WO2017038861A1 - 遊離多価不飽和脂肪酸含有組成物及びその製造方法 - Google Patents

遊離多価不飽和脂肪酸含有組成物及びその製造方法 Download PDF

Info

Publication number
WO2017038861A1
WO2017038861A1 PCT/JP2016/075445 JP2016075445W WO2017038861A1 WO 2017038861 A1 WO2017038861 A1 WO 2017038861A1 JP 2016075445 W JP2016075445 W JP 2016075445W WO 2017038861 A1 WO2017038861 A1 WO 2017038861A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
composition
free
polyunsaturated fatty
less
Prior art date
Application number
PCT/JP2016/075445
Other languages
English (en)
French (fr)
Inventor
秀明 山口
信滋 土居崎
誠造 佐藤
雄平 小菅
Original Assignee
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本水産株式会社 filed Critical 日本水産株式会社
Priority to CN201680050276.8A priority Critical patent/CN107922885A/zh
Priority to SG11201801589SA priority patent/SG11201801589SA/en
Priority to CA2997091A priority patent/CA2997091C/en
Priority to JP2017538068A priority patent/JP7059005B2/ja
Priority to AU2016317524A priority patent/AU2016317524B2/en
Priority to EP16841891.1A priority patent/EP3345987A4/en
Publication of WO2017038861A1 publication Critical patent/WO2017038861A1/ja
Priority to US15/906,645 priority patent/US11193085B2/en
Priority to AU2020201738A priority patent/AU2020201738B2/en
Priority to US17/511,419 priority patent/US20220049185A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/083Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid anhydrides
    • C07C51/087Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid anhydrides by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/12Straight chain carboxylic acids containing eighteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/58Esters of straight chain acids with eighteen carbon atoms in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/04Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a composition containing a free polyunsaturated fatty acid and a method for producing the same.
  • eicosadienoic acid dihomo- ⁇ -linolenic acid (DGLA), eicosatetraenoic acid, arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosatetraenoic acid, docosapentaenoic acid and docosahexaenoic acid (DHA)
  • DGLA dihomo- ⁇ -linolenic acid
  • ARA arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Long-chain polyunsaturated fatty acids having 20 or more carbon atoms are known to exhibit various functionalities in living bodies. For this reason, utilization of polyunsaturated fatty acids as functional components in products such as pharmaceuticals, health foods, and cosmetics has been studied. Accordingly, it is demanded to produce polyunsaturated fatty acids in large quantities at a high concentration.
  • polyunsaturated fatty acids are naturally present in oils as constituent fatty acids of triacylglycerols (triglycerides). Therefore, in order to obtain free polyunsaturated fatty acids, It is usual to hydrolyze the constituent fatty acid or fatty acid alkyl ester thereof.
  • free fatty acid of DGLA is obtained by hydrolyzing the free fatty acid of DGLA, the lower alkyl ester of microbial oil, and then purifying and purifying DGLA lower alkyl ester with an alkali catalyst. Is disclosed.
  • a composition containing free polyunsaturated fatty acids at a high concentration is required, and the concentration of free polyunsaturated fatty acids can be increased by concentration treatment or the like.
  • the free fatty acid may have different physical or chemical properties from fats and oils mainly composed of glyceryl esters such as triacylglycerol.
  • free fatty acids physical or chemical properties may vary greatly depending on the structure such as chain length and number of double bonds.
  • high concentrations of free polyunsaturated fatty acids may react with other components in the composition and exhibit unexpected behavior. For this reason, handling when using such a composition containing a free polyunsaturated fatty acid as a component containing other various components, for example, an additive component of a cosmetic composition or a functional food composition is complicated. May be.
  • Embodiments according to the present invention include the following.
  • [1] Free polyunsaturated fatty acid containing at least one free polyunsaturated fatty acid having 20 or more carbon atoms, the content of which is 80.0% or more of the fatty acid in the composition, and the metal content is 0.1 ppm or less A polyunsaturated fatty acid-containing composition.
  • [2] The free polyunsaturated fatty acid-containing composition according to [1], wherein the peroxide value is 5.0 meq / kg or less.
  • [3] The free polyunsaturated fatty acid-containing composition according to [1] or [2], wherein the content of the conjugated unsaturated fatty acid is 1.2% or less of the fatty acid in the composition.
  • the polyunsaturated fatty acid comprises eicosadienoic acid, dihomo- ⁇ -linolenic acid, mead acid, eicosatetraenoic acid, arachidonic acid, eicosapentaenoic acid, docosatetraenoic acid, docosapentaenoic acid, and docosahexaenoic acid
  • the free polyunsaturated fatty acid-containing composition according to any one of [1] to [5], which is at least one selected from the group.
  • the film formed using the test solution prepared from the free polyunsaturated fatty acid-containing composition is broken.
  • the release time according to any one of [1] to [6], which is 1.4 or more when the time until the film formed using the reference solution is broken (seconds) is 1.
  • Polyunsaturated fatty acid-containing composition ⁇ Membrane evaluation test> A test circular frame having a plurality of inner frames is immersed in a fatty acid test solution (reference solution or test solution) under conditions of a temperature of 25 ° C., 1 atm, and a relative humidity of 55%, and then lifted onto the liquid surface. Then, a film is formed in a section formed by a plurality of inner frames, and a time (second) required until at least one formed film is ruptured is measured.
  • test circular frame A plastic tool having five sections by an inner frame having a thickness of 2 mm in an outer frame having a diameter of 64 mm, an inner diameter of 52 mm, and a thickness of 3 mm is used as a test circular frame.
  • the free polyunsaturated fatty acid-containing composition according to any one of [1] to [7], wherein the metal is iron.
  • the release is maintained under conditions that limit the contact with the metal such that the product T [cm 2 ⁇ day] of the contact surface area [cm 2 ] of the composition and the metal and the contact time [day] is 100 or less.
  • a method for storing a polyunsaturated fatty acid-containing composition [17] The free polyunsaturated fatty acid-containing composition according to any one of [1] to [8], wherein the fatty acid alkyl ester content is 0.2% or less of the fatty acid in the composition.
  • a free polyunsaturated fatty acid-containing composition that is well handled as an additive component and a method for producing the same can be provided.
  • the free polyunsaturated fatty acid-containing composition according to one embodiment of the present invention comprises at least one free polyunsaturated fatty acid having 20 or more carbon atoms, the content of which is 80.0% or more of the fatty acid in the composition. And a free polyunsaturated fatty acid-containing composition having a total metal content of 0.1 ppm or less.
  • the method for producing a free polyunsaturated fatty acid-containing composition includes preparing a raw material composition containing at least one polyunsaturated fatty acid having 20 or more carbon atoms, and the prepared raw material composition Hydrolyzing a reaction solution prepared by combining a lower alcohol, water having a total metal content of 0.01 ppm or less, and an alkali catalyst, the reaction composition after the hydrolysis treatment and the metal Limiting the product T [cm 2 ⁇ day] of the contact surface area [cm 2 ] between the composition and metal per gram and the contact time [day] to 100 or less, It is a manufacturing method of a free polyunsaturated fatty acid containing composition.
  • the polarity is higher than that of the long-chain polyunsaturated fatty acid in the alkyl ester form or glyceride form, and the alkyl ester form or glyceride form. May behave differently.
  • the saturated fatty acid or free unsaturated fatty acid having 18 or less carbon atoms is the same. Variations in physical properties that could not be ascertained with a composition containing a certain amount of content may occur. The present inventors have found that there is a certain relationship between such a change in physical properties and the total content of metals.
  • compositions containing high concentrations of free long chain polyunsaturated fatty acids can elute larger amounts of metal compared to fatty acids having 18 or fewer carbon atoms.
  • a high-concentration free polyunsaturated fatty acid-containing composition it has been found that when the metal is present in a predetermined content or more, the physical properties or chemical properties of the composition vary.
  • the high-concentration free long-chain polyunsaturated fatty acid-containing composition having a total metal content of a predetermined value or less suppresses the influence of fluctuations in physical properties caused by the metal in the composition.
  • a composition having excellent stability can be provided.
  • the total content of metals is 0.1 ppm or less, so the composition containing a high concentration of free long-chain polyunsaturated fatty acids is stable. Physical properties can be shown. As a result, even if the product is constituted by combining the free polyunsaturated fatty acid-containing composition according to one embodiment with various various components as one component, the variation in the physical properties or stability of the entire product is suppressed. be able to.
  • the contact between the reaction product after hydrolysis and the metal is brought into contact with the contact surface area [cm 2 ] between the composition and the metal per gram. Since the product T [cm 2 ⁇ day] with the time [day] is limited to 100 or less, the free polyunsaturated fatty acid having 20 or more carbon atoms having a low total metal content and stable physical properties Can be obtained efficiently.
  • the product T [cm 2 ⁇ day] of the contact surface area [cm 2 ] of the composition and metal per gram and the contact time [day] may be simply referred to as “product T”. .
  • a composition containing a free long-chain polyunsaturated fatty acid at a high concentration is used as a surface area of contact between the composition and metal per gram [cm. 2 ] and the contact time [day], so that the product T [cm 2 ⁇ day] is 100 or less, and is kept under conditions that limit the contact with the metal.
  • the saturated fatty acid-containing composition can be maintained in a state of a composition having stable physical properties.
  • oil or “fat” refers to an oil containing only triglycerides and a crude oil mainly composed of triglycerides and containing other lipids such as diglycerides, monoglycerides, phospholipids, cholesterol and free fatty acids. Including oil. “Oil” or “fat” means a composition comprising these lipids.
  • fatty acid includes not only free saturated or unsaturated fatty acids themselves, but also free saturated or unsaturated fatty acids, saturated or unsaturated fatty acid alkyl esters, triglycerides, diglycerides, monoglycerides, phospholipids, steryl esters and the like. Fatty acids as constituent units are also included and can be rephrased as constituent fatty acids. In this specification, unless otherwise specified or indicated, reference to fatty acids present or used includes the presence or use of any form of fatty acid-containing compound.
  • Examples of the form of the compound containing a fatty acid include a free fatty acid form, a fatty acid alkyl ester form, a glyceryl ester form, a phospholipid form, and a steryl ester form.
  • a fatty acid When a fatty acid is identified, it may exist in one form or may exist as a mixture of two or more forms.
  • the reaction efficiency of fatty acid hydrolysis is high, and after hydrolysis, a composition containing fatty acids mainly in the form of free fatty acids can be obtained.
  • the fatty acid after the processing step may be described as a composition and that the fatty acid is a fatty acid in the form of a free fatty acid.
  • fatty acids other than the free fatty acid form are included.
  • the reaction efficiency of alcoholysis of fats and oils or fatty acid esters is high, and after alcoholysis, a composition containing fatty acids mainly in the form of fatty acid alkyl esters is obtained.
  • the fatty acid after the processing step may be expressed by omitting that it is a composition and that the fatty acid is an alkyl ester fatty acid.
  • fatty acids other than the alkyl ester form are included.
  • fatty acids When describing fatty acids, numerical representations may be used in which the number of carbon atoms, the number of double bonds, and the location of double bonds are simply expressed using numbers and alphabets, respectively.
  • a saturated fatty acid having 20 carbon atoms is represented as “C20: 0”
  • a monounsaturated fatty acid having 18 carbon atoms is represented as “C18: 1”, and the like
  • dihomo- ⁇ -linolenic acid is represented by “C20: 3, n-6 "and the like.
  • “n-6” is also expressed as ⁇ -6, which is the 6th position of the first double bond when counted from the last carbon ( ⁇ ) toward carboxy. It shows that.
  • This method is well known to those skilled in the art, and the fatty acid represented according to this method can be easily identified by those skilled in the art.
  • crude oil means a mixture of the above-described lipids and extracted from a living organism.
  • refined oil refers to a phospholipid by performing at least one oil and fat refining step selected from the group consisting of a degumming step, a deoxidizing step, a decoloring step, and a deodorizing step on the crude oil. And oil that has been subjected to a purification treatment to remove substances other than the target product such as sterol.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after the numerical value as a minimum value and a maximum value, respectively.
  • the term “below” or “less than” in terms of percentage includes 0%, ie, “does not contain” unless otherwise specified, or includes a value not detectable by current means. Means range.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition.
  • the content (%) of each component in the composition means that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified.
  • content of the fatty acid in the composition in this specification is determined based on a fatty acid composition.
  • the fatty acid composition can be determined according to a conventional method. Specifically, when the fatty acid in the composition to be measured is other than the fatty acid lower alkyl ester, a fatty acid lower alkyl ester obtained by esterifying the fatty acid to be measured using a lower alcohol and a catalyst is used. . When the fatty acid in the composition to be measured is a fatty acid lower alkyl ester, the fatty acid to be measured is used as it is. Subsequently, the obtained fatty acid lower alkyl ester is analyzed using gas chromatography as a sample.
  • the peak corresponding to each fatty acid is identified in the obtained gas chromatography chart, and the peak area of each fatty acid is obtained using the Agilent ChemStation integration algorithm (revision C.01.03 [37], Agilent Technologies).
  • the peak area is the total peak area of each component of the chart analyzed by using gas chromatography, thin layer chromatography / flame ionization detector (TLC / FID), etc. It is a ratio (area%) to the area and indicates the content ratio of the peak component.
  • the value by area% obtained by the measurement method described above can be used interchangeably as being the same as the value by weight% of each fatty acid relative to the total weight of fatty acids in the sample.
  • the composition containing free polyunsaturated fatty acids includes at least one free polyunsaturated fatty acid having 20 or more carbon atoms, the content of which is 80.0% or more of the fatty acids in the composition, It is a free polyunsaturated fatty acid-containing composition having a total content of 0.1 ppm or less. Since the free polyunsaturated fatty acid-containing composition according to the present embodiment has a low total metal content of 0.1 ppm, it contains 80.0% or more of free polyunsaturated fatty acids having 20 or more carbon atoms. The physical properties in the composition can be stabilized, and even when used as an additive component to other compositions, good handleability can be exhibited.
  • a free polyunsaturated fatty acid having 20 or more carbon atoms may be referred to as “free LC-PUFA” unless otherwise specified.
  • the composition containing a free polyunsaturated fatty acid according to an embodiment of the present invention may be simply referred to as a “free LC-PUFA-containing composition”.
  • examples of the stable physical properties exhibited by the free LC-PUFA-containing composition include effects on crystal formation temperature, stability of films, bubbles and surface tension, and stability against oxidation. .
  • the crystal formation temperature of the composition may be any measurement method well known in the art, for example, a method of measuring the temperature at which the composition undergoes a phase transition from the solid phase to the liquid phase, or the composition is in the liquid phase. And a method of measuring the temperature at which the phase transition from the solid phase to the solid phase.
  • the crystal formation temperature of the composition is increased by 1 ° C. or more than the solidification temperature of the free LC-PUFA-containing composition having a total metal content of 0 ppm, the viscosity of the composition may fluctuate. I can judge.
  • the total metal content is less than + 1 ° C. or less than + 0.5 ° C. when compared to the solidification temperature of the free LC-PUFA-containing composition with 0 ppm. An increase in the solidification temperature can be shown.
  • the stability of the film of the composition is measured by forming a thin film using measurement soap water (alkaline aqueous solution of fatty acid) prepared using a free LC-PUFA-containing composition and measuring the retention time of the formed thin film. Can be determined. Specifically, the following evaluation methods are applicable.
  • a test circular frame having a plurality of inner frames is immersed in a fatty acid test solution (reference solution or test solution) under conditions of a temperature of 25 ° C., 1 atm, and a relative humidity of 55%, and then slowly on the liquid surface.
  • a film is formed in the section (space) formed by the plurality of inner frames by lifting, and the time (seconds) required for at least one of the formed films to burst is measured.
  • the fatty acid test solution used here the following reference solution or test solution is used.
  • the following test circular frames are used for the test circular frames used for measurement.
  • Test solution 0.5 g of a free polyunsaturated fatty acid-containing composition, 0.15 g of 48% by weight sodium hydroxide, and 9.35 g of purified water are mixed to obtain about 5% by weight of free polyunsaturated fatty acid sodium in an aqueous solution.
  • An aqueous solution containing is prepared, and the obtained aqueous solution is used as a “test solution” to be evaluated.
  • the free polyunsaturated fatty acid-containing composition used for preparing the test solution is a composition in which the solvent is removed by an evaporator and vacuum drawing. “About 5 wt%” in the test solution means a range of 4.5 wt% to 5.5 wt%.
  • FIG. 1 shows a test circular frame 10 according to an embodiment.
  • the test circular frame 10 includes a circular outer frame 12 and a plurality of inner frames 14 connected to the outer frame 12.
  • the outer frame 12 has an outer diameter of 64 mm, an inner diameter of 52 mm, and a thickness of 3 mm.
  • a large section 16 surrounded by a plurality of inner frames 14 and four small sections 18 surrounded by the inner frame 14 and the outer frame 10 are provided inside the circular outer frame 12.
  • the test circular frame 10 has a total of five sections.
  • the relative value of time (holding time (seconds)) is preferably 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, or 1.6 or more. If the relative time is within this range, it can be evaluated that the composition is a free LC-PUFA-containing composition having a sufficiently low metal content and stable physical properties.
  • limiting in particular about the upper limit of this relative value For example, it can be set to 3.0 or less.
  • the polyunsaturated fatty acid having 20 or more carbon atoms in the free LC-PUFA-containing composition includes a divalent or higher, preferably a trivalent or higher unsaturated fatty acid.
  • the carbon number of the polyunsaturated fatty acid means the carbon number of the constituent fatty acid.
  • Examples of polyunsaturated fatty acids having 20 or more carbon atoms include polyunsaturated fatty acids having 20 to 22 carbon atoms, and specifically include eicosadienoic acid (C20: 2, n-9, EDA).
  • Dihomo- ⁇ -linolenic acid (C20: 3, n-6, DGLA), mead acid (C20: 3, n-9, MA), eicosatetraenoic acid (C20: 4, n-3, ETA) Arachidonic acid (C20: 4, n-6, ARA), eicosapentaenoic acid (C20: 5, n-3, EPA), docosatetraenoic acid (C22: 4, n-6, ETA), docosapentaenoic acid (C22: 5, n-3, n-3 DPA), docosapentaenoic acid (C22: 5, n-6, n-6 DPA) and docosahexaenoic acid (C22: 6, n-3, DHA) be able to.
  • the free LC-PUFA-containing composition may contain at least one of these polyunsaturated fatty acids and may contain two or more in combination.
  • LC-PUFA of two or more combinations for example, a combination of DGLA and EPA, a combination of DGLA and n-3 DPA, a combination of DGLA and DHA, a combination of ARA and EPA, and an ARA and n-3 DPA Combination of ARA and DHA, combination of EPA and n-3 DPA, combination of DHA and n-3 DPA, combination of DHA and EPA, combination of EPA, DHA and n-3 DPA, etc. Can be mentioned.
  • the free LC-PUFA-containing composition may include one selected from the polyunsaturated fatty acids described above and may not include other polyunsaturated fatty acids, or may include the above-described carbon as LC-PUFA. As long as it contains at least one of polyunsaturated fatty acids of several 20 or more and 22 or less, it may not contain other specific one or two or more.
  • free LC-PUFA-containing compositions include eicosadienoic acid (C20: 2, n-9), dihomo- ⁇ -linolenic acid (C20: 3, n-6), and mead acid (C20: 3, n-9).
  • Eicosatetraenoic acid (C20: 4, n-3), arachidonic acid (C20: 4, n-6), eicosapentaenoic acid (C20: 5, n-3), docosatetraenoic acid (C22: 4, n-6), docosapentaenoic acid (C22: 5, n-3), docosapentaenoic acid (C22: 5, n-6) and docosahexaenoic acid (C22: 6, n-3) At least one of them may not be included.
  • not containing polyunsaturated fatty acids means that the content of the target polyunsaturated fatty acids is less than 5% or 0% of the fatty acids in the composition.
  • the content of LC-PUFA in the free LC-PUFA-containing composition is 80.0% or more of the fatty acid in the composition. Since the free LC-PUFA-containing composition contains 80.0% or more of LC-PUFA, the function of LC-PUFA can be exhibited more highly.
  • the lower limit of the content of the target LC-PUFA in the free LC-PUFA-containing composition is 85.0%, 90.0%, 95.0%, 97.0%, 98.0% of the fatty acid in the composition , 99.0%, or 99.5%. When the content of LC-PUFA is higher, the function of LC-PUFA can be exhibited higher.
  • the upper limit of the content of LC-PUFA is not particularly limited, and can be, for example, 99.9% or 98.0%.
  • the content of LC-PUFA can be a range obtained by combining an arbitrary value of the above-described upper limit value and an arbitrary value of the lower limit value, for example, 80.0% of the fatty acid in the composition. % To 99.9%, 90.0% to 99.9%, 90.0% to 98%, 95.0% to 99.9%, 97.0% to 99.9%, or 97.0% It may be ⁇ 98.0%.
  • the total content of metals in the free LC-PUFA-containing composition is 0.1 ppm or less.
  • the iron content in the free LC-PUFA-containing composition can be 0.08 ppm or less, 0.05 ppm or less, 0.03 ppm or less, 0.01 ppm or less, or 0.00 ppm.
  • the free LC-PUFA-containing composition having excellent stability based on the film evaluation test described above may have a total metal content of 0.05 ppm or more, or 0.1 ppm or more, typically an iron content. In this case, the total content of metals of 1.2 ppm or less, or 1.0 ppm or less, typically the content of iron may be used.
  • Such a free LC-PUFA-containing composition having excellent stability based on the film evaluation test has a relative value of 1.8 or more, 1.9 or more, 2.0 or more, 2.2 or more in the above-described film evaluation test. It may be the above. There is no restriction
  • metal can include iron, copper, chromium, aluminum, nickel, tin, zinc, manganese, molybdenum, and the like, and typically iron. These metals may be used alone or in combination of two or more.
  • the “total content of metal” in the present specification means one content that can be present in the composition when one kind of metal can be present in the composition, and 2 in the composition. If more than one type of metal may be present, it may mean the total content of these.
  • iron can be used in many cases, and therefore the iron content can be set as the “total content of metals”.
  • the iron in this specification means iron measured by atomic absorption spectrometry (graphite furnace method).
  • the iron content is measured according to a molecular absorption analysis method under the following conditions. 1 g of the target sample is weighed, 0.15 mL of nitric acid (for toxic metal measurement) is added, and then diluted to 10 mL with methyl isobutyl ketone to obtain a sample solution.
  • a standard sample is Conostan S-21 (10 ppm (Wt.)), And this standard reagent is diluted in methyl isobutyl ketone to prepare a standard curve sample (0 ⁇ g / L, 10 ⁇ g / L, 20 ⁇ g / L). Analyze the sample solution and standard sample using the graphite furnace method of the analytical instrument under the optimum conditions for iron determination, for example, atomic absorption analysis under the following analytical conditions. Quantify.
  • Apparatus Z-2000 “Zeeman atomic absorption photometer” (Hitachi, Ltd.) Injection volume 20 ⁇ L Measurement mode Graphite atomizer / autosampler Measurement element Fe Cuvette Pyrotube HR Measurement wavelength (nm) 248.3 Measurement signal BKG correction Slit width (nm) 0.2 Time constant (s) 0.1 Lamp current (mA) 12.5 Heating control method Light temperature control Temperature program 1 Drying 80 ° C to 140 ° C Temperature rising time 40 seconds Holding time 0 seconds Gas flow rate 200 mL / min 2 Ashing 1000 ° C Temperature rising time 20 seconds Holding time 0 seconds Gas flow rate 200 mL / min 3 Atomization 2400 ° C Temperature rising time 0 seconds Holding time 5 seconds Gas flow rate 30 mL / min 4 Clean 2700 ° C Temperature rising time 0 seconds Holding time 4 seconds Gas flow rate 200 mL / min 5 Cooling 0 ° C Temperature rising time 0 seconds Holding time 10 seconds Gas flow
  • Iron content in sample C / (W ⁇ 100) (I) (However, C means the iron content ( ⁇ g / liter) of the sample solution obtained by atomic absorption spectroscopy, and W means the sampled amount (g) of the sample solution.)
  • the free LC-PUFA-containing composition in one embodiment can satisfy at least one selected from the following conditions (1) to (3) in addition to the above-described total metal content.
  • the peroxide value may be 5.0 meq / kg or less.
  • a free LC-PUFA-containing composition having a peroxide value of 5.0 meq / kd or less can exhibit excellent storage stability.
  • the peroxide value in the free LC-PUFA-containing composition can be 5.0 meq / kg or less, 4.0 meq / kg, 3.5 meq / kg or less, or 3.0 meq / kg or less.
  • the peroxide value is determined according to the iron thiocyanate method.
  • the content of the conjugated unsaturated fatty acid may be 1.2% or less of the fatty acid in the composition.
  • the conjugated unsaturated fatty acid include conjugated dienoic acid, conjugated trienoic acid, and conjugated tetraenoic acid, depending on the type of fatty acid in the raw material composition applied to the hydrolysis treatment and the type of LC-PUFA.
  • the conjugated unsaturated fatty acid can be quantified based on the absorbance of the target conjugated unsaturated fatty acid.
  • the content of conjugated unsaturated fatty acids in the free LC-PUFA-containing composition is determined by measuring the ultraviolet spectrum of the sample and calculating the conjugated unsaturated fatty acid content calculated from the prescribed calculation formula. Standard oil and fat analysis test method 2013 version It shall be a value measured according to the conjugated unsaturated fatty acid (spectral method) specified in Ref 1.14.
  • the amount of conjugated unsaturated fatty acids can be determined based on the amount of fatty acids in the composition.
  • the content of the conjugated unsaturated fatty acid in the free LC-PUFA-containing composition is 1.0% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less of the fatty acid in the composition. % Or less, 0.4% or less, or 0.3% or less.
  • the lower limit of the content of the conjugated unsaturated fatty acid may be 0.1%, 0.2%, 0.01%, or 0.001%.
  • the content of the conjugated unsaturated fatty acid in the free LC-PUFA-containing composition is 0.001% to 1.2%, 0.001% to 1.0%, 0.01% to 0.01% of the fatty acid in the composition. It can be 0.8%, 0.1% to 0.7%, or 0.2% to 0.7%.
  • the anisidine value is 5.0 or less, 4.5 or less, 4.0 or less, 3.5 or less, 3.0 or less, Or it can be 2.5 or less.
  • the anisidine value is an index that varies based on the content of an oxidizing substance present in the free LC-PUFA-containing composition. Free LC-PUFA-containing compositions that exhibit lower anisidine values have lower oxidant content.
  • the anisidine value is determined according to the Japan Oil Chemists' Society (JOCS) standard oil and fat analysis test method 2013 edition 2.5.3.
  • Free LC-PUFA-containing compositions include, for example: (A) Free with an iron content of 0.1 ppm or less, a peroxide value of 5.0 meq / kg or less, and a conjugated unsaturated fatty acid content of 1.2% or less of the fatty acids in the composition LC-PUFA-containing composition: (B) Free with an iron content of 0.1 ppm or less, a peroxide value of 4.0 meq / kg or less, and a conjugated unsaturated fatty acid content of 1.0% or less of the fatty acids in the composition LC-PUFA-containing composition: (C) Free LC in which the iron content is 0.1 ppm or less, the conjugated unsaturated fatty acid content is 1.2% or less of the fatty acid in the composition, and the anisidine value is 3.5 or less.
  • a PUFA-containing composition (D) a free LC-PUFA-containing composition having an iron content of 0.1 ppm or less, a peroxide value of 4.5 meq / kg or less, and an anisidine value of 5.0 or less; (E) The iron content is 0.1 ppm or less, the peroxide value is 5.0 meq / kg or less, the content of the conjugated unsaturated fatty acid is 1.2% or less of the fatty acid in the composition, And a free LC-PUFA-containing composition having an anisidine value of 4.0 or less.
  • the peroxide value may be 3.5 meq / kg or less, or 2.5 meq / kg.
  • the content of the conjugated unsaturated fatty acid is 0.8% or less, 0.7% or less, 0.6% or less, 0 It may be 4% or less, or 0.3% or less.
  • the anisidine value is 4.5 or less, 4.0 or less, 3.5 or less, 3.0 or less, or 2.5. It may be the following.
  • the content of fatty acid alkyl ester can be low.
  • Fatty acid alkyl esters can be raw materials for alkaline hydrolysis in the process of producing free fatty acids, or are products that can be produced from free fatty acids by a reverse reaction.
  • a composition containing free LC-PUFA with a lower content of fatty acid alkyl ester can have a higher content of free LC-PUFA, and the composition tends to have higher bioabsorbability, particularly intestinal absorption.
  • the fatty acid alkyl ester content of the free LC-PUFA-containing composition is 0.2% or less, 0.1% or less, 0.05% or less, 0.04% or less, 0.03% or less of the fatty acid in the composition.
  • fatty-acid alkylester There is no restriction
  • the content of the fatty acid alkyl ester is 0.0005% or more, the composition is difficult to crystallize and the fluidity tends to increase.
  • the free LC-PUFA-containing composition can have a low content of fatty acids other than LC-PUFA.
  • the function can be expected to a degree corresponding to the content of LC-PUFA, and the influence of other fatty acids other than LC-PUFA is suppressed. be able to.
  • other fatty acids that can be reduced in the free LC-PUFA-containing composition include saturated or unsaturated fatty acids having less than 20 carbon atoms, saturated fatty acids having 22 or more carbon atoms, and the like.
  • saturated or unsaturated fatty acids having less than 20 carbon atoms include saturated fatty acids having 18 carbon atoms, monounsaturated fatty acids having 18 carbon atoms, diunsaturated fatty acids having 18 carbon atoms, and three fatty acids having 18 carbon atoms. Examples thereof include monounsaturated fatty acids and tetravalent unsaturated fatty acids having 18 carbon atoms.
  • saturated fatty acids having 22 or more carbon atoms include saturated fatty acids having 22 carbon atoms and saturated fatty acids having 24 carbon atoms.
  • the content of a polyunsaturated fatty acid having 18 or more carbon atoms can be low.
  • the content of the polyunsaturated fatty acid having 18 or more carbon atoms is 2.0% or less, 1.5% or less, 1.0% or less, or 0.8% or less of the fatty acid of the composition. can do.
  • the lower limit of the content of fatty acids other than LC-PUFA may be, for example, 0.001% or more, 0.005% or more, or 0.01%.
  • the content of the polyunsaturated fatty acid having 18 or more carbon atoms is, for example, 0.001% to 2.0%, 0.005% to 1.5%, 0.01% to 1.5%, Alternatively, it may be 0.01% to 1.0%.
  • the free LC-PUFA-containing composition may contain a fatty acid in a form other than the fatty acid described above.
  • Other forms of fatty acids include triglycerides, diglycerides, monoglycerides, phospholipids, steryl esters and the like.
  • the content of these other forms of fatty acid may be an amount corresponding to the balance other than LC-PUFA of the free LC-PUFA-containing composition, and is less than 20.0% of the fatty acid in the composition, 10.0 %, Less than 5.0%, less than 2.0%, less than 1.0%, or less than 0.5%.
  • the content of the fatty acid in the free LC-PUFA-containing composition is 97.0% by weight or more, 98.0% by weight or more, 99.0% by weight or more, 99.5% by weight or more, or 99% by weight, or 99% by weight. .9% by weight or more.
  • the fatty acid content in the free LC-PUFA-containing composition can be confirmed by a known technique such as TLC / FID.
  • the free LC-PUFA-containing composition can contain components other than fatty acids. Examples of other components that can be included in the free LC-PUFA-containing composition include antioxidants such as tocopherol, vitamin C and vitamin C derivatives, and solvents such as ethanol.
  • the free LC-PUFA-containing composition may be produced by any production method as long as it has the characteristics described in the present specification, and is preferably produced by the production method described later. Can do.
  • a method for producing a free LC-PUFA-containing composition comprises preparing a raw material composition containing at least one polyunsaturated fatty acid having 20 or more carbon atoms, the prepared raw material composition, and a lower alcohol , Subjecting the reaction solution prepared by combining water having a total metal content of 0.01 ppm or less and an alkali catalyst to a hydrolysis treatment, contacting the reaction composition after the hydrolysis treatment with the metal. Limiting the product T [cm 2 ⁇ day] of the contact surface area [cm 2 ] of the composition and metal per gram and the contact time [day] to be 100 or less, as necessary Including other processes. According to the production method of the present embodiment, a free LC-PUFA-containing composition having a total metal content, typically iron content of 0.1 ppm or less, can be obtained more efficiently.
  • the obtained one may be prepared, or a separately manufactured one may be prepared.
  • the raw material composition can be derived from organisms such as those derived from marine product raw materials, those derived from microbial raw materials, those derived from plant raw materials, and those derived from animal raw materials.
  • the raw material composition may be a composition containing LC-PUFA in the form of triglyceride, or a composition containing LC-PUFA alkyl ester.
  • the LC-PUFA alkyl ester-containing composition is preferably obtained by alkylating a biological oil containing LC-PUFA in triglyceride form.
  • the biological oil containing LC-PUFA can be a biological oil such as fish raw material oil such as fish, a microbial oil derived from a microorganism, a vegetable oil derived from a plant, for example, a microbial oil.
  • Biological oil means one obtained from biomass and microbial oil means oil obtained from microbial biomass.
  • the biological oil may be a biological oil derived from a gene recombinant.
  • biomass refers to a collection or mass of cells at a given point in time grown in a given region or ecosystem.
  • Examples of marine raw material oils include fats and oils, phospholipids, wax esters and the like contained in fish, crustaceans, or marine animals. Marine raw materials include herring, sardines, anchovy, menhaden, pilchard, saury, tuna, bonito, and hake (hak).
  • the microorganism may be any lipid-producing microorganism or lipid-producing microorganism, and examples thereof include algae, fungi, bacteria, fungi, and stramenopile.
  • algae include the genus Labyrinthulamycota.
  • fungus include Yarrowia, Candida, Saccharomyces, Schizosaccharomyces, and Pichia.
  • bacteria include Agrobacterium, Bacillus, Escherichia, Pseudomonas, Actinomyces, and the like.
  • the genus Mortierella, Conidiobolus, Pythium, Phytophthora, Penicillium, Cladosporium, Mucor At least one selected from the group consisting of: genus Fusarium, genus Aspergillus, genus Rhodotorula, genus Entomophthora, genus Echinosporangium, and genus Saprolegnia Can be mentioned.
  • microorganisms belonging to the genus Mortierella are more preferable. Examples of microorganisms belonging to the genus Mortierella include Mortierella elongata, Mortierella exigua, Mortierella hygrophila, Mortierella alpina, etc. Mention may be made of microorganisms belonging to the subgenus.
  • Plants include Brassica, Sunflower (Helianthus), Cotton (Gossypium), flax (Linum), Nicotiana, Citrus, Allium, and wheat (Triticum) ), Barley genus (Hordeum), oat genus (Avena), rye genus (Secale), rice genus (Oryza), sugarcane genus (Zea), sorghum (Sorghum), as well as soybeans (Soybean), tomato (potato), pea (pea), green beans (frijol), peanut, alfalfa (Medicago), celery (celery), parsley (pase1ey), clover (clover), Carrot, radish, sugar beet, cucumber, spinach, cassava, olive, apple, banana, melon , Bud Examples include grape, strawberry, coconut plant, coffee plant, pepper and the like.
  • the raw material oil to be subjected to the alkyl esterification treatment may be a crude oil or a refined oil.
  • the crude oil may be an oil obtained from a marine product raw material or an oil obtained from a microbial raw material.
  • the refined oil is subjected to a degumming step, a deoxidation step, a decolorization step using activated clay or activated carbon, a water washing step, a deodorizing step by steam distillation, etc. on the crude oil, and the desired products such as phospholipids and sterols. It can be obtained through a crude oil refining step to remove substances other than the above.
  • the raw material oil is decomposed into lower alkyl esters by alcohol decomposition using lower alcohols.
  • the lower alcohol include those generally used for alkyl esterification of fatty acids, for example, lower alcohols having 1 to 3 carbon atoms.
  • a lower alcohol such as ethanol and a catalyst or an enzyme are added to a raw material oil and reacted to produce an ethyl ester from a fatty acid bonded to glycerin.
  • the catalyst an alkali catalyst, an acid catalyst, or the like is used.
  • Lipase is used as the enzyme.
  • the crude oil or refined oil or the fatty acid alkyl ester-containing composition obtained by the alkyl esterification treatment contains one or more other fatty acids in addition to the target LC-PUFA There is.
  • distillation, rectification, column chromatography, low temperature crystallization, urea inclusion, liquid-liquid countercurrent Distribution chromatography etc. can be used individually by 1 type or in combination of 2 or more types. A combination of distillation or rectification and column chromatography or liquid-liquid countercurrent distribution chromatography is preferred.
  • the specific LC-PUFA When the specific LC-PUFA is subjected to a step of concentrating or isolating, the content of the target LC-PUFA that can be finally contained in the LC-PUFA-containing composition in the fatty acid is increased, and The content of fatty acids other than the target LC-PUFA in the fatty acid can be reduced.
  • the pressure at the top of the distillation column is reduced to 10 mmHg (1333 Pa) or lower, and the column bottom temperature is 165 ° C. to 210 ° C., preferably 170 ° C. to 195 ° C. Distilling under conditions is preferable from the viewpoint of suppressing fatty acid denaturation by heat and increasing the rectification efficiency.
  • the pressure at the top of the distillation column is preferably as low as possible, more preferably 0.1 mmHg (13.33 Pa) or less. There is no restriction
  • reverse phase column chromatography is preferable.
  • the reversed-phase column chromatography include reversed-phase column chromatography known in the art, and in particular, high-performance liquid chromatography (HPLC) in which a base material modified with octadecylsilyl group (ODS) is attempted to be small. ) Is preferred.
  • HPLC high-performance liquid chromatography
  • the composition obtained by the concentration or isolation step is a composition having a high content of the target LC-PUFA.
  • the content of the target LC-PUFA is 80.0% or more of the fatty acid, It may be 85.0% or more, 90.0% or more, 95.0% or more, 97.0% or more, 98.0% or more, 99.0% or more, or 99.5% or more.
  • a composition containing this high concentration of LC-PUFA can be used as a raw material composition.
  • a reaction solution prepared by combining the prepared raw material composition, lower alcohol, water having a total metal content of 0.01 ppm or less, and an alkali catalyst is used.
  • a hydrolysis treatment is performed.
  • the main hydrolysis treatment using an alkali catalyst may be referred to as alkali hydrolysis treatment.
  • the reaction solution used for the alkali hydrolysis treatment is a reaction prepared by combining the raw material composition, lower alcohol, water with a total content of metal of 0.01 ppm or less, and an alkali catalyst, and other components as necessary.
  • the raw material composition may be a biological oil or an LC-PUFA alkyl ester-containing composition.
  • the concentration (w / w) of the raw material composition in the reaction solution is 10.0 wt% to 70.0 wt%, 20.0 wt% to 60.0 wt%, or 40 wt% from the viewpoint of reaction efficiency. It can be ⁇ 50% by weight.
  • Examples of the lower alcohol include those generally used for decomposing biological oils or fatty acid alkyl esters to obtain free fatty acids, for example, lower alcohols having 1 to 3 carbon atoms.
  • the amount of the lower alcohol in the reaction solution may be an amount effective for decomposing the fatty acid in the raw material composition into a free form. For example, 0.9 equivalent to 32 equivalents relative to the fatty acid in the raw material composition. 0.0 equivalents, 0.92 equivalents to 20.0 equivalents, 0.95 equivalents to 14 equivalents, 2.0 equivalents to 10.0 equivalents, 3.0 equivalents to 7.0 equivalents, or 4.5 equivalents to 5. equivalents. It can be 5 equivalents.
  • the amount of lower alcohol in the reaction solution includes both the amount of lower alcohol added during preparation of the reaction solution and the amount of lower alcohol by-produced in the reaction solution during the reaction.
  • “equivalent” means “molar equivalent”. The same applies hereinafter.
  • the amount of the lower alcohol in the reaction solution is 0.20 to 8.20, 0.23 to 4.50, 0.25 to 3.50, 0.60 to 2.50, by weight ratio to water. Alternatively, it may be 1.20 to 1.50. If the weight ratio of water and lower alcohol is within this range, alkali hydrolysis will proceed better, and the reaction after stopping the reaction will be stabilized and the reverse reaction that can produce fatty acid alkyl ester is effective. Tend to be suppressed.
  • the amount of lower alcohol in the reaction solution includes both the amount of lower alcohol added during preparation of the reaction solution and the amount of lower alcohol by-produced in the reaction solution during the reaction.
  • the water used for preparing the reaction solution is water having a total metal content of 0.01 ppm or less. If iron will be described as a representative metal, tap water generally contains 0.3 ppm of iron and thus does not correspond to “water” in the manufacturing method of the present embodiment.
  • the iron content of water according to another embodiment is 0.01 ppm or less, 0.005 ppm or less, or 0, that is, water containing no iron.
  • the standard value of tap water in Japan is 0.3 ppm for iron, and it is often 0.2 to 0.3 ppm in the European Union (EU), the United States and the World Health Organization (WHO). .
  • EU European Union
  • WHO World Health Organization
  • Examples of water having such an iron content generally include purified water such as ion exchange water, distilled water, RO (reverse osmosis membrane) water, pure water, and ultrapure.
  • purified water refers to these purified water.
  • the amount of water in the reaction solution is 6.0 equivalents to 13.0 equivalents, 7.0 equivalents to 12.0 equivalents, 8.0 equivalents to 11.0 equivalents, or the fatty acid in the raw material composition, or It can be 9.0 equivalent to 10.0 equivalent. If the weight ratio of water to the raw material composition is within this range, the alkali hydrolysis can proceed more favorably.
  • the alkali catalyst used in the alkali hydrolysis treatment can be an alkali metal hydroxide, such as sodium hydroxide or potassium hydroxide, and at least one selected from the group consisting of sodium hydroxide and potassium hydroxide. Sodium hydroxide is more preferred.
  • the amount of the alkali catalyst used for the alkali hydrolysis treatment may be in a range where free fatty acids can be generated from the raw material composition, for example, 1.0 equivalent to 2.3 equivalents relative to the fatty acid in the raw material composition, 1.0 equivalent to 2.0 equivalents, or 1.0 equivalent to 1.5 equivalents, and when the ratio of the alkali catalyst to the raw material composition is within this range, the reaction can proceed efficiently and free LC -PUFA can be obtained.
  • the reaction liquid can contain components other than the above-mentioned substances as long as the progress of the alkali hydrolysis reaction is not hindered.
  • examples of such components include antioxidants such as tocopherol, vitamin C and vitamin C derivatives, and non-alcohol solvents such as acetone.
  • the hydrolysis treatment in this production method may be performed at a temperature at which the target hydrolysis treatment can proceed, and can be performed, for example, under a temperature condition of 100 ° C. or lower, 80 ° C. or lower, 50 ° C. or lower, or 10 ° C. or lower. .
  • the hydrolysis treatment according to one embodiment can be performed under a temperature condition of 10 ° C. or less.
  • production or increase in the hydrolysis process of impurities, such as a conjugated unsaturated fatty acid can be suppressed by setting it as a 10 degreeC or less hydrolysis process. From the viewpoint of suppressing the generation or increase of impurities such as conjugated unsaturated fatty acids, the hydrolysis treatment temperature is, for example, ⁇ 20 ° C.
  • the temperature range of the hydrolysis treatment can be a numerical range according to any of the above upper limit value and the lower limit value, for example, ⁇ 20 ° C. to 100 ° C., ⁇ 10 ° C. to 80 ° C., ⁇ 5 ° C. It can be set to ⁇ 70 ° C., ⁇ 4 ° C. to 50 ° C., 0 ° C. to 10 ° C., 0 ° C. to 8 ° C., or 2 ° C. to 7 ° C. In the case where the hydrolysis treatment is performed under such a temperature condition of 10 ° C. or less, the generation or increase of the impurities described above can be further suppressed, which is particularly preferable.
  • the reaction time of the alkali hydrolysis treatment varies depending on the set temperature range, and can be, for example, 30 minutes to 600 hours, 1 hour to 100 hours, 8 hours to 80 hours, or 19 hours to 25 hours. .
  • the alkali hydrolysis treatment proceeds, the amount of fatty acid alkyl ester in the reaction solution decreases. For this reason, the alkali hydrolysis treatment can be stopped according to the remaining amount of the fatty acid alkyl ester in the reaction solution.
  • the amount of fatty acid alkyl ester in the reaction solution can be confirmed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) or the like.
  • the alkali hydrolysis treatment can be stopped by adding an acid to the reaction solution.
  • an acid By adding an acid, the pH of the reaction solution becomes acidic, the hydrolysis reaction stops, the saponified product produced by the addition of the alkali catalyst is decomposed, and a free fatty acid is obtained.
  • the free fatty acid obtained by the reaction termination treatment can be extracted by allowing an organic solvent such as hexane to be present in the reaction solution.
  • the temperature conditions for stopping the reaction and the extraction treatment can be in the range of 0 to 40 ° C., 5 to 35 ° C., or 15 to 30 ° C.
  • the time for stopping the reaction and the extraction treatment There is no particular limitation on the time for stopping the reaction and the extraction treatment, and it can be until the reaction liquid mixed by stirring or the like is separated and stabilized.
  • Acids used to stop the alkaline hydrolysis reaction are well known in the art, for example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, carbonic acid, or organic acids such as acetic acid, citric acid, oxalic acid, etc. Is mentioned.
  • an inorganic acid is preferable because it is highly soluble in water and can be easily removed by washing with water. Among them, a small amount of addition is required, and hydrochloric acid or the like is used in terms of removal of the salt formed and the remaining acid. More preferred.
  • the amount of acid added may be an amount effective for stopping the alkali hydrolysis treatment, and can be about 1.1 equivalents relative to the added alkali catalyst.
  • the pH of the reaction solution after the acid addition may be a pH that can stop alkaline hydrolysis, and the pH 0.1, pH 1.0, pH 1.5, or pH 2.0 can be set as the lower limit value, while pH 6 0.0, pH 5.0, pH 4.5, or pH 4.0 can be set as the upper limit.
  • the pH of the reaction solution after the acid addition is, for example, pH 0.1 to pH 6.0, pH 1.0 to pH 6.0, pH 1.5 to pH 4.5, pH 2.0 to pH 5.0, pH 2.0 to pH 4. It can be set to zero.
  • the reaction composition after the hydrolysis treatment contains free LC-PUFA.
  • the inventors have found that free LC-PUFA can elute metals more easily than unsaturated fatty acids with a short chain length, or saturated fatty acids with a similar chain length or monounsaturated fatty acids with a low degree of unsaturation. I found it for the first time.
  • the present inventors restrict the contact between the reaction composition after hydrolysis and the metal to a certain level or less, thereby reducing the content of a metal such as iron that can be contained in the free polyunsaturated fatty acid-containing composition. It has been found that the increase can be suppressed and the influence of the metal on the physical and chemical properties and stability of the polyunsaturated fatty acid-containing composition can be suppressed.
  • the contact between the reaction product after the hydrolysis treatment and the metal is the product of the contact surface area [cm 2 ] and the contact time [day] of the composition and metal per gram T [cm 2 ⁇ Day] is limited to 100 or less.
  • the total content of metals in the free LC-PUFA-containing composition can be efficiently suppressed within a predetermined range, for example, 0.1 ppm or less, and a free LC-PUFA-containing composition with stable physical properties can be provided. .
  • the product T [cm 2 ⁇ day] of the contact surface area [cm 2 ] of the composition and metal per gram and the contact time [day] relating to the reaction composition after the hydrolysis treatment is the sum of the metals in the composition It can be considered that the contact amount is required to elute a metal having a content corresponding to 0.1 ppm, and is determined by an iron elution test using a stainless steel (SUS) sphere described below.
  • SUS stainless steel
  • the iron content is measured by atomic absorption analysis (graphite furnace method). From the iron content of the sample solution, the iron content in the test composition is obtained, and the iron elution rate (ng / cm 2 / day) per 1 cm 2 of contact area with SUS is calculated. The product T [cm 2 ⁇ day] of the contact surface area [cm 2 ] and the contact time [day] is determined.
  • the product T obtained varies depending on the type and content of the LC-PUFA in the free LC-PUFA-containing composition.
  • the contact between the free LC-PUFA-containing composition and the metal may be within the product T. Since “product T” is a product of the contact time and the area between the composition and the metal surface in 1 g of the composition, in order to limit the product to be within the product T, This can be achieved by adjusting at least one of the times.
  • hydrolysis treatment when changing the material of equipment and equipment used for hydrolysis treatment to non-metal such as glass, hydrolysis treatment, in some cases during subsequent treatment, or when in contact with the metal surface during storage It can be achieved by reducing the size of the metal surface, shortening the contact time with the metal surface to be contacted, or reducing the size of the metal surface and shortening the contact time.
  • a free LC-PUFA-containing composition that exhibits stable physical properties before and after the hydrolysis treatment, for example. it can.
  • a free LC-PUFA-containing composition exhibiting stable physical properties can be provided.
  • the value of the product T varies depending on the type of LC-PUFA in the free LC-PUFA-containing composition, but is 100 or less, 90 or less, 80 or less, 75 or less, 70 or less, 65 or less, 60 or less, 55 or less, 50 Hereinafter, it can be 45 or less and 40 or less.
  • the product T within this range as a reference, in a composition containing free LC-PUFA having 20 or more carbon atoms, the amount of metal that can be mixed into the composition is effectively suppressed within the predetermined range. Can do.
  • Examples of metal surfaces whose contact with the free LC-PUFA-containing composition is limited within the product T include metals that can be eluted by contact with LC-PUFA, such as iron, stainless steel, steel, tinplate, and the like. In this case, steel coated with zinc phosphate or the like is applicable, and in particular, steel, stainless steel and the like can be mentioned.
  • the range in which the contact between the composition and the metal surface within the product T is limited can be from the start of the hydrolysis process until it is accommodated in the final product container, in particular the hydrolysis process. The reaction can be stopped, the free polyunsaturated fatty acid-containing composition is recovered, washed with water, further desolvated, stored, and stored in a product container.
  • the present production method can include a washing step of removing water-soluble components from the reaction solution obtained after stopping the reaction and extracting.
  • water or the like may be used as a washing solution and added to the reaction solution.
  • the washing can be performed until the pH of the washing solution used for the washing treatment is near neutral, for example, more than 6.
  • cleaning process It can carry out at 25 degrees C or less.
  • This production method can include a recovery step for recovering the target free LC-PUFA-containing composition from the organic layer of the reaction solution after the cleaning treatment after the cleaning step.
  • means usually used for this purpose may be applied. For example, an evaporator or the like can be used.
  • the total content of metals is 0.1 ppm or less, 0.05 ppm or less, 0.03 ppm or less, or 0.01 ppm or less, and LC-PUFA Content is 80.0% or more of the fatty acid in a composition, 85.0% or more, 90.0% or more, 95.0% or more, 97.0% or more, 98.0% or more, 99. It can be 0% or more, or 99.5% or more.
  • the free LC-PUFA-containing composition obtained by the production method according to one embodiment has the total metal content and the LC-PUFA content as described above, and the content of the conjugated unsaturated fatty acid is 1.2% or less, 1.0% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less, or 0% of the fatty acid in the composition .3% or less.
  • the free LC-PUFA-containing composition obtained by the production method according to another embodiment can exhibit the above-described predetermined peroxide value, anisidine value, and the like.
  • the residual amount of the enzyme subjected to heat inactivation treatment is smaller than that in the free LC-PUFA-containing composition obtained by hydrolase.
  • the effect of the residual enzyme can be reduced.
  • the organic solvent in the present specification means a hydrophobic or hydrophilic solvent other than fatty acid and having at least one carbon atom, and is polar solvent, nonpolar solvent, water miscible solvent, water immiscible Examples include solvents and combinations of two or more thereof.
  • organic solvents include substituted or unsubstituted, saturated or unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ethers, ketones, aldehydes, carboxylic acids, esters, nitriles, amides, etc. It may be used alone or in combination of two or more.
  • the total content of residual organic solvent in the free LC-PUFA-containing composition can be 5000 ppm or less, 3000 ppm or less, 2000 ppm or less, or 1000 ppm or less.
  • the free LC-PUFA-containing composition may have a low content of at least one selected from the group consisting of methanol, ethanol, acetone, and hexane among residual organic solvents. These organic solvents can be independently 500 ppm or less, 300 ppm or less, or 200 ppm or less. For example, any of the contents of methanol, ethanol, acetone and hexane in the free LC-PUFA-containing composition can be 500 ppm or less, 300 ppm or less, or 200 ppm or less.
  • the composition containing free LC-PUFA contains at least one free LC-PUFA at a high concentration and has stable physical properties, so that the function according to the type of contained LC-PUFA is good at a high level. It can be exhibited and has good handleability, and can be preferably used for various applications.
  • Preferred applications of the free LC-PUFA-containing composition include, for example, use in foods, supplements, pharmaceuticals, cosmetics, feeds, etc., and use in these production methods.
  • a composition containing LC-PUFA is used.
  • examples include pharmaceuticals containing as an active ingredient.
  • the present free LC-PUFA-containing composition is a composition containing free ARA, free DGLA, free EPA, free DHA, etc.
  • these functional LC-PUFAs are produced at a high content rate and productivity. It is extremely useful for applications that are often required.
  • Such uses vary depending on the type of LC-PUFA in the composition, but prevent lifestyle-related diseases such as arteriosclerosis, cerebral infarction, myocardial infarction, thrombosis, hyperlipidemia, improvement of metabolic syndrome, antiallergy,
  • lifestyle-related diseases such as arteriosclerosis, cerebral infarction, myocardial infarction, thrombosis, hyperlipidemia, improvement of metabolic syndrome, antiallergy
  • Examples include foods, supplements, pharmaceuticals, cosmetics, and feeds that can be expected to have anti-inflammatory, anti-cancer, and brain function improvements.
  • pharmaceuticals include skin external preparations and oral preparations.
  • the pharmaceutical when a free LC-PUFA-containing composition is used as a pharmaceutical, the pharmaceutical includes a free LC-PUFA-containing composition and a pharmaceutically acceptable carrier, and other components as necessary.
  • the dosage form may be any form that can be conveniently administered orally or parenterally based on the type of LC-PUFA in the composition.
  • administration forms include injections, infusions, powders, granules, tablets, capsules, enteric solvents, troches, liquids for internal use, suspensions, emulsions, syrups, liquids for external use, poultices, nasal drops, dots
  • administration forms include ear drops, eye drops, inhalants, ointments, lotions, suppositories, and the like, and these can be used alone or in combination depending on symptoms.
  • LC-PUFA as a liquid, it is in the range of 0.01 mg to 10 g, preferably 0.1 mg to 2 g, more preferably 1 mg to 200 mg per day.
  • the total amount can be 0.001 mg to 1 g per day, preferably 0.01 mg to 200 mg, more preferably 0.1 mg to 100 mg.
  • the method for preserving a composition containing free LC-PUFA has a product T [cm 2 ⁇ day] of a contact surface area [cm 2 ] and a contact time [day] of 100 g of the composition and metal per gram. Hold under conditions that limit contact with the metal so that:
  • the free LC-PUFA-containing composition is obtained by multiplying the contact surface area [cm 2 ] of the composition and metal by 1 g and the contact time [day]. Since the contact with the metal is limited so that T [cm 2 ⁇ day] is 100 or less, the iron content in the free LC-PUFA-containing composition is efficiently reduced to a predetermined amount or less, for example, 0.1 ppm or less. Can be suppressed. As a result, it is possible to avoid the shortage that the physical properties of the free LC-PUFA-containing composition fluctuate during storage.
  • the free LC-PUFA-containing composition stored by the storage method according to the present embodiment can be used as an additive component having good handleability after storage in various applications such as foods, supplements, pharmaceuticals, cosmetics, feeds and the like. It can be used as a component.
  • the storage method of the free LC-PUFA-containing composition according to the present embodiment the matters described for the method for producing the free LC-PUFA-containing composition according to the other embodiments can be applied to the metal contact restriction conditions. It is.
  • the present invention will be described in detail with reference to examples. However, the present invention is not limited to them.
  • the LC-PUFA is only a specific type, but the type of the LC-PUFA is not particularly limited.
  • Example 1 The fish oil-derived EPA ethyl ester 1 containing 96.8% EPA was hydrolyzed using purified water substantially free of iron (iron content of 0.01 ppm or less) using an alkaline catalyst at a relatively high temperature. Decomposition was performed. That is, 5.0 g of EPA ethyl ester 1 was poured into a glass eggplant flask, and further 3.5 mL (4.0 equivalents to fatty acid) of ethanol, 2.0 mL of purified water, 1.5 g of 48% by weight. A sample solution 1 was prepared by adding an aqueous sodium hydroxide solution (1.2 equivalents of NaOH to fatty acid, ethanol / water weight ratio 0.4). The sample solution 1 in the eggplant flask was stirred for 24 hours while being heated in an oil bath at 70 ° C. for hydrolysis treatment.
  • aqueous sodium hydroxide solution 1.2 equivalents of NaOH to fatty acid, ethanol / water weight ratio 0.4
  • Purified water was obtained by treating tap water with the next generation type pure production equipment Auto Pure WEX5 (Yamato Scientific Co., Ltd.) and further treating with pure water supply type ultra pure water equipment Synergy UV (Millipore Corporation). .
  • the specific resistance value of the obtained purified water was 18.2 M ⁇ ⁇ cm, and the iron content was 0.1 ppm or less. same as below.
  • hexane: diethyl ether: acetic acid 80: 20: 1 (v / v / v) was used.
  • Silica gel 60G F254 Merck Millipore
  • the coloring reagent p-anisaldehyde coloring reagent was used.
  • the p-anisaldehyde coloring reagent was prepared as follows. That is, 9.3 mL of p-anisaldehyde, 3.8 mL of acetic acid, and 340 mL of ethanol were mixed with ice cooling, and then 12.5 mL of concentrated sulfuric acid was mixed.
  • the treated sample solution 1 was air-cooled and transferred to a glass separatory funnel, and then 6.3 mL of hexane and 5.0 mL of purified water were added to the sample solution 1. Further, 2.1 g of hydrochloric acid was added and stirred, and then allowed to stand. Thereafter, the sample solution 1 was separated into two layers, a hexane layer and an aqueous layer. The pH of the aqueous layer was 0.4.
  • the hexane layer is collected from the sample solution 1 in another glass eggplant flask, and hexane is removed from the collected hexane layer by an evaporator and vacuumed to obtain 4.3 g of a composition containing free EPA, EPA1. It was.
  • Example 2 Hydrolysis of microorganism-derived DGLA ethyl ester 2 containing 95.8% DGLA using an alkaline catalyst at a relatively high temperature using purified water substantially free of iron (iron content is 0.01 ppm or less) Went. That is, 3.0 g of DGLA ethyl ester 2 was poured into a glass eggplant flask, and further 2.1 mL (4.0 equivalents to fatty acid) of ethanol, 1.2 mL of purified water, 0.9 g of 48% by weight. A sample solution 2 was prepared by adding an aqueous sodium hydroxide solution (1.2 equivalents of NaOH relative to fatty acid, ethanol / water weight ratio 0.4). The sample solution 2 in the eggplant flask was stirred for 24 hours while being heated in an oil bath at 70 ° C. for hydrolysis treatment.
  • aqueous sodium hydroxide solution 1.2 equivalents of NaOH relative to fatty acid, ethanol / water weight ratio 0.4
  • the treated sample solution 2 was air-cooled and transferred to a glass separatory funnel, and then 3.8 mL of hexane and 3.0 mL of purified water were added to the sample solution 2. Further, 1.3 g of hydrochloric acid was added and stirred, and then allowed to stand. Thereafter, the sample solution 2 was separated into two layers, a hexane layer and an aqueous layer. The pH of the aqueous layer was 2.1.
  • the hexane layer is collected from the sample liquid 2 in another eggplant flask made of glass, and hexane is removed from the collected hexane layer by an evaporator and vacuumed to obtain 2.5 g of a composition containing free DGLA, DGLA2. It was.
  • Example 3 Hydrolysis of fish oil-derived DHA ethyl ester 3 containing 97.6% DHA using an alkaline catalyst at a relatively high temperature using purified water substantially free of iron (iron content is 0.01 ppm or less) Went. That is, 3.0 g of DHA ethyl ester 3 was poured into a glass eggplant flask, and further 2.1 mL (4.3 equivalents of fatty acid) of ethanol, 1.2 mL of purified water, 0.9 g of 48% by weight. A sample solution 3 was prepared by adding an aqueous sodium hydroxide solution (1.3 equivalents of NaOH to fatty acid, 0.4 weight ratio of ethanol / water). The sample solution 3 in the eggplant flask was stirred for 24 hours while being heated in an oil bath at 70 ° C. for hydrolysis treatment.
  • the treated sample solution 3 was air-cooled and transferred to a glass separatory funnel, and then 3.8 mL of hexane and 3.0 mL of purified water were added to the sample solution 3. Further, 1.3 g of hydrochloric acid was added and stirred, and then allowed to stand. Thereafter, the sample solution 3 was separated into two layers, a hexane layer and an aqueous layer. The pH of the aqueous layer was 1.1.
  • the hexane layer is collected from the sample liquid 3 in another glass eggplant flask, and hexane is removed from the collected hexane layer by an evaporator and vacuumed to obtain 2.5 g of a composition containing free DHA, DHA3. It was.
  • Example 4 The fish oil-derived EPA ethyl ester 4 containing 96.8% of EPA is hydrolyzed using an alkaline catalyst at a low temperature using purified water substantially free of iron (iron content is 0.01 ppm or less). went. That is, 3.0 g of EPA ethyl ester 4 was poured into a glass eggplant flask, and further 2.1 mL (4.0 equivalents with respect to fatty acid) of ethanol, 1.2 mL of purified water, 0.9 g of 48% by weight. A sample solution 4 was prepared by adding an aqueous sodium hydroxide solution (1.2 equivalents of NaOH to fatty acid, 0.4 weight ratio of ethanol / water). The sample solution 4 in the eggplant flask was stirred for 24 hours while cooling at 6 ° C. to perform a hydrolysis treatment.
  • aqueous sodium hydroxide solution 1.2 equivalents of NaOH to fatty acid, 0.4 weight ratio of ethanol / water
  • sample solution 4 was transferred to a glass separatory funnel, 3.8 mL of hexane and 3.0 mL of purified water were added to the sample solution 4. Further, 1.3 g of hydrochloric acid was added and stirred, and then allowed to stand. Thereafter, the sample solution 4 was separated into two layers, a hexane layer and an aqueous layer. The pH of the aqueous layer was 0.9.
  • the hexane layer is collected from the sample liquid 4 in another glass eggplant flask, and hexane is removed from the collected hexane layer by an evaporator and vacuumed to obtain 2.4 g of a composition containing free EPA, EPA4. It was.
  • the total surface area of 50 SUS spheres was calculated as 15.8 cm 2 from the following calculation formula.
  • Total surface area [cm 2 ] 50 ⁇ 4 ⁇ 3.14 ⁇ (1/8 ⁇ 2.54 / 2) 2
  • the change in the iron content in the test composition was determined by atomic absorption analysis (graphite furnace method) under the following conditions. 1 g of the test composition was weighed and 0.15 mL of nitric acid (for toxic metal measurement, Wako Pure Chemical Industries, Ltd.) was added, followed by 10 mL of methyl isobutyl ketone (for atomic absorption analysis, Wako Pure Chemical Industries, Ltd.). The sample was made up into a sample solution. The standard sample was Conostan S-21 (10 ppm (Wt.)). This standard reagent was diluted in methyl isobutyl ketone to prepare a calibration curve sample (0 ⁇ g / L, 10 ⁇ g / L, 20 ⁇ g / L).
  • Temperature program 1 Drying 80 ° C-140 ° C Temperature rising time 40 seconds Holding time 0 seconds Gas flow rate 200 mL / min 2 Ashing 1000 ° C Temperature rising time 20 seconds Holding time 0 seconds Gas flow rate 200 mL / min 3 Atomization 2400 ° C Temperature rising time 0 seconds Holding time 5 seconds Gas flow rate 30 mL / min 4 Clean 2700 ° C Temperature rising time 0 seconds Holding time 4 seconds Gas flow rate 200 mL / min 5 Cooling 0 ° C Temperature rising time 0 seconds Holding time 10 seconds Gas flow rate 200 mL / min
  • iron content of EPA1 was calculated by the following equation (3).
  • Iron content of EPA1 [ppm] C / (W ⁇ 100) (3) (Wherein, C means the iron content ( ⁇ g / L) of the sample solution obtained by atomic absorption analysis, and W means the amount of EPA1 collected (g).)
  • Example 1 As shown in Table 1, the free EPA-containing composition of Example 1 and the free DGLA-containing composition of Example 2 both had an iron content of 0.1 ppm or less. Therefore, the hydrolysis treatment and measurement used in Example 1 and Example 2 are both performed using glass instruments, and the iron content in the composition is limited to 0.1 ppm or less. It was found to be suitable for.
  • the elution rate of iron when 1 g of the composition is contacted with SUS having a contact area of 1 cm 2 is 2.6 ng / cm 2 / day for the free EPA-containing composition according to Example 1, and according to Example 2.
  • free in the DGLA-containing composition becomes 1.4 ng / cm 2 / day, it can be seen that higher than 0.9 ng / cm 2 / day oleic acid.
  • the product T was 38 (cm 2 ⁇ day) for the EPA-containing composition of Example 1, 72 (cm 2 ⁇ day) for the DGLA-containing composition of Example 2, and 108 (cm 2 ) of oleic acid. It was much smaller than ( 2 ⁇ day). From this, it can be seen that the EPA-containing composition and the DGLA-containing composition according to Example 1 and Example 2, respectively, behave differently from oleic acid, which is an unsaturated fatty acid having 18 carbon atoms.
  • the peroxide value of the raw material composition and the free LC-PUFA-containing composition was measured by the iron thiocyanate method. That is, a chloroform / methanol solution was prepared by mixing chloroform (reagent special grade, Wako Pure Chemical Industries, Ltd.) and methanol (reagent special grade, Wako Pure Chemical Industries, Ltd.) at 2: 1 (vol / vol). A 30% ammonium thiocyanate aqueous solution was prepared by weighing 1.5 g of ammonium thiocyanate (special grade reagent, Wako Pure Chemical Industries, Ltd.) and adding purified water to a total of 5.0 g.
  • iron (II) /3.5% hydrochloric acid 0.02N iron sulfate (II) /3.5% hydrochloric acid was weighed in 27.8 mg of iron (II) sulfate (reagent grade, Nacalai Tesque) in a 10 mL volumetric flask and hydrochloric acid (special grade reagent, Wako Pure Chemical Industries, Ltd.). 1 mL of Kogyo Co., Ltd. was added, and purified water was added and mixed so that the total was 10 mL.
  • Sample 100 mg was weighed into a glass test tube with a stopper, 4 mL of chloroform / methanol solution was added, and the mixture was vigorously stirred to prepare a sample solution.
  • the blank solution was a chloroform / methanol solution.
  • A1 represents the absorbance of the sample reaction solution
  • A0 represents the absorbance of the blank reaction solution.
  • Formula (2) shows the result of measuring the peroxide value (standard oil analysis test method 2.5.2.1-2013) for oxidized soybean oil and the absorbance (A1-A0) obtained by the iron thiocyanate method described above. It was obtained from the correlation. Note that an ultraviolet-visible spectrophotometer V-560 type (JASCO Corporation) was used for the absorbance measurement. A quartz cell with an optical path length of 10 mm was used, and a chloroform / methanol solution was used as a control.
  • the iron content of the raw material composition and the free LC-PUFA-containing composition was determined by atomic absorption analysis (graphite furnace method) under the following conditions. Weigh 1 g of the raw material composition or free LC-PUFA-containing composition, add 0.15 mL of nitric acid (for toxic metal measurement, Wako Pure Chemical Industries, Ltd.), and then add methyl isobutyl ketone (for atomic absorption analysis, Wako Pure) The sample solution was made up to 10 mL by Yakuhin Kogyo). The standard sample was Conostan S-21 (10 ppm (Wt.)). This standard reagent was diluted in methyl isobutyl ketone to prepare a calibration curve sample (0 ⁇ g / L, 10 ⁇ g / L, 20 ⁇ g / L).
  • Temperature program 1 Drying 80 ° C-140 ° C Temperature rising time 40 seconds Holding time 0 seconds Gas flow rate 200 mL / min 2 Ashing 1000 ° C Temperature rising time 20 seconds Holding time 0 seconds Gas flow rate 200 mL / min 3 Atomization 2400 ° C Temperature rising time 0 seconds Holding time 5 seconds Gas flow rate 30 mL / min 4 Clean 2700 ° C Temperature rising time 0 seconds Holding time 4 seconds Gas flow rate 200 mL / min 5 Cooling 0 ° C Temperature rising time 0 seconds Holding time 10 seconds Gas flow rate 200 mL / min
  • iron content of the raw material composition or the free LC-PUFA-containing composition was calculated by the following formula (3).
  • Iron content [ppm] C / (W ⁇ 100) (3) (Wherein, C means the iron content ( ⁇ g / L) of the sample solution obtained by atomic absorption analysis, and W means the amount of collected raw material composition or free LC-PUFA-containing composition (g)). means.
  • the fatty acid composition of the raw material composition and the free LC-PUFA-containing composition was determined from each fatty acid peak obtained by gas chromatography under the following conditions.
  • the free LC-PUFA-containing composition was subjected to methyl esterification before gas chromatography measurement. Methyl esterification was performed according to American Oil Chemists' Society (AOCS) Official Method Ce1b-89.
  • the immobilization temperature was measured with reference to experimental devices and instruments having a melting point (transparent melting point, standard oil analysis test method 3.2.1-2013). That is, about 1 cm of liquid oil was put into the capillary tube with the same apparatus as the melting point measurement, and the cooling temperature was lowered by 0.5 ° C. per minute, and the temperature at which the liquid oil in the capillary tube became cloudy was set as the solidification temperature.
  • Table 4 The results are shown in Table 4.
  • ⁇ Test method> Under the conditions of a temperature of 25 ° C., 1 atm, and a relative humidity of 55%, a test circular frame (see FIG. 1) described later is immersed in a fatty acid test solution (reference solution or test solution), and then slowly on the liquid surface. A film was formed in a compartment formed by lifting and being formed by a plurality of inner frames, and the time (holding time) required for at least one formed film to rupture was measured using a stopwatch. The results are shown in Table 5. As the fatty acid test solution used here, the following standard solution or test solution was used. The following test circular frames were prepared as test circular frames used for measurement.
  • Test solution DGLA2 of Example 2 was used so that the reference solution containing 100 ppm of iron with respect to DGLA2 obtained above had an iron content of 0.05 ppm, 0.1 ppm, and 1.0 ppm, respectively.
  • DGLA2 containing iron with various contents was prepared.
  • 0.5 g of each DGLA2 obtained, 0.15 g of 48 wt% sodium hydroxide, and 9.35 g of purified water were mixed to prepare an aqueous test solution containing 5.1 wt% DGLA sodium.
  • a plastic test circular frame (see FIG. 1) having one large section and four small sections by four inner frames having a thickness of 2 mm in an outer frame having a diameter of 64 mm, an inner diameter of 52 mm, and a thickness of 3 mm was prepared. .

Abstract

含有量が組成物中の脂肪酸の80.0%以上である、少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含み、金属の合計含有量が0.1ppm以下である遊離多価不飽和脂肪酸含有組成物と;少なくとも1つの炭素数20以上の多価不飽和脂肪酸を含む原料組成物を用意すること、用意された原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水、及びアルカリ触媒を組み合わせて調製される反応液に対して、加水分解処理を行うこと、加水分解処理後の反応組成物と金属との接触を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、100以下となるように制限すること、を含む、遊離多価不飽和脂肪酸含有組成物の製造方法が提供される。

Description

遊離多価不飽和脂肪酸含有組成物及びその製造方法
 本発明は、遊離多価不飽和脂肪酸含有組成物及びその製造方法に関する。
 エイコサジエン酸、ジホモ-γ-リノレン酸(DGLA)、エイコサテトラエン酸、アラキドン酸(ARA)、エイコサペンタエン酸(EPA)、ドコサテトラエン酸、ドコサペンタエン酸及び、ドコサヘキサエン酸(DHA)等の炭素数20以上の長鎖の多価不飽和脂肪酸は、生体において種々の機能性を発揮することが知られている。このため、多価不飽和脂肪酸について、医薬品、健康食品、化粧品等の製品における機能性成分としての利用が検討されている。これに伴い、高濃度で大量に多価不飽和脂肪酸を生産することが求められている。
 多価不飽和脂肪酸は、天然では多くの場合、トリアシルグリセロール(トリグリセリド)の構成脂肪酸として油中に存在しているため、遊離型の多価不飽和脂肪酸を得るためには、トリアシルグリセロール中の構成脂肪酸又はその脂肪酸アルキルエステルを加水分解することが通常行われている。
 例えば、国際公開第2013/172346号には、精留、カラムクロマトグラフィーを組み合わせて得られた高度不飽和脂肪酸のエステルを加水分解することにより、(遊離)高度不飽和脂肪酸が得られることが開示されている。
 国際公開第2015/083843号には、DGLAの遊離脂肪酸を、微生物油の低級アルキルエステルを製造後、精製し純度を高めたDGLA低級アルキルエステルを、アルカリ触媒で加水分解することによりDGLAの遊離脂肪酸が得られることが開示されている。
 遊離多価不飽和脂肪酸の機能を充分に発揮させるために、遊離多価不飽和脂肪酸を高濃度に含む組成物が求められており、濃縮処理などにより遊離多価不飽和脂肪酸の濃度を高めている。一方、同じ多価不飽和脂肪酸を構成成分とする場合でも、遊離脂肪酸は、トリアシルグリセロール等のグリセリルエステルを主成分とする油脂と異なる物理又は化学的性質を持つことがある。遊離脂肪酸の中でも、鎖長、二重結合の数など、その構造によって物理又は化学的性状は大きく変わることがある。
 この結果、高濃度の遊離多価不飽和脂肪酸が、組成物中の他の成分と反応して、予想外の挙動を示すことがある。このため、このような遊離多価不飽和脂肪酸含有組成物を、他の多様な成分を含有する組成物、例えば、化粧品組成物又は機能性食品組成物の一添加成分として用いる際の取扱いが複雑になることがある。
 したがって、例えば、添加成分として用いた場合に、取扱いが良好な遊離多価不飽和脂肪酸含有組成物、及びその製造方法に対する要請がある。
 本発明にかかる態様は以下を含む。
 [1] 含有量が組成物中の脂肪酸の80.0%以上である、少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含み、金属の含有量が0.1ppm以下である遊離多価不飽和脂肪酸含有組成物。
 [2] 過酸化物価が5.0meq/kg以下である[1]に記載の遊離多価不飽和脂肪酸含有組成物。
 [3] 共役不飽和脂肪酸の含有量が、組成物中の脂肪酸の1.2%以下である[1]又は[2]に記載の遊離多価不飽和脂肪酸含有組成物。
 [4] アニシジン価が5.0以下である、[1]~[3]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [5] 共役不飽和脂肪酸の含有量が、組成物中の脂肪酸の0.001%~1.2%である[1]~[4]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [6] 多価不飽和脂肪酸が、エイコサジエン酸、ジホモ-γ-リノレン酸、ミード酸、エイコサテトラエン酸、アラキドン酸、エイコサペンタエン酸、ドコサテトラエン酸、ドコサペンタエン酸及びドコサヘキサエン酸からなる群より選択された少なくとも1つである[1]~[5]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [7] 遊離多価不飽和脂肪酸含有組成物を用いて以下の膜評価試験を実施した場合に、遊離多価不飽和脂肪酸含有組成物から調製される試験液を用いて形成される膜が壊れるまでの時間が、基準液を用いて形成される膜が壊れるまでの時間(秒)を1としたときに、1.4以上となる[1]~[6]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物:
<膜評価試験>
 温度25℃、1気圧、相対湿度55%の条件下で、複数の内枠を有する試験用円形枠を、脂肪酸試験液(基準液液又は試験液)中に浸した後、液面上に持ち上げて複数の内枠により形成される区画内に膜を形成させ、形成された少なくとも1つの膜が破裂するまでに要する時間(秒)を測定する。
<試験液の調製>
 基準液
 硫酸鉄(II)・7水和物の水溶液を、鉄濃度が100ppmになるように遊離多価不飽和脂肪酸組成物に添加し、次いでエタノールを加えて均一化した後に溶剤を真空引きで除去して、組成物中100ppmの鉄を含有する遊離多価不飽和脂肪酸組成物を調製する。100ppmの鉄を含有する遊離多価不飽和脂肪酸含有組成物0.5g、48重量%水酸化ナトリウム0.15g、及び精製水9.35gを混合して、水溶液中約5重量%の遊離多価不飽和脂肪酸ナトリウムを含む水溶液を調製し、得られる水溶液を基準液とする。
 試験液
 遊離多価不飽和脂肪酸含有組成物0.5g、48重量%水酸化ナトリウム0.15g、及び精製水9.35gを混合して、水溶液中約5重量%の遊離多価不飽和脂肪酸ナトリウムを含む水溶液を調製し、得られる水溶液を試験液とする。
<試験用円形枠の準備>
 直径64mm、内径52mm、厚さ3mmの外枠内に、厚さ2mmの内枠によって5個の区画を有するプラスチック製の用具を、試験用円形枠とする。
 [8] 金属は鉄である[1]~[7]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [9] 少なくとも1つの炭素数20以上の多価不飽和脂肪酸を含む原料組成物を用意すること、
 用意された原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水、及びアルカリ触媒を組み合わせて調製される反応液に対して、加水分解処理を行うこと、
 加水分解処理後の反応組成物と金属との接触を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、100以下となるように制限すること、
 を含む、遊離多価不飽和脂肪酸含有組成物の製造方法。
 [10] 1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、80以下である[9]に記載の製造方法。
 [11] 原料組成物中の炭素数20以上の遊離多価不飽和脂肪酸の含有量が、組成物中の脂肪酸の80.0%以上である[9]又は[10]に記載の製造方法。
 [12] 加水分解処理を、10℃以下の温度条件で行う[9]~[11]のいずれか1に記載の製造方法。
 [13] 加水分解処理に使用する水の鉄含有量が0.01ppm以下である[9]~[12]のいずれか1に記載の製造方法。
 [14] 原料組成物中の多価不飽和脂肪酸が、多価不飽和脂肪酸アルキルエステルである[9]~[13]のいずれか1に記載の製造方法。
 [15] 原料組成物が微生物原料由来である、[9]~[14]のいずれか1に記載の製造方法。
 [16] 含有量が組成物中の脂肪酸の80.0%以上である、少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含む遊離多価不飽和脂肪酸含有組成物を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が100以下となるように、金属との接触を制限する条件下で保持する、遊離多価不飽和脂肪酸含有組成物の保存方法。
 [17] 脂肪酸アルキルエステルの含有量が、組成物中の脂肪酸の0.2%以下である、[1]~[8]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [18] 組成物における残留有機溶媒の総含有量が5000ppm以下である[1]~[8]及び[17]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [19] 組成物における炭素数18の二価以上の多価不飽和脂肪酸の含有量が、組成物の脂肪酸の2.0%以下である[1]~[8]、[17]及び[18]のいずれか1に記載の遊離多価不飽和脂肪酸含有組成物。
 [20] [1]~[8]、[17]~[19]のいずれか1に記載の不飽和脂肪酸含有組成物を含有する食品、サプリメント、医薬品、化粧品、又は飼料。
 [21] [1]~[8]、[17]~[19]のいずれか1に記載の不飽和脂肪酸含有組成物の、食品、サプリメント、医薬品、化粧品、又は飼料の製造方法における使用。
 本発明の一態様によれば、添加成分としての取扱いが良好な遊離多価不飽和脂肪酸含有組成物、及びその製造方法が提供され得る。
膜形成試験に使用可能な試験用円形枠の一例を示す平面図である。
 本発明の一態様にかかる遊離多価不飽和脂肪酸含有組成物は、含有量が組成物中の脂肪酸の80.0%以上である、少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含み、金属の合計含有量が0.1ppm以下である遊離多価不飽和脂肪酸含有組成物である。
 本発明の一態様にかかる遊離多価不飽和脂肪酸含有組成物の製造方法は、少なくとも1つの炭素数20以上の多価不飽和脂肪酸を含む原料組成物を用意すること、用意された原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水、及びアルカリ触媒を組み合わせて調製される反応液に対して、加水分解処理を行うこと、加水分解処理後の反応組成物と金属との接触を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、100以下となるように制限すること、を含む、遊離多価不飽和脂肪酸含有組成物の製造方法である。
 炭素数20以上の遊離長鎖多価不飽和脂肪酸を含有する組成物では、アルキルエステル形態又はグリセリド形態の長鎖多価不飽和脂肪酸と比較して極性が高く、アルキルエステル形態又はグリセリド形態のものと異なる挙動を示す場合がある。特に、炭素数20以上の遊離長鎖多価不飽和脂肪酸を組成物中の脂肪酸の80.0%以上の含有量で含む組成物では、炭素数18以下の飽和脂肪酸や遊離不飽和脂肪酸を同程度の含有量で含む組成物では確認できなかった物性の変動が生じる場合があった。本発明者らは、このような物性の変動と金属の合計含有量との間に一定の関連性があることを見いだした。
 これを更に説明すれば、以下の様に推定される。高濃度の遊離長鎖多価不飽和脂肪酸を含有する組成物が、炭素数18以下の脂肪酸と比較してより多量の金属を溶出可能であることが見いだされた。また、高濃度の遊離多価不飽和脂肪酸含有組成物において、金属が所定の含有量以上に存在すると、組成物の物理的性質、又は化学的性質に変動が生じることが見いだされた。
 これらの知見に基づき、一実施形態において、金属の合計含有量が所定以下の高濃度遊離長鎖多価不飽和脂肪酸含有組成物は、組成物中の金属に起因する物性の変動の影響を抑え、安定性に優れた組成物を提供しうる。
 一実施形態にかかる遊離多価不飽和脂肪酸含有組成物では、金属の合計含有量が0.1ppm以下であるため、遊離長鎖多価不飽和脂肪酸を高濃度に含有する組成物は、安定した物性を示すことができる。この結果、一実施形態にかかる遊離多価不飽和脂肪酸含有組成物を一成分として多様な種々の成分と組み合わせて製品を構成する場合であっても、製品全体の物性又は安定性の変動を抑えることができる。
 一実施形態にかかる遊離多価不飽和脂肪酸含有組成物の製造方法では、加水分解処理後の反応物と金属との接触を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が100以内となるように制限するので、金属の合計含有量が少なく、かつ、物性が安定した炭素数20以上の遊離多価不飽和脂肪酸を高濃度に含む組成物を効率よく得ることができる。なお、本明細書において、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]を、単に「積T」と称する場合がある。
 一実施形態にかかる遊離多価不飽和脂肪酸含有組成物の保存方法では、遊離長鎖多価不飽和脂肪酸を高濃度に含有する組成物を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が100以下となるように、金属との接触を制限する条件下で保持するので、保存中の高濃度の遊離多価不飽和脂肪酸含有組成物を、物性が安定した組成物の状態で維持することができる。
 「油」又は「油脂」とは、本明細書では、トリグリセリドのみを含む油と、トリグリセリドを主成分とし、ジグリセリド、モノグリセリド、リン脂質、コレステロール、遊離脂肪酸等の他の脂質が含まれている粗油も含む。「油」又は「油脂」は、これらの脂質を含む組成物を意味する。
 用語「脂肪酸」には、遊離の飽和若しくは不飽和脂肪酸それら自体だけでなく、遊離の飽和若しくは不飽和脂肪酸、飽和若しくは不飽和脂肪酸アルキルエステル、トリグリセリド、ジグリセリド、モノグリセリド、リン脂質、ステリルエステル等中に含まれる構成単位としての脂肪酸も含まれ、構成脂肪酸とも言い換えられ得る。本明細書において、特に断らない限り、又は特に示さない限り、存在する若しくは使用する脂肪酸に関して言及する場合、如何なる形態の脂肪酸含有化合物の存在又は使用も含まれる。脂肪酸を含む化合物の形態としては、遊離脂肪酸形態、脂肪酸アルキルエステル形態、グリセリルエステル形態、リン脂質の形態、ステリルエステル形態等を挙げることができる。ある脂肪酸が特定された場合、ひとつの形態で存在してもよく、2つ以上の形態の混合物として存在してもよい。
 脂肪酸の加水分解の反応効率は高いことが経験的に判明しており、加水分解後には、主として遊離脂肪酸形態の脂肪酸を含む組成物が得られる。このため、加工工程後の脂肪酸については、特に断らない限り、組成物であること、及び、脂肪酸が遊離脂肪酸形態の脂肪酸であることを省略して表記することがある。ただし、遊離脂肪酸形態以外の形態の脂肪酸が含まれることを完全に排除するものではない。
 油脂又は脂肪酸エステルのアルコール分解の反応効率は高いことが経験的に判明しており、アルコール分解後には、主として脂肪酸アルキルエステル形態の脂肪酸を含む組成物が得られる。このため、加工工程後の脂肪酸については、特に断らない限り、組成物であること、及び、脂肪酸がアルキルエステル形態の脂肪酸であることを省略して表記することがある。ただし、アルキルエステル形態以外の形態の脂肪酸が含まれることを完全に排除するものではない。
 脂肪酸を表記する際に、炭素数、二重結合の数及び二重結合の場所を、それぞれ数字とアルファベットを用いて簡略的に表した数値表現を用いることがある。例えば、炭素数20の飽和脂肪酸は「C20:0」と表記され、炭素数18の一価不飽和脂肪酸は「C18:1」等と表記され、ジホモ-γ-リノレン酸は「C20:3,n-6」等と表記される。ここで、「n-6」はω-6としても表記されるが、これは、最後の炭素(ω)からカルボキシに向かって数えたときの最初の二重結合の結合位置が6番目であることを示す。この方法は当業者には周知であり、この方法に従って表記された脂肪酸については、当業者であれば容易に特定することができる。
 本明細書において「粗油」とは、上述した脂質の混合物であって、生物から抽出された状態の油を意味する。本明細書において「精製油」とは、粗油に対して、脱ガム工程、脱酸工程、脱色工程、及び脱臭工程からなる群より選択される少なくとも1つの油脂の精製工程を行い、リン脂質及びステロールなどの目的物以外の物質を除去する精製処理を行った油を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において「~」を用いて示された数値範囲は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示すものとする。本明細書において、パーセントに関して「以下」又は「未満」との用語は、下限値を特に記載しない限り0%、即ち「含有しない」場合を含み、又は、現状の手段では検出不可の値を含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計の量を意味する。本明細書において、組成物中の各成分の含有量(%)は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計の含有量を意味する。
 本明細書において、同一の対象について言及された1若しくは複数の上限値のみを規定する数値範囲と1若しくは複数の下限値のみを規定する数値範囲とが記載されている場合、特に断らない限り、1又は複数の上限値から任意に選択された上限値と、1又は複数の下限値から任意に選択された下限値とを組み合わせて成立する数値範囲も、本発明の一実施形態に含まれる。
 本明細書における組成物中の脂肪酸の含有量は、特に断らない限り、脂肪酸組成に基づいて決定する。脂肪酸組成は、常法に従って求めることができる。具体的には、測定対象となる組成物中の脂肪酸が脂肪酸低級アルキルエステル以外の場合には、測定対象となる脂肪酸を、低級アルコールと触媒を用いてエステル化して得た脂肪酸低級アルキルエステルを用いる。測定対象となる組成物中の脂肪酸が脂肪酸低級アルキルエステルの場合には、測定対象の脂肪酸をそのまま用いる。次いで、得られた脂肪酸低級アルキルエステルを試料として、ガスクロマトグラフィーを用いて分析する。得られたガスクロマトグラフィーのチャートにおいて各脂肪酸に相当するピークを同定し、Agilent ChemStation積分アルゴリズム(リビジョンC.01.03[37]、Agilent Technologies)を用いて、各脂肪酸のピーク面積を求める。ピーク面積とは、各種脂肪酸を構成成分とする油脂をガスクロマトグラフィー、薄層クロマトグラフィー/水素炎イオン化検出器(TLC/FID)等を用いて分析したチャートのそれぞれの成分のピーク面積の全ピーク面積に対する割合(面積%)であり、そのピークの成分の含有比率を示すものである。上述の測定方法により得られた面積%による値は、試料中の脂肪酸の合計重量に対する各脂肪酸の重量%による値と同一として互換可能に使用できる。日本油化学会(JOCS)制定 基準油脂分析試験法 2013版 2.4.2.1-2013 脂肪酸組成(FID恒温ガスクロマトグラフ法)及び、同2.4.2.2-2013 脂肪酸組成(FID昇温ガスクロマトグラフ法)を参照のこと。
 脂肪酸組成については、実施例に示す方法によるガスクロマトグラフィーにより確認した。詳細な条件は実施例に示した。
<遊離多価不飽和脂肪酸含有組成物>
 一実施形態における遊離多価不飽和脂肪酸含有組成物は、含有量が組成物中の脂肪酸の80.0%以上である少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含み、金属の合計含有量が0.1ppm以下である遊離多価不飽和脂肪酸含有組成物である。
 本実施形態にかかる遊離多価不飽和脂肪酸含有組成物は、金属の合計含有量が0.1ppmと低いため、炭素数20以上の遊離多価不飽和脂肪酸を脂肪酸の80.0%以上含有する組成物における物性を安定させることができ、かつ、他の組成物への添加成分として用いる場合でも、良好な取扱い性を示すことができる。
 本明細書では、炭素数20以上の遊離多価不飽和脂肪酸を、特に断らない限り、「遊離LC-PUFA」と称する場合がある。本明細書では、本発明の実施形態にかかる遊離多価不飽和脂肪酸含有組成物を、単に「遊離LC-PUFA含有組成物」と称する場合がある。
 本明細書において、遊離LC-PUFA含有組成物が示す安定な物性としては、例えば、結晶の形成温度への影響、膜、泡及び表面張力の安定性、酸化に対する安定性などを挙げることができる。
 組成物の結晶の形成温度は、当業界で周知の測定方法のいずれであってもよく、例えば、組成物が固相から液相に相転移する温度を測定する方法、又は組成物が液相から固相に相転移する温度を測定する方法等を挙げることができる。組成物の結晶の形成温度が、金属の合計含有量が0ppmの遊離LC-PUFA含有組成物の固体化温度よりも1℃以上上昇した場合に、組成物の粘性が変動する可能性があると判断できる。一実施形態にかかる遊離LC-PUFA含有組成物では、金属の合計含有量が0ppmの遊離LC-PUFA含有組成物の固体化温度と比較したときに、+1℃未満、又は+0.5℃未満の固体化温度の上昇幅を示すことができる。
 組成物の膜の安定性は、遊離LC-PUFA含有組成物を用いて調製された測定用石ケン水(脂肪酸のアルカリ水溶液)を用いて薄膜を形成し、形成された薄膜の保持時間を測定することにより決定することができる。具体的には、以下の評価方法が適用可能である。
<膜評価試験>
 温度25℃、1気圧、相対湿度55%の条件下で、複数の内枠を有する試験用円形枠を、脂肪酸試験液(基準液又は試験液)中に浸した後、液面上にゆっくりと持ち上げて、複数の内枠により形成される区画(空間)に膜を形成させ、形成された少なくとも1つの膜が破裂するまでに要する時間(秒)を測定する。ここで用いられる脂肪酸試験液としては、以下の基準液又は試験液を用いる。測定に用いられる試験用円形枠には、以下の試験用円形枠を用いる。
<試験液の調製>
 基準液
 硫酸鉄(II)・7水和物の水溶液を、鉄濃度が100ppmになるように遊離多価不飽和脂肪酸組成物に添加し、次いでエタノールを加えて均一化した後に溶剤を真空引きで除去して、組成物中100ppmの鉄を含有する遊離多価不飽和脂肪酸組成物を調製する。100ppmの鉄を含有する遊離多価不飽和脂肪酸含有組成物0.5g、48重量%水酸化ナトリウム0.15g、及び精製水9.35gを混合して、水溶液中約5重量%の遊離多価不飽和脂肪酸ナトリウムを含む水溶液を調製し、得られた水溶液を「基準液」とする。基準液における「約5重量%」とは、4.5重量%~5.5重量%の範囲を意味する。
 試験液
 遊離多価不飽和脂肪酸含有組成物0.5g、48重量%水酸化ナトリウム0.15g、及び精製水9.35gを混合して、水溶液中約5重量%の遊離多価不飽和脂肪酸ナトリウムを含む水溶液を調製し、得られた水溶液を、評価対象の「試験液」とする。試験液を調製するために用いられる遊離多価不飽和脂肪酸含有組成物は、エバポレーター及び真空引きで溶剤を除去された組成物とする。試験液における「約5重量%」とは、4.5重量%~5.5重量%の範囲を意味する。
<試験用円形枠の準備>
 直径64mm、内径52mm、厚さ3mmの外枠内に、厚さ2mmの内枠によって5個の区画を有するプラスチック製の用具を、試験用円形枠として準備する。内枠によって確定される区画の大きさは、均一であってもよく、異なってもよい。図1に、一実施形態にかかる試験用円形枠10を示す。
 試験用円形枠10は、円形の外枠12と、外枠12に連結した複数の内枠14を備えている。外枠12は、外径64mm、内径52mm、厚み3mmとなっている。円形の外枠12の内部には、複数の内枠14で囲まれた大区画16と、内枠14と外枠10とに囲まれた4つの小区画18とが設けられている。試験用円形枠10は、合計5つの区画を有している。
 上記膜評価試験を適用する場合、基準液を用いて形成される膜が壊れるまでの時間(保持時間(秒))を1としたときに、試験液を用いて形成される膜が壊れるまでの時間(保持時間(秒))の相対値が、1.2以上、1.3以上、1.4以上、1.5以上、又は1.6以上となることが好ましい。この範囲の相対時間であれば、金属の含有量が十分に低く、物性の安定した遊離LC-PUFA含有組成物であると評価できる。この相対値の上限値については特に制限はなく、例えば3.0以下とすることができる。
 遊離LC-PUFA含有組成物における炭素数20以上の多価不飽和脂肪酸には、二価以上、好ましくは三価以上の不飽和脂肪酸が含まれる。多価不飽和脂肪酸の炭素数は、構成脂肪酸の炭素数を意味する。炭素数20以上の多価不飽和脂肪酸としては、例えば、炭素数20以上22以下の多価不飽和脂肪酸を挙げることができ、具体的には、エイコサジエン酸(C20:2,n-9、EDA)、ジホモ-γ-リノレン酸(C20:3,n-6、DGLA)、ミード酸(C20:3,n-9、MA)、エイコサテトラエン酸(C20:4,n-3、ETA)、アラキドン酸(C20:4,n-6、ARA)、エイコサペンタエン酸(C20:5,n-3、EPA)、ドコサテトラエン酸(C22:4,n-6、ETA)、ドコサペンタエン酸(C22:5,n-3、n-3DPA)、ドコサペンタエン酸(C22:5,n-6、n-6DPA)及びドコサヘキサエン酸(C22:6,n-3、DHA)等を挙げることができる。遊離LC-PUFA含有組成物は、これらの多価不飽和脂肪酸を少なくとも1つ含んでいればよく、2つ以上を組み合わせて含むことができる。2つ以上の組み合わせのLC-PUFAとしては、例えば、DGLAとEPAの組み合わせ、DGLAとn-3DPAとの組み合わせ、DGLAとDHAとの組み合わせ、ARAとEPAとの組み合わせ、ARAとn-3DPAとの組み合わせ、ARAとDHAとの組み合わせ、EPAとn-3DPAとの組み合わせ、DHAとn-3DPAとの組み合わせ、DHAとEPAの組み合わせ、EPAとDHAとn-3DPAとの組み合わせ等を挙げることができる。
 遊離LC-PUFA含有組成物では、上述した多価不飽和脂肪酸のうち選択された1つを含み、その他の多価不飽和脂肪酸を含まないことができ、又は、LC-PUFAとして、上述した炭素数20以上22以下の多価不飽和脂肪酸のうち、少なくとも1つを含有するものであれば、その他の特定の1つ又は2つ以上を含まないものであってもよい。例えば、遊離LC-PUFA含有組成物は、エイコサジエン酸(C20:2,n-9)、ジホモ-γ-リノレン酸(C20:3,n-6)、ミード酸(C20:3,n-9)、エイコサテトラエン酸(C20:4,n-3)、アラキドン酸(C20:4,n-6)、エイコサペンタエン酸(C20:5,n-3)、ドコサテトラエン酸(C22:4,n-6)、ドコサペンタエン酸(C22:5,n-3)、ドコサペンタエン酸(C22:5,n-6)及びドコサヘキサエン酸(C22:6,n-3)からなる群より選択された少なくとも1つを含まないことができる。なお、ここで多価不飽和脂肪酸を含まないとは、対象となる多価不飽和脂肪酸の含有量が組成物中の脂肪酸の5%未満、又は0%であることを意味する。
 遊離LC-PUFA含有組成物におけるLC-PUFAの含有量は、組成物中の脂肪酸の80.0%以上である。遊離LC-PUFA含有組成物は、LC-PUFAを80.0%以上含むので、LC-PUFAの機能をより高く発揮できる。遊離LC-PUFA含有組成物におけるターゲットLC-PUFAの含有量の下限値は、組成物中の脂肪酸の85.0%、90.0%、95.0%、97.0%、98.0%、99.0%、又は99.5%とすることができる。LC-PUFAの含有量がより高い場合には、LC-PUFAの機能をより高く発揮することができる。LC-PUFAの含有量の上限値は、特に制限はなく、例えば99.9%、又は98.0%とすることができる。本組成物では、LC-PUFAの含有量は、上述した上限値の任意の値と下限値の任意の値とを組み合わせた範囲とすることができ、例えば、組成物中の脂肪酸の80.0%~99.9%、90.0%~99.9%、90.0%~98%、95.0%~99.9%、97.0%~99.9%、又は97.0%~98.0%であってもよい。
 遊離LC-PUFA含有組成物における金属の合計含有量は、0.1ppm以下である。遊離LC-PUFA含有組成物における金属の合計含有量が0.1ppm以下であることにより、遊離LC-PUFAによる組成物の物性の変動を低減させることができる。遊離LC-PUFA含有組成物における鉄の含有量は、0.08ppm以下、0.05ppm以下、0.03ppm以下、0.01ppm以下、又は0.00ppmとすることができる。
 上述した膜評価試験に基づいた安定性に優れる遊離LC-PUFA含有組成物は、0.05ppm以上、又は0.1ppm以上の金属の合計含有量、代表的には鉄の含有量であってもよく、この場合に、1.2ppm以下、又は1.0ppm以下の金属の合計含有量、代表的には鉄の含有量であってもよい。このような、膜評価試験に基づいた安定性に優れる遊離LC-PUFA含有組成物は、上述した膜評価試験の相対値が1.8以上、1.9以上、2.0以上、2.2以上であってもよい。この相対値の上限値については特に制限はなく、例えば3.0以下とすることができる。
 本明細書における「金属」には、鉄、銅、クロム、アルミニウム、ニッケル、すず、亜鉛、マンガン、モリブデン等を挙げることができ、代表的には鉄を挙げることができる。これらの金属は1種単独であっても、2種以上であってもよい。本明細書における「金属の合計含有量」は、組成物中に1種類の金属が存在し得る場合には、組成物中に存在し得る1種類の含有量を意味し、組成物中に2種類以上の金属が存在しうる場合には、これらの合計の含有量を意味する場合がある。遊離LC-PUFA含有組成物中に存在しうる金属としては、多くの場合で鉄が該当し得るため、鉄の含有量を「金属の合計含有量」とすることができる。
 本明細書における鉄とは、原子吸光分析法(グラファイト炉法)で測定される鉄を意味する。本明細書において、鉄の含有量は、以下の条件による分子吸光分析法にしたがって測定する。
 対象試料を1g秤量し、硝酸0.15mL(有害金属測定用)を加えた後にメチルイソブチルケトンによって10mLにメスアップして試料液とする。
 標準試料はConostan S-21(10ppm(Wt.))とし、この標準試薬をメチルイソブチルケトンに希釈して、検量線試料(0μg/L、10μg/L、20μg/L)を調製する。
 試料液、及び標準試料を、使用する分析装置のグラファイト炉法による鉄定量について最適な条件、例えば、以下の分析条件で原子吸光分析を行い、装置付属のソフトウェアによる自動計算によって試料液の鉄含量を定量する。
 装置  Z-2000「ゼーマン原子吸光光度計」((株)日立製作所)
 注入量  20μL
 測定モード  グラファイトアトマイザ/オートサンプラ
 測定元素  Fe
 キュベット  パイロチューブHR
 測定波長(nm)  248.3
 測定信号  BKG補正
 スリット幅(nm)  0.2
 時定数(s)  0.1
 ランプ電流(mA)  12.5
 加熱制御方法  光温度制御
 温度プログラム 
  1 乾燥 80℃から140℃ 昇温時間40秒 保持時間0秒 ガス流量200mL/分
  2 灰化 1000℃ 昇温時間20秒 保持時間0秒 ガス流量200mL/分
  3 原子化 2400℃ 昇温時間0秒 保持時間5秒 ガス流量30mL/分
  4 クリーン 2700℃ 昇温時間0秒 保持時間4秒 ガス流量200mL/分
  5 冷却 0℃ 昇温時間0秒 保持時間10秒 ガス流量200mL/分
 具体的な試料液中の鉄含有量は、以下の式(I)に基づき算出される。
   試料中の鉄含有量(ppm)=C/(W×100)・・・(I)
  (ただし、Cは、原子吸分光で得られた試料液の鉄含有量(μg/リットル)、Wは、試料液の採取量(g)を、それぞれ意味する。)
 一実施形態における遊離LC-PUFA含有組成物では、上述した金属の合計含有量に加えて、以下の(1)~(3)の条件から選択される少なくとも1つを満たすことができる。
(1)過酸化物価
 一実施形態における遊離LC-PUFA含有組成物では、過酸化物価が5.0meq/kg以下であってもよい。過酸化物価が5.0meq/kd以下の遊離LC-PUFA含有組成物は、優れた保存安定性を示すことができる。遊離LC-PUFA含有組成物における過酸化物価は、5.0meq/kg以下、4.0meq/kg、3.5meq/kg以下、又は3.0meq/kg以下とすることができる。過酸化物価は、鉄チオシアネート法に従って決定する。
(2)共役不飽和脂肪酸
 遊離LC-PUFA含有組成物では、共役不飽和脂肪酸の含有量が組成物中の脂肪酸の1.2%以下であってもよい。共役不飽和脂肪酸としては、加水分解処理に適用される原料組成物中の脂肪酸の種類及びLC-PUFAの種類によって異なるが、共役ジエン酸、共役トリエン酸、共役テトラエン酸等を挙げることができる。共役不飽和脂肪酸は、対象となる共役不飽和脂肪酸の吸光度に基づいて定量することができる。遊離LC-PUFA含有組成物中の共役不飽和脂肪酸の含有量は、試料の紫外スペクトルを測定し、規定の計算式から算出した共役不飽和脂肪酸の含有量とし、日本油化学会(JOCS)制定 基準油脂分析試験法 2013版 参1.14に規定の共役不飽和脂肪酸(スペクトル法)に従って測定した値とする。試料中の組成物が脂肪酸以外の成分を含む場合には、組成物中の脂肪酸の量に基づいて、共役不飽和脂肪酸の量を求めることができる。
 遊離LC-PUFA含有組成物の共役不飽和脂肪酸の含有量は、組成物中の脂肪酸の1.0%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、又は0.3%以下とすることができる。共役不飽和脂肪酸の含有量が少ないほど、組成物の酸化安定性に優れる傾向がある。共役不飽和脂肪酸の含有量の下限値は、0.1%、0.2%、0.01%、又は0.001%であってもよい。例えば、遊離LC-PUFA含有組成物の共役不飽和脂肪酸の含有量は、組成物中の脂肪酸の0.001%~1.2%、0.001%~1.0%、0.01%~0.8%、0.1%~0.7%、又は0.2%~0.7%とすることができる。
(3)アニシジン価
 一実施形態にかかる遊離LC-PUFA含有組成物では、アニシジン価(AnV)が5.0以下、4.5以下、4.0以下、3.5以下、3.0以下、又は2.5以下とすることができる。アニシジン価は、遊離LC-PUFA含有組成物中に存在する酸化物質の含有量に基づいて変動する指標である。より低いアニシジン価を示す遊離LC-PUFA含有組成物は、酸化物質の含有量がより少ない。アニシジン価は、日本油化学会(JOCS)制定 基準油脂分析試験法 2013版 2.5.3に従って決定する。
 遊離LC-PUFA含有組成物は、例えば、以下のものを含む:
 (a) 鉄の含有量が0.1ppm以下であり、過酸化物価が5.0meq/kg以下であり、共役不飽和脂肪酸の含有量が組成物中の脂肪酸の1.2%以下である遊離LC-PUFA含有組成物:
 (b) 鉄の含有量が0.1ppm以下であり、過酸化物価が4.0meq/kg以下であり、共役不飽和脂肪酸の含有量が組成物中の脂肪酸の1.0%以下である遊離LC-PUFA含有組成物:
 (c) 鉄の含有量が0.1ppm以下であり、共役不飽和脂肪酸の含有量が組成物中の脂肪酸の1.2%以下であり、かつ、アニシジン価が3.5以下である遊離LC-PUFA含有組成物;
 (d) 鉄の含有量が0.1ppm以下であり、過酸化物価が4.5meq/kg以下であり、アニシジン価が5.0以下である遊離LC-PUFA含有組成物;
 (e) 鉄の含有量が0.1ppm以下であり、過酸化物価が5.0meq/kg以下であり、共役不飽和脂肪酸の含有量が組成物中の脂肪酸の1.2%以下であり、かつアニシジン価が4.0以下である遊離LC-PUFA含有組成物。
 上記(a)、(c)又は(d)の遊離LC-PUFA含有組成物において、過酸化物価が3.5meq/kg以下、又は2.5meq/kgであってもよい。上記(a)、(b)又は(d)の遊離LC-PUFA含有組成物において、共役不飽和脂肪酸の含有量は、0.8%以下、0.7%以下、0.6%以下、0.4%以下、又は0.3%以下であってもよい。上記(b)、(c)又は(d)の遊離LC-PUFA含有組成物において、アニシジン価は、4.5以下、4.0以下、3.5以下、3.0以下、又は2.5以下であってもよい。
 遊離LC-PUFA含有組成物では、脂肪酸アルキルエステルの含有量が低いものとすることができる。脂肪酸アルキルエステルは、遊離脂肪酸を製造する工程において、アルカリ加水分解の原料物質であり得るものであり、又は、逆反応によって遊離脂肪酸から生成され得る生成物である。脂肪酸アルキルエステルの含有量がより少ない遊離LC-PUFA含有組成物は、遊離LC-PUFAの含有量をより高くでき、また、組成物の生体吸収性、特に腸管吸収性がより高い傾向がある。遊離LC-PUFA含有組成物の脂肪酸アルキルエステル含有量は、組成物中の脂肪酸の0.2%以下、0.1%以下、0.05%以下、0.04%以下、0.03%以下、0.02%以下、又は0.01%以下とすることができる。脂肪酸アルキルエステルの含有量の下限値としては、特に制限はなく、例えば0.0005%とすることができる。脂肪酸アルキルエステルの含有量が0.0005%以上の場合、組成物が結晶化しにくく、流動性が高まる傾向がある。
 遊離LC-PUFA含有組成物は、LC-PUFA以外の脂肪酸の含有量が少ないものとすることができる。組成物におけるLC-PUFA以外の脂肪酸の含有量が低い場合には、LC-PUFAの含有量に応じた程度で機能の発揮が期待できる、また、LC-PUFA以外の他の脂肪酸による影響を抑えることができる。遊離LC-PUFA含有組成物において含有量が低減可能な他の脂肪酸としては、炭素数20未満の飽和若しくは不飽和脂肪酸、炭素数22以上の飽和脂肪酸などが挙げられる。具体的には、炭素数20未満の飽和又は不飽和脂肪酸としては、炭素数18の飽和脂肪酸、炭素数18の一価不飽和脂肪酸、炭素数18の二価不飽和脂肪酸、炭素数18の三価不飽和脂肪酸及び炭素数18の四価不飽和脂肪酸を挙げることができ、炭素数22以上の飽和脂肪酸としては、炭素数22の飽和脂肪酸及び炭素数24の飽和脂肪酸を挙げることができる。
 遊離LC-PUFA含有組成物では、これらのLC-PUFA以外の脂肪酸のなかでも、炭素数18の二価以上の多価不飽和脂肪酸の含有量が低いものとすることができる。例えば、炭素数18の二価以上の多価不飽和脂肪酸の含有量は、組成物の脂肪酸の2.0%以下、1.5%以下、1.0%以下、又は0.8%以下とすることができる。LC-PUFA以外の脂肪酸の含有量の下限値としては、例えば、0.001%以上、0.005%以上、又は0.01%であってもよい。炭素数18の二価以上の多価不飽和脂肪酸の含有量は、例えば、0.001%~2.0%、0.005%~1.5%、0.01%~1.5%、又は0.01%~1.0%とすることができる。
 遊離LC-PUFA含有組成物は、上述した脂肪酸以外の形態の脂肪酸を含有していてもよい。他の形態の脂肪酸としては、トリグリセリド、ジグリセリド、モノグリセリド、リン脂質、ステリルエステル等を挙げることができる。これらの他の形態の脂肪酸の含有量は、遊離LC-PUFA含有組成物のLC-PUFA以外の残部に相当する量であればよく、組成物中の脂肪酸の20.0%未満、10.0%未満、5.0%未満、2.0%未満、1.0%未満、又は0.5%未満とすることができる。
 遊離LC-PUFA含有組成物における脂肪酸の含有量は、組成物の全重量の97.0重量%以上、98.0重量%以上、99.0重量%以上、99.5重量%以上、又は99.9重量%以上とすることができる。遊離LC-PUFA含有組成物中の脂肪酸の含有量は、TLC/FIDなどの公知の手法によって確認することができる。遊離LC-PUFA含有組成物では、脂肪酸以外の成分を含むことができる。遊離LC-PUFA含有組成物に含まれ得る他の成分としては、トコフェロール、ビタミンC、ビタミンC誘導体等の酸化防止剤、エタノール等の溶媒などを挙げることができる。
 遊離LC-PUFA含有組成物は、本明細書に記載の特徴を有することができれば、如何なる製造方法で製造されたものであってよく、好ましくは、後述する製造方法により製造されたものであることができる。
<製造方法>
 本発明の一形態における遊離LC-PUFA含有組成物の製造方法は、少なくとも1つの炭素数20以上の多価不飽和脂肪酸を含む原料組成物を用意すること、用意された原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水、及びアルカリ触媒を組み合わせて調製される反応液に対して、加水分解処理を行うこと、加水分解処理後の反応組成物と金属との接触を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、100以下となるように制限すること、を含み、必要に応じて他の工程も含む。本実施形態の製造方法によれば、金属の合計含有量、代表的には鉄の含有量が0.1ppm以下の遊離LC-PUFA含有組成物をより効率よく得ることができる。
 原料組成物を用意する工程では、少なくとも1つのLC-PUFAを含む原料組成物であれば、入手したものを用意してもよく、別途製造したものを用意してもよい。原料組成物は、水産物原料に由来するもの、微生物原料に由来するもの、植物原料に由来するもの、動物原料に由来するもの等の生物に由来するものであることができる。原料組成物は、トリグリセリド形態のLC-PUFAを含む組成物であってよく、LC-PUFAアルキルエステルを含有する組成物であってもよい。LC-PUFAアルキルエステル含有組成物は、トリグリセリド形態のLC-PUFAを含有する生物油をアルキルエステル化して得たものであることが好ましい。
 LC-PUFAを含有する生物油としては、魚類等の水産物原料油、微生物に由来する微生物油、植物に由来する植物油等の生物油であることができ、例えば、微生物油であることができる。生物油とは、バイオマスを起源として得られたもの意味し、微生物油とは、微生物バイオマスを起源として得られた油を意味する。生物油は、遺伝子組換え体に由来する生物油であってもよい。「バイオマス」という用語は、所定の領域又は生態系で成長した所定の時点の細胞の集合物又は塊を指す。
 水産物原料油としては、魚類、甲殻類、又は海産動物に含まれる油脂、リン脂質、ワックスエステルなどを含む脂質が例示される。水産原料油としては、ニシン(herring)、イワシ(sardine)、カタクチイワシ(anchovy)、メンヘーデン(menhaden)、ピルチャード(pilchard)、サンマ(saury)、マグロ(tuna)、カツオ(bonito)、メルルーサ(hake)、ナマズ(catfish)、カラフトシシャモ(capelin)、タイセイヨウアカウオ(red fish)、ホワイトフィッシュ(white fish)、サバ(mackerel)、アジ(jack mackerel)、ブリ(yellowtail)、イカナゴ(sand eel)、ビブ(pout)、サケ(salmon)、ポラック(pollock)、タラ(cod)、オヒョウ(halibut)、マス(trout)、ブルーホワイトニング(blue whitening)、スプラットイワシ(sprat)、サメ(shark)、ドッグフィッシュ(dogfish)等の魚類由来の油、イカ(squid)、二枚貝(clam)、アワビ(abalone)等の軟体動物由来の油、オキアミ(krill)等の甲殻類由来の油、及びアシカ(seal)、アザラシ(sealion)、オットセイ(sea bear)、セイウチ(warlus)等の動物由来の油、並びにこれらの油の混合物である。
 微生物としては、脂質生産微生物又は脂質生産可能微生物であればよく、藻類(algae)、真菌、細菌類(bacteria)、菌類(fungi)及びストラメノパイルを挙げることができる。
 藻類としては、ラビリンチュラ(Labyrinthulamycota)属等を挙げることができる。
 真菌としては、ヤロウィア属、カンジダ属、サッカロミセス属、シゾサッカロミセス属、ピキア属等を挙げることができる。
 細菌類としては、アグロバクテリウム(Agrobacterium)、バチルス(Bacillus)、エスシェリキア(Escherichia)、シュードモーナス(Pseudomonas)、放線菌(Actinomyces)等を挙げることができる。
 菌類としては、モルティエレラ(Mortierella)属、コニディオボラス(Conidiobolus)属、フィチウム(Pythium)属、フィトフトラ(Phytophthora)属、ペニシリューム(Penicillium)属、クラドスポリューム(Cladosporium)属、ムコール(Mucor)属、フザリューム(Fusarium)属、アスペルギルス(Aspergillus)属、ロードトルラ(Rhodotorula)属、エントモフトラ(Entomophthora)属、エキノスポランジウム(Echinosporangium)属、及びサプロレグニア(Saprolegnia)属からなる群より選択される少なくとも1種を挙げることができる。なかでも、モルティエレラ(Mortierella)属に属する微生物が更に好ましい。モルティエレラ属に属する微生物としては、例えば、モルティエレラ・エロンガタ(Mortierella elongata) 、モルティエレラ・エキシグア(Mortierella exigua) 、モルティエレラ・ヒグロフィラ(Mortierella hygrophila) 、モルティエレラ・アルピナ(Mortierella alpina)等のモルティエレラ亜属に属する微生物を挙げることができる。
 植物としては、アブラナ属(Brassica)、ヒマワリ属(Helianthus)、ワタ属(Gossypium)、アマ属(Linum)、タバコ属(Nicotiana)、ミカン属(Citrus)、ネギ属(Allium)、小麦属(Triticum)、大麦属(Hordeum)、オート麦属(Avena)、ライ麦属(Secale)、イネ属(Oryza)、サトウキビ属(Saccharum)、トウモロコシ属(Zea)、モロコシ属(Sorghum)の植物の他、ダイズ(soybean)、トマト(tomato)、ジャガイモ(potato)、エンドウ豆(pea)、インゲンマメ(frijol)、落花生(peanut)、アルファルファ(Medicago)、セロリ(celery)、パセリ(pase1ey)、クローバー(clover)、ニンジン(carrot)、ダイコン(radish)、テンサイ(sugar beet)、キュウリ(cucumber)、ホウレンソウ(spinach)、キャッサバ(cassava)、オリーブ(olive)、リンゴ(apple)、バナナ(banana)、メロン(melon)、ブドウ(grape)、イチゴ(strawberry)、ココヤシ(coconut plant)、コーヒーノキ(coffee plant)、コショウ(pepper)等を挙げることができる。
 アルキルエステル化処理の対象となる原料油は、粗油であってもよく、精製油であってもよい。粗油は、水産物原料から得られる油であっても、微生物原料から得られる油であってもよい。精製油は、粗油に対して、脱ガム工程、脱酸工程、活性白土又は活性炭を用いた脱色工程、水洗工程、水蒸気蒸留等による脱臭工程などを行って、リン脂質及びステロールなどの目的物以外の物質を除去する粗油精製工程を経て得ることができる。
 アルキルエステル化を行う工程では、原料油を、低級アルコールを用いたアルコール分解により、低級アルキルエステルに分解する。低級アルコールとしては、脂肪酸のアルキルエステル化に一般的に用いられるもの、例えば、炭素数1~3の低級アルコールが挙げられる。アルコール分解は原料油に、低級アルコール例えばエタノールと触媒又は酵素を加え反応させ、グリセリンに結合した脂肪酸からエチルエステルを生成させるものである。触媒としては、アルカリ触媒、酸触媒などを用いる。酵素としてはリパーゼが用いられる。
 粗油若しくは精製油、又は、アルキルエステル化処理により得られた脂肪酸アルキルエステル含有組成物中には、目的とするLC-PUFAの他に、1又は2以上のその他の脂肪酸が含まれている場合がある。粗油若しくは精製油又は脂肪酸アルキルエステル含有組成物から特定のLC-PUFAを濃縮又は単離するには、蒸留、精留、カラムクロマトグラフィー、低温結晶化法、尿素包接法、液々向流分配クロマトグラフィー等を、1種単独で、又は2種以上を組み合わせて使用することができる。蒸留又は精留とカラムクロマトグラフィー又は液々向流分配クロマトグラフィーとの組み合わせが好ましい。特定のLC-PUFAを濃縮又は単離する工程を経た場合には、本LC-PUFA含有組成物中に最終的に含まれ得る目的とするLC-PUFAの脂肪酸中の含有量を高め、かつ、目的とするLC-PUFA以外の他の脂肪酸の脂肪酸中の含有量を低減させることができる。
 例えば、精留を用いる場合、精留工程としては、蒸留塔の塔頂部の圧力を10mmHg(1333Pa)以下の減圧とし、塔底温度を165℃~210℃、好ましくは170℃~195℃とする条件で蒸留することが、熱による脂肪酸の変性を抑え、精留効率を高める点で好ましい。蒸留塔の塔頂部の圧力は、低いほどよく、0.1mmHg(13.33Pa)以下であることがより好ましい。塔頂部の温度については特に制限はなく、例えば、160℃以下とすることができる。精留工程によって、より高い含有量のLC-PUFA、例えばLC-PUFAアルキルエステルを含む原料組成物を得ることができる。
 カラムクロマトグラフィーとしては逆相分配系のカラムクロマトグラフィーが好ましい。逆相カラムクロマトグラフィーとしては、当業界で公知の逆相カラムクロマトグラフィーを挙げることができ、特にオクタデシルシリル基(ODS)で修飾された基材を小体そうとした高速液体クロマトブラフィー(HPLC)が好ましく挙げられる。
 濃縮又は単離工程により得られた組成物は、目的とするLC-PUFAの含有量が高い組成物であり、例えば、目的とするLC-PUFAの含有量が、脂肪酸の80.0%以上、85.0%以上、90.0%以上、95.0%以上、97.0%以上、98.0%以上、99.0%以上、又は99.5%以上であってもよい。この高濃度のLC-PUFAを含有する組成物を原料組成物として用いることができる。
 加水分解処理を行う工程では、用意された原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水、及びアルカリ触媒を組み合わせて調製される反応液が用いられ、この反応液に対して、加水分解処理が行われる。本明細書では、アルカリ触媒を用いた本加水分解処理を、アルカリ加水分解処理と称する場合がある。
 アルカリ加水分解処理に用いられる反応液には、原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水及びアルカリ触媒と、必要に応じて他の成分を組み合わせて調製される反応液が該当する。
 原料組成物としては、生物油であってもよく、LC-PUFAアルキルエステル含有組成物であってもよい。反応液中の原料組成物の濃度(w/w)は、反応効率の観点から、10.0重量%~70.0重量%、20.0重量%~60.0重量%、又は40重量%~50重量%とすることができる。
 低級アルコールとしては、生物油又は脂肪酸アルキルエステルを分解して遊離脂肪酸を得るために一般的に用いられるもの、例えば、炭素数1~3の低級アルコールが挙げられる。反応液中の低級アルコールの量は、原料組成物中の脂肪酸を遊離型に分解するために有効な量であればよく、例えば、原料組成物中の脂肪酸に対して、0.9当量~32.0当量、0.92当量~20.0当量、0.95当量~14当量、2.0当量~10.0当量、3.0当量~7.0当量、又は4.5当量~5.5当量とすることができる。原料組成物中の脂肪酸に対する低級アルコールの比が0.9当量又はそれよりも大きい場合、より良好な速度で反応が進行する傾向があり、また、着色物質の発生をより抑制しやすい傾向がある。一方、32.0当量又はそれより小さい場合、反応停止後の状態を安定化させ、脂肪酸アルキルエステルを生成し得る逆反応の進行を効果的に抑制できる傾向がある。反応液中の低級アルコールの量には、反応液の調製時に添加された低級アルコールの量と、反応において反応液中に副生する低級アルコールの量の双方が含まれる。本明細書のおける「当量」は「モル当量」を意味する。以下、同様である。
 反応液中の低級アルコールの量は、水に対して重量比で、0.20~8.20、0.23~4.50、0.25~3.50、0.60~2.50、又は1.20~1.50とすることができる。水と低級アルコールとの重量比がこの範囲であれば、アルカリ加水分解がより良好に進行し、また、反応停止後の状態を安定化させ、脂肪酸アルキルエステルを生成し得る逆反応の進行を効果的に抑制できる傾向がある。反応液中の低級アルコールの量には、反応液の調製時に添加された低級アルコールの量と、反応において反応液中に副生する低級アルコールの量の双方が含まれる。
 反応液を調製するために用いられる水は、金属の合計含有量が0.01ppm以下の水である。金属として鉄を代表して説明すれば、一般に水道水は、0.3ppmの鉄を含むため、本実施形態での製造方法における「水」には該当しない。
 他の実施形態にかかる水の鉄の含有量は0.01ppm以下、0.005ppm以下、又は0、即ち、鉄を含まない水である。一般的に水道水の日本における水道水規格値は鉄量として0.3ppmであり、欧州連合(EU)、米国及び世界保健機構(WHO)でも、0.2~0.3ppmであることが多い。この水準の鉄濃度の水を反応に用いると、加水分解後の多価不飽和脂肪酸含有組成物中に一部の鉄が残存し、十分に低い鉄濃度の多価不飽和脂肪酸を得られないと考えられる。加えて、多価不飽和脂肪酸含有組成物の実際の製造所やプラントでは一般的に金属配管を用いており、配管由来の鉄等の金属の混入する可能性がある。従って、反応に用いる水に含まれる金属の合計含有量、代表的には鉄の含有量を0.01ppm以下に抑制することは重要な意味を持ち得る。
 このような鉄の含有量を有する水としては、一般に精製水、例えば、イオン交換水、蒸留水、RO(逆浸透膜)水、純水、超純粋等が挙げられる。本明細書におい「精製水」とは、これらの精製された水を意味する。金属の合計含有量が0.01ppm以下の水、即ち、精製水を用いる場合、物性の変動が少ない遊離LC-PUFA含有組成物を効率よく得ることができる。
 水の反応液中の量は、原料組成物中の脂肪酸に対して、6.0当量~13.0当量、7.0当量~12.0当量、8.0当量~11.0当量、又は9.0当量~10.0当量とすることができる。水の原料組成物に対する重量比がこの範囲である場合であれば、アルカリ加水分解をより良好に進行させることができる。
 アルカリ加水分解処理の用いられるアルカリ触媒としては、アルカリ金属水酸化物とすることができ、水酸化ナトリウム、水酸化カリウム等であり、水酸化ナトリウム及び水酸化カリウムからなる群より選択される少なくとも1つであることができ、水酸化ナトリウムがより好ましい。アルカリ加水分解処理に用いられるアルカリ触媒の量は、原料組成物から遊離脂肪酸を生成し得る範囲であればよく、例えば、原料組成物中の脂肪酸に対して1.0当量~2.3当量、1.0当量~2.0当量、又は1.0当量~1.5当量とすることでき、アルカリ触媒の原料組成物に対する比がこの範囲内である場合、効率よく反応を進行させて遊離LC-PUFAを得ることができる。
 反応液には、アルカリ加水分解反応の進行の妨げにならない範囲で、上述した物質以外の成分を含むことができる。このような成分としては、トコフェロール、ビタミンC、ビタミンC誘導体等の酸化防止剤、アセトン等の非アルコール溶媒などを挙げることができる。
 本製造方法における加水分解処理は、目的とする加水分解処理が進行できる温度であればよく、例えば、100℃以下、80℃以下、50℃以下、又は10℃以下の温度条件で行うことができる。一実施形態に係る加水分解処理は、10℃以下の温度条件で実施することができる。10℃以下の加水分解処理とすることにより、共役不飽和脂肪酸等の不純物の加水分解工程における発生又は増加を抑制することができる。加水分解処理の温度条件は、共役不飽和脂肪酸等の不純物の発生又は増加を抑制する観点から、加水分解処理温度は、例えば、-20℃以上、-10℃以上、-5℃以上、-4℃以上、-2℃以上、0℃以上、又は2℃以上とすることができる。加水分解処理の温度範囲としては、上述した上限値のいずれかと、下限値のいずれかによる数値範囲とすることができ、例えば、-20℃~100℃、-10℃~80℃、-5℃~70℃、-4℃~50℃、0℃~10℃、0℃~8℃、又は2℃~7℃とすることができる。10℃以下のこのような温度条件で加水分解処理を行う場合には、上述した不純物の発生又は増加をより抑制することができるため特に好ましい。
 アルカリ加水分解処理の反応時間としては、設定された温度範囲により異なるが、例えば、30分~600時間、1時間~100時間、8時間~80時間、又は19時間~25時間とすることができる。アルカリ加水分解処理が進行するに従って反応液中の脂肪酸アルキルエステルの量が減少する。このため、アルカリ加水分解処理を、反応液中の脂肪酸アルキルエステルの残存量に応じて停止させることができる。反応液中の脂肪酸アルキルエステルの量は、薄層クロマトグラフィー(TLC)、高速液体クロマトグラフィー(HPLC)等により確認することができる。
 アルカリ加水分解処理は、酸を反応液へ添加することにより停止することができる。酸を添加することにより、反応液のpHが酸性側となって、加水分解反応の進行が停止し、アルカリ触媒の添加により生成したケン化物が分解して、遊離脂肪酸が得られる。このとき、反応液中にヘキサン等の有機溶媒を存在させることにより、反応停止処理によって得られた遊離脂肪酸を抽出することができる。反応停止及び抽出処理の温度条件については特に制限はなく、例えば、0℃~40℃、5℃~35℃、又は15℃~30℃の範囲内とすることができる。反応停止及び抽出処理の時間については、特に制限はなく、撹拌等により混合した反応液が層分離して、安定するまでとすることができる。
 アルカリ加水分解反応を停止するために用いられる酸は、当業界において周知であり、例えば、塩酸、硫酸、リン酸、硝酸、炭酸等の無機酸、又は酢酸、クエン酸、シュウ酸等の有機酸が挙げられる。酸としては、水への溶解度が高く水洗により除去が容易である点で無機酸が好ましく、なかでも添加量が少量で済み、生成される塩及び残存する酸の除去の点で、塩酸等がより好ましい。酸の添加量は、アルカリ加水分解処理を停止するために有効な量であればよく、添加したアルカリ触媒に対して1.1当量程度とすることができる。
 酸添加後の反応液のpHは、アルカリ加水分解を停止できるpHであればよく、pH0.1、pH1.0、pH1.5、又はpH2.0を下限値とすることができ、一方、pH6.0、pH5.0、pH4.5、又はpH4.0を上限値とすることができる。酸添加後の反応液のpHは、例えば、pH0.1~pH6.0、pH1.0~pH6.0、pH1.5~pH4.5、pH2.0~pH5.0、pH2.0~pH4.0とすることができる。
 加水分解処理後の反応組成物には、遊離LC-PUFAが含まれている。発明者らは、遊離LC-PUFAが、鎖長が短い不飽和脂肪酸、又は、鎖長が同等の飽和脂肪酸若しくは不飽和度の少ない一価モノ不飽和脂肪酸よりも、金属を溶出させ易いことを初めて見出した。更に本発明者らは、加水分解処理後の反応組成物と金属との接触を一定以下に制限することによって、遊離多価不飽和脂肪酸含有組成物に含まれ得る鉄等の金属の含有量の増加を抑制でき、金属による多価不飽和脂肪酸含有組成物の物理的、化学的な性質、安定性への影響を抑制できることを見出した。
 本実施形態では、この加水分解処理後の反応物と、金属との接触は、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、100以下となるように制限される。これにより、遊離LC-PUFA含有組成物中の金属の合計含有量を、所定範囲内、例えば0.1ppm以下に効率よく抑え、物性が安定した遊離LC-PUFA含有組成物を提供することができる。
 加水分解処理後の反応組成物に関する、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]は、組成物中の金属の合計含有量が0.1ppmに相当する金属を溶出するのに要する接触量であると考えることができ、以下に述べるステンレス(SUS)球を用いた鉄の溶出試験により求める。
 ステンレス球SUS304-1/5(直径1/8インチ、SUS304製)を10mL容のガラスバイアルに50個投入し、更に、試験組成物を5g加えて完全に、SUS球を浸漬させて、窒素雰囲気下40℃で保管する。保管開始後、経時的に組成物1gのサンプリングを行い、鉄含有量の変化を調べる。
 鉄含有量の測定は、原子吸光分析(グラファイト炉法)により求める。試料液の鉄含有量から、試験組成物中の鉄含有量を求め、SUSとの接触面積1cmあたりの鉄溶出速度(ng/cm/日)を計算し、1gの組成物と金属との接触表面積[cm]と、接触時間[日]との積T[cm×日]を求める。
 得られる積Tは、遊離LC-PUFA含有組成物中のLC-PUFAの種類、含有量等によって異なる。遊離LC-PUFA含有組成物と金属との接触を、積T以内であればよい。「積T」は、組成物1gにおける組成物及び金属表面の間での接触時間と面積の積であるため、積T以内となるように制限するには、接触する金属表面の大きさと、接触時間の少なくとも一方を調整することによって達成できる。
 例えば、加水分解処理に使用する設備及び装置の材質を、ガラス等の非金属に変更すること、加水分解処理,場合によってその後の処理の間で、又は保存時に、金属表面と接触する場合には、金属表面の大きさを小さくすること、又は、接触する金属面との接触時間を短縮すること、あるいは、金属表面の大きさを小さくし、かつ、接触時間を短縮すること等により達成できる。遊離LC-PUFA含有組成物と、金属表面との接触を、積T以内に制限することによって、例えば、加水分解処理の前後で安定した物性を示す遊離LC-PUFA含有組成物を提供することができる。また、例えば添加成分として用いた場合に、安定した物性を示す遊離LC-PUFA含有組成物を提供することができる。
 積Tの値としては、遊離LC-PUFA含有組成物中のLC-PUFAの種類によって異なるが、100以下、90以下、80以下、75以下、70以下、65以下、60以下、55以下、50以下、45以下、40以下とすることができる。この範囲内の積Tを基準とすることにより、炭素数20以上となる遊離のLC-PUFAを含有する組成物において、組成物に混入され得る金属の量を所定範囲内に効果的に抑えることができる。
 遊離LC-PUFA含有組成物に対して積T以内に接触が制限される金属表面としては、LC-PUFAとの接触で溶出可能な金属を挙げることができ、例えば、鉄、ステンレス、スチール、ブリキ、リン酸亜鉛等でコーティングされたスチール等が該当し、特に、スチール、ステンレス等を挙げることができる。
 積T以内に組成物と金属表面との接触が制限される範囲は、加水分解処理を開始してから最終的な製品容器に収容されるまでの間とすることができ、特に、加水分解処理の反応を停止させ、遊離多価不飽和脂肪酸含有組成物を回収して水洗、更に脱溶剤を行って保管、製品容器に収容されるまでの範囲を挙げることができる。
 本製造方法は、反応停止及び抽出処理後に得られる反応液から水溶性成分を除去する洗浄工程を含むことができる。洗浄工程では、水等を洗液として用いて反応液に添加すればよい。洗浄処理に用いられる洗液のpHが、中性付近、例えば6を超えるまで行うことができる。洗浄工程の温度については特に制限はなく、25℃以下で行うことができる。本製造方法は、洗浄工程後に、洗浄処理後の反応液の有機層から、目的とする遊離LC-PUFA含有組成物を回収するための回収工程を含むことができる。回収処理は、この目的のために通常用いられる手段を適用すればよく、例えば、エバポレーター等を用いることができる。
 本製造方法により得られる遊離LC-PUFA含有組成物において、金属の合計含有量は、0.1ppm以下、0.05ppm以下、0.03ppm以下又は0.01ppm以下であり、かつ、LC-PUFAの含有量は、例えば、組成物中の脂肪酸の80.0%以上、85.0%以上、90.0%以上、95.0%以上、97.0%以上、98.0%以上、99.0%以上、又は99.5%以上であることができる。
 一実施形態にかかる製造方法で得られる遊離LC-PUFA含有組成物は、上述したような金属の合計含有量、及びLC-PUFAの含有量を備え、かつ、共役不飽和脂肪酸の含有量が、組成物中の脂肪酸の1.2%以下、1.0%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、又は0.3%以下とすることができる。
 他の実施形態にかかる製造方法で得られた遊離LC-PUFA含有組成物は、上述した所定の過酸化物価、アニシジン価等を示すものであることができる。
 遊離LC-PUFA含有組成物では、加水分解酵素により得られる遊離LC-PUFA含有組成物よりも、熱失活処理した酵素の残留量が少ない。熱失活処理した酵素の残留量が少ない組成物では、残留酵素の影響を低減できる。
 遊離LC-PUFA含有組成物は、生物油に由来するものとし、化学合成の工程を経ずに得ることができるため、残留有機溶媒量が低いものとすることができる。本明細書における有機溶媒は、脂肪酸以外のものであって、少なくとも1つの炭素原子を有する疎水性又は親水性の溶媒を意味し、極性溶媒、非極性溶媒、水混和性溶媒、水不混和性溶媒、及びそれらの2以上の組み合わせが挙げられる。有機溶媒としては、置換又は未置換の、飽和若しくは不飽和脂肪族炭化水素、芳香族炭化水素、アルコール、エーテル、ケトン、アルデヒド、カルボン酸、エステル、ニトリル、アミド等を挙げることができ、これらは単独で又は2つ以上の組み合わせであってもよい。
 遊離LC-PUFA含有組成物における残留有機溶媒の総含有量は、5000ppm以下、3000ppm以下、2000ppm以下、又は1000ppm以下とすることができる。
 遊離LC-PUFA含有組成物は、残留有機溶媒のなかでも、メタノール、エタノール、アセトン及びヘキサンからなる群より選択される少なくとも1つの含有量が低いものであってもよい。これらの有機溶媒は、それぞれ独立に、500ppm以下、300ppm以下、又は200ppm以下とすることができる。例えば、遊離LC-PUFA含有組成物におけるメタノール、エタノール、アセトン及びヘキサンの含有量のいずれもが、500ppm以下、300ppm以下、又は200ppm以下とすることができる。
 遊離LC-PUFA含有組成物では、少なくとも1つの遊離LC-PUFAを高濃度で含み、かつ、物性の安定しているため、含有されるLC-PUFAの種類に応じた機能が高いレベルで良好に発揮でき、取扱性よく、各種の用途に好ましく用いることができる。
 遊離LC-PUFA含有組成物の好ましい用途としては、例えば、食品、サプリメント、医薬品、化粧品、飼料等における使用、これらの製造方法における使用を挙げることができ、特にLC-PUFAを含有する組成物を有効成分として含む医薬品が挙げられる。例えば、本遊離LC-PUFA含有組成物が、遊離ARA、遊離DGLA、遊離EPA、遊離DHA等を含有する組成物である場合には、これらの機能性LC-PUFAを高い含有率で且つ生産性よく求められる用途への適用に極めて有用である。このような用途としては、組成物中のLC-PUFAの種類によって異なるが、動脈硬化、脳梗塞、心筋梗塞、血栓症、高脂血症等の生活習慣病予防、メタボリックシンドローム改善、抗アレルギー、抗炎症、抗がん、脳機能改善等の作用が期待できる食品、サプリメント、医薬品、化粧品、飼料等が挙げられる。医薬品としては、皮膚外用剤、経口剤等が挙げられる。
 遊離LC-PUFA含有組成物を医薬品として用いる場合、医薬品は、遊離LC-PUFA含有組成物及び医薬的に許容可能な担体と、必要に応じて他の成分を含む。投与形態は、組成物中のLC-PUFAの種類に基づいて、経口投与又は非経口投与が都合よく行われるものであればどのような形態であってもよい。投与形態としては、例えば注射液、輸液、散剤、顆粒剤、錠剤、カプセル剤、腸溶剤、トローチ、内用液剤、懸濁剤、乳剤、シロップ剤、外用液剤、湿布剤、点鼻剤、点耳剤、点眼剤、吸入剤、軟膏剤、ローション剤、坐剤等を挙げることができ、これらを症状に応じてそれぞれ単独で、または組み合わせて使用することができる。
 これら各種製剤は、常法に従って目的に応じて主薬に賦刑剤、結合剤、防腐剤、安定剤、崩壊剤、滑沢剤、矯味剤などの医薬の製剤技術分野において通常使用しうる既知の補助剤を用いて製剤化することができる。またその投与量は、投与の目的、組成物中のLC-PUFAの種類、投与対象者の状況(性別、年齢、体重等)によって異なるが、通常、成人に対して経口投与の場合、構造脂質としてのLC-PUFAの総量として、1日あたり0.01mg~10g、好ましくは0.1mg~2g、さらに好ましくは1mg~200mgの範囲で、また非経口投与の場合、構造脂質としてのLC-PUFAの総量として、1日あたり0.001mg~1g 、好ましくは0.01mg~200mg、さらに好ましくは0.1mg~100mgの範囲で適宜調節して投与することができる。
 一実施形態にかかる遊離LC-PUFA含有組成物の保存方法は、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が100以下となるように、金属との接触を制限する条件下で保持する。
 本実施形態にかかる遊離LC-PUFA含有組成物の保存方法では、遊離LC-PUFA含有組成物を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が100以内となるように金属との接触を制限するので、遊離LC-PUFA含有組成物中の鉄の含有量を、効率よく所定量以下、例えば0.1ppm以下に抑えることができる。この結果、遊離LC-PUFA含有組成物の物性が保存中に変動するといった不足の事態を回避することができる。また、本実施形態にかかる保存方法で保存した遊離LC-PUFA含有組成物は、保存後に、取扱性が良好な添加成分として種々の用途、例えば、食品、サプリメント、医薬品、化粧品、飼料等の一成分として用いることができる。
 本実施形態にかかる遊離LC-PUFA含有組成物の保存方法に関して、金属の接触の制限条件については、他の実施形態にかかる遊離LC-PUFA含有組成物の製造方法について記載した事項を、適用可能である。
 以下、本発明を実施例にて詳細に説明する。しかしながら、本発明はそれらに何ら限定されるものではない。
 以下の項における実施例及び比較例では、LC-PUFAを、特定種類のもののみとしているが、LC-PUFAの種類については特に限定はない。
 本実施例で使用されている原料組成物としての脂肪酸アルキルエステル含有組成物に含まれる脂肪酸のほとんどが脂肪酸アルキルエステル形態であると推測された。このため、以下では、試料中に含まれる脂肪酸はすべてアルキルエステル形態の脂肪酸として記載する。ただし、アルキルエステル形態以外の形態の脂肪酸が含まれることを完全に排除するものではない。
[実施例1]
 EPAを96.8%含む魚油由来のEPAエチルエステル1を、実質的に鉄を含まない精製水(鉄含有量は、0.01ppm以下)を用いて、比較的高温でアルカリ触媒を用いた加水分解を行った。
 即ち、5.0gのEPAエチルエステル1をガラス製のナスフラスコに注ぎ、更に3.5mL(脂肪酸に対して4.0当量)のエタノール、2.0mLの精製水、1.5gの48重量%水酸化ナトリウム水溶液(脂肪酸に対して1.2当量のNaOH、エタノール・水の重量比0.4)を加えて試料液1を調製した。そのナスフラスコ中の試料液1に対して、24時間70℃、オイルバスにより加熱しながら撹拌して、加水分解処理を行った。
 精製水は、水道水を次世代型純粋製造装置オートピュアWEX5型(ヤマト科学(株))で処理した後、更に純水供給型超純水装置Synergy UV(ミリポアコーポレーション)で処理して得た。得られた精製水の比抵抗値は18.2MΩ・cmであり、鉄の含有量は0.1ppm以下であった。以下、同じ。
 加水分解処理の反応の終了は、以下のようにして判断した。
 即ち、試料液1の一部を取り出し、試料液:1N塩酸水溶液:ヘキサン=1:2:5(v/v/v)で組み合わせて、混和した。分離したヘキサン層を確認用試料とした。
 マイクロシリンジを用いて確認用試料0.5μLをTLCプレートに負荷し、展開槽にてすぐに展開した。展開後、薄層プレートを展開槽から取り出し、ドラフト内で溶媒を蒸発させ、p-アニスアルデヒド発色試薬をディップ方式により塗布した。塗布後、110℃~120℃程度で、呈色するまで加熱し、スポットを得た。原料エチルエステルのスポットの消失を目視で確認し、反応終点とした。以下、同様。
 展開溶媒としては、ヘキサン:ジエチルエーテル:酢酸=80:20:1(v/v/v)を使用した。TLCプレートとしては、Silica gel 60G F254(Merck Millipore)を使用した。発色試薬としては、p-アニスアルデヒド発色試薬を使用した。
 p-アニスアルデヒド発色試薬は、次の様にして調製した。即ち、9.3mLのp-アニスアルデヒド、3.8mLの酢酸、340mLのエタノールを氷冷しながら混合した後に、12.5mLの濃硫酸を混合して調製した。
 処理後の試料液1を空冷し、ガラス製の分液ロートに移し替えた後、この試料液1に、6.3mLのヘキサン、5.0mLの精製水を加えた。更に塩酸を2.1g添加して撹拌し、次いで静置した。この後に、試料液1は、ヘキサン層と水層の二層に分離した。水層のpHは0.4であった。
 試料液1から水層を除去した後の試料液1に、更に7.5mLの精製水を加えて撹拌した。塩酸を微量加えて水層のpHを0.1に調整した後、下層を除去した。その後、同量の精製水を水洗用液として用いて水洗を行った。精製水を添加後にエマルションが形成して十分に分離できない場合は、精製水に食塩を少量添加した水洗用液を用いて、水洗を行った。水洗後に回収された水洗用液が中性(pH3.5以上)になるまで水洗を繰り返した。水洗後に試料液1からヘキサン層を別のガラス製のナスフラスコに回収し、回収したヘキサン層から、ヘキサンをエバポレーター及び真空引きで除去し、遊離EPAを含有する組成物、EPA1を4.3g得た。
[実施例2]
 DGLAを95.8%含む微生物由来のDGLAエチルエステル2を、実質的に鉄を含まない精製水(鉄含有量は、0.01ppm以下)を用いて比較的高温でアルカリ触媒を用いた加水分解を行った。
 即ち、3.0gのDGLAエチルエステル2をガラス製のナスフラスコに注ぎ、更に2.1mL(脂肪酸に対して4.0当量)のエタノール、1.2mLの精製水、0.9gの48重量%水酸化ナトリウム水溶液(脂肪酸に対して1.2当量のNaOH、エタノール・水の重量比0.4)を加えて試料液2を調製した。そのナスフラスコ中の試料液2に対して、24時間70℃、オイルバスにより加熱しながら撹拌して、加水分解処理を行った。
 処理後の試料液2を空冷し、ガラス製の分液ロートに移し替えた後、この試料液2に、3.8mLのヘキサン、3.0mLの精製水を加えた。更に塩酸を1.3g添加して撹拌し、次いで静置した。この後に、試料液2は、ヘキサン層と水層の二層に分離した。水層のpHは2.1であった。
 試料液2から水層を除去した後の試料液2に、更に4.5mLの精製水を加えて撹拌した。塩酸を微量加えて水層のpHを1.4に調整した後、下層を除去した。その後、同量の精製水を水洗用液として用いて水洗を行った。精製水を添加後にエマルションが形成して十分に分離できない場合は、精製水に食塩を少量添加した水洗用液を用いて、水洗を行った。水洗後に回収された水洗用液が中性pH(pH3.5以上)なるまで水洗を繰り返した。水洗後に試料液2からヘキサン層を別のガラス製のナスフラスコに回収し、回収したヘキサン層から、ヘキサンをエバポレーター及び真空引きで除去し、遊離DGLAを含有する組成物、DGLA2を2.5g得た。
[実施例3]
 DHAを97.6%含む魚油由来のDHAエチルエステル3を、実質的に鉄を含まない精製水(鉄含有量は、0.01ppm以下)を用いて比較的高温でアルカリ触媒を用いた加水分解を行った。
 即ち、3.0gのDHAエチルエステル3をガラス製のナスフラスコに注ぎ、更に2.1mL(脂肪酸に対して4.3当量)のエタノール、1.2mLの精製水、0.9gの48重量%水酸化ナトリウム水溶液(脂肪酸に対して1.3当量のNaOH、エタノール・水の重量比0.4)を加えて試料液3を調製した。そのナスフラスコ中の試料液3に対して、24時間70℃、オイルバスにより加熱しながら撹拌して、加水分解処理を行った。
 処理後の試料液3を空冷し、ガラス製の分液ロートに移し替えた後、この試料液3に、3.8mLのヘキサン、3.0mLの精製水を加えた。更に塩酸を1.3g添加して撹拌し、次いで静置した。この後に、試料液3は、ヘキサン層と水層の二層に分離した。水層のpHは1.1であった。
 試料液3から水層を除去した後の試料液3に、更に4.5mLの精製水を加えて撹拌した。塩酸を微量加えて水層のpHを0.1に調整した後、下層を除去した。その後、同量の精製水を水洗用液として用いて水洗を行った。精製水を添加後にエマルションが形成して十分に分離できない場合は、精製水に食塩を少量添加した水洗用液を用いて、水洗を行った。水洗後に回収された水洗用液が中性pH(pH3.5以上)なるまで水洗を繰り返した。水洗後に試料液3からヘキサン層を別のガラス製のナスフラスコに回収し、回収したヘキサン層から、ヘキサンをエバポレーター及び真空引きで除去し、遊離DHAを含有する組成物、DHA3を2.5g得た。
[実施例4]
 EPAを96.8%含む魚油由来のEPAエチルエステル4を、実質的に鉄を含まない精製水(鉄含有量は、0.01ppm以下)を用いて、低温でアルカリ触媒を用いた加水分解を行った。
 即ち、3.0gのEPAエチルエステル4をガラス製のナスフラスコに注ぎ、更に2.1mL(脂肪酸に対して4.0当量)のエタノール、1.2mLの精製水、0.9gの48重量%水酸化ナトリウム水溶液(脂肪酸に対して1.2当量のNaOH、エタノール・水の重量比0.4)を加えて試料液4を調製した。そのナスフラスコ中の試料液4に対して、24時間6℃で冷却しながら撹拌して、加水分解処理を行った。
 処理後の試料液4をガラス製の分液ロートに移し替えた後、この試料液4に、3.8mLのヘキサン、3.0mLの精製水を加えた。更に塩酸を1.3g添加して撹拌し、次いで静置した。この後に、試料液4は、ヘキサン層と水層の二層に分離した。水層のpHは0.9であった。
 試料液4から水層を除去した後の試料液4に、更に4.5mLの精製水を加えて撹拌した。塩酸を微量加えて水層のpHを0.6に調整した後、下層を除去した。その後、同量の精製水を水洗用液として用いて水洗を行った。精製水を添加後にエマルションが形成して十分に分離できない場合は、精製水に食塩を少量添加した水洗用液を用いて、水洗を行った。水洗後に回収された水洗用液が中性pH(pH3.5以上)なるまで水洗を繰り返した。水洗後に試料液4からヘキサン層を別のガラス製のナスフラスコに回収し、回収したヘキサン層から、ヘキサンをエバポレーター及び真空引きで除去し、遊離EPAを含有する組成物、EPA4を2.4g得た。
[評価1:鉄含有量の確認及び積Tの確認]
 実施例1で得られたEPA含有組成物及び実施例2で得られたDGLA含有組成物について、以下のとおり、鉄含有量及び接触許容値Tの確認を行った。
 対象としてオレイン酸(試薬:オレイン酸68%含有量、その他脂肪酸C14:0 3重量%、C16:0 3重量%、C16:1 5重量%、18:1,n-7 4重量%、C18:2,n-6 5重量%、和光1級、和光純薬工業(株))を用いた。なお上述の通り、実施例1及び実施例2では、加水分解処理及びヘキサン抽出及び組成物の回収まで、ガラス製の用具を使用し、金属表面との接触はほとんどない。
 10mL容ガラスバイアル(SV-10、日電理化硝子(株))にステンレス球SUS304-1/5(直径1/8インチ、SUS304製、アズワン(株))を50個投入し、更に試験組成物を5g加えて完全にSUS球を浸漬させて、窒素雰囲気下40℃で保管した。5日後、9日後に経時的に1gサンプリングを行い、鉄含有量の変化を調べた。
 実施例1及び実施例2のLC-PUFA含有組成物の場合には、加水分解処理後に、更にシリカゲルにて精製し、微量の酸化生成物を除去したものを用いた。
 SUS球50個の合計表面積は、下の計算式から15.8cmと算出した。
   合計表面積[cm]=50×4×3.14×(1/8×2.54/2)
 試験組成物中の鉄含有量の変化は、以下の条件による原子吸光分析(グラファイト炉法)により求めた。
 試験組成物を1g秤量し、硝酸0.15mL(有害金属測定用、和光純薬工業(株))を加えた後に、メチルイソブチルケトン(原子吸光分析用、和光純薬工業(株))によって10mLにメスアップして試料液とした。
 標準試料はConostan S-21(10ppm(Wt.))とした。この標準試薬を、メチルイソブチルケトンに希釈して、検量線試料(0μg/L、10μg/L、20μg/L)を調製した。
 試料液、及び標準試料を使用する分析装置のグラファイト炉法による鉄定量について、以下の分析条件で原子吸光分析を行い、装置付属のソフトウェアによる自動計算によって試料液の鉄含量を定量した。
 装置  Z-2000「ゼーマン原子吸光光度計」((株)日立製作所)
 注入量  20μL
 測定モード  グラファイトアトマイザ/オートサンプラ
 測定元素  Fe
 キュベット  パイロチューブHR
 測定波長(nm)  248.3
 測定信号  BKG補正
 スリット幅(nm)  0.2
 時定数(s)  0.1
 ランプ電流(mA)  12.5
 加熱制御方法  光温度制御
 温度プログラム
  1 乾燥 80℃-140℃ 昇温時間40秒 保持時間0秒 ガス流量200mL/分
  2 灰化 1000℃ 昇温時間20秒 保持時間0秒 ガス流量200mL/分
  3 原子化 2400℃ 昇温時間0秒 保持時間5秒 ガス流量30mL/分
  4 クリーン 2700℃ 昇温時間0秒 保持時間4秒 ガス流量200mL/分
  5 冷却 0℃ 昇温時間0秒 保持時間10秒 ガス流量200mL/分
 定量された試料液の鉄含量から以下の式(3)によってEPA1の鉄含量を算出した。
  EPA1の鉄含有量[ppm]=C/(W×100) ・・・(3)
 (式中、Cは、原子吸光分析で得られた試料液の鉄含有量(μg/L)を意味し、Wは、EPA1の採取量(g)を意味する。)
 得られた鉄の量から、1gの組成物を1cmのSUSと接触させた場合の鉄の溶出速度(ng/cm/日)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1の遊離EPA含有組成物、及び実施例2の遊離DGLA含有組成物は、いずれも鉄含有量が0.1ppm以下であった。従って、実施例1及び実施例2で用いられた加水分解処理及び測定は、いずれもガラス製の器具を用いて行っており、組成物中の鉄の含有量を0.1ppm以下に制限することに適していることがわかった。
 また、1gの組成物を接触面積1cmのSUSで接触させた場合の鉄の溶出速度は、実施例1にかかる遊離EPA含有組成物では2.6ng/cm/日、実施例2にかかる遊離DGLA含有組成物では1.4ng/cm/日となり、オレイン酸の0.9ng/cm/日よりも速いことがわかる。この結果、積Tは、実施例1のEPA含有組成物については38(cm×日)、実施例2のDGLA含有組成物については72(cm×日)となり、オレイン酸の108(cm×日)よりも、はるかに小さかった。
 このことから、実施例1及び実施例2にそれぞれかかるEPA含有組成物及びDGLA含有組成物は、炭素数18の不飽和脂肪酸であるオレイン酸とは異なる挙動を示すことがわかる。
[評価2:組成物の特性]
 実施例1~実施例3の各原料組成物(原料EPAエチルエステル1、原料DGLAエチルエステル2、原料DHAエチルエステル3、及び原料EPAエチルエステル4)と、上記で得られた遊離LC-PUFA含有組成物(EPA1、DGLA2、DHA3及びEPA4)に対して、以下の示す方法にしたがって、過酸化物価、共役ジエン含量、過酸化物価、アニシジン価、鉄含量、脂肪酸組成を調べた。評価結果を表2に示した。原料組成物の脂肪酸組成、共役ジエン含量、アニシジン価、過酸化物価及び鉄含有量を表3に示した。共役ジエン酸以外の共役不飽和脂肪酸は検出されなかった。
 なお、共役不飽和脂肪酸については、共役ジエン酸のみ表2に示す。
(1)過酸化物価
 鉄チオシアネート法によって原料組成物並びに遊離LC-PUFA含有組成物の過酸化物価を測定した。
 すなわち、クロロホルム/メタノール溶液をクロロホルム(試薬特級、和光純薬工業(株))とメタノール(試薬特級、和光純薬工業(株))を2:1(vol/vol)で混合して調製した。30%チオシアン酸アンモニウム水溶液は、チオシアン酸アンモニウム(試薬特級、和光純薬工業(株))を1.5g量り取り、合計で5.0gになるように精製水を加えて調製した。0.02N硫酸鉄(II)/3.5%塩酸は、10mLメスフラスコに硫酸鉄(II)(試薬特級、ナカライテスク(株))を27.8mg量り取り、塩酸(試薬特級、和光純薬工業(株))1mLを加えて、全体で10mLになるように精製水を加えて混合して調製した。
 試料100mgを共栓付ガラス試験管に計り取り、クロロホルム/メタノール溶液を4mL加えて、激しく撹拌して混合して試料液とした。ブランク液をクロロホルム/メタノール溶液とした。別の共栓付ガラス試験管にクロロホルム/メタノール溶液4.55mLを注ぎ、試料液又はブランク液を0.25mL加え、更に0.1mLの30%チオシアン酸アンモニウム水溶液と0.1mLの0.02N硫酸鉄(II)/3.5%塩酸を加えて速やかに撹拌混合、正確に3分後に500nmの吸光度を測定して、試料反応液の吸光度またはブランク反応液の吸光度を得た。以下の式(2)を用いて、得られた吸光度から過酸化物価を算出した。
過酸化物価(meq/kg)
  =30.70×(A1-A0)+0.1578  ・・・(2)
 式中、A1は試料反応液の吸光度を表し、A0はブランク反応液の吸光度を表す。
 式(2)は、酸化した大豆油について過酸化物価(基準油脂分析試験法2.5.2.1-2013)を測定した結果と上述の鉄チオシアネート法で得られた吸光度(A1-A0)の相関から求めた。
 なお、吸光度測定には紫外可視分光光度計V-560型(日本分光(株))を用いた。光路長10mmの石英セルを使用し、クロロホルム/メタノール溶液を対照とした。
(2)共役ジエン酸
 日本油化学会(JOCS)制定 基準油脂分析試験法 2013版 参1.14に従って測定した。
(3)アニシジン価
 日本油化学会(JOCS)制定 基準油脂分析試験法 2013版 2.5.3に従って決定した。
(4)鉄含有量分析
 原料組成物及び遊離LC-PUFA含有組成物の鉄含量は、以下の条件による原子吸光分析(グラファイト炉法)により求めた。
 原料組成物又は遊離LC-PUFA含有組成物を1g秤量し、硝酸0.15mL(有害金属測定用、和光純薬工業(株))を加えた後に、メチルイソブチルケトン(原子吸光分析用、和光純薬工業(株))によって10mLにメスアップして試料液とした。
 標準試料はConostan S-21(10ppm(Wt.))とした。この標準試薬を、メチルイソブチルケトンに希釈して、検量線試料(0μg/L、10μg/L、20μg/L)を調整した。
 試料液、及び標準試料を使用する分析装置のグラファイト炉法による鉄定量について、以下の分析条件で原子吸光分析を行い、装置付属のソフトウェアによる自動計算によって試料液の鉄含量を定量した。
 装置  Z-2000「ゼーマン原子吸光光度計」((株)日立製作所)
 注入量  20μL
 測定モード  グラファイトアトマイザ/オートサンプラ
 測定元素  Fe
 キュベット  パイロチューブHR
 測定波長(nm)  248.3
 測定信号  BKG補正
 スリット幅(nm)  0.2
 時定数(s)  0.1
 ランプ電流(mA)  12.5
 加熱制御方法  光温度制御
 温度プログラム
  1 乾燥 80℃―140℃ 昇温時間40秒 保持時間0秒 ガス流量200mL/分
  2 灰化 1000℃ 昇温時間20秒 保持時間0秒 ガス流量200mL/分
  3 原子化 2400℃ 昇温時間0秒 保持時間5秒 ガス流量30mL/分
  4 クリーン 2700℃ 昇温時間0秒 保持時間4秒 ガス流量200mL/分
  5 冷却 0℃ 昇温時間0秒 保持時間10秒 ガス流量200mL/分
 定量された試料液の鉄含量から以下の式(3)によって原料組成物又は遊離LC-PUFA含有組成物の鉄含量を算出した。
  鉄含有量[ppm]=C/(W×100) ・・・(3)
  (式中、Cは、原子吸光分析で得られた試料液の鉄含有量(μg/L)を意味し、Wは、原料組成物又は遊離LC-PUFA含有組成物の採取量(g)を意味する。)
(5)脂肪酸組成
 原料組成物及び遊離LC-PUFA含有組成物の脂肪酸組成は、以下の条件によるガスクトマトグラフィ―により得られた各脂肪酸ピークにより求めた。なお、遊離LC-PUFA含有組成物に対して、ガスクロマトグラフィー測定前にメチルエステル化を行った。メチルエステル化は、American Oil Chemists'  Society(AOCS) Official Method Ce1b-89に準じて行った。
-ガスクロマトグラフィー分析条件-
機種  Agilent7890 GC system(Agilent社)
カラム  DB-WAX (Agilent Technologies、30m×0.25mm ID、0.25μm film thickness)J&W 122-7032
カラムオーブン  180℃-3℃/min-230℃(25min)
注入温度  250℃
注入方法  スプリット
スプリット比  30:1
検出器温度  270℃
検出器  FID
キャリアーガス  ヘリウム(1.0mL/min、コンスタントフロー)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[評価3:固体化温度評価]
 実施例2のDGLA2(DGLA95.8%、鉄含有量0.00ppm)を基準遊離DGLA組成物として用いて、以下のように、鉄の含有量を変更した場合の固体化温度の変動を評価した。
(1)DGLA含有組成物の固体化温度への影響
 基準遊離DGLA組成物に対して、硫酸鉄(II)・7水和物(Guaranteed,ナカライテスク)の水溶液を添加して、鉄の含有量が10ppmの試料を調製し、更にエタノールを適当量加えて均一化した後、真空引きで溶剤を除去した。得られた鉄含有量10ppmの試料に対して基準遊離DGLA含有組成物で希釈して、それぞれ0.05ppm、0.1ppm、1ppmの各濃度の遊離DGLA試料を作製した。
 各濃度試料に対して、融点(透明融点、基準油脂分析試験法3.2.2.1-2013)の実験装置、器具を参考にして、固定化温度を測定した。すなわち、融点測定と同様の装置でキャピラリー管に1cm程度液油を入れ、毎分0.5℃ずつ冷却温度を低下させてキャピラリー管の液油が白く濁った温度を固体化する温度とした。結果を表4に示す。
(2)石ケン水の固体化温度への影響
 上記(1)の評価で用いた基準遊離DGLA組成物を用いて、遊離DGLAの5%石ケン水及び10%石ケン水を調製して結晶化又は固体化して白く濁る温度を測定した。5%石ケン水は、0.5gの基準遊離DGLA組成物、0.15gの48%水酸化ナトリウム水溶液、9.35gの精製水を加えて均一になるまで混合して調製した。10%石ケン水は、1.0gの基準遊離DGLA組成物、0.30gの48%水酸化ナトリウム水溶液、8.70gの精製水を加えて均一になるまで混合した。いずれの石ケン水はすべてpH12以上の強塩基性であった。
 固体化する温度の測定は、上記(1)と同じ方法で測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、遊離DGLA試料、各濃度石ケン水のいずれにおいても、含まれる鉄の含有量の増加によって固体化温度が上昇、固まり易くなったことが示唆された。特に、石ケン水では、遊離DGLA試料よりも、鉄の含有量に伴って大きく固体化温度が上昇することが認められた。このことから、固体化温度の上昇によって、配管詰まりや、各製品処方における加工時のハンドリングに影響があることが示唆された。
[評価4:膜評価]
 実施例2のDGLA2(DGLA95.7重量%、鉄含有量0.00ppm)を基準遊離DGLA組成物として用いて、以下のように膜評価試験を行った。その結果を表5に示す。
<試験方法>
 温度25℃、1気圧、相対湿度55%の条件下で、後述する試験用円形枠(図1参照)を、脂肪酸試験液(基準液又は試験液)中に浸した後、液面上にゆっくり持ち上げて複数の内枠により形成される区画内に膜を形成させ、形成された少なくとも1つの膜が破裂するまでに要する時間(保持時間)を、ストップウォッチを用いて測定した。結果を表5に示す。ここで用いられる脂肪酸試験液としては、以下の基準液又は試験液を用いた。測定に用いられる試験用円形枠には、以下の試験用円形枠を用意した。
<試験液の調製>
 基準液
 硫酸鉄(II)・7水和物(Guaranteed、ナカライテスク(株))の水溶液を、実施例2のDGLA2に鉄含有量が100ppmになるように添加し、更にエタノールを適当量加えて均一化し、真空引きで溶剤を除去して、100ppmの鉄を含有するDGLA2を調製した。この100ppmの鉄を含有するDGLA2を0.5gと、48重量%水酸化ナトリウムを0.15gと、精製水を9.35gとを混合して、実施例2のDGLA2に由来し、且つ、水溶液中5.1重量%のDGLAナトリウムを含む水溶液を得た。得られた水溶液を「基準液」とした。
 試験液
 上記で得られたDGLA2に対して100ppmの鉄を含有する基準液を、それぞれ鉄含有量が0.05ppm、0.1ppm、及び1.0ppmとなるように、実施例2のDGLA2を用いて希釈して、各種含有量で鉄を含むDGLA2を調製した。得られた各DGLA2を0.5gと、48重量%水酸化ナトリウムを0.15gと、精製水を9.35gとを混合して、5.1重量%のDGLAナトリウムを含む試験用の水溶液を調製し、評価用試料となる「試験液」とした。
<試験用円形枠の準備>
 直径64mm、内径52mm、厚さ3mmの外枠内に、厚さ2mmの4つの内枠によって1つの大区画と4つの小区画を有するプラスチック製の試験用円形枠(図1参照)を用意した。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、測定試料中の鉄の含有量によって保持時間が変動し、組成物中の鉄含有量が膜の保持に影響を与えていることがわかった。
 2015年8月31日に出願された日本国特許出願第2015-170856号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (16)

  1.  含有量が組成物中の脂肪酸の80.0%以上である、少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含み、金属の合計含有量が0.1ppm以下である遊離多価不飽和脂肪酸含有組成物。
  2.  過酸化物価が5.0meq/kg以下である請求項1記載の遊離多価不飽和脂肪酸含有組成物。
  3.  共役不飽和脂肪酸の含有量が、組成物中の脂肪酸の1.2%以下である請求項1又は請求項2記載の遊離多価不飽和脂肪酸含有組成物。
  4.  アニシジン価が5.0以下である、請求項1~請求項3のいずれか1項記載の遊離多価不飽和脂肪酸含有組成物。
  5.  共役不飽和脂肪酸の含有量が、組成物中の脂肪酸の0.001%~1.2%である請求項1~請求項4のいずれか1項記載の遊離多価不飽和脂肪酸含有組成物。
  6.  多価不飽和脂肪酸が、エイコサジエン酸、ジホモ-γ-リノレン酸、ミード酸、エイコサテトラエン酸、アラキドン酸、エイコサペンタエン酸、ドコサテトラエン酸、ドコサペンタエン酸及びドコサヘキサエン酸からなる群より選択された少なくとも1つである請求項1~請求項5のいずれか1項記載の遊離多価不飽和脂肪酸含有組成物。
  7.  遊離多価不飽和脂肪酸含有組成物を用いて以下の膜評価試験を実施した場合に、遊離多価不飽和脂肪酸含有組成物から調製される試験液を用いて形成される膜が壊れるまでの時間が、基準液を用いて形成される膜が壊れるまでの時間(秒)を1としたときに、1.4以上となる請求項1~請求項6のいずれか1項記載の遊離多価不飽和脂肪酸含有組成物:
    <膜評価試験>
     温度25℃、1気圧、相対湿度55%の条件下で、複数の内枠を有する試験用円形枠を、脂肪酸試験液(基準液液又は試験液)中に浸した後、液面上に持ち上げて複数の内枠により形成される区画内に膜を形成させ、形成された少なくとも1つの膜が破裂するまでに要する時間(秒)を測定する。
    <試験液の調製>
     基準液
     硫酸鉄(II)・7水和物の水溶液を、鉄濃度が100ppmになるように遊離多価不飽和脂肪酸組成物に添加し、次いでエタノールを加えて均一化した後に溶剤を真空引きで除去して、組成物中100ppmの鉄を含有する遊離多価不飽和脂肪酸組成物を調製する。100ppmの鉄を含有する遊離多価不飽和脂肪酸含有組成物0.5g、48重量%水酸化ナトリウム0.15g、及び精製水9.35gを混合して、水溶液中約5重量%の遊離多価不飽和脂肪酸ナトリウムを含む水溶液を調製し、得られる水溶液を基準液とする。
     試験液
     遊離多価不飽和脂肪酸含有組成物0.5g、48重量%水酸化ナトリウム0.15g、及び精製水9.35gを混合して、水溶液中約5重量%の遊離多価不飽和脂肪酸ナトリウムを含む水溶液を調製し、得られる水溶液を試験液とする。
    <試験用円形枠の準備>
     直径64mm、内径52mm、厚さ3mmの外枠内に、厚さ2mmの内枠によって5個の区画を有するプラスチック製の用具を、試験用円形枠とする。
  8.  金属は鉄である請求項1~請求項7のいずれか1項記載の遊離多価不飽和脂肪酸含有組成物。
  9.  少なくとも1つの炭素数20以上の多価不飽和脂肪酸を含む原料組成物を用意すること、
     用意された原料組成物、低級アルコール、金属の合計含有量が0.01ppm以下の水、及びアルカリ触媒を組み合わせて調製される反応液に対して、加水分解処理を行うこと、
     加水分解処理後の反応組成物と金属との接触を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、100以下となるように制限すること、
    を含む、遊離多価不飽和脂肪酸含有組成物の製造方法。
  10.  1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が、80以下である請求項9記載の製造方法。
  11.  原料組成物中の炭素数20以上の遊離多価不飽和脂肪酸の含有量が、組成物中の脂肪酸の80.0%以上である請求項9又は請求項10記載の製造方法。
  12.  加水分解処理を、10℃以下の温度条件で行う請求項9~請求項11のいずれか1項記載の製造方法。
  13.  加水分解処理に使用する水の鉄含有量が0.01ppm以下である請求項9~請求項12のいずれか1項記載の製造方法。
  14.  原料組成物中の多価不飽和脂肪酸が、多価不飽和脂肪酸アルキルエステルである請求項9~請求項13のいずれか1項記載の製造方法。
  15.  原料組成物が微生物原料に由来するものである、請求項9~請求項14のいずれか1項記載の製造方法。
  16.  含有量が組成物中の脂肪酸の80.0%以上である、少なくとも1つの炭素数20以上の遊離多価不飽和脂肪酸を含む遊離多価不飽和脂肪酸含有組成物を、1gあたりの組成物と金属との接触表面積[cm]と接触時間[日]との積T[cm×日]が100以下となるように、金属との接触を制限する条件下で保持する、遊離多価不飽和脂肪酸含有組成物の保存方法。
PCT/JP2016/075445 2015-08-31 2016-08-31 遊離多価不飽和脂肪酸含有組成物及びその製造方法 WO2017038861A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201680050276.8A CN107922885A (zh) 2015-08-31 2016-08-31 含游离多元不饱和脂肪酸组合物及其制造方法
SG11201801589SA SG11201801589SA (en) 2015-08-31 2016-08-31 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same
CA2997091A CA2997091C (en) 2015-08-31 2016-08-31 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same
JP2017538068A JP7059005B2 (ja) 2015-08-31 2016-08-31 遊離多価不飽和脂肪酸含有組成物及びその製造方法
AU2016317524A AU2016317524B2 (en) 2015-08-31 2016-08-31 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same
EP16841891.1A EP3345987A4 (en) 2015-08-31 2016-08-31 FREE MULTIPLE UNSATURATED FATTY ACID WITH A COMPOSITION AND METHOD FOR PRODUCING THEREOF
US15/906,645 US11193085B2 (en) 2015-08-31 2018-02-27 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same
AU2020201738A AU2020201738B2 (en) 2015-08-31 2020-03-10 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same
US17/511,419 US20220049185A1 (en) 2015-08-31 2021-10-26 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015170856 2015-08-31
JP2015-170856 2015-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/906,645 Continuation US11193085B2 (en) 2015-08-31 2018-02-27 Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017038861A1 true WO2017038861A1 (ja) 2017-03-09

Family

ID=58187687

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/075444 WO2017038860A1 (ja) 2015-08-31 2016-08-31 遊離多価不飽和脂肪酸含有組成物及びその製造方法
PCT/JP2016/075445 WO2017038861A1 (ja) 2015-08-31 2016-08-31 遊離多価不飽和脂肪酸含有組成物及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075444 WO2017038860A1 (ja) 2015-08-31 2016-08-31 遊離多価不飽和脂肪酸含有組成物及びその製造方法

Country Status (9)

Country Link
US (6) US10626347B2 (ja)
EP (2) EP3345986A4 (ja)
JP (4) JP7059005B2 (ja)
CN (2) CN107922884A (ja)
AU (4) AU2016317524B2 (ja)
CA (2) CA2997091C (ja)
HK (2) HK1252116A1 (ja)
SG (4) SG11201801576XA (ja)
WO (2) WO2017038860A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122167A1 (ja) * 2018-12-12 2020-06-18 日本水産株式会社 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016317524B2 (en) 2015-08-31 2019-12-12 Nippon Suisan Kaisha, Ltd. Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same
CN111153827B (zh) * 2020-01-17 2023-05-16 广东药科大学 苄胺化ω-3不饱和脂肪酸的制备方法及其应用
US20240030837A1 (en) 2020-12-07 2024-01-25 Nippon Steel Chemical & Material Co., Ltd. Power-generating magnetostrictive element and magnetostrictive power generation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133094A (ja) * 1983-12-21 1985-07-16 日清製油株式会社 高純度エイコサペンタエン酸の製造法
JPH07242895A (ja) * 1993-03-16 1995-09-19 Ikeda Shiyotsuken Kk 高純度エイコサペンタエン酸又はその低級アルコールエステルの分離精製法
JPH09238693A (ja) * 1996-03-07 1997-09-16 Osaka City 高度不飽和脂肪酸の精製方法
JPH10139718A (ja) * 1996-11-07 1998-05-26 Kaiyo Bio Technol Kenkyusho:Kk エイコサペンタエン酸の製造法
JP2004089048A (ja) * 2002-08-30 2004-03-25 National Institute Of Advanced Industrial & Technology 新規なラビリンチュラ科微生物及びそれを用いた4,7,10,13,16‐ドコサペンタエン酸の製造方法
JP2007089522A (ja) * 2005-09-29 2007-04-12 Suntory Ltd 特定の高度不飽和脂肪酸が濃縮された脂肪酸組成物の製造方法
WO2015083806A1 (ja) * 2013-12-04 2015-06-11 日本水産株式会社 微生物油、微生物油の製造方法、濃縮微生物油及び濃縮微生物油の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874629A (en) 1988-05-02 1989-10-17 Chang Stephen S Purification of fish oil
JPH0225447A (ja) 1988-07-13 1990-01-26 Nippon Oil & Fats Co Ltd 高度不飽和脂肪酸類の製造方法
DE69401506T2 (de) 1993-04-29 1997-09-11 Norsk Hydro As Verfahren zur chromatografischer fraktionierung von fettsäuren und ihre derivaten
DK0760393T3 (da) 1995-08-17 2003-09-29 Hoffmann La Roche Kromatografifremgangsmåde
JP2002069475A (ja) 2000-08-24 2002-03-08 Ikeda Shokken Kk ドコサヘキサエン酸高含有油脂の製造方法
US6846942B2 (en) * 2003-05-20 2005-01-25 David Rubin Method for preparing pure EPA and pure DHA
DE102005003625A1 (de) 2005-01-26 2006-07-27 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Verfahren zur Herstellung einer DHA-haltigen Fettsäure-Zusammensetzung
WO2009020406A1 (en) * 2007-08-07 2009-02-12 Granate Seed Limited Methods of making lipid substances, lipid substances made thereby and uses thereof
JP4739297B2 (ja) 2007-08-28 2011-08-03 八洲商事株式会社 魚油抽出法
ITMI20081203A1 (it) * 2008-06-30 2010-01-01 Eni Spa Procedimento per l'estrazione di acidi grassi da biomassa algale
CN102438468B (zh) * 2009-04-17 2014-06-04 纳塔克制药有限公司 富含低含量植烷酸的ω-3脂肪酸的组合物
CL2009001343A1 (es) * 2009-06-02 2009-07-10 Golden Omega S A Proceso de obtencion concentrado de esteres de epa y dha a partir de aceite marino, que comprende agregar al aceite alcali y agua a menos de 100 grados celsius, agregar solvente, separar fase de refinado, agregar acido, separar la fase no acuosa y agregar alcohol y un catalizador a menos de 150 grados celsius, desolventilizar y destilar.
GB201001345D0 (en) * 2010-01-27 2010-03-17 Equateq Ltd Process for preparing and purifying fatty acids
CL2010001587A1 (es) * 2010-12-27 2013-01-11 Golden Omega S A Proceso de preparacion de un concentrado de etil esteres de acidos grasos omega-3 que comprende sobre el 80% en peso de dichos esteres en configuracion cis y sus dobles enlaces separados por una unidad metilenica.
KR20200003227A (ko) 2011-11-01 2020-01-08 디에스엠 아이피 어셋츠 비.브이. 산화적으로 안정한 다중불포화된 지방산 함유 오일
WO2013082265A1 (en) * 2011-11-29 2013-06-06 Dignity Sciences Limited Compositions comprising 20-carbon fatty acids and methods of making and using same
JP5925559B2 (ja) 2012-03-30 2016-05-25 アリメント工業株式会社 ソフトカプセル
CN104302615B (zh) * 2012-05-14 2017-09-08 日本水产株式会社 减低了环境污染物质的高度不饱和脂肪酸或高度不饱和脂肪酸乙酯及其制造方法
US9053373B2 (en) * 2013-09-26 2015-06-09 Ncr Corporation Method and apparatus for assessing the health of an image capture device in an optical code scanner
US10342772B2 (en) * 2013-12-20 2019-07-09 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
AU2016317524B2 (en) 2015-08-31 2019-12-12 Nippon Suisan Kaisha, Ltd. Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133094A (ja) * 1983-12-21 1985-07-16 日清製油株式会社 高純度エイコサペンタエン酸の製造法
JPH07242895A (ja) * 1993-03-16 1995-09-19 Ikeda Shiyotsuken Kk 高純度エイコサペンタエン酸又はその低級アルコールエステルの分離精製法
JPH09238693A (ja) * 1996-03-07 1997-09-16 Osaka City 高度不飽和脂肪酸の精製方法
JPH10139718A (ja) * 1996-11-07 1998-05-26 Kaiyo Bio Technol Kenkyusho:Kk エイコサペンタエン酸の製造法
JP2004089048A (ja) * 2002-08-30 2004-03-25 National Institute Of Advanced Industrial & Technology 新規なラビリンチュラ科微生物及びそれを用いた4,7,10,13,16‐ドコサペンタエン酸の製造方法
JP2007089522A (ja) * 2005-09-29 2007-04-12 Suntory Ltd 特定の高度不飽和脂肪酸が濃縮された脂肪酸組成物の製造方法
WO2015083806A1 (ja) * 2013-12-04 2015-06-11 日本水産株式会社 微生物油、微生物油の製造方法、濃縮微生物油及び濃縮微生物油の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYUJI YAMAMURA ET AL.: "High Purification of Polyunsaturated Fatty Acids", JOURNAL OF JAPAN OIL CHEMISTS' SOCIETY, vol. 47, no. 5, 1998, pages 449 - 456, XP008175194 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122167A1 (ja) * 2018-12-12 2020-06-18 日本水産株式会社 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
US10696924B1 (en) 2018-12-12 2020-06-30 Nippon Suisan Kaisha, Ltd. Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
US11248190B2 (en) 2018-12-12 2022-02-15 Nippon Suisan Kaisha, Ltd. Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
US11499119B2 (en) 2018-12-12 2022-11-15 Nippon Suisan Kaisha, Ltd. Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
JP7381491B2 (ja) 2018-12-12 2023-11-15 株式会社ニッスイ 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
US11898120B2 (en) 2018-12-12 2024-02-13 Nissui Corporation Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same

Also Published As

Publication number Publication date
EP3345986A4 (en) 2019-05-01
CA2997052A1 (en) 2017-03-09
WO2017038860A1 (ja) 2017-03-09
US20200157465A1 (en) 2020-05-21
JP7059005B2 (ja) 2022-04-25
JP6910951B2 (ja) 2021-07-28
JP2021176964A (ja) 2021-11-11
JPWO2017038861A1 (ja) 2018-06-14
US10626347B2 (en) 2020-04-21
AU2020201555A1 (en) 2020-03-19
SG11201801589SA (en) 2018-03-28
US11193085B2 (en) 2021-12-07
US20220049185A1 (en) 2022-02-17
AU2016317524B2 (en) 2019-12-12
AU2020201738B2 (en) 2021-09-09
AU2020201555B2 (en) 2022-04-07
SG10201912618XA (en) 2020-02-27
EP3345987A4 (en) 2019-04-17
US20180195021A1 (en) 2018-07-12
US20210102142A1 (en) 2021-04-08
AU2016317524A1 (en) 2018-04-05
AU2020201738A1 (en) 2020-03-26
EP3345987A1 (en) 2018-07-11
CN107922884A (zh) 2018-04-17
US11414622B2 (en) 2022-08-16
HK1252116A1 (zh) 2019-05-17
JP7242769B2 (ja) 2023-03-20
CA2997091C (en) 2020-06-16
AU2016317523A1 (en) 2018-04-12
JPWO2017038860A1 (ja) 2018-06-14
JP2021101012A (ja) 2021-07-08
CA2997091A1 (en) 2017-03-09
JP7136946B2 (ja) 2022-09-13
CN107922885A (zh) 2018-04-17
HK1252244A1 (zh) 2019-05-24
US20180187126A1 (en) 2018-07-05
EP3345986A1 (en) 2018-07-11
US20220348841A1 (en) 2022-11-03
AU2016317523B2 (en) 2019-12-12
SG10201912645TA (en) 2020-02-27
SG11201801576XA (en) 2018-03-28
CA2997052C (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP7136946B2 (ja) 遊離多価不飽和脂肪酸含有組成物及びその製造方法
KR102381331B1 (ko) 환경 오염 물질을 저감시킨 고도 불포화 지방산 또는 고도 불포화 지방산 에틸에스테르 및 그 제조 방법
JP2024001122A (ja) 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
Bilgiç et al. Lipase‐catalyzed acidolysis of olive oil with echium oil stearidonic acid: optimization by response surface methodology
TW202000034A (zh) Ala富集的多不飽和脂肪酸組合物
Soleimanian et al. Influence of processing parameters on physicochemical properties of fractionated fish oil at low temperature crystallization
JP2021195471A (ja) 油脂中の3−mcpd含有量を低減させる方法
Tian Fractionnement simple et multi-étapes à l'urée d'huiles marines du Québec
Dalheim Trans isomers of EPA and DHA in refining and concentration of fish oils.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538068

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2997091

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201801589S

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2016841891

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016317524

Country of ref document: AU

Date of ref document: 20160831

Kind code of ref document: A