WO2017038337A1 - 無線端末及び基地局 - Google Patents

無線端末及び基地局 Download PDF

Info

Publication number
WO2017038337A1
WO2017038337A1 PCT/JP2016/072439 JP2016072439W WO2017038337A1 WO 2017038337 A1 WO2017038337 A1 WO 2017038337A1 JP 2016072439 W JP2016072439 W JP 2016072439W WO 2017038337 A1 WO2017038337 A1 WO 2017038337A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
base station
uplink
transmitting
downlink
Prior art date
Application number
PCT/JP2016/072439
Other languages
English (en)
French (fr)
Inventor
智春 山▲崎▼
空悟 守田
真人 藤代
宏行 浦林
真裕美 甲村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017537670A priority Critical patent/JP6762303B2/ja
Publication of WO2017038337A1 publication Critical patent/WO2017038337A1/ja
Priority to US15/904,566 priority patent/US10805059B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio terminal and a base station used in a mobile communication system.
  • a wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit receives the downlink radio signal from the base station, and whether or not the downlink radio signal has been successfully received even if uplink radio resources are not allocated for data transmission from the base station.
  • a specific transmission process is performed in which response information indicating such is transmitted to the base station using an uplink radio resource different from the uplink control channel resource.
  • a base station includes a control unit that performs wireless communication of time division duplex with a wireless terminal.
  • the control unit performs a process of transmitting an instruction for performing a specific transmission process to the wireless terminal.
  • the specific transmission process is a process in which the wireless terminal transmits response information to the base station using an uplink radio resource that overlaps in the frequency direction with a downlink resource block allocated from the base station.
  • the response information is information indicating whether or not the downlink radio signal transmitted using the downlink resource block has been successfully received.
  • a wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit uses a process of receiving a downlink radio signal from the base station and an uplink radio resource reserved in symbol units instead of subframe units or slot units in the time direction, And processing for transmitting response information indicating whether or not the reception is successful to the base station.
  • a wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit receives a downlink radio signal from the base station, and transmits a reference signal including response information indicating whether the downlink radio signal has been successfully received to the base station, I do.
  • the reference signal is a sounding reference signal or a demodulation reference signal.
  • a wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit transmits the uplink radio signal to the base station while switching resource blocks and / or component carriers used for transmission of the uplink radio signal in units of a predetermined number of symbols instead of in units of subframes or slots. Process.
  • a base station includes a control unit that performs wireless communication with a wireless terminal.
  • the control unit performs a process of receiving a random access preamble from the wireless terminal and a process of transmitting a random access response corresponding to the random access preamble together with a demodulation reference signal specific to the wireless terminal to the wireless terminal.
  • LTE system mobile communication system
  • UE radio terminal
  • eNB base station
  • eNB base station
  • wireless interface in a LTE system It is a block diagram of the radio
  • the wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit receives the downlink radio signal from the base station, and whether or not the downlink radio signal has been successfully received even if uplink radio resources are not allocated for data transmission from the base station.
  • a specific transmission process is performed in which response information indicating such is transmitted to the base station using an uplink radio resource different from the uplink control channel resource.
  • the control unit receives the downlink radio signal using a downlink resource block allocated from the base station, and performs the frequency direction in the specific transmission process.
  • the response information is transmitted using an uplink radio resource overlapping with the downlink resource block.
  • the specific transmission process may include a process of specifying the uplink radio resource used for transmission of the response information not in units of subframes or slots but in units of symbols in the time direction.
  • control unit may perform the specific transmission process based on an instruction from the base station.
  • the instruction from the base station may include information designating an uplink radio resource for transmitting the response information.
  • the uplink radio resource includes a sounding reference signal resource
  • the specific transmission process uses the sounding reference signal resource that overlaps with the downlink resource block in the frequency direction.
  • a process of transmitting a sounding reference signal including information to the base station may be included.
  • the response information may indicate whether the downlink radio signal has been successfully received by a signal sequence of the sounding reference signal or a resource arrangement pattern of the sounding reference signal.
  • the specific transmission process includes a process of transmitting the sounding reference signal including the response information to the base station using a plurality of subcarriers. Frequency intervals corresponding to the above subcarriers may be provided.
  • the uplink radio resource includes a physical uplink shared channel resource, and the specific transmission process uses the physical uplink shared channel resource overlapping with the downlink resource block in the frequency direction.
  • a process of transmitting a demodulation reference signal different from the response information or a demodulation reference signal including the response information may be included.
  • the base station includes a control unit that performs time division duplex wireless communication with a wireless terminal.
  • the control unit performs a process of transmitting an instruction for performing a specific transmission process to the wireless terminal.
  • the specific transmission process is a process in which the wireless terminal transmits response information to the base station using an uplink radio resource that overlaps in the frequency direction with a downlink resource block allocated from the base station.
  • the response information is information indicating whether or not the downlink radio signal transmitted using the downlink resource block has been successfully received.
  • the wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit uses a process of receiving a downlink radio signal from the base station and an uplink radio resource reserved in symbol units instead of subframe units or slot units in the time direction, And processing for transmitting response information indicating whether or not the reception is successful to the base station.
  • the wireless terminal includes a control unit that performs time-division duplex wireless communication with a base station.
  • the control unit receives a downlink radio signal from the base station, and transmits a reference signal including response information indicating whether the downlink radio signal has been successfully received to the base station, I do.
  • the reference signal is a sounding reference signal or a demodulation reference signal.
  • the wireless terminal includes a controller that performs time-division duplex wireless communication with a base station.
  • the control unit transmits the uplink radio signal to the base station while switching resource blocks and / or component carriers used for transmission of the uplink radio signal in units of a predetermined number of symbols instead of in units of subframes or slots. Process.
  • the predetermined number may be a number smaller than the number of symbols constituting one slot section.
  • the control unit uses the component carrier used for transmitting the uplink radio signal within the range of the plurality of component carriers.
  • the uplink radio signal may be transmitted to the base station while switching in units of the predetermined number of symbols.
  • the control unit switches the component carrier used for transmission of the uplink radio signal in units of the predetermined number of symbols so that transmission timings on the plurality of component carriers do not overlap. You may perform the process which transmits an uplink radio signal to the said base station.
  • a gap corresponding to a predetermined number of symbols is provided between transmission on the switching source component carrier and transmission on the component carrier after switching. May be.
  • the base station includes a control unit that performs wireless communication with a wireless terminal.
  • the control unit uses a process for receiving a random access preamble from the wireless terminal and a downlink transmission weight to generate a random access response corresponding to the random access preamble together with a demodulation reference signal for each wireless terminal. And processing to transmit to the wireless terminal.
  • control unit uses a process of deriving a downlink transmission weight for the wireless terminal based on a channel estimation result using the random access preamble, and using the downlink transmission weight, A process of transmitting a demodulation reference signal specific to the wireless terminal to the wireless terminal together with the random access response may be performed.
  • the downlink resource block used for transmitting the random access response may overlap with the resource block used for transmitting the random access preamble in the frequency direction.
  • control unit may perform a process of transmitting the random access response to the wireless terminal without transmitting the downlink resource block allocation information to the wireless terminal.
  • the LTE system is a mobile communication system whose specifications are established in 3GPP (3rd Generation Partnership Project).
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a wireless terminal.
  • the UE 100 is a mobile communication device and performs radio communication with the eNB 200.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and also as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100. As illustrated in FIG. 2, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal. The processor executes the above-described processing and processing described later.
  • FIG. 3 is a block diagram of the eNB 200. As illustrated in FIG. 3, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver. The receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor executes the above-described processing and processing described later.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control information. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected mode, otherwise, the UE 100 is in the RRC idle mode.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting downlink control information. Details of the PDCCH will be described later.
  • the remaining part of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) for mainly transmitting downlink data.
  • PDSCH physical downlink shared channel
  • ENB200 transmits downlink control information (DCI) to UE100 using PDCCH, and transmits downlink data to UE100 using PDSCH.
  • the downlink control information carried by the PDCCH includes uplink SI (Scheduling Information), downlink SI, and TPC bits.
  • the uplink SI is scheduling information (UL grant) related to allocation of uplink radio resources
  • the downlink SI is scheduling information related to allocation of downlink radio resources.
  • the TPC bit is information instructing increase / decrease in uplink transmission power.
  • the eNB 200 includes, in the downlink control information, the CRC bits scrambled with the identifier (RNTI: Radio Network Temporary ID) of the destination UE 100 in order to identify the destination UE 100 of the downlink control information.
  • RTI Radio Network Temporary ID
  • Each UE 100 blind-decodes (blind decoding) the PDCCH for downlink control information that may be destined for the own UE, and detects downlink control information destined for the own UE.
  • the PDSCH carries downlink data using downlink radio resources (resource blocks) indicated by the downlink SI.
  • both end portions in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCHs) for transmitting uplink control information (PUCCH: Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the remaining part of each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • the UE 100 basically transmits uplink control information (UCI) to the eNB 200 using the PUCCH, and transmits uplink data to the eNB 200 using the PUSCH. However, UE100 can transmit uplink control information to eNB200 using PUSCH, when there exists PUSCH allocation.
  • Uplink control information carried by the PUCCH includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), scheduling request (SR: Scheduling Request), and HARQ ACK / NACK.
  • CQI is an index indicating downlink channel quality, and is used for determining an MCS to be used for downlink transmission.
  • PMI is an index indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is an index indicating the number of layers (number of streams) that can be used for downlink transmission.
  • SR is information for requesting allocation of PUSCH resources.
  • HARQ ACK / NACK is response information indicating whether or not downlink data has been successfully received.
  • Uplink reference signal Next, an uplink reference signal will be described.
  • UE100 transmits a reference signal to eNB200.
  • the eNB 200 performs uplink channel characteristic estimation (channel estimation) based on the reference signal received from the UE 100.
  • FIG. 6 is a diagram illustrating an example of a reference signal included in one uplink subframe.
  • the first half slot and the second half slot are shown separately, but it should be noted that the first half slot and the second half slot are actually continuous.
  • a sounding reference signal is arranged in the last SC-FDMA symbol (symbol number 13) of one subframe.
  • UE100 transmits SRS to eNB200 based on the setting information notified by RRC signaling from eNB200.
  • the eNB 200 performs channel estimation based on the SRS received from the UE 100, and performs uplink scheduling and the like based on the channel estimation result.
  • a demodulation reference signal is arranged in the 1SC-FDMA symbol at the center of each slot (symbol numbers 3 and 10).
  • UE100 transmits DMRS in the resource block (RB) equivalent to the PUSCH resource allocated from eNB200. That is, UE100 transmits DMRS, when performing PUSCH transmission.
  • the eNB 200 performs channel estimation based on the SRS received from the UE 100, and performs PUSCH demodulation and the like based on the channel estimation result.
  • “use of high frequency band”, “use of small cell”, and “massive multi-input multi-output (MIMO)” are considered to be important.
  • “Utilization of a high frequency band” is a technique for securing a wide frequency band by using a frequency band higher than the current one.
  • “Use of small cells” is a technique for improving throughput in a local high traffic area while compensating for a large propagation loss in a high frequency band.
  • “Large-scale MIMO” is a technology that enables advanced multi-antenna transmission using a large number of antenna elements while taking advantage of the fact that antenna elements can be miniaturized in a high frequency band.
  • the time division duplex (TDD) method is considered to be important mainly for the following two reasons.
  • the TDD scheme requires a guard time to compensate for the propagation delay, but the “use of a small cell” can shorten the guard time.
  • the eNB 200 uses the downlink channel state information (CSI) based on the uplink radio signal (specifically, the reference signal) from the UE 100. ) Can be estimated.
  • the downlink CSI is CQI, PMI, RI or the like.
  • eNB200 receives DMRS accompanying PUSCH transmission of UE100, estimates downlink CSI using DMRS, and performs PDSCH transmission based on downlink CSI. Therefore, according to the TDD scheme, it is possible to acquire high-precision CSI required for “large-scale MIMO” with low overhead. That is, the downlink CSI fed back from the UE 100 to the eNB 200 can be made unnecessary (or reduced).
  • the first embodiment will be described below.
  • the UE 100 and the eNB 200 perform TDD wireless communication.
  • the first embodiment is an embodiment that enables efficient downlink CSI estimation when downlink CSI is estimated using reversibility of uplink and downlink channels.
  • FIG. 7 is a diagram illustrating an example of a method for estimating downlink CSI using reversibility of uplink and downlink channels.
  • DMRS is used for channel estimation.
  • the uplink (UL) period is composed of four uplink subframes
  • the downlink (DL) period is composed of four downlink subframes. Spatial multiplexing is applied to both uplink and downlink.
  • the uplink period is configured by two uplink subframes
  • the downlink period is configured by four downlink subframes. Also, spatial multiplexing is applied to the uplink.
  • uplink radio resources As shown in FIG. 7, in order to use channel reversibility, it is necessary to appropriately set and allocate uplink radio resources to the UE 100 as many as radio resources (resource blocks, component carriers) used for downlink. is there.
  • the time from uplink communication to downlink communication should be suppressed within about half a radio frame (5 ms) or one radio frame (10 ms), although it depends on the channel fluctuation speed.
  • the eNB 200 assigns an uplink resource block (PUSCH resource) that matches the downlink resource block in the frequency direction to the specific UE 100.
  • uplink data is generally smaller than downlink data, it is difficult to allocate uplink radio resources of the same amount as downlink radio resources to the same UE 100.
  • the number of resource blocks that the eNB 200 allocates to the UE 100 may be fewer in the uplink than in the downlink.
  • the number of uplink subframes may be reduced compared to downlink subframes.
  • the eNB 200 transmits a downlink radio signal to the UE 100 using the downlink resource block allocated to the UE 100.
  • the UE 100 receives a downlink radio signal from the eNB 200 using a downlink resource block allocated from the eNB 200 (hereinafter referred to as “allocated DL RB”).
  • the assigned DL RB is an RB used as the PDSCH, and the downlink radio signal is downlink data.
  • the assigned DL RB may be an RB used as ePDCCH (enhanced PDCCH), and the downlink radio signal may be downlink control information.
  • the UE 100 performs a specific transmission process of transmitting response information indicating whether or not the downlink radio signal has been successfully received to the eNB 200 by using the uplink radio resource overlapping with the assigned DL RB in the frequency direction.
  • the eNB 200 receives response information indicating whether or not the downlink radio signal has been successfully received from the UE 100 using the uplink radio resource overlapping with the assigned DL RB in the frequency direction.
  • TDD carrier some component carrier
  • UE100 may perform a specific transmission process about each of several component carrier.
  • “duplicate” does not require that the uplink radio resource used for transmitting the response information completely matches the assigned DL RB in the frequency direction.
  • the uplink radio resource used for transmission of response information only needs to include the assigned DL RB in the frequency direction.
  • the response information is HARQ ACK / NACK and is simply referred to as “ACK / NACK” below.
  • the UE 100 transmits ACK / NACK on the PUCCH regardless of the frequency position of the allocated DL RB, unless there is PUSCH resource allocation. Moreover, in a general LTE system, UE100 transmits ACK / NACK by PUSCH irrespective of the frequency position of allocation DL RB, even when there is PUSCH resource allocation.
  • the UE 100 transmits ACK / NACK using the uplink radio resource corresponding to the frequency position of the assigned DL RB.
  • the transmission timing of ACK / NACK can be the same as that of a general LTE system.
  • the ACK / NACK transmission timing in the TDD LTE system depends on the TDD radio frame configuration.
  • the first embodiment pays attention to the fact that uplink ACK / NACK is generated when downlink resource blocks are allocated, and uses ACK / NACK for channel estimation. Thereby, sufficient uplink radio
  • the specific transmission process is a process of specifying uplink radio resources used for transmission of ACK / NACK not in subframe units or slot units but in symbol units (SC-FDMA symbol units) in the time direction. May be included.
  • Uplink radio resources used for transmission of ACK / NACK are secured by the eNB 200.
  • eNB200 transmits the instruction
  • the eNB 200 may transmit information specifying the SC-FDMA symbol used for transmission of ACK / NACK to the UE 100, for example, by RRC signaling.
  • ACK / NACKs of a plurality of UEs can be multiplexed by time division in the same RB in one slot.
  • the uplink radio resource used for ACK / NACK transmission is an SRS resource or a PUSCH resource.
  • SRS resource for example, the last 1SC-FDMA symbol of the uplink subframe is secured.
  • PUSCH resource for example, a plurality of continuous SC-FDMA symbols are secured.
  • the UE 100 uses an uplink radio resource different from the PUCCH resource based on an instruction from the eNB 200 even if an uplink radio resource (PUSCH resource) for data transmission is not allocated from the eNB 200.
  • a specific transmission process may be performed.
  • the instruction from the eNB 200 is performed using, for example, RRC signaling or PDCCH.
  • UE100 can transmit ACK / NACK to eNB200, even when it does not have uplink data and a PUSCH resource is not allocated from eNB200.
  • the instruction from the eNB 200 includes information specifying an uplink radio resource for transmitting ACK / NACK.
  • FIG. 8 is a diagram illustrating an example of ACK / NACK transmission using the SRS resource according to the first embodiment.
  • a plurality of subcarriers used for transmission of one SRS are provided with frequency intervals corresponding to one subcarrier.
  • SRS # 0 is transmitted using an even-numbered subcarrier (referred to as “Transmission Comb 0”)
  • SRS # 1 is transmitted using an odd-numbered subcarrier (referred to as “Transmission Comb 1”).
  • Sent is the same as that of a general LTE system.
  • two SRSs can be multiplexed by frequency division.
  • a plurality of subcarriers used for transmission of one SRS are provided with frequency intervals corresponding to two or more subcarriers (specifically, three subcarriers).
  • four SRSs (SRS # 0 to # 3) can be multiplexed by frequency division.
  • ACK / NACK is indicated by the SRS signal sequence.
  • the signal sequence for ACK and the signal sequence for NACK may be preset according to system specifications, or the eNB 200 may set the UE 100.
  • UE100 transmits SRS to eNB200 using the signal sequence for NACK, when reception (decoding) of the downlink data from eNB200 fails.
  • the eNB 200 performs channel estimation using the SRS received from the UE 100, and determines that the UE 100 has failed to receive downlink data based on the signal sequence. In this case, the eNB 200 may perform a retransmission process using HARQ.
  • the UE 100 transmits the SRS to the eNB 200 using the ACK signal sequence.
  • the eNB 200 performs channel estimation using the SRS received from the UE 100, and determines that the UE 100 has normally received downlink data based on the signal sequence.
  • ACK / NACK is indicated (or means ACK / NACK) by the SRS resource arrangement pattern (specifically, the subcarrier arrangement pattern).
  • the SRS resource arrangement pattern specifically, the subcarrier arrangement pattern.
  • even-numbered subcarriers (Transmission Comb 0) indicate ACK
  • odd-numbered subcarriers (Transmission Comb 1) indicate NACK.
  • the correspondence relationship between ACK / NACK and subcarrier arrangement pattern may be preset according to the system specifications, or the eNB 200 may set the UE 100.
  • UE100 transmits SRS to eNB200 using the subcarrier arrangement
  • the eNB 200 performs channel estimation using the SRS received from the UE 100, and determines that the UE 100 has failed to receive downlink data based on the subcarrier arrangement pattern. In this case, the eNB 200 may perform a retransmission process using HARQ.
  • the UE 100 transmits the SRS to the eNB 200 using the ACK subcarrier arrangement pattern.
  • the eNB 200 performs channel estimation using the SRS received from the UE 100, and determines that the UE 100 has normally received downlink data based on the subcarrier arrangement pattern.
  • FIG. 9 is a diagram illustrating an example of ACK / NACK transmission using the PUSCH resource according to the first embodiment.
  • ACK / NACK of four UEs 100 are multiplexed by time division in one RB and one subframe.
  • three consecutive SC-FDMA symbols are reserved for each UE 100 as ACK / NACK transmission resources.
  • ACK / NACK is arranged in the first and third SC-FDMA symbols
  • DMRS is arranged in the second SC-FDMA symbol.
  • a small amount of uplink data may be arranged in the first and third SC-FDMA symbols.
  • SC-FDMA symbols other than the last two SC-FDMA symbols are reserved as ACK / NACK transmission resources
  • the last 2 Two SC-FDMA symbols are reserved as SRS resources.
  • ACK / NACKs of five UEs 100 are multiplexed by time division in one RB and one subframe.
  • two consecutive SC-FDMA symbols are reserved for each UE 100 as ACK / NACK transmission resources.
  • ACK / NACK is arranged in the first SC-FDMA symbol
  • DMRS is arranged in the second SC-FDMA symbol.
  • a small amount of uplink data may be arranged in the first SC-FDMA symbol.
  • a gap section of 1SC-FDMA symbol is secured between the ACK / NACK transmission resource of one UE 100 and the ACK / NACK transmission resource of another UE 100.
  • the UE 100 transmits ACK / NACK and DMRS to the eNB 200 using the ACK / NACK transmission resource specified by the eNB 200, for example.
  • the eNB 200 performs channel estimation using the DMRS received from the UE 100 and demodulates ACK / NACK based on the channel estimation result.
  • the eNB 200 may perform retransmission processing using HARQ.
  • ACK / NACKs of different UEs 100 are multiplexed in one subframe, but ACK / NACKs of the same UE 100 may be multiplexed in one subframe.
  • one UE 100 can transmit a plurality of ACKs / NACKs in one subframe.
  • ACK / NACK is a signal different from DMRS.
  • the UE 100 transmits DMRS including ACK / NACK to the eNB 200.
  • SC-FDMA symbols other than the last C-FDMA symbol are reserved as DMRS transmission resources including ACK / NACK.
  • the last SC-FDMA symbol is reserved as an SRS resource.
  • one DMRS including one ACK / NACK is arranged in one SC-FDMA symbol.
  • Each SC-FDMA symbol in which DMRS is arranged may be assigned to a different UE 100, or may be assigned to the same UE 100.
  • ACK / NACK may be indicated by the DMRS signal sequence.
  • the signal sequence for ACK and the signal sequence for NACK may be preset according to the system specifications, or the eNB 200 may set the UE 100.
  • ACK / NACK may be indicated by a DMRS resource arrangement pattern (specifically, a subcarrier arrangement pattern). In this case, the correspondence between the ACK / NACK and the subcarrier arrangement pattern may be preset according to the system specification, or the eNB 200 may set the UE 100.
  • UE100 transmits DMRS to eNB200 using the signal sequence for NACK, when reception (decoding) of the downlink data from eNB200 fails.
  • the eNB 200 performs channel estimation using the DMRS received from the UE 100, and determines that the UE 100 has failed to receive downlink data based on the signal sequence. In this case, the eNB 200 may perform a retransmission process using HARQ.
  • the UE 100 transmits the DMRS to the eNB 200 using the ACK signal sequence.
  • the eNB 200 performs channel estimation using the DMRS received from the UE 100, and determines that the UE 100 has normally received downlink data based on the signal sequence.
  • FIG. 10 is a sequence diagram illustrating an example of an operation sequence according to the first embodiment.
  • the UE 100 is in the RRC connected mode in the cell of the eNB 200.
  • the eNB 200 transmits setting information to the UE 100 by RRC signaling.
  • the setting information includes various parameters related to the specific transmission process according to the first embodiment.
  • the setting information may include information instructing the UE 100 to perform a specific transmission process according to the first embodiment.
  • the setting information may include information designating an SC-FDMA symbol (ACK / NACK transmission resource) used for ACK / NACK transmission.
  • the setting information may include information on the above-described ACK / NACK signal sequence or information on an ACK / NACK subcarrier arrangement pattern. At least a part of the setting information as described above may be transmitted during PDCCH transmission (step S102) described later.
  • the eNB 200 transmits downlink control information (DCI) to the UE 100 through the PDCCH.
  • the DCI includes a downlink SI that is scheduling information including the assigned DL RB.
  • RB # 1 is designated as the assigned DL RB.
  • the DCI may include information instructing the UE 100 to perform a specific transmission process according to the first embodiment.
  • a new DCI format for specific transmission processing according to the first embodiment may be used.
  • the UE 100 may recognize that a specific transmission process has been instructed in response to reception of the new DCI format.
  • DCI may not include downlink SI (UL grant) related to PUSCH resource allocation. The UE 100 decodes the received DCI.
  • step S103 eNB200 transmits downlink data to UE100 by PDSCH.
  • RB # 1 which is the assigned DL RB, is used.
  • UE100 receives the downlink data transmitted using RB # 1 based on downlink SI in DCI.
  • the UE 100 generates an ACK if the downlink data is successfully received, and generates a NACK if the downlink data is unsuccessfully received.
  • step S104 the UE 100 uses the uplink radio resource (RB # 1) overlapping with the assigned DL RB (RB # 1) in the frequency direction based on the setting information and / or DCI, to the ACK / NACK to the eNB 200. Performs a specific transmission process for transmission.
  • the uplink radio resource is reserved for each SC-FDMA symbol and is an SRS resource or a PUSCH resource.
  • the UE 100 transmits ACK / NACK to the eNB 200 even when the PUSCH resource is not explicitly assigned from the eNB 200, that is, even when UL grant is not received.
  • the eNB 200 receives ACK / NACK.
  • the eNB 200 estimates DL CSI for RB # 1 based on a reference signal (SRS, DMRS) including ACK / NACK or a reference signal (DMRS) different from ACK / NACK. Specifically, the eNB 200 estimates the DL CSI using the channel reversibility based on the uplink channel estimation result using the reference signal.
  • the estimation of DL CSI may include a process of deriving a downlink transmission weight (precoder) for the UE 100.
  • steps S106 to S109 are the same as those in steps S102 to S105.
  • the eNB 200 transmits to the UE 100 DCI specifying RB # 1 as the assigned DL RB.
  • eNB200 performs control regarding PDSCH transmission based on DL CSI obtained in step S105.
  • the eNB 200 transmits downlink data to the UE 100 using a downlink transmission weight (precoder).
  • the eNB 200 may perform MIMO transmission using large-scale MIMO.
  • eNB200 may allocate RB different from RB # 1 after step S106 based on estimation of DL CSI before step S105.
  • the second embodiment is the same as the first embodiment in that the downlink CSI can be estimated efficiently when the downlink CSI is estimated using the reversibility of the uplink and downlink channels.
  • the UE 100 performs TDD wireless communication with the eNB 200.
  • the UE 100 transmits an uplink radio signal to the eNB 200 while switching resource blocks and / or component carriers used for transmission of the uplink radio signal in units of a predetermined number of symbols instead of in units of subframes or slots.
  • the predetermined number may be a number smaller than the number of symbols (for example, “7”) constituting one slot section.
  • the UE 100 performs transmission with a wide frequency bandwidth when viewed in one subframe, while performing transmission per SC-FDMA symbol with a narrow frequency bandwidth.
  • the eNB 200 receives an uplink radio signal transmitted from the UE 100 while switching resource blocks or component carriers in units of symbols.
  • eNB200 estimates downlink CSI using the reversibility of a channel based on the uplink radio signal received from UE100.
  • FIG. 11 is a diagram illustrating an example of an operation according to the second embodiment.
  • each UE 100 switches an uplink radio signal to the eNB 200 while switching resource blocks and / or component carriers used for uplink radio signal transmission in a predetermined number of symbol units (SC-FDMA symbol units).
  • SC-FDMA symbol units a predetermined number of symbol units
  • FIG. 11 exemplifies switching in units of one symbol (in units of one SC-FDMA symbol).
  • the UE 100 transmits an uplink radio signal to the eNB 200 by frequency hopping in symbol units.
  • the “uplink radio signal” may be uplink data (PUSCH transmission) or SRS.
  • uplink data PUSCH transmission
  • DMRS may be arranged in some resource elements included in the SC-FDMA symbol period in which uplink data is arranged.
  • Each UE 100 may transmit an uplink radio signal to the eNB 200 while switching resource blocks and / or component carriers used for transmission of the uplink radio signal in units of a predetermined number of symbols within one slot section.
  • each UE 100 is within a range of a plurality of uplink resource blocks overlapping with the plurality of downlink resource blocks in the frequency direction.
  • the uplink radio signal may be transmitted to the eNB 200 while switching the uplink resource block used for transmitting the uplink radio signal in units of a predetermined number of symbols.
  • a component carrier is set in UE 100 may be that a component carrier is set in UE 100 as an uplink component carrier (UL CC) in carrier aggregation.
  • a component carrier is set in UE 100 may be that a component carrier is set in UE 100 as an SRS component carrier (SRS CC) for SRS transmission.
  • SRS CC SRS component carrier
  • a gap interval of about 1 SC-FDMA symbol may be provided between transmission within one component carrier and transmission within another component carrier. That is, in order to compensate for the time difference for component carrier switching, transmission is stopped for a predetermined number of symbols between transmission on the switching source component carrier and transmission on the component carrier after switching. .
  • the UE 100 When performing component carrier switching, the UE 100 switches uplink radio signals while switching component carriers used for uplink radio signal transmission in units of a predetermined number of symbols so that transmission timings on a plurality of component carriers do not overlap. May be transmitted to the eNB 200. Accordingly, the eNB 200 can perform CSI estimation of a plurality of component carriers in a short time under the assumption that the UE 100 cannot simultaneously transmit a plurality of component carriers. Also, component carrier switching can be performed in consideration of the switching time of UE 100 when the transmission component carrier is changed (specifically, the time required for frequency switching of the radio transmitter).
  • the eNB 200 may transmit setting information for performing frequency hopping as illustrated in FIG. 11 to each UE 100 by RRC signaling, or may transmit DCI for performing the frequency hopping to each UE 100 by PDCCH. .
  • the setting information or DCI may include a list of transmission resource blocks and transmission component carriers for each SC-FDMA symbol. For example, resource block # 10 to 15 of component carrier # 0 for symbol # 0, resource block # 16 to 21 of component carrier # 0 for symbol # 1, no transmission for symbol # 2 and # 3, and component carrier for symbol # 4 This is a list such as # 1 resource blocks # 1 to # 4.
  • the setting information or DCI may include a list of transmission component carriers for each SC-FDMA symbol.
  • the symbol # 0 is a component carrier # 1
  • the symbol # 1 is no transmission
  • the symbol # 2 is a component carrier # 1
  • the setting information or DCI may include information indicating the frequency division number for each component carrier. For example, information such as not divided, divided into two, divided into three, and so on.
  • the eNB 200 transmits information for setting transmission parameters related to SRS transmission to the UE 100.
  • Such information is transmitted by RRC signaling or DCI.
  • RRC signaling is UE specific RRC signaling.
  • the RRC signaling may be broadcast RRC signaling.
  • the UE100 receives the said information from eNB200, and transmits SRS according to the transmission parameter set from eNB200.
  • the transmission parameter includes at least one of a component carrier (CC) used for SRS transmission, a resource block (RB) used for SRS transmission, a subframe used for SRS transmission, and a symbol used for SRS transmission.
  • CC component carrier
  • RB resource block
  • One or a plurality of RBs used for SRS transmission may be determined by an SRS frequency hopping pattern.
  • eNB200 sets the transmission parameter which shows the frequency hopping pattern of SRS to UE100.
  • SRS frequency hopping is set independently for each CC set in the UE 100.
  • the SRS frequency hopping pattern is individually set for each CC.
  • CC individual setting such a case is referred to as “CC individual setting”.
  • SRS frequency hopping is collectively set for a plurality of CCs set in the UE 100.
  • the frequency hopping pattern of SRS is set over a plurality of CCs.
  • multiple CC collective setting such a case is referred to as “multiple CC collective setting”.
  • FIG. 12 is a diagram illustrating an example of the CC individual setting.
  • two CCs # 0 and # 1 used for SRS transmission are set in the UE 100.
  • CC # 0 may be a CC used for uplink data transmission and SRS transmission (that is, a normal UL CC).
  • CC # 1 may be a CC used for SRS transmission (that is, SRS CC) without being used for uplink data transmission.
  • the eNB 200 may set such a CC type in the UE 100. Note that both CC # 0 and # 1 are TDD carriers.
  • the frequency hopping pattern of SRS is set separately for each CC.
  • each of subframes # 0 to # 3 is set as a subframe used for SRS transmission.
  • the final symbol (final SC-FDMA symbol) #n of each subframe is set as a symbol used for SRS transmission.
  • CC # 0 is divided into three subbands # 0 to # 2 in the frequency direction in the symbol period used for SRS transmission.
  • Each subband may be composed of a plurality of RBs.
  • the eNB 200 may set the CC division number or the sub-band bandwidth in the UE 100.
  • UE 100 receives subband # 0 of final symbol #n of subframe # 0, subband # 1 of final symbol #n of subframe # 1, subband # 2 of final symbol #n of subframe # 2, and subframe SRS is transmitted in each of subband # 0 of final symbol #n of # 3.
  • each of subframes # 0 to # 3 is set as a subframe used for SRS transmission.
  • the three symbols # (n-3) to # (n-1) of each subframe are set as symbols used for SRS transmission.
  • CC # 1 is divided into three subbands # 0 to # 2 in the frequency direction in a symbol section used for SRS transmission.
  • UE 100 transmits an SRS while switching sub-bands (plural RBs) in symbol units. Thereby, eNB200 can estimate CSI of CC # 1 whole with one sub-frame.
  • the UE 100 does not have the ability to perform simultaneous transmission with a plurality of CCs.
  • the UE 100 has only one transmitter, and the transmitter cannot perform simultaneous transmission with a plurality of CCs.
  • CCs # 0 and # 1 belong to a frequency band in which it is not preferable to perform simultaneous transmission with a plurality of CCs.
  • the UE 100 needs to perform processing for CC switching between transmission on one CC and transmission on the other CC.
  • ENB200 sets the switching gap which is the transmission stop period for such switching to UE100.
  • the eNB 200 sets the symbol # (n ⁇ 1) of each subframe as a switching gap in the UE 100.
  • the eNB 200 may set the symbol numbers of symbols constituting the switching gap in the UE 100 as a transmission parameter.
  • the symbol numbers constituting the switching gap may be an independent setting for each CC, or may be a setting common to a plurality of CCs.
  • UE100 may set a switching gap autonomously.
  • the UE 100 stops transmission during the switching gap and switches from one CC to another.
  • UE 100 stops the transmission of SRS in symbol # (n-1) of subframe # 0 of CC # 1, and switches the transmission carrier to CC # 0.
  • UE 100 transmits SRS in symbol #n of subframe # 0 of CC # 0.
  • the SRS transmission that competes with the switching gap may be postponed to the next transmittable symbol in the same CC.
  • the UE 100 stops the SRS transmission of the subband # 2 that has competed with the switching gap in the subframe # 0.
  • UE 100 performs SRS transmission in subband # 2 in symbol # (n-3), which is the first SRS transmission timing in the next subframe # 1. Next, SRS transmission of subband # 0 is performed in symbol # (n-2) of subframe # 1. Thereafter, the UE 100 repeats such an operation.
  • FIG. 13 is a diagram illustrating an example of multiple CC batch setting.
  • two CCs # 0 and # 1 used for SRS transmission are set in the UE 100.
  • CCs # 0 and # 1 may be CCs (SRS CCs) that are not used for uplink data transmission but are used for SRS transmission.
  • SRS CCs CCs
  • the frequency hopping pattern of SRS is set over CCs # 0 and # 1.
  • CC # 0 and # 1 each of subframes # 0 to # 3 is set as a subframe used for SRS transmission.
  • the five symbols # (n-4) to #n of each subframe are set as symbols used for SRS transmission.
  • UE 100 in subframe # 0 of CC # 0, subband # 0 of symbol # (n-4), subband # 1 of symbol # (n-3), symbol # (n ⁇ SRS is transmitted in each of subband # 2 of 2). In this way, UE 100 performs frequency hopping in units of subbands (multiple RBs) within CC # 0. And UE100 switches a transmission carrier to CC # 1.
  • symbol # (n ⁇ 1) of subframe # 0 of CC # 1 is set as a switching gap.
  • the eNB 200 may set the UE 100 in the CC number and / or the symbol number constituting the switching gap.
  • an implicit setting may be used instead of such an explicit setting.
  • the eNB 200 sets one of the following rules in the UE 100 as a CC determination rule for providing a switching gap.
  • CC corresponding to the primary cell Priority is given to CC corresponding to the primary cell, and a switching gap is provided in CCs corresponding to other cells.
  • the primary cell is a cell that transmits PUCCH and RRC signaling in carrier aggregation.
  • CC corresponding to other cells is, for example, a CC or SRS CC corresponding to a secondary cell.
  • Activate means a state in which a start of use is instructed by a MAC control element or the like to a cell set by RRC signaling.
  • Priority is given to the CC after switching and a switching gap is provided in the CC before switching.
  • the priority between CCs is explicitly notified from the eNB 200, and a switching gap is provided in a CC with low priority.
  • the above rule may be preset in the UE 100, and the UE 100 may autonomously set the switching gap.
  • the eNB 200 may set at least one common transmission parameter applied to the multiple CCs in the UE 100.
  • the common transmission parameter is a parameter that does not depend on the bandwidth of each CC, and may include an SRS setting index (srs-ConfigIndex), for example. Further, the eNB 200 may set at least one individual transmission parameter individually applied to the CC in the UE 100.
  • the dedicated transmission parameter is a parameter that does not depend on the bandwidth of each CC.
  • Modification 2 In the above-described second embodiment and its modification, an example has been described in which frequency hopping for switching sub-bands (multiple RBs) in units of symbols is performed in a sub-frame used for SRS transmission. In this case, UE100 transmits SRS in each successive symbol. That is, UE100 transmits SRS continuously within a subframe.
  • the UE 100 may intermittently transmit the SRS within the subframe.
  • eNB200 may set the space
  • UE100 transmits SRS intermittently according to the set interval.
  • FIG. 14 is a diagram illustrating a second modification of the second embodiment.
  • an interval of one symbol is provided between symbols (SRS transmission symbols) used for SRS transmission in a subframe used for SRS transmission.
  • SRS transmission symbols symbols used for SRS transmission in a subframe used for SRS transmission.
  • the eNB 200 sets one of the patterns in the UE 100.
  • UE100 transmits SRS in the SRS transmission symbol set from eNB200. By defining such intermittent transmission patterns, SRS transmission can be multiplexed in a time division manner.
  • the UE100 may perform SRS transmission as shown in FIG. 14, switching CC.
  • the UE 100 uses the symbol # (n ⁇ 5) with CC # 0, the symbol # (n ⁇ 3) with CC # 1, and the symbol # (n ⁇ with CC # 0 (or CC # 2).
  • the resource (odd symbol) is used for transmission while always providing a gap.
  • another UE is set as a resource (even symbol) such as symbol # (n-4) with CC # 0, symbol # (n-2) with CC # 1, and CC # 0 (or CC # 2). This makes it possible to ensure orthogonal resources.
  • Modification 3 In the above-described second embodiment and the modification thereof, the case where the number of CCs that can be simultaneously transmitted is one as the capability of the UE 100 has been mainly described.
  • the number of CCs used for uplink transmission is one
  • the number of CCs used for downlink transmission is two or more.
  • simultaneous transmission may be limited to only 1 CC while 2 CC is set for the uplink.
  • the number of CCs that can be simultaneously transmitted is two or more as the capability of the UE 100.
  • the number of CCs that can be simultaneously transmitted by the UE 100 is 2 will be described, but the number of CCs that can be simultaneously transmitted by the UE 100 may be 3 or more.
  • FIG. 15 is a first diagram illustrating a third modification of the second embodiment.
  • three CCs # 0 to # 2 are set in the UE 100.
  • Each of CCs # 0 to # 2 is a TDD carrier.
  • CC # 0 and CC # 2 are CCs used for uplink data transmission. That is, “2UL CA” that is carrier aggregation using two UL CCs is set in the UE 100.
  • the number of CAs to be set is 1, the UE 100 may be assumed to support 2UL CA.
  • CC # 0 to CC # 2 are all CCs used for downlink data transmission. That is, “3DL CA” that is carrier aggregation using three DL CCs is set in the UE 100.
  • CC # 1 is a CC (SRS CC) used for transmitting SRS without being used for transmitting uplink data.
  • the UE 100 in which “2UL CA” is set is allowed to simultaneously transmit two CCs, but is not allowed to simultaneously transmit three CCs. Therefore, a mechanism for preventing simultaneous transmission of SRS by three CCs is required.
  • FIG. 16 is a second diagram showing a third modification of the second embodiment.
  • the eNB 200 sets a CC group including CCs that do not perform SRS simultaneous transmission in the UE 100.
  • the CC group includes a first CC (normal UL CC) used for uplink data and SRS transmission, and a second CC (SRS CC) used for SRS transmission without being used for uplink data transmission. And including. Note that the number of CCs included in the CC group that does not perform simultaneous transmission of SRS may be three or more.
  • the UE 100 performs control so that the SRS is not simultaneously transmitted by the first CC and the second CC.
  • the eNB 200 sets CC # 1 as the SRS CC in the UE100 and sets the CC # 1 in the UE100 so as to be linked to CC # 0 (normal UL CC).
  • UE100 does not perform simultaneous transmission of SRS between CC # 0 and CC # 1.
  • the above-described switching gap is provided.
  • the UE 100 may perform simultaneous SRS transmission between CC # 0 and CC # 2, and may perform simultaneous SRS transmission between CC # 1 and CC # 2.
  • eNB200 may set CC100 to CC100 as CC group which does not perform simultaneous transmission of SRS.
  • the eNB 200 may set the time length of the switching gap for each UE 100 in consideration of the capability of the UE 100 and / or the CC set in the UE 100. That is, eNB200 sets the transmission parameter which shows the time length of a switching gap to UE100.
  • the UE 100 may notify the eNB 200 of capability information indicating the time required for carrier switching between transmission on one CC and transmission on another CC.
  • the eNB 200 may set the time length of the switching gap in the UE 100 based on the capability information notified from the UE 100.
  • the UE 100 may autonomously set the time length of the switching gap in consideration of the capability of the own UE and / or the CC set in the own UE.
  • the UE 100 may notify the eNB 200 of information (time length and / or symbol position) regarding the autonomously set switching gap.
  • UE100 may notify eNB200 the information (time length and / or symbol position) regarding the switching gap which self-UE requests
  • the eNB 200 may set a switching gap in the UE 100 based on the switching gap requested from the UE 100.
  • non-periodic SRS transmission is performed according to the following procedure.
  • the eNB 200 sets a non-periodic SRS transmission parameter in the UE 100 by RRC signaling.
  • the eNB 200 transmits an SRS transmission trigger (1-bit flag) to the UE 100 by DCI.
  • UE100 transmits SRS according to a transmission parameter to eNB200 according to reception of an SRS transmission trigger.
  • Transmission parameters of the aperiodic SRS include srs-AntennaPortAp indicating an SRS transmission antenna port, srs-BandwidthAp indicating SRS transmission RB (transmission bandwidth and frequency position), and frequencyDomainPositionAp indicating an SRS transmission subcarrier, SRS transmission click ApS Includes cyclicShiftAp indicating a shift.
  • the eNB 200 notifies the UE 100 of at least one of the SRS transmission CC, the SRS transmission RB, and the SRS transmission symbol position when transmitting the SRS transmission trigger.
  • SRS transmission CC is CC used for transmission of SRS.
  • the SRS transmission RB is one or a plurality of RBs used for SRS transmission.
  • the SRS transmission symbol is a symbol position (symbol number) used for SRS transmission.
  • UE100 transmits SRS according to the transmission parameter designated by DCI (or MAC control element) from eNB200 to eNB200 according to reception of an SRS transmission trigger.
  • UE100 may transmit SRS based on at least one part of the parameter set by RRC signaling in addition to the transmission parameter designated at the time of SRS transmission trigger.
  • UE100 may apply the transmission parameter designated at the time of SRS transmission trigger instead of a part of parameter set by RRC signaling.
  • a non-periodic SRS setting may be set by RRC signaling for each CC, and a trigger including CC designation information may be notified in DCI.
  • the eNB 200 associates the transmission parameter of the aperiodic SRS with the CC and sets the UE 100 by the RRC signaling.
  • eNB200 transmits the SRS transmission trigger containing the information which shows CC to UE100 by DCI.
  • UE100 transmits aperiodic SRS using the transmission parameter corresponding to CC shown by a SRS transmission trigger.
  • Modification 6 In the above-described second embodiment and the modification thereof, in a case where there are a plurality of UEs 100 that transmit periodic SRS, there is a possibility that assignment control of SRS transmission resources and SRS orthogonal sequences may be complicated. Moreover, in the case where periodic SRS and aperiodic SRS are used together, it is preferable that transmission of periodic SRS can be temporarily stopped.
  • FIG. 17 is a diagram illustrating a sixth modification of the second embodiment.
  • the eNB 200 transmits information instructing stop of SRS transmission to the UE 100 that periodically transmits SRS.
  • UE100 stops transmission of SRS according to the instruction
  • the eNB 200 may instruct the UE 100 to resume SRS transmission after instructing the UE 100 to stop SRS transmission (deactivation). In this case, the UE 100 resumes the transmission of the SRS according to the instruction from the eNB 200.
  • the SRS transmission stop instruction may be a one-time transmission stop (one-shot deactivation) instruction.
  • the SRS transmission stop instruction may include information specifying a period for stopping transmission. In this case, the UE 100 resumes SRS transmission after the period has elapsed.
  • the instruction of the eNB 200 may be performed by DCI or may be performed by a MAC control element.
  • Modification 7 In the above-described second embodiment and its modification, the case where the switching gap is set in order to switch the CC that transmits the SRS has been mainly described. However, a symbol that transmits SRS on one CC and a symbol that transmits uplink data on the other CC may be adjacent in the time direction. In this case, the UE 100 that cannot simultaneously transmit a plurality of CCs may need to provide a switching gap in order to switch CCs.
  • the UE 100 performs a process of transmitting SRS on the first CC and a process of transmitting uplink data on the second CC.
  • UE100 stops transmission of one of a 1st symbol and a 2nd symbol, when the 1st symbol which should transmit SRS and the 2nd symbol which should transmit uplink data are adjacent in a time direction .
  • the UE 100 stops transmission of the first symbol of uplink data or the last symbol of uplink data, and uses the symbol period in which transmission is stopped as a switching gap.
  • UE100 may stop transmission (1st symbol) of SRS, in order to give priority to transmission of uplink data.
  • eNB200 may set the determination rule of CC which provides a switching gap to UE100.
  • FIG. 18 is a sequence diagram showing a general random access procedure.
  • the UE 100 In the initial state of FIG. 18, the UE 100 is in the RRC idle mode or the RRC connected mode in the cell of the eNB 200. The UE 100 performs a random access procedure shown in FIG. 18 in order to perform an initial connection (Initial access) in the RRC idle mode.
  • the UE 100 may perform a random access procedure to perform uplink transmission.
  • the UE 100 transmits a random access preamble (RA preamble) to the eNB 200 by RACH.
  • wireless resource PRACH resource
  • wireless resource which can be used as RACH is provided in the ratio of one sub-frame, for example with respect to one radio
  • RA Preamble may be referred to as Msg1.
  • RA Preamble is a signal for performing random access from the UE 100 to the eNB 200 in the MAC layer. The eNB 200 receives “RA Preamble”.
  • the eNB 200 transmits a random access response (RA Response) to the UE 100 using DL-SCH (PDSCH).
  • RA Response is a type of MAC control element (MAC CE) and may be referred to as Msg2.
  • the eNB 200 estimates the uplink delay with the UE 100 based on “RA Preamble” received from the UE 100.
  • eNB200 determines the uplink radio
  • the eNB 200 performs “RA Response” including a timing correction value (TA: Timing Advance) based on a delay estimation result, radio resource allocation information (UL grant), a preamble identifier (Preamble ID), and “Temporary C-RNTI”.
  • TA Timing Advance
  • the “Preamble ID” is an ID indicating a signal sequence of “RA Preamble” received from the UE 100. Also, in the physical layer (PDCCH), a dedicated RNTI (RA-RNTI) is used for transmission of “RA Response”. The UE 100 receives “RA Response”.
  • RA-RNTI dedicated RNTI
  • step S303 the UE 100 performs uplink transmission (Scheduled Transmission) to the eNB 200 by UL-SCH (PUSCH) based on “RA Response”.
  • “Scheduled Transmission” may be referred to as Msg3.
  • “Scheduled Transmission” is an “RRC Connection Request” message.
  • “Scheduled Transmission” is a message including C-RNTI of UE 100.
  • the eNB 200 receives “Scheduled Transmission”.
  • the eNB 200 transmits a contention resolution message to the UE 100.
  • the “Contention Resolution” message may be referred to as Msg4.
  • the “Contention Resolution” message includes the content of the message received from the UE 100 in step S303.
  • “Temporary C-RNTI” is used for transmission of the “Contention Resolution” message in the physical layer (PDCCH).
  • PDCCH physical layer
  • C-RNTI is used for transmission of the “Contention Resolution” message in the physical layer (PDCCH).
  • the UE 100 receives the “Contention Resolution” message.
  • the eNB 200 performs a process of receiving a random access preamble from the UE 100 and a process of transmitting a random access response corresponding to the random access preamble to the UE 100 together with a UE-specific demodulation reference signal.
  • the UE-specific demodulation reference signal is referred to as UE-specific RS.
  • the UE-specific RS is included in the allocated radio resource (PDSCH resource) allocated to the UE 100 by the eNB 200. That is, the UE-specific RS is transmitted in the antenna and the assigned radio resource used for transmitting downlink data to the UE 100. Also, a downlink transmission weight similar to the corresponding downlink data is applied to the UE-specific RS. Thereby, it becomes possible to perform advanced PDSCH transmission by MIMO or beam forming from the stage of random access response (Msg2).
  • the eNB 200 uses the process of deriving the downlink transmission weight for the UE 100 based on the channel estimation result using the random access preamble and the random access response to the UE ⁇ using the downlink transmission weight. and processing to transmit to the UE 100 together with the specific RS.
  • the downlink resource block used for transmitting the random access response may overlap with the uplink resource block used for transmitting the random access preamble in the frequency direction.
  • the eNB 200 may transmit a random access response to the UE 100 without transmitting downlink resource block allocation information to the UE 100.
  • the eNB 200 omits PDCCH transmission and transmits a random access response (PDSCH transmission).
  • FIG. 19 is a sequence diagram illustrating an example of an operation according to the third embodiment. Here, differences from the general random access procedure described above will be mainly described.
  • step S311 the UE 100 transmits a random access preamble (RA Preamble) to the eNB 200 using an uplink resource block (here, resource block # 1) included in the PRACH resource.
  • RA Preamble a random access preamble
  • the eNB 200 receives “RA Preamble”.
  • the UE 100 attempts to receive PDSCH after transmitting “RA Preamble”. Specifically, the UE 100 uses the same resource block (resource block # 1) as the uplink resource block used for transmission of “RA Preamble” and the candidate timing at which reception of a random access response (RA Response) is expected. Try to receive PDSCH.
  • resource block # 1 the uplink resource block used for transmission of “RA Preamble”
  • RA Response the candidate timing at which reception of a random access response
  • the eNB 200 estimates the uplink delay with the UE 100 using the “RA Preamble” received from the UE 100.
  • the eNB 200 performs channel estimation using “RA Preamble” received from the UE 100.
  • the channel estimation using “RA Preamble” is a process for estimating the amount of attenuation and phase rotation received when “RA Preamble” passes through the propagation path, and so on. Is different.
  • eNB200 estimates downlink CSI using the reversibility of a channel.
  • the downlink CSI includes a downlink transmission weight (precoder).
  • the eNB 200 transmits a “RA Response” to the UE 100 by applying a downlink transmission weight (precoder) using the PDSCH.
  • the eNB 200 transmits “RA Response” to the UE 100 using a part of the uplink resource block used for transmitting “RA Preamble” or the same resource block (resource block # 1). In that case, eNB200 does not perform PDCCH transmission with respect to UE100.
  • the eNB 200 transmits a UE-specific RS by applying a downlink transmission weight (precoder) during PDSCH transmission.
  • the UE 100 attempts to receive the PDSCH of the same resource block (resource block # 1) as the uplink resource block used for transmission of the “RA Preamble”, thereby performing “RA Response” without performing PDCCH reception. Receive. Also, the UE 100 demodulates “RA Response” by channel estimation using UE-specific RS. The subsequent operation is the same as the general random access procedure described above.
  • IDMA interleave division multiple access
  • IDMA is a technique for distinguishing and separating signals of different UEs 100 by a UE-specific interleaver.
  • the UE multiplexing number may be increased by applying IDMA to ACK / NACK according to the first embodiment.
  • the first embodiment to the third embodiment described above may be implemented separately or in combination of two or more embodiments. When two or more embodiments are combined, a part of one embodiment may be replaced with a part of another embodiment.
  • the PRACH (random access preamble) transmission method according to the third embodiment may be applied to SRS transmission according to the second embodiment.
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a mobile communication system other than the LTE system.
  • the present invention is useful in the communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一つの実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、前記基地局から上りリンク無線リソースがデータ送信用に割り当てられなくても、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を上りリンク制御チャネルリソースとは異なる上りリンク無線リソースを用いて前記基地局に送信する特定の送信処理と、を行う。

Description

無線端末及び基地局
 本発明は、移動通信システムにおいて用いられる無線端末及び基地局に関する。
 近年、現在の第3世代及び第4世代移動通信システムに比べて大幅に通信容量及び通信速度を向上させた第5世代移動通信システムを実現するための研究・開発が盛んに行われている。
 一つの実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、前記基地局から上りリンク無線リソースがデータ送信用に割り当てられなくても、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を上りリンク制御チャネルリソースとは異なる上りリンク無線リソースを用いて前記基地局に送信する特定の送信処理と、を行う。
 一つの実施形態に係る基地局は、時分割複信方式の無線通信を無線端末と行う制御部を備える。前記制御部は、特定の送信処理を行わせるための指示を前記無線端末に送信する処理を行う。前記特定の送信処理は、前記無線端末が、前記基地局から割り当てられた下りリンクリソースブロックと周波数方向において重複する上りリンク無線リソースを用いて応答情報を前記基地局に送信する処理である。前記応答情報は、前記下りリンクリソースブロックを用いて送信された下りリンク無線信号の受信に成功したか否かを示す情報である。
 一つの実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、時間方向においてサブフレーム単位又はスロット単位ではなくシンボル単位で確保された上りリンク無線リソースを用いて、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を前記基地局に送信する処理と、を行う。
 一つの実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を含む参照信号を前記基地局に送信する処理と、を行う。前記参照信号は、サウンディング参照信号又は復調参照信号である。
 一つの実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、上りリンク無線信号の送信に用いるリソースブロック及び/又はコンポーネントキャリアをサブフレーム単位又はスロット単位ではなく所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行う。
 一つの実施形態に係る基地局は、無線端末との無線通信を行う制御部を備える。前記制御部は、前記無線端末からランダムアクセスプリアンブルを受信する処理と、前記ランダムアクセスプリアンブルに対応するランダムアクセス応答を、無線端末個別の復調用参照信号と共に前記無線端末に送信する処理と、を行う。
LTEシステム(移動通信システム)の構成を示す図である。 UE(無線端末)のブロック図である。 eNB(基地局)のブロック図である。 LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 LTEシステムにおいて用いられる無線フレームの構成図である。 1つの上りリンクサブフレームに含まれる参照信号の一例を示す図である。 第1実施形態に係る上下リンクのチャネルの可逆性を利用して下りリンクCSIを推定する方法の一例を示す図である。 第1実施形態に係るSRSリソースを用いたACK/NACK送信の一例を示す図である。 第1実施形態に係るPUSCHリソースを用いたACK/NACK送信の一例を示す図である。 第1実施形態に係る動作シーケンスの一例を示すシーケンス図である。 第2実施形態に係る動作の一例を示す図である。 第2実施形態の変更例1に係るCC個別設定の一例を示す図である。 第2実施形態の変更例1に係る複数CC一括設定の一例を示す図である。 第2実施形態の変更例2を示す図である。 第2実施形態の変更例3を示す第1の図である。 第2実施形態の変更例3を示す第2の図である。 第2実施形態の変更例6を示す図である。 一般的なランダムアクセス手順を示すシーケンス図である。 第3実施形態に係る動作の一例を示すシーケンス図である。
 [実施形態の概要]
 第1実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、前記基地局から上りリンク無線リソースがデータ送信用に割り当てられなくても、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を上りリンク制御チャネルリソースとは異なる上りリンク無線リソースを用いて前記基地局に送信する特定の送信処理と、を行う。
 第1実施形態において、前記制御部は、前記受信する処理において、前記基地局から割り当てられた下りリンクリソースブロックを用いて、前記下りリンク無線信号を受信し、前記特定の送信処理において、周波数方向において前記下りリンクリソースブロックと重複する上りリンク無線リソースを用いて前記応答情報を送信する。
 第1実施形態において、前記特定の送信処理は、前記応答情報の送信に用いる前記上りリンク無線リソースを、時間方向においてサブフレーム単位又はスロット単位ではなくシンボル単位で特定する処理を含んでもよい。
 第1実施形態において、前記制御部は、前記基地局からの指示に基づいて前記特定の送信処理を行ってもよい。
 第1実施形態において、前記基地局からの指示には、前記応答情報を送信するための上りリンク無線リソースを指定する情報が含まれていてもよい。
 第1実施形態において、前記上りリンク無線リソースは、サウンディング参照信号リソースを含み、前記特定の送信処理は、前記周波数方向において前記下りリンクリソースブロックと重複する前記サウンディング参照信号リソースを用いて、前記応答情報を含むサウンディング参照信号を前記基地局に送信する処理を含んでもよい。
 第1実施形態において、前記応答情報は、前記サウンディング参照信号の信号系列又は前記サウンディング参照信号のリソース配置パターンにより、前記下りリンク無線信号の受信に成功したか否かが示されてもよい。
 第1実施形態において、前記特定の送信処理は、複数のサブキャリアを用いて、前記応答情報を含む前記サウンディング参照信号を前記基地局に送信する処理を含み、前記複数のサブキャリアには、2以上のサブキャリアに相当する周波数間隔が設けられてもよい。
 第1実施形態において、前記上りリンク無線リソースは、物理上りリンク共有チャネルリソースを含み、前記特定の送信処理は、前記周波数方向において前記下りリンクリソースブロックと重複する前記物理上りリンク共有チャネルリソースを用いて、前記応答情報とは別の復調参照信号又は前記応答情報を含む復調参照信号を送信する処理を含んでもよい。
 第1実施形態に係る基地局は、時分割複信方式の無線通信を無線端末と行う制御部を備える。前記制御部は、特定の送信処理を行わせるための指示を前記無線端末に送信する処理を行う。前記特定の送信処理は、前記無線端末が、前記基地局から割り当てられた下りリンクリソースブロックと周波数方向において重複する上りリンク無線リソースを用いて応答情報を前記基地局に送信する処理である。前記応答情報は、前記下りリンクリソースブロックを用いて送信された下りリンク無線信号の受信に成功したか否かが示される情報である。
 第1実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、時間方向においてサブフレーム単位又はスロット単位ではなくシンボル単位で確保された上りリンク無線リソースを用いて、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を前記基地局に送信する処理と、を行う。
 第1実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、前記基地局から下りリンク無線信号を受信する処理と、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を含む参照信号を前記基地局に送信する処理と、を行う。前記参照信号は、サウンディング参照信号又は復調参照信号である。
 第2実施形態に係る無線端末は、時分割複信方式の無線通信を基地局と行う制御部を備える。前記制御部は、上りリンク無線信号の送信に用いるリソースブロック及び/又はコンポーネントキャリアをサブフレーム単位又はスロット単位ではなく所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行う。
 第2実施形態において、前記所定数は、1つのスロット区間を構成するシンボル数よりも少ない数であってもよい。
 第2実施形態において、前記基地局から自無線端末に複数のコンポーネントキャリアが設定された場合、前記制御部は、前記複数のコンポーネントキャリアの範囲内で、前記上りリンク無線信号の送信に用いるコンポーネントキャリアを前記所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行ってもよい。
 第2実施形態において、前記制御部は、前記複数のコンポーネントキャリア上での送信タイミングが重複しないように、前記上りリンク無線信号の送信に用いるコンポーネントキャリアを前記所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行ってもよい。また、複数のコンポーネントキャリア間の切り替えに伴う時間差を補償するために、切り替え元のコンポーネントキャリアでの送信と、切り替え後のコンポーネントキャリアでの送信との間に、所定数のシンボル分のギャップを設けてもよい。
 第3実施形態に係る基地局は、無線端末との無線通信を行う制御部を備える。前記制御部は、前記無線端末からランダムアクセスプリアンブルを受信する処理と、前記下りリンクの送信ウェイトを用いて、前記ランダムアクセスプリアンブルに対応するランダムアクセス応答を、無線端末個別の復調用参照信号と共に前記無線端末に送信する処理と、を行う。
 第3実施形態において、前記制御部は、前記ランダムアクセスプリアンブルを用いたチャネル推定結果に基づいて、前記無線端末に対する下りリンクの送信ウェイトを導出する処理と、前記下りリンクの送信ウェイトを用いて、前記ランダムアクセス応答と共に前記無線端末個別の復調用参照信号を前記無線端末に送信する処理と、を行ってもよい。
 第3実施形態において、前記ランダムアクセス応答の送信に用いる下りリンクリソースブロックは、前記ランダムアクセスプリアンブルの送信に用いられたリソースブロックと周波数方向において重複してもよい。
 第3実施形態において、前記制御部は、前記下りリンクリソースブロックの割り当て情報を前記無線端末に送信することなく、前記ランダムアクセス応答を前記無線端末に送信する処理を行ってもよい。
 [移動通信システムの概要]
 以下において、実施形態に係る移動通信システムであるLTE(Long Term Evolution)システムの概要について説明する。LTEシステムは、3GPP(3rd Generation Partnership Project)において仕様が策定されている移動通信システムである。
 (移動通信システムの構成)
 先ず、LTEシステムの構成について説明する。図1は、LTEシステムの構成を示す図である。図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、無線端末に相当する。UE100は、移動型の通信装置であり、eNB200との無線通信を行う。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる他に、UE100との無線通信を行う機能を示す用語としても用いられる。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 (無線端末の構成)
 次に、UE100(無線端末)の構成について説明する。図2は、UE100のブロック図である。図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、上述した処理及び後述する処理を実行する。
 (基地局の構成)
 次に、eNB200(基地局)の構成について説明する。図3は、eNB200のブロック図である。図3に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、上述した処理及び後述する処理を実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
 (無線インターフェイスの構成)
 次に、LTEシステムにおける無線インターフェイスの構成について説明する。図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御情報を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードであり、そうでない場合、UE100はRRCアイドルモードである。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。
 (LTE下位層の概要)
 次に、LTE下位層の概要について説明する。図5は、LTEシステムにおいて用いられる無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御情報を伝送するための物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)として用いられる領域である。PDCCHの詳細については後述する。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)として用いることができる領域である。
 eNB200は、PDCCHを用いて下りリンク制御情報(DCI)をUE100に送信し、PDSCHを用いて下りリンクデータをUE100に送信する。PDCCHが搬送する下りリンク制御情報は、上りリンクSI(Scheduling Information)、下りリンクSI、TPCビットを含む。上りリンクSIは上りリンク無線リソースの割当てに関するスケジューリング情報(UL grant)であり、下りリンクSIは、下りリンク無線リソースの割当てに関するスケジューリング情報である。TPCビットは、上りリンクの送信電力の増減を指示する情報である。eNB200は、下りリンク制御情報の送信先のUE100を識別するために、送信先のUE100の識別子(RNTI:Radio Network Temporary ID)でスクランブリングしたCRCビットを下りリンク制御情報に含める。各UE100は、自UE宛ての可能性がある下りリンク制御情報について、PDCCHをブラインド復号(Blind decoding)し、自UE宛の下りリンク制御情報を検出する。PDSCHは、下りリンクSIが示す下りリンク無線リソース(リソースブロック)により下りリンクデータを搬送する。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御情報を伝送するための物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)として用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)として用いることができる領域である。
 UE100は、基本的には、PUCCHを用いて上りリンク制御情報(UCI)をeNB200に送信し、PUSCHを用いて上りリンクデータをeNB200に送信する。但し、UE100は、PUSCH割り当てがある場合、PUSCHを用いて上りリンク制御情報をeNB200に送信し得る。PUCCHが運搬する上りリンク制御情報は、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、スケジューリング要求(SR:Scheduling Request)、HARQ ACK/NACKを含み得る。CQIは、下りリンクのチャネル品質を示すインデックスであり、下りリンク伝送に用いるべきMCSの決定等に用いられる。PMIは、下りリンクの伝送のために用いることが望ましいプレコーダマトリックスを示すインデックスである。RIは、下りリンクの伝送に用いることが可能なレイヤ数(ストリーム数)を示すインデックスである。SRは、PUSCHリソースの割り当てを要求する情報である。HARQ ACK/NACKは、下りリンクデータの受信に成功したか否かを示す応答情報である。
 (上りリンクの参照信号)
 次に、上りリンクの参照信号について説明する。UE100は、参照信号をeNB200に送信する。eNB200は、UE100から受信した参照信号に基づいて、上りリンクのチャネル特性の推定(チャネル推定)を行う。
 図6は、1つの上りリンクサブフレームに含まれる参照信号の一例を示す図である。なお、図6において、前半スロット及び後半スロットを分離して図示しているが、実際には前半スロット及び後半スロットは連続していることに留意すべきである。
 図6に示すように、1サブフレームの最終SC-FDMAシンボル(シンボル番号13)には、サウンディング参照信号(SRS)が配置される。UE100は、eNB200からRRCシグナリングにより通知される設定情報に基づいてSRSをeNB200に送信する。eNB200は、UE100から受信するSRSに基づいてチャネル推定を行い、チャネル推定結果に基づいて上りリンクのスケジューリング等を行う。
 また、各スロットの中央(シンボル番号3と10)の1SC-FDMAシンボルには、復調参照信号(DMRS)が配置される。UE100は、eNB200から割り当てられたPUSCHリソースに相当するリソースブロック(RB)においてDMRSを送信する。すなわち、UE100は、PUSCH送信を行う際にDMRSを送信する。eNB200は、UE100から受信するSRSに基づいてチャネル推定を行い、チャネル推定結果に基づいてPUSCHの復調等を行う。
 (第5世代移動通信システム)
 次に、第5世代移動通信システムの概要について説明する。第5世代移動通信システムを実現するために、「高周波数帯の利用」、「小セルの利用」、及び「大規模MIMO(Massive Multi-Input Multi-Output)」が重要になると考えられている。「高周波数帯の利用」は、現在よりも高い周波数帯を利用することにより、広い周波数帯域を確保する技術である。「小セルの利用」は、高周波数帯における大きい伝搬損失を補償しつつ、局所的な高トラフィックエリアのスループットを改善する技術である。「大規模MIMO」は、高周波数帯においてアンテナ素子を小型化可能であるという利点を活かしつつ、多数のアンテナ素子を用いて高度なマルチアンテナ伝送を可能とする技術である。
 また、第5世代移動通信システムにおいては、主に以下の2つの理由により、時分割複信(TDD)方式が重要になると考えられている。
 第1に、TDD方式には伝搬遅延を補償するためのガードタイムが必要とされるが、「小セルの利用」によりガードタイムが短くて済むようになる。
 第2に、TDD方式は上下リンクのチャネルの可逆性を利用可能であるため、eNB200がUE100からの上りリンク無線信号(具体的には、参照信号)に基づいて下りリンクのチャネル状態情報(CSI)を推定することができる。下りリンクCSIとは、CQI、PMI、RI等である。例えば、eNB200は、UE100のPUSCH送信に伴うDMRSを受信し、DMRSを用いて下りリンクCSIを推定し、下りリンクCSIに基づいてPDSCH送信を行う。よって、TDD方式によれば、「大規模MIMO」に必要とされる高精度なCSIを低オーバーヘッドで取得可能である。つまり、UE100からeNB200にフィードバックする下りリンクCSIを不要とする(又は削減する)ことができる。
 [第1実施形態]
 以下において、第1実施形態について説明する。第1実施形態において、UE100及びeNB200はTDD方式の無線通信を行う。第1実施形態は、上下リンクのチャネルの可逆性を利用して下りリンクCSIを推定する場合において、効率的な下りリンクCSIの推定を可能とする実施形態である。
 図7は、上下リンクのチャネルの可逆性を利用して下りリンクCSIを推定する方法の一例を示す図である。ここでは、DMRSをチャネル推定に用いる場合を想定する。
 図7Aに示す例において、上りリンク(UL)期間が4つの上りリンクサブフレームにより構成され、下りリンク(DL)期間が4つの下りリンクサブフレームにより構成される。また、上りリンク及び下りリンクの両方に空間多重(Spatial multiplexing)が適用される。一方、図7Bに示す例において、上りリンク期間が2つの上りリンクサブフレームにより構成され、下りリンク期間が4つの下りリンクサブフレームにより構成される。また、上りリンクに空間多重が適用される。
 図7に示すように、チャネルの可逆性を利用するためには、下りリンクに用いる無線リソース(リソースブロック、コンポーネントキャリア)と同じだけ、UE100に上りリンクの無線リソースを適切に設定及び割り当てる必要がある。チャネルの変動速度にも依存するが、例えば上りリンク通信から下りリンク通信までの時間を半無線フレーム(5ms)又は1無線フレーム(10ms)程度以内に抑えるべきである。
 よって、下りリンクリソースブロック(PDSCHリソース)を特定のUE100に割り当てる前に、eNB200は、当該下りリンクリソースブロックと周波数方向において一致する上りリンクリソースブロック(PUSCHリソース)を当該特定のUE100に割り当てる。
 しかしながら、一般的に上りリンクデータは下りリンクデータよりも少ないため、同一のUE100に対して下りリンク無線リソースと同程度の量の上りリンク無線リソースを割り当てることは困難である。具体的には、eNB200がUE100に割り当てるリソースブロックの数は、下りリンクに比べて上りリンクが少なくなり得る。また、TDDの無線フレーム構成に起因して、下りリンクサブフレームに比べて上りリンクサブフレームの数が少なくなり得る。
 (第1実施形態の概要)
 次に、第1実施形態の概要について説明する。
 第1実施形態において、eNB200は、UE100に割り当てた下りリンクリソースブロックを用いて、下りリンク無線信号をUE100に送信する。UE100は、eNB200から割り当てられた下りリンクリソースブロック(以下、「割当DL RB」という)を用いて、eNB200から下りリンク無線信号を受信する。ここで、割当DL RBはPDSCHとして用いるRBであり、下りリンク無線信号は下りリンクデータである。或いは、割当DL RBはePDCCH(enhanced PDCCH)として用いるRBであり、下りリンク無線信号は下りリンク制御情報であってもよい。
 UE100は、周波数方向において割当DL RBと重複する上りリンク無線リソースを用いて、下りリンク無線信号の受信に成功したか否かを示す応答情報をeNB200に送信する特定の送信処理を行う。eNB200は、周波数方向において割当DL RBと重複する上りリンク無線リソースを用いて、下りリンク無線信号の受信に成功したか否かを示す応答情報をUE100から受信する。UE100に複数のコンポーネントキャリア(TDDキャリア)が設定されている場合、UE100は、複数のコンポーネントキャリアのそれぞれについて特定の送信処理を行ってもよい。
 ここで、「重複する」とは、応答情報の送信に用いる上りリンク無線リソースが周波数方向において割当DL RBと完全に一致することを要しない。応答情報の送信に用いる上りリンク無線リソースは、周波数方向において割当DL RBを含んでいればよい。応答情報とはHARQ ACK/NACKであり、以下において単に「ACK/NACK」と称する。
 なお、一般的なLTEシステムにおいて、UE100は、PUSCHリソース割り当てがない限りは、割当DL RBの周波数位置に依らずにPUCCHでACK/NACKを送信する。また、一般的なLTEシステムにおいて、UE100は、PUSCHリソース割り当てがある場合でも、割当DL RBの周波数位置に依らずにPUSCHでACK/NACKを送信する。
 一方、第1実施形態においては、UE100は、割当DL RBの周波数位置に対応する上りリンク無線リソースを用いて、ACK/NACKを送信する。ACK/NACKの送信タイミングについては、一般的なLTEシステムと同様とすることができる。TDD方式のLTEシステムにおけるACK/NACKの送信タイミングは、TDDの無線フレーム構成に依存する。
 このように、第1実施形態は、下りリンクリソースブロックを割り当てれば上りリンクのACK/NACKが発生するという点に着目し、チャネル推定のためにACK/NACKを活用する。これにより、チャネル推定のために十分な上りリンク無線リソースを確保することができる。よって、上下リンクのチャネルの可逆性を利用して下りリンクCSIを推定する場合において、効率的な下りリンクCSIの推定を可能とすることができる。
 第1実施形態において、特定の送信処理は、ACK/NACKの送信に用いる上りリンク無線リソースを、時間方向においてサブフレーム単位又はスロット単位ではなくシンボル単位(SC-FDMAシンボル単位)で特定する処理を含んでもよい。ACK/NACKの送信に用いる上りリンク無線リソースは、eNB200により確保される。eNB200は、ACK/NACKを送信するための上りリンク無線リソースを指定する情報を含む指示をUE100に送信する。eNB200は、ACK/NACKの送信に用いるSC-FDMAシンボルを指定する情報を例えばRRCシグナリングによりUE100に送信してもよい。ACK/NACKの送信に用いる上りリンク無線リソースをシンボル単位で確保・特定することにより、1スロット内の同一RBにおいて複数UEのACK/NACKを時分割により多重することができる。
 ここで、ACK/NACKの送信に用いる上りリンク無線リソースは、SRSリソース又はPUSCHリソースである。SRSリソースを用いてACK/NACKを送信する場合、例えば、上りリンクサブフレームの最終の1SC-FDMAシンボルが確保される。一方、PUSCHリソースを用いてACK/NACKを送信する場合、例えば、連続する複数のSC-FDMAシンボルが確保される。
 第1実施形態において、UE100は、eNB200からデータ送信用の上りリンク無線リソース(PUSCHリソース)が割り当てられなくても、eNB200からの指示に基づいて、PUCCHリソースとは異なる上りリンク無線リソースを用いて特定の送信処理を行ってもよい。eNB200からの指示は、例えばRRCシグナリング又はPDCCHを用いて行われる。これにより、UE100は、上りリンクデータを有しておらず、PUSCHリソースがeNB200から割り当てられない場合でも、ACK/NACKをeNB200に送信することができる。なお、eNB200からの指示は、ACK/NACKを送信するための上りリンク無線リソースを指定する情報を含む。
 (第1実施形態に係るSRSリソースを用いたACK/NACK送信)
 次に、第1実施形態に係るSRSリソースを用いたACK/NACK送信について説明する。UE100は、周波数方向において割当DL RBと重複するSRSリソースを用いて、ACK/NACKを含むSRSをeNB200に送信する。図8は、第1実施形態に係るSRSリソースを用いたACK/NACK送信の一例を示す図である。
 図8A及び図8Cに示す例において、1つのSRSの送信に用いる複数のサブキャリアには、1つのサブキャリアに相当する周波数間隔が設けられる。例えば、SRS#0は偶数番のサブキャリア(「Transmission Comb 0」と称される)を用いて送信され、SRS#1は奇数番のサブキャリア(「Transmission Comb 1」と称される)を用いて送信される。このようなSRSのサブキャリア配置は一般的なLTEシステムと同様である。このようなSRSのサブキャリア配置を用いる場合、2つのSRSを周波数分割により多重することができる。
 一方、図8Bに示す例において、1つのSRSの送信に用いる複数のサブキャリアには、2以上のサブキャリア(具体的には、3つのサブキャリア)に相当する周波数間隔が設けられる。このようなSRSのサブキャリア配置を用いる場合、4つのSRS(SRS#0乃至#3)を周波数分割により多重することができる。
 また、図8A及び図8Bに示す例において、SRSの信号系列により、ACK/NACKが示される。ACK用の信号系列及びNACKの信号系列は、システム仕様により事前設定されてもよいし、eNB200がUE100に設定してもよい。UE100は、eNB200からの下りリンクデータの受信(復号)に失敗した場合、NACK用の信号系列を用いてSRSをeNB200に送信する。eNB200は、UE100から受信したSRSを用いてチャネル推定を行うとともに、その信号系列に基づいてUE100が下りリンクデータの受信に失敗したと判断する。この場合、eNB200は、HARQによる再送処理を行ってもよい。一方、eNB200からの下りリンクデータの受信(復号)に成功した場合、UE100は、ACK用の信号系列を用いてSRSをeNB200に送信する。eNB200は、UE100から受信したSRSを用いてチャネル推定を行うとともに、その信号系列に基づいてUE100が正常に下りリンクデータを受信したと判断する。
 一方、図8Cに示す例において、SRSのリソース配置パターン(具体的には、サブキャリア配置パターン)により、ACK/NACKが示される(又はACK/NACKを意味する)。例えば、偶数番のサブキャリア(Transmission Comb 0)はACKを示し、奇数番のサブキャリア(Transmission Comb 1)はNACKを示す。ACK/NACKとサブキャリア配置パターンとの対応関係は、システム仕様により事前設定されてもよいし、eNB200がUE100に設定してもよい。UE100は、eNB200からの下りリンクデータの受信(復号)に失敗した場合、NACK用のサブキャリア配置パターンを用いてSRSをeNB200に送信する。eNB200は、UE100から受信したSRSを用いてチャネル推定を行うとともに、そのサブキャリア配置パターンに基づいてUE100が下りリンクデータの受信に失敗したと判断する。この場合、eNB200は、HARQによる再送処理を行ってもよい。一方、eNB200からの下りリンクデータの受信(復号)に成功した場合、UE100は、ACK用のサブキャリア配置パターンを用いてSRSをeNB200に送信する。eNB200は、UE100から受信したSRSを用いてチャネル推定を行うとともに、そのサブキャリア配置パターンに基づいてUE100が正常に下りリンクデータを受信したと判断する。
 (第1実施形態に係るPUSCHリソースを用いたACK/NACK送信)
 次に、第1実施形態に係るPUSCHリソースを用いたACK/NACK送信について説明する。UE100は、周波数方向において割当DL RBと重複するPUSCHリソースを用いて、ACK/NACKとは別のDMRS又はACK/NACKを含むDMRSをeNB200に送信する。図9は、第1実施形態に係るPUSCHリソースを用いたACK/NACK送信の一例を示す図である。
 図9Aに示す例において、1つのRB、かつ1つのサブフレーム内において、4つのUE100(UE#0乃至#3)のACK/NACKが時分割により多重されている。具体的には、連続する3つのSC-FDMAシンボルがACK/NACK送信用リソースとしてUE100ごとに確保されている。例えば、連続する3つのSC-FDMAシンボルのうち、1番目及び3番目のSC-FDMAシンボルにACK/NACKが配置され、2番目のSC-FDMAシンボルにDMRSが配置される。なお、1番目及び3番目のSC-FDMAシンボルに、ACK/NACKに加えて、少量の上りリンクデータが配置されてもよい。また、図9Aに示す例においては、1サブフレーム中の14SC-FDMAシンボルのうち、最後の2つのSC-FDMAシンボル以外のSC-FDMAシンボルがACK/NACK送信用リソースとして確保され、最後の2つのSC-FDMAシンボルがSRSリソースとして確保されている。
 図9Bに示す例において、1つのRB、かつ1つのサブフレーム内において、5つのUE100(UE#0乃至#4)のACK/NACKが時分割により多重されている。具体的には、連続する2つのSC-FDMAシンボルがACK/NACK送信用リソースとしてUE100ごとに確保されている。例えば、連続する2つのSC-FDMAシンボルのうち、1番目のSC-FDMAシンボルにACK/NACKが配置され、2番目のSC-FDMAシンボルにDMRSが配置される。なお、1番目のSC-FDMAシンボルに、ACK/NACKに加えて、少量の上りリンクデータが配置されてもよい。また、図9Bに示す例においては、一のUE100のACK/NACK送信用リソースと他のUE100のACK/NACK送信用リソースとの間に、1SC-FDMAシンボル分のギャップ区間が確保されている。
 図9A及び図9Bに示す例において、UE100は、eNB200からの下りリンクデータを受信した後、例えばeNB200から指定されたACK/NACK送信用リソースを用いてACK/NACK及びDMRSをeNB200に送信する。eNB200は、UE100から受信したDMRSを用いてチャネル推定を行うとともに、チャネル推定結果に基づいてACK/NACKを復調する。NACKが得られた場合、eNB200は、HARQによる再送処理を行ってもよい。
 図9A及び図9Bに示す例において、異なるUE100のACK/NACKが1サブフレーム内に多重されているが、同一のUE100のACK/NACKが1サブフレーム内に多重されてもよい。この場合、1つのUE100が1サブフレーム内で複数のACK/NACKを送信可能である。
 図9A及び図9Bにおいて、ACK/NACKに付随するDMRSをUE100が送信する一例を説明した。すなわち、ACK/NACKは、DMRSとは別の信号である。一方、図9Cに示す例において、UE100は、ACK/NACKを含むDMRSをeNB200に送信する。
 具体的には、図9Cに示す例において、1サブフレーム中の14SC-FDMAシンボルのうち、最後のC-FDMAシンボル以外のSC-FDMAシンボルがACK/NACKを含むDMRSの送信用リソースとして確保され、最後のSC-FDMAシンボルがSRSリソースとして確保されている。
 図9Cに示す例において、1つのSC-FDMAシンボルに、1つのACK/NACKを含む1つのDMRSが配置される。DMRSが配置される各SC-FDMAシンボルは、異なるUE100に割り当てられてもよいし、同一のUE100に割り当てられてもよい。
 DMRSの信号系列によりACK/NACKが示されてもよい。この場合、ACK用の信号系列及びNACKの信号系列は、システム仕様により事前設定されてもよいし、eNB200がUE100に設定してもよい。或いは、DMRSのリソース配置パターン(具体的には、サブキャリア配置パターン)によりACK/NACKが示されてもよい。この場合、ACK/NACKとサブキャリア配置パターンとの対応関係は、システム仕様により事前設定されてもよいし、eNB200がUE100に設定してもよい。
 ここではDMRSの信号系列によりACK/NACKが示される場合を想定する。UE100は、eNB200からの下りリンクデータの受信(復号)に失敗した場合、NACK用の信号系列を用いてDMRSをeNB200に送信する。eNB200は、UE100から受信したDMRSを用いてチャネル推定を行うとともに、その信号系列に基づいてUE100が下りリンクデータの受信に失敗したと判断する。この場合、eNB200は、HARQによる再送処理を行ってもよい。一方、eNB200からの下りリンクデータの受信(復号)に成功した場合、UE100は、ACK用の信号系列を用いてDMRSをeNB200に送信する。eNB200は、UE100から受信したDMRSを用いてチャネル推定を行うとともに、その信号系列に基づいてUE100が正常に下りリンクデータを受信したと判断する。
 (第1実施形態に係る動作シーケンス)
 次に、第1実施形態に係る動作シーケンスの一例について説明する。図10は、第1実施形態に係る動作シーケンスの一例を示すシーケンス図である。図10の初期状態において、UE100は、eNB200のセルにおいてRRCコネクティッドモードである。
 図10に示すように、ステップS101において、eNB200は、RRCシグナリングによりUE100に設定情報を送信する。設定情報は、第1実施形態に係る特定の送信処理に関する各種のパラメータを含む。例えば、設定情報は、第1実施形態に係る特定の送信処理を行うようUE100に指示する情報を含んでもよい。また、設定情報は、ACK/NACKの送信に用いるSC-FDMAシンボル(ACK/NACK送信用リソース)を指定する情報を含んでもよい。さらに、設定情報は、上述したACK/NACKの信号系列に関する情報又はACK/NACKのサブキャリア配置パターンに関する情報を含んでもよい。上述したような設定情報の少なくとも一部は、後述するPDCCH送信(ステップS102)の際に送信されてもよい。UE100は、eNB200から受信した設定情報を記憶する。
 ステップS102において、eNB200は、PDCCHにより下りリンク制御情報(DCI)をUE100に送信する。DCIは、割当DL RBを含むスケジューリング情報である下りリンクSIを含む。ここでは、割当DL RBとしてRB#1を指定する場合を想定する。DCIは、第1実施形態に係る特定の送信処理を行うようUE100に指示する情報を含んでもよい。或いは、第1実施形態に係る特定の送信処理のための新たなDCIフォーマットを用いてもよい。この場合、UE100は、当該新たなDCIフォーマットの受信に応じて、特定の送信処理が指示されたと認識してもよい。DCIは、PUSCHリソースの割り当てに関する下りリンクSI(UL grant)を含まなくてもよい。UE100は、受信したDCIを復号する。
 ステップS103において、eNB200は、PDSCHにより下りリンクデータをUE100に送信する。その際のPDSCHリソースとしては、割当DL RBであるRB#1が用いられる。UE100は、DCI中の下りリンクSIに基づいて、RB#1を用いて送信された下りリンクデータを受信する。UE100は、下りリンクデータの受信に成功すればACKを生成し、下りリンクデータの受信に失敗すればNACKを生成する。
 ステップS104において、UE100は、設定情報及び/又はDCIに基づいて、周波数方向において割当DL RB(RB#1)と重複する上りリンク無線リソース(RB#1)を用いて、ACK/NACKをeNB200に送信する特定の送信処理を行う。上述したように、上りリンク無線リソースは、SC-FDMAシンボル単位で確保されており、SRSリソース又はPUSCHリソースである。ここで、UE100は、eNB200から明示的にPUSCHリソースが割り当てられていない場合、すなわち、UL grantを受信していない場合でも、ACK/NACKをeNB200に送信する。eNB200は、ACK/NACKを受信する。
 ステップS105において、eNB200は、ACK/NACKを含む参照信号(SRS、DMRS)、又はACK/NACKとは別の参照信号(DMRS)に基づいて、RB#1についてのDL CSIを推定する。具体的には、eNB200は、参照信号を用いた上りリンクのチャネル推定結果に基づき、チャネルの可逆性を利用してDL CSIを推定する。DL CSIの推定は、UE100に対する下りリンクの送信ウェイト(プリコーダ)を導出する処理を含んでもよい。
 ステップS106乃至S109の動作は、ステップS102乃至S105の動作と同様である。なお、ステップS106において、eNB200は、割当DL RBとしてRB#1を指定するDCIをUE100に送信する。ステップS106及びS107において、eNB200は、ステップS105において得られたDL CSIに基づいて、PDSCH送信に関する制御を行う。例えば、eNB200は、下りリンクの送信ウェイト(プリコーダ)を用いて下りリンクデータをUE100に送信する。eNB200は、大規模MIMOによるMIMO伝送を行ってもよい。また、eNB200は、ステップS106以降において、ステップS105以前のDL CSIの推定に基づいて、RB#1とは異なるRBを割り当ててもよい。
 [第2実施形態]
 以下において、第2実施形態について、第1実施形態との相違点を主として説明する。第2実施形態は、上下リンクのチャネルの可逆性を利用して下りリンクCSIを推定する場合において、効率的な下りリンクCSIの推定を可能とする点において、第1実施形態と同様である。
 第2実施形態に係るUE100は、TDD方式の無線通信をeNB200と行う。UE100は、上りリンク無線信号の送信に用いるリソースブロック及び/又はコンポーネントキャリアをサブフレーム単位又はスロット単位ではなく所定数のシンボル単位で切り替えながら、上りリンク無線信号をeNB200に送信する。所定数は、1つのスロット区間を構成するシンボル数(例えば「7」)よりも少ない数であってもよい。換言すると、UE100は、SC-FDMAシンボルあたりの送信を狭い周波数帯域幅で行いつつ、1サブフレーム全体で見ると広い周波数帯域幅での送信を行う。eNB200は、リソースブロック又はコンポーネントキャリアをシンボル単位で切り替えながら送信される上りリンク無線信号をUE100から受信する。eNB200は、UE100から受信した上りリンク無線信号に基づいて、チャネルの可逆性を利用して下りリンクCSIを推定する。
 図11は、第2実施形態に係る動作の一例を示す図である。図11に示すように、各UE100は、上りリンク無線信号の送信に用いるリソースブロック及び/又はコンポーネントキャリアを所定数のシンボル単位(SC-FDMAシンボル単位)で切り替えながら、上りリンク無線信号をeNB200に送信する。図11において、1シンボル単位で(1SC-FDMAシンボル単位)での切り替えを例示している。
 つまり、UE100は、シンボル単位での周波数ホッピングにより上りリンク無線信号をeNB200に送信する。ここで「上りリンク無線信号」とは、上りリンクデータ(PUSCH送信)であってもよいし、SRSであってもよい。上りリンクデータ(PUSCH送信)の場合、上りリンクデータが配置されるSC-FDMAシンボル区間に含まれる一部のリソースエレメントにDMRSが配置されてもよい。
 各UE100は、1つのスロット区間内において、上りリンク無線信号の送信に用いるリソースブロック及び/又はコンポーネントキャリアを所定数のシンボル単位で切り替えながら、上りリンク無線信号をeNB200に送信してもよい。
 また、各UE100は、eNB200から自UE100に1コンポーネントキャリア内の複数の下りリンクリソースブロックが割り当てられた場合、周波数方向において当該複数の下りリンクリソースブロックと重複する複数の上りリンクリソースブロックの範囲内で、上りリンク無線信号の送信に用いる上りリンクリソースブロックを所定数のシンボル単位で切り替えながら、上りリンク無線信号をeNB200に送信してもよい。
 さらに、UE100は、eNB200から自UE100に複数のコンポーネントキャリアが設定された場合、当該複数のコンポーネントキャリアの範囲内で、上りリンク無線信号の送信に用いるコンポーネントキャリアを所定数のシンボル単位で切り替えながら、上りリンク無線信号をeNB200に送信してもよい。ここで、「UE100にコンポーネントキャリアが設定される」とは、キャリアアグリゲーションにおける上りリンクコンポーネントキャリア(UL CC)としてUE100にコンポーネントキャリアが設定されることであってもよい。或いは、「UE100にコンポーネントキャリアが設定される」とは、SRS送信のためのSRSコンポーネントキャリア(SRS CC)としてUE100にコンポーネントキャリアが設定されることであってもよい。
 コンポーネントキャリアの切り替えを行う場合、一のコンポーネントキャリア内での送信と他のコンポーネントキャリア内での送信との間に、1SC-FDMAシンボル程度のギャップ区間を設けてもよい。すなわち、コンポーネントキャリア切り替えのための時間差を補償するために、切り替え元のコンポーネントキャリアでの送信と、切り替え後のコンポーネントキャリアでの送信との間に、所定数のシンボル分の時間だけ送信を停止する。
 コンポーネントキャリアの切り替えを行う場合、UE100は、複数のコンポーネントキャリア上での送信タイミングが重複しないように、上りリンク無線信号の送信に用いるコンポーネントキャリアを所定数のシンボル単位で切り替えながら、上りリンク無線信号をeNB200に送信してもよい。これにより、UE100が複数のコンポーネントキャリアの同時送信を行うことができない前提下において、eNB200が複数のコンポーネントキャリアのCSI推定を短時間で行うことができる。また、送信コンポーネントキャリア変更時のUE100の切り替え時間(具体的には、無線送信機の周波数切り替えに要する時間)を考慮したコンポーネントキャリアの切り替えを行うことができる。
 eNB200は、図11に示すような周波数ホッピングを行うための設定情報をRRCシグナリングにより各UE100に送信してもよいし、当該周波数ホッピングを行うためのDCIをPDCCHにより各UE100に送信してもよい。
 設定情報又はDCIは、SC-FDMAシンボル毎の送信リソースブロック・送信コンポーネントキャリアのリストを含んでもよい。例えば、シンボル#0ではコンポーネントキャリア#0のリソースブロック#10乃至15、シンボル#1ではコンポーネントキャリア#0のリソースブロック#16乃至21、シンボル#2及び#3では送信なし、シンボル#4ではコンポーネントキャリア#1のリソースブロック#1乃至4、・・・といったリストである。
 或いは、コンポーネントキャリア内での周波数分割をしない場合、設定情報又はDCIは、SC-FDMAシンボル毎の送信コンポーネントキャリアのリストを含んでもよい。例えば、シンボル#0ではコンポーネントキャリア#1、シンボル#1では送信なし、シンボル#2ではコンポーネントキャリア#1、・・・といったリストである。
 設定情報又はDCIは、コンポーネントキャリアごとの周波数分割数を示す情報を含んでもよい。例えば、分割しない、2分割、3分割・・・といった情報である。
 [第2実施形態の変更例]
 以下において、第2実施形態の変更例について説明する。第2実施形態の変更例において、シンボル単位での周波数ホッピングにより送信される上りリンク無線信号がSRSであるケースを想定する。
 (変更例1)
 第2実施形態の変更例1において、eNB200は、SRSの送信に関する送信パラメータを設定する情報をUE100に送信する。このような情報は、RRCシグナリング又はDCIにより送信される。RRCシグナリングは、UE個別RRCシグナリングである。或いは、RRCシグナリングは、ブロードキャストRRCシグナリングであってもよい。
 UE100は、eNB200から当該情報を受信し、eNB200から設定された送信パラメータに従ってSRSを送信する。送信パラメータは、SRSの送信に用いるコンポーネントキャリア(CC)、SRSの送信に用いるリソースブロック(RB)、SRSの送信に用いるサブフレーム、SRSの送信に用いるシンボルのうち、少なくとも1つを含む。
 SRSの送信に用いる1又は複数のRBは、SRSの周波数ホッピングパターンにより定められてもよい。この場合、eNB200は、SRSの周波数ホッピングパターンを示す送信パラメータをUE100に設定する。
 SRSの周波数ホッピングは、UE100に設定されるCCごとに独立して設定される。換言すると、SRSの周波数ホッピングパターンは、CCごとに個別に設定される。以下において、このようなケースを「CC個別設定」と称する。
 或いは、SRSの周波数ホッピングは、UE100に設定される複数のCCに対して一括して設定される。換言すると、SRSの周波数ホッピングパターンは、複数のCCに亘って設定される。以下において、このようなケースを「複数CC一括設定」と称する。
 まず、CC個別設定のケースについて説明する。図12は、CC個別設定の一例を示す図である。図12の例において、SRSの送信に用いる2つのCC#0及び#1がUE100に設定されている。CC#0は、上りリンクデータの送信及びSRSの送信に用いられるCC(すなわち、通常のUL CC)であってもよい。CC#1は、上りリンクデータの送信に用いられずにSRSの送信に用いられるCC(すなわち、SRS CC)であってもよい。このようなCCの種類をeNB200がUE100に設定してもよい。なお、CC#0及び#1の何れもTDDキャリアである。
 図12に示すように、SRSの周波数ホッピングパターンは、CCごとに別々に設定される。CC#0において、サブフレーム#0乃至#3のそれぞれは、SRSの送信に用いるサブフレームとして設定されている。また、各サブフレームの最終シンボル(最終SC-FDMAシンボル)#nは、SRSの送信に用いるシンボルとして設定されている。さらに、SRSの送信に用いるシンボル区間において、CC#0は周波数方向に3つのサブ帯域#0乃至#2に分割されている。各サブ帯域は、複数のRBにより構成され得る。CCの分割数又はサブ帯域の帯域幅をeNB200がUE100に設定してもよい。UE100は、サブフレーム#0の最終シンボル#nのサブ帯域#0、サブフレーム#1の最終シンボル#nのサブ帯域#1、サブフレーム#2の最終シンボル#nのサブ帯域#2、サブフレーム#3の最終シンボル#nのサブ帯域#0のそれぞれでSRSを送信する。
 また、CC#1において、サブフレーム#0乃至#3のそれぞれは、SRSの送信に用いるサブフレームとして設定されている。また、各サブフレームの3つのシンボル#(n-3)乃至#(n-1)は、SRSの送信に用いるシンボルとして設定されている。さらに、SRSの送信に用いるシンボル区間において、CC#1は周波数方向に3つのサブ帯域#0乃至#2に分割されている。CC#1の各サブフレームにおいて、UE100は、シンボル単位でサブ帯域(複数のRB)を切り替えながらSRSを送信する。これにより、eNB200は、1つのサブフレームでCC#1全体のCSIを推定することができる。
 但し、UE100は、複数のCCで同時送信を行う能力を有しない。例えば、UE100は、送信機を1つのみ有しており、当該送信機は複数のCCで同時送信を行うことができない。或いは、CC#0及び#1は、複数のCCで同時送信を行うことが好ましくない周波数帯に属する。特に、複数のCCで同時送信を行う能力を有しないUE100は、一方のCCでの送信と他方のCCでの送信とを連続的に行うことは困難である。具体的には、UE100は、一方のCCでの送信と他方のCCでの送信との間に、CC切り替えのための処理を行う必要がある。
 eNB200は、このような切り替えのための送信停止期間である切り替えギャップをUE100に設定する。図12の例において、eNB200は、各サブフレームのシンボル#(n-1)を切り替えギャップとしてUE100に設定している。例えば、eNB200は、切り替えギャップを構成するシンボルのシンボル番号を送信パラメータとしてUE100に設定してもよい。切り替えギャップを構成するシンボル番号は、CC毎の独立設定であってもよく、複数CC共通設定であってもよい。或いは、UE100は、切り替えギャップを自律的に設定してもよい。
 UE100は、切り替えギャップの間は送信を停止するとともに、一のCCから他のCCへの切り替えを行う。図12の例において、UE100は、CC#1のサブフレーム#0のシンボル#(n-1)におけるSRSの送信を中止し、CC#0へ送信キャリアを切り替える。送信キャリアを切り替えた後、UE100は、CC#0のサブフレーム#0のシンボル#nにおいてSRSを送信する。ここで、切り替えギャップと競合したSRS送信は、同一CCにおける次の送信可能シンボルに延期されてもよい。図12の例において、UE100は、サブフレーム#0において切り替えギャップと競合したサブ帯域#2のSRS送信を中止している。このため、UE100は、次のサブフレーム#1の最初のSRS送信タイミングであるシンボル#(n-3)においてサブ帯域#2のSRS送信を行う。次に、サブフレーム#1のシンボル#(n-2)においてサブ帯域#0のSRS送信を行う。以降、UE100は、このような動作を繰り返す。
 次に、複数CC一括設定のケースについて説明する。図13は、複数CC一括設定の一例を示す図である。図13の例において、SRSの送信に用いる2つのCC#0及び#1がUE100に設定されている。CC#0及び#1は、上りリンクデータの送信に用いられずにSRSの送信に用いられるCC(SRS CC)であってもよい。以下において、CC個別設定のケースとの相違点を主として説明する。
 図13に示すように、SRSの周波数ホッピングパターンはCC#0及び#1に亘って設定される。CC#0及び#1において、サブフレーム#0乃至#3のそれぞれは、SRSの送信に用いるサブフレームとして設定されている。また、各サブフレームの5つのシンボル#(n-4)乃至#nは、SRSの送信に用いるシンボルとして設定されている。
 図13の例において、UE100は、CC#0のサブフレーム#0において、シンボル#(n-4)のサブ帯域#0、シンボル#(n-3)のサブ帯域#1、シンボル#(n-2)のサブ帯域#2のそれぞれでSRSを送信する。このように、UE100は、CC#0内ではサブ帯域(複数のRB)単位での周波数ホッピングを行う。そして、UE100は、送信キャリアをCC#1へ切り替える。
 CCの切り替え時には、上述した切り替えギャップを設ける。図13の例において、CC#1のサブフレーム#0のシンボル#(n-1)は、切り替えギャップとして設定されている。切り替えギャップを構成するCC番号及び/又はシンボル番号をeNB200がUE100に設定してもよい。或いは、このような明示的な設定に代えて、暗示的な設定を用いてもよい。例えば、eNB200は、切り替えギャップを設けるCCの決定ルールとして、以下の何れかのルールをUE100に設定する。
 ・プライマリセルに相当するCCを優先し、それ以外のセルに相当するCCに切り替えギャップを設ける。プライマリセルは、キャリアアグリゲーションにおいてPUCCH及びRRCシグナリングを伝送するセルである。「それ以外のセルに相当するCC」とは、例えば、セカンダリセルに相当するCC又はSRS CCである。
 ・アクティベートされているセルに相当するCCを優先し、それ以外のセルに相当するCCに切り替えギャップを設ける。アクティベートとは、RRCシグナリングにより設定されたセルに対してMAC制御エレメント等により使用開始が指示された状態を意味する。
 ・切り替え前のCCを優先し、切り替え後のCCに切り替えギャップを設ける。
 ・切り替え後のCCを優先し、切り替え前のCCに切り替えギャップを設ける。
 ・CC間の優先度をeNB200から明示的に通知し、優先度の低いCCに切り替えギャップを設ける。
 或いは、上記のようなルールがUE100に事前設定されており、UE100が自律的に切り替えギャップを設定してもよい。
 なお、複数CC一括設定において、eNB200は、複数のCCに共通して適用される少なくとも1つの共通送信パラメータをUE100に設定してもよい。共通送信パラメータは、各CCの帯域幅に依存しないパラメータであり、例えばSRS設定のインデックス(srs-ConfigIndex)を含んでもよい。さらに、eNB200は、CCに個別に適用される少なくとも1つの個別送信パラメータをUE100に設定してもよい。個別送信パラメータは、各CCの帯域幅に依存しないパラメータである。
 (変更例2)
 上述した第2実施形態及びその変更例において、SRSの送信に用いるサブフレーム内において、シンボル単位でサブ帯域(複数のRB)を切り換える周波数ホッピングを行う一例を説明した。この場合、UE100は、連続する各シンボルにおいてSRSを送信する。すなわち、UE100は、サブフレーム内においてSRSを連続的に送信する。
 しかしながら、UE100は、サブフレーム内においてSRSを間欠的に送信してもよい。また、eNB200は、SRSの送信に用いるシンボルの間隔をUE100に設定してもよい。UE100は、設定された間隔に従ってSRSを間欠的に送信する。
 図14は、第2実施形態の変更例2を示す図である。図14の例において、SRSの送信に用いるサブフレーム内において、SRSの送信に用いるシンボル(SRS送信シンボル)間には、1シンボル分の間隔が設けられている。この場合、偶数番目のシンボルでSRSを送信する第1の送信パターンと奇数番目のシンボルでSRSを送信する第2の送信パターンとの2つのパターン(a)及び(b)がある。eNB200は、何れか一方のパターンをUE100に設定する。UE100は、eNB200から設定されたSRS送信シンボルにおいてSRSを送信する。このような間欠的な送信パターンを規定することにより、SRS送信を時分割で多重化することができる。具体的には、一方のパターン(a)を第1のUEに設定し、他方のパターン(b)を第2のUEに設定することにより、第1のUE及び第2のUEでSRS送信が衝突することを防止できる。なお、図14に示すような1シンボル分の間隔に代えて、2又は3シンボル分の間隔を設けてもよい。
 UE100は、図14に示すようなSRS送信を、CCを切り替えながら行ってもよい。例えば、UE100は、1サブフレーム内で、CC#0でシンボル#(n-5)、CC#1でシンボル#(n-3)、CC#0(又はCC#2)でシンボル#(n-1)といったリソース(奇数シンボル)を利用して、常にギャップを設けながら送信する。この場合、例えば別のUEがCC#0でシンボル#(n-4)、CC#1でシンボル#(n-2)、CC#0(又はCC#2)といったリソース(偶数シンボル)に設定されることで、直交リソースを確保することが可能となる。
 (変更例3)
 上述した第2実施形態及びその変更例において、UE100の能力として同時送信可能なCCの数が1つであるケースを主として説明した。例えば、上りリンク送信に用いるCCの数が1つであり、下りリンク送信に用いるCCの数が2以上である。但し、上りリンクについて、2CCを設定しておきながら、同時送信は(データ送信も含めて)1CCのみに限定してもよい。
 しかしながら、UE100の能力として同時送信可能なCCの数が2以上であるケースもあり得る。以下において、UE100が同時送信可能なCC数が2である一例を説明するが、UE100が同時送信可能なCC数は3以上であってもよい。
 図15は、第2実施形態の変更例3を示す第1の図である。図15に示すように、UE100には、3つのCC#0乃至#2が設定されている。CC#0乃至#2のそれぞれは、TDDキャリアである。CC#0及びCC#2は、上りリンクデータの送信に用いるCCである。すなわち、UE100には、2つのUL CCを用いるキャリアアグリゲーションである「2UL CA」が設定されている。或いは、設定されるCA数(データ送信に係るCC数)は1であるものの、UE100の能力としては2UL CAに対応しているケースを想定してもよい。また、CC#0乃至CC#2は、何れも下りリンクデータの送信に用いるCCである。すなわち、UE100には、3つのDL CCを用いるキャリアアグリゲーションである「3DL CA」が設定されている。
 ここで、CC#1は、上りリンクデータの送信に用いられずにSRSの送信に用いられるCC(SRS CC)である。「2UL CA」が設定されたUE100は、2つのCCの同時送信を行うことが許容されるものの、3つのCCの同時送信を行うことは許容されない。よって、3つのCCでSRSを同時に送信することを防止する仕組みが必要である。
 図16は、第2実施形態の変更例3を示す第2の図である。図16に示すように、eNB200は、SRSの同時送信を行わないCCからなるCC群をUE100に設定する。CC群は、上りリンクデータ及びSRSの送信に用いられる第1のCC(通常のUL CC)と、上りリンクデータの送信に用いられずにSRSの送信に用いられる第2のCC(SRS CC)と、を含む。なお、SRSの同時送信を行わないCC群に含まれるCCの数は、3以上であってもよい。
 UE100は、第1のCC及び第2のCCでSRSの同時送信を行わないよう制御する。図16の例において、eNB200は、CC#1をSRS CCとしてUE100に設定すると共に、CC#1をCC#0(通常のUL CC)に紐付けるようUE100に設定する。UE100は、CC#0とCC#1との間ではSRSの同時送信を行わない。また、CC#0とCC#1との間の切り替え時には、上述した切り替えギャップを設ける。これにより、CC#0とCC#1との間でSRSの同時送信が行われないため、結果的に3つのCCでSRSを同時に送信することを防止できる。但し、UE100は、CC#0とCC#2との間ではSRSの同時送信を行ってもよく、CC#1とCC#2との間ではSRSの同時送信を行ってもよい。
 但し、UE100がセル端に位置するような場合には、UE100の送信電力の制限上、SRS送信を単一のCCに絞ることが好ましい。このため、eNB200は、CC#0乃至#2をSRSの同時送信を行わないCC群としてUE100に設定してもよい。
 (変更例4)
 上述した第2実施形態及びその変更例において、切り替えギャップの時間長が一定であるケースを主として説明した。しかしながら、UE100の送信機の能力及び/又はCC間の周波数間隔に依存して、CC間の切り替えに要する時間は変化し得る。例えば、周波数方向に連続するCC(contiguous CC)間でのキャリア切り替えに比べて、周波数方向に連続しないCC(non-contiguous CC)間でのキャリア切り替えの方が長い時間が必要になり得る。
 よって、eNB200は、UE100の能力及び/又はUE100に設定されたCCを考慮して、UE100ごとに切り替えギャップの時間長を設定してもよい。すなわち、eNB200は、切り替えギャップの時間長を示す送信パラメータをUE100に設定する。UE100は、一のCCでの送信と他のCCでの送信との間のキャリア切り替えに要する時間を示す能力情報をeNB200に通知してもよい。eNB200は、UE100から通知された能力情報に基づいて、当該UE100に切り替えギャップの時間長を設定してもよい。
 或いは、UE100は、自UEの能力及び/又は自UEに設定されたCCを考慮して、切り替えギャップの時間長を自律的に設定してもよい。この場合、UE100は、自律的に設定した切り替えギャップに関する情報(時間長及び/又はシンボル位置)をeNB200に通知してもよい。或いは、UE100は、自UEが設定を要求する切り替えギャップに関する情報(時間長及び/又はシンボル位置)をeNB200に通知してもよい。eNB200は、UE100から要求された切り替えギャップに基づいてUE100に切り替えギャップを設定してもよい。
 (変更例5)
 上述した第2実施形態及びその変更例において、周期的に送信されるSRS(すなわち、Periodic SRS)を用いるケースを主として説明した。しかしながら、SRSは、非周期的(Aperiodic)に送信されてもよい。
 一般的に、非周期的なSRSの送信は、次の手順で行われる。まず、eNB200は、非周期的なSRSの送信パラメータをRRCシグナリングによりUE100に設定する。次に、eNB200は、SRS送信トリガ(1ビットのフラグ)をDCIによりUE100に送信する。UE100は、SRS送信トリガの受信に応じて、送信パラメータに従ったSRSをeNB200に送信する。非周期的なSRSの送信パラメータは、SRS送信アンテナポートを示すsrs-AntennaPortAp、SRS送信RB(送信帯域幅及び周波数位置)を示すsrs-BandwidthAp及びfreqDomainPositionAp、SRS送信サブキャリアを示すtransmissionCombAp、SRSサイクリックシフトを示すcyclicShiftApを含む。
 これに対し、第2実施形態の変更例5において、eNB200は、SRS送信トリガの送信時に、SRS送信CC、SRS送信RB、SRS送信シンボル位置のうち少なくとも1つをUE100に通知する。SRS送信CCは、SRSの送信に用いるCCである。SRS送信RBは、SRSの送信に用いる1又は複数のRBである。SRS送信シンボルは、SRSの送信に用いるシンボル位置(シンボル番号)である。これらのパラメータは、DCIによりeNB200からUE100に送信される。これらのパラメータを暗示的なSRS送信トリガとして取り扱ってもよい。或いは、これらのパラメータは、MAC制御エレメントによりeNB200からUE100に送信されてもよい。
 UE100は、SRS送信トリガの受信に応じて、eNB200からDCI(又はMAC制御エレメント)により指定された送信パラメータに従ったSRSをeNB200に送信する。UE100は、SRS送信トリガ時に指定された送信パラメータに加えて、RRCシグナリングにより設定されたパラメータの少なくとも一部に基づいてSRSを送信してもよい。UE100は、RRCシグナリングにより設定されたパラメータの一部に代えて、SRS送信トリガ時に指定された送信パラメータを適用してもよい。
 或いは、CC毎に非周期的SRSの設定がRRCシグナリングで設定され、DCIではCC指定情報を含むトリガが通知されてもよい。具体的には、eNB200は、非周期的SRSの送信パラメータをCCと対応付けてRRCシグナリングによりUE100に設定する。次に、eNB200は、CCを示す情報を含むSRS送信トリガをDCIによりUE100に送信する。UE100は、SRS送信トリガで示されるCCに対応する送信パラメータを用いて非周期的SRSを送信する。
 (変更例6)
 上述した第2実施形態及びその変更例において、周期的なSRSを送信するUE100が複数存在するようなケースでは、SRS送信リソース及びSRS直交系列の割り当て制御が複雑化する虞がある。また、周期的なSRSと非周期的なSRSとを併用するようなケースでは、周期的なSRSの送信を一時的に停止させることができることが好ましい。
 図17は、第2実施形態の変更例6を示す図である。図17に示すように、eNB200は、SRSを周期的に送信するUE100に対して、SRSの送信の停止を指示する情報を送信する。UE100は、eNB200からの指示に応じて、SRSの送信を停止する。eNB200は、SRSの送信停止(deactivation)をUE100に指示した後、SRSの送信再開(activation)をUE100に指示してもよい。この場合、UE100は、eNB200からの指示に応じて、SRSの送信を再開する。或いは、SRSの送信停止の指示は、1回限りの送信停止(one-shot deactivation)の指示であってもよい。或いは、SRSの送信停止の指示は、送信を停止する期間を指定する情報を含んでもよい。この場合、UE100は、当該期間の経過後にSRSの送信を再開する。eNB200の指示は、DCIにより行われてもよいし、MAC制御エレメントにより行われてもよい。
 (変更例7)
 上述した第2実施形態及びその変更例において、SRSを送信するCCを切り換えるために切り替えギャップを設定するケースを主として説明した。しかしながら、一方のCCでSRSを送信するシンボルと他方のCCで上りリンクデータを送信するシンボルとは時間方向において隣接し得る。この場合、複数CCの同時送信ができないUE100は、CCを切り換えるために切り替えギャップを設ける必要があり得る。
 第2実施形態の変更例7において、UE100は、第1のCCでSRSを送信する処理と、第2のCCで上りリンクデータを送信する処理と、を行う。UE100は、SRSを送信すべき第1のシンボルと上りリンクデータを送信すべき第2のシンボルとが時間方向において隣接する場合、第1のシンボル及び第2のシンボルのうち一方の送信を停止する。例えば、UE100は、上りリンクデータの最初のシンボル又は上りリンクデータの最後のシンボルの送信を停止し、送信を停止したシンボル区間を切り替えギャップとして用いる。或いは、UE100は、上りリンクデータの送信を優先するために、SRSの送信(第1のシンボル)を停止してもよい。或いは、第2実施形態の変更例1で説明したように、切り替えギャップを設けるCCの決定ルールをeNB200がUE100に設定してもよい。
 [第3実施形態]
 以下において、第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。上述した第1実施形態及び第2実施形態において、UE100とeNB200との間の同期及びRRC接続が確立した後における動作を説明した。一方、第3実施形態は、UE100とeNB200との間の同期又はRRC接続を確立するためのランダムアクセス手順に関する実施形態である。なお、第3実施形態は、必ずしもTDD方式を前提としない。
 (ランダムアクセス手順)
 ランダムアクセス手順の概要について説明する。図18は、一般的なランダムアクセス手順を示すシーケンス図である。図18の初期状態において、UE100は、eNB200のセルにおいてRRCアイドルモード又はRRCコネクティッドモードである。UE100は、RRCアイドルモードにおいて初期接続(Initial access)を行うために、図18に示すランダムアクセス手順を行う。或いは、UE100は、RRCコネクティッドモードにおいて上りリンク同期状態が非同期(Non-synchronised)である場合、上りリンク送信を行うためにランダムアクセス手順を行ってもよい。
 図18に示すように、ステップS301において、UE100は、RACHによりランダムアクセスプリアンブル(RA Preamble)をeNB200に送信する。なお、RACHとして用いることが可能な上りリンク無線リソース(PRACHリソース)は、例えば1無線リソースにつき1つのサブフレームの割合で設けられ、周波数方向における中央の6つのリソースブロックにより構成される。PRACHリソースは、UE100からのランダムアクセスプリアンブルを伝送するためのものであるため、データの伝送には使用されない。また、「RA Preamble」は、Msg1と称されることがある。「RA Preamble」は、MAC層においてUE100からeNB200へのランダムアクセスを行うための信号である。eNB200は、「RA Preamble」を受信する。
 ステップS302において、eNB200は、DL-SCH(PDSCH)によりランダムアクセス応答(RA Response)をUE100に送信する。「RA Response」は、MAC制御要素(MAC CE)の一種であり、Msg2と称されることがある。具体的には、eNB200は、UE100から受信した「RA Preamble」に基づいて、UE100との間の上りリンク遅延を推定する。また、eNB200は、UE100に割り当てる上りリンク無線リソースを決定する。そして、eNB200は、遅延推定の結果に基づくタイミング補正値(TA:Timing Advance)、無線リソースの割り当て情報(UL grant)、プリアンブル識別子(Preamble ID)、及び「Temporary C-RNTI」を含む「RA Response」をUE100に送信する。なお、「Preamble ID」は、UE100から受信した「RA Preamble」の信号系列を示すIDである。また、物理層(PDCCH)において、「RA Response」の送信には専用のRNTI(RA-RNTI)が用いられる。UE100は、「RA Response」を受信する。
 ステップS303において、UE100は、「RA Response」に基づいてUL-SCH(PUSCH)によりeNB200に上りリンク送信(Scheduled Transmission)を行う。「Scheduled Transmission」は、Msg3と称されることがある。初期接続(Initial access)の場合、「Scheduled Transmission」は、「RRC Connection Request」メッセージである。それ以外の場合(すなわち、UE100にC-RNTIが割り当てられている場合)、「Scheduled Transmission」は、UE100のC-RNTIを含むメッセージである。eNB200は、「Scheduled Transmission」を受信する。
 ステップS304において、eNB200は、競合解決(Contention Resolution)メッセージをUE100に送信する。「Contention Resolution」メッセージは、Msg4と称されることがある。「Contention Resolution」メッセージは、ステップS303でUE100から受信したメッセージの内容を含む。初期接続(Initial access)の場合、物理層(PDCCH)において、「Contention Resolution」メッセージの送信には「Temporary C-RNTI」が用いられる。UE100にC-RNTIが割り当てられている場合、物理層(PDCCH)において、「Contention Resolution」メッセージの送信には「C-RNTI」が用いられる。UE100は、「Contention Resolution」メッセージを受信する。
 (第3実施形態に係る動作)
 次に、第3実施形態に係る動作について説明する。第3実施形態に係るeNB200は、UE100からランダムアクセスプリアンブルを受信する処理と、ランダムアクセスプリアンブルに対応するランダムアクセス応答を、UE個別の復調用参照信号と共にUE100に送信する処理と、を行う。UE個別の復調用参照信号は、UE-specific RSと称される。UE-specific RSは、eNB200がUE100に割り当てた割当無線リソース(PDSCHリソース)に含まれる。すなわち、UE-specific RSは、UE100に対する下りリンクデータの送信に用いるアンテナ及び割当無線リソースにおいて送信される。また、UE-specific RSには、対応する下りリンクデータと同様な下りリンクの送信ウェイトが適用される。これにより、ランダムアクセス応答(Msg2)の段階からMIMO又はビームフォーミング等による高度なPDSCH送信を行うことが可能となる。
 第3実施形態において、eNB200は、ランダムアクセスプリアンブルを用いたチャネル推定結果に基づいて、UE100に対する下りリンクの送信ウェイトを導出する処理と、下りリンクの送信ウェイトを用いて、ランダムアクセス応答をUE-specific RSと共にUE100に送信する処理と、を行う。
 第3実施形態において、ランダムアクセス応答の送信に用いる下りリンクリソースブロックは、ランダムアクセスプリアンブルの送信に用いられた上りリンクリソースブロックと周波数方向において重複してもよい。この場合、eNB200は、下りリンクリソースブロックの割り当て情報をUE100に送信することなく、ランダムアクセス応答をUE100に送信してもよい。換言すると、eNB200は、PDCCH送信を省略して、ランダムアクセス応答の送信(PDSCH送信)を行う。
 図19は、第3実施形態に係る動作の一例を示すシーケンス図である。ここでは、上述した一般的なランダムアクセス手順との相違点を主として説明する。
 図19に示すように、ステップS311において、UE100は、PRACHリソースに含まれる上りリンクリソースブロック(ここでは、リソースブロック#1)によりランダムアクセスプリアンブル(RA Preamble)をeNB200に送信する。eNB200は、「RA Preamble」を受信する。
 第3実施形態において、UE100は、「RA Preamble」を送信した後、PDSCH受信を試みる。具体的には、UE100は、「RA Preamble」の送信に用いた上りリンクリソースブロックと同じリソースブロック(リソースブロック#1)、かつ、ランダムアクセス応答(RA Response)の受信が期待される候補タイミングにおいて、PDSCH受信を試みる。
 ステップS312において、eNB200は、UE100から受信した「RA Preamble」を用いて、UE100との間の上りリンク遅延を推定する。第3実施形態において、eNB200は、UE100から受信した「RA Preamble」を用いてチャネル推定を行う。なお、「RA Preamble」を用いたチャネル推定は、「RA Preamble」が伝搬路を経由する際に受けた減衰量及び位相回転量等を推定する処理であるため、上りリンク遅延を推定する処理とは異なる。そして、eNB200は、チャネルの可逆性を利用して下りリンクCSIを推定する。下りリンクCSIは、下りリンクの送信ウェイト(プリコーダ)を含む。
 ステップS313において、eNB200は、PDSCHにより、下りリンクの送信ウェイト(プリコーダ)を適用して「RA Response」をUE100に送信する。第3実施形態において、eNB200は、「RA Preamble」の送信に用いられた上りリンクリソースブロックの一部又は同じリソースブロック(リソースブロック#1)を用いて、「RA Response」をUE100に送信する。その際、eNB200は、UE100に対するPDCCH送信を行わない。また、eNB200は、PDSCH送信の際に、下りリンクの送信ウェイト(プリコーダ)を適用してUE-specific RSを送信する。
 上述したように、UE100は、「RA Preamble」の送信に用いた上りリンクリソースブロックと同じリソースブロック(リソースブロック#1)のPDSCHの受信を試みることにより、PDCCH受信を行うことなく「RA Response」を受信する。また、UE100は、UE-specific RSを用いたチャネル推定により「RA Response」を復調する。その後の動作については、上述した一般的なランダムアクセス手順と同様である。
 [その他の実施形態]
 上述した第1実施形態乃至第3実施形態において、インターリーブ分割多重アクセス(IDMA)について特に触れなかった。しかしながら、第1実施形態乃至第3実施形態にIDMAを適用してもよい。IDMAは、異なるUE100の信号をUE固有のインターリーバによって区別及び分離する技術である。例えば、第1実施形態に係るACK/NACKにIDMAを適用することにより、UE多重数を増加させてもよい。
 上述した第1実施形態乃至第3実施形態は、別個独立に実施してもよいし、2以上の実施形態を組み合わせて実施してもよい。2以上の実施形態を組み合わせる場合、一の実施形態の一部を他の実施形態の一部と置換してもよい。例えば、第3実施形態に係るPRACH(ランダムアクセスプリアンブル)の送信方法を第2実施形態に係るSRSの送信に適用してよい。
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外の移動通信システムに本発明を適用してもよい。
 [相互参照]
 本願は米国仮出願第62/212024号(2015年8月31日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
 本願発明は通信分野において有用である。

Claims (30)

  1.  時分割複信方式の無線通信を基地局と行う制御部を備え、
     前記制御部は、
     前記基地局から下りリンク無線信号を受信する処理と、
     前記基地局から上りリンク無線リソースがデータ送信用に割り当てられなくても、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を上りリンク制御チャネルリソースとは異なる上りリンク無線リソースを用いて前記基地局に送信する特定の送信処理と、を行う無線端末。
  2.  前記制御部は、
      前記受信する処理において、前記基地局から割り当てられた下りリンクリソースブロックを用いて、前記下りリンク無線信号を受信し、
      前記特定の送信処理において、周波数方向において前記下りリンクリソースブロックと重複する上りリンク無線リソースを用いて前記応答情報を送信する請求項1に記載の無線端末。
  3.  前記特定の送信処理は、前記応答情報の送信に用いる前記上りリンク無線リソースを、時間方向においてサブフレーム単位又はスロット単位ではなくシンボル単位で特定する処理を含む請求項1に記載の無線端末。
  4.  前記制御部は、前記基地局からの指示に基づいて前記特定の送信処理を行う請求項1に記載の無線端末。
  5.  前記基地局からの指示には、前記応答情報を送信するための上りリンク無線リソースを指定する情報が含まれている請求項4に記載の無線端末。
  6.  前記上りリンク無線リソースは、サウンディング参照信号リソースを含み、
     前記特定の送信処理は、前記周波数方向において前記下りリンクリソースブロックと重複する前記サウンディング参照信号リソースを用いて、前記応答情報を含むサウンディング参照信号を前記基地局に送信する処理を含む請求項2に記載の無線端末。
  7.  前記応答情報は、前記サウンディング参照信号の信号系列又は前記サウンディング参照信号のリソース配置パターンにより、前記下りリンク無線信号の受信に成功したか否かが示されるものである請求項6に記載の無線端末。
  8.  前記特定の送信処理は、複数のサブキャリアを用いて、前記応答情報を含む前記サウンディング参照信号を前記基地局に送信する処理を含み、
     前記複数のサブキャリアには、2以上のサブキャリアに相当する周波数間隔が設けられる請求項6に記載の無線端末。
  9.  前記上りリンク無線リソースは、物理上りリンク共有チャネルリソースを含み、
     前記特定の送信処理は、前記周波数方向において前記下りリンクリソースブロックと重複する前記物理上りリンク共有チャネルリソースを用いて、前記応答情報とは別の復調参照信号又は前記応答情報を含む復調参照信号を送信する処理を含む請求項2に記載の無線端末。
  10.  時分割複信方式の無線通信を無線端末と行う制御部を備え、
     前記制御部は、特定の送信処理を行わせるための指示を前記無線端末に送信する処理を行い、
     前記特定の送信処理は、前記無線端末が、自基地局から割り当てられた下りリンクリソースブロックと周波数方向において重複する上りリンク無線リソースを用いて応答情報を前記基地局に送信する処理であり、
     前記応答情報は、前記下りリンクリソースブロックを用いて送信された下りリンク無線信号の受信に成功したか否かが示される情報である基地局。
  11.  時分割複信方式の無線通信を基地局と行う制御部を備え、
     前記制御部は、
     前記基地局から下りリンク無線信号を受信する処理と、
     時間方向においてサブフレーム単位又はスロット単位ではなくシンボル単位で確保された上りリンク無線リソースを用いて、前記下りリンク無線信号の受信に成功したか否かを示す応答情報を前記基地局に送信する処理と、を行う無線端末。
  12.  時分割複信方式の無線通信を基地局と行う制御部を備え、
     前記制御部は、
     前記基地局から下りリンク無線信号を受信する処理と、
     前記下りリンク無線信号の受信に成功したか否かを示す応答情報を含む参照信号を前記基地局に送信する処理と、を行い、
     前記参照信号は、サウンディング参照信号又は復調参照信号である無線端末。
  13.  時分割複信方式の無線通信を基地局と行う制御部を備え、
     前記制御部は、上りリンク無線信号の送信に用いるリソースブロック及び/又はコンポーネントキャリアをサブフレーム単位又はスロット単位ではなく所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行う無線端末。
  14.  前記所定数は、1つのスロット区間を構成するシンボル数よりも少ない数である請求項13に記載の無線端末。
  15.  前記上りリンク無線信号は、サウンディング参照信号である請求項13に記載の無線端末。
  16.  前記基地局から自無線端末に複数のコンポーネントキャリアが設定された場合、前記制御部は、前記複数のコンポーネントキャリアの範囲内で、前記上りリンク無線信号の送信に用いるコンポーネントキャリアを前記所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行う請求項13に記載の無線端末。
  17.  前記制御部は、切り替え元のコンポーネントキャリアでの送信と切り替え後のコンポーネントキャリアでの送信との間に、1又は複数シンボル分の切り替えギャップを設ける請求項16に記載の無線端末。
  18.  前記制御部は、前記複数のコンポーネントキャリア上での送信タイミングが重複しないように、前記上りリンク無線信号の送信に用いるコンポーネントキャリアを前記所定数のシンボル単位で切り替えながら、前記上りリンク無線信号を前記基地局に送信する処理を行う請求項16に記載の無線端末。
  19.  前記制御部は、
     前記上りリンク無線信号の送信に関する送信パラメータを設定する情報を前記基地局から受信する処理と、
     前記基地局から設定された前記送信パラメータに従って前記上りリンク無線信号を送信する処理と、を行い、
     前記送信パラメータは、前記上りリンク無線信号の送信に用いるコンポーネントキャリア、前記上りリンク無線信号の送信に用いるリソースブロック、前記上りリンク無線信号の送信に用いるサブフレーム、前記上りリンク無線信号の送信に用いるシンボルのうち、少なくとも1つを含む請求項13に記載の無線端末。
  20.  前記送信パラメータは、一のコンポーネントキャリアでの送信と他のコンポーネントキャリアでの送信との間に設ける切り替えギャップを設定するパラメータを含み、
     前記制御部は、前記切り替えギャップの間は送信を停止するとともに、前記一のコンポーネントキャリアから前記他のコンポーネントキャリアへの切り替えを行う請求項19に記載の無線端末。
  21.  前記送信パラメータは、複数のコンポーネントキャリアに亘る周波数ホッピングのホッピングパターンを設定するパラメータを含み、
     前記制御部は、前記ホッピングパターンに従って前記複数のコンポーネントキャリアに亘る前記周波数ホッピングにより前記上りリンク無線信号を送信する処理を行う請求項19に記載の無線端末。
  22.  前記送信パラメータは、前記上りリンク無線信号の送信に用いるシンボルの間隔を設定するパラメータを含み、
     前記制御部は、前記間隔に従って前記上りリンク無線信号を間欠的に送信する処理を行う請求項19に記載の無線端末。
  23.  前記上りリンク無線信号は、サウンディング参照信号であり、
     前記送信パラメータは、コンポーネントキャリア群を設定するパラメータを含み、
     前記コンポーネントキャリア群は、
     上りリンクデータ及び前記サウンディング参照信号の送信に用いられる第1のコンポーネントキャリアと、
     前記上りリンクデータの送信に用いられずに前記サウンディング参照信号の送信に用いられる第2のコンポーネントキャリアと、を含み、
     前記制御部は、前記第1のコンポーネントキャリア及び前記第2のコンポーネントキャリアで前記サウンディング参照信号の同時送信を行わないよう制御する請求項19に記載の無線端末。
  24.  前記制御部は、一のコンポーネントキャリアでの送信と他のコンポーネントキャリアでの送信との間の切り替えに要する時間を示す能力情報、又は自無線端末に設定を要求する切り替えギャップを示す要求情報を前記基地局に通知する請求項13に記載の無線端末。
  25.  前記制御部は、
     前記上りリンク無線信号を周期的に送信する処理と、
     前記上りリンク無線信号の送信の停止を指示する情報を前記基地局から受信する処理と、
     前記基地局からの指示に応じて、前記上りリンク無線信号の送信を停止する処理と、を行う請求項13に記載の無線端末。
  26.  前記上りリンク無線信号は、サウンディング参照信号であり、
     前記制御部は、
     第1のコンポーネントキャリアで前記サウンディング参照信号を送信する処理と、
     第2のコンポーネントキャリアで上りリンクデータを送信する処理と、
     前記サウンディング参照信号を送信すべき第1のシンボルと前記上りリンクデータを送信すべき第2のシンボルとが時間方向において隣接する場合、前記第1のシンボル及び前記第2のシンボルのうち一方の送信を停止する処理と、を行う請求項13に記載の無線端末。
  27.  無線端末との無線通信を行う制御部を備え、
     前記制御部は、
     前記無線端末からランダムアクセスプリアンブルを受信する処理と、
     前記ランダムアクセスプリアンブルに対応するランダムアクセス応答を、無線端末個別の復調用参照信号と共に前記無線端末に送信する処理と、を行う基地局。
  28.  前記制御部は、
     前記ランダムアクセスプリアンブルを用いたチャネル推定結果に基づいて、前記無線端末に対する下りリンクの送信ウェイトを導出する処理と、
     前記下りリンクの送信ウェイトを用いて、前記ランダムアクセス応答と共に前記無線端末個別の復調用参照信号を前記無線端末に送信する処理と、を行う請求項27に記載の基地局。
  29.  前記ランダムアクセス応答の送信に用いる下りリンクリソースブロックは、前記ランダムアクセスプリアンブルの送信に用いられた上りリンクリソースブロックと周波数方向において重複する請求項27に記載の基地局。
  30.  前記制御部は、前記下りリンクリソースブロックの割り当て情報を前記無線端末に送信することなく、前記ランダムアクセス応答を前記無線端末に送信する処理を行う請求項29に記載の基地局。
PCT/JP2016/072439 2015-08-31 2016-07-29 無線端末及び基地局 WO2017038337A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017537670A JP6762303B2 (ja) 2015-08-31 2016-07-29 無線端末及び基地局
US15/904,566 US10805059B2 (en) 2015-08-31 2018-02-26 Radio terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562212024P 2015-08-31 2015-08-31
US62/212,024 2015-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/904,566 Continuation US10805059B2 (en) 2015-08-31 2018-02-26 Radio terminal and base station

Publications (1)

Publication Number Publication Date
WO2017038337A1 true WO2017038337A1 (ja) 2017-03-09

Family

ID=58188575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072439 WO2017038337A1 (ja) 2015-08-31 2016-07-29 無線端末及び基地局

Country Status (3)

Country Link
US (1) US10805059B2 (ja)
JP (1) JP6762303B2 (ja)
WO (1) WO2017038337A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018200747A1 (en) * 2017-04-25 2018-11-01 Qualcomm Incorporated Transmitting uplink control information (uci)
CN111034321A (zh) * 2017-08-02 2020-04-17 Lg电子株式会社 终端在无线通信系统中发送上行链路信号的方法及使用该方法的终端
JP2020512745A (ja) * 2017-03-17 2020-04-23 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 機器ビーム相反性特定方法、装置および電子機器
JP2022520255A (ja) * 2019-02-15 2022-03-29 華為技術有限公司 フィードバック情報送信方法及び装置
CN114745793A (zh) * 2017-08-10 2022-07-12 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备
EP4145746A4 (en) * 2020-05-20 2023-10-25 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770038A (zh) * 2014-12-16 2020-10-13 富士通株式会社 下行信道估计方法、装置、通信系统以及终端
CN106506127B (zh) * 2015-09-06 2021-03-16 中兴通讯股份有限公司 一种传输信息的方法和装置
CN106572506B (zh) * 2015-10-13 2021-03-30 华为技术有限公司 一种子带切换的方法、设备及系统
KR20170078530A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비면허 대역의 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 장치, 그리고 사운딩 참조 신호의 전송을 트리거하는 방법 및 장치
CN107959647B (zh) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 多载波系统的符号配置方法及装置、数据解调方法及装置
US11165607B2 (en) * 2017-01-17 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting sounding reference signal, terminal device and network device
CN108667579B (zh) * 2017-03-30 2021-08-03 华为技术有限公司 一种数据发送方法、相关设备及系统
US11863315B2 (en) * 2017-12-04 2024-01-02 Qualcomm Incorporated Techniques and apparatuses for avoiding collisions on an uplink data channel and a cell-specific or UE-specific uplink control channel
JP7302482B2 (ja) * 2018-01-16 2023-07-04 ソニーグループ株式会社 通信装置及び通信方法
US11956103B2 (en) * 2018-10-31 2024-04-09 Lg Electronics Inc. Method for transmitting and receiving SRS in wireless communication system, and device for same
US11678336B2 (en) * 2019-03-29 2023-06-13 Qualcomm Incorporated Indication design and signaling
CN110278610B (zh) * 2019-05-28 2022-07-22 华为技术有限公司 一种资源配置方法及通信装置
US11212691B2 (en) 2019-12-04 2021-12-28 Qualcomm Incorporated Indicating a subband interference level using sounding reference signal
WO2021127835A1 (en) * 2019-12-23 2021-07-01 Qualcomm Incorporated Determining whether an uplink switching gap is to be applied between changes in radio frequency status of a user equipment
US11483112B2 (en) 2020-05-18 2022-10-25 Qualcomm Incorporated Uplink doppler metric estimation based on an uplink reference signal
US11991677B2 (en) * 2020-09-17 2024-05-21 Qualcomm Incorporated Full duplex for available resources

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065298A (ja) * 2010-04-30 2012-03-29 Ntt Docomo Inc 移動端末装置及び無線通信方法
WO2013021551A1 (ja) * 2011-08-05 2013-02-14 パナソニック株式会社 送信装置、プリアンブル送信装置及び送信方法
WO2014141628A1 (ja) * 2013-03-15 2014-09-18 日本電気株式会社 無線通信システムにおける受信装置およびチャネル推定制御方法
JP2015506631A (ja) * 2012-01-15 2015-03-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて制御情報の送信方法及び装置
WO2015108068A1 (ja) * 2014-01-14 2015-07-23 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2015119076A1 (ja) * 2014-02-07 2015-08-13 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232244A1 (en) * 2006-03-31 2007-10-04 Mo Shaomin S Method of spatial band reuse in a multi-band communication system
US8169956B2 (en) * 2007-01-26 2012-05-01 Qualcomm Incorporated Mapping uplink acknowledgement transmission based on downlink virtual resource blocks
US9084277B2 (en) * 2007-05-04 2015-07-14 Qualcomm Incorporated Method and apparatus for UL ACK allocation
US20130329687A1 (en) * 2011-02-25 2013-12-12 Kyocera Corporation Radio base station and communication control method
US20130010659A1 (en) * 2011-07-08 2013-01-10 Qualcomm Incorporated Sounding reference signals in asymmetric carrier aggregation
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
CN103298128B (zh) * 2012-02-23 2016-10-05 华为技术有限公司 随机接入处理方法和设备
WO2014184602A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
RU2624639C1 (ru) * 2013-06-27 2017-07-05 Хуавэй Текнолоджиз Ко., Лтд. Способ переключения несущей, базовая станция и пользовательское оборудование
US10595343B2 (en) * 2013-08-05 2020-03-17 Sony Corporation Communications system, infrastructure equipment and method
US9668280B2 (en) * 2013-11-01 2017-05-30 Htc Corporation Method of handling random access in wireless communication system
TWI661741B (zh) * 2014-09-12 2019-06-01 日商新力股份有限公司 通訊系統,通訊裝置及方法
CN105451360A (zh) * 2014-09-26 2016-03-30 夏普株式会社 用于配置随机接入响应窗的方法以及基站和用户设备
EP3285533B1 (en) * 2015-05-14 2020-08-19 Huawei Technologies Co., Ltd. Terminal, base station, and configuration and transmission method for sounding reference signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065298A (ja) * 2010-04-30 2012-03-29 Ntt Docomo Inc 移動端末装置及び無線通信方法
WO2013021551A1 (ja) * 2011-08-05 2013-02-14 パナソニック株式会社 送信装置、プリアンブル送信装置及び送信方法
JP2015506631A (ja) * 2012-01-15 2015-03-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて制御情報の送信方法及び装置
WO2014141628A1 (ja) * 2013-03-15 2014-09-18 日本電気株式会社 無線通信システムにおける受信装置およびチャネル推定制御方法
WO2015108068A1 (ja) * 2014-01-14 2015-07-23 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2015119076A1 (ja) * 2014-02-07 2015-08-13 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512745A (ja) * 2017-03-17 2020-04-23 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 機器ビーム相反性特定方法、装置および電子機器
US11101860B2 (en) 2017-03-17 2021-08-24 Datang Mobile Communications Equipment Co., Ltd. Method, apparatus, and electronic device of determining beam reciprocity of a device
US11463210B2 (en) 2017-04-25 2022-10-04 Qualcomm Incorporated Transmitting uplink control information (UCI)
CN115037428A (zh) * 2017-04-25 2022-09-09 高通股份有限公司 用于传送上行链路控制信息(uci)的方法和装置
KR20190140988A (ko) * 2017-04-25 2019-12-20 퀄컴 인코포레이티드 업링크 제어 정보(uci)의 송신
JP2020518160A (ja) * 2017-04-25 2020-06-18 クアルコム,インコーポレイテッド アップリンク制御情報(uci)の送信
US10880058B2 (en) 2017-04-25 2020-12-29 Qualcomm Incorporated Transmitting uplink control information (UCI)
CN110546928A (zh) * 2017-04-25 2019-12-06 高通股份有限公司 传送上行链路控制信息(uci)
KR102662713B1 (ko) * 2017-04-25 2024-04-30 퀄컴 인코포레이티드 업링크 제어 정보(uci)의 송신
CN110546928B (zh) * 2017-04-25 2022-06-21 高通股份有限公司 用于传送上行链路控制信息(uci)的方法和装置
JP7168583B2 (ja) 2017-04-25 2022-11-09 クアルコム,インコーポレイテッド アップリンク制御情報(uci)の送信
WO2018200747A1 (en) * 2017-04-25 2018-11-01 Qualcomm Incorporated Transmitting uplink control information (uci)
CN111034321A (zh) * 2017-08-02 2020-04-17 Lg电子株式会社 终端在无线通信系统中发送上行链路信号的方法及使用该方法的终端
CN111034321B (zh) * 2017-08-02 2023-08-25 Lg电子株式会社 终端在无线通信系统中发送上行链路信号的方法及使用该方法的终端
CN114745793A (zh) * 2017-08-10 2022-07-12 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备
CN114745793B (zh) * 2017-08-10 2023-11-28 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备
JP7228054B2 (ja) 2019-02-15 2023-02-22 華為技術有限公司 フィードバック情報送信方法及び装置
JP2022520255A (ja) * 2019-02-15 2022-03-29 華為技術有限公司 フィードバック情報送信方法及び装置
EP4145746A4 (en) * 2020-05-20 2023-10-25 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Also Published As

Publication number Publication date
JPWO2017038337A1 (ja) 2018-06-28
US20180191483A1 (en) 2018-07-05
JP6762303B2 (ja) 2020-09-30
US10805059B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
JP6762303B2 (ja) 無線端末及び基地局
JP6922078B2 (ja) 無線通信システムにおけるノードの動作方法及び前記方法を利用する装置
CN109392160B (zh) 用于处置无线通信系统中的时隙格式信息冲突的方法和设备
US11641262B2 (en) Strategic mapping of uplink resources
JP4912478B2 (ja) 移動局装置、無線通信方法および回路装置
CN107155188B (zh) 处理非许可频带中传输的装置及方法
EP3734869B1 (en) Random access method and apparatus of ue in mobile communication system
US9781760B2 (en) User terminal and processor for performing D2D transmission
WO2011083740A1 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および回路装置
US10973050B2 (en) Communication control method, radio terminal, and base station
JP6563594B2 (ja) 基地局及び無線端末
WO2012029873A1 (ja) 無線通信システム、無線基地局装置及び移動端末装置
WO2015056946A1 (ko) 무선 통신 시스템에서의 커버리지 개선 방법 및 이를 위한 장치
US11832351B2 (en) Radio terminal
EP2963843A1 (en) Method for transmitting discovery signal for device-to-device communication in wireless communication system and apparatus therefor
KR20140084016A (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
JP2016517227A (ja) 無線通信システムにおいて端末間直接通信を用いて信号を送受信する方法及びそのための装置
WO2016148243A1 (ja) ユーザ端末及び基地局
US11737113B2 (en) Method and apparatus for transport block generation with UL spatial multiplexing in a wireless communication system
US20220046564A1 (en) Communication system and receiver
WO2011099478A1 (ja) 移動局装置、無線通信方法および回路装置
WO2016190156A1 (ja) 基地局及びユーザ端末
KR20230149245A (ko) 무선 통신 시스템에서 다중 캐리어에서의 사이드링크 통신을 위한 스케줄링 요청 방법 및 장치
KR20230004255A (ko) 상하향 비대칭 네트워크를 위한 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841369

Country of ref document: EP

Kind code of ref document: A1