole core according to an embodiment of the present invention.
  • 15 is a cross-sectional view for explaining a magnetic pole handle according to an embodiment of the present invention.
  • 16 is a cross-sectional view showing a cooling apparatus of an electromagnet according to another embodiment of the present invention.
  • 17 is a cross-sectional view showing a cooling jacket and a winding core according to an embodiment of the present invention.
  • FIG. 18 is a perspective view showing an electromagnet constructed by FIG. 16 in accordance with an embodiment of the present invention.
  • 19 is a perspective view showing an electromagnet according to another embodiment of the present invention.
  • 20 is a graph showing indicators represented by a multi-core electromagnet in accordance with an embodiment of the present invention.
  • 21 is a graph showing a change in the magnetic field of the multi-core electromagnet with the increase of the current applied to the magnetic coil according to an embodiment of the present invention.
  • FIG. 22 is a perspective view showing a mounting adapter capable of mechanically receiving a magnetic pole core in the magnetic flux hub.
  • FIG. 4 is a conceptual diagram of an electromagnet having a triple core structure according to an embodiment of the present invention
  • FIG. 5 is a conceptual diagram of an electromagnet having a quad core structure according to an embodiment of the present invention
  • FIG. 6. Is a conceptual diagram of an electromagnet having a six-core structure according to an embodiment of the present invention
  • Figure 7 is a conceptual diagram of an electromagnet having a six-core structure according to another embodiment of the present invention
  • Figure 8 is Conceptual diagram of an electromagnet having a structure of an eight core form according to an embodiment of the invention
  • Figure 9 is a conceptual diagram of an electromagnet having a structure of a sixteen core form according to an embodiment of the present invention.
  • three winding cores 12 are shown in which coils are wound around a core, and magnetic fields generated from three winding cores 12 arranged side by side at regular intervals of 120 degrees are shown as magnetic flux hubs (not shown). Focused on).
  • the winding core 12 refers to a coil wound around a high permeability core.
  • the three winding cores 12 are configured to generate mutual repulsion.
  • the three winding cores 12 are arranged so as to surround the magnetic pole cores 14 and 15 that face each other, and the axes of the magnetic flux directions are arranged at equal intervals of 120 degrees in parallel to each other so that the interval between the magnetic pole cores 14 and 15 is minimal.
  • the magnetic flux density between the magnetic pole cores 14 and 15 is improved by minimizing leakage magnetic flux that is about to escape.
  • the axis of the magnetic flux direction generated in the winding core 12 is connected to be parallel to the axis of each of the magnetic pole cores (14, 15).
  • a magnetic flux hub is formed to focus one side of the three winding cores 12 to form an N pole.
  • the other side of the three winding cores 12 are concentrated to form a magnetic flux hub for forming the S pole.
  • the electromagnets are configured to have two corresponding polarities facing each other.
  • the magnetic flux hub may be composed of a magnetic flux hub for fixing one side of the three winding cores 12 and a magnetic flux hub for fixing the other side of the winding cores 12.
  • Each magnetic field focused by a pair of magnetic flux hubs is focused on each magnetic pole core 14 and 15 to form an N pole and an S pole, respectively.
  • Each coil wound on the three winding cores 12 may be connected in series or in parallel to constitute two types of resistors (3R coil or 1 / 3R coil ).
  • the magnetic flux hub has a T or Y shape, and thus, the magnetic flux hub will be referred to as a 'T' shape or a 'Y' shape magnetic flux hub.
  • FIG. 5 four winding cores 16 are shown in which coils are wound around the core, and magnetic fields generated from four winding cores 16 arranged side by side at regular intervals of 90 degrees are shown in the magnetic flux hub (not shown).
  • the winding core 16 refers to a coil wound around a high permeability core.
  • the four winding cores 16 are configured to generate mutual repulsion.
  • the four winding cores 16 surround the magnetic pole cores 18 and 19 and are arranged such that the axes of the magnetic flux directions are arranged at equal intervals of 90 degrees in parallel to each other so that the space between the magnetic pole cores 18 and 19 is minimum. By minimizing leakage flux to escape, the magnetic flux density between the magnetic pole cores 18 and 19 is improved.
  • the axis of the magnetic flux direction generated in the winding core 16 is arranged to be parallel to the axis of the magnetic pole core.
  • a magnetic flux hub is formed to focus one side of the four winding cores 16 to form an N pole.
  • Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 18 and 19 to form an N pole and an S pole, respectively.
  • Each coil wound on the four winding cores 16 may be connected in series or in parallel to each other, and thus may be configured as three types of resistors (4R coils, 1 / 2R coils, or 1 / 4R coils ). Various output specifications are available.
  • FIG. 6 six winding cores 20 are shown in which coils are wound around a core, and a magnetic field generated from six winding cores 20 arranged side by side at a constant interval of 60 degrees is shown as a pair of magnetic pole hubs (not shown). Focused).
  • the six winding cores 20 are configured to generate mutual repulsion.
  • the six winding cores 20 are arranged to surround the magnetic pole core 22 so that the axes of the magnetic flux directions are arranged at equal intervals of 60 degrees in parallel to each other so as to escape from the minimum spacing between the magnetic pole cores 22 and 23.
  • the magnetic flux density between the magnetic pole cores 22 and 23 is improved by minimizing the leakage magnetic flux.
  • the axis of the magnetic flux direction generated in the winding core 20 is connected to be arranged in parallel with the axis of the magnetic pole core (22, 23).
  • the axis of the magnetic flux direction generated in the winding core 20 is connected to be arranged in parallel with the axis of the magnetic pole core (22, 23).
  • This configuration allows the electromagnet to have bipolarity.
  • Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 22 and 23 to form an N pole and an S pole, respectively.
  • the magnetic flux hub has a shape of *, so it will be referred to as a '*' shaped or star shaped magnetic flux hub.
  • FIG. 7 three winding cores 24 are shown, with coils wound around the core, and three winding cores 25 arranged below.
  • the magnetic field generated from the three winding cores 24 formed in the upper portion is focused on the magnetic flux hub in the upper portion, and the magnetic field generated in the three winding cores 25 formed in the lower portion is concentrated in the magnetic flux hub in the lower portion.
  • the six winding cores 24 and 25 are configured to generate mutual repulsion in the magnetic flux core.
  • the upper winding core 24 and the lower winding core 25 is configured to generate mutual attraction.
  • the upper three winding cores 24 are formed to surround the magnetic pole core 26 of one side
  • the lower three winding cores 25 are formed to surround the magnetic pole core 27 of the other side and the axis of the magnetic flux direction
  • the magnetic flux densities between the magnetic pole cores 26 and 27 are improved by being connected at equal intervals.
  • the axis of the magnetic flux direction generated in the winding cores 24 and 25 is connected to be perpendicular to the axes of the magnetic pole cores 26 and 27.
  • the three winding cores 24 formed on the upper side are focused by the magnetic flux hub on one side
  • the lower three winding cores 25 are focused by the magnetic flux hub on the other side.
  • Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 26 and 27 to form an N pole and an S pole, respectively.
  • the magnetic flux hub has a T or Y shape, so it will be referred to as a 'T' shape or a 'Y' magnetic flux hub.
  • FIG. 8 four winding cores 28 are shown disposed above and with coils wound around the core, and four winding cores 29 arranged below.
  • the magnetic field generated from the four winding cores 28 formed on the upper side is focused on the upper magnetic flux hub, and the magnetic field generated from the four winding cores 29 formed on the lower side is focused on the lower magnetic flux hub.
  • the eight winding cores 28 and 29 are configured to generate mutual repulsion.
  • winding cores 28 formed on the upper side are formed to surround the magnetic pole core 30 on one side
  • four winding cores 29 formed on the lower side are formed to surround the magnetic pole core 31 on the other side
  • the magnetic flux The axes in the direction are arranged to be arranged at equal intervals so that the magnetic flux density between the magnetic pole cores 30 and 31 is improved.
  • the axis of the magnetic flux direction generated in the winding cores 28 and 29 is connected to be perpendicular to the axes of the magnetic pole cores 30 and 31.
  • Four winding cores 28 formed on the upper side are focused by the magnetic flux hub on one side
  • four winding cores 29 on the lower side are focused by the magnetic flux hub on the other side.
  • each magnetic field focused by a pair of magnetic flux hubs is focused on each magnetic pole core 30 and 31 to form an N pole and an S pole, respectively.
  • the magnetic flux hub has a + shape so that it may be referred to as a '+' shape or a cross type flux hub.
  • the four cores disposed at the top are formed in two stages, and the coil forms eight upper winding cores 32 wound around the core, and the four cores arranged at the bottom are eight in two stages.
  • the lower winding core 33 is formed.
  • the magnetic field generated from the eight winding cores 32 formed on the upper side is focused on the upper magnetic flux hub, and the magnetic field generated from the eight winding cores 33 formed on the lower side is focused on the lower magnetic flux hub.
  • Each of the sixteen winding cores 32 and 33 is configured to generate mutual repulsion.
  • the eight winding cores 32 formed on the upper side are formed to surround the magnetic pole core 34 on one side
  • the eight winding cores 33 formed on the lower side are formed to surround the magnetic pole core 35 on the other side and the magnetic flux direction.
  • the magnetic flux densities between the magnetic pole cores 34 and 35 are improved by connecting the axes of the axes so as to be arranged at equal intervals in parallel.
  • the axis of the magnetic flux direction generated in the winding cores 33 and 34 is connected to be perpendicular to the axes of the magnetic pole cores 34 and 35.
  • the eight winding cores 32 formed at the top are focused by the magnetic flux hub on one side and the four winding cores 33 on the bottom are focused by the magnetic flux hub on the other side.
  • Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 34 and 35 to form an N pole and an S pole, respectively.
  • the magnetic flux hub has a + shape, so it will be referred to as a '+' shape or a cross type flux hub.
  • the electromagnet described in FIG. 4 to FIG. 9 is further provided with a magnetic flux hub that does not exist in the conventional multipole electromagnet and used to convert to a two pole to differentiate the conventional multipole electromagnet.
  • the shape of the magnetic flux hub formed in the above-described electromagnets may be any one of H, K, O, T, V, X, Y, +, * shape.
  • the area C of the magnetic pole cores 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35 is preferably a winding.
  • the cross-sectional area (S c ) of the winding cores is configured to be larger than 1/2 of the area (S c ⁇ m). This may be expressed as Equation 2 below.
  • the area C of the magnetic pole cores 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35 is the winding cores 12, 16, 20, 24, 25, 28, 29, 32, 33) may be configured to be smaller than the area (S c ⁇ m) of the cross-sectional area (Sc) of the winding core, it can be represented by the formula (S c ⁇ m)> C.
  • FIG. 10 is a cross-sectional view showing a cross section of a winding core wound on a core according to the exemplary embodiment of FIG. 5 of the present invention.
  • the limits of electromagnets begin to occur when certain parts of the magnetic closure circuit self saturate.
  • the magnetic poles are wound on the magnetic pole core, but the magnetic poles are saturated first.
  • the coils 164 are wound on the cores 160 and 162 to the cores 160 and 162. It is necessary to prepare for the case of self saturation.
  • the first magnetic saturation may come from the core 160 of the core, and the core end 162 and the core center of the cores 160 and 162 to which the coil is wound.
  • a method of varying the outer diameter of the 160 may be applied.
  • the diameter D cc of the central portion 160 of the cores 160 and 162 is larger than the diameter D ce of the end portion 162 of the core to increase the amount of magnetic flux that passes through the winding cores 12, 16, and 20. , 24, 25, 28, 29, 32, 33)
  • the magnetic flux density can be increased at the end.
  • the magnetic flux density of the end 162 of the winding core 16 is increased while the number of windings of the center core 160 decreases, so that the ratio of the output magnetic field (H) to the applied power (P) ( H / P efficiency) is increased. Therefore, preferably, the diameter Dcc of the core central portion 160 and the diameter Dce of the end portion 162 are set so that the diameter is within the range of the following equation (3).
  • the ratio of the diameter (D core ) of the core (T core ) to the thickness (T CL ) of the coil layer (T CL /) D core ) When the value is between 0.1 and 0.5, the efficiency (H / P) is maximized.
  • the thickness T CL of the coil layer is preferably contained within 0.1 to 1 times the diameter D core of the core . If (T CL / D core ) is 2 or more, the circumference of the outermost coil layer becomes large, so that the electrical resistance of the coil becomes too large, which seriously reduces the efficiency (H / P). Therefore, the ratio T CL / D core between the thickness T CL of the coil layer and the diameter D core of the core is set to be within the range of the following equation (4).
  • the length of the central portion 160 with respect to the length L e of the end 162 at the winding core 16 with respect to the length L e of the end 162 having a diameter smaller than the central portion 160 of the core ( L c) ratio (L c / L e a) preferably it is configured to be within the range of equation (5) in the following.
  • FIG. 11 is a perspective view and a partially exploded perspective view showing a quad core electromagnet according to an embodiment of the present invention
  • Figure 12 is a view showing a magnetic flux hub according to an embodiment of the present invention.
  • the present invention in Figure 11 (a) and (b) of the present invention the winding core 16, the magnetic pole core (18, 19), the magnetic pole handle 140, the magnet carrying roller 143, It is composed of an electrode terminal 120, the magnetic flux hub 130 and the pedestal (110).
  • the magnetic flux hub 130 should be designed to an appropriate thickness in order to reduce the magnetic resistance.
  • the criterion for determining the thickness T FH of the magnetic flux hub 130 is the distal radius r c of the magnetic core 162 at the center of the winding core 16. If the thickness of the magnetic flux hub is thinner than the radius 162 of the magnetic core, the magnetoresistance is large and the magnetic field is easily saturated, and thus the performance of the electromagnet is not maximized. On the other hand, even if the thickness of the magnetic flux 130 is too thick than the radius 162 of the magnetic core may be a disadvantage in terms of the magnetoresistance by increasing the path of the arrival of some magnetic flux and the manufacturing cost is also high.
  • the optimum thickness of the magnetic flux hub 130 is around 2 r c , and the thickness T FH of the magnetic flux hub 130 is configured to be within the range of the following Equation 6 in consideration of various variables in the design.
  • the magnetic flux hub 130 mechanically connects the winding core 16 and the magnetic pole cores 18 and 19.
  • the magnetic flux hub 130 serves as a passage for collecting magnetic flux and supplying the magnetic flux to the magnetic pole cores 18 and 19, and includes a cooling unit 142 cooling the cores 160 and 162 heated by the coil 164. do.
  • the cooling unit 142 may include a cooling water passage 136 that operates in a water-cooled manner, and a heat sink 138 that operates in an air-cooled manner.
  • Heat is generated by the resistance of the coil, which must be cooled by air or water cooling.
  • the refrigerant may be circulated through the cooling water passage 136 configured in the cores 160 and 162 and the magnetic flux hub 130.
  • fluid such as a refrigerant or cooling water may be cooled while rotating inside the magnetic flux hub 130 and the cores 160 and 162.
  • a heat exchange mechanism such as a heat sink 138 or a heat sink fin may be provided on the surface of the magnetic flux hub 130 to perform cooling.
  • the cooling method may cool the heat generated in the coil 164 using at least one of water-cooling and air-cooling.
  • the flux hub 130 may include a water cooling or air-cooling cooling unit 142 to cool not only the winding core 16 attached to the flux hub 130 but also the coil 164. It is also possible to apply a method of winding a layer of water-cooled hollow core wire around the winding core 16.
  • Pedestal 110 serves to support the electromagnet, it is composed of a non-metal or metal.
  • the material of the pedestal 110 is made of metal, a cooling effect of cooling the magnetic flux hub 130 may be expected.
  • the winding core 16 has a magnetic field formed when a current is applied through the electrode terminal 120. At this time, the magnetic field of the N polarity is formed on one side of the winding core 16 described above, and the magnetic field of the S polarity is formed on the other side.
  • the electrode terminal 120 is a port for connecting a power source to the winding core 16 and the repulsive force is generated between the four winding cores 16 by the connected power source.
  • the number of winding cores may be increased to three or the number of winding cores may be used to implement an electromagnet.
  • the winding core 16 includes a coil 164 wound around the cores 160 and 162, and a thin insulating layer 166 is formed between the wound coil 164 and the cores 160 and 162.
  • the insulating film 166 is made of an insulating material having excellent insulation resistance and heat resistance. The insulating film 166 is configured to be as thin as possible because it conducts the coil heat generated by the resistance of the coil 164 through the core during high current driving.
  • Magnetic fields of the N pole and the S pole formed by the winding core 16 are focused by a pair of magnetic flux hubs 130 facing each other.
  • a pair of magnetic flux hub 130 is configured on the pedestal 110 in the form facing each other.
  • One of the pair of magnetic flux hubs 130 supports one side of each of the four winding cores 16 arranged side by side, and the other supports the other side of the four winding cores 16 described above.
  • the magnetic flux hub 130 serves as a node for concentrating a magnetic field, and one of the pair of magnetic flux hubs focuses the N-polar magnetic field from the winding core 16 and the other of the magnetic flux hubs 130.
  • the magnetic flux hub 130 concentrates N pole and the S pole, respectively.
  • the magnetic flux hub 130 includes a plurality of core accommodation parts 132 for connecting and accommodating a plurality of winding cores 16 and a plurality of core accommodation parts 132 to accommodate the magnetic pole cores 18 and 19.
  • Cooling unit 142 for cooling the heat generated by the electromagnet in at least one of a water-cooled or air-cooled manner to cool the heat generated by the mounting adapter 134 and the coil 164 wound on the winding core 16 It includes.
  • the magnetic pole cores 18 and 19 are constituted by a pair of cylindrical ferromagnetic bodies which are spaced apart from each other in a state facing the inside of the winding core 16 described above.
  • the pair of magnetic pole cores 18 and 19 are fixed to and detachable from the mounting adapter 134 configured at the center of each magnetic flux hub 130.
  • a magnetic pole fixed to the magnetic flux hub 130 focusing the N polarity magnetic field among the pair of magnetic pole cores 18 and 19 exhibits the N polarity and collects the magnetic field of the S polarity among the pair of magnetic pole cores 18 and 19.
  • the magnetic poles fixed to the magnetic flux hub 130 belonging to the S polarity On the other hand, the coupling of the magnetic flux hub 130 and the magnetic pole will be described in more detail with reference to the drawings to be described later.
  • the magnetic pole handle 140 is configured to adjust the clearance gap of the magnetic pole face which is the end of the pair of magnetic pole cores 18 and 19 facing each other will be described in detail with reference to the drawings to be described later.
  • the cooling unit 142 configured in the magnetic flux hub 130 may be configured by air cooling and / or water cooling.
  • the heat sink 138 is formed to extend outside the magnetic flux hub 130, and is configured to be cooled by air by increasing a contact surface with air.
  • the cooling unit 142 When the cooling unit 142 is configured to be water-cooled, the cooling unit 142 is configured to be formed in the form of a cooling water path 136 that circulates through the inside of the magnetic flux hub 130.
  • the coolant circulating in the cooling water passage 136 may be water cooled by heat exchange, or heat exchanged refrigerant or coolant fluid.
  • Figure 13 is a cross-sectional view showing a connection state of the core accommodating portion and the winding core according to an embodiment of the present invention.
  • the magnetic flux hub 130 is composed of a magnetic material to focus the magnetic field generated in the winding core (16).
  • the core accommodating part 141 may accommodate as much as the outer diameter D core of the winding core 16 in the core accommodating part 141 as shown in FIG. 13B. It is possible to make a groove 145 of the engraved shape.
  • the grooves 135 and 145 and the protrusion 133 are coupled and fixed by the screws 137.
  • the groove 145 and one side of the winding core 16 may be coupled and fixed by the screw 137.
  • FIG 14 is an assembled perspective view showing the assembled state of the magnetic flux hub and the magnetic pole core according to an embodiment of the present invention.
  • the magnetic flux hub 130 for receiving magnetic pole cores 18, 19.
  • the magnetic flux hub 130 includes a mounting adapter 134, a magnetic pole barrel 131, a magnetic pole cover 139, and a magnetic pole handle 140.
  • the mounting adapter 134 is configured to be coupled to the magnetic pole tube 131 on the front of the body portion of the magnetic flux hub 130 for receiving the magnetic pole cores 18 and 19.
  • the magnetic flux hub 130 receiving the mounting adapter 134 has a substantially rhombus or T-shape or K-shape
  • the edge portion of the magnetic flux hub 130 is chamfered (Edge Cutting, chamfering) (134-1)
  • the upper portion of the flux hub 130 constitutes a plurality of bolt holes (134-2) for mounting accessories or brackets.
  • the magnetic pole barrel 131 is coupled to the mounting adapter 134, and the front surface of the magnetic pole cover 139 is fixed to the magnetic flux hub 130 with a screw or the like.
  • the magnetic pole barrel 131 is configured in the shape of a barrel housing the magnetic pole core 18.
  • the magnetic pole cover 139 covers the magnetic pole barrel 131 and the magnetic pole core 18, and combines the mounting adapter 134 and the magnetic pole barrel 131 to prevent the magnetic pole core 18 from escaping to one side.
  • One side of the magnetic pole handle 140 may be screwed into a hole formed in the center of the magnetic pole cover 139 in a state fixed to one side of the magnetic pole core 18 to advance and reverse the magnetic pole core 16. By advancing and retracting the magnetic pole core 18, the gap between the magnetic pole cores 18 and 19 is adjusted.
  • 15 is a cross-sectional view illustrating a magnetic pole handle according to an embodiment of the present invention.
  • FIG. 15A illustrates that the magnetic pole core 18 is divided into an inner core stimulus 181 and an outer core stimulus 183, and the inner pole 181 is adjusted by adjusting the magnetic pole handle 140 fixed to the inner core stimulus 181. ) May be deformed while reciprocating between the mounting adapter 134 and the pole barrel 131.
  • the outer core stimulation handle 185 for adjusting the outer core stimulus 183 is integrally connected to the outer circumferential surface of the outer core stimulus 183 in a screw-coupled state with the stimulation barrel 131. When the outer core stimulation handle 185 is rotated, the outer core stimulus 183 reciprocates back and forth in preparation for the fixed pole barrel 131 according to the rotation direction.
  • the magnetic pole handle 140 and the external core stimulation handle 185 are rotated to configure the internal core 181 to protrude relative to the external core stimulus 183.
  • the density is focused on the magnetic pole core 18 to obtain a high density magnetic flux. That is, the magnetic pole handle 140 may be adjusted to adjust the inner core stimulus 181 to implement high density magnetic poles.
  • 15 (b) is configured to adjust the stimulation handle 140 and the outer core stimulation handle 185 in a form in which the inner core stimulus 181 is indented in preparation for the outer core stimulus (183).
  • the magnetic flux is dispersed in the magnetic pole core 18 to obtain a uniform magnetic flux. That is, by adjusting the stimulation handle 140 so that the outer core stimulation core 183 protrudes, it is possible to obtain a uniform stimulation.
  • the inner core stimulus 181 or the outer core stimulus core 183 by removing and configuring either the inner core stimulus 181 or the outer core stimulus core 183, it is possible to form a magnetic pole having an empty space.
  • the inward stimulus 181 is removed, as much hollow as the inward stimulus 181 may be formed, and the outward stimulus 183 may be used as a stimulus.
  • 16 is a cross-sectional view showing a cooling apparatus of an electromagnet according to another embodiment of the present invention.
  • the cooling coil 168 the hollow coil in which the hollow is formed to flow the cooling fluid (cooling water) is referred to as the cooling coil 168.
  • the cooling fluid flows into the hollow. In this way, when a current flows through the cooling coil, a magnetic field is generated and cooling is performed simultaneously with the generation of the magnetic field.
  • Coil 164 is used because there is no hollow, unlike the conventional electromagnet, the total thickness becomes that thin.
  • T total total number of turns
  • T total / m the thickness of the coil layer can be configured even thinner. Therefore, even when only one layer of the cooling coil 168 is laminated to form the core 162, a sufficient cooling effect can be obtained by the cooling coil 168.
  • one of two electrodes provided in the coil 164 may be electrically connected to the cooling coil 168 to allow current to flow in the cooling coil 168.
  • the cooling coil 168 since the cooling coil 168 has a small number of windings and a short length, the electric resistance that is increased by the cooling coil 168 may be negligible because the electric resistance is very small. Therefore, an increase in electrical resistance can be neglected while generating a slightly higher magnetic flux than when using only the coil 164.
  • Figure 17 is a cross-sectional view showing a cooling jacket and a winding core according to an embodiment of the present invention
  • Figure 18 is a perspective view showing an electromagnet constituted by Figure 17 according to an embodiment of the present invention.
  • the side cooling jacket 190 is provided outside the winding core 16 in which the coil 164 is wound.
  • the side cooling jacket 190 is configured as a pair to surround the winding core 16 in a state where one side is supported by the pedestal cooling jacket 110-1. That is, the pair of side cooling jackets 190 are fixed to each side of the pedestal cooling jacket 110-1 or one side of the flux hub 130, and the extended portions are configured to surround the winding core 16.
  • the side cooling jacket 190 has a cooling layer 169 implemented by air cooling or water cooling. Alternatively, the cooling fin 191 may be provided for the purpose of maximizing the surface area of the cooling layer 169 in order to implement air cooling.
  • a cooling water passage 173 is provided in the cooling layer 169 to circulate the cooling fluid or the cooling water.
  • a cooling layer may also be provided between the coil 164 and the core 162 constituting the winding core 16.
  • the magnetic field efficiency compared to the current is inversely proportional to the thickness of the cooling layer. That is, when the thickness of the cooling layer is thickened and the distance between the electric coil layer and the magnetic core layer increases, the magnetic field efficiency relative to the current may be reduced.
  • both the outside and the inside of the coil 164 may include a cooling layer.
  • the best cooling performance can be secured.
  • FIG. 18A a multi-core electromagnet having a H-shaped or X-shaped magnetic flux hub structure having a cooling jacket is illustrated.
  • the configuration of the magnetic flux hub 130, the winding core 16, and the magnetic pole cores 18 and 19 is similar to the above-described embodiment, and thus description thereof will be omitted.
  • the side cooling jacket 190 is configured by being supported on both sides of the pedestal cooling jacket 110-1 so that the cooling fins 191 are inserted into the outer side of the winding core 16.
  • Cooling fins 191 is configured to be air-cooled or water-cooled to maximize the contact area with air or cooling water to efficiently discharge heat.
  • the cooling fins 191 are not different from those consisting of cooling water passages 173 through which cooling water can instead circulate. That is, the cooling core 173 may be provided in the side cooling jacket 190 surrounding the winding core 16 to cool the winding core in a water-cooled manner. Alternatively, the air-cooled type and the water-cooled type can be mixed to be configured. In the space outside the cooling water passage 173 through which the cooling water flows, the cooling fin 191 may be configured to increase the heat exchange efficiency by maximizing a contact area of the cooling water.
  • FIG. 18C the pedestal cooling jacket 110-1 supporting the winding core 16 on the lower surface is shown.
  • Pedestal cooling jacket (110-1) is composed of a cooling fin 111 is inserted into the inner side in contact with the winding core (16).
  • the cooling fins 111 are configured to efficiently discharge heat generated from the winding core 16 by maximizing a contact area with air or cooling water.
  • a cooling water passage circulating inside the pedestal cooling jacket 110-1 may be installed to form a water cooling system.
  • the pedestal cooling jacket 110-1 and the side cooling jacket 190 may include both air cooling and water cooling. That is, in the space where the coolant flows inside the side cooling jacket 190 and the pedestal cooling jacket 110-1, a cooling water duct for circulating the cooling water is installed and cooling fins 111 and 191 for maximizing the contact area of the cooling water. It can be configured to increase the heat exchange efficiency.
  • the side cooling jacket 190 and the pedestal cooling jacket (110-1) and the winding core 16 is easy to lift. Therefore, it is necessary to fill a material between the side cooling jacket 190 and the pedestal cooling jacket 110 and the winding core 16 to facilitate heat exchange. Cooling the side cooling jacket 190 and the pedestal using heat transfer materials such as grease, copper plate and indium foil (foil) to increase the thermal conductivity between the side cooling jacket 190 and the pedestal cooling jacket 110 and the winding core 16. The cooling efficiency may be improved by configuring the gap between the jacket 110 and the winding core 16. In addition, the side cooling jacket 190 and the pedestal cooling jacket 110 may be in contact with the magnetic flux hub 130 to cool the magnetic flux hub 130.
  • 19 is a perspective view showing an electromagnet according to another embodiment of the present invention.
  • 19 is similar in configuration to the magnetic flux hub 130, the magnetic pole cores 18 and 19, and the winding core 16 of the above-described embodiment, and thus description thereof will be omitted.
  • a cooling water hub 210 is configured in the pedestal.
  • the cooling water hub 210 configures a plurality of inlets and outlets by forming a cooling water inlet and an outlet for each of the winding cores 16. That is, the inlet and outlet of the coolant hub 210 should be distinguished from the inlet and the outlet of the coolant, and may be configured by dividing it into one pair so as to circulate one winding core 16.
  • the cooling water hub 210 By configuring the cooling water hub 210, it is possible to arrange the connecting pipes connecting the plurality of cooling water passages when each of the winding cores 16 has respective cooling water passages. That is, when the cooling water hub 210 is not present, the number of connecting pipes connecting the cooling water paths becomes very large, and the cooling water pipes may be bundled to increase complexity and difficult to clean up.
  • Cooling water hub 210 is configured by condensing the connection and the bundle of the cooling water to cool the respective winding cores 16 to the cooling water inlet and outlet to gather in one place, integrally with the pedestal 110 is configured for convenient control .
  • the cooling water hub 210 protrudes to the outside in the above-described drawings, it may be configured to be built in the pedestal 110. In this case, the effect of cooling the pedestal can also be expected.
  • 20 is a graph showing the indicators represented by the multi-core electromagnet according to an embodiment of the present invention.
  • 20 (a) is a graph showing the amount of change in coil resistance according to the increase in the number of winding cores. Coil resistance can be calculated as the number of cores decreases. That is, when the number of cores is increased, the increase in the outer diameter is smaller than that of concentrating all the coils on one core, thereby reducing the electrical resistance.
  • the coil 164 wound in FIG. 20 is a graph showing an amount of change in coil resistance according to an increase in layers.
  • the resistance generated in the coil increases in series.
  • the linear increase in resistance that occurs at coil 164 is indicated by a solid line.
  • looking at the solid line it is possible to obtain a calculation result in which the increase in the resistance generated in the coil 164 is relaxed as the number of cores increases.
  • the resistance generated in the coil 164 may be expressed by Equation 7 below.
  • R coil represents the electrical resistance of the magnetic coil
  • R w / L represents the electrical resistance per length of the magnetic coil
  • m represents the number of cores
  • r CL (i) represents the i-th coil layer 2 Represents the radius
  • k represents the number of turns per layer of coil.
  • 21 is a graph showing a change in the magnetic field of the multi-core electromagnet with the increase of the current applied to the magnetic coil according to an embodiment of the present invention.
  • 21 (a) is a graph showing the magnitude of the magnetic field generated by each winding core per winding core.
  • the magnetic field generated in one of the winding cores 32 and 33 of the electromagnet composed of 10 or more cores is shown to be the smallest. However, it can be seen that the difference decreases as the current increases.
  • the number of turns t bobbin per winding core 32, 33 is the total number of turns (T total ) divided by the number of cores (m) (T total / m). If the number of winding cores 32 and 33 is different, assuming that the total number of coil turns N is the same and the sum of the coil areas of the winding cores 32 and 33 is the same, one winding core 32 When the total number of windings (T total ) is wound at 33, it can be seen that the magnetic saturation is easy even with a small current. That is, when the total number of windings (T total ) is distributed and wound on the plurality of winding cores 32 and 33, the magnetic flux is dispersed and is not easily saturated.
  • the number of winding cores 32 and 33 increases, so that the self saturation current per winding core increases by the number of winding cores ( m ) times.
  • the magnetic field per magnetic core before magnetic saturation i.e. at low power, decreases at a rate of B 1core / m compared to one winding core (B 1core ), but at the magnetic pole-focused pole
  • the magnetic field of is multiplied by the number of winding cores (m), which is similar to that of one winding core 32 and 33.
  • the area of the magnetic pole cores 34 and 35 is sufficiently large to receive all of the magnetic force generated in the winding cores 12, 16, 20, 24, 25, 28, 29, 32, 33 in the magnetic pole cores 34 and 35.
  • the magnetic field in the magnetic pole cores 34 and 35 increases in proportion to the number of cores (m) at the maximum current because the magnetic field in the magnetic pole cores 34 and 35 increases with a high slope with respect to the current during the current period, in which the number of cores (m) times is larger.
  • a calculation result can be obtained in which the magnetic field increases. That is, the low current generates a magnetic field that is not significantly affected by the number of cores m, but as the current increases, the magnitude of the magnetic field increases in proportion to the number of the winding cores 33 and 34.
  • the mounting adapter 134 may be used as a magnetic pole core interchangeable electromagnet that can be interchangeably mounted with a magnetic pole core 18 having a shape suitable for various applications.
  • a general pole type magnetic pole core 18 or an optical through pole type magnetic pole core 18-1 may be detachably attached to the housing of the magnetic pole core as necessary.
  • Such magnetic pole core interchangeable electromagnets are advantageous for improving productivity. Conventional electromagnets could simply replace winding cores with different pole face shapes.
  • the mounting adapter 134 may be provided to replace the magnetic pole cores 18 and 18-1 having various shapes ordered by the user, which is advantageous for profit generation.
  • mass production of platform-type multicore electromagnets, excluding magnetic poles, is also advantageous to lower manufacturing costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

The present invention relates to an apparatus for preventing blockage of a slurry pump formed such that a concentration of solid particles does not exceed a threshold value so as to prevent the occurrence of blockage in a slurry pump, and an electromagnet for generating a magnetic field by winding a coil around a core comprising: a support for supporting the electromagnet; a plurality of winding cores formed by winding coils around cores, and comprising at least three winding cores having magnetic poles when a voltage is applied to the coils through an electrode terminal for supplying the power to the electromagnet; a pair of magnetic flux hubs formed to be supported by the support and to symmetrically face each other, mechanically coupling the plurality of winding cores, and concentrating the magnetic field to be generated from the plurality of winding cores; and a pair of magnetic pole cores having polarity caused by the magnetic field concentrated by the pair of magnetic flux hubs, and supported so as to symmetrically face each other in a state in which the cores are coupled to the magnetic flux hubs, and thus the electromagnet reduces an electrical and magnetic resistance, and has high efficiency on the basis of a Halbach array so as to reduce power consumption.

Description

[규칙 제37.2조에 의해 ISA가 부여한 발명의 명칭] 다중 코어 구조를 갖는 전자석[Name of invention given by ISA under Rule 37.2] 전자 Electromagnet having a multi-core structure
본 발명은 다중 코어 구조를 갖는 고효율 전자석에 관한 것으로, 더욱 상세하게는 코어에 코일을 권선하여 자기장을 발생하는 전자석에서 최소 세 개 이상의 코어와 최소 한 개의 자속허브 그리고 자극을 구비하여 각각의 코어에서 발생하는 자속(magnetic flux)을 하나의 자속허브로 집속하여 효율을 향상시킨 다중 코어 구조를 갖는 고효율 전자석에 관한 것이다.The present invention relates to a high-efficiency electromagnet having a multi-core structure, and more particularly, to at least three cores, at least one magnetic flux hub, and a magnetic pole in an electromagnet generating a magnetic field by winding a coil in the core. The present invention relates to a high efficiency electromagnet having a multi-core structure that improves efficiency by concentrating generated magnetic flux with one magnetic flux hub.
일반적으로 전자석은 암페어의 법칙에 의해 원형 코일에 전류가 흐르면 코일 내부에 위치한 권선코어가 자석의 성질을 나타내어 동작한다. In general, the electromagnet is operated by the ampere's law when the current flows through the circular coil, and the winding core located inside the coil exhibits the properties of the magnet.
전자석의 세기는 코일 턴수(N)와 흐르는 전류(I)에 비례한다. 따라서, 일정한 전류로 큰 자기장을 얻기 위해서는 코일의 턴수(number of coil turn)를 증가시키는(H ∝ μ × NI) 것이 일반적이다. 여기서, μ는 자기 투자율을 나타내고, N은 단위 길이 당 턴수를 나타내며, I는 전류를 나타낸다. The intensity of the electromagnet is proportional to the number of coil turns N and the current I flowing. Therefore, in order to obtain a large magnetic field with a constant current, it is common to increase the number of coil turns (H∝μ × NI). Where μ represents the magnetic permeability and N is Number of turns per unit length, where I is Indicates current.
제한된 공간에 코일의 턴수(N)를 증가시키면, 코일레이어(coil layer)의 두께가 증가하고, 증가하는 코일레이어의 두께에 비례하여 코일의 길이가 급격하게 증가하므로 전기저항 또한 증가하며, 이에 따라 소비전력(발열)이 급격하게 증가한다. 따라서 동일한 전류로 큰 자기장을 얻기 위해서는 투자율이 높은 코어재료와 저항이 낮은 코일 재료들을 사용하게 된다. 이와 같은 연구에 의해 철(Fe)을 기반으로 한 니켈아연 합금 및 철을 기반으로 한 코발트아연 등과 같은 고자기투자율(μ) 합금 재료들이 개발되었다. 그러나, 이와 같은 연구에 의해 낮은 전기저항률(resistivity) 재료와 고투자율 재료의 성능이 한계점에 도달한 상태이다. Increasing the number of turns N of the coil in a limited space increases the thickness of the coil layer and increases the electrical resistance as the length of the coil increases rapidly in proportion to the increasing thickness of the coil layer. Power consumption (heat generation) increases rapidly. Therefore, to obtain a large magnetic field with the same current, high permeability core materials and low resistance coil materials are used. This research led to the development of high magnetic permeability (μ) alloy materials, such as iron-based nickel zinc alloys and iron-based cobalt zinc. However, these studies have reached the limits of the performance of low resistivity materials and high permeability materials.
또한, 구리 재질의 코일의 전기저항이 발열원이 되기 때문에 발열 자체를 회피하는 것은 불가능하므로 일반적으로는 냉각 방법을 사용한다. 냉각 방법 중에 발열을 억제하기 위한 냉각수를 흘릴 수 있는 중공이 있는 코일을 사용할 수 있다. 이 경우, 중공이 형성된 코일은 두께가 두꺼워 권선 수를 증가하기 어려운 문제점이 있다. In addition, since the electrical resistance of the copper coil is a heat generating source, it is impossible to avoid the heat generation itself. Generally, a cooling method is used. In the cooling method, a coil with a hollow that can flow cooling water for suppressing heat generation can be used. In this case, the hollow formed coil has a problem that it is difficult to increase the number of windings because the thickness is thick.
중공이 있는 코일을 사용하지 않고, 포일(foil)형 코일을 사용하여 팬케익 구조로 제작함으로써, 권선 층간 접촉면적 증가로 열전도성이 향상되어 냉각성이 향상되도록 구성할 수 있다. 이와 같은 팬케익 구조는 냉각부 부피 감소로 권선부 부피가 감소하고 자기폐회로 길이가 축소되어 자기저항이 감소된다. 그러나, 포일형 코일을 사용한 팬케익 구조도 권선부 크기가 커질수록 냉각부 크기가 증가하여 권선부를 감싸는 자기회로의 길이가 증가한다는 문제점이 있다. By using a foil-type coil and not using a coil with a hollow, it is manufactured in a pancake structure, so that the thermal conductivity is improved by increasing the contact area between the winding layers, and thus the cooling can be improved. Such a pancake structure reduces the volume of the winding part by reducing the volume of the cooling part and reduces the magnetic resistance by reducing the length of the magnetic closure circuit. However, the fancake structure using the foil-type coil also has a problem in that as the size of the winding portion increases, the size of the cooling portion increases so that the length of the magnetic circuit surrounding the winding portion increases.
초고자기장을 얻기 위하여 전기저항이 없는 초전도 선재를 이용한 초전도 자석이 개발되었다. 그러나 초전소 자석을 이용한 전자석은 초전도로 전환되는 임계온도 이하에서만 동작이 가능한 한계가 있으며, 또한 진공보냉 냉매 탱크 또는 냉동기를 구비해야 하기 때문에 운영비가 급격하게 증가하는 문제점이 있다.A superconducting magnet using superconducting wire without electric resistance has been developed to obtain the ultra high magnetic field. However, the electromagnet using a supersonic magnet has a limit that can be operated only below a critical temperature converted to superconductivity, and also has a problem in that operating costs increase rapidly because a vacuum coolant tank or a refrigerator must be provided.
또한, 동일한 전류로 큰 자기장을 얻기 위해서 두꺼운 코일을 사용하고, 코일 턴수(N)를 올리는 방법이 있지만, 코일 턴수(N)를 증가시키게 되면, 전자석의 부피가 커지게 되고, 제작 비용이 증가하며, 무게와 부피의 증가로 인하여 부가적으로 물류비용, 설치비용 및 관리비용 등이 증가하는 문제점이 있다. In addition, a thick coil is used to obtain a large magnetic field with the same current, and there is a method of increasing the coil turn number (N). However, increasing the coil turn number (N) increases the volume of the electromagnet and increases the manufacturing cost. Due to the increase in weight and volume, there is a problem of additionally increasing logistics costs, installation costs and management costs.
도 1은 일반적인 전자석의 단면을 나타낸 도면이다. 도 1을 참조하면, 많은 양의 자속을 수용하기 위해 권선코어(1)의 반경(rC)을 키울 경우 외경이 증가하여 코일(2)의 저항(Rcoil)이 증가한다. 1 is a view showing a cross section of a general electromagnet. Referring to FIG. 1, when the radius r C of the winding core 1 is increased to accommodate a large amount of magnetic flux, the outer diameter thereof is increased to increase the resistance R coil of the coil 2.
또한, 코일 반경(rcoil=tCL+rC)이 큰 코일을 수용하기 위해 자속을 유도하는 경로의 길이가 증가하며, 따라서 자기저항(magnetic resistance)이 증가하고, 결국 동일한 전력에 대비하여 출력 자기장의 효율을 저하시킨다. 여기서, tCL은 코일레이어(2)의 두께를 나타낸다.In addition, the length of the path that induces magnetic flux to accommodate a coil with a large coil radius (r coil = t CL + r C ) increases, thus increasing magnetic resistance and eventually outputting the same power. Decreases the efficiency of the magnetic field. Here, t CL represents the thickness of the coil layer 2.
도 2는 일반적인 전자석에 나타나는 전기적 자기적 저항들의 경향을 나타낸 그래프이다. 2 is a graph showing the tendency of electrical magnetic resistances appearing in a general electromagnet.
도 2의 (a)는 코일레이어 두께의 증가에 따른 코일의 저항을 나타낸 그래프이다. 도 1의 설명에서와 같이 많은 양의 자속(magnetic flux)을 수용하기 위해 코어(1)의 반경(rC)을 키울 경우 코일(2)의 저항(Rcoil)이 증가한다. 이는 Rcoil=Rw/L +Ltotal의 식으로 나타낼 수 있으며, 코일(2)의 저항이 급격히 증가한다. 여기서, Rcoil은 코일(2)의 저항을 나타내며, Rw/L 은 코일(2)의 길이당 저항을 나타내고, Ltotal은 전체 코일(2)의 저항이다. 2 (a) is a graph showing the resistance of the coil with increasing coil layer thickness. As shown in FIG. 1, when the radius r C of the core 1 is increased to accommodate a large amount of magnetic flux, the resistance of the coil 2 increases. This can be represented by the formula R coil = R w / L + L total , and the resistance of the coil 2 increases rapidly. Here, R coil represents the resistance of the coil 2, R w / L represents the resistance per length of the coil 2, L total is the resistance of the entire coil (2).
전체 코일(2)의 저항은 다음의 수학식 1로 나타낼 수 있다. The resistance of the entire coil 2 can be represented by the following equation (1).
Figure PCTKR2015012554-appb-M000001
Figure PCTKR2015012554-appb-M000001
도 2의 (b)는 코일레이어 두께의 증가에 따른 전력 증가량을 나타낸 그래프이다. 제한된 공간에 코일의 턴수(N)가 증가하면, 코일(2)의 두께가 증가하고, 증가한 코일(2)의 두께에 비례하여 전기저항이 증가하며, 이에 따라 소비전력(발열)량이 급격하게 증가한다. 2 (b) is a graph showing the amount of power increase as the thickness of the coil layer increases. When the number of turns N of the coil increases in a limited space, the thickness of the coil 2 increases, and the electrical resistance increases in proportion to the increased thickness of the coil 2, thereby rapidly increasing the power consumption (heating). do.
도 2의 (c)는 코일레이어 두께의 증가에 따른 자속 경로의 길이를 나타낸 그래프이다. 코일(2)의 두께가 증가할수록 코일 반경(rcoil=tCL+rC)이 커지며, 대응하여 자속경로(l)가 증가한다. 2 (c) is a graph showing the length of the magnetic flux path as the coil layer thickness increases. As the thickness of the coil 2 increases, the coil radius r coil = t CL + r C increases, and correspondingly, the magnetic flux path 1 increases.
도 2의 (d)는 자속 경로의 증가에 따른 자기 저항을 나타낸 그래프이다. 도 2의 (c)에서와 같이 자속경로(l)가 증가할수록 자기저항(magnetic resistance)이 증가하고(Rm = l /μS), 결국 자기저항의 증가로 인하여 전력 대비 출력 자기장의 저하를 야기하게 된다. 여기에서 S는 자속 경로의 단면적이다.2D is a graph showing magnetoresistance with increasing magnetic flux path. As shown in (c) of FIG. 2, as the magnetic flux path 1 increases, magnetic resistance increases (R m = l / μS), eventually increasing the magnetoresistance causes the output magnetic field to drop in power. Where S is the cross-sectional area of the magnetic flux path.
따라서 전자석의 권선수를 증가시키는 방법 및 자극코어의 반경을 키움으로써 전자석의 자기장 성능을 향상시킬 수 있으나, 결국 전자석의 효율을 낮추게 되며, 전술한 바와 같이 소비전력과 제조단가 그리고 유통비용을 증가시키는 문제점이 발생한다. Therefore, the magnetic field performance of the electromagnet can be improved by increasing the number of turns of the electromagnet and increasing the radius of the magnetic pole core, but the efficiency of the electromagnet is lowered. As a result, the power consumption, manufacturing cost, and distribution cost are increased. A problem occurs.
도 3은 일반적인 코어에 코일이 권선된 단면을 나타낸 도면이다. 자극에서는 출력되는 자속 밀도가 중요하지만, 코어에서는 코어가 생산하는 총 자속량이 중요하다. 총 자속량은 코어의 단면적이 가장 중요한 변수이며, 코일 권선량 또는 코일 권선층의 두께(tCL) 또한 중요한 변수가 된다. 코어의 단면적이 넓을수록 그리고 코일 권선이 많을수록 총자속량은 증가한다. 하지만, 전력(P) 대비 자기장(H) 효율(H/P) 측면에서 코일 층의 두께가 한없이 두꺼워지는 것은 바람직하지 않으며 발열 문제를 야기시킬 수 있다. 3 is a cross-sectional view of a coil wound around a common core. The magnetic flux density output is important for the stimulus, but the total flux produced by the core is important for the core. The total magnetic flux is the most important variable in the cross-sectional area of the core, and the coil winding amount or the thickness t CL of the coil winding layer is also an important variable. The larger the cross-sectional area of the core and the more coil windings, the higher the total flux. However, it is not preferable that the thickness of the coil layer is infinitely thick in terms of the magnetic field (H) efficiency (H / P) relative to the power (P) and may cause a heat generation problem.
다중 코어 전자석을 구현하기 위해서는 코어 직경(Dcore)과 코일층 두께(tCL)의 합, 즉 코일외경(2tCL + Dcore)이 작을수록 유리하다. 하지만, 코어가 지나치게 가늘면 적은 전류에도 자기포화에 도달하여 목표하는 총 자속량에 도달하기 어려운 문제점이 있어 설계에 주의가 필요하다. In order to realize a multi-core electromagnet, the sum of the core diameter (D core ) and the coil layer thickness (t CL ), that is, the coil outer diameter (2t CL) Smaller + D core ) is advantageous. However, if the core is too thin, the magnetic saturation reaches a small amount of current, making it difficult to reach the target total magnetic flux.
또한 기존의 전자석은 한번 제작하면 권선코어의 변경이 제한적이므로 용도에 따라 기존 전자석에 심각한 변경을 요하거나 아예 새로운 전자석 제작을 필요로 한다. 특히 중공이 있는 권선코어가 필요한 경우, 기존 권선코어에 중공을 형성할 수는 있으나, 폴 간의 간격을 조절할 수 없는 문제에 봉착하기도 한다. In addition, since the change of the winding core is limited once the existing electromagnet is manufactured, it requires a serious change to the existing electromagnet or a new electromagnet production at all. In particular, if a winding core with a hollow is required, it may be possible to form a hollow in the existing winding core, but may encounter a problem in that the gap between poles cannot be adjusted.
또한, 자극에서 자기장을 집속하여 자기장의 세기를 향상시키기 위한 튀어나온 경사구조, 즉 테이퍼(taper) 형태의 경사구조에서 있어서 경사각은 가변이 불가능하다. 경사각의 가변이 불가능 할 뿐 아니라 사용하고자 하는 용도에 따라서 튀어나온 경사구조와 들어간 경사구조를 각각 별도로 제작해야 한다는 문제점이 있다. In addition, the angle of inclination is not variable in the protruding inclined structure for converging the magnetic field at the magnetic pole to improve the strength of the magnetic field, that is, in the tapered shape. Not only is it impossible to change the inclination angle, but there is a problem in that the inclined structure and the inclined structure that protrude according to the intended use have to be manufactured separately.
따라서, 본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 이루어진 것으로서, 본 발명의 목적은 전기 및 자기저항을 감소시키고, 소비전력을 저감하기 위해 할백 어레이(Halbach array)에 기초를 둔 다중 코어 구조를 갖는 고효율 전자석을 제공하기 위한 것이다. Accordingly, the present invention has been made to solve the conventional problems as described above, and an object of the present invention is to reduce the electrical and magnetic resistance, and to reduce power consumption, a multi-core structure based on a Halbach array. To provide a high efficiency electromagnet having a.
또한, 본 발명의 목적은 다중 코어 형태의 구조에 있어서 소비전력을 분산할 수 있어 냉각 방법을 간소화 할 수 있는 다중 코어 구조를 갖는 전자석을 제공하는 것이다. It is also an object of the present invention to provide an electromagnet having a multi-core structure that can dissipate power consumption in a multi-core structure and simplify the cooling method.
또한, 본 발명의 목적은 다중 코어 형태의 구조에 있어서 코일 턴수를 줄여 전기저항을 저감할 수 있는 다중 코어 구조를 갖는 전자석을 제공하는 것이다.In addition, an object of the present invention is to provide an electromagnet having a multi-core structure that can reduce the number of coil turns in the multi-core structure to reduce the electrical resistance.
또한, 본 발명의 목적은 개선된 자기회로 구조에서 발생하는 구성요소들(자속코어)에 멀티코어를 수용할 수 있도록 하고 냉각기능을 수행할 수 있으며 자극을 교환할 수 있도록 하는 기능성을 부여하여 효율성을 높인 다중 코어 구조를 갖는 고효율 전자석을 제공하기 위한 것이다. In addition, an object of the present invention is to provide the ability to accommodate the multi-core to the components (magnetic flux core) generated in the improved magnetic circuit structure, to perform the cooling function and to exchange the magnetic poles efficiency It is to provide a high efficiency electromagnet having a multi-core structure with increased.
또한, 본 발명의 목적은 강자성 포일을 이용하여 권선코어의 중심부 두께를 증가시키는 권선코어구조로 설계함으로써 자기저항을 감소시켜 구조의 변경만으로 자성을 향상시킨 다중 코어 구조를 갖는 고효율 전자석을 제공하기 위한 것이다. In addition, an object of the present invention is to provide a high-efficiency electromagnet having a multi-core structure to improve the magnetism only by changing the structure by reducing the magnetic resistance by designing the winding core structure to increase the center thickness of the winding core using a ferromagnetic foil will be.
또한, 본 발명의 목적은 권선층을 얇게 하여 간소화된 구조로 설계함으로써 개선된 자기회로 구조를 갖는 다중 코어 구조를 갖는 고효율 전자석을 제공하기 위한 것이다. It is also an object of the present invention to provide a highly efficient electromagnet having a multi-core structure with an improved magnetic circuit structure by designing a simplified structure by thinning the winding layer.
상기와 같은 목적을 달성하기 위한 본 발명에 따른, 다중 코어 구조를 갖는 고효율 전자석은, 코일이 코어에 권선되어 구성되고 전극터미널을 통해 상기 코일에 전압이 인가되면, 자기장을 발생시키는 적어도 3개 이상으로 구성되는 다수의 권선코어; 서로 대칭되어 마주보도록 구성되어 상기 다수의 권선코어를 결합시켜, 상기 다수의 권선코어에서 발생하는 자기장을 집속하도록 자성체로 구성된 한 쌍의 자속허브; 및 상기 한 쌍의 자속허브로부터 집속된 자기장에 의해 극성을 가지며 상기 자속허브에 결합된 상태로 대칭되어 마주보도록 지지되는 한 쌍의 자극코어;를 포함하고, 상기 다수의 자속허브는, 상기 다수의 권선코어를 수용하는 다수의 코어수용부; 상기 다수의 코어수용부의 내측에 구성되어 자극코어를 수용하는 자극수용부; 및 상기 자속허브의 외부 또는 내부에 구성되어 상기 권선코어에 권선된 코일에 의해 발생하는 열을 냉각시키는 냉각부;를 포함하고, 상기 자속허브의 모서리는, 모따기(Edge Cutting, chamfering) 형태로 구성된다.According to the present invention for achieving the above object, a high-efficiency electromagnet having a multi-core structure, at least three or more to generate a magnetic field when the coil is wound around the core and the voltage is applied to the coil through the electrode terminal A plurality of winding core consisting of; A pair of magnetic flux hubs configured to be symmetrical to face each other and to combine the plurality of winding cores to focus a magnetic field generated in the plurality of winding cores; And a pair of magnetic pole cores having a polarity by a magnetic field focused from the pair of magnetic flux hubs and symmetrically facing each other in a coupled state to the magnetic flux hubs, wherein the plurality of magnetic flux hubs comprise: A plurality of core receiving portion for receiving the winding core; A magnetic pole accommodating part configured to be provided inside the plurality of core accommodating parts to accommodate the magnetic pole cores; And a cooling unit configured to be formed outside or inside the magnetic flux hub to cool heat generated by the coil wound on the winding core, wherein the edge of the magnetic flux hub is configured in the form of chamfering (edge cutting, chamfering). do.
상기 다수의 권선코어는 상기 자극코어를 둘러싸도록 구성되며 상기 권선코어를 관통하는 자속 방향의 축이 상호 평행하도록 상기 자속허브에 결합되어 구성될 수 있다. The plurality of winding cores may be configured to surround the magnetic pole cores and may be coupled to the magnetic flux hub such that axes of magnetic flux directions passing through the winding cores are parallel to each other.
상기 자극수용부는, 상기 자극코어를 수용하며 경통 형태로 구성되는 자극경통; 상기 자극경통을 수용하여 상기 자극코어를 상기 자속허브에 결합시키는 마운팅 어뎁터; 및 상기 자극경통 및 상기 자극코어를 덮고, 상기 마운팅 어뎁터, 상기 자극경통과 결합되는 자극커버;를 포함하여 구성될 수 있다. The stimulus accommodating part includes: a stimulation tube configured to receive the stimulation core and have a barrel shape; A mounting adapter configured to receive the magnetic pole tube and couple the magnetic core to the magnetic flux hub; And a magnetic pole cover covering the magnetic pole tube and the magnetic pole core, and the mounting adapter and the magnetic pole cover coupled to the magnetic pole tube.
상기 자극코어는, 다음의 수학식을 만족시키는 상기 자극 코어의 단면적을 수용하도록 구성될 수 있다. The magnetic pole core may be configured to accommodate a cross-sectional area of the magnetic pole core that satisfies the following equation.
(Sc × m)/2 < C(S c × m) / 2 <C
(여기서, Sc는 코어 하나당 단면적을 나타내며, m은 코어의 개수를 나타내고, C는 상기 자속허브와 상기 자극과의 접촉면적임)Where S c represents the cross-sectional area per core, m represents the number of cores, and C is the contact area between the magnetic flux hub and the magnetic poles.
상기 자극코어는, 상기 자극코어의 단면적이 다음의 수학식을 만족시키도록 구성될 수 있다. The magnetic pole core may be configured such that the cross-sectional area of the magnetic pole core satisfies the following equation.
(Sc × m) > C(S c × m)> C
(여기서, Sc는 코어 하나당 단면적을 나타내며, m은 코어의 개수를 나타내고, C는 상기 자극코어의 단면적임)Where S c represents the cross-sectional area per core, m represents the number of cores, and C is the cross-sectional area of the magnetic pole core.
상기 자속허브는, 상기 자속허브의 두께가 다음의 수학식을 만족시키도록 구성될 수 있다. The magnetic flux hub may be configured such that the thickness of the magnetic flux hub satisfies the following equation.
rc < TFH r c <T FH
(여기서, rc는 자기코어의 반지름, T FH는 자속허브의 두께임)Where r c is the radius of the magnetic core and T FH is the thickness of the magnetic flux hub.
상기 다수의 코어는, 중심부의 직경과 양측 단부의 직경을 다르게 구성하고, 상기 중심부의 직경이 상기 단부의 직경보다 크게 구성될 수 있다. The plurality of cores may be configured differently from the diameter of the central portion and the diameter of both ends, the diameter of the central portion may be configured larger than the diameter of the end.
상기 중심부의 직경과 상기 양측 단부의 직경은, 다음의 수학식의 범위 내에 있도록 구성될 수 있다. The diameter of the central portion and the diameter of the both ends may be configured to be within the range of the following equation.
1.1 < Dcc /Dce <21.1 <D cc / D ce <2
(여기서, Dcc는 상기 코어의 중심부의 직경을 나타내고, Dce는 코어의 단부의 직경을 나타내는 것임) (Wherein D cc represents the diameter of the center of the core and D ce represents the diameter of the end of the core)
상기 다수의 권선코어는, 상기 양측 단부 중 어느 하나의 길이(Le)에 대한 중심부의 길이(Lc)의 비는 다음의 수학식의 범위 내에 있도록 구성될 수 있다. The plurality of winding cores may be configured such that a ratio of the length L c of the central part to the length L e of any one of the both ends is within the range of the following equation.
1<Lc/Le<31 <L c / L e <3
상기 다수의 권선코어는, 상기 코어에 권선된 코일의 두께(TCL)와 코어의 직경(Dcore)간에 비율이 다음의 수학식의 범위 내에 있도록 구성될 수 있다. The plurality of winding cores may be configured such that a ratio between the thickness T CL of the coil wound on the core and the diameter D core of the core is within the range of the following equation.
0.1 < (TCL /Dcore) < 10.1 < (T CL / D core ) <1
다중 코어 구조를 갖는 고효율 전자석은 상기 권선코일에 권선되어 구성되며, 중공이 형성되어 냉각유체 또는 냉각수가 흐를 수 있도록 구성된 냉각코일을 더 포함하여 구성될 수 있다. The high efficiency electromagnet having a multi-core structure may be configured by winding the winding coil, and further including a cooling coil configured to form a hollow to flow a cooling fluid or cooling water.
상기 냉각코일은 상기 권선코일의 외부 또는 상기 코일과 상기 코어의 사이 중 어느 한곳에 배치되어 구성될 수 있다. The cooling coil may be disposed outside any one of the winding coil or between the coil and the core.
상기 한 쌍의 자속허브를 지지하는 받침대를 더 포함하고, 상기 받침대는, 상기 권선코일과 접촉하는 내측에 구성된 냉각핀; 및 냉각수 또는 냉매가 상기 받침대의 내부를 순환하는 냉각수로;를 포함하여 구성될 수 있다. And a pedestal for supporting the pair of magnetic flux hubs, the pedestal comprising: a cooling fin configured to be in contact with the winding coil; It may be configured to include; and a cooling water or a cooling water coolant circulating the inside of the pedestal.
상기 받침대에 양측면에 각각의 일측이 지지된 상태로 권선코어를 유지하는 한 쌍의 측면 냉각자켓을 더 포함하고, 상기 측면 냉각자켓은, 외측에 내삽되어 구성된 냉각핀; 및 냉각수 또는 냉매가 상기 측면 냉각자켓의 내부를 순환하는 냉각수로;를 포함하여 구성될 수 있다. The pedestal further comprises a pair of side cooling jackets for holding a winding core in a state in which each side is supported on both sides, the side cooling jacket, the cooling fins are interpolated to the outside; And a coolant or a coolant circulating inside the side cooling jacket.
상기 받침대는, 각각의 권선코어를 순환하는 냉각수로의 각각의 냉각수 입구와 출구를 하나의 쌍으로 구분하고 이를 하나로 모아 구성된 냉각수허브를 더 포함하여 구성될 수 있다. The pedestal may further include a coolant hub configured to divide each coolant inlet and outlet into a coolant circulating each winding core into a pair and collect them into one pair.
상기 측면 냉각자켓 및 받침대는, 권선코어와의 사이에 그리스, 동판 및 인듐박판(호일) 중 어느 하나를 메워 넣어 구성될 수 있다. The side cooling jacket and the pedestal may be configured by filling any one of grease, copper plate and indium thin plate (foil) between the winding core.
상기 자극코어는, 내측에 원기둥 형상의 내심코어; 상기 내심코어와 상호 회동 가능하도록 구성하고, 상기 내심코어를 감싸는 외심코어; 상기 내심코어의 일측에 고정되어 상기 내심코어를 앞뒤로 왕복 조절하는 자극핸들; 및상기 외심코어의 외주면에 고정되어 상기 외심코어를 앞뒤로 왕복 조절하는 외심자극핸들;을 포함하여 구성될 수 있다. The magnetic pole core has a cylindrical inner core; An outer core core configured to be rotatable with the inner core core and surrounding the inner core core; A magnetic pole handle fixed to one side of the inner core core to reciprocally adjust the inner core core back and forth; And an outer core stimulation handle fixed to an outer circumferential surface of the outer core to reciprocally adjust the outer core back and forth.
상기 자극코어는, 상기 내심코어를 상기 외심코어보다 돌출되도록 하여 집속된 자기장을 획득하도록 구성될 수 있다. The magnetic pole core may be configured to protrude the inner core core than the outer core to obtain a focused magnetic field.
상기 자극코어는, 상기 외심코어를 상기 내심코어보다 돌출되도록 하여 균일한 자기장을 획득하도록 구성될 수 있다. The magnetic pole core may be configured to protrude the outer core core than the inner core core to obtain a uniform magnetic field.
상기 자극코어는, 상기 내심코어를 상기 외심코어로부터 제거하여 중공이 형성된 자극을 형성하도록 구성될 수 있다. The magnetic pole core may be configured to remove the inner core from the outer core to form a hollow formed magnetic pole.
상기 다수의 코어는, 코어에 권선된 코일과의 사이에 절연막이 구성되고, 상기 절연막은 내절연성 및 내열성의 재질로 구성될 수 있다. In the plurality of cores, an insulating film is formed between the coil wound around the core, and the insulating film may be formed of a material having insulation resistance and heat resistance.
상기 코어수용부는, 상기 자극경통, 상기 마운팅 어뎁터 및 자극커버를 나사로 결합하여 자속허브에 고정하며, 상기 자극경통, 상기 마운팅 어뎁터, 자극커버 및 자극코어를 각각 탈착 가능하도록 구성될 수 있다. The core accommodating unit may be coupled to the magnetic pole tube, the mounting adapter and the magnetic pole cover with screws to fix the magnetic flux hub, and the magnetic pole barrel, the mounting adapter, the magnetic pole cover, and the magnetic pole core may be detachable.
상기와 같은 목적을 달성하기 위한 본 발명에 따른, 다중 코어 구조를 갖는 고효율 전자석은, 코어에 코일을 권선하여 자기장을 발생하는 전자석에 있어서, 전자석를 지지하는 받침대; 코일이 코어에 권선되어 구성되고 상기 전자석에 전원을 공급하는 전극터미널을 통해 상기 코일에 전압이 인가되면, 자기장을 형성하는 다수의 권선코어; 상기 받침대에 의해 지지되고 대칭되어 마주보도록 구성되며 상기 다수의 권선코어를 기구적으로 결합하고, 상기 권선코어에서 발생하는 자기장을 집속하는 한 쌍의 자속허브; 및 상기 한 쌍의 자속허브로부터 집속된 자기장에 의해 극성을 갖도록 상기 자속허브에 의해 연결 상태로 지지되며 서로 마주보도록 배치된 한쌍의 자극코어;를 포함하여 구성된다. According to the present invention for achieving the above object, a high-efficiency electromagnet having a multi-core structure, the electromagnet for generating a magnetic field by winding a coil in the core, a support for the electromagnet; A coil wound around the core and configured to form a magnetic field when a voltage is applied to the coil through an electrode terminal for supplying power to the electromagnet; A pair of magnetic flux hubs supported by the pedestal and configured to face each other symmetrically and mechanically coupling the plurality of winding cores, and focusing a magnetic field generated in the winding cores; And a pair of magnetic pole cores supported in a connected state by the magnetic flux hub and disposed to face each other to have polarity by a magnetic field focused from the pair of magnetic flux hubs.
상기 다수의 권선코어는 상기 자극코어를 둘러싸도록 구성되며 상기 권선코어를 관통하는 자속 방향의 축이 상기 자극코어의 축과 평행하게 배치되도록 연결하여 구성될 수 있다. The plurality of winding cores may be configured to surround the magnetic pole cores and may be connected to each other such that an axis in a magnetic flux direction passing through the winding cores is disposed in parallel with the axis of the magnetic pole core.
상기 자속허브는, 상기 다수의 권선코어를 연결시키고 수용하는 다수의 코어수용부; 상기 다수의 코어 수용부의 내측에 구성되며 자극을 수용하는 자극수용부; 상기 코어에 권선된 코일에 의해 발생하는 열을 냉각시키는 냉각부;를 포함하여 구성될 수 있다. The magnetic flux hub, a plurality of core receiving portion for connecting and receiving the plurality of winding cores; A magnetic pole accommodating part configured inside the plurality of core accommodating parts and accommodating magnetic poles; It may be configured to include; a cooling unit for cooling the heat generated by the coil wound on the core.
상기 냉각부는, The cooling unit,
상기 자속허브의 외측으로 공기와의 접촉면을 늘리도록 연장되어 형성된 다수의 방열판을 갖도록 구성될 수 있다. It may be configured to have a plurality of heat sinks formed to extend the contact surface with the air to the outside of the magnetic flux hub.
상기 냉각부는, 상기 자속허브의 내측을 관통하여 순환하는 냉각수의 통로가 형성되도록 구성될 수 있다. The cooling unit may be configured to form a passage of the cooling water circulating through the inside of the magnetic flux hub.
상기 한쌍의 자극코어는, 상기 자속허브의 내측에 형성된 수용부에 결합하는 원통형의 하우징과; 상기 하우징의 내측에 형성된 나사산과의 결합하는 자극; 및 상기 자극의 단부에 형성되어 상기 자극을 회전시켜 상기 자극 간의 간격을 조절하는 자극핸들을 포함하여 구성될 수 있다. The pair of magnetic pole cores, the cylindrical housing coupled to the receiving portion formed inside the magnetic flux hub; A magnetic pole engaging with a screw thread formed inside the housing; And a magnetic pole handle formed at an end of the magnetic pole to adjust the distance between the magnetic poles by rotating the magnetic poles.
상기와 같은 해결수단에 의한 본 발명에 따른 다중 코어 구조를 갖는 전자석은, 전기 및 자기저항을 감소시키고, 소비전력을 저감하기 위해 할백 어레이(Halbach array)에 기초하여 고효율을 갖는 효과가 있다. Electromagnet having a multi-core structure according to the present invention by the above solution has the effect of having a high efficiency based on a Halbach array in order to reduce the electrical and magnetic resistance, and to reduce the power consumption.
또한, 본 발명에 따른 다중 코어 구조를 갖는 전자석은, 개선된 자기회로 구조에서 발생하는 구성요소들(자속코어)에 멀티코어를 수용할 수 있도록 하고 냉각기능을 수행할 수 있으며 자극을 교환할 수 있도록 하는 기능성을 부여하여 효율성을 높인 효과가 있다. In addition, the electromagnet having the multi-core structure according to the present invention can accommodate the multi-cores in the components (magnetic flux cores) generated in the improved magnetic circuit structure, perform cooling functions, and exchange magnetic poles. It has the effect of increasing the efficiency by granting the functionality.
또한, 본 발명에 따른 다중 코어 구조를 갖는 전자석은, 강자성 포일을 이용하여 권선코어의 중심부 두께를 증가시키는 권선코어 구조로 설계함으로써 자기저항을 감소시켜 구조의 변경만으로 자성을 향상시킨 효과가 있다. In addition, the electromagnet having a multi-core structure according to the present invention, by designing the winding core structure to increase the thickness of the center portion of the winding core using a ferromagnetic foil has the effect of improving the magnetism by only changing the structure by reducing the magnetic resistance.
또한, 본 발명에 따른 다중 코어 구조를 갖는 전자석은, 권선층을 얇게 하여 간소화된 구조로 설계함으로써 개선된 자기회로 구조를 갖는 효과가 있다. In addition, the electromagnet having a multi-core structure according to the present invention has the effect of having an improved magnetic circuit structure by designing a simplified structure by thinning the winding layer.
또한, 본 발명에 따른 다중 코어 구조를 갖는 전자석은, 다양한 자기코어를 수용할 수 있는 마운팅 어댑터를 구비하는 플랫폼을 제공하여 자기코어 교환식 전자석을 구현하고, 활용도 및 생산성을 높이는 효과가 있다.In addition, the electromagnet having a multi-core structure according to the present invention, by providing a platform having a mounting adapter that can accommodate a variety of magnetic core to implement a magnetic core interchangeable electromagnet, there is an effect to increase the utilization and productivity.
도 1은 일반적인 전자석의 단면을 나타낸 도면. 1 is a cross-sectional view of a typical electromagnet.
도 2는 일반적인 전자석의 전기 및 자기 저항 경향을 나타낸 그래프.Figure 2 is a graph showing the electric and magnetoresistance tendency of a typical electromagnet.
도 3은 일반적인 코어에 코일이 권선된 단면을 나타낸 도면. 3 is a cross-sectional view of a coil wound around a common core;
도 4는 본 발명의 일 실시예에 따른 3중 코어 형태의 구조를 갖는 전자석의 개념도. Figure 4 is a conceptual diagram of an electromagnet having a structure of the triple core form according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 4중 코어 형태의 구조를 갖는 전자석의 개념도. 5 is a conceptual diagram of an electromagnet having a structure of a quadruple core according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 6중 코어 형태의 구조를 갖는 전자석의 개념도. 6 is a conceptual diagram of an electromagnet having a structure of a six-core form according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 6중 코어 형태의 구조를 갖는 전자석의 개념도. 7 is a conceptual diagram of an electromagnet having a structure of a six-core form according to another embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 8중 코어 형태의 구조를 갖는 전자석의 개념도. 8 is a conceptual diagram of an electromagnet having a structure of an eight-core structure according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 16중 코어 형태의 구조를 갖는 전자석의 개념도.9 is a conceptual diagram of an electromagnet having a structure of a sixteen core form according to an embodiment of the present invention.
도 10은 본 발명의 도 5의 일실시예에 따른 코어에 코일이 권선된 권선코어의 단면을 나타낸 단면도. 10 is a cross-sectional view showing a cross section of a winding core wound on a core according to the embodiment of FIG. 5 of the present invention;
도 11은 본 발명의 일 실시예에 따른 4중 코어 전자석을 나타낸 사시도 및 부분 사시도. 11 is a perspective view and a partial perspective view showing a quad core electromagnet according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 코어수용부를 나타낸 도면. 12 is a view showing a core accommodating part according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 코어수용부와 권선코어의 연결 상태를 나타낸 단면도. Figure 13 is a cross-sectional view showing a connection state of the core accommodating portion and the winding core according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 자속허브와 자극코어의 조립 상태를 나타낸 조립사시도. 14 is an assembled perspective view showing the assembled state of the magnetic flux hub and the magnetic pole core according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 자극핸들을 설명하기 위한 단면도. 15 is a cross-sectional view for explaining a magnetic pole handle according to an embodiment of the present invention.
도 16은 본 발명의 다른 실시예에 따라 전자석의 냉각장치를 나타낸 단면도. 16 is a cross-sectional view showing a cooling apparatus of an electromagnet according to another embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 냉각자켓과 권선코어를 나타낸 단면도. 17 is a cross-sectional view showing a cooling jacket and a winding core according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따른 도 16에 의해 구성된 전자석을 나타낸 사시도. 18 is a perspective view showing an electromagnet constructed by FIG. 16 in accordance with an embodiment of the present invention.
도 19는 본 발명의 다른 실시예에 따른 전자석을 나타낸 사시도. 19 is a perspective view showing an electromagnet according to another embodiment of the present invention.
도 20은 본 발명의 일 실시예에 따른 다중 코어 전자석에 의해 나타나는 지표들을 나타낸 그래프. 20 is a graph showing indicators represented by a multi-core electromagnet in accordance with an embodiment of the present invention.
도 21은 본 발명의 일 실시예에 따른 자기코일에 인가된 전류의 증가에 따른 다중 코어 전자석의 자기장의 변화를 나타낸 그래프. 21 is a graph showing a change in the magnetic field of the multi-core electromagnet with the increase of the current applied to the magnetic coil according to an embodiment of the present invention.
도 22는 자속 허브에는 자극코어를 기계적으로 수용할 수 있는 마운팅 어뎁터를 나타낸 사시도. 22 is a perspective view showing a mounting adapter capable of mechanically receiving a magnetic pole core in the magnetic flux hub.
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings showing an embodiment of the present invention will be described in more detail the present invention.
도 4는 본 발명의 일 실시예에 따른 3중 코어 형태의 구조를 갖는 전자석의 개념도이며, 도 5는 본 발명의 일 실시예에 따른 4중 코어 형태의 구조를 갖는 전자석의 개념도이고, 도 6은 본 발명의 일 실시예에 따른 6중 코어 형태의 구조를 갖는 전자석의 개념도이고, 도 7은 본 발명의 다른 실시예에 따른 6중 코어 형태의 구조를 갖는 전자석의 개념도이며, 도 8은 본 발명의 일 실시예에 따른 8중 코어 형태의 구조를 갖는 전자석의 개념도이고, 도 9는 본 발명의 일 실시예에 따른 16중 코어 형태의 구조를 갖는 전자석의 개념도이다. 4 is a conceptual diagram of an electromagnet having a triple core structure according to an embodiment of the present invention, FIG. 5 is a conceptual diagram of an electromagnet having a quad core structure according to an embodiment of the present invention, and FIG. 6. Is a conceptual diagram of an electromagnet having a six-core structure according to an embodiment of the present invention, Figure 7 is a conceptual diagram of an electromagnet having a six-core structure according to another embodiment of the present invention, Figure 8 is Conceptual diagram of an electromagnet having a structure of an eight core form according to an embodiment of the invention, Figure 9 is a conceptual diagram of an electromagnet having a structure of a sixteen core form according to an embodiment of the present invention.
도 4를 참조하면, 코일이 코어에 권선된 3개의 권선코어(12)가 도시되며, 나란하게 120도의 일정한 간격으로 배치된 3개의 권선코어(12)로부터 발생된 자기장이 자속허브(미도시됨)에 집속된다. 여기에서 권선코어(12)는 고투자율 코어에 코일이 감겨있는 것을 지칭하는 것이다. 3개의 권선코어(12)들은 상호 척력이 발생하도록 구성한다. 또한, 3개의 권선코어(12)가 마주보는 자극코어(14, 15)를 둘러싸고 자속 방향의 축이 상호 평행하게 120도의 등 간격으로 배치되도록 연결하여 자극코어(14, 15)간 간격이 최소인 곳을 벗어나려는 누설자속을 최소화시켜 자극코어(14, 15) 간 자속밀도가 향상되도록 구성한다. 권선코어(12)에서 발생하는 자속 방향의 축이 상기 각각의 자극코어(14, 15)의 축과 평행하게 배치되도록 연결한다. 3개의 권선코어(12)의 일측을 집속시켜 N극을 형성하기 위하여 자속허브를 구성한다. 3개의 권선코어(12)의 타측을 집속시켜 S극을 형성하기 위한 자속허브를 구성한다. 이와 같이 전자석이 마주보는 2개의 대응하는 극성을 갖도록 구성한다. 이때, 자속허브는 3개의 권선코어(12)의 일측을 고정하는 자속허브와 권선코어(12)들의 타측을 고정하는 자속허브로 구성될 수 있다. 한 쌍의 자속허브에 의해 집속된 각각의 자기장은 각각의 자극코어(14, 15)에 집속되어 각각 N극과 S극을 형성한다. 3개의 권선코어(12)에 권선된 각각의 코일은 직렬 또는 병렬로 연결될 수 있어 2 종류의 저항(3Rcoil 또는 1/3Rcoil)으로 구성할 수 있다. 도 4에 도시된 전자석에 있어서, 자속허브는 T자 또는 Y자의 형태를 가지므로 ‘T’자형 또는 'Y‘자형 자속허브로 지칭하기로 한다. Referring to FIG. 4, three winding cores 12 are shown in which coils are wound around a core, and magnetic fields generated from three winding cores 12 arranged side by side at regular intervals of 120 degrees are shown as magnetic flux hubs (not shown). Focused on). Here, the winding core 12 refers to a coil wound around a high permeability core. The three winding cores 12 are configured to generate mutual repulsion. In addition, the three winding cores 12 are arranged so as to surround the magnetic pole cores 14 and 15 that face each other, and the axes of the magnetic flux directions are arranged at equal intervals of 120 degrees in parallel to each other so that the interval between the magnetic pole cores 14 and 15 is minimal. The magnetic flux density between the magnetic pole cores 14 and 15 is improved by minimizing leakage magnetic flux that is about to escape. The axis of the magnetic flux direction generated in the winding core 12 is connected to be parallel to the axis of each of the magnetic pole cores (14, 15). A magnetic flux hub is formed to focus one side of the three winding cores 12 to form an N pole. The other side of the three winding cores 12 are concentrated to form a magnetic flux hub for forming the S pole. Thus, the electromagnets are configured to have two corresponding polarities facing each other. In this case, the magnetic flux hub may be composed of a magnetic flux hub for fixing one side of the three winding cores 12 and a magnetic flux hub for fixing the other side of the winding cores 12. Each magnetic field focused by a pair of magnetic flux hubs is focused on each magnetic pole core 14 and 15 to form an N pole and an S pole, respectively. Each coil wound on the three winding cores 12 may be connected in series or in parallel to constitute two types of resistors (3R coil or 1 / 3R coil ). In the electromagnet shown in FIG. 4, the magnetic flux hub has a T or Y shape, and thus, the magnetic flux hub will be referred to as a 'T' shape or a 'Y' shape magnetic flux hub.
도 5에서, 코일이 코어에 권선된 4개의 권선코어(16)가 도시되며, 나란하게 90도의 일정한 간격으로 배치된 4개의 권선코어(16)로부터 발생된 자기장이 자속허브(미도시됨)에 집속된다. 여기에서 권선코어(16)는 고투자율 코어에 코일이 감겨있는 것을 지칭하는 것이다. 4개의 권선코어(16)들은 상호 척력이 발생하도록 구성한다. 또한, 4개의 권선코어(16)가 자극코어(18, 19)를 둘러싸고 자속 방향의 축이 상호 평행하게 90도의 등간격으로 배치되도록 연결하여 자극코어(18, 19) 간 간격이 최소인 곳을 벗어나려는 누설자속을 최소화시켜 자극코어(18, 19) 간 자속밀도가 향상된다. 권선코어(16)에서 발생하는 자속 방향의 축이 상기 자극코어의 축과 평행하게 배치되도록 한다. 또한, 4개의 권선코어(16)의 일측을 집속시켜 N극을 형성하기 위하여 자속허브를 구성한다. 또한 권선코어(16)의 타측을 집속시켜 S극을 형성하기 위한 자속허브를 구성한다. 이와 같이 구성하여 각각 N극과 S극의 2극성을 갖도록 한다. 한 쌍의 자속허브에 의해 집속된 각각의 자기장은 각각의 자극코어(18, 19)에 집속되어 각각 N극과 S극을 형성한다. 4개의 권선코어(16)에 권선된 각각의 코일은 상호 직렬 또는 병렬도 연결될 수 있어 3 종류의 저항(4Rcoil 또는 1/2Rcoil 또는 1/4Rcoil)으로 구성할 수 있어 전자석 전원 공급장치의 다양한 출력 사양에 대응이 가능하다. In FIG. 5, four winding cores 16 are shown in which coils are wound around the core, and magnetic fields generated from four winding cores 16 arranged side by side at regular intervals of 90 degrees are shown in the magnetic flux hub (not shown). Focused Here, the winding core 16 refers to a coil wound around a high permeability core. The four winding cores 16 are configured to generate mutual repulsion. Also, the four winding cores 16 surround the magnetic pole cores 18 and 19 and are arranged such that the axes of the magnetic flux directions are arranged at equal intervals of 90 degrees in parallel to each other so that the space between the magnetic pole cores 18 and 19 is minimum. By minimizing leakage flux to escape, the magnetic flux density between the magnetic pole cores 18 and 19 is improved. The axis of the magnetic flux direction generated in the winding core 16 is arranged to be parallel to the axis of the magnetic pole core. In addition, a magnetic flux hub is formed to focus one side of the four winding cores 16 to form an N pole. In addition, by converging the other side of the winding core 16 to form a magnetic flux hub for forming the S pole. In this way, it has bipolarity of N pole and S pole, respectively. Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 18 and 19 to form an N pole and an S pole, respectively. Each coil wound on the four winding cores 16 may be connected in series or in parallel to each other, and thus may be configured as three types of resistors (4R coils, 1 / 2R coils, or 1 / 4R coils ). Various output specifications are available.
도 6에서, 코일이 코어에 권선된 6개의 권선코어(20)가 도시되며, 나란하게 60도의 일정한 간격으로 배치된 6개의 권선코어(20)로부터 발생된 자기장이 한쌍의 자극허브(미도시됨)에 의해 집속된다. 6개의 권선코어(20)들은 상호 척력이 발생하도록 구성한다. 또한, 6개의 권선코어(20)가 자극코어(22)를 둘러싸고 자속 방향의 축이 상호 평행하게 60도의 등 간격으로 배치되도록 연결하여 자극코어(22, 23) 간 간격이 최소인 곳을 벗어나려는 누설자속을 최소화시켜 자극코어(22, 23) 간 자속밀도가 향상되도록 한다. 권선코어(20)에서 발생하는 자속 방향의 축이 상기 자극코어(22, 23)의 축과 평행하게 배치되도록 연결한다. 또한, 6개의 권선코어(20)의 일측을 집속시켜 N극을 형성하기 위한 자속허브를 구성한다. 권선코어(20)의 타측을 집속시켜 S극을 형성하기 위한 자속허브를 구성한다. 이와 같이 구성하여 전자석이 2극성을 갖도록 한다. 한 쌍의 자속허브에 의해 집속된 각각의 자기장은 각각의 자극코어(22, 23)에 집속되어 각각 N극과 S극을 형성한다. 도 6에 도시된 전자석에 있어서, 자속허브는 *자의 형태를 가지므로 ‘*’자형 또는 별(star)형 자속허브로 지칭하기로 한다. In FIG. 6, six winding cores 20 are shown in which coils are wound around a core, and a magnetic field generated from six winding cores 20 arranged side by side at a constant interval of 60 degrees is shown as a pair of magnetic pole hubs (not shown). Focused). The six winding cores 20 are configured to generate mutual repulsion. In addition, the six winding cores 20 are arranged to surround the magnetic pole core 22 so that the axes of the magnetic flux directions are arranged at equal intervals of 60 degrees in parallel to each other so as to escape from the minimum spacing between the magnetic pole cores 22 and 23. The magnetic flux density between the magnetic pole cores 22 and 23 is improved by minimizing the leakage magnetic flux. The axis of the magnetic flux direction generated in the winding core 20 is connected to be arranged in parallel with the axis of the magnetic pole core (22, 23). In addition, by concentrating one side of the six winding cores 20 to form a magnetic flux hub for forming the N pole. Concentrating the other side of the winding core 20 to form a magnetic flux hub for forming the S pole. This configuration allows the electromagnet to have bipolarity. Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 22 and 23 to form an N pole and an S pole, respectively. In the electromagnet shown in FIG. 6, the magnetic flux hub has a shape of *, so it will be referred to as a '*' shaped or star shaped magnetic flux hub.
도 7에 상부에 배치되며 코일이 코어에 권선된 3개의 권선코어(24)가 도시되며, 하부에 배치된 3개의 권선코어(25)가 도시된다. 상부에 형성된 3개의 권선코어(24)로부터 발생된 자기장이 상부의 자속허브에 집속되고, 하부에 형성된 3개의 권선코어(25)로부터 발생된자기장이 하부의 자속허브에 집속된다. 6개의 권선코어(24, 25)들은 자속코어에서 상호 척력이 발생하도록 구성한다. 또한 상부 권선코어(24)와 하부 권선코어(25)는 상호 인력이 발생하도록 구성한다. 또한, 상부의 3개의 권선코어(24)가 일측의 자극코어(26)를 둘러싸도록 형성되며 하부의 3개의 권선코어(25)가 타측의 자극코어(27)를 둘러싸도록 형성되며 자속 방향의 축이 등간격으로 배치되도록 연결하여 자극코어(26, 27) 간 자속밀도가 향상되도록 한다. 권선코어(24, 25)에서 발생하는 자속 방향의 축이 상기 자극코어(26, 27)의 축과 수직하게 배치되도록 연결한다. 상부에 형성된 3개의 권선코어(24)는 일측의 자속허브에 의해 집속되고 하부의 3개의 권선코어(25)는 타측의 자속허브에 의해 집속된다. 한 쌍의 자속허브에 의해 집속된 각각의 자기장은 각각의 자극코어(26, 27)에 집속되어 각각 N극과 S극을 형성한다. 도 7에 도시된 전자석에 있어서, 자속허브는 T자 또는 Y자의 형태를 가지므로 ‘T’자형 또는 'Y‘자형 자속허브로 지칭하기로 한다. In FIG. 7 three winding cores 24 are shown, with coils wound around the core, and three winding cores 25 arranged below. The magnetic field generated from the three winding cores 24 formed in the upper portion is focused on the magnetic flux hub in the upper portion, and the magnetic field generated in the three winding cores 25 formed in the lower portion is concentrated in the magnetic flux hub in the lower portion. The six winding cores 24 and 25 are configured to generate mutual repulsion in the magnetic flux core. In addition, the upper winding core 24 and the lower winding core 25 is configured to generate mutual attraction. In addition, the upper three winding cores 24 are formed to surround the magnetic pole core 26 of one side, the lower three winding cores 25 are formed to surround the magnetic pole core 27 of the other side and the axis of the magnetic flux direction The magnetic flux densities between the magnetic pole cores 26 and 27 are improved by being connected at equal intervals. The axis of the magnetic flux direction generated in the winding cores 24 and 25 is connected to be perpendicular to the axes of the magnetic pole cores 26 and 27. The three winding cores 24 formed on the upper side are focused by the magnetic flux hub on one side, and the lower three winding cores 25 are focused by the magnetic flux hub on the other side. Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 26 and 27 to form an N pole and an S pole, respectively. In the electromagnet illustrated in FIG. 7, the magnetic flux hub has a T or Y shape, so it will be referred to as a 'T' shape or a 'Y' magnetic flux hub.
도 8에서, 상부에 배치되며 코일이 코어에 권선된 4개의 권선코어(28)가 도시되며, 하부에 배치된 4개의 권선코어(29)가 도시된다. 상부에 형성된 4개의 권선코어(28)로부터 발생된 자기장이 상부 자속허브에 집속되고, 하부에 형성된 4개의 권선코어(29)로부터 발생된 자기장이 하부 자속허브에 집속된다. 8개의 권선코어(28, 29)는 상호 척력이 발생하도록 구성한다. 또한, 상부에 형성된 4개의 권선코어(28)가 일측의 자극코어(30)을 둘러싸도록 형성되며 하부에 형성된 4개의 권선코어(29)가 타측의 자극코어(31)을 둘러싸도록 형성되고, 자속 방향의 축이 등간격으로 배치되도록 연결하여 자극코어(30, 31)간 자속밀도가 향상되도록 한다. 권선코어(28, 29)에서 발생하는 자속 방향의 축이 상기 자극코어(30, 31)의 축과 수직하게 배치되도록 연결한다. 상부에 형성된 4개의 권선코어(28)는 일측의 자속허브에 의해 집속되고 하부의 4개의 권선코어(29)는 타측의 자속허브에 의해 집속된다. 한 쌍의 자속허브에 의해 집속된 각각의 자기장은 각각의 자극코어(30, 31)에 집속되어 각각 N극과 S극을 형성한다. 도 8에 도시된 전자석에 있어서, 자속허브는 +자 형태를 가지므로 ‘+’자형 또는 십자(cross)형 자속허브로 지칭하기로 한다. In FIG. 8, four winding cores 28 are shown disposed above and with coils wound around the core, and four winding cores 29 arranged below. The magnetic field generated from the four winding cores 28 formed on the upper side is focused on the upper magnetic flux hub, and the magnetic field generated from the four winding cores 29 formed on the lower side is focused on the lower magnetic flux hub. The eight winding cores 28 and 29 are configured to generate mutual repulsion. In addition, four winding cores 28 formed on the upper side are formed to surround the magnetic pole core 30 on one side, and four winding cores 29 formed on the lower side are formed to surround the magnetic pole core 31 on the other side, and the magnetic flux The axes in the direction are arranged to be arranged at equal intervals so that the magnetic flux density between the magnetic pole cores 30 and 31 is improved. The axis of the magnetic flux direction generated in the winding cores 28 and 29 is connected to be perpendicular to the axes of the magnetic pole cores 30 and 31. Four winding cores 28 formed on the upper side are focused by the magnetic flux hub on one side, and four winding cores 29 on the lower side are focused by the magnetic flux hub on the other side. Each magnetic field focused by a pair of magnetic flux hubs is focused on each magnetic pole core 30 and 31 to form an N pole and an S pole, respectively. In the electromagnet shown in FIG. 8, the magnetic flux hub has a + shape so that it may be referred to as a '+' shape or a cross type flux hub.
도 9에서, 상부에 배치된 4개의 코어가 2단 형태로 형성되며 코일이 코어에 권선된 8개의 상부 권선코어(32)를 형성하며, 하부에 배치된 4개의 코어가 2단 형태로 8개의 하부 권선코어(33)를 형성한다. 상부에 형성된 8개의 권선코어(32)로부터 발생된 자기장이 상부 자속허브에 집속되고, 하부에 형성된 8개의 권선코어(33)로부터 발생된 자기장이 하부의 자속허브에 집속된다. 각각의 16개의 권선코어(32, 33)들은 상호 척력이 발생하도록 구성한다. 또한, 상부에 형성된 8개의 권선코어(32)가 일측의 자극코어(34)을 둘러싸도록 형성되고 하부에 형성된 8개의 권선코어(33)가 타측의 자극코어(35)를 둘러싸도록 형성되며 자속 방향의 축이 상호 평행하게 등간격으로 배치되도록 연결하여 자극코어(34, 35) 간 자속밀도가 향상된다. 권선코어(33, 34)에서 발생하는 자속 방향의 축이 상기 자극코어(34, 35)의 축과 수직하게 배치되도록 연결한다. 상부에 형성된 8개의 권선코어(32)는 일측의 자속허브에 의해 집속되고 하부의 4개의 권선코어(33)는 타측의 자속허브에 의해 집속된다. 한 쌍의 자속허브에 의해 집속된 각각의 자기장은 각각의 자극코어(34, 35)에 집속되어 각각 N극과 S극을 형성한다. 도 9에 도시된 전자석에 있어서, 자속허브는 +자 형태를 가지므로 ‘+’자형 또는 십자(cross)형 자속허브로 지칭하기로 한다. In FIG. 9, the four cores disposed at the top are formed in two stages, and the coil forms eight upper winding cores 32 wound around the core, and the four cores arranged at the bottom are eight in two stages. The lower winding core 33 is formed. The magnetic field generated from the eight winding cores 32 formed on the upper side is focused on the upper magnetic flux hub, and the magnetic field generated from the eight winding cores 33 formed on the lower side is focused on the lower magnetic flux hub. Each of the sixteen winding cores 32 and 33 is configured to generate mutual repulsion. In addition, the eight winding cores 32 formed on the upper side are formed to surround the magnetic pole core 34 on one side, and the eight winding cores 33 formed on the lower side are formed to surround the magnetic pole core 35 on the other side and the magnetic flux direction. The magnetic flux densities between the magnetic pole cores 34 and 35 are improved by connecting the axes of the axes so as to be arranged at equal intervals in parallel. The axis of the magnetic flux direction generated in the winding cores 33 and 34 is connected to be perpendicular to the axes of the magnetic pole cores 34 and 35. The eight winding cores 32 formed at the top are focused by the magnetic flux hub on one side and the four winding cores 33 on the bottom are focused by the magnetic flux hub on the other side. Each magnetic field focused by a pair of magnetic flux hubs is focused on respective magnetic pole cores 34 and 35 to form an N pole and an S pole, respectively. In the electromagnet shown in FIG. 9, the magnetic flux hub has a + shape, so it will be referred to as a '+' shape or a cross type flux hub.
전술한 도 4 내지 도 9에서 설명된 전자석은 기존의 다극 전자석에서는 없는 자속 허브를 추가로 구비하여 2극으로 변환하여 사용하므로 기존의 다극 전자석과 차별화된다. 또한, 전술한 전자석들에 구성된 자속허브의 형상은 H, K, O, T, V, X, Y, +, * 형태 가운데 어느 하나일 수 있다. The electromagnet described in FIG. 4 to FIG. 9 is further provided with a magnetic flux hub that does not exist in the conventional multipole electromagnet and used to convert to a two pole to differentiate the conventional multipole electromagnet. In addition, the shape of the magnetic flux hub formed in the above-described electromagnets may be any one of H, K, O, T, V, X, Y, +, * shape.
도 4 내지 도 9에 설명된 자속허브에 있어서, 자극코어(14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35)의 면적(C)은 바람직하게는 권선코어(12, 16, 20, 24, 25, 28, 29, 32, 33)에서 권선코어의 단면적(Sc)을 모두 더한 면적(Sc × m)의 1/2보다 크도록 구성한다. 이를 수학식으로 나타내면 다음의 수학식 2와 같이 표현할 수 있다. In the magnetic flux hubs described in FIGS. 4 to 9, the area C of the magnetic pole cores 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35 is preferably a winding. In the cores 12, 16, 20, 24, 25, 28, 29, 32, 33, the cross-sectional area (S c ) of the winding cores is configured to be larger than 1/2 of the area (S c × m). This may be expressed as Equation 2 below.
반대로, 자극코어(14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35)의 면적(C)은 권선코어(12, 16, 20, 24, 25, 28, 29, 32, 33)에서 권선코어의 단면적(Sc)을 모두 더한 면적(Sc × m)보다 작도록 구성할 수 있으며, 이를 (Sc × m) > C의 식으로 나타낼 수 있다. Conversely, the area C of the magnetic pole cores 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35 is the winding cores 12, 16, 20, 24, 25, 28, 29, 32, 33) may be configured to be smaller than the area (S c × m) of the cross-sectional area (Sc) of the winding core, it can be represented by the formula (S c × m)> C.
한편, 도 4 내지 도 9를 참조하여 3중 코어 내지 16중 코어 형태의 전자석에 대하여 설명하였지만, 권선코어를 등간격으로 배치한 5중코어, 7중코어도 가능하며, 16중 코어 이상의 전자석도 가능하다는 것을 전술한 설명에 의해 당업자라면 쉽게 이해할 수 있을 것이다. 즉, 자속 절점(flux node)을 기준으로 가지의 수를 증가시킴으로써 더 많은 수의 코어를 접속시킨 전자석을 구현 가능하다. On the other hand, with reference to Figures 4 to 9 for the electromagnet in the form of a triple core to 16 core core, it is also possible to have a five-core, seven-core core with the winding cores arranged at equal intervals, electromagnets more than 16 cores It will be readily understood by those skilled in the art by the foregoing description that it is possible. That is, by increasing the number of branches relative to the flux node (electrox node) it is possible to implement an electromagnet having a larger number of cores connected.
도 10은 본 발명의 도 5의 일실시예에 따른 코어에 코일이 권선된 권선코어의 단면을 나타낸 단면도이다. 전자석의 한계는 자기 폐회로에서 어느 특정 부위가 자기포화될 때 발생하기 시작한다. 전술한 바와 같이 통상적인 전자석의 경우 자극코어에 권선되어 있어 자극이 가장 먼저 포화되지만, 본 발명에 의한 전자석에서는 코어(160, 162)에 코일(164)이 권선되어 있어 코어(160, 162)에 자기포화가 도래할 경우에 대한 대비가 필요하다.10 is a cross-sectional view showing a cross section of a winding core wound on a core according to the exemplary embodiment of FIG. 5 of the present invention. The limits of electromagnets begin to occur when certain parts of the magnetic closure circuit self saturate. As described above, in the case of conventional electromagnets, the magnetic poles are wound on the magnetic pole core, but the magnetic poles are saturated first. However, in the electromagnet according to the present invention, the coils 164 are wound on the cores 160 and 162 to the cores 160 and 162. It is necessary to prepare for the case of self saturation.
코어(160, 162)에서도 가장 먼저 자기포화가 도래할 수 있는 부분은 코어의 중심부(160)이며, 코일이 권선되는 코어(160, 162)의 단부(core end)(162)와 중심부(core center)(160)의 외경을 달리하는 방법을 적용할 수 있다. 이때 코어(160, 162)의 중심부(160)의 직경(Dcc)을 코어의 단부(162)의 직경(Dce) 보다 크게 하여 자속을 통과시키는 양을 증가시켜 권선코어(12, 16, 20, 24, 25, 28, 29, 32, 33) 말단에서 자속밀도를 크게 할 수 있다. In the cores 160 and 162, the first magnetic saturation may come from the core 160 of the core, and the core end 162 and the core center of the cores 160 and 162 to which the coil is wound. A method of varying the outer diameter of the 160 may be applied. At this time, the diameter D cc of the central portion 160 of the cores 160 and 162 is larger than the diameter D ce of the end portion 162 of the core to increase the amount of magnetic flux that passes through the winding cores 12, 16, and 20. , 24, 25, 28, 29, 32, 33) The magnetic flux density can be increased at the end.
특히 본 방법을 적용한 고자속 코어의 경우, 중심 코어(160)의 권선 수가 줄어들면서도 권선코어(16)의 단부(162)의 자속밀도를 증가시켜 인가전력(P) 대비 출력 자기장(H) 비율(H/P효율)이 커지는 효과가 있다. 따라서 바람직하게는 코어 중심부(160)의 직경(Dcc)과 단부(162)의 직경(Dce)은 다음의 수학식 3의 범위 내에 있도록 직경을 설정한다. In particular, in the case of the high magnetic flux core to which the present method is applied, the magnetic flux density of the end 162 of the winding core 16 is increased while the number of windings of the center core 160 decreases, so that the ratio of the output magnetic field (H) to the applied power (P) ( H / P efficiency) is increased. Therefore, preferably, the diameter Dcc of the core central portion 160 and the diameter Dce of the end portion 162 are set so that the diameter is within the range of the following equation (3).
Figure PCTKR2015012554-appb-M000003
Figure PCTKR2015012554-appb-M000003
한편, 코일층당 권선이 30턴 이상인 경우, 코어의 직경(Dcore)과 코일층(Coil layer)의 두께(TCL) 비율(TCL/ Dcore) 이 0.1에서 0.5 사이일 때 효율(H/P)이 최대가 된다. 다양한 설계 변수를 고려하더라도 코일층의 두께(TCL)는 코어의 직경(Dcore)의 0.1~1배 이내에 들어있는 것이 바람직하다. 만약 (TCL /Dcore)가 2 이상인 경우 최외곽 코일층의 원주가 커져서 코일의 전기저항이 지나치게 커져 효율(H/P)을 심각하게 감소시킨다. 따라서, 코일 층의 두께(TCL)와 코어의 직경(Dcore)간에 비율(TCL /Dcore)이 다음의 수학식 4의 범위 내에 있도록 설정한다. On the other hand, if the winding per coil layer is more than 30 turns, the ratio of the diameter (D core ) of the core (T core ) to the thickness (T CL ) of the coil layer (T CL /) D core ) When the value is between 0.1 and 0.5, the efficiency (H / P) is maximized. Even considering various design variables, the thickness T CL of the coil layer is preferably contained within 0.1 to 1 times the diameter D core of the core . If (T CL / D core ) is 2 or more, the circumference of the outermost coil layer becomes large, so that the electrical resistance of the coil becomes too large, which seriously reduces the efficiency (H / P). Therefore, the ratio T CL / D core between the thickness T CL of the coil layer and the diameter D core of the core is set to be within the range of the following equation (4).
Figure PCTKR2015012554-appb-M000004
Figure PCTKR2015012554-appb-M000004
또한, 코어의 중심부(160)보다 작은 직경을 갖는 단부(162)의 길이(Le)에 대한 권선코어(16)에서 단부(162)의 길이(Le)에 대한 중심부(160)의 길이(Lc)의 비(Lc/Le)는 바람직하게는 다음의 수학식 5의 범위 내에 있도록 구성한다. Further, the length of the central portion 160 with respect to the length L e of the end 162 at the winding core 16 with respect to the length L e of the end 162 having a diameter smaller than the central portion 160 of the core ( L c) ratio (L c / L e a) preferably it is configured to be within the range of equation (5) in the following.
Figure PCTKR2015012554-appb-M000005
Figure PCTKR2015012554-appb-M000005
도 11은 본 발명의 일 실시예에 따른 4중 코어 전자석을 나타낸 사시도 및 일부 분해 사시도이며, 도 12는 본 발명의 일 실시예에 따른 자속허브를 나타낸 도면이다. 도 11 및 도 12를 참조하면, 도 11의 (a) 및 (b)에서 본 발명은 권선코어(16) , 자극코어(18, 19), 자극핸들(140), 자석 운반용 롤러(143), 전극 터미널(120), 자속허브(130) 및 받침대(110)로 구성된다. 11 is a perspective view and a partially exploded perspective view showing a quad core electromagnet according to an embodiment of the present invention, Figure 12 is a view showing a magnetic flux hub according to an embodiment of the present invention. 11 and 12, the present invention in Figure 11 (a) and (b) of the present invention the winding core 16, the magnetic pole core (18, 19), the magnetic pole handle 140, the magnet carrying roller 143, It is composed of an electrode terminal 120, the magnetic flux hub 130 and the pedestal (110).
자속허브(130)는 자기저항을 작게 하기 위하여 적절한 두께로 설계되어야 한다. 자속허브(130)의 두께(TFH)를 결정하는 기준은 권선코어(16)의 중심에 있는 자기코어(162)의 말단 반지름(rc)이다. 자속허브의 두께가 자기코어의 반지름(162) 보다 얇으면 자기저항이 커지고 높은 자기장에서 포화되기 쉬워 전자석의 성능이 최대로 발휘되지 못한다. 반면에 자속허브(130)의 두께가 자기코어의 반지름(162)보다 지나치게 두꺼운 것도 일부 자속의 도달 경로를 멀게 하여 자기저항 측면에서 불리하게 작용할 수 있으며 제작비용 또한 높아진다. 자속허브(130)의 최적 두께는 2r c 부근이며, 설계상의 다양한 변수를 고려하더라도 자속허브(130)의 두께(TFH)는 다음의 수학식 6의 범위 내에 있도록 구성한다. The magnetic flux hub 130 should be designed to an appropriate thickness in order to reduce the magnetic resistance. The criterion for determining the thickness T FH of the magnetic flux hub 130 is the distal radius r c of the magnetic core 162 at the center of the winding core 16. If the thickness of the magnetic flux hub is thinner than the radius 162 of the magnetic core, the magnetoresistance is large and the magnetic field is easily saturated, and thus the performance of the electromagnet is not maximized. On the other hand, even if the thickness of the magnetic flux 130 is too thick than the radius 162 of the magnetic core may be a disadvantage in terms of the magnetoresistance by increasing the path of the arrival of some magnetic flux and the manufacturing cost is also high. The optimum thickness of the magnetic flux hub 130 is around 2 r c , and the thickness T FH of the magnetic flux hub 130 is configured to be within the range of the following Equation 6 in consideration of various variables in the design.
Figure PCTKR2015012554-appb-M000006
Figure PCTKR2015012554-appb-M000006
코어(160, 162)와 코어에 권선된 코일(164)의 반경이 크므로 비교적 좁은 면적의 노드에 권선코어(12, 16, 20, 24, 25, 28, 29, 32, 33)에서 생성한 자기장을 모으기는 어렵다. 따라서 생성된 자기장을 집속하는 노드의 구실을 하는 자속허브(130)가 필요하다. 자속허브(130)는 권선코어(16)와 자극코어(18, 19)를 기구적으로 연결한다. 자속허브(130)는 자속을 모아서 자극코어(18, 19)에 공급하는 통로로써의 역할을 하며, 코일(164)에 의해 가열된 코어(160, 162)들을 냉각하는 냉각부(142)를 포함한다. 냉각부(142)는 수랭식으로 동작하는 냉각수로(136) 및 공랭식으로 동작하는 방열판(138)을 포함하여 구성될 수 있다. Since the radius of the cores 160 and 162 and the coil 164 wound on the core is large, the winding cores 12, 16, 20, 24, 25, 28, 29, 32, and 33 are generated in the nodes having a relatively small area. It is difficult to collect magnetic fields. Therefore, the magnetic flux hub 130 to serve as a node for focusing the generated magnetic field is required. The magnetic flux hub 130 mechanically connects the winding core 16 and the magnetic pole cores 18 and 19. The magnetic flux hub 130 serves as a passage for collecting magnetic flux and supplying the magnetic flux to the magnetic pole cores 18 and 19, and includes a cooling unit 142 cooling the cores 160 and 162 heated by the coil 164. do. The cooling unit 142 may include a cooling water passage 136 that operates in a water-cooled manner, and a heat sink 138 that operates in an air-cooled manner.
전술한 바와 같이 각각의 코어(160, 162)에 권선된 코일(164)의 저항이 작으므로 코일(164)을 냉각해야 하는 부담이 줄어든다. 그러나 코일(164)과 코어(160, 162)가 접촉하는 면적이 넓어져 코일(164)을 포함한 코어(160, 162) 및 자극코어(18, 19)와 같은 모든 구성 요소들이 전체적으로 가열된다. 따라서 큰 전류를 인가하는 조건에서도 안정적으로 전자석을 구동하기 위해서는 적절한 냉각 방법을 적용해야 한다.As described above, since the resistance of the coil 164 wound around each of the cores 160 and 162 is small, the burden of cooling the coil 164 is reduced. However, the area in which the coils 164 and the cores 160 and 162 contact each other is widened so that all components such as the cores 160 and 162 including the coils 164 and the magnetic pole cores 18 and 19 are heated in their entirety. Therefore, in order to drive the electromagnet stably under the condition of applying a large current, an appropriate cooling method should be applied.
코일의 저항에 의해 열이 발생하며 이 열을 공랭식 또는 수랭식으로 냉각해야 한다. 수랭식의 경우 코어(160, 162) 및 자속허브(130)내에 구성된 냉각수로(136)를 통해 냉매제를 순환시키도록 구성할 수 있다. 수랭식인 경우 자속허브(130) 및 코어(160, 162)의 내측에 냉매 또는 냉각수 등의 유체가 회전하면서 냉각시키도록 할 수 있다. 공랭식을 하는 경우 자속허브(130)의 표면에 방열판(138) 또는 방열핀 등의 열교환 기구를 구비하여 냉각을 수행하도록 할 수 있다. 냉각 방식은 수랭식 또는 공랭식 중 적어도 어느 하나를 이용하여 코일(164)에서 발생하는 열을 냉각시킬 수 있다. 즉, 자속허브(130)가 수랭식 또는 공랭식의 냉각부(142)를 구비하여 자속허브(130)에 부착된 권선코어(16) 뿐만 아니라 코일(164)까지 냉각시킬 수 있다. 또한 수냉용 공심 구리선을 권선코어(16)의 외곽에 한 층 감는 방법을 적용하는 것도 가능하다.Heat is generated by the resistance of the coil, which must be cooled by air or water cooling. In the case of the water-cooled type, the refrigerant may be circulated through the cooling water passage 136 configured in the cores 160 and 162 and the magnetic flux hub 130. In the case of the water-cooled type, fluid such as a refrigerant or cooling water may be cooled while rotating inside the magnetic flux hub 130 and the cores 160 and 162. In the case of air cooling, a heat exchange mechanism such as a heat sink 138 or a heat sink fin may be provided on the surface of the magnetic flux hub 130 to perform cooling. The cooling method may cool the heat generated in the coil 164 using at least one of water-cooling and air-cooling. That is, the flux hub 130 may include a water cooling or air-cooling cooling unit 142 to cool not only the winding core 16 attached to the flux hub 130 but also the coil 164. It is also possible to apply a method of winding a layer of water-cooled hollow core wire around the winding core 16.
받침대(110)는 전자석을 지지하는 역할을 하며, 비금속 또는 금속으로 구성한다. 받침대(110)의 재질을 금속으로 할 경우 자속허브(130)를 냉각하는 냉각 효과를 기대할 수 있다. 또한 받침대(110) 내부에 순환수로를 형성하고 냉매를 순환시키는 수랭식 냉각 방법을 구현할 수 있다. Pedestal 110 serves to support the electromagnet, it is composed of a non-metal or metal. When the material of the pedestal 110 is made of metal, a cooling effect of cooling the magnetic flux hub 130 may be expected. In addition, it is possible to implement a water-cooled cooling method for forming a circulation channel in the pedestal 110 and circulating the refrigerant.
권선코어(16)는 전극터미널(120)을 통해 전류가 인가되면 자기장이 형성된다. 이때, 전술한 권선코어(16)의 일측에는 N극성의 자기장이 형성되며, 타측에는 S극성의 자기장이 형성된다. 전극 터미널(120)은 권선코어(16)에 전원을 연결하는 포트이며 연결된 전원에 의해 4개의 권선코어(16)간에 척력이 발생한다. 전술한 실시예에서는 4개의 권선코어(16)를 구성한 예에 대하여 설명하였지만, 도 4 내지 도 9에서 설명한 바와 같이 권선코어의 수를 3개 또는 권선코어의 수를 늘려 전자석을 구현할 수 있다. The winding core 16 has a magnetic field formed when a current is applied through the electrode terminal 120. At this time, the magnetic field of the N polarity is formed on one side of the winding core 16 described above, and the magnetic field of the S polarity is formed on the other side. The electrode terminal 120 is a port for connecting a power source to the winding core 16 and the repulsive force is generated between the four winding cores 16 by the connected power source. In the above-described embodiment, an example in which four winding cores 16 are configured has been described, but as described in FIGS. 4 to 9, the number of winding cores may be increased to three or the number of winding cores may be used to implement an electromagnet.
한편, 기존의 전자석에서는 주로 원통형의 보빈에 코일을 권선하고, 보빈 사이에 코어를 삽입하지만, 멀티코어 전자석에서는 멀티코어 간의 간격이 최소가 되어야 효율(H/P)이 향상되므로 가급적 보빈을 포함한 코일층의 두께가 얇아야 한다. 이러한 방법으로 보빈의 두께에 해당하는 공간도 코일층에 할애하여 효율(H/P)을 극대화할 수 있다. 따라서, 권선코어(16)는 코어(160, 162)에 권선된 코일(164)을 포함하며, 권선된 코일(164)와 코어(160, 162) 사이에는 얇은 절연막(166)이 구성되어 있다. 절연막(166)은 내절연성 및 내열성이 우수한 절연재질로 구성한다. 절연막(166)은 고전류 구동시 코일(164)의 저항에 의하여 발생하는 코일 열을 코어를 통해 전도하므로 가능한 얇도록 구성한다. Meanwhile, in the conventional electromagnet, coils are wound around cylindrical bobbins and cores are inserted between bobbins. However, in multicore electromagnets, the efficiency (H / P) is improved only when the spacing between the multicores is minimized, so that coils including bobbins are possible. The thickness of the layer should be thin. In this way, the space corresponding to the thickness of the bobbin can also be devoted to the coil layer to maximize the efficiency (H / P). Accordingly, the winding core 16 includes a coil 164 wound around the cores 160 and 162, and a thin insulating layer 166 is formed between the wound coil 164 and the cores 160 and 162. The insulating film 166 is made of an insulating material having excellent insulation resistance and heat resistance. The insulating film 166 is configured to be as thin as possible because it conducts the coil heat generated by the resistance of the coil 164 through the core during high current driving.
권선코어(16)에 의해 형성된 N극 및 S극의 자기장은 마주보는 한 쌍의 자속허브(130)에 의해 각각 집속된다. 한 쌍의 자속허브(130)는 마주보는 형태로 받침대(110) 위에 구성된다. 한 쌍의 자속허브(130) 중 하나는 나란하게 배치된 4개의 권선코어(16)의 각각의 일측을 지지하고, 다른 하나는 전술한 4개의 권선코어(16)의 타측을 지지한다. 자속허브(130)는 자기장을 집속하는 노드 역할을 하며, 한 쌍의 자속허브(130) 중 하나는 권선코어(16)로부터 N극성의 자기장을 집속하고, 한 쌍의 자속허브(130) 중 다른 하나는 권선코어(16)로부터 S극성의 자기장을 집속한다. 즉, 한 쌍의 자속허브(130)는 각각 N극과 S극을 집속한다. 자속허브(130)는 다수의 권선코어(16)를 연결시키고 수용하는 다수의 코어수용부(132)와, 다수의 코어수용부(132)의 내측에 구성되어 자극코어(18, 19)를 수용하는 마운팅 어뎁터(134) 및 권선코어(16)에 권선된 코일(164)에 의해 발생하는 열을 냉각시키는 수랭식 또는 공랭식 중 적어도 어느 하나의 방식으로 전자석에 의해 발생한 열을 냉각시키는 냉각부(142)를 포함한다.Magnetic fields of the N pole and the S pole formed by the winding core 16 are focused by a pair of magnetic flux hubs 130 facing each other. A pair of magnetic flux hub 130 is configured on the pedestal 110 in the form facing each other. One of the pair of magnetic flux hubs 130 supports one side of each of the four winding cores 16 arranged side by side, and the other supports the other side of the four winding cores 16 described above. The magnetic flux hub 130 serves as a node for concentrating a magnetic field, and one of the pair of magnetic flux hubs focuses the N-polar magnetic field from the winding core 16 and the other of the magnetic flux hubs 130. One focuses a magnetic field of S polarity from the winding core 16. That is, the pair of magnetic flux hubs 130 concentrate the N pole and the S pole, respectively. The magnetic flux hub 130 includes a plurality of core accommodation parts 132 for connecting and accommodating a plurality of winding cores 16 and a plurality of core accommodation parts 132 to accommodate the magnetic pole cores 18 and 19. Cooling unit 142 for cooling the heat generated by the electromagnet in at least one of a water-cooled or air-cooled manner to cool the heat generated by the mounting adapter 134 and the coil 164 wound on the winding core 16 It includes.
자극코어(18, 19)는 전술한 권선코어(16)의 내측에 마주보는 상태로 유격되어 구성된 한 쌍의 원기둥형의 강자성체로 구성된다. 한 쌍의 자극코어(18, 19)는 각각의 자속허브(130)의 중심에 구성된 마운팅 어뎁터(134)에 탈부착 가능하도록 고정되어 구성된다. 한 쌍의 자극코어(18, 19) 중 N극성의 자기장을 집속하는 자속허브(130)에 고정된 자극은 N극성을 나타내고, 한 쌍의 자극코어(18, 19) 중 S극성의 자기장을 집속하는 자속허브(130)에 고정된 자극은 S극성을 나타낸다. 한편, 자속허브(130)와 자극의 결합에 대해서는 후술하는 도면을 참조하여 보다 상세하게 설명하기로 한다. The magnetic pole cores 18 and 19 are constituted by a pair of cylindrical ferromagnetic bodies which are spaced apart from each other in a state facing the inside of the winding core 16 described above. The pair of magnetic pole cores 18 and 19 are fixed to and detachable from the mounting adapter 134 configured at the center of each magnetic flux hub 130. A magnetic pole fixed to the magnetic flux hub 130 focusing the N polarity magnetic field among the pair of magnetic pole cores 18 and 19 exhibits the N polarity and collects the magnetic field of the S polarity among the pair of magnetic pole cores 18 and 19. The magnetic poles fixed to the magnetic flux hub 130 belonging to the S polarity. On the other hand, the coupling of the magnetic flux hub 130 and the magnetic pole will be described in more detail with reference to the drawings to be described later.
자극핸들(140)은 마주보는 한쌍의 자극코어(18, 19)의 말단인 자극 면의 유격간격을 조절할 수 있도록 구성되며 후술하는 도면을 참조하여 보다 상세하게 설명하기로 한다. The magnetic pole handle 140 is configured to adjust the clearance gap of the magnetic pole face which is the end of the pair of magnetic pole cores 18 and 19 facing each other will be described in detail with reference to the drawings to be described later.
자속허브(130)에 구성된 냉각부(142)는 공랭식 및/또는 수랭식으로 구성될 수 있다. 냉각부(142)를 공랭식으로 구성하는 경우, 방열판(138)이 자속허브(130)의 외측으로 연장되어 형성되고 공기와의 접촉면을 늘려 공기에 의해 냉각되도록 구성된다. The cooling unit 142 configured in the magnetic flux hub 130 may be configured by air cooling and / or water cooling. When the cooling unit 142 is configured to be air-cooled, the heat sink 138 is formed to extend outside the magnetic flux hub 130, and is configured to be cooled by air by increasing a contact surface with air.
냉각부(142)를 수랭식으로 구성하는 경우 냉각부(142)는 상기 자속허브(130)의 내측을 관통하여 순환하는 냉각수로(136)의 형태로 형성되도록 구성된다. 냉각수로(136)를 순환하는 냉각재는 열교환에 의해 차갑게 식혀진 물, 또는 열교환된 냉매 또는 냉가가유체일 수 있다. When the cooling unit 142 is configured to be water-cooled, the cooling unit 142 is configured to be formed in the form of a cooling water path 136 that circulates through the inside of the magnetic flux hub 130. The coolant circulating in the cooling water passage 136 may be water cooled by heat exchange, or heat exchanged refrigerant or coolant fluid.
도 13은 본 발명의 일 실시예에 따른 코어수용부와 권선코어의 연결 상태를 나타낸 단면도이다. Figure 13 is a cross-sectional view showing a connection state of the core accommodating portion and the winding core according to an embodiment of the present invention.
도 13을 참조하면, 자속허브(130)에 구성된 코어수용부(132)와 코일이 감긴 권선코어(16)가 접촉하는 면에 간극이 발생하면 자기장 효율을 낮추는 손실이 발생한다. 따라서, 손실을 최소화하기 위해서 상기 접촉면을 매끄럽게 제작하여 자속허브(130)와 권선코어(16)가 밀착되도록 구성한다. 한편, 자속허브(130)는 자성체로 구성되어 권선코어(16)에서 발생한 자기장을 집속시킬 수 있도록 한다.Referring to FIG. 13, if a gap occurs in the contact surface between the core accommodating part 132 of the magnetic flux hub 130 and the winding core 16 wound around the coil, a loss that lowers the magnetic field efficiency occurs. Therefore, in order to minimize the loss, the contact surface is made smoothly so that the magnetic flux hub 130 and the winding core 16 are in close contact. On the other hand, the magnetic flux hub 130 is composed of a magnetic material to focus the magnetic field generated in the winding core (16).
도 13의 (a)에서와 같이 권선코어(16)의 끝단에 돌출부(133)가 있고, 코어수용부(132)에 상기 돌출부(133)가 삽입될 수 있는 홈(135)이 구성된 경우, 엄밀한 밀착을 위해서는 코어수용부(132)가 들어간 길이(Lin)와 돌출부의 길이 (Lout)가 일치해야 하지만, 기계적인 결합에 의해 발생하는 소정의 공차를 고려해야 한다. As shown in (a) of FIG. 13, when the protrusion 133 is formed at the end of the winding core 16 and the groove 135 into which the protrusion 133 can be inserted is formed in the core accommodating part 132, For close contact, the length L in of the core accommodating part 132 and the length L out of the protrusion must coincide with each other, but certain tolerances generated by mechanical coupling must be considered.
도 13의 (a)에서, Dcore>2Df일 때에는 돌출부의 길이(Lout)가 미세하게 음의 공차로 제작되어야 한다. 반면, Dcore<2Df일 때에는 돌출부의 길이(Lout)가 미세하게 양의 공차로 제작되어야 밀착 면적이 최대가 된다. 코어수용부(132)와 권선코어(16)의 밀착면이 최대가 되기 위해서 도 13의 (b)와 같이 코어수용부(141)에 권선코어(16)의 외경(Dcore)만큼을 수용할 수 있는 음각 형태의 홈(145)을 만들 수 있다. In (a) of FIG. 13, when D core > 2D f , the length L out of the protrusion should be manufactured with a fine tolerance. On the other hand, when D core <2D f , the contact area is maximized only when the length L out of the protrusion is made with a minute positive tolerance. In order to maximize the contact surface between the core accommodating part 132 and the winding core 16, the core accommodating part 141 may accommodate as much as the outer diameter D core of the winding core 16 in the core accommodating part 141 as shown in FIG. 13B. It is possible to make a groove 145 of the engraved shape.
한편, 도 13의 (a) 에서와 같이 홈(135, 145)과 돌출부(133)는 나사(137)에 의해 결합되어 고정된다. 또는 도 13의 (b)와 같은 경우 홈(145)과 권선코어(16)의 일측을 나사(137)로 결합시켜 고정시킬 수도 있다.Meanwhile, as shown in FIG. 13A, the grooves 135 and 145 and the protrusion 133 are coupled and fixed by the screws 137. Alternatively, as shown in (b) of FIG. 13, the groove 145 and one side of the winding core 16 may be coupled and fixed by the screw 137.
도 14는 본 발명의 일 실시예에 따른 자속허브와 자극코어의 조립 상태를 나타낸 조립사시도이다. 14 is an assembled perspective view showing the assembled state of the magnetic flux hub and the magnetic pole core according to an embodiment of the present invention.
도 14를 참조하면, 자극코어(18, 19)를 수용하는 자속허브(130)가 도시된다. 자속허브(130)는 마운팅어뎁터(134), 자극경통(131), 자극커버(139) 및 자극핸들(140)을 포함한다. Referring to FIG. 14, there is shown a magnetic flux hub 130 for receiving magnetic pole cores 18, 19. The magnetic flux hub 130 includes a mounting adapter 134, a magnetic pole barrel 131, a magnetic pole cover 139, and a magnetic pole handle 140.
마운팅 어뎁터(134)는 자극코어(18, 19)를 수용하는 자속허브(130)의 몸체부분의 전면에 자극경통(131)과 결합되도록 구성된다. 또한, 마운팅 어뎁터(134)를 수용하는 자속허브(130)는 대략적으로 마름모 또는 T자 또는 K자 형태를 가지며, 자속허브(130)의 모서리 부분은 모따기(Edge Cutting, chamfering)(134-1)가 형성되도록 하여 뾰족하거나 날카로운 부분을 최소화시켜 누설자속을 최소화시킨다. 또한, 자속허브(130)의 상부에는 액세서리 또는 브라켓을 장착할 수 있는 다수의 볼트홀(134-2)을 구성한다. The mounting adapter 134 is configured to be coupled to the magnetic pole tube 131 on the front of the body portion of the magnetic flux hub 130 for receiving the magnetic pole cores 18 and 19. In addition, the magnetic flux hub 130 receiving the mounting adapter 134 has a substantially rhombus or T-shape or K-shape, the edge portion of the magnetic flux hub 130 is chamfered (Edge Cutting, chamfering) (134-1) To minimize the sharp or sharp parts to minimize leakage flux. In addition, the upper portion of the flux hub 130 constitutes a plurality of bolt holes (134-2) for mounting accessories or brackets.
자극경통(131)은 마운팅 어뎁터(134)와 결합하고, 그 전면을 자극커버(139)를 덮은 후 나사 등으로 자속허브(130)에 고정시킨다. 자극경통(131)은 자극코어(18)를 수용하는 경통 형태로 구성된다. The magnetic pole barrel 131 is coupled to the mounting adapter 134, and the front surface of the magnetic pole cover 139 is fixed to the magnetic flux hub 130 with a screw or the like. The magnetic pole barrel 131 is configured in the shape of a barrel housing the magnetic pole core 18.
자극커버(139)는 자극경통(131) 및 자극코어(18)를 덮으며, 마운팅 어뎁터(134), 자극경통(131)을 결합하여 자극코어(18)가 일측으로 이탈하는 것을 방지한다. The magnetic pole cover 139 covers the magnetic pole barrel 131 and the magnetic pole core 18, and combines the mounting adapter 134 and the magnetic pole barrel 131 to prevent the magnetic pole core 18 from escaping to one side.
자극핸들(140)의 일측은 자극코어(18)의 일측에 고정된 상태로 자극커버(139)의 중심에 형성된 구멍과 나사 결합되어 자극코어(16)를 전진 및 후진시킬 수 있다. 자극코어(18)를 전진 및 후진시킴으로써, 자극코어(18, 19) 간의 간극이 조절된다. One side of the magnetic pole handle 140 may be screwed into a hole formed in the center of the magnetic pole cover 139 in a state fixed to one side of the magnetic pole core 18 to advance and reverse the magnetic pole core 16. By advancing and retracting the magnetic pole core 18, the gap between the magnetic pole cores 18 and 19 is adjusted.
도 15는 본 발명의 일 실시예에 따른 자극핸들을 설명하기 위한 단면도이다. 15 is a cross-sectional view illustrating a magnetic pole handle according to an embodiment of the present invention.
도 15의 (a)는 자극코어(18)를 내심자극(181)과 외심자극(183)으로 구분하여 구성하고, 내심자극(181)에 고정된 자극핸들(140)을 조정하여 내심자극(181)이 마운팅 어뎁터(134)와 자극경통(131) 사이를 왕복하면서 형태를 변형시킬 수 있다. 또한, 외심자극(183)을 조절하는 외심자극핸들(185)이 자극경통(131)과 나사결합한 상태의 외심자극(183)의 외주면에 일체로 연결된다. 외심자극핸들(185)를 회전시키면 회전방향에 따라 고정된 자극경통(131)에 대비하여 외심자극(183)이 앞뒤로 왕복하게 된다. 예컨대, 자극핸들(140) 및 외심자극핸들(185)을 회전시켜 내심자극(181)을 외심자극(183)에 대비하여 돌출되도록 구성한다. 내심자극(181)이 돌출되면 자극코어(18)에서 밀도가 집속되어 고밀도 자속을 얻을 수 있다. 즉, 자극핸들(140)을 조정하여 내심자극(181)이 돌출되도록 조정하여 고밀도 자극을 구현할 수 있다. FIG. 15A illustrates that the magnetic pole core 18 is divided into an inner core stimulus 181 and an outer core stimulus 183, and the inner pole 181 is adjusted by adjusting the magnetic pole handle 140 fixed to the inner core stimulus 181. ) May be deformed while reciprocating between the mounting adapter 134 and the pole barrel 131. In addition, the outer core stimulation handle 185 for adjusting the outer core stimulus 183 is integrally connected to the outer circumferential surface of the outer core stimulus 183 in a screw-coupled state with the stimulation barrel 131. When the outer core stimulation handle 185 is rotated, the outer core stimulus 183 reciprocates back and forth in preparation for the fixed pole barrel 131 according to the rotation direction. For example, the magnetic pole handle 140 and the external core stimulation handle 185 are rotated to configure the internal core 181 to protrude relative to the external core stimulus 183. When the inner magnetic pole 181 protrudes, the density is focused on the magnetic pole core 18 to obtain a high density magnetic flux. That is, the magnetic pole handle 140 may be adjusted to adjust the inner core stimulus 181 to implement high density magnetic poles.
도 15의 (b)는 자극핸들(140) 및 외심자극핸들(185)를 조정하여 내심자극(181)이 외심자극(183)에 대비하여 안으로 움푹 들어간 형태로 구성한다. 이 경우 외심자극(183)이 내심자극(181)에 대비하여 돌출되면, 자극코어(18)에서 자속이 분산되어 균일(uniform)한 자속을 얻을 수 있다. 즉, 자극핸들(140)을 조정하여 외심자극코어(183)이 돌출되도록 조정하여 균일한 자극을 획득할 수 있다. 15 (b) is configured to adjust the stimulation handle 140 and the outer core stimulation handle 185 in a form in which the inner core stimulus 181 is indented in preparation for the outer core stimulus (183). In this case, when the outer core magnetic pole 183 protrudes in preparation for the inner core magnetic pole 181, the magnetic flux is dispersed in the magnetic pole core 18 to obtain a uniform magnetic flux. That is, by adjusting the stimulation handle 140 so that the outer core stimulation core 183 protrudes, it is possible to obtain a uniform stimulation.
또한, 내심자극(181 또는 외심자극코어183) 중 어느 하나를 제거하고 구성하면, 빈공간이 형성된 자극을 형성할 수 있다. 예컨대, 내심자극(181)을 제거하면 내심자극(181)만큼의 중공이 형성되며 외심자극(183)을 자극으로 활용할 수 있다. In addition, by removing and configuring either the inner core stimulus 181 or the outer core stimulus core 183, it is possible to form a magnetic pole having an empty space. For example, when the inward stimulus 181 is removed, as much hollow as the inward stimulus 181 may be formed, and the outward stimulus 183 may be used as a stimulus.
도 16은 본 발명의 다른 실시예에 따라 전자석의 냉각장치를 나타낸 단면도이다. 16 is a cross-sectional view showing a cooling apparatus of an electromagnet according to another embodiment of the present invention.
도 16을 참조하면, 전기 코일 권선 후 외곽에 중공이 있는 코일을 권선하여 구성할 수 있다. 이와 같이 냉각유체(냉각수)가 흐를 수 있도록 중공이 형성된 중공코일을 냉각코일(168)이라고 한다. 중공에는 냉각유체가 유입되어 흐르게 한다. 이와 같이 구성하여 냉각 코일에 전류를 흘리게 되면, 자기장이 발생하고 자기장 발생과 동시에 냉각이 수행된다. Referring to Figure 16, it can be configured by winding a coil with a hollow on the outside after winding the electric coil. As such, the hollow coil in which the hollow is formed to flow the cooling fluid (cooling water) is referred to as the cooling coil 168. The cooling fluid flows into the hollow. In this way, when a current flows through the cooling coil, a magnetic field is generated and cooling is performed simultaneously with the generation of the magnetic field.
코일(164)은 기존의 전자석과 다르게 중공이 없는 것을 사용하였으므로 총 두께는 그만큼 얇아진다. 멀티코어 전자석의 구조를 도입하게 되면 토탈 권선수 (Ttotal)는 코어의 수(m)로 나눈 것(Ttotal /m)이 되므로 코일층의 두께는 더욱 얇게 구성할 수 있다. 따라서 냉각코일(168)을 1층만 적층하여 코어(162)를 구성하여도 냉각코일(168)에 의해 충분한 냉각 효과를 얻을 수 있다. 이러한 냉각코일(168)을 이용하는 경우, 코일(164)에 구비된 두 개의 전극 가운데 어느 하나를 냉각코일(168)과 전기적으로 결선하여 냉각코일(168)에도 전류가 흐르게 할 수 있다. 이때, 냉각코일(168)은 권선 수가 적고, 길이가 짧으므로 전기저항이 매우 적어 냉각코일(168)에 의해 증가되는 전기저항은 무시할 수 있다. 따라서, 코일(164)만 사용할 때 보다 근소하게 높은 자속을 발생시킬 수 있으면서도 전기저항의 증가는 무시될 수 있다. Coil 164 is used because there is no hollow, unlike the conventional electromagnet, the total thickness becomes that thin. When introduced into the structure of the multi-core electromagnet total number of turns (T total) is divided by the number (m) of the core (T total / m), the thickness of the coil layer can be configured even thinner. Therefore, even when only one layer of the cooling coil 168 is laminated to form the core 162, a sufficient cooling effect can be obtained by the cooling coil 168. When the cooling coil 168 is used, one of two electrodes provided in the coil 164 may be electrically connected to the cooling coil 168 to allow current to flow in the cooling coil 168. At this time, since the cooling coil 168 has a small number of windings and a short length, the electric resistance that is increased by the cooling coil 168 may be negligible because the electric resistance is very small. Therefore, an increase in electrical resistance can be neglected while generating a slightly higher magnetic flux than when using only the coil 164.
도 17은 본 발명의 일 실시예에 따른 냉각자켓과 권선코어를 나타낸 단면도이고, 도 18은 본 발명의 일 실시예에 따른 도 17에 의해 구성된 전자석을 나타낸 사시도이다. 17 is a cross-sectional view showing a cooling jacket and a winding core according to an embodiment of the present invention, Figure 18 is a perspective view showing an electromagnet constituted by Figure 17 according to an embodiment of the present invention.
도 17 및 도 18에서 코일(164)이 권선된 권선코어(16) 외곽에 측면 냉각자켓(190)을 구비한다. 측면 냉각자켓(190)은 한 쌍으로 구성되어 받침대 냉각자켓(110-1)에 일측이 지지된 상태로 권선코어(16)를 감싸도록 구성된다. 즉, 한 쌍으로 구성된 측면 냉각자켓(190)은 받침대 냉각자켓(110-1)의 양 측면 또는 자속허브(130)의 일측에 각각 고정되고 연장된 부분이 권선코어(16)를 감싸도록 구성된다. 측면 냉각자켓(190)은 공랭식 또는 수랭식으로 구현된 냉각층(169)을 구비한다. 또는 공랭식을 구현하기 위해서 냉각층(169)의 표면적을 극대화하기 위한 목적으로 냉각핀(191)을 구비할 수 있다. 수랭식을 구현하기 위해서는 냉각층(169) 내부에 냉각수로(173)를 구비하여 냉각유체 또는 냉각수가 순환하도록 한다. 17 and 18, the side cooling jacket 190 is provided outside the winding core 16 in which the coil 164 is wound. The side cooling jacket 190 is configured as a pair to surround the winding core 16 in a state where one side is supported by the pedestal cooling jacket 110-1. That is, the pair of side cooling jackets 190 are fixed to each side of the pedestal cooling jacket 110-1 or one side of the flux hub 130, and the extended portions are configured to surround the winding core 16. . The side cooling jacket 190 has a cooling layer 169 implemented by air cooling or water cooling. Alternatively, the cooling fin 191 may be provided for the purpose of maximizing the surface area of the cooling layer 169 in order to implement air cooling. In order to implement a water-cooling type, a cooling water passage 173 is provided in the cooling layer 169 to circulate the cooling fluid or the cooling water.
권선코어(16)를 구성하는 코일(164)과 코어(162) 사이에도 냉각층을 구비할 수 있다. 그러나 이러한 경우에는 전류 대비 자기장 효율이 냉각층의 두께에 반비례하므로 유의할 필요가 있다. 즉, 냉각층의 두께가 두꺼워져 전기코일층과 자기코어층 사이의 거리가 멀어지면 전류 대비 자기장 효율이 감소하게 될 수 있다.A cooling layer may also be provided between the coil 164 and the core 162 constituting the winding core 16. However, in this case, it is necessary to pay attention because the magnetic field efficiency compared to the current is inversely proportional to the thickness of the cooling layer. That is, when the thickness of the cooling layer is thickened and the distance between the electric coil layer and the magnetic core layer increases, the magnetic field efficiency relative to the current may be reduced.
또한, 코일(164) 외부와 내부 모두 냉각층을 구비할 수 있다. 이러한 경우에는 가장 우수한 냉각 성능을 확보할 수 있다. 그러나 이러한 경우에는 구조적 복잡성이 증가함에 따른 생산비용의 증가에 유의할 필요가 있다.In addition, both the outside and the inside of the coil 164 may include a cooling layer. In this case, the best cooling performance can be secured. In this case, however, it is necessary to pay attention to the increase in production cost as the structural complexity increases.
도 18의 (a)에서와 같이 냉각 자켓이 구비된 ‘H’자형 또는 ‘X’자형 자속 허브 구조의 멀티코어 전자석이 도시되어 있다. 자속허브(130), 권선코어(16) 및 자극코어(18, 19)의 구성은 전술한 실시예와 유사하므로 이에 대한 설명은 생략하기로 한다. As shown in FIG. 18A, a multi-core electromagnet having a H-shaped or X-shaped magnetic flux hub structure having a cooling jacket is illustrated. The configuration of the magnetic flux hub 130, the winding core 16, and the magnetic pole cores 18 and 19 is similar to the above-described embodiment, and thus description thereof will be omitted.
도 18의 (b)는 측면에 권선코어(16)를 감싸는 측면 냉각자켓(190)이 나타나 있다. 측면 냉각자켓(190)은 받침대 냉각자켓(110-1)의 양측에 지지되어 구성된 상태로 권선코어(16)를 감싸는 외측에 냉각핀(191)이 내삽되어 구성된다. 냉각핀(191)은 공기 또는 냉각수와의 접촉면적을 최대화하여 열을 효율적으로 배출할 수 있도록 공랭식 또는 수랭식으로 구성된다. 냉각핀(191)은 대신 냉각수가 순환할 수 있는 냉각수로(173)로 구성된 것과 다르지 않다. 즉, 권선코어(16)를 감싸고 있는 측면 냉각자켓(190)에 냉각수가 순환하는 냉각수로(173)를 구비하여 수랭식으로 권선코어를 냉각시킬 수 있다. 또는, 공랭식과 수랭식을 혼합하여 구성할 수 있다. 냉각수가 흐르는 냉각수로(173)의 외측의 공간에는 냉각수가 접촉하는 면적을 극대화하기 위한 냉각핀(191)을 구비하여 열교환 효율을 높이도록 구성할 수 있다. 18 (b) shows a side cooling jacket 190 surrounding the winding core 16 on the side. The side cooling jacket 190 is configured by being supported on both sides of the pedestal cooling jacket 110-1 so that the cooling fins 191 are inserted into the outer side of the winding core 16. Cooling fins 191 is configured to be air-cooled or water-cooled to maximize the contact area with air or cooling water to efficiently discharge heat. The cooling fins 191 are not different from those consisting of cooling water passages 173 through which cooling water can instead circulate. That is, the cooling core 173 may be provided in the side cooling jacket 190 surrounding the winding core 16 to cool the winding core in a water-cooled manner. Alternatively, the air-cooled type and the water-cooled type can be mixed to be configured. In the space outside the cooling water passage 173 through which the cooling water flows, the cooling fin 191 may be configured to increase the heat exchange efficiency by maximizing a contact area of the cooling water.
도 18의 (c)에서 하부면에 권선코어(16)를 지지하는 받침대 냉각자켓(110-1)이 나타나 있다. 받침대 냉각자켓(110-1)은 권선코어(16)와 접촉하는 내측에 냉각핀(111)이 내삽되어 구성된다. 냉각핀(111)은 공기 또는 냉각수와의 접촉면적을 최대화하여 권선코어(16)에서 발생한 열을 효율적으로 배출할 수 있도록 구성된다. 도 18의 (c)에서 공랭식의 냉각핀(111)만 도시되어 있지만, 받침대 냉각자켓(110-1)의 내부에 순환하는 냉각수로를 설치하여 수랭식으로 구성할 수도 있다. In FIG. 18C, the pedestal cooling jacket 110-1 supporting the winding core 16 on the lower surface is shown. Pedestal cooling jacket (110-1) is composed of a cooling fin 111 is inserted into the inner side in contact with the winding core (16). The cooling fins 111 are configured to efficiently discharge heat generated from the winding core 16 by maximizing a contact area with air or cooling water. Although only the air cooling cooling fin 111 is shown in FIG. 18C, a cooling water passage circulating inside the pedestal cooling jacket 110-1 may be installed to form a water cooling system.
또는, 받침대 냉각자켓(110-1) 및 측면 냉각자켓(190)은 공랭식과 수랭식을 모두 포함하여 구성할 수 있다. 즉, 측면 냉각자켓(190) 및 받침대 냉각자켓(110-1)의 내측에 냉각수가 흐르는 공간에는 냉각수가 순환하는 냉각수 관로를 설치하고 냉각수가 접촉하는 면적을 극대화하기 위한 냉각핀(111, 191)을 구비하여 열교환 효율을 높이도록 구성할 수 있다. Alternatively, the pedestal cooling jacket 110-1 and the side cooling jacket 190 may include both air cooling and water cooling. That is, in the space where the coolant flows inside the side cooling jacket 190 and the pedestal cooling jacket 110-1, a cooling water duct for circulating the cooling water is installed and cooling fins 111 and 191 for maximizing the contact area of the cooling water. It can be configured to increase the heat exchange efficiency.
측면 냉각자켓(190) 및 받침대 냉각자켓(110-1)과 권선코어(16) 사이가 들뜨기 쉽다. 따라서 열교환을 용이하게 하게 위한 물질을 측면 냉각자켓(190) 및 받침대 냉각자켓(110)과 권선코어(16) 사이에 채워 넣을 필요가 있다. 측면 냉각자켓(190) 및 받침대 냉각자켓(110)과 권선코어(16) 간에 열전도도를 높이기 위해 그리스, 동판 및 인듐박판(호일)과 같은 열전달재료를 이용하여 측면 냉각자켓(190) 및 받침대 냉각자켓(110)과 권선코어(16) 사이를 메우도록 구성하여 냉각효율을 향상시킬 수 있다. 또한, 측면 냉각자켓(190) 및 받침대 냉각자켓(110)은 자속허브(130)와 접촉하고 있어 자속허브(130)를 냉각시킬 수 있다. The side cooling jacket 190 and the pedestal cooling jacket (110-1) and the winding core 16 is easy to lift. Therefore, it is necessary to fill a material between the side cooling jacket 190 and the pedestal cooling jacket 110 and the winding core 16 to facilitate heat exchange. Cooling the side cooling jacket 190 and the pedestal using heat transfer materials such as grease, copper plate and indium foil (foil) to increase the thermal conductivity between the side cooling jacket 190 and the pedestal cooling jacket 110 and the winding core 16. The cooling efficiency may be improved by configuring the gap between the jacket 110 and the winding core 16. In addition, the side cooling jacket 190 and the pedestal cooling jacket 110 may be in contact with the magnetic flux hub 130 to cool the magnetic flux hub 130.
도 19는 본 발명의 다른 실시예에 따른 전자석을 나타낸 사시도이다. 도 19에 도시된 실시예는 전술한 실시예의 자속허브(130), 자극코어(18, 19) 및 권선코어(16)의 구성은 유사하므로 이에 대한 설명은 생략하기로 한다. 다만, 다수의 권선코어(16)에 발생하는 열을 수랭식을 이용하여 저감시키기 위하여 받침대에 냉각수허브(210)를 구성하였다. 냉각수허브(210)는 권선코어(16)마다 냉각수 입구와 출구를 구성하여 여러 개의 입출구를 구성한다. 즉, 냉각수허브(210)에 구성된 입출구는 냉각수의 입구와 출구가 구분되어야 하며, 하나의 권선코어(16)을 순환할 수 있도록 하나의 쌍으로 구분하여 구성하면 된다. 19 is a perspective view showing an electromagnet according to another embodiment of the present invention. 19 is similar in configuration to the magnetic flux hub 130, the magnetic pole cores 18 and 19, and the winding core 16 of the above-described embodiment, and thus description thereof will be omitted. However, in order to reduce heat generated in the plurality of winding cores 16 by using a water cooling method, a cooling water hub 210 is configured in the pedestal. The cooling water hub 210 configures a plurality of inlets and outlets by forming a cooling water inlet and an outlet for each of the winding cores 16. That is, the inlet and outlet of the coolant hub 210 should be distinguished from the inlet and the outlet of the coolant, and may be configured by dividing it into one pair so as to circulate one winding core 16.
냉각수허브(210)를 구성함으로써, 권선코어(16) 마다 각각의 냉각수로를 구비하는 경우 다수의 냉각수로를 연결하는 연결관을 정리할 수 있게 된다. 즉, 냉각수허브(210)가 없는 경우 냉각수로를 연결하는 연결관의 개수가 매우 많아지며 냉각수관들은 다발이 되어 복잡도를 증대시키고 정리가 어려운 문제가 발생할 수 있다. By configuring the cooling water hub 210, it is possible to arrange the connecting pipes connecting the plurality of cooling water passages when each of the winding cores 16 has respective cooling water passages. That is, when the cooling water hub 210 is not present, the number of connecting pipes connecting the cooling water paths becomes very large, and the cooling water pipes may be bundled to increase complexity and difficult to clean up.
냉각수허브(210)는 각각의 권선코어(16)를 냉각시키는 냉각수의 연결과 다발을 냉각수 입구와 출구로 간소시켜 한 곳에 모아 구성하고, 받침대(110)와 일체로 구성하여 제어가 편리하도록 구성한다. 전술한 도면에서는 냉각수허브(210)가 외부로 돌출되어 있지만, 받침대(110)에 내장시켜 구성할 수도 있다. 이러한 경우 받침대가 냉각되는 효과도 기대할 수 있다.Cooling water hub 210 is configured by condensing the connection and the bundle of the cooling water to cool the respective winding cores 16 to the cooling water inlet and outlet to gather in one place, integrally with the pedestal 110 is configured for convenient control . Although the cooling water hub 210 protrudes to the outside in the above-described drawings, it may be configured to be built in the pedestal 110. In this case, the effect of cooling the pedestal can also be expected.
도 20은 본 발명의 일 실시예에 따른 다중 코어 전자석에 의해 나타나는 지표들을 나타낸 그래프이다. 도 20의 (a)는 권선코어 수의 증가에 따른 코일 저항의 변화량을 나타낸 그래프이다. 코일 저항은 코어의 개수가 증가함에 따라 감소되는 계산 결과를 얻을 수 있다. 즉, 코어의 개수를 증가시키면, 하나의 코어에 모든 코일을 집중하는 것 보다 외경의 증가가 적어 전기저항이 감소되는 것을 확인할 수 있다. 20 is a graph showing the indicators represented by the multi-core electromagnet according to an embodiment of the present invention. 20 (a) is a graph showing the amount of change in coil resistance according to the increase in the number of winding cores. Coil resistance can be calculated as the number of cores decreases. That is, when the number of cores is increased, the increase in the outer diameter is smaller than that of concentrating all the coils on one core, thereby reducing the electrical resistance.
도 20의 (b)에서 권선된 코일(164)에서 층의 증가에 따른 코일 저항의 변화량을 나타낸 그래프이다. 일반적으로는 점선으로 표시된 선과 같이 코일의 권선량이 증가함에 따라 코일에 발생하는 저항은 급수적으로 증가한다. 그러나, 권선코어(16)의 개수가 증가하면 코일의 외경의 증가가 적으므로 저항의 증가량이 감소하거나, 선형에 가깝게 증가한다. 코일(164)에서 발생하는 저항이 선형적으로 증가하는 것이 실선으로 표시되어 있다. 또한, 실선을 보면, 코일(164)에서 발생하는 저항의 증가량이 코어의 개수가 증가함에 따라 완화되는 계산 결과를 얻을 수 있다. 코일(164)에 발생하는 저항은 다음의 수학식 7과 같이 나타낼 수 있다. In (b) of FIG. 20, the coil 164 wound in FIG. 20 is a graph showing an amount of change in coil resistance according to an increase in layers. In general, as the winding amount of the coil increases as shown by the dotted line, the resistance generated in the coil increases in series. However, when the number of the winding cores 16 increases, the increase in the outer diameter of the coil is small, so that the amount of increase in resistance decreases or increases close to linear. The linear increase in resistance that occurs at coil 164 is indicated by a solid line. In addition, looking at the solid line, it is possible to obtain a calculation result in which the increase in the resistance generated in the coil 164 is relaxed as the number of cores increases. The resistance generated in the coil 164 may be expressed by Equation 7 below.
Figure PCTKR2015012554-appb-M000007
Figure PCTKR2015012554-appb-M000007
여기서, Rcoil 은 자기코일의 전기저항을 나타내며, Rw/L 은 자기코일의 길이 당 전기저항을 나타내고, m은 코어의 개수를 나타내고, rCL(i)은 i번째 코일레이어(2)의 반지름을 나타낸다. k 는 코일 각 레이어 당 턴 수를 나타낸다. Where R coil represents the electrical resistance of the magnetic coil, R w / L represents the electrical resistance per length of the magnetic coil, m represents the number of cores, and r CL (i) represents the i-th coil layer 2 Represents the radius. k represents the number of turns per layer of coil.
도 20의 (c)는 권선코어수의 증가에 따른 자기 저항의 변화를 나타낸 그래프이다. 권선코어수가 증가할수록 자속경로의 유효면적이 증가하므로 자기저항(magnetic resistance)이 감소하고(Rm = l /mS), 결국 자기저항의 감소로 인하여 동일한 전력에 대비하여 출력 자기장의 향상을 꾀할 수 있다. 20C is a graph showing a change in magnetoresistance according to the increase in the number of winding cores. As the number of winding cores increases, the effective area of the magnetic flux path increases so that the magnetic resistance decreases (R m). = l / mS), and finally, the output magnetic field can be improved for the same power due to the decrease in the magnetoresistance.
도 21은 본 발명의 일 실시예에 따른 자기코일에 인가된 전류의 증가에 따른 다중 코어 전자석의 자기장의 변화를 나타낸 그래프이다. 21 is a graph showing a change in the magnetic field of the multi-core electromagnet with the increase of the current applied to the magnetic coil according to an embodiment of the present invention.
도 21의 (a)는 권선코어 한 개당 각각의 권선코어가 발생시키는 자기장의 크기를 나타낸 그래프이다. 10중 코어 이상으로 구성한 전자석의 하나의 권선코어(32, 33)에서 발생한 자기장이 가장 작게 나타나 있다. 하지만, 전류가 증가할수록 그 차이가 감소하는 것을 알 수 있다. 그러나, 도 14(b)에서와 같이 개별적인 권선코어(32, 33)가 생성한 자기장을 권선코어(32, 33)의 수에 따라 합산한 결과를 도시한 그래프를 참조하면, 저전류에서는 권선코어(32, 33)의 개수에 크게 영향 받지 않는 자기장을 발생시키지만, 전류가 증가할수록 권선코어(32, 33)의 개수에 비례하여 자기장의 크기도 증가하는 것을 확인할 수 있다. 21 (a) is a graph showing the magnitude of the magnetic field generated by each winding core per winding core. The magnetic field generated in one of the winding cores 32 and 33 of the electromagnet composed of 10 or more cores is shown to be the smallest. However, it can be seen that the difference decreases as the current increases. However, referring to a graph showing the result of summing the magnetic fields generated by the individual winding cores 32 and 33 according to the number of the winding cores 32 and 33 as shown in FIG. Although it generates a magnetic field that is not significantly affected by the number of (32, 33), it can be seen that the magnitude of the magnetic field also increases in proportion to the number of the winding cores (32, 33) as the current increases.
한편, 권선코어(32, 33)당 권선수(tbobbin)는 토탈 권선수(Ttotal)를 코어의 개수(m)로 나눈 것(Ttotal/m)이다. 권선코어(32, 33)의 개수가 다른 경우에, 총 권선된 코일 턴수(N)가 동일하고, 권선코어(32, 33)의 코일 면적의 합이 동일하다고 가정하면, 하나의 권선코어(32, 33)에 토탈 권선수(Ttotal)가 권선된 경우, 적은 전류에도 쉽게 자기 포화되는 것을 알 수 있다. 즉, 다수의 권선코어(32, 33)에 토탈 권선수(Ttotal)가 분산되어 권선된 경우, 자속이 분산되어 쉽게 자기 포화되지 않게 된다. On the other hand, the number of turns t bobbin per winding core 32, 33 is the total number of turns (T total ) divided by the number of cores (m) (T total / m). If the number of winding cores 32 and 33 is different, assuming that the total number of coil turns N is the same and the sum of the coil areas of the winding cores 32 and 33 is the same, one winding core 32 When the total number of windings (T total ) is wound at 33, it can be seen that the magnetic saturation is easy even with a small current. That is, when the total number of windings (T total ) is distributed and wound on the plurality of winding cores 32 and 33, the magnetic flux is dispersed and is not easily saturated.
권선코어(32, 33)의 개수가 증가할 경우 권선코어 당 코일 턴수(N)가 줄어들며, 따라서 권선코어 하나 당 자기포화 전류는 권선코어의 개수(m)배 만큼 증가하게 된다. 자기포화되기 전, 즉 저전력에서의 마그네틱 권선코어(Magnetic core) 당 자기장은 한 개의 권선코어일 때(B1core)에 비하여 B1core/m의 비율로 감소하나 자속이 집속된 자극코어(pole)에서의 자기장은 권선코어의 개수(m)배가 되므로 한 개의 권선코어(32, 33)일 때와 비슷하게 된다. As the number of winding cores 32 and 33 increases, the number of coil turns N per winding core is reduced, so that the self saturation current per winding core increases by the number of winding cores ( m ) times. The magnetic field per magnetic core before magnetic saturation, i.e. at low power, decreases at a rate of B 1core / m compared to one winding core (B 1core ), but at the magnetic pole-focused pole The magnetic field of is multiplied by the number of winding cores (m), which is similar to that of one winding core 32 and 33.
결과적으로, 자극코어(34, 35)의 면적이 충분히 넓어서 권선코어(12, 16, 20, 24, 25, 28, 29, 32, 33)에서 발생한 자력을 자극코어(34, 35)에서 모두 수용하게 되면, 오히려 코어의 개수(m) 배로 커진 전류 구간 동안 자기포화되지 않고 전류에 대하여 높은 기울기로 커지기 때문에 자극코어(34, 35)에서의 자기장이 최대 전류에서는 코어의 개수(m)에 비례하여 자기장이 증가하는 계산 결과를 얻을 수 있다. 즉, 저전류에서는 코어의 개수(m)에 크게 영향 받지 않는 자기장을 발생시키지만, 전류가 증가할수록 권선코어(33, 34)의 개수에 비례하여 자기장의 크기도 증가하는 것을 확인할 수 있다. As a result, the area of the magnetic pole cores 34 and 35 is sufficiently large to receive all of the magnetic force generated in the winding cores 12, 16, 20, 24, 25, 28, 29, 32, 33 in the magnetic pole cores 34 and 35. Rather, the magnetic field in the magnetic pole cores 34 and 35 increases in proportion to the number of cores (m) at the maximum current because the magnetic field in the magnetic pole cores 34 and 35 increases with a high slope with respect to the current during the current period, in which the number of cores (m) times is larger. A calculation result can be obtained in which the magnetic field increases. That is, the low current generates a magnetic field that is not significantly affected by the number of cores m, but as the current increases, the magnitude of the magnetic field increases in proportion to the number of the winding cores 33 and 34.
도 22는 또한 자속 허브에는 자극코어를 기계적으로 수용할 수 있는 마운팅 어뎁터를 나타낸 사시도이다. 마운팅 어댑터(134)로 인해 기존 전자석과 달리 다양한 용도에 적합한 형상의 자극코어(18)를 교환식으로 장착할 수 있는 자극코어 교환식 전자석으로 활용할 수 있다. 예컨대, 자극코어의 하우징에 일반 폴 형태의 자극코어18) 또는 광학용 스루폴(Through Pole) 형태 자극코어(18-1)을 필요에 따라 탈부착 하여 사용할 수 있다. 이러한 자극코어 교환식 전자석은 생산성 향상에 유리하다. 기존 전자석의 경우 단순히 폴 면(pole face)의 형상이 다른 권선코어만을 교체할 수 있었다. 그러나 본 발명에서는 마운팅 어댑터(134)를 제공하여 사용자가 주문하는 다양한 형상의 자극코어(18, 18-1)으로 교체하여 제공할 수 있어 수익 창출에 유리하다. 부가적으로 자극 폴을 제외한 플랫폼형 멀티코어 전자석을 대량으로 양산할 경우 제작 단가를 낮추기에도 유리하다. 22 is also a perspective view showing a mounting adapter capable of mechanically receiving a magnetic pole core in the magnetic flux hub. Unlike the existing electromagnet, the mounting adapter 134 may be used as a magnetic pole core interchangeable electromagnet that can be interchangeably mounted with a magnetic pole core 18 having a shape suitable for various applications. For example, a general pole type magnetic pole core 18 or an optical through pole type magnetic pole core 18-1 may be detachably attached to the housing of the magnetic pole core as necessary. Such magnetic pole core interchangeable electromagnets are advantageous for improving productivity. Conventional electromagnets could simply replace winding cores with different pole face shapes. However, in the present invention, the mounting adapter 134 may be provided to replace the magnetic pole cores 18 and 18-1 having various shapes ordered by the user, which is advantageous for profit generation. In addition, mass production of platform-type multicore electromagnets, excluding magnetic poles, is also advantageous to lower manufacturing costs.
이상에서 설명된 실시예에 있어서 설명의 편의를 위하여 4극 전자석 위주로 설명하였지만, 3극 내지 16극 또는 그 이상의 극수를 갖는 전자석에 대하여 동일한 기술을 적용할 수 있음을 당업자라면 쉽게 이해할 수 있을 것이다. For the convenience of the description in the embodiments described above for the convenience of description, the four-electrode electromagnet has been described mainly, it will be readily understood by those skilled in the art that the same technique can be applied to an electromagnet having a pole number of three to sixteen or more.
도면과 명세서에는 최적의 실시예가 개시되었으며, 특정한 용어들이 사용되었으나 이는 단지 본 발명의 실시형태를 설명하기 위한 목적으로 사용된 것이지 의미를 한정하거나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.The drawings and the specification disclose the best embodiments, and specific terminology has been used, but it is used only for the purpose of describing embodiments of the invention and is intended to limit the meaning or limit the scope of the invention described in the claims. It is not. Therefore, it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (29)

  1. 코일이 코어에 권선되어 구성되고 전극터미널을 통해 상기 코일에 전압이 인가되면, 자기장을 발생시키는 적어도 3개 이상으로 구성되는 다수의 권선코어; A plurality of winding cores configured by winding a coil around the core and generating at least three magnetic fields when a voltage is applied to the coil through an electrode terminal;
    서로 대칭되어 마주보도록 구성되어 상기 다수의 권선코어를 결합시켜, 상기 다수의 권선코어에서 발생하는 자기장을 집속하도록 자성체로 구성된 한 쌍의 자속허브; 및 A pair of magnetic flux hubs configured to be symmetrical to face each other and to combine the plurality of winding cores to focus a magnetic field generated in the plurality of winding cores; And
    상기 한 쌍의 자속허브로부터 집속된 자기장에 의해 극성을 가지며 상기 자속허브에 결합된 상태로 대칭되어 마주보도록 지지되는 한 쌍의 자극코어;를 포함하고, And a pair of magnetic pole cores that are polarized by a magnetic field focused from the pair of magnetic flux hubs and are symmetrically opposed to each other in a coupled state to the magnetic flux hubs.
    상기 다수의 자속허브는, The plurality of flux hubs,
    상기 다수의 권선코어를 수용하는 다수의 코어수용부;A plurality of core accommodating parts accommodating the plurality of winding cores;
    상기 다수의 코어수용부의 내측에 구성되어 자극코어를 수용하는 자극수용부; 및A magnetic pole accommodating part configured to be provided inside the plurality of core accommodating parts to accommodate the magnetic pole cores; And
    상기 자속허브의 외부 또는 내부에 구성되어 상기 권선코어에 권선된 코일에 의해 발생하는 열을 냉각시키는 냉각부;를 포함하며, And a cooling unit configured outside or inside the magnetic flux hub to cool heat generated by a coil wound on the winding core.
    상기 자속허브의 모서리는 모따기(Edge Cutting, chamfering) 형태로 구성되는 다중 코어 구조를 갖는 고효율 전자석. An edge of the magnetic flux hub is a high efficiency electromagnet having a multi-core structure is configured in the form of chamfering (Edge Cutting, chamfering).
  2. 제1항에 있어서, The method of claim 1,
    상기 다수의 권선코어는 상기 자극코어를 둘러싸도록 구성되며 상기 권선코어를 관통하는 자속 방향의 축이 상호 평행하도록 상기 자속허브에 결합되어 구성되는 다중 코어 구조를 갖는 고효율 전자석.The plurality of winding cores are configured to surround the magnetic pole core, and the high efficiency electromagnet having a multi-core structure is coupled to the magnetic flux hub so that the axis of the magnetic flux direction passing through the winding core is parallel to each other.
  3. 제1항에 있어서, 상기 자극 수용부는, According to claim 1, The magnetic pole receiving unit,
    상기 자극코어를 수용하며 경통 형태로 구성되는 자극경통;A stimulation barrel configured to receive the stimulation core and be configured in a barrel shape;
    상기 자극경통을 수용하여 상기 자극코어를 상기 자속허브에 결합시키는 마운팅 어뎁터; 및A mounting adapter configured to receive the magnetic pole tube and couple the magnetic core to the magnetic flux hub; And
    상기 자극경통 및 상기 자극코어를 덮고, 상기 마운팅 어뎁터, 상기 자극경통과 결합되는 자극커버;를 포함하는 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure comprising; the magnetic pole cover and the magnetic pole core, the mounting adapter, the magnetic pole cover coupled to the magnetic pole.
  4. 제1항에 있어서, 상기 자극코어는,The method of claim 1, wherein the magnetic pole core,
    상기 자극코어의 단면적이 다음의 수학식을 만족시키도록 구성된 것인 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure, wherein the cross-sectional area of the magnetic pole core is configured to satisfy the following equation.
    (Sc × m)/2 < C(S c × m) / 2 <C
    (여기서, Sc는 코어 하나당 단면적을 나타내며, m은 코어의 개수를 나타내고, C는 상기 자극코어의 단면적임)Where S c represents the cross-sectional area per core, m represents the number of cores, and C is the cross-sectional area of the magnetic pole core.
  5. 제1항에 있어서, 상기 자극코어는,The method of claim 1, wherein the magnetic pole core,
    상기 자극코어의 단면적이 다음의 수학식을 만족시키도록 구성된 것인 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure, wherein the cross-sectional area of the magnetic pole core is configured to satisfy the following equation.
    (Sc × m) > C(S c × m)> C
    (여기서, Sc는 코어 하나당 단면적을 나타내며, m은 코어의 개수를 나타내고, C는 상기 자극코어의 단면적임)Where S c represents the cross-sectional area per core, m represents the number of cores, and C is the cross-sectional area of the magnetic pole core.
  6. 제1항에 있어서, 상기 자속허브는,The method of claim 1, wherein the magnetic flux hub,
    상기 자속허브의 두께가 다음의 수학식을 만족시키도록 구성된 것인 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure, wherein the thickness of the magnetic flux hub is configured to satisfy the following equation.
    rc < TFH r c <T FH
    (여기서, rc는 자기코어의 반지름, TFH는 자속허브의 두께임)Where r c is the radius of the magnetic core and T FH is the thickness of the magnetic flux hub.
  7. 제1항에 있어서, 상기 다수의 권선코어는, The method of claim 1, wherein the plurality of winding cores,
    중심부의 직경과 양측 단부의 직경을 다르게 구성하고, 상기 중심부의 직경이 상기 단부의 직경보다 크게 구성되는 다중 코어 구조를 갖는 고효율 전자석. A high efficiency electromagnet having a multi-core structure in which the diameter of the central portion and the diameters of both ends are differently configured, and the diameter of the central portion is larger than the diameter of the end portion.
  8. 제7항에 있어서, 상기 중심부의 직경과 상기 양측 단부의 직경은, The method of claim 7, wherein the diameter of the central portion and the diameter of the both ends,
    다음의 수학식의 범위 내에 있도록 구성되는 다중 코어 구조를 갖는 고효율 전자석.High efficiency electromagnet having a multi-core structure configured to be within the range of the following equation.
    1.1 < Dcc /Dce <21.1 <D cc / D ce <2
    (여기서, Dcc는 상기 코어의 중심부의 직경을 나타내고, Dce는 코어의 단부의 직경을 나타내는 것임) (Wherein D cc represents the diameter of the center of the core and D ce represents the diameter of the end of the core)
  9. 제7항에 있어서, 상기 다수의 권선코어는, The method of claim 7, wherein the plurality of winding cores,
    상기 양측 단부 중 어느 하나의 길이(Le)에 대한 중심부의 길이(Lc)의 비는 다음의 수학식의 범위 내에 있도록 구성되는 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure configured such that the ratio of the length L c of the center to the length Le of either of the two ends is within the range of the following equation.
    1<Lc/Le<31 <L c / L e <3
  10. 제1항에 있어서, 상기 다수의 권선코어는, The method of claim 1, wherein the plurality of winding cores,
    상기 코어에 권선된 코일의 두께(TCL)와 코어의 직경(Dcore)간에 비율이 다음의 수학식의 범위 내에 있도록 구성되는 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure configured such that a ratio between the thickness T CL of the coil wound around the core and the diameter D core of the core is within the range of the following equation.
    0.1 < (TCL/Dcore) < 10.1 <(T CL / D core ) <1
  11. 제1항에 있어서, The method of claim 1,
    상기 권선코일에 권선되어 구성되며, 중공이 형성되어 냉각유체 또는 냉각수가 흐를 수 있도록 구성된 냉각코일을 더 포함하는 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure, which is wound around the winding coil and further comprises a cooling coil configured to form a hollow to flow a cooling fluid or cooling water.
  12. 제 11항에 있어서,The method of claim 11,
    상기 냉각코일은 상기 권선코일의 외부 또는 상기 코일과 상기 코어의 사이 중 어느 한곳에 배치되는 것인 다중 코어 구조를 갖는 고효율 전자석.The cooling coil is a high efficiency electromagnet having a multi-core structure that is disposed outside of the winding coil or between the coil and the core.
  13. 제1항에 있어서, The method of claim 1,
    상기 한 쌍의 자속허브를 지지하는 받침대를 더 포함하고, Further comprising a pedestal for supporting the pair of magnetic flux hub,
    상기 받침대는, The pedestal,
    상기 권선코일과 접촉하는 내측에 구성된 냉각핀; 및 Cooling fins configured on the inner side in contact with the winding coil; And
    냉각수 또는 냉매가 상기 받침대의 내부를 순환하는 냉각수로;를 포함하는 다중 코어 구조를 갖는 고효율 전자석. A high-efficiency electromagnet having a multi-core structure comprising a; coolant or coolant passage through which the refrigerant circulates inside the pedestal.
  14. 제13항에 있어서, The method of claim 13,
    상기 받침대에 양측면에 각각의 일측이 지지된 상태로 권선코어를 유지하는 한 쌍의 측면 냉각자켓을 더 포함하고, The pedestal further comprises a pair of side cooling jackets for holding the winding core in a state in which each side is supported on both sides,
    상기 측면 냉각자켓은, The side cooling jacket,
    외측에 내삽되어 구성된 냉각핀; 및 Cooling fins are inserted into the outside; And
    냉각수 또는 냉매가 상기 측면 냉각자켓의 내부를 순환하는 냉각수로;를 포함하는 다중 코어 구조를 갖는 고효율 전자석. A high-efficiency electromagnet having a multi-core structure comprising a; coolant or a coolant passage through which the coolant or refrigerant circulates inside the side cooling jacket.
  15. 제1항에 있어서, 상기 받침대는, According to claim 1, The pedestal,
    각각의 권선코어를 순환하는 냉각수로의 각각의 냉각수 입구와 출구를 하나의 쌍으로 구분하고 이를 하나로 모아 구성된 냉각수허브를 더 포함하는 다중 코어 구조를 갖는 고효율 전자석. A high-efficiency electromagnet having a multi-core structure further comprising a coolant hub configured by dividing each coolant inlet and outlet into a coolant circulating each winding core into a pair and collecting them together.
  16. 제14항에 있어서, 상기 측면 냉각자켓 및 받침대는, The method of claim 14, wherein the side cooling jacket and the pedestal,
    권선코어와의 사이에 그리스, 동판 및 인듐박판 중 어느 하나를 메워 넣어 구성하는 다중 코어 구조를 갖는 고효율 전자석. High efficiency electromagnet having a multi-core structure formed by filling any one of grease, copper plate and indium thin plate between the winding core.
  17. 제1항에 있어서, 상기 자극코어는 The method of claim 1, wherein the stimulation core is
    내측에 원기둥 형상의 내심코어; A cylindrical inner core inwardly;
    상기 내심코어와 상호 회동 가능하도록 구성하고, 상기 내심코어를 감싸는 외심코어;An outer core core configured to be rotatable with the inner core core and surrounding the inner core core;
    상기 내심코어의 일측에 고정되어 상기 내심코어를 앞뒤로 왕복 조절하는 자극핸들; 및A magnetic pole handle fixed to one side of the inner core core to reciprocally adjust the inner core core back and forth; And
    상기 외심코어의 외주면에 고정되어 상기 외심코어를 앞뒤로 왕복 조절하는 외심자극핸들;을 포함하는 다중 코어 구조를 갖는 고효율 전자석. A high-efficiency electromagnet having a multi-core structure comprising; an outer core stimulation handle is fixed to the outer circumferential surface of the outer core core to reciprocally adjust the outer core core back and forth.
  18. 제17항에 있어서, 상기 자극코어는,The method of claim 17, wherein the stimulation core,
    상기 내심코어를 상기 외심코어보다 돌출되도록 하여 집속된 자기장을 획득하는 것인 다중 코어 구조를 갖는 고효율 전자석. A high efficiency electromagnet having a multi-core structure to obtain a focused magnetic field by causing the inner core core to protrude more than the outer core.
  19. 제17항에 있어서, 상기 자극코어는,The method of claim 17, wherein the stimulation core,
    상기 외심코어를 상기 내심코어보다 돌출되도록 하여 균일한 자기장을 획득하는 것인 다중 코어 구조를 갖는 고효율 전자석. A high efficiency electromagnet having a multi-core structure to obtain a uniform magnetic field by causing the outer core core to protrude more than the inner core core.
  20. 제17항에 있어서, 상기 자극코어는,The method of claim 17, wherein the stimulation core,
    상기 내심코어를 상기 외심코어로부터 제거하여 중공이 형성된 자극을 형성하는 것인 다중 코어 구조를 갖는 고효율 전자석. High efficiency electromagnet having a multi-core structure to remove the inner core core from the outer core core to form a magnetic pole formed hollow.
  21. 제1항에 있어서, 상기 다수의 코어는, The method of claim 1, wherein the plurality of cores,
    코어에 권선된 코일과의 사이에 절연막이 구성되고, An insulating film is formed between the coil wound on the core,
    상기 절연막은 내절연성 및 내열성의 재질로 구성되는 다중 코어 구조를 갖는 전자석.The insulating film is an electromagnet having a multi-core structure composed of a material that is insulating and heat resistant.
  22. 제3항에 있어서, 상기 코어수용부는, The method of claim 3, wherein the core receiving portion,
    상기 자극경통, 상기 마운팅 어뎁터 및 자극커버를 나사로 결합하여 자속허브에 고정하며, 상기 자극경통, 상기 마운팅 어뎁터, 자극커버 및 자극코어를 각각 탈착 가능하도록 구성하는 다중 코어 구조를 갖는 고효율 전자석.The magnetic pole tube, the mounting adapter and the magnetic pole cover coupled to the magnetic flux hub by fixing the screw, the high efficiency electromagnet having a multi-core structure configured to detach the magnetic pole tube, the mounting adapter, the magnetic pole cover and the magnetic pole core, respectively.
  23. 전자석을 지지하는 받침대;Pedestal for supporting the electromagnet;
    코일이 코어에 권선되어 구성되고 상기 전자석에 전원을 공급하는 전극터미널을 통해 상기 코일에 전압이 인가되면, 자기장을 형성하는 다수의 권선코어; A coil wound around the core and configured to form a magnetic field when a voltage is applied to the coil through an electrode terminal for supplying power to the electromagnet;
    상기 받침대에 의해 지지되고 대칭되어 마주보도록 구성되며 상기 다수의 권선코어를 기구적으로 결합하고, 상기 권선코어에서 발생하는 자기장을 집속하는 한 쌍의 자속허브; 및 A pair of magnetic flux hubs supported by the pedestal and configured to face each other symmetrically and mechanically coupling the plurality of winding cores, and focusing a magnetic field generated in the winding cores; And
    상기 한 쌍의 자속허브로부터 집속된 자기장에 의해 극성을 갖도록 상기 자속허브에 의해 연결 상태로 지지되며 서로 마주보도록 배치된 한쌍의 자극코어;를 포함하는 다중 코어 구조를 갖는 고효율 전자석.And a pair of magnetic pole cores supported in a connected state by the magnetic flux hub and disposed to face each other so as to have a polarity by the magnetic field focused from the pair of magnetic flux hubs.
  24. 제23항에 있어서, 상기 다수의 권선코어는, The method of claim 23, wherein the plurality of winding cores,
    최소 세 개 이상으로 구성하고 상기 세 개 이상의 권선코어를 상기 한 쌍의 자속허브에 연결된 상태로 지지되도록 하는 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure comprising at least three and supporting the three or more winding cores while being connected to the pair of magnetic flux hubs.
  25. 제23항에 있어서, 상기 다수의 권선코어는, The method of claim 23, wherein the plurality of winding cores,
    상기 권선코어에서 발생하는 자속 방향의 축이 상기 자극코어의 축과 평행하게 배치되도록 연결하는 것인 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure is connected so that the axis of the magnetic flux direction generated in the winding core is arranged in parallel with the axis of the magnetic pole core.
  26. 제23항에 있어서, 상기 자속허브는, The method of claim 23, wherein the magnetic flux hub,
    상기 다수의 권선코어를 연결시키고 수용하는 다수의 코어수용부;A plurality of core accommodation parts for connecting and accommodating the plurality of winding cores;
    상기 다수의 권선코어 수용부의 내측에 구성되며 자극을 수용하는 자극수용부; A magnetic pole accommodating part configured inside the plurality of winding core accommodating parts and accommodating magnetic poles;
    상기 권선코어에 권선된 코일에 의해 발생하는 열을 냉각시키는 냉각부;를 포함하는 것인 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure comprising a; cooling unit for cooling the heat generated by the coil wound on the winding core.
  27. 제26항에 있어서, 상기 냉각부는, The method of claim 26, wherein the cooling unit,
    상기 자속허브의 외측으로 공기와의 접촉면을 늘리도록 연장되어 형성된 다수의 방열판을 갖는 것인 다중 코어 구조를 갖는 고효율 전자석.High efficiency electromagnet having a multi-core structure having a plurality of heat sinks formed to extend to extend the contact surface with the air to the outside of the magnetic flux hub.
  28. 제26항에 있어서, 상기 냉각부는, The method of claim 26, wherein the cooling unit,
    상기 자속허브의 내측을 관통하여 순환하는 냉각수의 통로가 형성된 것인 다중 코어 구조를 갖는 고효율 전자석.High efficiency electromagnet having a multi-core structure that is formed through the passage of the cooling water circulating through the magnetic flux hub.
  29. 제23항에 있어서, 상기 한쌍의 자극코어는, The method of claim 23, wherein the pair of magnetic pole cores,
    상기 자속허브의 내측에 형성된 수용부에 결합하는 원통형의 하우징과; A cylindrical housing coupled to the receiving portion formed inside the magnetic flux hub;
    상기 하우징의 내측에 형성된 나사산과 결합하는 자극; 및 A magnetic pole engaging with a screw thread formed inside the housing; And
    상기 자극의 단부에 형성되고 상기 자극을 회전시켜 상기 자극 간의 간격을 조절하는 자극핸들을 포함하는 것인 다중 코어 구조를 갖는 고효율 전자석.A high efficiency electromagnet having a multi-core structure that is formed at the end of the pole and comprises a pole handle for rotating the pole to adjust the distance between the poles.
PCT/KR2015/012554 2015-09-01 2015-11-20 Electromagnet having multi-core structure WO2017039066A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150123742A KR101595505B1 (en) 2015-09-01 2015-09-01 Electromagnet having multi magnetic core structure
KR10-2015-0123742 2015-09-01
KR10-2015-0163319 2015-11-20
KR1020150163319A KR101804371B1 (en) 2015-11-20 2015-11-20 High efficiency electromagnet having multi magnetic core structure

Publications (1)

Publication Number Publication Date
WO2017039066A1 true WO2017039066A1 (en) 2017-03-09

Family

ID=58188788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012554 WO2017039066A1 (en) 2015-09-01 2015-11-20 Electromagnet having multi-core structure

Country Status (1)

Country Link
WO (1) WO2017039066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013018A (en) * 2018-10-09 2020-04-17 胜美达集团株式会社 Magnetic field generator for biostimulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910597B1 (en) * 2007-11-13 2009-08-03 연세대학교 산학협력단 Stiffness generating apparatus using halbach array
KR100927275B1 (en) * 2004-05-26 2009-11-18 어플라이드 머티어리얼스, 인코포레이티드 Electromagnetic coil arrays and assemblies thereof, plasma processing reactors comprising them, methods of operating and treating the reactors
CN1806302B (en) * 2003-06-14 2010-08-11 费斯托股份有限两合公司 Electromagnetic drive device
KR20120044212A (en) * 2010-10-27 2012-05-07 김홍일 The control device for the composition magnetic flux and method thereof
KR101215630B1 (en) * 2010-11-25 2013-01-09 한국기계연구원 Magnetic levitation system having halbach array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806302B (en) * 2003-06-14 2010-08-11 费斯托股份有限两合公司 Electromagnetic drive device
KR100927275B1 (en) * 2004-05-26 2009-11-18 어플라이드 머티어리얼스, 인코포레이티드 Electromagnetic coil arrays and assemblies thereof, plasma processing reactors comprising them, methods of operating and treating the reactors
KR100910597B1 (en) * 2007-11-13 2009-08-03 연세대학교 산학협력단 Stiffness generating apparatus using halbach array
KR20120044212A (en) * 2010-10-27 2012-05-07 김홍일 The control device for the composition magnetic flux and method thereof
KR101215630B1 (en) * 2010-11-25 2013-01-09 한국기계연구원 Magnetic levitation system having halbach array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013018A (en) * 2018-10-09 2020-04-17 胜美达集团株式会社 Magnetic field generator for biostimulation
CN111013018B (en) * 2018-10-09 2024-03-29 胜美达集团株式会社 Magnetic field generator for biological stimulation

Similar Documents

Publication Publication Date Title
WO2015142010A1 (en) Magnetic regenerator unit and magnetic cooling system with the same
KR100406102B1 (en) Alternator
US5032748A (en) Superconducting DC machine
DE60230947D1 (en) Cooling of air gap electric machine windings
WO2014103298A1 (en) Reactor
JPH09262223A (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
US4266152A (en) Method of and apparatus for cooling electric motors and totally enclosed electric motors incorporating same
WO2017039066A1 (en) Electromagnet having multi-core structure
WO2013125812A1 (en) Superconducting rotating electrical machine and manufacturing method for high temperature superconducting film thereof
WO2024034868A1 (en) Variable-capacity electric propulsion motor cooling structure and variable-capacity electric propulsion motor equipped therewith
JPH10189328A (en) Superconducting magnet
KR101804371B1 (en) High efficiency electromagnet having multi magnetic core structure
JP2004320998A (en) Actuator coil cooling system
JPH0586053B2 (en)
WO2017217621A1 (en) Superconducting direct current induction heating device using magnetic field displacement
JPH03289344A (en) Superconducting motor
JPS63268204A (en) Superconducting magnet
JPH11514160A (en) VHV transformer / rectifier for direct mounting
CA2403666A1 (en) Superconductive armature winding for an electrical machine
JP3307565B2 (en) Superconducting current limiting device
KR101595505B1 (en) Electromagnet having multi magnetic core structure
JPH10116721A (en) Superconducting bulk body magnet
JP5060275B2 (en) Superconducting coil device
WO2024112178A1 (en) Field magnet unit having cooling function
WO2019027133A1 (en) Method for manufacturing electromagnet assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903127

Country of ref document: EP

Kind code of ref document: A1