WO2017036097A1 - 一种3d显示装置及其驱动方法和装置 - Google Patents

一种3d显示装置及其驱动方法和装置 Download PDF

Info

Publication number
WO2017036097A1
WO2017036097A1 PCT/CN2016/073872 CN2016073872W WO2017036097A1 WO 2017036097 A1 WO2017036097 A1 WO 2017036097A1 CN 2016073872 W CN2016073872 W CN 2016073872W WO 2017036097 A1 WO2017036097 A1 WO 2017036097A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
column
column direction
pixels
Prior art date
Application number
PCT/CN2016/073872
Other languages
English (en)
French (fr)
Inventor
郭仁炜
董学
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP16784370.5A priority Critical patent/EP3346316A4/en
Priority to KR1020177001155A priority patent/KR101928676B1/ko
Priority to US15/308,045 priority patent/US10104367B2/en
Priority to JP2016569039A priority patent/JP6858017B2/ja
Publication of WO2017036097A1 publication Critical patent/WO2017036097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/354Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying sequentially
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours

Definitions

  • the present invention relates to the technical field of display devices, and more particularly to a 3D display device and a driving method thereof.
  • 3D (3 dimention) is also a 3D form, which distinguishes the information entering the left and right eyes by the grating, so that people feel the effect of 3D, and it is applied more on large-size TV.
  • PPI Pixel Per Inch
  • the virtual display technology is widely used in the current display field, and the pixel resolution is higher than the physical resolution of the panel.
  • South Korea's Samsung is the panel maker that uses the most virtual technology.
  • OLED Organic Light-Emitting Diode
  • This problem can be solved very well by virtual technology. Improve the screen resolution perceived by the human eye.
  • This virtual algorithm technology is named pentile technology, which is monopolized by Samsung and applied to high-end products such as Samsung S3 and S4.
  • the arrangement pattern of the S4 mode is a diamond shape arrangement. According to the latest technology, this arrangement breaks through the traditional one-line or one-column RGB arrangement mode.
  • This display method can only be displayed using the virtual technology common to the pixels, and the most rare is The display of this arrangement is very good and worthy of our reference.
  • the invention provides a 3D display device and a driving method thereof for improving the 3D display effect of the 3D display device.
  • the present invention provides a 3D display device including a pixel array and a grating.
  • the pixel array includes: a plurality of columns of sub-pixel groups, each column of sub-pixel groups including M*N sub- a pixel, wherein M is a sub-pixel color type, and N is a positive integer greater than 3; wherein each sub-pixel is a rectangular shape, and the odd-column sub-pixel group and the even-column sub-pixel group are misaligned;
  • the grating includes a plurality of occlusion rectangles arranged in a regular array, each occlusion rectangle is used to occlude at least one sub-pixel in the column direction; wherein the occlusion rectangles in adjacent columns are offset in the column direction, and in the column of the column
  • the occlusion rectangles are symmetrically arranged in the row direction relative to the columns between them.
  • the odd column sub-pixel group and the even column sub-pixel group misalignment setting width is half of a width of the sub-pixel in the column direction;
  • the width of the occlusion rectangles in the adjacent columns overlapping in the column direction is half the width of the sub-pixels in the column direction. Specific misplaced relationship.
  • the width of the occlusion rectangle in the column direction is 7/2 times wider than the sub-pixel unit in the column direction, and the width in the row direction is the width of a single sub-pixel.
  • the number of the M is 3, and the color of the sub-pixel is red, green, and blue.
  • the pixel array is a triangular array.
  • each M sub-pixels are one view unit from the beginning, and the adjacent view units correspond to different views in the 3D display.
  • the present invention also provides a driving method of a 3D display device, the 3D display device being the 3D display device according to any one of the above; the method comprising:
  • the color component of the color of the sub-pixel in each view unit belonging to the view covered by the rectangular sampling area corresponding to the sub-pixel determines the luminance of the sub-pixel
  • the pixel array is arranged by using the misalignment, and the occlusion pixel array is formed by the grating at the same time.
  • the position of the opening point of the sub-pixel is flexibly controlled, and the relationship of the sampling area corresponding to the 3D view signal is utilized.
  • Virtual display and The 3D combined approach is able to increase the visual resolution of the inserted view. Thereby improving the 3D virtual display resolution and increasing the 3D display effect.
  • the sub-pixel groups of the adjacent columns are located outside the region where the occlusion rectangle overlaps in the column direction and are closest to the sub-pixel.
  • the sub-pixels used to display the same view and have the same color are displayed instead.
  • the sampling area is a rectangular sampling area, and the sampling area is in the sampling area with the center line of the corresponding sub-pixel in the column direction.
  • the center line of the column direction, the width of the sampling area in the row direction is twice the width of the sub-pixel in the row direction, and the width in the column direction is three times the width of the sub-pixel in the column direction;
  • a sampling region corresponding to each sub-pixel covers a portion of a sub-pixel located below a sub-pixel corresponding to the sampling region in a column direction;
  • the sampling regions corresponding to each sub-pixel are connected in the column direction to the sampling regions corresponding to the sub-pixels of the even columns, and the sampling region positions corresponding to the sub-pixels of the even columns in the row direction are wrong.
  • the sampling region corresponding to each sub-pixel covers the length of the sub-pixel located below the sub-pixel corresponding to the sampling region in the column direction in the direction of 0 to 1/2 sub-pixel column direction. between.
  • the sub-pixel array located outside the region where the occlusion rectangle overlaps in the column direction is displayed and the same view is displayed with the sub-pixel and the color is consistent.
  • a pixel and in the found sub-pixel, a sub-pixel closest to the sub-pixel distance of the region where the occlusion rectangle overlaps in the column direction is used as an alternative sub-pixel, and the sampling region is divided according to the position of the replacement sub-pixel, which is a rectangular region And the width of the rectangular region in the column direction is between 5 and 6 times the width of the sub-pixel in the column direction, and the width in the row direction is twice the width of the sub-pixel in the row direction; and in the column direction, The sampling area corresponding to the sub-pixel replaces a part of the sub-pixels at the upper and lower ends.
  • the present invention also provides a driving device for a 3D display device, which is the display device described above, which is configured to drive the 3D display device in accordance with the above-mentioned method.
  • FIG. 1 is a schematic diagram showing the arrangement of a pixel array according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a combination of a grating and a pixel array according to an embodiment of the present invention
  • FIG. 3 is a view unit corresponding to a first view in a pixel array according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of cooperation between a sub-pixel corresponding to a first view and a grating according to an embodiment of the present disclosure
  • FIG. 5 is a view unit corresponding to a second view in a pixel array according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of cooperation between a sub-pixel and a grating corresponding to a second view according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of distribution of blue sub-pixels corresponding to a first view according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a sampling area corresponding to a blue sub-pixel corresponding to a first view according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a distribution of green sub-pixels corresponding to a first view according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a sampling area corresponding to a green sub-pixel corresponding to a first view according to an embodiment of the present disclosure
  • FIG. 11 is a sampling area corresponding to a green sub-pixel located in an occlusion rectangle intersection area in a first view according to an embodiment of the present disclosure
  • FIG. 12 is a sampling area corresponding to a substitute pixel of a green sub-pixel located in an occlusion rectangle intersection area in a first view according to an embodiment of the present disclosure
  • FIG. 13 is a sampling area corresponding to a substitute pixel of a green sub-pixel located at an occlusion rectangle intersection area in different columns in the first view according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of distribution of red sub-pixels in a first view according to an embodiment of the present invention.
  • 15 is a sampling area corresponding to a substitute pixel of a red sub-pixel located in an occlusion rectangle intersection area in different columns in the first view according to an embodiment of the present disclosure
  • 16 is a flowchart of a driving method for driving a 3D display device according to an embodiment of the present invention.
  • FIG. 17 is a block diagram of a 3D display system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a 3D display device and a driving method thereof.
  • the arrangement of the shaped grating and the re-planning of the sampling region are improved.
  • the effect of the 3D display device on the naked eye 3D screen is improved.
  • S1, S2-S10 represent the column number of the sub-pixel
  • R1, R2-R12 represent the sequence number of the odd-column sub-pixel group
  • C1, C2-C12 represent the serial number of the even-column sub-pixel
  • the position of the sub-pixel is represented by the number of rows and the number of columns.
  • FIG. 1 is a schematic diagram showing the arrangement of a pixel array according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the combination of a grating and a pixel array according to an embodiment of the present invention.
  • Embodiments of the present invention provide a 3D display device including a pixel array 10 and a grating 20,
  • the pixel array 10 includes: a plurality of columns of sub-pixel groups, each column of sub-pixel groups including M*N sub-pixels 11, wherein M is a sub-pixel 11 color type, and N is a positive integer greater than 3; wherein each sub-pixel 11 is a rectangular shape, and the odd column sub-pixel group and the even column sub-pixel group are misaligned;
  • the grating 20 is similar to a checkerboard shape and includes a plurality of occlusion rectangles 21 arranged in a regular array, each occlusion rectangle 21 for occluding at least one sub-pixel 11 in the column direction; wherein the occlusion rectangle 21 in the adjacent column is The column direction is misaligned, and the occlusion rectangles in the columns of the interphase columns are symmetrically arranged in the row direction with respect to the columns between them, that is, the occlusion rectangles in adjacent odd columns are symmetric in the row direction with respect to the even columns between them. It is set that the occlusion rectangles in adjacent even columns are symmetrically arranged in the row direction with respect to the odd columns between them.
  • FIG. 1 illustrates an arrangement of a pixel array 10 according to an embodiment of the present invention.
  • a pixel array 10 included in a 3D display device according to an embodiment of the present invention is composed of a plurality of sub-pixels, and a plurality of sub-pixels 11 Arranged in an array manner, specifically, each column of sub-pixel groups includes M*N sub-pixels 11, wherein M is a sub-pixel 11 color type, and N is a positive integer greater than 3; in the specific embodiment, M
  • the number of the sub-pixels 11 is red, green, and blue, that is, red sub-pixels, green sub-pixels, and blue sub-pixels, and in each column of sub-pixel groups, M sub-pixels are one view unit.
  • the adjacent view unit corresponds to the first view and the second view in the 3D display; that is, when the naked eye 3D picture is displayed, the adjacent view units in each column of the sub-pixel group respectively display the first view in the 3D picture signal and The second view; for convenience of description, the view unit showing the first view is named as the first view unit 30, and the view unit showing the second view is named as the second view unit 40, and the specific arrangement is as shown in FIG. , in the first view The sub-pixels 11 are respectively represented by R1, G1, and B1, and the three sub-pixels 11 in the second view are respectively represented by R2, G2, and B2. As can be seen from FIG. 1, in the pixel array 10, the first view unit 30 And the second view unit 40 is alternately arranged.
  • the sub-pixel groups located in the odd columns are staggered with the sub-pixel groups located in the even columns, as shown in FIG. 1 , the interlaced manner is that the sub-pixel groups of the plurality of odd columns are highly flush.
  • the sub-pixel groups of the plurality of even columns are highly flush, and the odd-row sub-pixel group and the even-column sub-pixel group misalignment setting width are half of the width of the sub-pixel 11 in the column direction.
  • the sub-pixels 11 in the pixel array 10 are thus formed into a triangular array. That is, as shown in FIG. 1, the sub-pixels 11 of the three colors of R, G, and B are arranged in a triangular array, and the three sub-pixels 11 of RGB in the figure have a " ⁇ " shape.
  • FIG. 2 is a schematic diagram of the pixel array 10 and the grating 20 provided by the embodiment of the present invention.
  • the grating 20 provided in this embodiment is in a checkerboard format, that is, an occlusion rectangle 21 blocked in the grating 20 and allowed.
  • the light-transmissive rectangles through which light passes are staggered to form a form similar to a black and white checkerboard.
  • the larger virtual frame in FIG. 2 is the grating 20; in the specific arrangement, the arrangement between the occlusion rectangles 21 is not flush, that is, adjacent between different columns.
  • the positions of the two occlusion rectangles 21 are staggered, that is, a part of two adjacent occlusion rectangles 21 overlap in the row direction in the column direction; as shown in FIG. 2, the smaller imaginary frame contains adjacent columns between different columns.
  • the intersection area 22 at the position of the rectangle 21 is blocked.
  • the handover area refers to an occlusion area at The area where the column directions overlap.
  • the staggered setting mode is adopted to distinguish the corresponding signals between the two views into different eyes in the 3D display, thereby reducing the crosstalk phenomenon and improving the display effect.
  • the occlusion rectangle 21 is arranged in an interlaced manner, and a part of the sub-pixels 11 are blocked during display.
  • the width of the occlusion rectangle 21 in the column direction is 7/2 times the width of the sub-pixel 11 unit in the column direction, and the width in the row direction is the width of the single sub-pixel 11. Therefore, referring to FIG. 3 to FIG. 6 , FIG. 3 is a view unit corresponding to the first view, FIG. 4 is a position where the grating 20 is blocked when the first view is displayed, and FIG.
  • FIG. 5 is a view unit corresponding to the second view. 6 is a position where the grating 20 is occluded when the second view is displayed. As can be seen from FIG. 3 to FIG. 6, when the first view and the second view are displayed, the occlusion rectangle 21 in the grating 20 blocks the partially displayed sub-pixel. 11.
  • the present invention can solve the problem of color shift by appropriately designing the algorithm and redesigning the sampling area. For details, see the driving method of the 3D display device of the present invention.
  • the embodiment of the present invention further provides a driving method of a 3D display device, wherein the 3D display device is the 3D display device according to any one of the above items;
  • the luminance of the sub-pixel 11 is determined according to the color component of the color of the sub-pixel 11 in each view unit belonging to the view covered by the rectangular sampling area corresponding to the sub-pixel 11 This is shown at 1602 in FIG.
  • Step 1 respectively dividing the first view and the second view of the 3D view to be displayed into a plurality of view units, and determining color components of respective colors in each view unit;
  • one M sub-pixels in the 3D display device correspond to one view unit, and M is 3.
  • the first view can be divided into a plurality of view units based on the theoretically achievable number of pixels of the 3D display device.
  • three sub-pixels are used as one theoretical pixel unit.
  • the theoretical pixel unit in the example corresponds to the aforementioned view unit, and may be a first view unit or a second view unit.
  • the color components occupied by red, green, and blue in each theoretical pixel unit are then determined.
  • the left and right eye views ie, the first and second views
  • Step 2 determining, for each sub-pixel 11 of each view, the sub-pixel according to the color component of the color of the sub-pixel 11 in each theoretical pixel unit belonging to the view covered by the rectangular sampling region corresponding to the sub-pixel 11 11 brightness of the light.
  • the luminous intensity of the corresponding sub-pixel can also be determined by other means. The detailed description of the embodiments of the present invention will not be repeated.
  • the position of the sub-pixel 11 is first determined.
  • the sampling area of the sub-pixel 11 is:
  • the sampling area is a rectangular sampling area, and a center line in the column direction of the sampling area is a center line of the corresponding sub-pixel 11 in the column direction, and a width of the sampling area in the row direction is 2 widths of the sub-pixel 11 in the row direction. Times, the width in the column direction is 3 times the width of the sub-pixel 11 in the column direction;
  • the sampling region corresponding to each sub-pixel 11 covers a portion of the sub-pixel 11 located below the sub-pixel 11 corresponding to the sampling region in the column direction;
  • the sampling area corresponding to each sub-pixel 11 is connected to the sampling area corresponding to the sub-pixel 11 of the even-numbered column, and the sampling area corresponding to the sub-pixel 11 of the odd-numbered column corresponds to the sub-pixel 11 of the even-numbered column.
  • the sampling area is in a wrong position.
  • the sampling area corresponding to each sub-pixel 11 covers the sub-pixel 11 located below the sub-pixel 11 corresponding to the sampling area in the column direction, and is between 0 and 1/2 sub-pixel areas. between.
  • FIG. 7 shows the arrangement of blue sub-pixels in the theoretical pixel unit corresponding to the first view, and it can be seen that the blue sub-pixel does not fall into the handover area 22 .
  • the sampling area does not need special consideration.
  • FIG. 8 corresponds to the design of the corresponding sampling area of the blue sub-pixel in the theoretical pixel unit corresponding to the first view; as can be seen from FIG. 8, the blue sub-pixel corresponding to the present application corresponds to The sampling area is a rectangular sampling area, and The sub-pixels 11 located in the odd-numbered columns are integrated with the sampling regions corresponding to the sub-pixels 11 in the even-numbered columns.
  • the S8C6 blue sub-pixels are taken as an example, and the four vertices of the corresponding sampling regions are respectively located at: S7R3 sub-pixel, S9R3 sub-pixel, S7R6 sub-pixel, S9R6 sub-pixel, and as can be seen from Figure 8, the sampling area covers the sub-pixel portion under the S8C6 blue sub-pixel, and the coverage is less than 1/2 sub-pixel area.
  • the four vertices of the corresponding sampling regions are located in: S6C7 sub-pixel, S8C7 sub-pixel, S6C10 sub-pixel, S8C10 sub-pixel, and as shown in FIG.
  • the sampling region corresponding to the S8C6 blue sub-pixel and the sampling region corresponding to the S7R7 blue sub-pixel are offset by one sub-pixel width, and the S8C6 blue sub-pixel corresponding sampling region and the S7R7 blue sub-pixel.
  • the corresponding sampling areas are connected in the column direction.
  • FIG. 9 shows a green sub-pixel distribution
  • FIG. 10 shows a shape of a sampling region corresponding to a green sub-pixel.
  • the green sub-pixel located in the odd-numbered column is located at the handover area.
  • the corresponding sampling area is the same as the sampling area of the blue sub-pixel, and the green sub-pixel located in the even column is located in the intersection area 22, and the design of the sampling area is different from the design of the sampling area of the blue sub-pixel described above. .
  • the S3R8 green sub-pixel is taken as an example. Since it is not located in the handover area 22, the four vertices of the corresponding sampling area are They are located in the S2C6 sub-pixel, in the S4C6 sub-pixel, in the S2C9 sub-pixel, and in the S4C9 sub-pixel. As can be seen from FIG. 10, the sampling region corresponding to the green sub-pixel of the S3R8 includes a portion of the S3R9 sub-pixel, and the partial sub-pixel is smaller than 1/2 of the green sub-pixel.
  • the green sub-pixels located in the even columns are located in the intersection area 22 and the sub-pixels located in the occlusion rectangle intersection area.
  • sub-pixels located outside the occlusion rectangle intersection area and closest to the sub-pixel for displaying the same view and having the same color, respectively are displayed, specifically, In the sub-pixel column of the sub-pixel adjacent column of the occlusion rectangle intersection area, the sub-pixel located outside the occlusion rectangle intersection area and displaying the same view and the same color as the sub-pixel is found, and is located in the found sub-pixel
  • the sub-pixel closest to the sub-pixel of the occlusion rectangle intersection area is used as a substitute sub-pixel, and the sampling area is divided according to the position of the replacement sub-pixel, the sampling area is a rectangular area, and the width of the rectangular area in the column direction is between sub-pixels Width in the column direction Between 5 and 6 times, the width in the row direction is twice the width of the sub-pixel in the row direction; and in the column direction, the sampling regions corresponding to the sub-pixels cover a part of the sub-pixels at the upper and lower
  • the S4C10 green sub-pixel is taken as an example. If the sampling area is designed according to the above, the corresponding sampling area is as shown in FIG. 11, and the four vertices of the corresponding sampling area are respectively located in the S3R9 sub-pixel. S5R9 sub-pixel, S3R12 sub-pixel, S5R12 sub-pixel. However, the sub-pixels in the sampling area are not completely displayed due to the occlusion of the grating. Therefore, in the present embodiment, for the sub-pixels located in the handover area, the corresponding sampling area is as shown in FIG. 12, and the S4C10 green sub-pixel is also used. For an example, describe it. As can be seen from FIG.
  • the sub-pixels at the position of S4C10 are eliminated, that is, the display is not performed, and at the same time, the display needs to be compensated by S5R8, but the sampling area of S5R8 at this time cannot correspond to the previous one. Therefore, for S5R8
  • the sampling area is redesigned. Specifically, as shown in FIG. 12, the four vertices of the rectangular sampling area are located in the S4C6 sub-pixel, the S6C6 sub-pixel, the S4C11 sub-pixel, and the S6C11 sub-pixel.
  • FIG. 12 shows an example in which sub-pixels in a column of sub-pixel groups on the right side of the green sub-pixel located in the handover area 22 are substituted for the pixel 12
  • FIG. 13 shows The successive four green sub-pixels located in the handoff region 22 are sub-pixels in a column of sub-pixel groups on the left side as an example of replacing the pixel 12.
  • S4C10 green sub-pixel as an example, in FIG.
  • the sub-pixel is S3R8 green sub-pixel, and the corresponding four vertices of the corresponding region are located in: S2C6 sub-pixel, S4C6 sub-pixel Inside, within the S2C11 sub-pixel, within the S4C11 sub-pixel.
  • FIG. 14 is a schematic diagram showing the distribution of red sub-pixels.
  • the red sub-pixels of the odd-numbered columns are located in the handover area, and the red sub-pixels of the even-numbered columns are located at the handover.
  • the sampling area of the red sub-pixels of the even columns is the same as the sampling area of the blue sub-pixels and the green sub-pixels, and will not be repeated here.
  • the sampling area design is as shown in FIG.
  • the red sub-pixel located in the intersection area is located in a column of sub-pixels on the right side thereof, and the red sub-pixel located in the right side is the sampling area design of the replacement pixel 12.
  • the S5R3 red sub-pixel is taken as an example for description, which is located at the handover In the area 22, in the specific display, the S5R3 red sub-pixel is extinguished and replaced by the S6C5 red sub-pixel, and the corresponding sampling area is designed as a rectangular sampling area, and the four vertices of the rectangular sampling area are respectively located at: S5C2 Pixels, S7C2 sub-pixels, S5C7 sub-pixels, and S7C7 sub-pixels.
  • the embodiment of the invention further provides a driving device for a 3D display device, which is shown in FIG. Shown at 1702, it is configured to perform the driving method described above.
  • An embodiment of the present invention also provides a 3D display system, see FIG. 17, which includes a 3D display device 1701 and a driving device 1702 thereof according to an embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种3D显示装置,包括像素阵列(10)和光栅(20)。像素阵列包括多列亚像素组,每列亚像素组包括M*N个亚像素(11),其中M为颜色种类,N为大于3的正整数。每个亚像素为矩形形状,奇数列亚像素组和偶数列亚像素组错位设置。光栅包含多个以规则阵列排列的遮挡矩形(21),其中相邻列中的遮挡矩形在列方向错位设置,相间一列的列中的遮挡矩形在行方向相对于它们之间的列对称设置。通过采用错位设置的像素阵列,配合光栅形成遮挡像素阵列,结合对算法的设计,灵活地控制亚像素的开启点位置及采样区对应3D视图信号的关系,利用这种虚拟显示和3D相结合的方法可以将插入视图的视觉分辨率提高,增强了3D显示效果。还公开了一种3D显示装置的驱动方法和驱动装置(1702)。

Description

一种3D显示装置及其驱动方法和装置 技术领域
本发明涉及到显示装置的技术领域,尤其涉及到一种3D显示装置及其驱动方法。
背景技术
裸眼3D(3 dimention)也是一种3D形式,它通过光栅,区分进入人左右眼的信息,使人感觉有3D的效果,在大尺寸电视上应用较多。但是裸眼3D由于具有挡光光栅设计,在观测过程中,PPI(Pixels Per Inch)降低很多,有时会降低一半的PPI,从而使观看3D效果降低。
虚拟显示技术在目前显示领域中应用十分广泛,通过像素公用,能够使视觉分辨率高于面板物理分辨率。目前韩国三星是使用虚拟技术最多的面板商,在由于OLED(Organic Light-Emitting Diode,有机电激光显示)在做亚像素时,有机物树脂膜(resin pattern)形成工艺难度较大,所以在制作更高的PPI显示屏上遇见瓶颈。通过虚拟技术能够很好的解决这个问题。提高人眼感受到的屏幕分辨率。这种虚拟算法技术命名为pentile技术,由三星进行垄断,在三星S3,S4等高端产品上均得到应用。S4模式的排列图形是菱形状排列,目前最新技术来看,这种排列突破了传统一行或一列RGB排列的模式,这种显示方法只能使用像素公用的虚拟技术进行显示,并且最为难得的是这种排列进行显示的显示效果很好,值得我们借鉴。
如何将裸眼3D技术和虚拟显示技术相结合,制作出高清3D是一个挑战,将3D显示和虚拟算法相结合在目前的相关文献和专利中介绍较少。
发明内容
本发明提供了一种3D显示装置及其驱动方法,用以提高3D显示装置的3D显示效果。
本发明提供了一种3D显示装置,该3D显示装置包括像素阵列以及光栅,
所述像素阵列包括:多列亚像素组,每列亚像素组包括M*N个亚 像素,其中M为亚像素颜色种类,N为大于3的正整数;其中,每个亚像素为矩形形状,奇数列亚像素组和偶数列亚像素组错位设置;
所述光栅包含多个以规则阵列排列的遮挡矩形,每个遮挡矩形用于遮挡列方向的至少一个亚像素;其中,相邻列中的遮挡矩形在列方向错位设置,相间一列的列中的遮挡矩形在行方向相对于它们之间的列对称设置。
在上述技术方案中,通过采用错位设置的像素阵列,配合光栅形成遮挡像素阵列,集合对算法的设计,灵活地控制亚像素的开启点位置,及采样区对应3D视图信号的关系,利用这种虚拟显示和3D相结合的方法能够将插入视图的视觉分辨率提高。从而提高3D虚拟显示分辨率,增强3D显示效果。
优选的,所述奇数列亚像素组和偶数列亚像素组错位设置宽度为亚像素在列方向宽度的一半;
所述相邻列中的遮挡矩形在列方向重叠设置的宽度为亚像素在列方向宽度的一半。具体的错位关系。
优选的,所述遮挡矩形在列方向的宽度与亚像素单元在列方向宽的7/2倍,在行方向的宽度为单个亚像素的宽度。
优选的,所述M的个数为3,所述亚像素颜色的为红色、绿色及蓝色。
优选的,所述像素阵列为三角形阵列。
优选的,所述每列亚像素组中,从头开始依次每M个亚像素为一个视图单元,且相邻的视图单元对应3D显示中的不同视图。
本发明还提供了一种3D显示装置的驱动方法,所述3D显示装置为上述任一项所述的3D显示装置;该方法包括:
分别将待显示的3D视图的第一视图和第二视图划分为多个视图单元,并确定每一个视图单元中各个颜色的颜色分量;
针对每一个视图的每一个亚像素,按照该亚像素对应的矩形采样区所覆盖的、属于该视图的各个视图单元中该亚像素的颜色的颜色分量确定该亚像素的发光亮度;
在上述技术方案中,通过采用错位设置的像素阵列,同时配合光栅形成遮挡像素阵列,同时,通过算法设计,灵活的控制亚像素的开启点位置,及采样区对应3D视图信号的关系,利用这种虚拟显示和 3D相结合的方法能够将插入视图的视觉分辨率提高。从而提高3D虚拟显示分辨率,增加3D显示效果。
优选的,所述对位于遮挡矩形在列方向重叠的区域的亚像素进行显示时,以相邻列的亚像素组中位于所述遮挡矩形在列方向重叠的区域外且与该亚像素距离最近的、用于显示同一视图且颜色一致的亚像素替代进行显示。
优选的,对未位于遮挡矩形在列方向重叠的区域的亚像素进行显示时,所述采样区为矩形采样区,且该采样区以对应的亚像素在列方向的中心线为该采样区域在列方向的中心线,该采样区域在行方向的宽度为亚像素在行方向宽度的2倍,在列方向上的宽度为亚像素在列方向宽度的3倍;
其中:
针对偶数列的亚像素,每个亚像素对应的采样区在列方向覆盖位于该采样区对应的亚像素下方的亚像素的一部分;
针对奇数列的亚像素,每个亚像素对应的采样区在列方向上与偶数列的亚像素对应的采样区相接,且在行方向上与偶数列的亚像素对应的采样区位置相错。
优选的,针对偶数列的亚像素,每个亚像素对应的采样区在列方向覆盖位于该采样区对应的亚像素下方的亚像素的部分介于0~1/2亚像素列方向的长度之间。
优选的,在与位于遮挡矩形在列方向重叠的区域的亚像素相邻列的亚像素列中,寻找位于遮挡矩形在列方向重叠的区域外并与该亚像素显示同一视图且颜色一致的亚像素,并在找到的亚像素中,将与位于遮挡矩形在列方向重叠的区域的亚像素距离最近的一个亚像素作为替代亚像素,根据该替代亚像素的位置划分采样区,其为矩形区域,且该矩形区域在列方向上的宽度介于亚像素在列方向宽度的5~6倍之间,在行方向的宽度为亚像素在行方向宽度的2倍;且在列方向上,该替代亚像素对应的采样区在上下端部均覆盖部分亚像素。
本发明还提供了一种3D显示装置的驱动装置,该显示装置为上面描述的显示装置,该驱动装置被配置来按照上面提到的方法来驱动该3D显示装置。
附图说明
图1示出了本发明实施例提供的像素阵列的排列示意图;
图2示出了本发明实施例提供的光栅与像素阵列结合的示意图;
图3为本发明实施例提供的像素阵列中的与第一视图对应的视图单元;
图4为本发明实施例提供的第一视图对应的亚像素与光栅的配合示意图;
图5为本发明实施例提供的像素阵列中的与第二视图对应的视图单元;
图6为本发明实施例提供的第二视图对应的亚像素与光栅的配合示意图;
图7为本发明实施例提供的第一视图对应的蓝色亚像素的分布示意图;
图8为本发明实施例提供的第一视图对应的蓝色亚像素对应的采样区示意图;
图9为本发明实施例提供的第一视图对应的绿色亚像素的分布示意图;
图10为本发明实施例提供的第一视图对应的绿色亚像素对应的采样区示意图;
图11为本发明实施例提供的第一视图中位于遮挡矩形交接区域的绿色亚像素对应的采样区;
图12为本发明实施例提供的第一视图中位于遮挡矩形交接区域的绿色亚像素的替代像素对应的采样区;
图13为本发明实施例提供的第一视图中不同列中的位于遮挡矩形交接区域的绿色亚像素的替代像素对应的采样区;
图14为本发明实施例提供的第一视图中的红色亚像素的分布示意图;
图15为本发明实施例提供的第一视图中不同列中的位于遮挡矩形交接区域的红色亚像素的替代像素对应的采样区;
图16为本发明实施例提供的驱动3D显示装置的驱动方法的流程图;
图17为本发明实施例提供的3D显示系统的框图。
附图标记:
10-像素阵列  11-亚像素   12-替代像素
20-光栅      21-遮挡矩形 22-交接区域
30-第一视图单元    40-第二视图单元
具体实施方式
为了提高3D显示装置的裸眼3D显示效果,本发明实施例提供了一种3D显示装置及其驱动方法,在本发明的技术方案中,通过采用异形光栅的设置,以及重新规划采样区域从而改善了3D显示装置的裸眼3D画面时的效果。为了方便对本发明技术方案的理解,下面结合附图及具体实施例对本发明的技术方案进行详细的说明。
首先需要说明的是,为了方便描述,以S1、S2-S10代表亚像素的列序号,R1、R2-R12代表奇数列亚像素组的序号,C1、C2-C12代表偶数列亚像素的序号;并且以行数及列数代表该亚像素的位置。
一并参考图1及图2,图1示出了本发明实施例提供的像素阵列的排列示意图;图2示出了本发明实施例提供的光栅与像素阵列结合的示意图。
本发明实施例提供了一种3D显示装置,该3D显示装置包括像素阵列10以及光栅20,
所述像素阵列10包括:多列亚像素组,每列亚像素组包括M*N个亚像素11,其中M为亚像素11颜色种类,N为大于3的正整数;其中,每个亚像素11为矩形形状,奇数列亚像素组和偶数列亚像素组错位设置;
所述光栅20类似棋盘格形状,包含多个以规则的阵列排列的遮挡矩形21,每个遮挡矩形21用于遮挡列方向的至少一个亚像素11;其中,相邻列中的遮挡矩形21在列方向错位设置,相间一列的列中的遮挡矩形在行方向相对于它们之间的列对称设置,也就是说,相邻奇数列中的遮挡矩形在行方向相对于它们之间的偶数列对称设置,相邻偶数列中的遮挡矩形在行方向相对于它们之间的奇数列对称设置。
在上述实施例中,通过采用错位设置的像素阵列10,同时配合光栅20形成遮挡,实现了对3D显示装置裸眼3D显示的效果的改善,为了方便对本发明实施例的结构以及工作原理的理解,下面结合具体 的附图以及实施例对其进行详细的说明。
如图1所示,图1示出了本发明实施例提供的像素阵列10的排列方式,本发明实施例提供的3D显示装置包含的像素阵列10由多个亚像素组成,多个亚像素11排列成阵列方式,具体的,每列亚像素组包含M*N个亚像素11,其中,M为亚像素11颜色种类,N为大于3的正整数;在本具体实施例中,M的个数为3,所述亚像素11颜色的为红色、绿色及蓝色,即红色亚像素、绿色亚像素及蓝色亚像素,并且在每列亚像素组中,M个亚像素为一个视图单元,且相邻的视图单元对应3D显示中的第一视图及第二视图;即在显示裸眼3D画面时,每列亚像素组中相邻的视图单元分别显示3D画面信号中的第一视图及第二视图;为了方便描述,将显示第一视图的视图单元命名为第一视图单元30,显示第二视图的视图单元命名为第二视图单元40,其具体的排列方式如图1中所示,其中第一视图中的三个亚像素11分别用R1、G1、B1表示,第二视图中的三个亚像素11分别用R2、G2、B2表示,由图1可以看出,在像素阵列10中,第一视图单元30及第二视图单元40交替排列。
在本申请中的像素阵列10中,位于奇数列的亚像素组与位于偶数列的亚像素组交错排列,如图1所示,该交错的方式为多个奇数列的亚像素组高度齐平,多个偶数列的亚像素组高度齐平,且奇数列亚像素组和偶数列亚像素组错位设置宽度为亚像素11在列方向宽度的一半。从而使得像素阵列10中的亚像素11形成三角形阵列。即如图1所示,R、G、B三种颜色的亚像素11排列成三角形阵列,图中RGB三个亚像素11呈“Δ”形状。
如图2所示,图2示出了本发明实施例提供的像素阵列10与光栅20配合的示意图;本实施例提供的光栅20为棋盘格格式,即光栅20中遮挡的遮挡矩形21以及允许光通过的透光矩形交错排列,形成类似黑白棋盘格的形式。如图2所示,图2中的较大的虚框所示的即为光栅20;在具体的设置时,遮挡矩形21之间的设置并不是齐平的,即在不同列之间相邻的两个遮挡矩形21之间位置交错,即在列方向两个相邻的遮挡矩形21有一部分在行方向上重叠;如图2所示,较小的虚框包含了不同列之间相邻的遮挡矩形21位置的交接区域22。
需了解,在本文描述的实施例中,所述交接区域是指遮挡区域在 列方向重叠的区域。
采用交错的设置方式,使得3D显示中将两视图之间对应的信号分别区分到不同的两眼中,减少串扰现象,提高显示的效果。由图2可以看出,遮挡矩形21采用交错的设置方式,在显示时,遮挡了部分的亚像素11。具体的,遮挡矩形21在列方向的宽度为亚像素11单元在列方向宽的7/2倍,在行方向的宽度为单个亚像素11的宽度。因此,一并参考图图3~图6,其中图3为第一视图对应的视图单元,图4为光栅20在第一视图显示时遮挡的位置,图5为第二视图对应的视图单元,图6为光栅20在第二视图显示时遮挡的位置,由图3~图6可以看出,在第一视图及第二视图显示时,光栅20中的遮挡矩形21遮挡到了部分显示的亚像素11,针对本发明中的亚像素11一半被光栅20遮挡而形成色偏的问题,本发明通过对算法的设计,及采样区的重新设计,能够适量解决色偏的问题。具体的详见本发明的3D显示装置的驱动方法。
本发明实施例还提供了一种3D显示装置的驱动方法,所述3D显示装置为上述任一项所述的3D显示装置;该方法包括:
分别将待显示的3D视图的第一视图和第二视图划分为多个视图单元,并确定每一个视图单元中各个颜色的颜色分量,这在后面图16中的1601处示出了;
针对每一个视图的每一个亚像素11,按照该亚像素11对应的矩形采样区所覆盖的、属于该视图的各个视图单元中该亚像素11的颜色的颜色分量确定该亚像素11的发光亮度,这在图16中的1602处示出了。
具体的步骤如下:
步骤一、分别将待显示的3D视图的第一视图和第二视图划分为多个视图单元,并确定每一个视图单元中各个颜色的颜色分量;
具体的,3D显示装置中的一个M个亚像素对应于一个视图单元,M为3。在上述步骤中,可以将第一视图基于3D显示装置的理论上能够达到的像素的个数划分为多个视图单元,本发明实施例中将3个亚像素作为一个理论像素单元,本发明实施例中的理论像素单元对应前述的视图单元,可以为第一视图单元或第二视图单元。之后确定各个理论像素单元中的红、绿、蓝所占的颜色分量。并按照相同的方式,得到第二视图对应的多个理论像素单元以及各个理论像素单元中红、 绿、蓝所占的颜色分量。具体的,可以根据屏幕的视觉分辨率分别将左右眼视图(即第一、第二视图)进行划分。
步骤二、针对每一个视图的每一个亚像素11,按照该亚像素11对应的矩形采样区所覆盖的、属于该视图的各个理论像素单元中该亚像素11的颜色的颜色分量确定该亚像素11的发光亮度。
其中,针对每一个亚像素,确定其对应的矩形采样区与所述多个理论像素单元中的每一个理论像素单元的重叠面积以及在该理论像素单元中该亚像素的颜色对应的颜色分量;确定每一个理论像素单元对应的重叠面积与对应的颜色分量的乘积;根据各个乘积的和以及采样区的面积确定该亚像素的发光亮度。当然在实际应用中,在使用矩形采样区进行采样之后,也可以通过其他方式确定对应亚像素的发光强度。本发明实施例中不再进行详细说明。
在步骤二中,具体采样区设计时,首先判断亚像素11的位置,在亚像素11未位于遮挡矩形21交接区域22时,该亚像素11的采样区域为:
所述采样区为矩形采样区,且该采样区域的列方向上的中线为对应的亚像素11在列方向上的中线,该采样区域在行方向的宽度为亚像素11在行方向宽度的2倍,在列方向上的宽度为亚像素11在列方向宽度的3倍;
针对偶数列的亚像素11,每个亚像素11对应的采样区在列方向覆盖位于该采样区对应的亚像素11下方的亚像素11的一部分;
针对奇数列的亚像素11,每个亚像素11对应的采样区与偶数列的亚像素11对应的采样区相接,且奇数列的亚像素11对应的采样区与偶数列的亚像素11对应的采样区位置相错。
其中,针对偶数列的亚像素11,每个亚像素11对应的采样区在列方向覆盖位于该采样区对应的亚像素11下方的亚像素11的部分介于0~1/2亚像素面积之间。
为了方便理解,下面参考图7~图10,其中,图7示出了第一视图对应的理论像素单元中的蓝色亚像素的排列方式,可以看出蓝色亚像素没有落入交接区域22,采样区不用特殊考虑,图8对应给出了第一视图对应的理论像素单元中的蓝色亚像素的对应的采样区的设计;由图8可以看出,本申请中蓝色亚像素对应的采样区为矩形采样区,且 位于奇数列的亚像素11与位于偶数列的亚像素11对应的采样区连接成一体,在具体的设置时,以S8C6蓝色亚像素为例,其对应的采样区的四个顶点分别位于:S7R3亚像素内、S9R3亚像素内、S7R6亚像素内、S9R6亚像素内,且由图8可以看出,采样区覆盖位于S8C6蓝色亚像素下方的亚像素的部分,且覆盖的部分少于1/2亚像素的面积。针对奇数列蓝色亚像素,以S7R7为例,其对应的采样区的四个顶点分别位于:S6C7亚像素内、S8C7亚像素内、S6C10亚像素内、S8C10亚像素内,且如图8所示,在列方向上S8C6蓝色亚像素对应的采样区与S7R7蓝色亚像素对应的采样区位置相错一个亚像素的宽度,且S8C6蓝色亚像素对应的采样区与S7R7蓝色亚像素对应的采样区在列方向相接。
参考图9和图10,图9示出了绿色亚像素分布情况,图10给出了绿色亚像素对应的采样区的形状,由图9可以看出,位于奇数列的绿色亚像素位于交接区域外,其对应的采样区与蓝色亚像素的采样区的设计相同,而位于偶数列的绿色亚像素位于交接区域22内,其采样区的设计与上述蓝色亚像素的采样区的设计不同。
针对位于奇数列的绿色亚像素,参考图9及图10,为了方便理解,以S3R8绿色亚像素为例进行说明,由于其未位于交接区域22内,因此,其对应的采样区的四个顶点分别位于:S2C6亚像素内、S4C6亚像素内、S2C9亚像素内、S4C9亚像素内。且由图10可以看出,S3R8绿色亚像素对应的采样区包含S3R9亚像素的一部分,且该部分亚像素小于绿色亚像素的1/2面积。
针对位于偶数列的绿色亚像素,一并参考图9、图11及图12,由图9可以看出,位于偶数列的绿色亚像素位于交接区域22内,对位于遮挡矩形交接区域的亚像素进行显示时,以相邻列的亚像素组中位于所述遮挡矩形交接区域外且与该亚像素距离最近的一个用于显示同一视图且颜色一致的亚像素替代进行显示,具体的,在与位于遮挡矩形交接区域的亚像素相邻列的亚像素列中,寻找位于遮挡矩形交接区域外并与该亚像素显示同一视图且颜色一致的亚像素,并在找到的亚像素中,将与位于遮挡矩形交接区域的亚像素距离最近的一个亚像素作为替代亚像素,根据该替代亚像素的位置划分采样区,该采样区为矩形区域,且该矩形区域在列方向上的宽度介于亚像素在列方向宽度的 5~6倍之间,在行方向的宽度为亚像素在行方向宽度的2倍;且在列方向上,替代亚像素对应的采样区在上下端部均覆盖部分亚像素。
为了方便描述以S4C10绿色亚像素为例进行描述,若按照上述的采样区设计,则其对应的采样区如图11所示,其对应的采样区的四个顶点分别位于:S3R9亚像素内、S5R9亚像素内、S3R12亚像素内、S5R12亚像素内。但是该采样区内的亚像素由于受到光栅的遮挡,不能完全显示,因此,在本实施例中针对位于交接区域的亚像素,其对应的采样区域如图12所示,还以S4C10绿色亚像素为例进行描述。由图12可以看出,将S4C10位置的亚像素进行灭掉,即不进行显示,同时,需要通过S5R8进行显示以进行弥补,但是此时的S5R8的采样区和之前不能对应,因此,对S5R8的采样区重新进行设计,具体的,如图12所示,该矩形采样区的四个顶点分别位于:S4C6亚像素内、S6C6亚像素内、S4C11亚像素内及S6C11亚像素内。
一并参考图12及图13所示,其中,图12示出了以位于交接区域22的绿色亚像素右侧的一列亚像素组中的亚像素为替代像素12的例子,而图13示出了连续的四个位于交接区域22的绿色亚像素以左侧的一列亚像素组中的亚像素为替代像素12的例子。具体的,为了方便描述,以S4C10绿色亚像素为例,在图13中,其替代亚像素为S3R8绿色亚像素,其对应的采用区的四个顶点分别位于:S2C6亚像素内、S4C6亚像素内、S2C11亚像素内、S4C11亚像素内。
同理,一并参考图14及图15,图14示出了红色亚像素的分布示意图,由图14可以看出,奇数列的红色亚像素位于交接区域内,偶数列的红色亚像素位于交接区域外,对于偶数列的红色亚像素其采样区与上述蓝色亚像素及绿色亚像素的采样区设计相同,在此不再一一赘述。针对位于交接区域22的红色亚像素,其采样区设计如图15所示。对于位于交接区域的红色亚像素以位于其右侧一列亚像素中,距离最近的红色亚像素为替代像素12进行采样区设计,为了方便描述,以S5R3红色亚像素为例进行说明,其位于交接区域22中,在具体显示时,将S5R3红色亚像素灭掉,以S6C5红色亚像素代替,其对应的采样区的设计为矩形采样区,且该矩形采样区的四个顶点分别位于:S5C2亚像素、S7C2亚像素、S5C7亚像素、S7C7亚像素内。
本发明实施例还提供了一种3D显示装置的驱动装置,其在图17 的1702处示出,其被配置为执行上文所述的驱动方法。
本发明实施例还提供了一种3D显示系统,参见图17,其包括根据本发明实施例的3D显示装置1701及根据本发明实施例的其驱动装置1702。
通过上述描述可以看出,通过算法设计,灵活的控制亚像素11的开启点位置,及采样区对应3D视图信号的关系,利用这种虚拟显示和3D相结合的方法能够将插入视图的视觉分辨率提高。从而提高3D虚拟显示分辨率,增加3D显示效果。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种3D显示装置,包括像素阵列以及光栅,其特征在于,
    所述像素阵列包括:多列亚像素组,每列亚像素组包括M*N个亚像素,其中M为亚像素颜色种类,N为大于3的正整数;其中,每个亚像素为矩形形状,奇数列亚像素组和偶数列亚像素组错位设置;
    所述光栅包含多个以规则阵列排列的遮挡矩形,每个遮挡矩形用于遮挡列方向的至少一个亚像素;其中,相邻列中的遮挡矩形在列方向错位设置,相间一列的列中的遮挡矩形在行方向相对于它们之间的列对称设置。
  2. 如权利要求1所述的3D显示装置,其特征在于,所述奇数列亚像素组和偶数列亚像素组错位设置宽度为亚像素在列方向宽度的一半;
    所述相邻列中的遮挡矩形在列方向重叠设置的宽度为亚像素在列方向宽度的一半。
  3. 如权利要求1所述的3D显示装置,其特征在于,所述遮挡矩形在列方向的宽度与亚像素单元在列方向宽的7/2倍,在行方向的宽度为单个亚像素的宽度。
  4. 如权利要求1所述的3D显示装置,其特征在于,所述M的个数为3,所述亚像素颜色的为红色、绿色及蓝色。
  5. 如权利要求4所述的3D显示装置,其特征在于,所述像素阵列为三角形阵列。
  6. 如权利要求1~5任一项所述的3D显示装置,其特征在于,所述每列亚像素组中,从头开始依次每M个亚像素为一个视图单元,且相邻的视图单元对应3D显示中的不同视图。
  7. 一种3D显示装置的驱动方法,其特征在于,所述显示装置为权利要求1所述的显示装置;该方法包括:
    分别将待显示的3D视图的第一视图和第二视图划分为多个视图单元,并确定每一个视图单元中各个颜色的颜色分量;
    针对每一个视图的每一个亚像素,按照该亚像素对应的矩形采样区所覆盖的、属于该视图的各个视图单元中该亚像素的颜色的颜色分量确定该亚像素的发光亮度。
  8. 如权利要求7所述的驱动方法,其特征在于,对位于遮挡矩形在列方向重叠的区域的亚像素进行显示时,以相邻列的亚像素组中位于所述遮挡矩形在列方向重叠的区域外且与该亚像素距离最近的、用于显示同一视图且颜色一致的亚像素替代进行显示。
  9. 如权利要求7所述的驱动方法,其特征在于,对未位于遮挡矩形在列方向重叠的区域的亚像素进行显示时,所述采样区为矩形采样区,且该采样区域以对应的亚像素在列方向的中心线为该采样区域在列方向的中心线,该采样区域在行方向的宽度为亚像素在行方向宽度的2倍,在列方向上的宽度为亚像素在列方向宽度的3倍;
    其中:
    针对偶数列的亚像素,每个亚像素对应的采样区在列方向覆盖位于该采样区对应的亚像素下方的亚像素的一部分;
    针对奇数列的亚像素,每个亚像素对应的采样区在列方向上与偶数列的亚像素对应的采样区相接,且在行方向上与偶数列的亚像素对应的采样区位置相错。
  10. 如权利要求9所述的驱动方法,其特征在于,针对偶数列的亚像素,每个亚像素对应的采样区在列方向覆盖位于该采样区对应的亚像素下方的亚像素的部分介于0~1/2亚像素列方向的长度之间。
  11. 如权利要求8所述的驱动方法,其特征在于进一步包括:
    在与位于遮挡矩形在列方向重叠的区域的亚像素相邻列的亚像素列中,寻找位于遮挡矩形在列方向重叠的区域外并与该亚像素显示同一视图、且颜色相同的亚像素,并在找到的亚像素中,将与位于遮挡矩形在列方向重叠的区域的亚像素距离最近的一个亚像素作为替代亚像素,根据该替代亚像素的位置划分采样区,其为矩形区域,且该矩形区域在列方向上的宽度介于亚像素在列方向宽度的5~6倍之间,在行方向的宽度为亚像素在行方向宽度的2倍;且在列方向上,该替代亚像素对应的采样区在上下端部均覆盖部分亚像素。
  12. 一种3D显示装置的驱动装置,其特征在于,所述显示装置为权利要求1所述的显示装置;该驱动装置被配置来执行如权利要求7-11中任一个所述的方法。
  13. 一种3D显示系统,其包括根据权利要求1的3D显示装置及根据权利要求12的驱动装置。
PCT/CN2016/073872 2015-09-02 2016-02-16 一种3d显示装置及其驱动方法和装置 WO2017036097A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16784370.5A EP3346316A4 (en) 2015-09-02 2016-02-16 3D DISPLAY DEVICE AND CONTROL METHOD AND DEVICE THEREFOR
KR1020177001155A KR101928676B1 (ko) 2015-09-02 2016-02-16 3d 디스플레이 장치 및 그 구동 방법 및 장치
US15/308,045 US10104367B2 (en) 2015-09-02 2016-02-16 3D display device and its driving method and device
JP2016569039A JP6858017B2 (ja) 2015-09-02 2016-02-16 3d表示装置及び、3d表示装置の駆動方法及び駆動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510556849.1 2015-09-02
CN201510556849.1A CN105093550A (zh) 2015-09-02 2015-09-02 一种3d显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2017036097A1 true WO2017036097A1 (zh) 2017-03-09

Family

ID=54574337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073872 WO2017036097A1 (zh) 2015-09-02 2016-02-16 一种3d显示装置及其驱动方法和装置

Country Status (6)

Country Link
US (1) US10104367B2 (zh)
EP (1) EP3346316A4 (zh)
JP (1) JP6858017B2 (zh)
KR (1) KR101928676B1 (zh)
CN (1) CN105093550A (zh)
WO (1) WO2017036097A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656263B (zh) * 2015-03-17 2017-07-04 京东方科技集团股份有限公司 三维显示方法和装置
CN105093550A (zh) * 2015-09-02 2015-11-25 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法
CN106896512A (zh) * 2015-12-21 2017-06-27 苏州工业园区洛加大先进技术研究院 一种裸眼3d显示装置
CN105911714A (zh) * 2016-06-30 2016-08-31 成都工业学院 一种基于像素掩模的均匀分辨率3d显示器
CN111128066B (zh) * 2018-10-31 2024-01-30 北京小米移动软件有限公司 终端屏幕、屏幕结构及其控制方法、装置和终端
CN111261121B (zh) * 2020-02-25 2022-05-20 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182153A (ja) * 2000-12-13 2002-06-26 Mixed Reality Systems Laboratory Inc 立体画像表示装置
US20110291549A1 (en) * 2010-05-31 2011-12-01 Gun-Shik Kim Pixel arrangement of an organic light emitting display device
CN104599626A (zh) * 2015-03-02 2015-05-06 京东方科技集团股份有限公司 显示驱动方法和装置、采样区的生成方法和装置
CN104599625A (zh) * 2015-03-02 2015-05-06 京东方科技集团股份有限公司 边界判定方法和装置、显示驱动方法和装置
CN104614863A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 像素阵列、显示装置以及显示方法
CN105093550A (zh) * 2015-09-02 2015-11-25 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015090B2 (ja) * 2003-09-08 2007-11-28 株式会社東芝 立体表示装置および画像表示方法
KR100597584B1 (ko) * 2003-11-22 2006-07-07 한국전자통신연구원 영상 디스플레이 장치 및 그 방법
KR100728777B1 (ko) * 2004-04-07 2007-06-19 삼성에스디아이 주식회사 패럴랙스 베리어 및 이를 구비한 입체 영상 표시장치
JP2006195415A (ja) * 2004-12-13 2006-07-27 Fujitsu Ten Ltd 表示装置及び表示方法
JP5018222B2 (ja) * 2007-05-09 2012-09-05 セイコーエプソン株式会社 指向性表示ディスプレイ
KR101294234B1 (ko) 2007-12-04 2013-08-16 엘지디스플레이 주식회사 3차원 영상 표시장치
JP2011069869A (ja) * 2009-09-24 2011-04-07 Casio Computer Co Ltd 表示装置、及び画像制御方法
JP2011197376A (ja) * 2010-03-19 2011-10-06 Sony Corp 表示装置及び電子機器
TW201133032A (en) * 2010-03-23 2011-10-01 Unique Instr Co Ltd Multi-function LCD parallax grating device
TW201216684A (en) * 2010-10-12 2012-04-16 Unique Instr Co Ltd Stereoscopic image display device
US9167234B2 (en) * 2011-02-14 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2012186653A (ja) * 2011-03-04 2012-09-27 Toshiba Corp 画像表示装置、方法およびプログラム
JP5628088B2 (ja) * 2011-04-28 2014-11-19 株式会社ジャパンディスプレイ 表示パネル、表示装置および電子機器
CN103843319B (zh) * 2011-09-29 2015-09-09 富士胶片株式会社 摄像元件及摄像装置
US8724040B2 (en) * 2011-11-02 2014-05-13 Chimei Innolux Corporation Pixel structures of 3D display devices
CN202720395U (zh) * 2012-07-17 2013-02-06 Tcl集团股份有限公司 一种光栅板及裸眼立体显示装置
FR2994044B1 (fr) * 2012-07-24 2017-05-12 Alioscopy Procede d'affichage auto-stereoscopique sur un ecran ayant sa plus grande dimension dans le sens vertical.
JP6057647B2 (ja) * 2012-09-27 2017-01-11 三菱電機株式会社 表示装置
CN103792607B (zh) * 2014-01-26 2016-02-24 京东方科技集团股份有限公司 光栅及显示装置
CN104505015B (zh) * 2015-01-13 2017-02-15 京东方科技集团股份有限公司 显示面板的显示方法、显示面板及显示装置
CN104597609A (zh) * 2015-02-06 2015-05-06 京东方科技集团股份有限公司 像素阵列、显示装置以及显示方法
US20160232825A1 (en) * 2015-02-11 2016-08-11 Boe Technology Group Co., Ltd. 3d display device and driving method thereof
CN104635398A (zh) * 2015-03-09 2015-05-20 京东方科技集团股份有限公司 一种显示装置及光栅控制方法
CN104635399A (zh) * 2015-03-09 2015-05-20 京东方科技集团股份有限公司 一种显示装置及光栅控制方法
CN104766548A (zh) * 2015-03-17 2015-07-08 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN104656263B (zh) * 2015-03-17 2017-07-04 京东方科技集团股份有限公司 三维显示方法和装置
CN104680966B (zh) * 2015-03-19 2017-11-14 京东方科技集团股份有限公司 一种显示装置的驱动方法及其驱动装置
CN104681001A (zh) * 2015-03-23 2015-06-03 京东方科技集团股份有限公司 显示驱动方法及显示驱动装置
CN104680949B (zh) * 2015-03-25 2017-03-15 京东方科技集团股份有限公司 像素阵列、显示驱动方法、显示驱动装置和显示装置
CN104793341B (zh) * 2015-05-12 2018-01-12 京东方科技集团股份有限公司 一种显示驱动方法和装置
CN104835445B (zh) * 2015-06-08 2017-06-30 京东方科技集团股份有限公司 显示面板及其显示驱动方法、显示驱动装置、显示装置
CN104933980B (zh) * 2015-06-30 2017-10-31 京东方科技集团股份有限公司 一种显示驱动方法、装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182153A (ja) * 2000-12-13 2002-06-26 Mixed Reality Systems Laboratory Inc 立体画像表示装置
US20110291549A1 (en) * 2010-05-31 2011-12-01 Gun-Shik Kim Pixel arrangement of an organic light emitting display device
CN104614863A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 像素阵列、显示装置以及显示方法
CN104599626A (zh) * 2015-03-02 2015-05-06 京东方科技集团股份有限公司 显示驱动方法和装置、采样区的生成方法和装置
CN104599625A (zh) * 2015-03-02 2015-05-06 京东方科技集团股份有限公司 边界判定方法和装置、显示驱动方法和装置
CN105093550A (zh) * 2015-09-02 2015-11-25 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346316A4 *

Also Published As

Publication number Publication date
US10104367B2 (en) 2018-10-16
CN105093550A (zh) 2015-11-25
JP6858017B2 (ja) 2021-04-14
JP2018535439A (ja) 2018-11-29
US20170272734A1 (en) 2017-09-21
EP3346316A4 (en) 2019-02-13
KR101928676B1 (ko) 2018-12-12
EP3346316A1 (en) 2018-07-11
KR20170041190A (ko) 2017-04-14

Similar Documents

Publication Publication Date Title
WO2017036097A1 (zh) 一种3d显示装置及其驱动方法和装置
CN101093630B (zh) 三维图像显示装置
CN104425554B (zh) 有机发光二极管显示设备
WO2016150076A1 (zh) 像素阵列、显示驱动方法、显示驱动装置和显示装置
WO2019185063A1 (zh) 显示装置及其三维显示方法
CN105445949B (zh) 一种三维显示装置
JP6679502B2 (ja) 表示駆動方法および表示駆動装置
TWI459033B (zh) 立體顯示裝置
KR102123272B1 (ko) 자동입체방식용 디스플레이 화면
TWI575493B (zh) 3d/2d多原色影像裝置及其控制方法
JP5621501B2 (ja) 立体表示装置および立体表示方法
JP2009139947A (ja) 3次元映像表示装置及びその駆動方法
CN104299561A (zh) 像素阵列的驱动方法
TWI484817B (zh) 顯示面板
WO2017036040A1 (zh) 像素阵列、显示驱动装置及其驱动方法、显示装置
WO2016141655A1 (zh) 显示装置及其光栅控制方法
JP2013088685A (ja) 表示装置
US20180109778A1 (en) Display Device and Driving Method Thereof
US20170038625A1 (en) Display device and method for controlling grating
JP2012103502A (ja) 立体表示装置および立体表示方法
JP2013101171A (ja) 表示装置および電子機器
JP2012093503A (ja) 立体画像表示装置
JP5621500B2 (ja) 立体表示装置および立体表示方法
WO2016197522A1 (zh) 显示面板及其显示驱动方法、显示驱动装置以及显示装置
TWI567704B (zh) 3d/2d多原色影像裝置及其控制方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016784370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15308045

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016569039

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001155

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16784370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016784370

Country of ref document: EP