WO2017037892A1 - 空気調和システム - Google Patents
空気調和システム Download PDFInfo
- Publication number
- WO2017037892A1 WO2017037892A1 PCT/JP2015/074950 JP2015074950W WO2017037892A1 WO 2017037892 A1 WO2017037892 A1 WO 2017037892A1 JP 2015074950 W JP2015074950 W JP 2015074950W WO 2017037892 A1 WO2017037892 A1 WO 2017037892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- load
- harmonic suppression
- suppression device
- unit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
Definitions
- the present invention relates to an air conditioning system having a function of suppressing harmonics generated in an air conditioner.
- an air conditioner including an indoor unit and an outdoor unit, a compressor motor provided in the compressor and a fan motor that rotates a fan that blows air to the heat exchanger are driven by an inverter circuit.
- the DC voltage supplied to the inverter circuit is obtained by rectifying an AC voltage from a commercial power source or the like by a rectifier circuit and smoothing it by a smoothing capacitor. That is, in the air conditioner, when the DC voltage supplied to the inverter circuit is generated, harmonics are generated because the smoothing capacitor repeats charging and discharging.
- an air conditioning system including an air conditioner has a harmonic suppression device that suppresses harmonics in conjunction with the operation of the compressor mounted on the outdoor unit.
- the harmonic suppression device provided in the outdoor unit is configured to reduce the harmonic component of the current flowing in all the indoor units based on the rotation speed of the fan motor mounted in each of the plurality of indoor units.
- a technique of calculating a predicted value is also known (see, for example, Patent Document 1).
- the air conditioning system of Patent Document 1 attempts to suppress harmonics generated in an indoor unit by canceling the current from the outdoor unit and the predicted value of the harmonic component.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system that accurately suppresses harmonics generated in an air conditioner.
- the air conditioning system operates by supplying power from an external power source, and includes an outdoor unit that includes an outdoor unit load that causes harmonics and an indoor unit that includes an indoor unit load that causes harmonics.
- An air conditioner provided; a first current sensor that detects a first load current flowing into an outdoor unit load; a second current sensor that detects a second load current flowing into an indoor unit load; and a first current sensor
- a harmonic component included in the detected first load current and the second load current detected by the second current sensor is extracted to generate a compensation current that cancels the harmonic component.
- a harmonic suppression device that merges the alternating current supplied to the harmonic machine.
- the harmonic suppression device generates a compensation current that cancels the harmonic components included in the first load current and the second load current, and combines the generated compensation current with an AC current supplied from an external power source.
- the harmonics generated in the air conditioner can be accurately suppressed.
- FIG. 1 is a schematic diagram illustrating a configuration of an air-conditioning system 10 according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic view illustrating the internal configuration of the air conditioner included in the air conditioning system 10.
- the air conditioning system 10 includes an air conditioner 20 having an outdoor unit 30 and an indoor unit 40, and a harmonic suppression device 60 having a waveform calculation unit 61 and a compensation processing unit 62.
- the air conditioning system 10 is provided on the input side of the outdoor unit 30, and is provided on the input side of the indoor unit 40 and a first current sensor 51 that detects the first load current Ia flowing into the outdoor unit 30. And a second current sensor 52 that detects a second load current Ib flowing into the machine 40.
- the air conditioner 20 is a separate air conditioner including an outdoor unit 30 including a compressor (not shown) and an indoor unit 40 including an indoor fan (not shown).
- the outdoor unit 30 includes an outdoor unit load 31 that is a factor of generating harmonics, and an outdoor unit control unit 32 that performs overall control of the outdoor unit 30. As shown in FIG. 2, the outdoor unit 30 includes an outdoor unit power supply 31 ⁇ / b> A and a compressor motor 31 ⁇ / b> B as an outdoor unit load 31.
- the outdoor unit power supply device 31A includes an outdoor rectifier circuit that rectifies an AC voltage supplied from an external power source 400 such as a commercial power supply, and a smoothing capacitor, for example, and smoothes the voltage rectified by the outdoor rectifier circuit.
- An outdoor smoothing circuit and an outdoor inverter circuit that generates an alternating voltage from the direct current voltage smoothed by the outdoor smoothing circuit by an on / off operation of a plurality of switching elements (all not shown).
- the compressor motor 31B is driven by the AC voltage supplied from the outdoor inverter circuit, and operates the compressor provided in the outdoor unit 30.
- the outdoor unit control unit 32 includes a CPU and the like, and includes a central processing unit 32A that executes various arithmetic processes, a storage device 32B that includes a nonvolatile memory, and the indoor unit control unit 42 through the transmission line 101.
- a first communication circuit 32C that performs communication and a second communication circuit 32D that performs communication with the harmonic suppression device 60 through the transmission line 102 are included.
- the central processing unit 32A monitors the operation state of the outdoor unit load 31, and stores outdoor unit operation information indicating the operation state of the outdoor unit load 31 in the storage device 32B.
- the outdoor unit operation information includes, for example, information indicating an operating state such as whether the compressor motor 31B as the outdoor unit load 31 is operating or stopped, information indicating the operating frequency of the compressor, and the like.
- the central processing unit 32A has a function of transmitting outdoor unit operation information to the waveform calculation unit 61 via the second communication circuit 32D. Further, the central processing unit 32A has a function of controlling the operation of the outdoor inverter circuit in the outdoor unit power supply 31A.
- the indoor unit 40 includes an indoor unit load 41 that is a factor of generating harmonics, and an indoor unit control unit 42 that performs overall control of the indoor unit 40. As shown in FIG. 2, the indoor unit 40 includes an indoor unit power supply device 41 ⁇ / b> A and a fan motor 41 ⁇ / b> B as the indoor unit load 41.
- the indoor unit power supply device 41A includes an indoor rectifier circuit that rectifies an AC voltage supplied from the external power source 400, an indoor smoothing circuit that includes, for example, a smoothing capacitor, and smoothes the voltage rectified by the indoor rectifier circuit; And an indoor inverter circuit that generates an alternating voltage from the direct current voltage smoothed by the indoor smoothing circuit by the on / off operation of a plurality of switching elements (none is shown).
- the fan motor 41B is driven by an AC voltage supplied from the indoor inverter circuit, and rotates an indoor fan that sends air to a heat exchanger (not shown) provided in the indoor unit 40.
- the indoor unit control unit 42 includes a CPU and the like, and includes a central processing unit 42A that executes various arithmetic processes, a storage device 42B including a nonvolatile memory, and the outdoor unit control unit 32 through the transmission line 101.
- the central processing unit 42A monitors the operation state of the indoor unit load 41, and stores the indoor unit operation information indicating the operation state of the indoor unit load 41 in the storage device 42B.
- the indoor unit operation information includes, for example, information indicating an operation state such as whether the fan motor 41B as the indoor unit load 41 is operating or stopped, information indicating the rotation speed of the fan motor 41B, and the like.
- the central processing unit 42 ⁇ / b> A has a function of transmitting indoor unit operation information to the waveform calculation unit 61 via the outdoor unit 30.
- the central processing unit 42A has a function of controlling the operation of the indoor inverter circuit in the indoor unit power supply device 41A.
- the first communication circuit 32C is connected to the communication circuit 42C via the transmission line 101.
- the second communication circuit 32D is connected to the waveform calculation unit 61 via the transmission line 102. That is, the outdoor unit 30 and the indoor unit 40 are configured to perform information communication through the transmission line 101, and the outdoor unit 30 and the harmonic suppression device 60 are configured to perform information communication through the transmission line 102.
- the indoor unit control unit 42 transmits the indoor unit operation information to the outdoor unit control unit 32.
- the outdoor unit control unit 32 transmits the outdoor unit operation information and the indoor unit operation information to the waveform calculation unit 61 as the operation information of the air conditioner 20.
- the outdoor unit 30, the indoor unit 40, and the harmonic suppression device 60 share the operation information of the air conditioner 20, and the harmonic suppression device 60 is connected to the outdoor unit 30.
- the harmonic suppression process is executed or stopped.
- the waveform calculation unit 61 calculates a current waveform by synthesizing the first load current Ia and the second load current Ib when both the outdoor unit load 31 and the indoor unit load 41 are operating. Further, the waveform calculation unit 61 is configured to operate the first load current Ia flowing into the operating outdoor unit load 31 or the operation even when one of the outdoor unit load 31 and the indoor unit load 41 is in a stopped state. The current waveform of the second load current Ib flowing into the indoor unit load 41 is calculated. The waveform calculation unit 61 outputs a current waveform obtained by calculation to the compensation processing unit 62.
- the compensation processing unit 62 extracts a harmonic component from the current waveform output from the waveform calculation unit 61, and generates a compensation current IC that cancels the extracted harmonic component. That is, the compensation processing unit 62 generates a current having the same magnitude and opposite phase as the harmonic component extracted from the current waveform output from the waveform calculation unit 61 as the compensation current IC. And the compensation process part 62 adjusts so that the electric current supplied to the air conditioner 20 may turn into a sine wave current by making the produced
- the harmonic suppression device 60 has a capacity sufficient to suppress harmonics generated by the outdoor unit load 31 and harmonics generated by the indoor unit load 41. That is, the compensation processing unit 62 has a capability of generating a current that cancels all harmonic components included in the first load current Ia and the second load current Ib as the compensation current IC. Therefore, the harmonic suppression device 60 is an air conditioner even in a state where the air conditioner 20 is at the maximum load, that is, in a state where the operating frequency of the compressor is maximum and the rotation speed of the fan motor 41B is maximum. The harmonics generated at 20 can be suppressed.
- the harmonic suppression device 60 continues the harmonic suppression processing even when the compressor protection thermostat is in the OFF state, and suppresses the harmonic component contained in the second load current Ib flowing through the indoor unit 40.
- the thermostat for protecting the compressor is normally in an ON state, and is in an OFF state when the coil temperature of the compressor motor 31B becomes an abnormally high temperature.
- the waveform calculation unit 61 and the compensation processing unit 62 can also be realized by hardware such as a circuit device that realizes these functions, or software executed on a calculation device such as a microcomputer such as a DSP or a CPU. It can also be realized as.
- FIG. 3 is a schematic diagram for explaining a composite wave of the first load current Ia flowing through the outdoor unit 30 and the second load current Ib flowing through the indoor unit 40 in the air conditioning system 10.
- the air conditioning system 10 operates by feeding power from an external power source 400 that is a three-phase AC power source. For this reason, FIG. 3 illustrates a current waveform of the R phase among the R phase, the N phase, and the T phase constituting the three phases.
- FIG. 3A shows a current waveform of the first load current Ia.
- FIG. 3B shows a current waveform of the second load current Ib.
- FIG. 3C shows a current waveform obtained by synthesizing the first load current Ia and the second load current Ib.
- the peak value of the current waveform of the first load current Ia is “a”
- the peak value of the current waveform of the second load current Ib is “b”.
- the peak value of the current waveform obtained by combining the first load current Ia and the second load current Ib is “a + b”.
- the waveform calculation unit 61 synthesizes the first load current Ia and the second load current Ib when both the outdoor unit load 31 and the indoor unit load 41 are in operation.
- the current waveform as shown in c) is calculated and output to the compensation processing unit 62.
- the waveform calculation unit 61 calculates the current waveform of the first load current Ia flowing into the operating outdoor unit load 31. Calculate and output to the compensation processing unit 62.
- the waveform calculation unit 61 calculates the current waveform of the second load current Ib flowing into the operating indoor unit load 41. Calculate and output to the compensation processing unit 62.
- FIG. 4 is a flowchart showing an operation related to harmonic suppression processing by the air conditioning system 10. The flow of harmonic suppression processing by the harmonic suppression device 60 will be described along FIG.
- the waveform calculation unit 61 acquires the operation information of the air conditioner 20 from the outdoor unit 30 through the transmission line 102 and confirms the operation state of the air conditioner 20. And the waveform calculating part 61 determines whether the air conditioner 20 exists in a stop state (FIG. 4: step S101).
- the waveform calculation unit 61 continues to monitor the air conditioner 20 and waits until the air conditioner 20 starts operation. On the other hand, if the air conditioner 20 is in an operating state (FIG. 4: step S101 / NO), the waveform calculation unit 61 receives the first load current Ia and the first load current Ia from the first current sensor 51 and the second current sensor 52, respectively. The second load current Ib is acquired (FIG. 4: Step S102).
- the waveform calculation unit 61 confirms the operation states of the outdoor unit load 31 and the indoor unit load 41, and determines whether one of the outdoor unit load 31 or the indoor unit load 41 is stopped ( FIG. 4: Step S103).
- the waveform calculation unit 61 When both the outdoor unit load 31 and the indoor unit load 41 are operating (FIG. 4: Step S103 / NO), the waveform calculation unit 61 combines the first load current Ia and the second load current Ib to obtain a current. The waveform is calculated (FIG. 4: Step S104).
- step S103 when one of the outdoor unit load 31 and the indoor unit load 41 is stopped (FIG. 4: step S103 / YES), the first load current Ia flowing to the operating outdoor unit load 31 or driving is performed.
- the current waveform of the second load current Ib flowing to the existing indoor unit load 41 is calculated (FIG. 4: step S105).
- the compensation processing unit 62 generates a compensation current IC for suppressing harmonics generated in the air conditioner 20 based on the current waveform calculated by the waveform calculation unit 61. That is, the compensation processing unit 62 extracts a harmonic component from the current waveform calculated by the waveform calculation unit 61, and generates a compensation current IC that cancels the extracted harmonic component. Then, the compensation processing unit 62 merges the generated compensation current IC with the alternating current supplied from the external power supply 400 (FIG. 4: step S106).
- step S101 the case where the waveform calculation unit 61 determines whether or not the air conditioner 20 is in a stopped state based on the operation information of the air conditioner 20 is illustrated, but the present invention is not limited thereto.
- the waveform calculation unit 61 stops the air conditioner 20 based on the first load current Ia transmitted from the first current sensor 51 and the second load current Ib transmitted from the second current sensor 52. You may make it determine whether it is in a state.
- the harmonic suppression device 60 includes the harmonics included in the first load current Ia and the second load current Ib according to the operating state of the air conditioner 20.
- a compensation current IC that cancels the wave component is generated.
- the harmonic suppression device 60 supplies a sinusoidal input current synchronized with the external power supply 400 to the air conditioner 20 by combining the compensation current IC with the alternating current supplied from the external power supply 400. For this reason, according to the air conditioning system 10, the harmonic component of the electric current which generate
- the air conditioning system 10 suppresses harmonics generated in both the outdoor unit 30 and the indoor unit 40 that are fed from a common external power source 400 by the single harmonic suppression device 60. Since the number of control devices installed can be reduced, the installation space and cost can be reduced, and the degree of freedom of installation conditions can be increased.
- the harmonic suppression device 60 performs the harmonic suppression process, and thus, for example, the compressor stops. Even if it is, the harmonics which generate
- FIG. FIG. 5 is a schematic diagram showing the configuration of the air-conditioning system 110 according to Embodiment 2 of the present invention.
- FIG. 6 is a flowchart showing an operation related to harmonic suppression processing by the air conditioning system 110.
- one harmonic suppression device 60 directly acquires the detection result of one current sensor, and acquires the detection result of the other current sensor via the outdoor unit 130 and the indoor unit 140.
- FIG.5 and FIG.6 a structure and operation
- the air conditioner 120 includes an outdoor unit 130 and an indoor unit 140.
- the case where the harmonic suppression apparatus 60 is installed in the outdoor unit 130 side is illustrated. That is, the harmonic suppression device 60 is provided at a position closer to the outdoor unit 130 than the indoor unit 140.
- the indoor unit control unit 142 provided in the indoor unit 140 is configured to acquire the second load current Ib detected by the second current sensor 52.
- the indoor unit control unit 142 is configured to transmit the second load current Ib acquired from the second current sensor 52 to the outdoor unit control unit 132 provided in the outdoor unit 130 through the transmission line 101.
- the outdoor unit control unit 132 is configured to transmit the second load current Ib transmitted from the indoor unit control unit 142 to the waveform calculation unit 61 through the transmission line 102.
- the indoor unit control unit 142 converts the second load current Ib acquired from the second current sensor 52 into current waveform information for communication, and the converted current waveform information is transmitted through the transmission line 101 to the outdoor unit. This is transmitted to the control unit 132.
- the outdoor unit control unit 132 transmits the current waveform information transmitted from the indoor unit control unit 142 to the waveform calculation unit 61.
- the indoor unit control unit 142 transmits the indoor unit operation information to the outdoor unit control unit 132.
- the outdoor unit control unit 132 uses the outdoor unit operation information and the indoor unit operation as the operation information of the air conditioner 120.
- Information is transmitted to the waveform calculation unit 61.
- the harmonic suppression apparatus 60 is comprised so that a harmonic suppression process may be performed or stopped according to the operation information of the air conditioner 120 acquired from the outdoor unit 130.
- the waveform calculation unit 61 is configured to acquire the second load current Ib detected by the second current sensor 52 via the indoor unit 140 and the outdoor unit 130. Yes.
- the other configuration contents of the outdoor unit control unit 132 and the indoor unit control unit 142 are the same as those of the outdoor unit control unit 32 and the indoor unit control unit 42 of the first embodiment, respectively.
- the waveform calculation unit 61 acquires the second load current Ib detected by the second current sensor 52 from the outdoor unit control unit 132 via the indoor unit control unit 142 (FIG. 6: step S201).
- the waveform calculation unit 61 acquires the operation information of the air conditioner 120 from the outdoor unit control unit 32, and determines whether or not the air conditioner 120 is in a stopped state (FIG. 6: step S101). If the air conditioner 120 is in a stopped state (FIG. 6: step S101 / YES), the waveform calculation unit 61 continues to monitor the air conditioner 120 and waits until the air conditioner 120 starts operation. On the other hand, if the air conditioner 120 is in an operating state (FIG. 6: step S101 / NO), the waveform calculation unit 61 acquires the first load current Ia from the first current sensor 51 (FIG. 6: step S202).
- the waveform calculation unit 61 determines whether one of the outdoor unit load 31 and the indoor unit load 41 is stopped (FIG. 6: Step S103).
- the waveform calculation unit 61 combines the first load current Ia and the second load current Ib to obtain the current.
- the waveform is calculated (FIG. 6: Step S104).
- the waveform calculation unit 61 is the first load that flows to the operating outdoor unit load 31.
- the current waveform of the current Ia or the second load current Ib flowing to the operating indoor unit load 41 is calculated (FIG. 6: Step S105). Subsequently, the compensation processing unit 62 generates a compensation current IC that suppresses harmonics generated in the air conditioner 120 based on the current waveform calculated by the waveform calculation unit 61 (FIG. 6: step S106).
- one harmonic suppression device 60 has the first load current Ia and the second load current Ib according to the operating state of the air conditioner 120.
- a compensation current IC that cancels the harmonic component is generated.
- the harmonic suppression device 60 supplies a sinusoidal input current synchronized with the external power supply 400 to the air conditioner 120 by combining the compensation current IC with the alternating current supplied from the external power supply 400. For this reason, according to the air conditioning system 10, the harmonic component of the electric current which generate
- the air conditioning system 110 since it is not necessary to provide one harmonic suppression device for each of the indoor unit and the outdoor unit as in the past, the installation space and cost can be reduced, and the installation conditions can be reduced. The degree of freedom can be increased.
- the waveform calculation unit 61 is directly connected to the second current sensor 52. If it is configured to acquire the two-load current Ib, the length of the wiring connecting the harmonic suppression device 60 and the second current sensor 52 increases.
- the harmonic suppression device 60 displays the detection result by the second current sensor 52 as an indoor unit control unit. 142 and the communication with the outdoor unit control unit 132, the length of the wiring connecting the harmonic suppression device 60 and the second current sensor 52 can be shortened. For this reason, according to the air conditioning system 110, it is possible to reduce the cost and improve the stability of information communication.
- the harmonic suppression device 60 may be provided on the indoor unit 140 side, and the indoor unit 40 may transmit the operation information of the air conditioner 120 to the harmonic suppression device 60. That is, when the harmonic suppression device 60 is provided at a position closer to the outdoor unit 130 than the indoor unit 140, the waveform calculation unit 61 outputs the first load current Ia detected by the first current sensor 51 to the outdoor unit. You may make it acquire via the machine 30 and the indoor unit 40.
- the outdoor unit control unit 132 may convert the first load current Ia acquired from the first current sensor 51 into communication current waveform information and transmit it to the indoor unit control unit 142. Good. Then, the indoor unit control unit 142 may transmit the current waveform information received from the outdoor unit control unit 132 to the waveform calculation unit 61.
- FIG. 7 is a schematic diagram illustrating a configuration of an air-conditioning system 210 according to Embodiment 3 of the present invention.
- 8 and 9 are flowcharts showing operations related to harmonic suppression processing by the air conditioning system 210.
- FIG. Based on FIGS. 7 to 9, the configuration and operation of the third embodiment different from those of the first and second embodiments will be described. Constituent members equivalent to those in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
- the air conditioner 220 included in the air conditioning system 210 includes an outdoor unit 230 including an outdoor unit load 31 and an outdoor unit control unit 232, and an indoor unit including an indoor unit load 41 and an indoor unit control unit 242. 240.
- the air conditioning system 210 is connected to the outdoor unit 230 as a harmonic suppression device that suppresses harmonics generated in the air conditioner 220, and includes a first waveform calculation unit 261 and a first compensation processing unit 262.
- a first harmonic suppression device 260 and a second harmonic suppression device 270 that is connected to the indoor unit 240 and includes a second waveform calculation unit 271 and a second compensation processing unit 272 are included.
- the total capacity of the first harmonic suppression device 260 and the second harmonic suppression device 270 suppresses harmonics generated in the outdoor unit load 31 and harmonics generated in the indoor unit load 41. It is possible capacity. That is, the air conditioning system 210 uses the total capacity of the two units, the first harmonic suppression device 260 and the second harmonic suppression device 270, to generate all harmonic components contained in the first load current Ia and the second load current Ib. It has the ability to generate the current necessary to cancel out. Therefore, according to the air conditioning system 210, even when the air conditioner 220 is in the maximum load state, that is, in the state where the operating frequency of the compressor is the maximum and the rotation speed of the indoor fan is the maximum, Harmonics generated in the harmonic machine 220 can be suppressed.
- the outdoor unit control unit 232 included in the outdoor unit 230 monitors the outdoor unit load 31 and transmits outdoor unit operation information to the indoor unit control unit 242.
- the indoor unit control unit 242 provided in the indoor unit 240 monitors the indoor unit load 41 and transmits indoor unit operation information to the outdoor unit control unit 232.
- the outdoor unit control unit 232 transmits outdoor unit operation information and indoor unit operation information, which are operation information of the air conditioner 220, to the first waveform calculation unit 261.
- the indoor unit control unit 242 transmits operation information of the air conditioner 220 to the second waveform calculation unit 271.
- Other configuration contents of the outdoor unit control unit 232 and the indoor unit control unit 242 are the same as those of the outdoor unit control unit 32 and the indoor unit control unit 42 in the first embodiment.
- the 1st harmonic suppression apparatus 260 is comprised so that a harmonic suppression process may be performed or stopped according to the operation information of the air conditioner 220 acquired from the outdoor unit 230.
- the second harmonic suppression device 270 is configured to execute or stop the harmonic suppression processing according to the operation information of the air conditioner 220 acquired from the indoor unit 240.
- the first waveform calculation unit 261 acquires the first load current Ia detected by the first current sensor 51. And the 1st waveform calculating part 261 calculates the current waveform according to the capacity
- the first compensation processing unit 262 extracts a harmonic component from the current waveform calculated by the first waveform calculation unit 261, and generates a first compensation current IA that cancels the extracted harmonic component.
- the second waveform calculation unit 271 acquires the second load current Ib detected by the second current sensor 52. And the 2nd waveform calculating part 271 calculates the current waveform according to the capacity
- the second compensation processing unit 272 extracts a harmonic component from the current waveform calculated by the second waveform calculation unit 271 and generates a second compensation current IB that cancels the extracted harmonic component.
- the first load current Ia is generated by the first compensation current IA generated by the first compensation processing unit 262 and the second compensation current IB generated by the second compensation processing unit 272. And cancels all the harmonic components contained in the second load current Ib. That is, the sum of the first compensation current IA and the second compensation current IB in the third embodiment corresponds to the compensation current IC in the first and second embodiments. For this reason, hereinafter, the current required to cancel all the harmonic components included in the first load current Ia and the second load current Ib is also referred to as a compensation current IC.
- the first harmonic suppression device 260 is configured to generate all of the compensation current IC.
- the first harmonic suppression device 260 when the first harmonic suppression device 260 generates all of the compensation current IC by the first compensation processing unit 262, if the second harmonic suppression device 270 is in an operating state, the second harmonic suppression device 270 It has a function to stop. Thereby, since the operation rate of the harmonic suppression device can be reduced, cost increase due to useless operation can be suppressed and consumption of the harmonic suppression device can be suppressed.
- the second harmonic suppression device 270 when the capacity of the second harmonic suppression device 270 can compensate the compensation current IC, that is, when the second compensation processing unit 272 has a capability of generating a current equal to or higher than the compensation current IC, the second harmonic.
- the suppression device 270 may generate all of the compensation current IC.
- the second harmonic suppression device 270 may be configured to stop the first harmonic suppression device 260.
- the first harmonic suppression device 260 when only one of the first harmonic suppression device 260 and the second harmonic suppression device 270 cannot suppress all of the harmonics generated in the air conditioner 220, the first harmonic suppression device 260 is used. And both the 2nd harmonic suppression apparatuses 270 are comprised so that a harmonic suppression process may be performed. That is, in this case, the first harmonic suppression device 260 generates the first compensation current IA as part of the compensation current IC, and the second harmonic suppression device 270 uses the second compensation current IB as the remainder of the compensation current IC. Is generated.
- the air conditioning system 210 is configured to compensate for the shortage of the capacity of the first harmonic suppression device 260 by the remaining capacity of the second harmonic suppression device 270.
- the capacity of the first harmonic suppression device 260 is insufficient, for example, a case where the operating frequency of the compressor included in the outdoor unit 230 exceeds a certain amount is assumed.
- the first waveform calculation unit 261 determines that the first load current when the maximum current that can be generated by the first compensation processing unit 262 is less than the current that cancels all the harmonic components of the first load current Ia.
- a prediction current I ⁇ is obtained by predicting a combined current of Ia and the first compensation current IA generated by the first compensation processing unit 262. Then, the first waveform calculation unit 261 transmits the predicted current I ⁇ to the outdoor unit control unit 232 through the transmission line 102.
- the first compensation processing unit 262 generates a first compensation current IA that cancels a part of the harmonic component of the first load current Ia as a part of the compensation current IC. Then, the first compensation processing unit 262 merges the generated first compensation current IA with the alternating current supplied from the external power supply 400.
- the outdoor unit control unit 232 transmits the predicted current I ⁇ transmitted from the first waveform calculation unit 261 to the indoor unit control unit 242 through the transmission line 101.
- the indoor unit control unit 242 transmits the predicted current I ⁇ to the second waveform calculation unit 271 through the transmission line 103.
- the second waveform calculation unit 271 calculates a current waveform by synthesizing the predicted current I ⁇ and the second load current Ib, and the second compensation processing unit 272 calculates the current waveform calculated by the second waveform calculation unit 271.
- a harmonic component is extracted from the second compensation current IB that cancels the harmonic component and is generated as the remainder of the compensation current IC.
- the first harmonic suppression device 260 if the first harmonic suppression device 260 does not have the ability to generate a current that cancels all harmonic components of the first load current Ia, the first harmonic suppression device 260 generates the first compensation current IA as part of the compensation current IC, and The predicted current I ⁇ is obtained by predicting and calculating the combined waveform of the first load current Ia and the first compensation current IA. Further, in this case, the second harmonic suppression device 270 extracts a harmonic component from the current obtained by combining the second load current Ib and the predicted current I ⁇ , and compensates for the second compensation current IB that cancels the harmonic component. It is generated as the remainder of the current IC.
- the air-conditioning system 210 uses the remaining capacity of the first harmonic suppression device 260 to reduce the capacity of the second harmonic suppression device 270. You may comprise so that it may supplement.
- the second harmonic suppression device 270 if the second harmonic suppression device 270 does not have the ability to generate a current that cancels all harmonic components of the second load current Ib, the second harmonic suppression device 270 generates the second compensation current IB as part of the compensation current, and
- the prediction current I ⁇ is obtained by predicting and calculating the combined waveform of the two load currents Ib and the second compensation current IB.
- the first harmonic suppression device 260 extracts a harmonic component from the current obtained by combining the first load current Ia and the predicted current I ⁇ , and compensates for the first compensation current IA that cancels the harmonic component. It is generated as the remainder of the current IC.
- the first waveform calculation unit 261 and the second waveform calculation unit 271 confirm the operating state of the air conditioner 220 and determine whether the air conditioner 220 is in a stopped state (FIG. 8: step S301). If the air conditioner 220 is in a stopped state (FIG. 8: step S301 / YES), the first waveform calculator 261 and the second waveform calculator 271 continue to monitor the air conditioner 220, and the air conditioner 220 Wait until you start driving.
- the first waveform calculation unit 261 acquires the first load current Ia detected by the first current sensor 51, and the second The waveform calculator 271 acquires the second load current Ib detected by the second current sensor 52 (FIG. 8: Step S302).
- the first harmonic suppression device 260 and the second harmonic suppression device 270 perform the processing of step S301 and step S302 at all times or at regular intervals.
- the first waveform calculator 261 calculates the current waveform of the first load current Ia
- the second waveform calculator 271 calculates the current waveform of the second load current Ib (FIG. 8: Step S303).
- the first compensation processing unit 262 generates a first compensation current IA
- the second compensation processing unit 272 generates a second compensation current IB. That is, the first compensation processing unit 262 extracts a harmonic component from the current waveform calculated by the first waveform calculation unit 261, and generates a first compensation current IA that cancels the extracted harmonic component. Then, the first compensation processing unit 262 merges the first compensation current IA with the alternating current supplied from the external power supply 400.
- the second compensation processing unit 272 extracts a harmonic component from the current waveform calculated by the second waveform calculation unit 271 and generates a second compensation current IB that cancels the extracted harmonic component. Then, the second compensation processing unit 272 merges the second compensation current IB with the alternating current supplied from the external power supply 400 (FIG. 8: Step S304).
- the first waveform calculation unit 261 acquires the operation information of the air conditioner 220 from the outdoor unit control unit 232, and the second waveform calculation unit 271 receives the operation information of the air conditioner 220 from the indoor unit control unit 242. Obtain (FIG. 8: Step S305).
- the first waveform calculation unit 261 determines whether or not there is remaining capacity in the capacity of the first harmonic suppression device 260 (FIG. 8: Step S306). If the first waveform calculation unit 261 determines that the capacity of the first harmonic suppression device 260 has sufficient capacity (FIG. 8: step S306 / YES), the process proceeds to step S307 in FIG. That is, the first waveform calculation unit 261 determines whether or not all the harmonics generated in the air conditioner 220 can be suppressed by one unit of the first harmonic suppression device 260 (FIG. 9: Step S307). ).
- the first waveform calculation unit 261 determines that all harmonics can be suppressed by one of the first harmonic suppression devices 260 (FIG. 9: step S307 / YES)
- the first waveform calculation unit 261 passes through the outdoor unit 230 and the indoor unit 240. Then, it is determined whether or not the second harmonic suppression device 270 has stopped the harmonic suppression processing (FIG. 9: Step S308).
- the first waveform calculation unit 261 receives the second waveform via the outdoor unit 230 and the indoor unit 240.
- a stop command is transmitted to the calculation unit 271 to stop the harmonic suppression process of the second harmonic suppression device 270 (FIG. 9: step S309).
- the second harmonic suppression device 270 stops the harmonic suppression processing (FIG. 9: step S308 / YES) or via the above step S309
- the second waveform calculation unit 271 causes the indoor unit control unit 242 to operate. Then, the second load current Ib is transmitted to the outdoor unit control unit 232. And the outdoor unit control part 232 transmits the 2nd load current Ib to the 1st waveform calculating part 261, and the 1st waveform calculating part 261 acquires the 2nd load current Ib (FIG. 9: step S310).
- the first waveform calculation unit 261 calculates a current waveform by combining the first load current Ia and the second load current Ib (FIG. 9: step S311).
- the first compensation processing unit 262 generates the first compensation current IA based on the current waveform calculated by the first waveform calculation unit 261. That is, the first compensation processing unit 262 extracts a harmonic component from the current waveform calculated by the first waveform calculation unit 261, and generates a first compensation current IA that cancels the extracted harmonic component.
- the first compensation current IA generated by the first compensation processing unit 262 corresponds to the compensation current IC.
- the first compensation processing unit 262 merges the first compensation current IA with the alternating current supplied from the external power supply 400 (FIG. 9: Step S312). Thereafter, the process proceeds to step S305 in FIG.
- Step S307 of FIG. 8 when it is determined that the first waveform calculation unit 261 cannot suppress all harmonics with only one first harmonic suppression device 260 (FIG. 9: Step S307 / NO), the outdoor It is determined whether the second harmonic suppression device 270 is executing harmonic suppression processing via the unit 230 and the indoor unit 240 (FIG. 9: step S313).
- the first waveform calculation unit 261 transmits an operation command to the second waveform calculation unit 271 via the outdoor unit 230 and the indoor unit 240. Then, the second harmonic suppression device 270 is caused to start the harmonic suppression processing (FIG. 9: Step S314).
- the first waveform calculation unit 261 itself is the first load current. Whether or not the current waveform is calculated based only on Ia is checked (FIG. 9: Step S315).
- the first waveform calculation unit 261 does not calculate the current waveform based only on the first load current Ia (FIG. 9: step S315 / NO), that is, the first load current Ia and the second load current Ib.
- the current waveform is calculated by combining all or part of the current waveform, the current waveform of the first load current Ia is recalculated.
- step S315 when the first waveform calculation unit 261 calculates a current waveform based only on the first load current Ia (FIG. 9: step S315 / YES) or after step S316, the second waveform calculation unit 271 The current waveform of the second load current Ib is calculated (FIG. 9: Step S317). Then, the process proceeds to step S304 in FIG.
- the 1st waveform calculating part 261 is a 1st harmonic suppression apparatus. It is determined whether or not the capacity of 260 is insufficient (FIG. 8: Step S318).
- step S305 When the first waveform calculation unit 261 determines that the capacity of the first harmonic suppression device 260 is not insufficient (FIG. 8: step S318 / NO), the process proceeds to step S305.
- the first waveform calculation unit 261 determines that the capacity of the first harmonic suppression device 260 is insufficient (FIG. 8: step S318 / YES)
- the first waveform calculation unit 261 is based on the capacity of the first harmonic suppression device 260.
- a prediction current I ⁇ is obtained by predicting and calculating a combined current of the first load current Ia and the first compensation current IA (FIG. 8: step S319).
- the first waveform calculation unit 261 transmits the predicted current I ⁇ to the indoor unit control unit 242 via the outdoor unit control unit 232. Then, the indoor unit controller 242 transmits the predicted current I ⁇ to the second waveform calculator 271 so that the second waveform calculator 271 acquires the predicted current I ⁇ (FIG. 8: step S320). The second waveform calculation unit 271 calculates a current waveform by synthesizing the second load current Ib and the predicted current I ⁇ (FIG. 8: step S321).
- the second compensation processing unit 272 generates the second compensation current IB based on the current waveform calculated by the second waveform calculation unit 271. That is, the second compensation processing unit 272 extracts a harmonic component from the current waveform calculated by the second waveform calculation unit 271 and generates a second compensation current IB that cancels all the extracted harmonic components. And the 2nd compensation process part 272 merges the 2nd compensation current IB with the alternating current supplied from the external power supply 400 (FIG. 8: step S322). Thereafter, the process proceeds to step S305.
- the harmonic suppression processing in the case where the capacity of the first harmonic suppression device 260 is excessive or insufficient has been described.
- the harmonic suppression process when the capacity of the second harmonic suppression device 270 is excessive or insufficient may be performed in the same manner as described above.
- the second harmonic suppression device 270 may generate all of the compensation current IC.
- the second waveform calculation unit 271 uses the second load current Ib and the second compensation current based on the capacity of the second harmonic suppression device 270.
- the predicted current I ⁇ may be obtained by predicting the combined current with IB.
- the first harmonic suppression device 260 extracts a harmonic component from the current obtained by combining the first load current Ia and the predicted current I ⁇ , and generates a first compensation current IA that cancels the harmonic component. May be.
- FIG. 10 is a schematic diagram showing a configuration of an air conditioning system 210A according to a modification of the third embodiment. As shown in FIG. 10, in the air conditioner 220A of the air conditioning system 210A, a plurality of indoor units 240a and indoor units 240b are connected to one outdoor unit 230.
- the indoor unit control unit 242a of the indoor unit 240a performs information communication with the second harmonic suppression device 270 via the transmission line 103.
- the indoor unit control unit 242a performs information communication with the outdoor unit control unit 232 through the transmission line 101a.
- the indoor unit control unit 242b of the indoor unit 240b performs information communication with the indoor unit control unit 242a via the transmission line 101b.
- the outdoor unit control unit 232 receives the predicted current I ⁇ obtained by the first waveform calculation unit 261 through the transmission line 102 and transmits it to the indoor unit control unit 242a through the transmission line 101a.
- the indoor unit control unit 242a transmits the predicted current I ⁇ received from the outdoor unit control unit 232 to the second waveform calculation unit 271 through the transmission line 103.
- the indoor unit control unit 242a monitors the indoor unit load 41a and has first operation information indicating the operation state of the indoor unit load 41a.
- the indoor unit control unit 242b monitors the indoor unit load 41b.
- the second operation information indicating the operation state of the indoor unit load 41b is included. That is, the outdoor unit 230, the indoor unit 240a, the indoor unit 240b, the first harmonic suppression device 260, and the second harmonic suppression device 270 are the outdoor unit operation information and the first operation information as the operation state of the air conditioner 220A. , And the second operation information is shared.
- FIG. 10 the case where the air conditioner 220 ⁇ / b> A includes two indoor units 240 a and 240 b is illustrated, but the present invention is not limited to this, and the air conditioner 220 ⁇ / b> A includes three or more units connected to the outdoor unit 230. You may have an outdoor unit.
- the first harmonic suppression device 260 and the second harmonic suppression device 270 are in accordance with the operating state of the air conditioner 220 or 220A.
- a first compensation current IA and a second compensation current IB that cancel harmonic components of the first load current Ia and the second load current Ib are generated.
- the first harmonic suppression device 260 and the second harmonic suppression device 270 merge the first compensation current IA and the second compensation current IB with the alternating current supplied from the external power supply 400, thereby A synchronized sinusoidal input current is supplied to the air conditioner 220 or 220A. That is, according to the air conditioning system 210 or 210A, the harmonic component of the current generated in the air conditioner 220 or 220A can be accurately suppressed.
- the air-conditioning system 210 is at least one of the first harmonic suppression device 260 and the second harmonic suppression device 270 if at least one of the outdoor unit load 31 and the indoor unit load 41 is operating. Performs harmonic suppression processing.
- the air conditioning system 210A has a first harmonic suppression device 260 and a second harmonic suppression device 270 if at least one of the outdoor unit load 31, the indoor unit load 41a, and the indoor unit load 41b is operating. At least one of the devices executes harmonic suppression processing. For this reason, according to the air conditioning systems 210 and 210A, for example, even when the compressor is stopped, harmonics generated by a device that controls the fan included in the air conditioner 220 can be suppressed. .
- the outdoor unit 230, the indoor unit 240, the indoor unit 240a, and the indoor unit 240b are not always operated at the maximum load.
- the thermostat is turned off and the compressor is often stopped. That is, especially in the intermediate period, the situation where the air conditioning system 210 or 210A operates only the fan increases, so that the harmonics are adjusted to the maximum loads of the outdoor unit 230, the indoor unit 240, the indoor unit 240a, and the indoor unit 240b.
- the capacity of the harmonic suppression device becomes excessive.
- the air conditioning systems 210 and 210A stop the second harmonic suppression device 270 when the first harmonic suppression device 260 has an ability to suppress all harmonics of the air conditioner 220 or 220A. .
- the 2nd harmonic suppression apparatus 270 has the capability to suppress all the harmonics of the air conditioner 220 or 220A, you may stop the 1st harmonic suppression apparatus 260.
- FIG. Therefore, according to the air conditioning systems 210 and 210A, it is possible to reduce the operating rate of the harmonic suppression device. That is, according to the air-conditioning systems 210 and 210A, the capacities of the first harmonic suppression device 260 and the second harmonic suppression device 270 can be effectively used without excess and deficiency. Up and shortening of service life can be suppressed.
- the harmonic suppression device 60 is connected to the outdoor unit 30 or 130, and the outdoor unit 30 or 130 transmits the operation information of the air conditioner 20 or 120 to the harmonic suppression device 60.
- the present invention is not limited to this.
- the harmonic suppression device 60 is connected to the indoor unit 40 or 140, and the indoor unit 40 or 140 transmits the operation information of the air conditioner 20 or 120 to the harmonic suppression device 60. You may make it transmit to.
- 1, 2, or 5 exemplifies the case where the air conditioner 20 or 120 includes one outdoor unit 30 or 130 and one indoor unit 40 or 140, the outdoor unit 30 or 130
- the number of indoor units 40 or 140 may be changed as appropriate. That is, for example, by providing a plurality of indoor units 40 or 140 in the air conditioner 20 or 120, the harmonic suppression device 60 performs information communication with the outdoor unit 30 or 130 and each indoor unit 40 or 140, The harmonics generated in the air conditioner 20 or 120 may be suppressed.
- the harmonic suppression device 60 may be provided inside the outdoor units 30 and 130, or may be provided inside the indoor units 40 and 140.
- the first harmonic suppression device 260 may be provided inside the outdoor unit 230
- the second harmonic suppression device 270 may be provided inside the indoor unit 240 or 240a.
- the first current sensor 51 may be provided inside the outdoor unit 30, 130, or 230
- the second current sensor 52 is provided inside the indoor unit 40, 140, 240, or 240a. It may be.
- the outdoor units 30, 130, and 230 may have an outdoor fan motor that rotates the outdoor fan as the outdoor unit load 31, and the outdoor unit power supply device 31A drives an outdoor fan motor or the like. You may have.
- the harmonic suppression device 60 recognizes that the outdoor unit load 31 is operating, and the first load current A control operation is executed so as to suppress harmonic components contained in Ia.
- the compressor is provided in the outdoor units 30, 130, and 230.
- the compressor is provided in the indoor unit 40, 140, 240, 240a, or 240b. It may be.
- the external power supply 400 was a three-phase alternating current power supply was illustrated in each said embodiment, it is not limited to this, The external power supply 400 may be a single phase alternating current power supply.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空気調和機において発生する高調波を抑制する高調波抑制装置を有する空気調和システム。高調波抑制装置は、室外機負荷に流入する第一負荷電流及び室内機負荷に流入する第二負荷電流に含まれる高調波成分を抽出して当該高調波成分を打ち消す補償電流を生成し、生成した補償電流を外部電源から空気調和機へ供給される交流電流に合流させる。
Description
本発明は、空気調和機において発生する高調波を抑制する機能を備えた空気調和システムに関する。
室内機及び室外機を内包する空気調和機において、圧縮機に備わる圧縮機モータ及び熱交換器に送風するファンを回転させるファンモータは、インバータ回路によって駆動される。インバータ回路へ供給される直流電圧は、商用電源等からの交流電圧が、整流回路により整流され、平滑コンデンサにより平滑化されたものである。すなわち、空気調和機では、インバータ回路へ供給する直流電圧を生成する際に、平滑コンデンサが充電と放電とを繰り返すため、高調波が発生する。
一般に、圧縮機は高負荷であるため、圧縮機モータを駆動するインバータ回路での高調波の発生量は、相対的に大きくなる。そして、圧縮機は、室外機に設けられることが多い。このため、従来から、空気調和機を備えた空気調和システムは、圧縮機の動作に連動して高調波を抑制する高調波抑制装置を室外機に搭載している。
また、空気調和システムにおいて、室外機に設けられた高調波抑制装置が、複数の室内機のそれぞれに搭載されたファンモータの回転数をもとに、全室内機に流れる電流の高調波成分の予測値を算出する、という技術も知られている(例えば特許文献1参照)。特許文献1の空気調和システムは、室外機からの電流と高調波成分の予測値とを相殺することにより、室内機で発生する高調波を抑制しようとするものである。
しかしながら、ファンのインバータ化が進む昨今では、ファンを制御する機器により発生する高調波も無視することができない。このため、圧縮機の動作に連動する高調波抑制装置では、圧縮機が停止したときに高調波抑制処理も停止するため、圧縮機以外の機器で発生する高調波を十分に抑制することができない。また、特許文献1の空気調和システムは、高調波の抑制処理に、ファンモータの回転数から算出する予測値を用いるため、高調波の抑制精度が、予測値の算出精度に依拠する不安定なものとなる。そして、特許文献1の高調波抑制装置は、室外機側の高調波の抑制処理と、室内機側の高調波の抑制処理とを別個に行っていることもあり、複雑な処理が必要となる。
本発明は、上記のような課題を解決するためになされたものであり、空気調和機に発生する高調波を精度よく抑制する空気調和システムを提供することを目的とする。
本発明に係る空気調和システムは、外部電源からの給電により動作し、高調波の発生要因となる室外機負荷を内包する室外機及び高調波の発生要因となる室内機負荷を内包する室内機を備えた空気調和機と、室外機負荷に流入する第一負荷電流を検知する第一電流センサと、室内機負荷に流入する第二負荷電流を検知する第二電流センサと、第一電流センサにおいて検知された第一負荷電流及び第二電流センサにおいて検知された第二負荷電流に含まれる高調波成分を抽出して当該高調波成分を打ち消す補償電流を生成し、当該補償電流を外部電源から空気調和機へ供給される交流電流に合流させる高調波抑制装置と、を有するものである。
本発明は、高調波抑制装置が、第一負荷電流及び第二負荷電流に含まれる高調は成分を打ち消す補償電流を生成し、生成した補償電流を外部電源から供給される交流電流に合流させるため、空気調和機に発生する高調波を精度よく抑制することができる。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和システム10の構成を示す概略図である。図2は、空気調和システム10が内包する空気調和機の内部構成を例示する概略図である。図1に示すように、空気調和システム10は、室外機30及び室内機40を有する空気調和機20と、波形演算部61及び補償処理部62を有する高調波抑制装置60と、を備えている。また、空気調和システム10は、室外機30の入力側に設けられ、室外機30に流入する第一負荷電流Iaを検知する第一電流センサ51と、室内機40の入力側に設けられ、室内機40に流入する第二負荷電流Ibを検知する第二電流センサ52とを有している。
図1は、本発明の実施の形態1に係る空気調和システム10の構成を示す概略図である。図2は、空気調和システム10が内包する空気調和機の内部構成を例示する概略図である。図1に示すように、空気調和システム10は、室外機30及び室内機40を有する空気調和機20と、波形演算部61及び補償処理部62を有する高調波抑制装置60と、を備えている。また、空気調和システム10は、室外機30の入力側に設けられ、室外機30に流入する第一負荷電流Iaを検知する第一電流センサ51と、室内機40の入力側に設けられ、室内機40に流入する第二負荷電流Ibを検知する第二電流センサ52とを有している。
空気調和機20は、圧縮機(図示せず)を含む室外機30と、室内ファン(図示せず)を含む室内機40と、を備えるセパレート形空気調和機である。
室外機30は、高調波の発生要因となる室外機負荷31と、室外機30を統括制御する室外機制御部32とを有している。室外機30は、図2に示すように、室外機負荷31として、室外機電源装置31Aと、圧縮機モータ31Bと、を含んでいる。
室外機電源装置31Aは、商用電源等である外部電源400から供給される交流電圧を整流する室外整流回路と、例えば平滑コンデンサを含んで構成され、室外整流回路で整流された電圧を平滑化する室外平滑回路と、室外平滑回路で平滑化された直流電圧から、複数のスイッチング素子のオンオフ動作により交流電圧を生成する室外インバータ回路と、を有している(何れも図示せず)。圧縮機モータ31Bは、室外インバータ回路から供給される交流電圧によって駆動し、室外機30に設けられた圧縮機を運転させるものである。
また、室外機制御部32は、CPU等からなり、各種の演算処理等を実行する中央処理装置32Aと、不揮発性メモリ等からなる記憶装置32Bと、伝送線101を通じて室内機制御部42との通信を行う第一通信回路32Cと、伝送線102を通じて高調波抑制装置60との通信を行う第二通信回路32Dと、を有している。
中央処理装置32Aは、室外機負荷31の動作状態を監視し、室外機負荷31の動作状態を示す室外機動作情報を記憶装置32Bに記憶させるものである。室外機動作情報は、例えば、室外機負荷31としての圧縮機モータ31Bが運転しているか停止しているかといった動作状態を示す情報、及び圧縮機の運転周波数を示す情報等を含むものである。また、中央処理装置32Aは、第二通信回路32Dを介して、室外機動作情報を波形演算部61へ送信する機能を有している。さらに、中央処理装置32Aは、室外機電源装置31A内の室外インバータ回路の動作を制御する機能を有している。
室内機40は、高調波の発生要因となる室内機負荷41と、室内機40を統括制御する室内機制御部42とを有している。室内機40は、図2に示すように、室内機負荷41として、室内機電源装置41Aと、ファンモータ41Bと、を含んでいる。
室内機電源装置41Aは、外部電源400から供給される交流電圧を整流する室内整流回路と、例えば平滑コンデンサを含んで構成され、室内整流回路で整流された電圧を平滑化する室内平滑回路と、室内平滑回路で平滑化された直流電圧から、複数のスイッチング素子のオンオフ動作により交流電圧を生成する室内インバータ回路と、を有している(何れも図示せず)。ファンモータ41Bは、室内インバータ回路から供給される交流電圧によって駆動し、室内機40に設けられた熱交換器(図示せず)に送風する室内ファンを回転させるものである。
また、室内機制御部42は、CPU等からなり、各種の演算処理等を実行する中央処理装置42Aと、不揮発性メモリ等からなる記憶装置42Bと、伝送線101を通じて室外機制御部32との通信を行う通信回路42Cと、を有している。
中央処理装置42Aは、室内機負荷41の動作状態を監視し、室内機負荷41が動作状態を示す室内機動作情報を記憶装置42Bに記憶させるものである。室内機動作情報は、例えば、室内機負荷41としてのファンモータ41Bが運転しているか停止しているかといった動作状態を示す情報、及びファンモータ41Bの回転数を示す情報等を含むものである。また、中央処理装置42Aは、室外機30を介して、室内機動作情報を波形演算部61へ送信する機能を有している。さらに、中央処理装置42Aは、室内機電源装置41A内の室内インバータ回路の動作を制御する機能を有している。
第一通信回路32Cは、伝送線101を介して通信回路42Cに接続されている。また、第二通信回路32Dは、伝送線102を介して波形演算部61に接続されている。すなわち、室外機30と室内機40とは、伝送線101を通じて情報通信を行い、室外機30と高調波抑制装置60とは、伝送線102を通じて情報通信を行うように構成されている。
より具体的に、室内機制御部42は、室外機制御部32へ室内機動作情報を送信するものである。また、室外機制御部32は、空気調和機20の動作情報として、室外機動作情報及び室内機動作情報を波形演算部61へ送信するものである。このように、空気調和システム10では、室外機30、室内機40、及び高調波抑制装置60が、空気調和機20の動作情報を共有しており、高調波抑制装置60は、室外機30から取得する空気調和機20の動作情報に応じて、高調波抑制処理を実行し又は停止するように構成されている。
波形演算部61は、室外機負荷31及び室内機負荷41の双方が運転している場合に、第一負荷電流Iaと第二負荷電流Ibとを合成して電流波形を演算するものである。また、波形演算部61は、室外機負荷31及び室内機負荷41のうちの一方が停止状態にある場合であっても、運転している室外機負荷31に流入する第一負荷電流Ia又は運転している室内機負荷41に流入する第二負荷電流Ibの電流波形を演算するように構成されている。そして、波形演算部61は、演算して求めた電流波形を補償処理部62に出力するものである。
補償処理部62は、波形演算部61から出力される電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す補償電流ICを生成するものである。すなわち、補償処理部62は、波形演算部61から出力される電流波形から抽出した高調波成分と大きさが等しく且つ逆位相である電流を補償電流ICとして生成するものである。そして、補償処理部62は、生成した補償電流ICを、外部電源400から供給される交流電流に合流させることにより、空気調和機20へ供給される電流が正弦波電流となるように調整するものである。
高調波抑制装置60は、室外機負荷31で発生する高調波及び室内機負荷41で発生する高調波を抑制するだけの容量を備えている。すなわち、補償処理部62は、第一負荷電流Ia及び第二負荷電流Ibに含まれる全高調波成分を打ち消す電流を補償電流ICとして生成する能力を有している。したがって、高調波抑制装置60は、空気調和機20が最大負荷の状態、すなわち、圧縮機の運転周波数が最大で、かつファンモータ41Bの回転数が最大であるような状態においても、空気調和機20で発生する高調波を抑制することができる。
ところで、圧縮機モータ31Bに取り付けられた圧縮機保護用のサーモスタット(図示せず)がOFF状態のときは、室外機30の圧縮機が停止していても、室内機40の室内ファンは運転している。このため、高調波抑制装置60は、圧縮機保護用のサーモスタットがOFF状態の場合にも高調波抑制処理を継続し、室内機40に流れる第二負荷電流Ibに含まれる高調波成分を抑制する。なお、圧縮機保護用のサーモスタットは、通常時はON状態であり、圧縮機モータ31Bのコイル温度が異常高温になったときにOFF状態となるものである。
なお、波形演算部61及び補償処理部62は、これらの機能を実現する回路デバイスなどのハードウェアにより実現することもできるし、例えばDSP等のマイコン又はCPU等の演算装置上で実行されるソフトウェアとして実現することもできる。
図3は、空気調和システム10において、室外機30に流れる第一負荷電流Iaと室内機40に流れる第二負荷電流Ibとの合成波を説明するための模式図である。本実施の形態1における空気調和システム10は、三相交流電源である外部電源400からの給電により動作するものである。このため、図3には、三相を構成するR相、N相、及びT相のうちのR相の電流波形を例示する。図3の(a)は、第一負荷電流Iaの電流波形である。図3の(b)は、第二負荷電流Ibの電流波形である。図3の(c)は、第一負荷電流Iaと第二負荷電流Ibとを合成した電流波形である。
図3に示すように、第一負荷電流Iaの電流波形のピーク値は「a」であり、第二負荷電流Ibの電流波形のピーク値は「b」である。そして、第一負荷電流Iaと第二負荷電流Ibとを合成した電流波形のピーク値は「a+b」となっている。
上述したように、波形演算部61は、室外機負荷31及び室内機負荷41の双方が運転している場合に、第一負荷電流Iaと第二負荷電流Ibとを合成し、図3の(c)に示すような電流波形を演算して補償処理部62に出力する。また、波形演算部61は、室内機負荷41が停止しており、かつ室外機負荷31が運転している場合、運転している室外機負荷31に流入する第一負荷電流Iaの電流波形を演算して補償処理部62に出力する。さらに、波形演算部61は、室外機負荷31が停止しており、かつ室内機負荷41が運転している場合、運転している室内機負荷41に流入する第二負荷電流Ibの電流波形を演算して補償処理部62に出力する。
図4は、空気調和システム10による高調波抑制処理に関する動作を示すフローチャートである。図4に沿って、高調波抑制装置60による高調波抑制処理の流れを説明する。
波形演算部61は、空気調和機20の動作情報を、伝送線102を通じて室外機30から取得し、空気調和機20の動作状態を確認する。そして、波形演算部61は、空気調和機20が停止状態にあるか否かを判定する(図4:ステップS101)。
波形演算部61は、空気調和機20が停止状態にあれば(図4:ステップS101/YES)、空気調和機20の監視を継続し、空気調和機20が運転を開始するまで待機する。一方、波形演算部61は、空気調和機20が運転状態にあれば(図4:ステップS101/NO)、第一電流センサ51と第二電流センサ52とから、それぞれ、第一負荷電流Iaと第二負荷電流Ibとを取得する(図4:ステップS102)。
次いで、波形演算部61は、室外機負荷31及び室内機負荷41のそれぞれの運転状態を確認し、室外機負荷31及び室内機負荷41のうちの一方が停止しているか否かを判定する(図4:ステップS103)。
室外機負荷31及び室内機負荷41が双方ともに運転している場合(図4:ステップS103/NO)、波形演算部61は、第一負荷電流Iaと第二負荷電流Ibとを合成して電流波形を演算する(図4:ステップS104)。
一方、室外機負荷31及び室内機負荷41のうちの一方が停止している場合(図4:ステップS103/YES)、運転している室外機負荷31へ流れる第一負荷電流Ia又は運転している室内機負荷41へ流れる第二負荷電流Ibの電流波形を演算する(図4:ステップS105)。
続いて、補償処理部62は、波形演算部61において演算された電流波形をもとに、空気調和機20で発生する高調波を抑制するための補償電流ICを発生させる。すなわち、補償処理部62は、波形演算部61において演算された電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す補償電流ICを生成する。そして、補償処理部62は、生成した補償電流ICを外部電源400から供給される交流電流に合流させる(図4:ステップS106)。
なお、上記ステップS101では、波形演算部61が、空気調和機20の動作情報をもとに、空気調和機20が停止状態にあるか否かを判定する場合を例示したが、これに限定されず、例えば、波形演算部61は、第一電流センサ51から送信される第一負荷電流Ia及び第二電流センサ52から送信される第二負荷電流Ibをもとに、空気調和機20が停止状態にあるか否かを判定するようにしてもよい。
以上のように、本実施の形態1の空気調和システム10は、高調波抑制装置60が、空気調和機20の運転状態に応じて、第一負荷電流Ia及び第二負荷電流Ibに含まれる高調波成分を打ち消す補償電流ICを生成する。そして、高調波抑制装置60は、外部電源400から供給される交流電流に補償電流ICを合流させることで、外部電源400と同期した正弦波状の入力電流を空気調和機20へ供給する。このため、空気調和システム10によれば、空気調和機20に発生する電流の高調波成分を精度よく抑制することができる。
また、従来のように、室内機及び室外機のそれぞれに一台ずつ高調波抑制装置を設ける場合は、増設用のスペースが必要となり、かつ室外機の負荷及び室内機の負荷のそれぞれに見合った容量及び制御構成を有する高調波抑制装置を開発する必要があるため、高コストとなる。さらに、複数台の室内機が設けられた空気調和システムにおいて、各室内機のそれぞれに高調波抑制装置を設ける場合は、必要となる設置面積及びコストがさらに増加する。
この点、空気調和システム10は、共通の外部電源400より給電される室外機30及び室内機40の双方において発生する高調波を、一台の高調波抑制装置60によって抑制することから、高調波抑制装置の設置台数を減らすことができるため、設置スペース及びコストの軽減を図ると共に、設置条件の自由度を増加することができる。
この点、空気調和システム10は、共通の外部電源400より給電される室外機30及び室内機40の双方において発生する高調波を、一台の高調波抑制装置60によって抑制することから、高調波抑制装置の設置台数を減らすことができるため、設置スペース及びコストの軽減を図ると共に、設置条件の自由度を増加することができる。
そして、空気調和システム10は、室外機負荷31及び室内機負荷41のうちの少なくとも一方が運転していれば、高調波抑制装置60が高調波抑制処理を実行するため、例えば圧縮機が停止している場合でも、室内ファンを制御する機器により発生する高調波を抑制することができる。
実施の形態2.
図5は、本発明の実施の形態2に係る空気調和システム110の構成を示す概略図である。図6は、空気調和システム110による高調波抑制処理に関する動作を示すフローチャートである。空気調和システム110は、一台の高調波抑制装置60が、一方の電流センサによる検出結果を直接取得し、他方の電流センサによる検出結果を、室外機130及び室内機140を介して取得するという点に特徴がある。図5及び図6に基づき、前述した実施の形態1とは異なる構成及び動作を説明する。実施の形態1と同等の構成部材については同一の符号を用いて説明を省略する。
図5は、本発明の実施の形態2に係る空気調和システム110の構成を示す概略図である。図6は、空気調和システム110による高調波抑制処理に関する動作を示すフローチャートである。空気調和システム110は、一台の高調波抑制装置60が、一方の電流センサによる検出結果を直接取得し、他方の電流センサによる検出結果を、室外機130及び室内機140を介して取得するという点に特徴がある。図5及び図6に基づき、前述した実施の形態1とは異なる構成及び動作を説明する。実施の形態1と同等の構成部材については同一の符号を用いて説明を省略する。
空気調和システム110において、空気調和機120は、室外機130及び室内機140を有している。図5では、室外機130側に高調波抑制装置60が設置された場合を例示している。すなわち、高調波抑制装置60は、室内機140よりも室外機130に近い位置に設けられている。
室内機140に備わる室内機制御部142は、第二電流センサ52において検知された第二負荷電流Ibを取得するように構成されている。また、室内機制御部142は、第二電流センサ52から取得した第二負荷電流Ibを、伝送線101を通じて室外機130に備わる室外機制御部132へ送信するように構成されている。室外機制御部132は、室内機制御部142から送信された第二負荷電流Ibを、伝送線102を通じて波形演算部61へ送信するように構成されている。
より具体的に、室内機制御部142は、第二電流センサ52から取得した第二負荷電流Ibを通信用の電流波形情報に変換し、変換後の電流波形情報を、伝送線101を通じて室外機制御部132へ送信するものである。また、室外機制御部132は、室内機制御部142から送信された電流波形情報を波形演算部61へ送信するものである。
また、室内機制御部142は、室外機制御部132へ室内機動作情報を送信するものであり、室外機制御部132は、空気調和機120の動作情報として、室外機動作情報及び室内機動作情報を波形演算部61へ送信するものである。そして、高調波抑制装置60は、室外機130から取得する空気調和機120の動作情報に応じて、高調波抑制処理を実行し又は停止するように構成されている。
上記の通り、本実施の形態2において、波形演算部61は、第二電流センサ52において検知された第二負荷電流Ibを、室内機140及び室外機130を介して取得するように構成されている。なお、室外機制御部132及び室内機制御部142における他の構成内容は、それぞれ、実施の形態1の室外機制御部32及び室内機制御部42と同様である。
続いて、図6に沿って、高調波抑制装置60による高調波抑制処理の流れを説明する。図6では、実施の形態1における図4に示す工程と同一の工程に対して同一の符号を付している。
波形演算部61は、第二電流センサ52において検知された第二負荷電流Ibを、室内機制御部142を介して室外機制御部132から取得する(図6:ステップS201)。
次いで、波形演算部61は、空気調和機120の動作情報を室外機制御部32から取得し、空気調和機120が停止状態にあるか否かを判定する(図6:ステップS101)。波形演算部61は、空気調和機120が停止状態にあれば(図6:ステップS101/YES)、空気調和機120の監視を継続し、空気調和機120が運転を開始するまで待機する。一方、波形演算部61は、空気調和機120が運転状態にあれば(図6:ステップS101/NO)、第一電流センサ51から第一負荷電流Iaを取得する(図6:ステップS202)。
次に、波形演算部61は、室外機負荷31及び室内機負荷41のうちの一方が停止しているか否かを判定する(図6:ステップS103)。波形演算部61は、室外機負荷31及び室内機負荷41が双方ともに運転している場合(図6:ステップS103/NO)、第一負荷電流Iaと第二負荷電流Ibとを合成して電流波形を演算する(図6:ステップS104)。一方、波形演算部61は、室外機負荷31及び室内機負荷41のうちの一方が停止している場合(図6:ステップS103/YES)、運転している室外機負荷31へ流れる第一負荷電流Ia又は運転している室内機負荷41へ流れる第二負荷電流Ibの電流波形を演算する(図6:ステップS105)。続いて、補償処理部62は、波形演算部61において演算された電流波形をもとに、空気調和機120において発生する高調波を抑制する補償電流ICを発生させる(図6:ステップS106)。
以上のように、本実施の形態2の空気調和システム110は、一台の高調波抑制装置60が、空気調和機120の運転状態に応じて、第一負荷電流Ia及び第二負荷電流Ibの高調波成分を打ち消す補償電流ICを生成する。そして、高調波抑制装置60は、外部電源400から供給される交流電流に補償電流ICを合流させることで、外部電源400と同期した正弦波状の入力電流を空気調和機120へ供給する。このため、空気調和システム10によれば、空気調和機120に発生する電流の高調波成分を精度よく抑制することができる。
また、空気調和システム110によれば、従来のように、室内機及び室外機のそれぞれに一台ずつ高調波抑制装置を設ける必要がないため、設置スペース及びコストの軽減を図ると共に、設置条件の自由度を増加することができる。
ところで、例えば室外機130及び室内機140の設置状況により、高調波抑制装置60と第二電流センサ52との距離が離れるような場合に、波形演算部61が、第二電流センサ52から直接第二負荷電流Ibを取得するように構成すれば、高調波抑制装置60と第二電流センサ52とを接続する配線の長さが増加する。
この点、空気調和システム110は、高調波抑制装置60と第二電流センサ52との距離が離れていても、高調波抑制装置60が、第二電流センサ52による検出結果を、室内機制御部142及び室外機制御部132との通信により取得することから、高調波抑制装置60と第二電流センサ52とを接続する配線の長さを短縮することができる。このため、空気調和システム110によれば、コストの低減及び情報通信の安定性の向上を図ることができる。
この点、空気調和システム110は、高調波抑制装置60と第二電流センサ52との距離が離れていても、高調波抑制装置60が、第二電流センサ52による検出結果を、室内機制御部142及び室外機制御部132との通信により取得することから、高調波抑制装置60と第二電流センサ52とを接続する配線の長さを短縮することができる。このため、空気調和システム110によれば、コストの低減及び情報通信の安定性の向上を図ることができる。
もっとも、高調波抑制装置60は、室内機140側に設けられていてもよく、空気調和機120の動作情報を室内機40が高調波抑制装置60へ送信するようにしてもよい。すなわち、高調波抑制装置60が、室内機140よりも室外機130に近い位置に設けられている場合、波形演算部61が、第一電流センサ51において検知された第一負荷電流Iaを、室外機30及び室内機40を介して取得するようにしてもよい。より具体的には、室外機制御部132が、第一電流センサ51から取得した第一負荷電流Iaを、通信用の電流波形情報に変換して室内機制御部142へ送信するようにしてもよい。そして、室内機制御部142が、室外機制御部132から受信した電流波形情報を波形演算部61へ送信するようにしてもよい。このようにしても、高調波抑制装置60と第一電流センサ51との距離が離れていても、高調波抑制装置60と第一電流センサ51とを接続する配線の長さを短縮することができるため、コストの低減及び情報通信の安定性の向上を図ることができる。
実施の形態3.
図7は、本発明の実施の形態3に係る空気調和システム210の構成を示す概略図である。図8及び図9は、空気調和システム210による高調波抑制処理に関する動作を示すフローチャートである。図7~図9に基づき、本実施の形態3のうち、上述した実施の形態1及び2とは異なる構成及び動作を説明する。実施の形態1及び2と同等の構成部材については同一の符号を用いて説明は省略する。
図7は、本発明の実施の形態3に係る空気調和システム210の構成を示す概略図である。図8及び図9は、空気調和システム210による高調波抑制処理に関する動作を示すフローチャートである。図7~図9に基づき、本実施の形態3のうち、上述した実施の形態1及び2とは異なる構成及び動作を説明する。実施の形態1及び2と同等の構成部材については同一の符号を用いて説明は省略する。
図7に示すように、空気調和システム210に備わる空気調和機220は、室外機負荷31及び室外機制御部232を含む室外機230と、室内機負荷41及び室内機制御部242を含む室内機240と、を有している。また、空気調和システム210は、空気調和機220で発生する高調波を抑制する高調波抑制装置として、室外機230に接続され、第一波形演算部261及び第一補償処理部262を備えた第一高調波抑制装置260と、室内機240に接続され、第二波形演算部271及び第二補償処理部272を備えた第二高調波抑制装置270と、を有している。
空気調和システム210は、第一高調波抑制装置260及び第二高調波抑制装置270の二台の合計容量が、室外機負荷31で発生する高調波及び室内機負荷41で発生する高調波を抑制可能な容量となっている。すなわち、空気調和システム210は、第一高調波抑制装置260及び第二高調波抑制装置270の二台の合計容量により、第一負荷電流Ia及び第二負荷電流Ibに含まれる全高調波成分を打ち消すために必要な電流を生成する能力を有している。したがって、空気調和システム210によれば、空気調和機220が最大負荷の状態、すなわち、圧縮機の運転周波数が最大で、かつ室内ファンの回転数が最大であるような状態であっても、空気調和機220で発生する高調波を抑制することができる。
室外機230に備わる室外機制御部232は、室外機負荷31を監視し、室外機動作情報を室内機制御部242へ送信するものである。室内機240に備わる室内機制御部242は、室内機負荷41を監視し、室内機動作情報を室外機制御部232へ送信するものである。また、室外機制御部232は、空気調和機220の動作情報である室外機動作情報及び室内機動作情報を第一波形演算部261へ送信するものである。室内機制御部242は、空気調和機220の動作情報を第二波形演算部271へ送信するものである。室外機制御部232及び室内機制御部242の他の構成内容については、実施の形態1における室外機制御部32及び室内機制御部42と同様である。
そして、第一高調波抑制装置260は、室外機230から取得する空気調和機220の動作情報に応じて、高調波抑制処理を実行し又は停止するように構成されている。また、第二高調波抑制装置270は、室内機240から取得する空気調和機220の動作情報に応じて、高調波抑制処理を実行し又は停止するように構成されている。
第一波形演算部261は、第一電流センサ51において検知された第一負荷電流Iaを取得するものである。そして、第一波形演算部261は、第一負荷電流Iaをもとに、第一高調波抑制装置260の容量に応じた電流波形を演算するものである。第一補償処理部262は、第一波形演算部261において演算された電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す第一補償電流IAを生成するものである。
第二波形演算部271は、第二電流センサ52において検知された第二負荷電流Ibを取得するものである。そして、第二波形演算部271は、第二負荷電流Ibをもとに、第二高調波抑制装置270の容量に応じた電流波形を演算するものである。第二補償処理部272は、第二波形演算部271において演算された電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す第二補償電流IBを生成するものである。
本実施の形態3における空気調和システム210は、第一補償処理部262が生成する第一補償電流IAと、第二補償処理部272が生成する第二補償電流IBとにより、第一負荷電流Ia及び第二負荷電流Ibに含まれる全高調波成分を打ち消すものである。すなわち、本実施の形態3における第一補償電流IAと第二補償電流IBとの和は、実施の形態1及び2における補償電流ICに相当する。
このため、以降では、第一負荷電流Ia及び第二負荷電流Ibに含まれる全高調波成分を打ち消すために必要な電流を補償電流ICともいう。
このため、以降では、第一負荷電流Ia及び第二負荷電流Ibに含まれる全高調波成分を打ち消すために必要な電流を補償電流ICともいう。
ところで、空気調和システム210の運転状態によっては、第一高調波抑制装置260の容量が補償電流ICを補償可能な場合、すなわち、第一補償処理部262が補償電流IC以上の電流を生成する能力を有する場合がある。こうした場合に、本実施の形態3では、第一高調波抑制装置260が補償電流ICの全てを生成するように構成されている。
また、第一高調波抑制装置260は、第一補償処理部262によって補償電流ICの全てを生成する場合に、第二高調波抑制装置270が運転状態にあれば、第二高調波抑制装置270を停止させる機能を有している。これにより、高調波抑制装置の稼働率を低減することができるため、無駄な運転によるコストアップを抑制し、高調波抑制装置の消耗を抑えることができる。
もっとも、第二高調波抑制装置270の容量が補償電流ICを補償可能な場合、すなわち、第二補償処理部272が補償電流IC以上の電流を生成する能力を有する場合には、第二高調波抑制装置270が補償電流ICの全てを生成するようにしてもよい。併せて、第一高調波抑制装置260が運転状態にあれば、第二高調波抑制装置270が第一高調波抑制装置260を停止させるようにするとよい。
また、第一高調波抑制装置260又は第二高調波抑制装置270の何れか一方のみでは、空気調和機220で発生する高調波の全てを抑制することができない場合、第一高調波抑制装置260及び第二高調波抑制装置270の双方が高調波抑制処理を行うように構成されている。すなわち、この場合、第一高調波抑制装置260が、補償電流ICの一部として第一補償電流IAを生成し、第二高調波抑制装置270が、補償電流ICの残部として第二補償電流IBを生成する。
さらに、第一高調波抑制装置260の容量が不足している場合、すなわち、第一高調波抑制装置260が第一負荷電流Iaの全高調波成分を打ち消す電流を生成する能力を有しない場合に、空気調和システム210は、第二高調波抑制装置270の余っている容量によって、第一高調波抑制装置260の容量不足分を補うように構成されている。なお、第一高調波抑制装置260の容量が不足している状況としては、例えば、室外機230に備わる圧縮機の運転周波数が一定量を超えている場合等が想定される。
より具体的に、第一波形演算部261は、第一補償処理部262によって生成可能な最大電流が、第一負荷電流Iaの全高調波成分を打ち消す電流に満たない場合に、第一負荷電流Iaと第一補償処理部262によって生成される第一補償電流IAとの合成電流を予測演算して予測電流Iαを求める。そして、第一波形演算部261は、伝送線102を通じて予測電流Iαを室外機制御部232へ送信する。
かかる場合において、第一補償処理部262は、第一負荷電流Iaの高調波成分の一部を打ち消す第一補償電流IAを、補償電流ICの一部として生成する。そして、第一補償処理部262は、生成した第一補償電流IAを、外部電源400から供給される交流電流に合流させる。
室外機制御部232は、第一波形演算部261から送信される予測電流Iαを、伝送線101を通じて室内機制御部242へ送信する。室内機制御部242は、伝送線103を通じて予測電流Iαを第二波形演算部271へ送信する。
そして、第二波形演算部271は、予測電流Iαと第二負荷電流Ibとを合成して電流波形を演算し、第二補償処理部272は、第二波形演算部271において演算された電流波形から高調波成分を抽出して、当該高調波成分を打ち消す第二補償電流IBを補償電流ICの残部として生成する。
すなわち、第一高調波抑制装置260は、第一負荷電流Iaの全高調波成分を打ち消す電流を生成する能力を有しない場合、第一補償電流IAを補償電流ICの一部として生成し、かつ第一負荷電流Iaと第一補償電流IAとの合成波形を予測演算して予測電流Iαを求めるものである。また、この場合、第二高調波抑制装置270は、第二負荷電流Ibと予測電流Iαとを合成した電流から高調波成分を抽出して、当該高調波成分を打ち消す第二補償電流IBを補償電流ICの残部として生成するものである。
一方、第二高調波抑制装置270の容量が不足している場合、空気調和システム210は、第一高調波抑制装置260の余っている容量によって、第二高調波抑制装置270の容量不足分を補うように構成してもよい。
すなわち、第二高調波抑制装置270は、第二負荷電流Ibの全高調波成分を打ち消す電流を生成する能力を有しない場合、第二補償電流IBを補償電流の一部として生成し、かつ第二負荷電流Ibと第二補償電流IBとの合成波形を予測演算して予測電流Iαを求めるものである。また、この場合、第一高調波抑制装置260は、第一負荷電流Iaと予測電流Iαとを合成した電流から高調波成分を抽出して、当該高調波成分を打ち消す第一補償電流IAを補償電流ICの残部として生成するものである。
続いて、図8に沿って、第一高調波抑制装置260及び第二高調波抑制装置270による高調波抑制処理の流れを説明する。
第一波形演算部261及び第二波形演算部271は、空気調和機220の動作状態を確認し、空気調和機220が停止状態にあるか否かを判定する(図8:ステップS301)。第一波形演算部261及び第二波形演算部271は、空気調和機220が停止状態にあれば(図8:ステップS301/YES)、空気調和機220の監視を継続し、空気調和機220が運転を開始するまで待機する。
一方、空気調和機220が運転状態にあれば(図8:ステップS301/NO)、第一波形演算部261が、第一電流センサ51において検知された第一負荷電流Iaを取得し、第二波形演算部271が、第二電流センサ52において検知された第二負荷電流Ibを取得する(図8:ステップS302)。
第一高調波抑制装置260及び第二高調波抑制装置270は、上記ステップS301及びステップS302の処理を、常時又は一定周期ごとに実行する。
次いで、第一波形演算部261は、第一負荷電流Iaの電流波形を演算し、第二波形演算部271は、第二負荷電流Ibの電流波形を演算する(図8:ステップS303)。
続いて、第一補償処理部262は第一補償電流IAを発生させ、第二補償処理部272は第二補償電流IBを発生させる。すなわち、第一補償処理部262は、第一波形演算部261において演算された電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す第一補償電流IAを生成する。そして、第一補償処理部262は、第一補償電流IAを外部電源400から供給される交流電流に合流させる。また、第二補償処理部272は、第二波形演算部271において演算された電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す第二補償電流IBを生成する。そして、第二補償処理部272は、第二補償電流IBを外部電源400から供給される交流電流に合流させる(図8:ステップS304)。
次に、第一波形演算部261は、室外機制御部232から空気調和機220の動作情報を取得し、第二波形演算部271は、室内機制御部242から空気調和機220の動作情報を取得する(図8:ステップS305)。
次いで、第一波形演算部261は、第一高調波抑制装置260の容量に余力があるか否かを判定する(図8:ステップS306)。第一波形演算部261は、第一高調波抑制装置260の容量に余力があると判定した場合(図8:ステップS306/YES)、図9のステップS307へ移行する。すなわち、第一波形演算部261は、第一高調波抑制装置260の一台によって、空気調和機220で発生する全高調波を抑制することができるか否かを判定する(図9:ステップS307)。
第一波形演算部261は、第一高調波抑制装置260の一台によって全高調波を抑制できると判定した場合(図9:ステップS307/YES)、室外機230と室内機240とを経由して、第二高調波抑制装置270が高調波抑制処理を停止しているか否かを判定する(図9:ステップS308)。
第一波形演算部261は、第二高調波抑制装置270が高調波抑制処理を実行している場合(図9:ステップS308/NO)、室外機230及び室内機240を介して、第二波形演算部271に停止指令を送信し、第二高調波抑制装置270の高調波抑制処理を停止させる(図9:ステップS309)。
第二高調波抑制装置270が高調波抑制処理を停止している場合(図9:ステップS308/YES)又は上記ステップS309を経由して、第二波形演算部271は、室内機制御部242を介して室外機制御部232に第二負荷電流Ibを送信する。そして、室外機制御部232が第一波形演算部261へ第二負荷電流Ibを送信することにより、第一波形演算部261は第二負荷電流Ibを取得する(図9:ステップS310)。
次いで、第一波形演算部261は、第一負荷電流Iaと第二負荷電流Ibとを合成して電流波形を演算する(図9:ステップS311)。第一補償処理部262は、第一波形演算部261において演算された電流波形をもとに、第一補償電流IAを発生させる。すなわち、第一補償処理部262は、第一波形演算部261において演算された電流波形から高調波成分を抽出し、抽出した高調波成分を打ち消す第一補償電流IAを生成する。なお、ここで第一補償処理部262が生成する第一補償電流IAは、補償電流ICに相当する。そして、第一補償処理部262は、第一補償電流IAを外部電源400から供給される交流電流に合流させる(図9:ステップS312)。
その後、図8のステップS305へ移行する。
その後、図8のステップS305へ移行する。
また、図8のステップS307において、第一波形演算部261は、第一高調波抑制装置260の一台のみでは全高調波を抑制できないと判定した場合(図9:ステップS307/NO)、室外機230と室内機240とを経由して、第二高調波抑制装置270が高調波抑制処理を実行しているか否かを判定する(図9:ステップS313)。
第一波形演算部261は、第二高調波抑制装置270が高調波抑制処理を停止している場合、室外機230及び室内機240を介して、第二波形演算部271に運転指令を送信し、第二高調波抑制装置270に高調波抑制処理を開始させる(図9:ステップS314)。
第二高調波抑制装置270が高調波抑制処理を実行している場合(図9:ステップS313/YES)又は上記ステップS314を経由して、第一波形演算部261は、自身が第一負荷電流Iaのみをもとに電流波形を演算しているか否かを確認する(図9:ステップS315)。
第一波形演算部261は、第一負荷電流Iaのみをもとに電流波形を演算していない場合(図9:ステップS315/NO)、すなわち、第一負荷電流Iaと第二負荷電流Ibの全部又は一部とを合成して電流波形を演算している場合、第一負荷電流Iaの電流波形を再演算する。
次いで、第一波形演算部261が第一負荷電流Iaのみをもとに電流波形を演算している場合(図9:ステップS315/YES)又はステップS316を経て、第二波形演算部271は、第二負荷電流Ibの電流波形を演算する(図9:ステップS317)。
そして、図8のステップS304へ移行する。
そして、図8のステップS304へ移行する。
また、図8のステップS306において、第一高調波抑制装置260の容量に余力がないと判定した場合(図8:ステップS306/NO)、第一波形演算部261は、第一高調波抑制装置260の容量が不足しているか否かを判定する(図8:ステップS318)。
第一波形演算部261は、第一高調波抑制装置260の容量が不足していないと判定した場合(図8:ステップS318/NO)、ステップS305へ移行する。
一方、第一波形演算部261は、第一高調波抑制装置260の容量が不足していると判定した場合(図8:ステップS318/YES)、第一高調波抑制装置260の容量をもとに、第一負荷電流Iaと第一補償電流IAとの合成電流を予測演算して予測電流Iαを求める(図8:ステップS319)。
次いで、第一波形演算部261は、室外機制御部232を介して、予測電流Iαを室内機制御部242へ送信する。そして、室内機制御部242が第二波形演算部271へ予測電流Iαを送信することにより、第二波形演算部271は予測電流Iαを取得する(図8:ステップS320)。第二波形演算部271は、第二負荷電流Ibと予測電流Iαとを合成して電流波形を演算する(図8:ステップS321)。
第二補償処理部272は、第二波形演算部271において演算された電流波形をもとに、第二補償電流IBを発生させる。すなわち、第二補償処理部272は、第二波形演算部271において演算された電流波形から高調波成分を抽出し、抽出した全ての高調波成分を打ち消す第二補償電流IBを生成する。そして、第二補償処理部272は、第二補償電流IBを外部電源400から供給される交流電流に合流させる(図8:ステップS322)。
その後、ステップS305へ移行する。
その後、ステップS305へ移行する。
なお、図8及び図9を参照しての上記動作説明では、第一高調波抑制装置260の容量が過剰又は不足である場合の高調波抑制処理を説明したが、空気調和システム210は、第二高調波抑制装置270の容量が過剰又は不足である場合の高調波抑制処理を、上記同様に実行してもよい。
すなわち、第二高調波抑制装置270が補償電流IC以上の電流を生成する能力を有する場合、第二高調波抑制装置270が補償電流ICの全てを生成するようにしてもよい。
また、第二高調波抑制装置270の容量が不足している場合、第二波形演算部271が、第二高調波抑制装置270の容量をもとに、第二負荷電流Ibと第二補償電流IBとの合成電流を予測演算して予測電流Iαを求めるようにしてもよい。
そして、第一高調波抑制装置260は、第一負荷電流Iaと予測電流Iαとを合成した電流から高調波成分を抽出して、当該高調波成分を打ち消す第一補償電流IAを生成するようにしてもよい。
そして、第一高調波抑制装置260は、第一負荷電流Iaと予測電流Iαとを合成した電流から高調波成分を抽出して、当該高調波成分を打ち消す第一補償電流IAを生成するようにしてもよい。
<変形例>
図10は、本実施の形態3の変形例に係る空気調和システム210Aの構成を示す概略図である。図10に示すように、空気調和システム210Aの空気調和機220Aでは、一台の室外機230に対し、複数台の室内機240a及び室内機240bが接続されている。
図10は、本実施の形態3の変形例に係る空気調和システム210Aの構成を示す概略図である。図10に示すように、空気調和システム210Aの空気調和機220Aでは、一台の室外機230に対し、複数台の室内機240a及び室内機240bが接続されている。
室内機240aの室内機制御部242aは、伝送線103を介して、第二高調波抑制装置270との情報通信を行う。また、室内機制御部242aは、伝送線101aを介して、室外機制御部232との情報通信を行う。室内機240bの室内機制御部242bは、伝送線101bを介して、室内機制御部242aとの情報通信を行う。
室外機制御部232は、第一波形演算部261において求められた予測電流Iαを、伝送線102を通じて受信すると共に、伝送線101aを通じて室内機制御部242aへ送信する。室内機制御部242aは、室外機制御部232から受信した予測電流Iαを、伝送線103を通じて第二波形演算部271へ送信する。
また、室内機制御部242aは、室内機負荷41aを監視し、室内機負荷41aの動作状態を示す第一動作情報を有しており、室内機制御部242bは、室内機負荷41bを監視し、室内機負荷41bの動作状態を示す第二動作情報を有している。すなわち、室外機230、室内機240a、室内機240b、第一高調波抑制装置260、及び第二高調波抑制装置270は、空気調和機220Aの動作状態として、室外機動作情報、第一動作情報、及び第二動作情報を共有している。
他の構成及び動作については、前述して空気調和システム210と同様である。図10では、空気調和機220Aが、二台の室内機240a及び室内機240bを有する場合を例示したが、これに限定されず、空気調和機220Aは、室外機230に接続された3台以上の室外機を有していてもよい。
以上のように、本実施の形態3の空気調和システム210又は210Aは、第一高調波抑制装置260及び第二高調波抑制装置270が、空気調和機220又は220Aの運転状態に応じて、第一負荷電流Ia及び第二負荷電流Ibの高調波成分を打ち消す第一補償電流IA及び第二補償電流IBを生成する。そして、第一高調波抑制装置260及び第二高調波抑制装置270は、第一補償電流IA及び第二補償電流IBを外部電源400から供給される交流電流に合流させることで、外部電源400と同期した正弦波状の入力電流を空気調和機220又は220Aへ供給する。すなわち、空気調和システム210又は210Aによれば、空気調和機220又は220Aで発生する電流の高調波成分を精度よく抑制することができる。
そして、空気調和システム210は、室外機負荷31及び室内機負荷41のうちの少なくとも一つが運転していれば、第一高調波抑制装置260及び第二高調波抑制装置270のうちの少なくとも一台が高調波抑制処理を実行する。また、空気調和システム210Aは、室外機負荷31、室内機負荷41a、及び室内機負荷41bのうちの少なくとも一つが運転していれば、第一高調波抑制装置260及び第二高調波抑制装置270のうちの少なくとも一台が高調波抑制処理を実行する。このため、空気調和システム210及び210Aによれば、例えば、圧縮機が停止している場合であっても、空気調和機220に備わるファンを制御する機器により発生する高調波を抑制することができる。
ところで、室外機230、室内機240、室内機240a、及び室内機240bは、常に最大負荷で運転しているわけではない。例えば、日本における春及び秋のように、比較的気候が穏やかな中間期には、サーモスタットがOFF状態となり、圧縮機が停止していることが多くなる。つまり、特に中間期には、空気調和システム210又は210Aがファンのみを運転するといった状況が増加するため、室外機230、室内機240、室内機240a、及び室内機240bの最大負荷に合わせて高調波抑制装置を選定した場合には、高調波抑制装置の容量が過剰となってしまう。
この点、空気調和システム210及び210Aは、例えば、第一高調波抑制装置260が空気調和機220又は220Aの全高調波を抑制する能力を有する場合に、第二高調波抑制装置270を停止させる。また、第二高調波抑制装置270が空気調和機220又は220Aの全高調波を抑制する能力を有する場合は、第一高調波抑制装置260を停止させてもよい。したがって、空気調和システム210及び210Aによれば、高調波抑制装置の稼働率の低減を図ることができる。すなわち、空気調和システム210及び210Aによれば、第一高調波抑制装置260及び第二高調波抑制装置270の容量を過不足なく有効利用することができるため、高調波抑制装置の過剰運転によるコストアップ及び寿命の短縮を抑制することができる。
上述した実施の形態は、空調システムにおける好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、図1及び図2又は図5では、高調波抑制装置60が室外機30又は130に接続され、室外機30又は130が空気調和機20又は120の動作情報を高調波抑制装置60へ送信する場合を例示したが、これに限定されず、高調波抑制装置60が、室内機40又は140に接続され、室内機40又は140が空気調和機20又は120の動作情報を高調波抑制装置60へ送信するようにしてもよい。
また、図1及び図2又は図5では、空気調和機20又は120が、一台の室外機30又は130及び一台の室内機40又は140を有する場合を例示したが、室外機30又は130及び室内機40又は140の台数は適宜変更してもよい。すなわち、例えば、空気調和機20又は120に複数台の室内機40又は140を設け、高調波抑制装置60が、室外機30又は130及び各室内機40又は140との情報通信を行うことにより、空気調和機20又は120において発生する高調波を抑制するようにしてもよい。
さらに、高調波抑制装置60は、室外機30、130の内部に設けられていてもよく、室内機40、140の内部に設けられていてもよい。同様に、第一高調波抑制装置260は、室外機230の内部に設けられていてもよく、第二高調波抑制装置270は、室内機240又は240aの内部に設けられていてもよい。加えて、第一電流センサ51は、室外機30、130、又は230の内部に設けられていてもよく、第二電流センサ52は、室内機40、140、240、又は240aの内部に設けられていてもよい。
また、室外機30、130、及び230は、室外機負荷31として、室外ファンを回転させる室外ファンモータを有していてもよく、室外機電源装置31Aが、室外ファンモータを駆動するインバータ回路等を有していてもよい。かかる構成を採った場合、圧縮機モータ31B又は室外ファンモータの何れか一方が停止していても、高調波抑制装置60は、室外機負荷31が運転していると認識し、第一負荷電流Iaに含まれる高調波成分を抑制するように制御動作を実行する。
さらに、上記各実施の形態では、圧縮機が室外機30、130、及び230に設けられている例を示したが、圧縮機は、室内機40、140、240、240a、又は240bに設けられていてもよい。また、上記各実施の形態では、外部電源400が三相交流電源である場合を例示したが、これに限定されず、外部電源400は、単相交流電源であってもよい。
10、110、210、210A 空気調和システム、20、120、220、220A 空気調和機、30、130、230 室外機、31 室外機負荷、31A 室外機電源装置、31B 圧縮機モータ、32、132、232 室外機制御部、32A、42A 中央処理装置、32B、42B 記憶装置、32C 第一通信回路、32D 第二通信回路、40、140、240、240a、240b 室内機、41、41a、41b 室内機負荷、41A 室内機電源装置、41B ファンモータ、42、142、242、242a、242b 室内機制御部、42C 通信回路、51 第一電流センサ、52 第二電流センサ、60、160 高調波抑制装置、61 波形演算部、62 補償処理部、101、101a、101b、102、103 伝送線、260 第一高調波抑制装置、261 第一波形演算部、262 第一補償処理部、270 第二高調波抑制装置、271 第二波形演算部、272 第二補償処理部、400 外部電源、IA 第一補償電流、IB 第二補償電流、IC 補償電流、Ia 第一負荷電流、Ib 第二負荷電流、Iα 予測電流。
Claims (8)
- 外部電源からの給電により動作し、高調波の発生要因となる室外機負荷を内包する室外機及び高調波の発生要因となる室内機負荷を内包する室内機を備えた空気調和機と、
前記室外機負荷に流入する第一負荷電流を検知する第一電流センサと、
前記室内機負荷に流入する第二負荷電流を検知する第二電流センサと、
前記第一電流センサにおいて検知された前記第一負荷電流及び前記第二電流センサにおいて検知された前記第二負荷電流に含まれる高調波成分を抽出して当該高調波成分を打ち消す補償電流を生成し、当該補償電流を前記外部電源から前記空気調和機へ供給される交流電流に合流させる高調波抑制装置と、を有する空気調和システム。 - 前記高調波抑制装置は、
前記室外機負荷及び前記室内機負荷の双方が運転している場合、前記第一負荷電流と前記第二負荷電流とを合成した電流から高調波成分を抽出し、当該高調波成分を打ち消す前記補償電流を生成するものであり、
前記室外機負荷及び前記室内機負荷のうちの何れか一方が停止している場合、運転している前記室外機負荷に流入する前記第一負荷電流又は運転している前記室内機負荷に流入する前記第二負荷電流の高調波成分を抽出し、当該高調波成分を打ち消す電流を前記補償電流として生成するものである請求項1に記載の空気調和システム。 - 前記高調波抑制装置は、
前記室内機よりも前記室外機に近い位置に設けられており、
前記第二電流センサにおいて検知された前記第二負荷電流を、前記室内機及び前記室外機を介して取得するものである請求項1又は2に記載の空気調和システム。 - 前記高調波抑制装置は、
前記室外機よりも前記室内機に近い位置に設けられており、
前記第一電流センサにおいて検知された前記第一負荷電流を、前記室内機及び前記室外機を介して取得するものである請求項1又は2に記載の空気調和システム。 - 前記高調波抑制装置は、前記室外機に接続された第一高調波抑制装置と、前記室内機に接続された第二高調波抑制装置とからなり、
前記第一高調波抑制装置は、
前記補償電流以上の電流を生成する能力を有する場合、
前記補償電流の全てを生成するものである請求項1又は2に記載の空気調和システム。 - 前記第一高調波抑制装置は、
前記第一負荷電流の全高調波成分を打ち消す電流を生成する能力を有しない場合、第一補償電流を前記補償電流の一部として生成し、かつ前記第一負荷電流と前記第一補償電流との合成波形を予測演算して予測電流を求めるものであり、
前記第二高調波抑制装置は、
前記第二負荷電流と前記予測電流とを合成した電流から高調波成分を抽出して、当該高調波成分を打ち消す第二補償電流を前記補償電流の残部として生成するものである請求項5に記載の空気調和システム。 - 前記高調波抑制装置は、前記室外機に接続された第一高調波抑制装置と、前記室内機に接続された第二高調波抑制装置とからなり、
前記第二高調波抑制装置は、
前記補償電流以上の電流を生成する能力を有する場合、
前記補償電流の全てを生成するものである請求項1又は2に記載の空気調和システム。 - 前記第二高調波抑制装置は、
前記第二負荷電流の全高調波成分を打ち消す電流を生成する能力を有しない場合、第二補償電流を前記補償電流の一部として生成し、かつ前記第二負荷電流と前記第二補償電流との合成波形を予測演算して予測電流を求めるものであり、
前記第一高調波抑制装置は、
前記第一負荷電流と前記予測電流とを合成した電流から高調波成分を抽出して、当該高調波成分を打ち消す第一補償電流を前記補償電流の残部として生成するものである請求項7に記載の空気調和システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/074950 WO2017037892A1 (ja) | 2015-09-02 | 2015-09-02 | 空気調和システム |
JP2017537139A JP6415732B2 (ja) | 2015-09-02 | 2015-09-02 | 空気調和システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/074950 WO2017037892A1 (ja) | 2015-09-02 | 2015-09-02 | 空気調和システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017037892A1 true WO2017037892A1 (ja) | 2017-03-09 |
Family
ID=58188441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074950 WO2017037892A1 (ja) | 2015-09-02 | 2015-09-02 | 空気調和システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6415732B2 (ja) |
WO (1) | WO2017037892A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110678824A (zh) * | 2017-05-30 | 2020-01-10 | 大金工业株式会社 | 电源品质管理系统及空调装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004364491A (ja) * | 2003-05-09 | 2004-12-24 | Sanyo Electric Co Ltd | 電源システム及び空気調和装置 |
JP2007205687A (ja) * | 2006-02-06 | 2007-08-16 | Mitsubishi Electric Corp | 空気調和機の電源システム |
JP2010279170A (ja) * | 2009-05-28 | 2010-12-09 | Sanyo Electric Co Ltd | アクティブフィルタ |
JP2012067982A (ja) * | 2010-09-25 | 2012-04-05 | Hitachi Appliances Inc | アクティブフィルタを備えた空気調和装置 |
JP2012143094A (ja) * | 2011-01-04 | 2012-07-26 | Mitsubishi Electric Corp | 高調波電流補償装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3319636B2 (ja) * | 1993-11-09 | 2002-09-03 | 株式会社東芝 | アクティブフィルタ装置 |
-
2015
- 2015-09-02 JP JP2017537139A patent/JP6415732B2/ja active Active
- 2015-09-02 WO PCT/JP2015/074950 patent/WO2017037892A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004364491A (ja) * | 2003-05-09 | 2004-12-24 | Sanyo Electric Co Ltd | 電源システム及び空気調和装置 |
JP2007205687A (ja) * | 2006-02-06 | 2007-08-16 | Mitsubishi Electric Corp | 空気調和機の電源システム |
JP2010279170A (ja) * | 2009-05-28 | 2010-12-09 | Sanyo Electric Co Ltd | アクティブフィルタ |
JP2012067982A (ja) * | 2010-09-25 | 2012-04-05 | Hitachi Appliances Inc | アクティブフィルタを備えた空気調和装置 |
JP2012143094A (ja) * | 2011-01-04 | 2012-07-26 | Mitsubishi Electric Corp | 高調波電流補償装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110678824A (zh) * | 2017-05-30 | 2020-01-10 | 大金工业株式会社 | 电源品质管理系统及空调装置 |
EP3620886A4 (en) * | 2017-05-30 | 2020-09-23 | Daikin Industries, Ltd. | POWER SUPPLY AND AIR CONDITIONER QUALITY MANAGEMENT SYSTEM |
US11374487B2 (en) | 2017-05-30 | 2022-06-28 | Daikin Industries, Ltd. | Power source quality management system and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP6415732B2 (ja) | 2018-10-31 |
JPWO2017037892A1 (ja) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017372665B2 (en) | Device with built-in active filter | |
KR101737364B1 (ko) | 공기조화기 | |
US10076060B2 (en) | Cooling device, in particular for cooling components housed in a switchgear cabinet, corresponding use and corresponding method | |
US10797584B2 (en) | Active filter device, air conditioning device, and air conditioning system | |
JP2012107817A (ja) | 空気調和機 | |
WO2009066839A3 (en) | Motor controller of air conditioner | |
JP6465242B2 (ja) | アクティブフィルタシステム、空気調和装置 | |
WO2020262051A1 (ja) | 空気調和機 | |
JP6415732B2 (ja) | 空気調和システム | |
JP2007205687A (ja) | 空気調和機の電源システム | |
JP3732772B2 (ja) | 電力変換装置 | |
WO2018221624A1 (ja) | 電源品質管理システムならびに空気調和装置 | |
JP6537594B2 (ja) | 空気調和装置 | |
JP6834753B2 (ja) | アクティブフィルタ装置、及びそれを用いた空気調和装置 | |
JP2011050244A (ja) | 圧縮機駆動方法および圧縮機駆動装置 | |
JP6834754B2 (ja) | アクティブフィルタ装置、及びそれを用いた空気調和装置 | |
JP2018191373A5 (ja) | ||
JP2019022344A5 (ja) | ||
JP2019022344A (ja) | アクティブフィルタシステム、空気調和装置 | |
JP2004263882A (ja) | 空調制御装置 | |
KR20170018688A (ko) | 전력변환장치 및 이를 구비하는 공기조화기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15903012 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017537139 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15903012 Country of ref document: EP Kind code of ref document: A1 |