WO2017038441A1 - 血圧測定装置、身体特徴情報算出方法、身体特徴情報算出プログラム - Google Patents
血圧測定装置、身体特徴情報算出方法、身体特徴情報算出プログラム Download PDFInfo
- Publication number
- WO2017038441A1 WO2017038441A1 PCT/JP2016/073853 JP2016073853W WO2017038441A1 WO 2017038441 A1 WO2017038441 A1 WO 2017038441A1 JP 2016073853 W JP2016073853 W JP 2016073853W WO 2017038441 A1 WO2017038441 A1 WO 2017038441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- posture
- blood pressure
- information
- wrist
- measurement device
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
- A61B5/02116—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/022—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1116—Determining posture transitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
- A61B2560/0247—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1071—Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring angles, e.g. using goniometers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1072—Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
Definitions
- the present invention relates to a blood pressure measurement device, a body feature information calculation method, and a body feature information calculation program.
- a blood pressure measurement device can obtain an accurate blood pressure value by measuring the measurement part at the height of the heart.
- the wrist blood pressure measuring device is a part where the wrist to which the measuring unit is attached can move freely, it is difficult to accurately adjust the wrist to the same height as the heart, and an accurate blood pressure value can be obtained. Measurement may not be possible.
- Patent Document 1 detects the characteristic information of the body part of the subject such as the forearm length and the upper arm length manually input from the subject and the acceleration sensor or the like. Processes such as detecting the difference in height between the heart and wrist from the information indicating the arm state such as the angle of the forearm and the upper arm of the subject and correcting the blood pressure value according to the detected difference.
- a blood pressure measuring device to perform is disclosed.
- Patent Document 1 In the method described in Patent Document 1, it is necessary to obtain body characteristic information of a person to be measured in advance, and this body characteristic information is manually input. In order to input body characteristic information, it is necessary to measure the forearm length and the upper arm length in advance with a measure or the like.
- Forearm length and upper arm length are known to correlate with height. For this reason, it is possible to manually input the height of the person to be measured and to calculate the forearm length and the upper arm length from the input height. However, even in this case, the possibility that an error may occur between the calculated forearm length or upper arm length and the actual forearm length or upper arm length of the measurement subject cannot be excluded.
- An object of the present invention is to provide a blood pressure measurement device, a body feature information calculation method, and a body feature information calculation program.
- a blood pressure measurement device is a blood pressure measurement device that is mounted on a wrist of a measurement subject and measures a blood pressure value of the measurement subject.
- the measurement subject is equipped with a triaxial acceleration sensor and the blood pressure measurement device.
- An information output unit that outputs information for guiding the arm to a pair of a first posture and a second posture with different wrist positions, and an output signal of the triaxial acceleration sensor after the output of the information
- a posture determination unit that determines that the arm is in each posture of the pair, and a period from a state in which the arm is in one posture of the pair to a state in which the arm is in the other posture of the pair
- a body feature information calculation unit that calculates body feature information of the person to be measured based on the in-transition acceleration information detected by the three-axis acceleration sensor.
- the body feature information calculation method of the present invention is a body feature information calculation method for calculating a person's body feature information, wherein the person's arm is paired with a first posture and a second posture with different wrist positions. Based on an information output step for outputting information for guidance and an output signal of a three-axis acceleration sensor worn on the wrist of the person after the output of the information, the arms are in each posture of the pair. A posture determination step for determining this, and the transition acceleration information detected by the three-axis acceleration sensor during a period from a state where the arm is in one posture of the pair to a state where the arm is in the other posture of the pair And a body feature information calculating step for calculating the body feature information of the person.
- the body feature information calculation program of the present invention is a program for causing a computer to execute each step of the body feature information calculation method.
- the blood pressure measurement device and body capable of accurately obtaining the characteristic information of the body part of the measurement subject necessary for calculating the difference in height between the measurement site and the heart by a simple operation
- a feature information calculation method and a body feature information calculation program can be provided.
- FIG. 1 It is a block diagram which shows the structure of the blood pressure measuring device 1 which is one Embodiment of this invention. It is a functional block diagram of the control part 13 of FIG. It is a figure explaining the calculation process of the forearm length by the body characteristic information calculation part 13a of FIG. It is a figure explaining the calculation process of the upper arm length by the body characteristic information calculation part 13a of FIG. 2 is a flowchart for explaining the operation of the blood pressure measurement device 1 of FIG. 1. It is a figure explaining the 1st modification of the calculation process of the forearm length by the body characteristic information calculation part 13a of FIG. It is a figure explaining the calculation process of the to-be-measured person's chest width by the body characteristic information calculation part 13a of FIG.
- FIG. 1 is a block diagram showing a configuration of a blood pressure measurement device 1 according to an embodiment of the present invention.
- the blood pressure measurement device 1 is portable and is used by being worn on the wrist of a measurement subject as a living body.
- the blood pressure measurement device 1 includes a pulse wave detection unit 10, an acceleration sensor 11, an angular velocity sensor 12, a control unit 13 that performs overall control, and a recording medium 14 such as a flash memory, a ROM (Read Only Memory), and a memory card. And a display unit 15 composed of a liquid crystal display element or the like.
- the pulse wave detection unit 10 detects a pulse wave non-invasively from the wrist of the measurement subject.
- the pulse wave detection unit 10 for example, a unit that detects a pressure pulse wave as a pulse wave by a tonometry method is used.
- the pulse wave detection unit 10 may detect a volume pulse wave as a pulse wave.
- the pulse wave detection unit 10 may detect a pulse wave by reflected light from an artery obtained by applying light to the artery.
- the acceleration sensor 11 detects the wrist movement of the measurement subject as acceleration information.
- a three-axis acceleration sensor that detects acceleration in the three-axis directions of X, Y, and Z is used as the acceleration sensor 11.
- the acceleration sensor 11 is mounted on the device so that the Z-axis direction is along the direction in which the arm extends (the direction connecting the elbow and the wrist) with the blood pressure measurement device 1 mounted on the wrist.
- the angular velocity sensor 12 detects the wrist posture (roll angle and pitch angle) of the measurement subject as angular velocity information.
- FIG. 2 is a functional block diagram of the control unit 13 of FIG.
- the control unit 13 is mainly composed of a processor and a memory such as a RAM (Random Access Memory) and a ROM, and the processor executes a program stored in the ROM, so that the body feature information calculation unit 13a and the wrist -Functions as a heart height difference calculation unit 13b and a blood pressure calculation unit 13c.
- a processor executes a program stored in the ROM, so that the body feature information calculation unit 13a and the wrist -Functions as a heart height difference calculation unit 13b and a blood pressure calculation unit 13c.
- the body feature information calculation unit 13a calculates the forearm length (first distance) and upper arm length (third distance) of the measurement subject based on the acceleration information detected by the acceleration sensor 11.
- Forearm length refers to the distance from the elbow of the person being measured to the wrist.
- Upper arm length refers to the distance from the shoulder of the person being measured to the elbow.
- the wrist-heart height difference calculation unit 13b is based on the forearm length and upper arm length of the measurement subject calculated by the body feature information calculation unit 13a and the wrist angle based on the angular velocity information detected by the angular velocity sensor 12.
- the difference in height between the wrist and the heart of the measurement subject is calculated by a known method exemplified in Patent Document 1.
- the blood pressure calculator 13c calculates a blood pressure value for each beat based on the pulse wave detected by the pulse wave detector 10.
- the blood pressure value includes systolic blood pressure SBP (systemic blood pressure), diastolic blood pressure DBP (diastolic blood pressure), average blood pressure MBP (mean blood pressure), and the like.
- the blood pressure calculation unit 13c corrects the blood pressure value calculated based on the pulse wave according to the difference between the wrist and heart height calculated by the wrist-heart height difference calculation unit 13b, and the corrected blood pressure value is finalized. Is recorded on the recording medium 14 as a typical blood pressure value.
- FIG. 3 is a diagram for explaining forearm length calculation processing by the body feature information calculation unit 13a of FIG.
- FIG. 3 shows the person 20 to be measured.
- Reference numeral 21 indicates the upper arm of the left arm of the measurement subject.
- Reference numeral 22 denotes the elbow of the left arm of the measurement subject.
- Reference numeral 23 indicates the forearm of the left arm of the measurement subject.
- Reference numeral 24 denotes the left hand of the measurement subject.
- the blood pressure measuring device 1 shown in FIG. 1 is attached to the left wrist of the measurement subject.
- the blood pressure measurement device 1 is premised on having the measurement subject perform a predetermined first motion when calculating the forearm length of the measurement subject.
- the first operation is an operation in which the wrist is lifted to a position higher than the elbow 22 with the elbow 22 as the rotation center without changing the position of the elbow 22 from the state where the arm is lowered.
- the arm of the person under measurement 20 is moved from the first posture in which the shoulder, elbow and wrist of the person under measurement 20 are lined up in the direction of gravity.
- a second posture in which the angle ⁇ 1 formed between the direction in which the elbow 22 of the person to be measured and the wrist are connected (the direction indicated by the one-dot chain line arrow in the figure) and the direction of gravity is greater than 90 degrees.
- Migrate to The first operation may be an operation that changes the posture from the second posture to the first posture.
- the acceleration information in the Z-axis direction detected by the acceleration sensor 11 in the state of the first posture is the first acceleration information Gd.
- the acceleration information in the Z-axis direction detected by the acceleration sensor 11 in the second posture state is set as second acceleration information Gu1.
- the body feature information calculation unit 13a is configured to detect the world coordinate system detected by the acceleration sensor 11 during the period during which the first motion is performed (the process from the state of the first posture to the state of the second posture).
- First-order displacement information ⁇ H1 [cm] which is a displacement amount of the wrist height of the subject 20 during this period, is calculated by second-order integration of the acceleration information of the three axes with the length of this period.
- the body feature information calculation unit 13a calculates the forearm length of the measurement subject 20 based on the first displacement information ⁇ H1 [cm], the first acceleration information Gd, and the second acceleration information Gu1.
- the body feature information calculation unit 13a performs the first acceleration on the sum of the first displacement information ⁇ H1 [cm], the absolute value of the first acceleration information Gd, and the absolute value of the second acceleration information Gu1. Based on the first ratio of the absolute values of the information Gd, the forearm length of the person 20 to be measured is calculated by the following equation (1).
- Forearm length ⁇ H1 ⁇ ⁇
- the forearm length corresponds to the amount of displacement of the wrist in the gravity direction until the wrist is lifted from the first posture and the angle ⁇ 1 reaches 90 degrees (the positions of the elbow 22 and the wrist in the gravity direction match).
- the three-axis acceleration information of the world coordinate system detected by the acceleration sensor 11 until the angle ⁇ 1 becomes 90 degrees from the first attitude is the time until the angle ⁇ 1 becomes 90 degrees from the first attitude.
- the value obtained by the second order integration is the forearm length.
- the measurement subject is caused to perform the operation of raising the arm until the angle ⁇ 1 is accurately 90 degrees, and the three-axis acceleration output from the acceleration sensor 11 during this operation period.
- Forearm length can be obtained by second-order integration of information with time.
- the measurement subject is caused to perform the first operation for shifting from the first posture to the second posture.
- the first displacement information ⁇ H1 obtained when the first operation is performed includes a first displacement component in a period in which the angle ⁇ 1 is 0 degrees to 90 degrees and a second displacement information in a period in which the angle ⁇ 1 is greater than 90 degrees. Displacement components.
- the ratio between the first displacement component and the second displacement component is equal to the ratio between the absolute value of the first acceleration information Gd and the absolute value of the second acceleration information Gu1. Therefore, the forearm length can be calculated by the above equation (1).
- FIG. 4 is a diagram for explaining the upper arm length calculation processing by the body feature information calculation unit 13a of FIG.
- FIG. 4 is a view of the subject 20 as viewed from the front, and similarly to FIG. 3, the left upper arm 21, left elbow 22, left forearm 23, and left hand 24 of the subject 20 are illustrated.
- the blood pressure measurement device 1 is premised on having the measurement subject perform a predetermined second action when calculating the upper arm length of the measurement subject.
- the second operation is an operation in which the wrist is lifted to a position higher than the shoulder from the state where the arm is lowered while keeping the arm straight with the shoulder as the rotation center.
- the arm of the person to be measured 20 is moved from the first posture in which the shoulder, elbow and wrist of the person to be measured 20 are lined up in the direction of gravity. Is shifted to a third posture in which the angle ⁇ 2 formed by the direction connecting the two (the direction indicated by the one-dot chain line arrow in the figure) and the direction of gravity is greater than 90 degrees.
- the second operation may be an operation that changes the posture from the third posture to the first posture.
- the acceleration information in the Z-axis direction detected by the acceleration sensor 11 in the state of the first posture is the first acceleration information Gd as in FIG. Further, the acceleration information in the Z-axis direction detected by the acceleration sensor 11 in the third posture state is set as third acceleration information Gu2.
- the body feature information calculation unit 13a is configured to display the world coordinate system detected by the acceleration sensor 11 during a period during which the second motion is performed (a process from the first posture state to the third posture state).
- the second-axis displacement information ⁇ H2 [cm] which is the amount of displacement of the wrist height of the person under test 20 during this period, is calculated by integrating the three-axis acceleration information for the length of this period.
- the body feature information calculation unit 13a calculates the length of the upper limb (from the shoulder to the wrist) of the person 20 to be measured. The second distance) is calculated.
- the body feature information calculation unit 13a calculates the first acceleration with respect to the sum of the second displacement information ⁇ H2 [cm], the absolute value of the first acceleration information Gd, and the absolute value of the third acceleration information Gu2. Based on the second ratio of the absolute value of the information Gd, the upper limb length of the person to be measured 20 is calculated by the calculation of the following equation (2).
- the upper limb length corresponds to the amount of displacement of the wrist in the gravitational direction until the arm is lifted from the first posture and the angle ⁇ 2 reaches 90 degrees (the positions of the shoulder and the wrist in the gravitational direction coincide).
- the three-axis acceleration information of the world coordinate system detected by the acceleration sensor 11 until the angle ⁇ 2 becomes 90 degrees from the first attitude is the time until the angle ⁇ 2 becomes 90 degrees from the first attitude.
- the value obtained by second-order integration is the upper limb length.
- the measurement subject is caused to perform the operation of raising the arm until the angle ⁇ 2 is accurately 90 degrees, and the triaxial acceleration output from the acceleration sensor 11 during this operation period. If the information is second-order integrated with time, it is possible to obtain the upper limb length.
- the measurement subject is caused to perform the second operation for shifting from the first posture to the third posture.
- the second displacement information ⁇ H2 obtained when the second operation is performed includes a third displacement component in a period in which the angle ⁇ 2 is 0 degrees to 90 degrees, and a second displacement information in a period in which the angle ⁇ 2 is greater than 90 degrees. Including four displacement components.
- the ratio between the third displacement component and the fourth displacement component is equal to the ratio between the absolute value of the first acceleration information Gd and the absolute value of the third acceleration information Gu2. Therefore, the upper limb length can be calculated by the above equation (2).
- the body feature information calculation unit 13a calculates the upper arm length by subtracting the forearm length from the upper limb length calculated as described above.
- FIG. 5 is a flowchart for explaining the forearm length and upper arm length calculation processing by the body feature information calculation unit 13a of FIG.
- the blood pressure measurement device 1 is provided with a mode for calculating the forearm length and the upper arm length.
- the control unit 13 uses the display unit 15, for example, to the subject to be measured.
- the first posture is taken and an instruction is given to shift from this state to the second posture, and then the first posture is taken again and an instruction is given to shift from this state to the third posture.
- the instruction information displayed on the display unit 15 is information for guiding the measurement subject's arm to the first posture and the second posture, and the first posture and the third posture, respectively.
- the control unit 13 functions as an information output unit.
- a character simulating the measurement subject is displayed on the display unit 15, and the character is moved to move the first posture to the second posture, and from the first posture to the first posture. Clarify the movement up to three postures.
- control unit 13 outputs a message “Please lower your arm” from a speaker (not shown), and causes the subject to take the first posture.
- control unit 13 outputs a message from the loudspeaker, “In that state, keep the elbow position fixed and raise the wrist higher than the elbow and stop it”, and cause the subject to take the second posture. You may be allowed to take
- control unit 13 outputs a message “Please lower your arm” from the speaker and causes the subject to take the first posture.
- the control unit 13 outputs a message from the loudspeaker, saying “Please keep your arms fully extended and raise your wrist higher than your shoulders”, and let the person to be measured take the third posture. You may take it.
- the information output to the speaker is information for guiding the measurement subject's arm to the first posture and the second posture, and the first posture and the third posture, respectively.
- the blood pressure measurement device 1 and the electronic device possessed by the measurement subject having a display unit such as a smartphone are configured to be able to communicate with each other.
- the control part 13 transmits the information for guide
- position to an electronic device, respectively.
- the electronic device may guide the posture of the subject by displaying the information received from the blood pressure measurement device 1 on the display unit.
- the control unit 13 determines whether or not the measurement subject has taken the first posture based on the acceleration information of the Z axis.
- the control unit 13 determines, as the first posture, a state in which the sign of the Z-axis acceleration information detected by the acceleration sensor 11 is negative and the change in the acceleration information in the Z-axis direction is not more than a threshold value for a predetermined time. To do.
- control unit 13 determines that the sign of the Z-axis acceleration information detected by the acceleration sensor 11 is positive and the change in the acceleration information in the Z-axis direction is equal to or less than a threshold value for a predetermined time in the second posture. Or it determines as a 3rd attitude
- the control unit 13 functions as a posture determination unit.
- the body feature information calculation unit 13a of the control unit 13 First acceleration information (Z-axis acceleration information) detected by the acceleration sensor 11 in the state of one posture is acquired (step S1).
- the body feature information calculation unit 13a acquires second acceleration information (Z-axis acceleration information) detected by the acceleration sensor 11 in the second posture state (step S2).
- the body feature information calculation unit 13a acquires first in-motion acceleration information (three-axis acceleration information) detected by the acceleration sensor 11 in the process from the first posture to the second posture (Step 3). S3).
- the body feature information calculation unit 13a integrates the three-axis acceleration information acquired in step S3 by the second order in the time from the first posture to the second posture, and from the first posture to the second posture.
- the amount of wrist displacement (first displacement information ⁇ H1) in the process of reaching the posture is calculated (step S4).
- the body feature information calculation unit 13a is based on the first displacement information ⁇ H1 and the first ratio of the first acceleration information acquired in step S1 and the second acceleration information acquired in step S2.
- the forearm length of the person to be measured is calculated by the calculation of Expression (1) and recorded on the recording medium 14 (step S5).
- the body feature information calculation unit 13a acquires third acceleration information (Z-axis acceleration information) detected by the acceleration sensor 11 in the third posture state (step S6).
- the body feature information calculation unit 13a acquires second in-motion acceleration information (three-axis acceleration information) detected by the acceleration sensor 11 in the process from the first posture to the third posture (Step 3). S7).
- the body feature information calculation unit 13a integrates the three-axis acceleration information acquired in step S7 with the time from the first posture to the third posture, and performs second-order integration from the first posture to the third posture.
- a displacement amount (second displacement information ⁇ H2) of the wrist of the measurement subject in the process of reaching the posture is calculated (step S8).
- the body feature information calculation unit 13a is based on the second displacement information ⁇ H2 and the second ratio of the first acceleration information acquired in step S1 and the third acceleration information acquired in step S6.
- the upper limb length of the person to be measured is calculated by the calculation of equation (2) (step S9).
- the body feature information calculation unit 13a calculates the upper arm length of the person to be measured by subtracting the forearm length calculated in step S5 from the upper limb length calculated in step S9, and records it in the recording medium 14 (step S10).
- the forearm length and upper arm length of the measurement subject are recorded on the recording medium 14.
- the wrist-heart height difference calculation unit 13b calculates the difference between the wrist and heart height in real time
- the blood pressure calculation unit 13c calculates the blood pressure value. Correction is made.
- the measurement subject performs the operation of moving the arm from the first posture to the second posture and the operation of moving the arm from the first posture to the third posture. It is possible to accurately calculate the forearm length and the upper arm length of the person being measured.
- the forearm length is not obtained by causing the subject to take a posture so that the angle ⁇ 1 in FIG. 3 and the angle ⁇ 2 in FIG. And upper arm length can be calculated. For this reason, it is not necessary to request the subject to perform a difficult operation, and the burden on the subject can be reduced.
- the arm is moved from the first posture to the third posture by raising the arm in a direction horizontal to the front of the body, but the arm is raised in a direction perpendicular to the front of the body.
- the first posture may be shifted to the third posture.
- FIG. 6 is a diagram for explaining a first modification of the forearm length calculation process by the body feature information calculation unit 13a of FIG.
- FIG. 6 is a view of the subject 20 as seen from above.
- the left upper arm 21, the left elbow 22, the left forearm 23, and the left hand 24 of the measurement subject 20 are illustrated.
- the first posture is a state in which the direction connecting the shoulder and elbow of the subject is substantially orthogonal to the direction connecting the elbow and the wrist of the subject, and the shoulder and elbow of the subject are measured.
- the second posture is a state in which the direction of tying and the direction of tying the elbow and wrist of the person to be measured substantially coincide with each other.
- the body feature information calculation unit 13a uses the time information of the world coordinate system detected by the acceleration sensor 11 during the period from the first posture to the second posture as the time information of this period.
- the third displacement information ⁇ L1 [cm] which is the amount of movement of the wrist of the subject 20 during this period (the amount of movement in the front direction of the body of the subject), is calculated by performing step integration. This ⁇ L1 matches the forearm length of the person being measured.
- the body feature information calculation unit 13a performs the first posture and the second posture (two postures having different wrist positions) in which the positions of the shoulder and the elbow are the same and the directions connecting the elbow and the wrist are different.
- Forearm length based on acceleration information detected by the acceleration sensor 11 in the process from the first posture to the second posture (or from the second posture to the first posture). Can be calculated.
- the body feature information calculation unit 13a takes the first posture and the third posture (two postures with different wrist positions) having the same shoulder position and different directions connecting the shoulder and the wrist to the measurement subject. And calculating the upper arm length based on the acceleration information detected by the acceleration sensor 11 in the process from the first posture to the third posture (or the process from the third posture to the first posture). it can.
- the blood pressure measurement device 1 can also calculate the chest width of the measurement subject as body characteristic information.
- FIG. 7 is a diagram for explaining the measurement process of the subject's chest width by the body feature information calculation unit 13a of FIG.
- FIG. 7 (a) shows the measurement subject's wrist lying on the bedding (bed or mattress) on which the person lies and sleeping on the bedding. It shows the state.
- FIG.7 (b) is the figure which looked at Fig.7 (a) from the side surface of the bedding.
- FIG. 7 (c) shows the left arm wearing the blood pressure measuring device 1 on the side opposite to the contact surface between the body and the bedding in a sideways state where the person to be measured is sleeping with the side of the body in contact with the bedding. It shows the state placed on the side of the body.
- the posture of the arm of the measurement subject in the state shown in FIGS. 7A and 7B is set as the first posture, and the measurement in the state shown in FIG.
- the posture of the person's arm is the second posture.
- the body feature information calculation unit 13a is detected by the acceleration sensor 11 during a period from the state of the first posture to the state of the second posture (or the period from the second posture to the first posture).
- the fourth displacement which is the displacement of the wrist of the subject 20 during this period (the displacement in the height in the gravitational direction)
- Information ⁇ L2 [cm] is calculated. This ⁇ L2 can be treated as a value equal to the chest width of the measurement subject. Therefore, the body feature information calculation unit 13a outputs ⁇ L2 as chest width information which is body feature information.
- the posture of the arm of the measurement subject in a state where the wrist of the measurement subject is placed on the bedding while the measurement subject is lying on the bedding (the supine position). It is good also as a 1st attitude
- the wrist-heart height difference calculation unit 13b can estimate the height difference between the heart and the blood pressure measurement device 1 based on the chest width information. Therefore, even when the measurement subject is sleeping, the blood pressure calculation unit 13c calculates the blood pressure value based on the difference in height between the wrist and the heart estimated from the chest width, thereby enabling highly accurate blood pressure measurement. It becomes.
- the measurement subject is caused to take the first posture and the second posture with different wrist positions, and the first posture is changed to the second posture.
- the chest width of the person to be measured can be calculated based on the acceleration information detected by the acceleration sensor 11 in the process (or the process from the second posture to the first posture).
- the program executed by the processor of the control unit 13 is provided by being recorded on a non-transitory recording medium that can be read by a computer.
- Such “computer-readable recording medium” includes, for example, an optical medium such as a CD-ROM (Compact Disc-ROM), a magnetic recording medium such as a memory card, and the like. Such a program can also be provided by downloading via a network.
- an optical medium such as a CD-ROM (Compact Disc-ROM)
- a magnetic recording medium such as a memory card, and the like.
- Such a program can also be provided by downloading via a network.
- the blood pressure measurement device 1 measures the blood pressure value based on the pulse wave detected by the pulse wave detection unit 10
- the blood pressure measurement device 1 measures the blood pressure value using the cuff by the oscillometric method, the Korotkoff method, or the like. It may be.
- the disclosed blood pressure measurement device is a blood pressure measurement device that is mounted on a wrist of a measurement subject and measures the blood pressure value of the measurement subject.
- the measurement subject is equipped with a triaxial acceleration sensor and the blood pressure measurement device.
- An information output unit that outputs information for guiding the arm to a pair of a first posture and a second posture with different wrist positions, and an output signal of the triaxial acceleration sensor after the output of the information
- a posture determination unit that determines that the arm is in each posture of the pair, and a period from a state in which the arm is in one posture of the pair to a state in which the arm is in the other posture of the pair
- a body feature information calculation unit that calculates body feature information of the person to be measured based on the in-transition acceleration information detected by the three-axis acceleration sensor.
- the first posture and the second posture are postures in which the positions of the shoulder and elbow of the person to be measured are the same and the directions connecting the elbow and the wrist are different.
- a calculation part calculates the distance from a to-be-measured person's elbow to a wrist based on the said acceleration information in transition.
- the first posture is a posture in which the shoulder, elbow, and wrist of the measurement subject are aligned along the direction of gravity
- the second posture is the shoulder and elbow of the measurement subject.
- the body feature information calculation unit First acceleration information detected by the triaxial acceleration sensor in the first posture and second acceleration detected by the triaxial acceleration sensor in the state where the arm is in the second posture The distance is calculated based on the information and the transition acceleration information.
- the first posture and the second posture are postures in which a shoulder position of the person to be measured is the same and a direction connecting the shoulder and the wrist is different, and the body feature information calculation unit Is to calculate the distance from the shoulder of the person being measured to the wrist based on the acceleration information during the transition.
- the first posture is a posture in which the shoulder, elbow, and wrist of the person to be measured are aligned along the direction of gravity
- the second posture is the shoulder, elbow, and the person to be measured.
- the body feature information calculation unit is detected by the three-axis acceleration sensor in a state where the arm is in the first posture, in which the angle between the direction connecting the wrist and the direction of gravity is greater than 90 degrees.
- the distance based on the first acceleration information, the second acceleration information detected by the three-axis acceleration sensor in a state where the arm is in the second posture, and the transition acceleration information. Is to be calculated.
- the body feature information calculation unit calculates displacement information of the wrist of the measurement subject in the direction of gravity based on the transition acceleration information, and the displacement information and the first acceleration information And the ratio of the absolute value of the first acceleration information to the sum of the absolute value of the second acceleration information and the absolute value of the second acceleration information.
- the body feature information calculation unit calculates the distance by multiplying the displacement information by the ratio.
- the first posture is a posture in which the wrist of the subject is placed on the bedding while the subject is lying on the bedding for the subject to lie down.
- the wrist is placed on the side of the body opposite to the contact surface with the bedding in a sideways state where the person to be measured is sleeping with the side of the body in contact with the bedding.
- the body feature information calculation unit calculates displacement information of the wrist of the measurement subject in the direction of gravity based on the acceleration information during the transition, and the displacement information is used as information on the chest width of the measurement subject. Is output as
- the disclosed blood pressure measurement device further includes a blood pressure calculation unit that calculates a blood pressure value based on the body feature information calculated by the body feature information calculation unit.
- the disclosed body feature information calculation method is a body feature information calculation method for calculating a person's body feature information, wherein the person's arm is paired with a first posture and a second posture with different wrist positions. Based on an information output step for outputting information for guidance and an output signal of a three-axis acceleration sensor worn on the wrist of the person after the output of the information, the arms are in each posture of the pair. A posture determination step for determining this, and the transition acceleration information detected by the three-axis acceleration sensor during a period from a state where the arm is in one posture of the pair to a state where the arm is in the other posture of the pair And a body feature information calculating step for calculating the body feature information of the person.
- the disclosed body feature information calculation program is a program for causing a computer to execute each step of the body feature information calculation method.
- the present invention is particularly convenient and effective when applied to a wrist-type blood pressure measuring device.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Ophthalmology & Optometry (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
被測定者の身体特徴情報を、簡単な作業により正確に求めることのできる血圧測定装置、身体特徴情報算出方法、及び身体特徴情報算出プログラムを提供する。血圧測定装置(1)は、3軸加速度センサ(11)と、血圧測定装置(1)が装着された被測定者の腕を手首の位置が異なる第一の姿勢及び第二の姿勢のペアに誘導するための情報を出力し、情報の出力後の3軸加速度センサ(11)の出力信号に基づいて、被測定者の腕が上記ペアの各々の姿勢になったことを判定する制御部(13)と、を備える。制御部(13)は、腕が第一の姿勢になった状態から第二の姿勢になった状態までの期間に3軸加速度センサ(11)により検出された移行中加速度情報に基づいて被測定者の前腕長を算出する。
Description
本発明は、血圧測定装置、身体特徴情報算出方法、身体特徴情報算出プログラムに関する。
一般に血圧測定装置は、測定部を心臓の高さにして測定することにより、正確な血圧値を得ることができる。しかし、手首用の血圧測定装置は、測定部が装着される手首が自由に動き得る部位であるために、手首を心臓の高さと同じ高さに正確に合わせることが難しく、正確な血圧値を測定できないことがある。
こういった課題を解決するべく、特許文献1は、被測定者からマニュアル操作で入力された前腕長及び上腕長等の被測定者の体の部位の特徴情報と、加速度センサ等で検出される被測定者の前腕の角度や上腕の角度等の腕の状態を示す情報とから、心臓と手首との高さの差を検出し、検出した差に応じて血圧値を補正する等の処理を行う血圧測定装置を開示している。
特許文献1に記載の方法では、被測定者の身体特徴情報を予め求めておく必要があり、この身体特徴情報を手入力で行うものとしている。身体特徴情報の入力を行うためには、前腕長や上腕長をメジャー等によって事前に測定しておく必要がある。
この測定によって測定誤差が生じると、血圧値の測定部位と心臓との高さの差の算出精度は低下する。また、メジャーを使って測定を行う必要があるため、その測定作業が被測定者にとって負担となる。
前腕長や上腕長は、身長と相関があることが知られている。このため、被測定者の身長を手入力させ、入力された身長から前腕長や上腕長を算出することもできる。しかし、この場合も、算出された前腕長や上腕長と、被測定者の実際の前腕長や上腕長とに誤差が生じる可能性を排除できない。
また、身体特徴情報や身長を手入力する場合、単純な入力ミスがあると、血圧値を正確に測定することができなくなる。
本発明は、上記事情に鑑みてなされたものであり、測定部位と心臓との高さの差を算出するために必要な被測定者の身体特徴情報を、簡単な作業により正確に求めることのできる血圧測定装置、身体特徴情報算出方法、及び身体特徴情報算出プログラムを提供することを目的とする。
本発明の血圧測定装置は、被測定者の手首に装着されて被測定者の血圧値を測定する血圧測定装置であって、3軸加速度センサと、前記血圧測定装置が装着された被測定者の腕を、手首の位置が異なる第一の姿勢及び第二の姿勢のペアに誘導するための情報を出力する情報出力部と、前記情報の出力後の前記3軸加速度センサの出力信号に基づいて、前記腕が前記ペアの各々の姿勢になったことを判定する姿勢判定部と、前記腕が前記ペアの一方の姿勢になった状態から前記ペアの他方の姿勢になった状態までの期間に前記3軸加速度センサにより検出された移行中加速度情報に基づいて、前記被測定者の身体特徴情報を算出する身体特徴情報算出部と、を備えるものである。
本発明の身体特徴情報算出方法は、人の身体特徴情報を算出する身体特徴情報算出方法であって、前記人の腕を、手首の位置が異なる第一の姿勢と第二の姿勢のペアに誘導するための情報を出力する情報出力ステップと、前記情報の出力後の前記人の手首に装着される3軸加速度センサの出力信号に基づいて、前記腕が前記ペアの各々の姿勢になったことを判定する姿勢判定ステップと、前記腕が前記ペアの一方の姿勢になった状態から前記ペアの他方の姿勢になった状態までの期間に前記3軸加速度センサにより検出された移行中加速度情報に基づいて、前記人の身体特徴情報を算出する身体特徴情報算出ステップと、を備えるものである。
本発明の身体特徴情報算出プログラムは、前記身体特徴情報算出方法の各ステップをコンピュータに実行させるためのプログラムである。
本発明によれば、測定部位と心臓との高さの差を算出するために必要な被測定者の体の部位の特徴情報を、簡単な作業により正確に求めることのできる血圧測定装置、身体特徴情報算出方法、及び身体特徴情報算出プログラムを提供することができる。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の一実施形態である血圧測定装置1の構成を示すブロック図である。血圧測定装置1は、携帯型となっており、生体としての被測定者の手首に装着して用いられる。
血圧測定装置1は、脈波検出部10と、加速度センサ11と、角速度センサ12と、全体を統括制御する制御部13と、フラッシュメモリやROM(Read Only Memory)やメモリカード等の記録媒体14と、液晶表示素子等から構成される表示部15と、を備える。
脈波検出部10は、被測定者の手首から非侵襲で脈波を検出する。脈波検出部10は、例えばトノメトリ法によって脈波としての圧脈波を検出するものが用いられる。脈波検出部10は、脈波として容積脈波を検出するものであってもよい。脈波検出部10は、動脈に光を当てて得られる動脈からの反射光によって脈波を検出するものであってもよい。
加速度センサ11は、被測定者の手首の動きを加速度情報として検出する。本実施形態では、加速度センサ11としてX、Y、Zの3軸方向の加速度を検出する3軸加速度センサを用いている。
加速度センサ11は、血圧測定装置1が手首に装着された状態で、Z軸方向が腕の伸びる方向(肘と手首を結ぶ方向)に沿うように装置に搭載されている。
角速度センサ12は、被測定者の手首の姿勢(ロール角とピッチ角)を角速度情報として検出する。
図2は、図1の制御部13の機能ブロック図である。
制御部13は、プロセッサとRAM(Random Access Memory)やROM等のメモリとを主体に構成されており、ROMに格納されたプログラムをプロセッサが実行することにより、身体特徴情報算出部13aと、手首-心臓高さ差算出部13bと、血圧算出部13cとして機能する。
身体特徴情報算出部13aは、加速度センサ11によって検出される加速度情報に基づいて、被測定者の前腕長(第一の距離)と上腕長(第三の距離)を算出する。前腕長とは、被測定者の肘から手首までの距離を言う。上腕長とは、被測定者の肩から肘までの距離を言う。
手首-心臓高さ差算出部13bは、身体特徴情報算出部13aにより算出された被測定者の前腕長及び上腕長と、角速度センサ12により検出された角速度情報に基づく手首の角度とに基づいて、特許文献1に例示される公知の方法により、被測定者の手首と心臓の高さの差を算出する。
血圧算出部13cは、脈波検出部10によって検出された脈波に基づいて1拍毎に血圧値を算出する。血圧値には、収縮期血圧SBP(systolic blood pressure)と、拡張期血圧DBP(diastolic blood pressure)と、平均血圧MBP(mean blood pressure)等が含まれる。
血圧算出部13cは、脈波に基づいて算出した血圧値を、手首-心臓高さ差算出部13bにより算出された手首と心臓の高さの差にしたがって補正し、補正後の血圧値を最終的な血圧値として記録媒体14に記録する。
次に、身体特徴情報算出部13aによる前腕長と上腕長の算出処理を具体的に説明する。
図3は、図2の身体特徴情報算出部13aによる前腕長の算出処理を説明する図である。
図3には、被測定者20を図示している。符号21は被測定者の左腕の上腕を示す。符号22は被測定者の左腕の肘を示す。符号23は被測定者の左腕の前腕を示す。符号24は被測定者の左手を示す。被測定者の左手首には図1の血圧測定装置1が装着されている。
血圧測定装置1では、被測定者の前腕長を算出するにあたり、予め決めた第一の動作を被測定者に行ってもらうことを前提としている。第一の動作は、腕を下ろした状態から、肘22の位置は変えずに、肘22を回転中心として手首を肘22よりも高い位置まで持ち上げる動作である。
この第一の動作により、被測定者20の腕は、被測定者20の肩と肘と手首とが重力方向に沿って並ぶ第一の姿勢から、被測定者20の肩と肘22とが重力方向に沿って並び、かつ、被測定者の肘22と手首を結ぶ方向(図中の一点鎖線矢印で示す方向)と重力方向とのなす角度θ1が90度よりも大きくなる第二の姿勢に移行する。なお、第一の動作は、第二の姿勢から第一の姿勢に姿勢を変化させる動作としてもよい。
図3では、被測定者の腕が第二の姿勢の状態にあるときの前腕23と手24を破線によって示している。
図3では、第一の姿勢の状態で加速度センサ11により検出されるZ軸方向の加速度情報を第一の加速度情報Gdとしている。第二の姿勢の状態で加速度センサ11により検出されるZ軸方向の加速度情報を第二の加速度情報Gu1としている。
身体特徴情報算出部13aは、第一の動作が行われている期間(第一の姿勢となる状態から第二の姿勢となる状態に至る過程)で加速度センサ11により検出されたワールド座標系の3軸の加速度情報をこの期間の長さの時間で2階積分して、この期間における被測定者20の手首の高さの変位量である第一の変位情報ΔH1[cm]を算出する。
身体特徴情報算出部13aは、第一の変位情報ΔH1[cm]と、第一の加速度情報Gdと、第二の加速度情報Gu1とに基づいて、被測定者20の前腕長を算出する。
より詳細には、身体特徴情報算出部13aは、第一の変位情報ΔH1[cm]と、第一の加速度情報Gdの絶対値と第二の加速度情報Gu1の絶対値の和に対する第一の加速度情報Gdの絶対値の第一の比と、に基づいて、以下の式(1)の演算により、被測定者20の前腕長を算出する。
前腕長=ΔH1×{|Gd|/(|Gd|+|Gu1|)} ・・(1)
前腕長は、第一の姿勢から手首を持上げていき、角度θ1が90度になる(肘22と手首の重力方向の位置が一致する)までの手首の重力方向における変位量に相当する。
つまり、第一の姿勢から角度θ1が90度になるまでに加速度センサ11によって検出されたワールド座標系の3軸の加速度情報を、第一の姿勢から角度θ1が90度になるまでの時間で2階積分して得られる値が、前腕長となる。
このように、第一の姿勢から、角度θ1が正確に90度になるまで腕を上げる動作を被測定者に行わせて、この動作の期間中に加速度センサ11から出力される3軸の加速度情報を時間で2階積分すれば、前腕長を求めることは可能である。
しかし、角度θ1が90度になるような動作を被測定者に求めてしまうと、被測定者に負担をかけてしまうことになる。また、角度θ1を90度に正確に合わせることは現実には難しいため、前腕長には誤差が生じる可能性がある。
一方、角度θ1が90度よりも大きい任意の値になった時点で腕を止める上記の第一の動作であれば、被測定者に負担をかけずにすむ。このような理由から、本実施形態では、第一の姿勢から第二の姿勢まで移行させる第一の動作を被測定者に行わせている。
この第一の動作がなされた場合に得られる第一の変位情報ΔH1は、角度θ1が0度から90度までの期間における第一の変位成分と、角度θ1が90度より大きい期間における第二の変位成分とを含む。
第一の変位成分と第二の変位成分との比は、第一の加速度情報Gdの絶対値と第二の加速度情報Gu1の絶対値との比に等しい。したがって、上記の式(1)により、前腕長を算出することができる。
図4は、図2の身体特徴情報算出部13aによる上腕長の算出処理を説明する図である。図4は、被測定者20を正面から見た図であり、図3と同様に、被測定者20の左上腕21、左肘22、左前腕23、左手24が図示されている。
血圧測定装置1では、被測定者の上腕長を算出するにあたり、予め決めた第二の動作を被測定者に行ってもらうことを前提としている。第二の動作は、腕を下ろした状態から、肩を回転中心として、腕を真っ直ぐにしたまま、手首を肩よりも高い位置まで持ち上げる動作である。
この第二の動作により、被測定者20の腕は、被測定者20の肩と肘と手首とが重力方向に沿って並ぶ第一の姿勢から、被測定者20の肩と肘22と手首とを結ぶ方向(図中の一点鎖線矢印で示す方向)と重力方向とのなす角度θ2が90度よりも大きくなる第三の姿勢に移行する。なお、第二の動作は、第三の姿勢から第一の姿勢に姿勢を変化させる動作としてもよい。
図4では、被測定者の腕が第三の姿勢の状態にあるときの上腕21、肘22、前腕23、及び手24を破線によって示している。
図4では、第一の姿勢の状態で加速度センサ11により検出されるZ軸方向の加速度情報を図3と同じく第一の加速度情報Gdとしている。また、第三の姿勢の状態で加速度センサ11により検出されるZ軸方向の加速度情報を第三の加速度情報Gu2としている。
身体特徴情報算出部13aは、第二の動作が行われている期間(第一の姿勢となる状態から第三の姿勢となる状態に至る過程)で加速度センサ11により検出されたワールド座標系の3軸の加速度情報をこの期間の長さの時間で2階積分して、この期間における被測定者20の手首の高さの変位量である第二の変位情報ΔH2[cm]を算出する。
身体特徴情報算出部13aは、第二の変位情報ΔH2[cm]と、第一の加速度情報Gdと、第三の加速度情報Gu2とに基づいて、被測定者20の上肢長(肩から手首までの距離;第二の距離)を算出する。
より詳細には、身体特徴情報算出部13aは、第二の変位情報ΔH2[cm]と、第一の加速度情報Gdの絶対値と第三の加速度情報Gu2の絶対値の和に対する第一の加速度情報Gdの絶対値の第二の比と、に基づいて、以下の式(2)の演算により、被測定者20の上肢長を算出する。
上肢長=ΔH2×{|Gd|/(|Gd|+|Gu2|)} ・・(2)
上肢長は、第一の姿勢から腕を持上げていき、角度θ2が90度になる(肩と手首の重力方向の位置が一致する)までの手首の重力方向における変位量に相当する。
つまり、第一の姿勢から角度θ2が90度になるまでに加速度センサ11によって検出されたワールド座標系の3軸の加速度情報を、第一の姿勢から角度θ2が90度になるまでの時間で2階積分して得られる値が、上肢長となる。
このように、第一の姿勢から、角度θ2が正確に90度になるまで腕を上げる動作を被測定者に行わせて、この動作の期間中に加速度センサ11から出力される3軸の加速度情報を時間で2階積分すれば、上肢長を求めることは可能である。
しかし、角度θ2が90度になるような動作を被測定者に求めてしまうと、被測定者に負担をかけてしまうことになる。また、角度θ2を90度に正確に合わせることは現実には難しいため、上肢長には誤差が生じる可能性がある。
一方、角度θ2が90度よりも大きい任意の値になった時点で腕を止める上記の第二の動作であれば、被測定者に負担をかけずにすむ。このような理由から、本実施形態では、第一の姿勢から第三の姿勢まで移行させる第二の動作を被測定者に行わせている。
この第二の動作がなされた場合に得られる第二の変位情報ΔH2は、角度θ2が0度から90度までの期間における第三の変位成分と、角度θ2が90度よりも大きい期間における第四の変位成分とを含む。
第三の変位成分と第四の変位成分との比は、第一の加速度情報Gdの絶対値と第三の加速度情報Gu2の絶対値との比に等しい。したがって、上記の式(2)により、上肢長を算出することができる。
身体特徴情報算出部13aは、上記のようにして算出した上肢長から前腕長を減算することで、上腕長を算出する。
図5は、図2の身体特徴情報算出部13aによる前腕長及び上腕長の算出処理を説明するためのフローチャートである。
血圧測定装置1には、前腕長及び上腕長を算出するモードが備えられており、このモードが設定されると、制御部13は、例えば、表示部15を利用して、被測定者に対し、第一の姿勢をとらせ、この状態から第二の姿勢に移行させるよう指示を行い、その後、再び第一の姿勢をとらせ、この状態から第三の姿勢に移行させるよう指示を行う。この表示部15に表示される指示の情報は、被測定者の腕を第一の姿勢と第二の姿勢、及び、第一の姿勢と第三の姿勢にそれぞれ誘導するための情報となる。制御部13は、情報出力部として機能する。
指示の方法としては、例えば、表示部15において被測定者を模擬したキャラクタを表示させ、このキャラクタを動かすことで、第一の姿勢から第二の姿勢までの動作と、第一の姿勢から第三の姿勢までの動作とを明示する。
または、制御部13は、図示しないスピーカから「腕を真下に下してください」とメッセージを出力させて、被測定者に第一の姿勢をとらせる。次に、制御部13は、スピーカから「その状態で、肘の位置は固定にしたまま手首を肘よりも高く上げて止めてください」とメッセージを出力させて、被測定者に第二の姿勢をとらせてもよい。
同様に、制御部13は、スピーカから「腕を真下に下してください」とメッセージを出力させて被測定者に第一の姿勢をとらせる。次に、制御部13は、スピーカから「その状態で、腕は伸ばしきったまま、手首を肩よりも高く上げて止めてください」とメッセージを出力させて、被測定者に第三の姿勢をとらせてもよい。このスピーカに出力される情報は、被測定者の腕を第一の姿勢と第二の姿勢、及び、第一の姿勢と第三の姿勢にそれぞれ誘導するための情報となる。
或いは、血圧測定装置1と、スマートフォン等の表示部を有する被測定者の所持する電子機器とを通信可能に構成しておく。そして、制御部13は、被測定者の腕を第一の姿勢と第二の姿勢、及び、第一の姿勢と第三の姿勢にそれぞれ誘導するための情報を電子機器に送信する。電子機器が、血圧測定装置1から受信した情報を表示部に表示させることで、被測定者に姿勢の誘導を行ってもよい。
制御部13は、被測定者が第一の姿勢をとったか否かを、Z軸の加速度情報に基づいて判定する。制御部13は、加速度センサ11により検出されたZ軸の加速度情報の符号がマイナスとなり、かつ、Z軸方向の加速度情報の変化が所定時間にわたって閾値以下となる状態を、第一の姿勢として判定する。
また、制御部13は、加速度センサ11により検出されたZ軸の加速度情報の符号がプラスとなり、かつ、Z軸方向の加速度情報の変化が所定時間にわたって閾値以下となる状態を、第二の姿勢又は第三の姿勢として判定する。制御部13は、姿勢判定部として機能する。
被測定者により、第一の姿勢から第二の姿勢までの動作と、第一の姿勢から第三の姿勢までの動作とが行われると、制御部13の身体特徴情報算出部13aは、第一の姿勢の状態において加速度センサ11により検出された第一の加速度情報(Z軸の加速度情報)を取得する(ステップS1)。
次に、身体特徴情報算出部13aは、第二の姿勢の状態において加速度センサ11により検出された第二の加速度情報(Z軸の加速度情報)を取得する(ステップS2)。
次に、身体特徴情報算出部13aは、第一の姿勢から第二の姿勢に至る過程において加速度センサ11により検出された第一の動作中加速度情報(3軸の加速度情報)を取得する(ステップS3)。
次に、身体特徴情報算出部13aは、ステップS3で取得した3軸の加速度情報を第一の姿勢から第二の姿勢に至るまでの時間で2階積分して、第一の姿勢から第二の姿勢に至る過程での被測定者の手首の変位量(第一の変位情報ΔH1)を算出する(ステップS4)。
次に、身体特徴情報算出部13aは、第一の変位情報ΔH1と、ステップS1で取得した第一の加速度情報とステップS2で取得した第二の加速度情報の第一の比と、に基づいて式(1)の演算により、被測定者の前腕長を算出し、記録媒体14に記録する(ステップS5)。
次に、身体特徴情報算出部13aは、第三の姿勢の状態において加速度センサ11により検出された第三の加速度情報(Z軸の加速度情報)を取得する(ステップS6)。
次に、身体特徴情報算出部13aは、第一の姿勢から第三の姿勢に至る過程において加速度センサ11により検出された第二の動作中加速度情報(3軸の加速度情報)を取得する(ステップS7)。
次に、身体特徴情報算出部13aは、ステップS7で取得した3軸の加速度情報を第一の姿勢から第三の姿勢に至るまでの時間で2階積分して、第一の姿勢から第三の姿勢に至る過程での被測定者の手首の変位量(第二の変位情報ΔH2)を算出する(ステップS8)。
次に、身体特徴情報算出部13aは、第二の変位情報ΔH2と、ステップS1で取得した第一の加速度情報とステップS6で取得した第三の加速度情報の第二の比と、に基づいて式(2)の演算により、被測定者の上肢長を算出する(ステップS9)。
次に、身体特徴情報算出部13aは、ステップS9で算出した上肢長から、ステップS5で算出した前腕長を減算して、被測定者の上腕長を算出し、記録媒体14に記録する(ステップS10)。
以上の処理により、被測定者の前腕長と上腕長が記録媒体14に記録される。以降の血圧測定時には、この前腕長と上腕長が用いられて、手首-心臓高さ差算出部13bにより、手首と心臓の高さの差がリアルタイムに算出され、血圧算出部13cにより血圧値の補正がなされる。
以上のように、血圧測定装置1によれば、第一の姿勢から第二の姿勢まで腕を動かす動作と、第一の姿勢から第三の姿勢まで腕を動かす動作とを被測定者に行わせるだけで、被測定者の前腕長と上腕長を正確に算出することができる。
このため、メジャー等を用いて被測定者が自身の前腕長や上腕長を測定して手入力する場合と比較して、前腕長と上腕長の測定誤差や入力ミスをなくすことができ、正確な血圧測定が可能となる。また、被測定者への負担を軽減することができる。
また、血圧測定装置1によれば、図3の角度θ1と図4の角度θ2を90度にさせるのではなく、90度よりも大きくなるように被測定者に姿勢をとらせることで前腕長と上腕長を算出することができる。このため、被測定者に対し難しい動作を要求せずにすみ、被測定者の負担を軽減することができる。
図4の例では、腕を体の正面に対して水平な方向に上げることで第一の姿勢から第三の姿勢に移行させるものとしたが、腕を体正面に対して垂直な方向に上げることで第一の姿勢から第三の姿勢に移行させるようにしてもよい。
図6は、図2の身体特徴情報算出部13aによる前腕長の算出処理の第一の変形例を説明する図である。図6は、被測定者20を頭上から見た図である。図6では、図3と同様に、被測定者20の左上腕21、左肘22、左前腕23、左手24が図示されている。
この第一の変形例では、被測定者の肩と肘を結ぶ方向と、被測定者の肘と手首を結ぶ方向とが略直交した状態を第一の姿勢とし、被測定者の肩と肘を結ぶ方向と被測定者の肘と手首を結ぶ方向とが略一致した状態を第二の姿勢としている。
身体特徴情報算出部13aは、第一の姿勢となる状態から第二の姿勢となる状態に至る期間で加速度センサ11により検出されたワールド座標系の3軸の加速度情報をこの期間の時間で2階積分して、この期間における被測定者20の手首の移動量(被測定者の体の正面方向における移動量)である第三の変位情報ΔL1[cm]を算出する。このΔL1は、被測定者の前腕長と一致する。
以上のように、身体特徴情報算出部13aは、肩と肘の位置が同じで、肘と手首を結ぶ方向が異なる第一の姿勢と第二の姿勢(手首の位置が異なる2つの姿勢)を被測定者にとらせ、第一の姿勢から第二の姿勢に至る過程(又は第二の姿勢から第一の姿勢に至る過程)で加速度センサ11により検出される加速度情報に基づいて、前腕長を算出することができる。
また、身体特徴情報算出部13aは、肩の位置が同じで、肩と手首を結ぶ方向が異なる第一の姿勢と第三の姿勢(手首の位置が異なる2つの姿勢)を被測定者にとらせ、第一の姿勢から第三の姿勢に至る過程(又は第三の姿勢から第一の姿勢に至る過程)で加速度センサ11により検出される加速度情報に基づいて、上腕長を算出することができる。
ここまでは、身体特徴情報として、前腕長と上肢長と上腕長を算出する例を説明してきた。血圧測定装置1は、前腕長と上肢長と上腕長以外に、身体特徴情報として被測定者の胸幅を算出することも可能である。
図7は、図2の身体特徴情報算出部13aによる被測定者の胸幅の算出処理を説明する図である。
図7(a)は、人が横たわるための寝具(ベッド又は敷き布団)の上に被測定者が仰向け(仰臥位)になって寝ている状態で、被測定者の手首が寝具上に置かれている状態を示している。図7(b)は、図7(a)を寝具の側面から見た図である。
図7(c)は、被測定者が体の側面を寝具に接触させて寝ている横向きの状態で、血圧測定装置1を装着している左腕を体と寝具との接触面とは反対側の体の側面上においた状態を示している。
胸幅の算出処理においては、図7(a)及び図7(b)に示した状態における被測定者の腕の姿勢を第一の姿勢とし、図7(c)に示した状態における被測定者の腕の姿勢を第二の姿勢とする。
そして、身体特徴情報算出部13aは、第一の姿勢となる状態から第二の姿勢となる状態に至る期間(又は第二の姿勢から第一の姿勢に至る期間)で加速度センサ11により検出されたワールド座標系の3軸の加速度情報をこの期間の時間で2階積分して、この期間での被測定者20の手首の変位量(重力方向の高さの変位)である第四の変位情報ΔL2[cm]を算出する。このΔL2は、被測定者の胸幅に等しい値として扱うことができる。このため、身体特徴情報算出部13aは、このΔL2を身体特徴情報である胸幅の情報として出力する。
なお、この変形例においては、被測定者が寝具上にうつ伏せ(背臥位)になった状態で、被測定者の手首が寝具上に置かれている状態における被測定者の腕の姿勢を第一の姿勢としてもよい。
人の胸幅のどのあたりに心臓が位置するかは経験的に決めておくことができる。このため、被測定者の胸幅が分かることで、図7(c)の状態における、血圧測定装置1を装着している被測定者の手首と、この被測定者の心臓の位置との重力方向における距離を推定することができる。
つまり、手首-心臓高さ差算出部13bは、胸幅の情報に基づいて、心臓と血圧測定装置1との高さ差を推定することができる。したがって、被測定者が寝ている状態においても、血圧算出部13cが、胸幅から推定された手首と心臓の高さ差に基づいて血圧値を算出することで、高精度の血圧測定が可能となる。
以上のように、変形例の身体特徴情報算出部13aによれば、手首の位置が異なる第一の姿勢と第二の姿勢を被測定者にとらせ、第一の姿勢から第二の姿勢に至る過程(又は第二の姿勢から第一の姿勢に至る過程)で加速度センサ11により検出される加速度情報に基づいて、被測定者の胸幅を算出することができる。
制御部13のプロセッサが実行する上記のプログラムは、当該プログラムをコンピュータが読取可能な一時的でない(non-transitory)記録媒体に記録されて提供される。
このような「コンピュータ読取可能な記録媒体」は、たとえば、CD-ROM(Compact Disc-ROM)等の光学媒体や、メモリカード等の磁気記録媒体等を含む。また、このようなプログラムを、ネットワークを介したダウンロードによって提供することもできる。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
例えば、血圧測定装置1は、脈波検出部10によって検出される脈波に基づいて血圧値を測定するものとしたが、カフを用いてオシロメトリック法やコロトコフ法等によって血圧値を測定するものであってもよい。
以上説明してきたように、本明細書には以下の事項が開示されている。
開示された血圧測定装置は、被測定者の手首に装着されて被測定者の血圧値を測定する血圧測定装置であって、3軸加速度センサと、前記血圧測定装置が装着された被測定者の腕を、手首の位置が異なる第一の姿勢及び第二の姿勢のペアに誘導するための情報を出力する情報出力部と、前記情報の出力後の前記3軸加速度センサの出力信号に基づいて、前記腕が前記ペアの各々の姿勢になったことを判定する姿勢判定部と、前記腕が前記ペアの一方の姿勢になった状態から前記ペアの他方の姿勢になった状態までの期間に前記3軸加速度センサにより検出された移行中加速度情報に基づいて、前記被測定者の身体特徴情報を算出する身体特徴情報算出部と、を備えるものである。
開示された血圧測定装置は、前記第一の姿勢と前記第二の姿勢は、被測定者の肩及び肘の位置が同じでかつ肘と手首を結ぶ方向が異なる姿勢であり、前記身体特徴情報算出部は、前記移行中加速度情報に基づいて、被測定者の肘から手首までの距離を算出するものである。
開示された血圧測定装置は、前記第一の姿勢は、被測定者の肩と肘と手首とが重力方向に沿って並ぶ姿勢であり、前記第二の姿勢は、被測定者の肩と肘とが重力方向に沿って並び、かつ、被測定者の肘と手首を結ぶ方向と重力方向とのなす角度が90度よりも大きくなる姿勢であり、前記身体特徴情報算出部は、前記腕が前記第一の姿勢となる状態で前記3軸加速度センサにより検出された第一の加速度情報と、前記腕が前記第二の姿勢となる状態で前記3軸加速度センサにより検出された第二の加速度情報と、前記移行中加速度情報と、に基づいて前記距離を算出するものである。
開示された血圧測定装置は、前記第一の姿勢と前記第二の姿勢は、被測定者の肩の位置が同じでかつ肩と手首を結ぶ方向が異なる姿勢であり、前記身体特徴情報算出部は、前記移行中加速度情報に基づいて、被測定者の肩から手首までの距離を算出するものである。
開示された血圧測定装置は、前記第一の姿勢は、被測定者の肩と肘と手首とが重力方向に沿って並ぶ姿勢であり前記第二の姿勢は、被測定者の肩と肘と手首とを結ぶ方向と重力方向とのなす角度が90度よりも大きくなる姿勢であり、前記身体特徴情報算出部は、前記腕が前記第一の姿勢となる状態で前記3軸加速度センサにより検出された第一の加速度情報と、前記腕が前記第二の姿勢となる状態で前記3軸加速度センサにより検出された第二の加速度情報と、前記移行中加速度情報と、に基づいて前記距離を算出するものである。
開示された血圧測定装置は、前記身体特徴情報算出部は、前記移行中加速度情報に基づいて重力方向における被測定者の手首の変位情報を算出し、前記変位情報と、前記第一の加速度情報の絶対値と前記第二の加速度情報の絶対値の和に対する前記第一の加速度情報の絶対値の比と、に基づいて前記距離を算出するものである。
開示された血圧測定装置は、前記身体特徴情報算出部は、前記変位情報に前記比を乗じて前記距離を算出するものである。
開示された血圧測定装置は、前記第一の姿勢は、被測定者が横たわるための寝具上に被測定者が寝た状態で前記寝具上に被測定者の手首が置かれている姿勢であり、前記第二の姿勢は、被測定者が前記寝具上に体の側面を接触させて寝ている横向きの状態で、前記寝具との接触面とは反対側の体の側面上に手首が置かれている姿勢であり、前記身体特徴情報算出部は、前記移行中加速度情報に基づいて重力方向における被測定者の手首の変位情報を算出し、前記変位情報を被測定者の胸幅の情報として出力するものである。
開示された血圧測定装置は、前記身体特徴情報算出部により算出された身体特徴情報に基づいて血圧値を算出する血圧算出部を更に備えるものである。
開示された身体特徴情報算出方法は、人の身体特徴情報を算出する身体特徴情報算出方法であって、前記人の腕を、手首の位置が異なる第一の姿勢と第二の姿勢のペアに誘導するための情報を出力する情報出力ステップと、前記情報の出力後の前記人の手首に装着される3軸加速度センサの出力信号に基づいて、前記腕が前記ペアの各々の姿勢になったことを判定する姿勢判定ステップと、前記腕が前記ペアの一方の姿勢になった状態から前記ペアの他方の姿勢になった状態までの期間に前記3軸加速度センサにより検出された移行中加速度情報に基づいて、前記人の身体特徴情報を算出する身体特徴情報算出ステップと、を備えるものである。
開示された身体特徴情報算出プログラムは、前記身体特徴情報算出方法の各ステップをコンピュータに実行させるためのプログラムである。
本発明は、特に手首式の血圧測定装置に適用して利便性が高く、有効である。
以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
本出願は、2015年9月3日出願の日本特許出願(特願2015-173986)に基づくものであり、その内容はここに取り込まれる。
本出願は、2015年9月3日出願の日本特許出願(特願2015-173986)に基づくものであり、その内容はここに取り込まれる。
1 血圧測定装置
11 加速度センサ
13 制御部
13a 身体特徴情報算出部
20 被測定者
21 上腕
22 肘
23 前腕
24 手
ΔH1 第一の変位情報
ΔH2 第二の変位情報
Gd 第一の加速度情報
Gu1 第二の加速度情報
Gu2 第三の加速度情報
11 加速度センサ
13 制御部
13a 身体特徴情報算出部
20 被測定者
21 上腕
22 肘
23 前腕
24 手
ΔH1 第一の変位情報
ΔH2 第二の変位情報
Gd 第一の加速度情報
Gu1 第二の加速度情報
Gu2 第三の加速度情報
Claims (11)
- 被測定者の手首に装着されて被測定者の血圧値を測定する血圧測定装置であって、
3軸加速度センサと、
前記血圧測定装置が装着された被測定者の腕を、手首の位置が異なる第一の姿勢及び第二の姿勢のペアに誘導するための情報を出力する情報出力部と、
前記情報の出力後の前記3軸加速度センサの出力信号に基づいて、前記腕が前記ペアの各々の姿勢になったことを判定する姿勢判定部と、
前記腕が前記ペアの一方の姿勢になった状態から前記ペアの他方の姿勢になった状態までの期間に前記3軸加速度センサにより検出された移行中加速度情報に基づいて、前記被測定者の身体特徴情報を算出する身体特徴情報算出部と、を備える血圧測定装置。 - 請求項1記載の血圧測定装置であって、
前記第一の姿勢と前記第二の姿勢は、被測定者の肩及び肘の位置が同じでかつ肘と手首を結ぶ方向が異なる姿勢であり、
前記身体特徴情報算出部は、前記移行中加速度情報に基づいて、被測定者の肘から手首までの距離を算出する血圧測定装置。 - 請求項2記載の血圧測定装置であって、
前記第一の姿勢は、被測定者の肩と肘と手首とが重力方向に沿って並ぶ姿勢であり、
前記第二の姿勢は、被測定者の肩と肘とが重力方向に沿って並び、かつ、被測定者の肘と手首を結ぶ方向と重力方向とのなす角度が90度よりも大きくなる姿勢であり、
前記身体特徴情報算出部は、前記腕が前記第一の姿勢となる状態で前記3軸加速度センサにより検出された第一の加速度情報と、前記腕が前記第二の姿勢となる状態で前記3軸加速度センサにより検出された第二の加速度情報と、前記移行中加速度情報と、に基づいて前記距離を算出する血圧測定装置。 - 請求項1記載の血圧測定装置であって、
前記第一の姿勢と前記第二の姿勢は、被測定者の肩の位置が同じでかつ肩と手首を結ぶ方向が異なる姿勢であり、
前記身体特徴情報算出部は、前記移行中加速度情報に基づいて、被測定者の肩から手首までの距離を算出する血圧測定装置。 - 請求項4記載の血圧測定装置であって、
前記第一の姿勢は、被測定者の肩と肘と手首とが重力方向に沿って並ぶ姿勢であり
前記第二の姿勢は、被測定者の肩と肘と手首とを結ぶ方向と重力方向とのなす角度が90度よりも大きくなる姿勢であり、
前記身体特徴情報算出部は、前記腕が前記第一の姿勢となる状態で前記3軸加速度センサにより検出された第一の加速度情報と、前記腕が前記第二の姿勢となる状態で前記3軸加速度センサにより検出された第二の加速度情報と、前記移行中加速度情報と、に基づいて前記距離を算出する血圧測定装置。 - 請求項3又は5記載の血圧測定装置であって、
前記身体特徴情報算出部は、前記移行中加速度情報に基づいて重力方向における被測定者の手首の変位情報を算出し、前記変位情報と、前記第一の加速度情報の絶対値と前記第二の加速度情報の絶対値の和に対する前記第一の加速度情報の絶対値の比と、に基づいて前記距離を算出する血圧測定装置。 - 請求項6記載の血圧測定装置であって、
前記身体特徴情報算出部は、前記変位情報に前記比を乗じて前記距離を算出する血圧測定装置。 - 請求項1記載の血圧測定装置であって、
前記第一の姿勢は、被測定者が横たわるための寝具上に被測定者が寝た状態で前記寝具上に被測定者の手首が置かれている姿勢であり、
前記第二の姿勢は、被測定者が前記寝具上に体の側面を接触させて寝ている横向きの状態で、前記寝具との接触面とは反対側の体の側面上に手首が置かれている姿勢であり、
前記身体特徴情報算出部は、前記移行中加速度情報に基づいて重力方向における被測定者の手首の変位情報を算出し、前記変位情報を被測定者の胸幅の情報として出力する血圧測定装置。 - 請求項1~8のいずれか1項記載の血圧測定装置であって、
前記身体特徴情報算出部により算出された身体特徴情報に基づいて血圧値を算出する血圧算出部を更に備える血圧測定装置。 - 人の身体特徴情報を算出する身体特徴情報算出方法であって、
前記人の腕を、手首の位置が異なる第一の姿勢と第二の姿勢のペアに誘導するための情報を出力する情報出力ステップと、
前記情報の出力後の前記人の手首に装着される3軸加速度センサの出力信号に基づいて、前記腕が前記ペアの各々の姿勢になったことを判定する姿勢判定ステップと、
前記腕が前記ペアの一方の姿勢になった状態から前記ペアの他方の姿勢になった状態までの期間に前記3軸加速度センサにより検出された移行中加速度情報に基づいて、前記人の身体特徴情報を算出する身体特徴情報算出ステップと、を備える身体特徴情報算出方法。 - 請求項10記載の身体特徴情報算出方法の各ステップをコンピュータに実行させるための身体特徴情報算出プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016004011.3T DE112016004011T5 (de) | 2015-09-03 | 2016-08-15 | Blutdruckmessgerät, verfahren zur berechnung physikalischer merkmale und programm zur berechnung physikalischer merkmale |
CN201680051306.7A CN107949318B (zh) | 2015-09-03 | 2016-08-15 | 血压测量装置、身体特征信息计算方法、计算机可读的记录介质 |
US15/912,310 US11109769B2 (en) | 2015-09-03 | 2018-03-05 | Blood pressure measuring apparatus and physical feature information calculating method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-173986 | 2015-09-03 | ||
JP2015173986A JP6750198B2 (ja) | 2015-09-03 | 2015-09-03 | 血圧測定装置、身体特徴情報算出方法、身体特徴情報算出プログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/912,310 Continuation US11109769B2 (en) | 2015-09-03 | 2018-03-05 | Blood pressure measuring apparatus and physical feature information calculating method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038441A1 true WO2017038441A1 (ja) | 2017-03-09 |
Family
ID=58187412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073853 WO2017038441A1 (ja) | 2015-09-03 | 2016-08-15 | 血圧測定装置、身体特徴情報算出方法、身体特徴情報算出プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11109769B2 (ja) |
JP (1) | JP6750198B2 (ja) |
CN (1) | CN107949318B (ja) |
DE (1) | DE112016004011T5 (ja) |
WO (1) | WO2017038441A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039301A1 (ja) * | 2019-08-29 | 2021-03-04 | オムロンヘルスケア株式会社 | 血圧計、血圧算出方法、およびプログラム |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108937894A (zh) * | 2018-05-31 | 2018-12-07 | 深圳无疆电子科技有限公司 | 一种准确、实时检测血压心率的检测系统 |
CN109691992A (zh) * | 2019-03-04 | 2019-04-30 | 深圳星脉医疗仪器有限公司 | 一种血压检测信号的修正方法和血压检测装置 |
US11009964B2 (en) * | 2019-06-06 | 2021-05-18 | Finch Technologies Ltd. | Length calibration for computer models of users to generate inputs for computer systems |
CN113576437B (zh) * | 2020-04-30 | 2023-03-10 | 华为技术有限公司 | 一种角度确定方法、装置和处理芯片 |
AU2021106501A4 (en) * | 2020-10-23 | 2021-11-04 | Elbaware Limited | Device, system and method for determining face touching |
CN112998674B (zh) * | 2021-02-22 | 2022-03-22 | 天津工业大学 | 一种连续血压测量装置及自标定方法 |
JPWO2023021970A1 (ja) * | 2021-08-19 | 2023-02-23 | ||
CN114190920B (zh) * | 2021-12-24 | 2024-05-28 | 甄十信息科技(上海)有限公司 | 一种穿戴设备识别用户年龄的方法及装置 |
CN118632655A (zh) * | 2022-04-20 | 2024-09-10 | 华为技术有限公司 | 用于确定血液脉搏传播距离和血液脉搏波速的方法和装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002039893A1 (fr) * | 2000-11-14 | 2002-05-23 | Omron Corporation | Sphygmomanometre electronique |
JP2011104073A (ja) * | 2009-11-17 | 2011-06-02 | Seiko Epson Corp | 血圧測定装置及び血圧測定方法 |
JP2014068825A (ja) * | 2012-09-28 | 2014-04-21 | Omron Healthcare Co Ltd | 電子血圧計 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5111826A (en) * | 1984-12-07 | 1992-05-12 | Nasiff Roger E | Indirect continuous blood pressure method |
US5724265A (en) * | 1995-12-12 | 1998-03-03 | Hutchings; Lawrence J. | System and method for measuring movement of objects |
DE102004032579A1 (de) * | 2004-07-05 | 2006-02-09 | Braun Gmbh | Verfahren und Messgerät zur Bestimmung des Blutdrucks |
US7641614B2 (en) * | 2005-08-22 | 2010-01-05 | Massachusetts Institute Of Technology | Wearable blood pressure sensor and method of calibration |
KR101577343B1 (ko) * | 2009-04-23 | 2015-12-14 | 삼성전자주식회사 | 혈압 추정 방법 및 장치 |
US8672854B2 (en) * | 2009-05-20 | 2014-03-18 | Sotera Wireless, Inc. | System for calibrating a PTT-based blood pressure measurement using arm height |
US20110025817A1 (en) * | 2009-07-24 | 2011-02-03 | Ronald Carter | Patient monitoring utilizing one or more accelerometers |
US9261526B2 (en) * | 2010-08-26 | 2016-02-16 | Blast Motion Inc. | Fitting system for sporting equipment |
US9289139B2 (en) * | 2010-09-09 | 2016-03-22 | Citizen Holdings Co., Ltd. | Blood pressure monitor |
US8929609B2 (en) * | 2011-01-05 | 2015-01-06 | Qualcomm Incorporated | Method and apparatus for scaling gesture recognition to physical dimensions of a user |
JP5857810B2 (ja) * | 2012-03-09 | 2016-02-10 | オムロンヘルスケア株式会社 | 血圧測定装置及びその制御方法 |
JP6003471B2 (ja) | 2012-09-25 | 2016-10-05 | オムロンヘルスケア株式会社 | 血圧測定装置及びその制御方法 |
CN103099611B (zh) * | 2013-03-07 | 2014-10-15 | 南京盟联信息科技有限公司 | 用于血压计测量的干扰抑制系统及其干扰抑制方法 |
US20150258200A1 (en) | 2014-03-14 | 2015-09-17 | Taiwan Biomaterial Company Ltd. | Pressure-sensitive hydrogel and method of use |
US10213123B2 (en) * | 2014-09-19 | 2019-02-26 | Mocacare, Corp. | Cardiovascular monitoring device |
-
2015
- 2015-09-03 JP JP2015173986A patent/JP6750198B2/ja active Active
-
2016
- 2016-08-15 WO PCT/JP2016/073853 patent/WO2017038441A1/ja active Application Filing
- 2016-08-15 DE DE112016004011.3T patent/DE112016004011T5/de active Pending
- 2016-08-15 CN CN201680051306.7A patent/CN107949318B/zh active Active
-
2018
- 2018-03-05 US US15/912,310 patent/US11109769B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002039893A1 (fr) * | 2000-11-14 | 2002-05-23 | Omron Corporation | Sphygmomanometre electronique |
JP2011104073A (ja) * | 2009-11-17 | 2011-06-02 | Seiko Epson Corp | 血圧測定装置及び血圧測定方法 |
JP2014068825A (ja) * | 2012-09-28 | 2014-04-21 | Omron Healthcare Co Ltd | 電子血圧計 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039301A1 (ja) * | 2019-08-29 | 2021-03-04 | オムロンヘルスケア株式会社 | 血圧計、血圧算出方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN107949318A (zh) | 2018-04-20 |
US20180192897A1 (en) | 2018-07-12 |
JP2017047016A (ja) | 2017-03-09 |
JP6750198B2 (ja) | 2020-09-02 |
DE112016004011T5 (de) | 2018-05-17 |
CN107949318B (zh) | 2020-11-10 |
US11109769B2 (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017038441A1 (ja) | 血圧測定装置、身体特徴情報算出方法、身体特徴情報算出プログラム | |
JP5857810B2 (ja) | 血圧測定装置及びその制御方法 | |
CN109893110B (zh) | 一种校准动态血压的方法及装置 | |
CN109906052B (zh) | 包括血压传感器的设备以及用于控制该设备的方法 | |
JP5399630B2 (ja) | 人の動作を決定する方法及び装置 | |
CN104602593B (zh) | 血压测量装置以及其控制方法 | |
JP6014153B2 (ja) | ユーザをモニタする装置及びそのような装置を較正する方法 | |
CN108024740B (zh) | 血压测量方法、血压测量装置以及终端 | |
CN109893111B (zh) | 一种动态血压测量模式选择方法及装置 | |
JP7231161B2 (ja) | 被験者依存変数および/または体位を考慮するセンサ校正 | |
US20160029904A1 (en) | Automated blood pressure measurement system | |
JP2020503087A (ja) | 中心静脈圧計測状態のための方法及び装置 | |
CN109691992A (zh) | 一种血压检测信号的修正方法和血压检测装置 | |
IL297158A (en) | A system for acquiring ultrasound images of internal body organs | |
WO2017119187A1 (ja) | 血圧補正情報生成装置、血圧測定装置、血圧補正情報生成方法、血圧補正情報生成プログラム | |
WO2022150615A1 (en) | Methods and systems for measurement of blood pressures | |
TWI478695B (zh) | 睡眠效率分析方法及其裝置 | |
CN110121296B (zh) | 测量患者位置的方法和系统 | |
JP6491121B2 (ja) | 身体歪み検知システム | |
EP3785628A1 (en) | A pcb with components for use in dynamic posturography device | |
László et al. | Extracting Physiological Signals From Smartphone Sensors. | |
EP3785627A1 (en) | A device and a method for dynamic posturography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841473 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016004011 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841473 Country of ref document: EP Kind code of ref document: A1 |