WO2017034194A1 - 무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치 Download PDF

Info

Publication number
WO2017034194A1
WO2017034194A1 PCT/KR2016/008862 KR2016008862W WO2017034194A1 WO 2017034194 A1 WO2017034194 A1 WO 2017034194A1 KR 2016008862 W KR2016008862 W KR 2016008862W WO 2017034194 A1 WO2017034194 A1 WO 2017034194A1
Authority
WO
WIPO (PCT)
Prior art keywords
paging
slice
terminal
information
rach
Prior art date
Application number
PCT/KR2016/008862
Other languages
English (en)
French (fr)
Inventor
류선희
정정수
안라연
황지원
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/754,109 priority Critical patent/US10659993B2/en
Priority to EP16839483.1A priority patent/EP3340703B1/en
Priority to AU2016312707A priority patent/AU2016312707B2/en
Priority to CN201680048712.8A priority patent/CN107925985B/zh
Publication of WO2017034194A1 publication Critical patent/WO2017034194A1/ko
Priority to US16/876,764 priority patent/US11109274B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • H04L47/365Dynamic adaptation of the packet size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving paging in a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving paging in a wireless communication system capable of supporting a plurality of services.
  • a 5G communication system or a pre-5G communication system is called a after 4G network communication system or a post-LTE system.
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • FD-MIMO full dimensional MIMO
  • 5G communication system has evolved small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network , Device to device communication (D2D), wireless backhaul, moving network, cooperative communication, coordinated multi-points, and received interference cancellation
  • cloud RAN cloud radio access network
  • D2D Device to device communication
  • wireless backhaul moving network
  • cooperative communication coordinated multi-points
  • received interference cancellation The development of such technology is being done.
  • ACM advanced coding modulation
  • FQAM hybrid FSK and QAM modulation
  • SWSC sliding window superposition coding
  • FBMC advanced access technology filter bank multi carrier
  • the Internet is evolving from a human-centered connection network where humans create and consume information, and an Internet of Things (IoT) network that exchanges and processes information between distributed components such as things.
  • IoT Internet of Things
  • IoE Internet of Everything
  • IoT intelligent Internet technology
  • IoT can be applied to the fields of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service through convergence and complex of existing IT technology and various industries. have.
  • communication technologies for next generation communication systems such as 5G communication systems are being studied, and one example of the communication technologies is a technology capable of supporting a plurality of quality of services (QoS) in a wireless communication system supporting a plurality of services.
  • QoS quality of services
  • An example of a communication system capable of supporting a plurality of QoS is a physical layer for satisfying different QoS for each service (or slice) in a NR (New Radio) study item discussed in the 3rd Generation Partnership Project (3GPP).
  • 3GPP 3rd Generation Partnership Project
  • the design of a communication system in which a PHY frame structure and sub-carrier spacing are optimized for each service is in progress.
  • an independent paging signal will be transmitted for each service.
  • a terminal supporting a plurality of services must independently receive a paging signal transmitted for each service. If the terminal is in an idle state, power consumption of the terminal will be increased.
  • the present invention provides a method and apparatus for efficiently transmitting and receiving paging in a wireless communication system supporting a plurality of services, and a communication method and apparatus using the same.
  • the present invention also provides a method and apparatus for paging transmission and reception that can reduce power consumption in a wireless communication system supporting a plurality of services.
  • the present invention also provides a method and apparatus for transmitting and receiving cross-slice paging in a wireless communication system supporting a plurality of services.
  • the present invention also provides a method and apparatus for an efficient RACH procedure in a wireless communication system supporting a plurality of services.
  • the present invention also provides a method and apparatus for operating a paging cycle for each service in a wireless communication system supporting a plurality of services.
  • the present invention also provides a method and apparatus for setting PF / PO for paging in a wireless communication system supporting a plurality of services.
  • a method for transmitting paging by a base station in a wireless communication system supporting a plurality of services includes transmitting information on a paging slice corresponding to a service to which paging is transmitted, to the terminal; And transmitting the paging through the paging slice.
  • the base station transmits information on a communication interface for communicating with other network entities and a paging slice corresponding to a service to which paging is transmitted to the terminal. And a controller for controlling the transmission of the paging through the paging slice to the terminal.
  • a method for receiving a paging by a terminal comprising the steps of receiving information on a paging slice corresponding to the service to which the paging is transmitted from the base station; Receiving the paging via a paging slice.
  • a terminal receives a communication interface for communicating with other network entities and information on a paging slice corresponding to a service to which the paging is transmitted from a base station. And a controller including a controller to control receiving the paging through the paging slice.
  • the decision rule of the paging slice may include (1) delay minimization slice selection, (2) high capacity slice selection, (3) low power slice selection, and (4) corresponding TAU (Tracking) according to key performance priority. At least one of slice selection with low paging loading in the area unit, and (5) slice allocation in which more radio resources are secured in the corresponding TAU area.
  • the deferring / deferring operation that may be performed when a reception error of the paging occurs may include: (1) switching to a sleep state without receiving terminal paging; and (2) time of receiving paging. at least one of expanding a window (PF / PO: Paging Frame / Paging Occasion) and (3) receiving paging with a candidate slice other than the paging resource designated as the paging slice by the paging slice expansion operation.
  • PF / PO Paging Frame / Paging Occasion
  • the information on the option for the deferring / deferring operation and the time window size and candidate slice for paging reception may be set by the MME.
  • the setting operation may be set by determining the paging deferring option and related parameters in consideration of the inter-base station movement of the terminal with idle mobility, and the base station receives the configuration information from the MME and releases the RRC setting or RRC release of the terminal (release). May signal to the terminal.
  • the message for delivering the paging includes at least one of a slice identifier, RACH-related information, and active slice information together with a terminal identifier, wherein the RACH-related information is an RACH resource, slice of the paging slice.
  • RACH option information for performing RACH using one of a star RACH resource, a common RACH resource, and an earliest RACH resource is included.
  • information identifying whether a corresponding RACH is MO / MT and slice information of downlink data arriving at a connection request corresponding to Message 3 in the earliest RACH procedure are added as a new field to cross.
  • RRC (re) configuration can be performed directly to the corresponding service (Message 4).
  • the UE transitions to the RRC_connected state after the RACH procedure is performed by activating all slices of the UE, activating some slices of the UE slices, but displaying traffic displayed on paging arriving at the UE. At least one of activating a slice corresponding to the service of, and activating some slices of the slice of the terminal, regardless of the service of the traffic indicated on the paging arriving at the terminal.
  • a new PF and PO for receiving paging by service are set, a paging period Tc is separately operated for each service (reflecting a QoS delay), and Tc is multiplied (for example, an integer multiple). Can be used to minimize the Tx / Rx duration.
  • terminals receiving paging for the same service may be grouped to operate as the same paging indicator group.
  • FIG. 1 is a diagram illustrating a cross-slice paging setting operation in a wireless communication system supporting a plurality of services according to an embodiment of the present invention
  • FIG. 2 illustrates a cross-slice paging reception operation in a wireless communication system supporting a plurality of services according to an embodiment of the present invention
  • FIG. 3 is a diagram illustrating an example of a deferring / deferring operation when a cross-slice paging reception error is performed in a terminal according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating an example of an operation of switching from an RRC_Idle state to an RRC_connected state and an RACH resource by performing RACH when a paging arrives to a terminal according to an embodiment of the present invention
  • FIG. 5 is a view for explaining the effect of an earliest cross-slice RACH (RACH) in a wireless communication system supporting multiple services according to an embodiment of the present invention
  • FIG. 6 is a view for explaining an earliest RACH procedure in a wireless communication system supporting a plurality of services according to an embodiment of the present invention
  • FIG. 7 illustrates an example of a signaling procedure for activating a deactivated slice when DL traffic arrives at a deactivated slice according to an embodiment of the present invention
  • FIG. 8 illustrates an example of a method of operating a paging period for each service in a wireless communication system supporting a plurality of services according to an embodiment of the present invention
  • FIG. 9 is a diagram illustrating an example of a method of controlling a DRX offset for each service for PF / PO setting according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of setting a PF / PO group according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a method for setting a PF / PO group using a paging indicator according to an embodiment of the present invention
  • FIG. 12 is a view showing a device configuration according to an embodiment of the present invention.
  • “configured to” is modified to have the ability to “suitable,” “to,” “to,” depending on the context, for example, hardware or software. Can be used interchangeably with “made to”, “doing”, or “designed to”.
  • the expression “device configured to” may mean that the device “can” together with other devices or components.
  • the phrase “processor configured (or configured to) perform A, B, and C” may be a dedicated processor (eg, embedded processor) or at least one software stored in memory (storage) for performing the operation.
  • executing a program it may mean a general purpose processor (for example, a CPU or an application processor) capable of performing the corresponding operations.
  • a user equipment may be referred to by various names, such as a mobile station (MS), a terminal, a device, and the like.
  • a base station may be an eNB, It may be called various names such as an access point (AP).
  • Embodiments of the present invention to be described below may be applied to operations of a base station and a terminal for achieving energy efficiency key performance indicators (KPIs), which are discussed in, for example, 3GPP radio access network (RAN) 5G Study Items (SI).
  • KPIs energy efficiency key performance indicators
  • 3GPP radio access network (RAN) 5G Study Items (SI) 3GPP radio access network
  • SI 3GPP radio access network
  • the technology discussed in 3GPP RAN 5G SI of 3GPP is related to energy efficient operation that can greatly improve the power efficiency of the terminal and base station networks in the future.
  • mmW millimeter wave
  • mmW millimeter wave
  • the techniques proposed in the embodiments of the present invention when supporting a plurality of services in a new radio access technology (New RAT: NR) -based wireless communication system, by efficiently configuring the paging operation power efficiency in the terminal and / or the base station It is about ways to improve.
  • New RAT new radio access technology
  • paging may be understood as a paging signal transmitted and received in a wireless communication system, a paging message transmitted through a paging operation, or a paging operation thereof.
  • a “slice” can be understood as a service provided in a wireless communication system. In the present specification, the slice and the service will be used interchangeably for convenience of description, but may be understood as the same / similar meaning. Examples of the service include New RAT-based services discussed in 3GPP RAN 5G SI of 3GPP include enhanced mobile service (eMMB), massive machine type communication (mMTC), ultra reliable and low latency communications (URLLC), and the like.
  • eMMB enhanced mobile service
  • mMTC massive machine type communication
  • URLLC ultra reliable and low latency communications
  • the eMMB is an enhanced mobile broadband service, and may be, for example, a service requiring large data transmission such as an ultra high definition (UHD) service, a holographic image service, a virtual reality service, and the like.
  • the mMTC may be a large-scale Internet of Things (IoT) service as a large-scale device-to-device communication (ie, a plurality of terminals).
  • the URLLC may be a service requiring ultra high reliability and low latency communication such as factory automation, remote surgery, autonomous vehicles, and the like.
  • the service to which the embodiments of the present invention can be applied is not limited to the eMMB, mMTC, and URLLC, and may be various services requiring different QoS.
  • paging slice is the slice (ie service) to which paging is sent.
  • a "cross-slice” is one (or plurality) slices selected for paging transmission among a plurality of slices that can provide a service to a terminal.
  • Cross-Slice paging means paging transmitted over a cross slice.
  • eMBB mMTC URLLC Data rate Very high (e.g. peak rate 10 Gbps) Not much considered Not much considered Latency Low Not much considered Very Low (e.g. 1 ms end-to-end) Mobility 0km / h to 500km / h Not much considered Not much considered Reliability Not much considered Not much considered Very High (e.g. Packet loss rate: as low as 1e-04) Power Consumption Not much considered Very low Not much considered Connection Density High (eg 200-2500 UEs / km 2 ) Very High (eg1M connections / km 2 ) High (eg 10k sensor / 10km 2 )
  • the transmission characteristics of each service may be designed differently.
  • transmission characteristics such as high / low frequency, wide / narrow bandwidth, and PHY numerology (subframe length, carrier spacing) for each service may be designed differently according to the QoS characteristics of each service.
  • a terminal capable of supporting a plurality of services (slices) in a same system supporting multiple services is a terminal having multi-slice capability (hereinafter, referred to as a "multi-slice capable UE").
  • the multi-slice capable terminal performs a reception operation independently for paging transmitted independently for each service, the power consumption of the multi-slice capable terminal in the idle state (ie, the standby state) will be greatly increased.
  • the idle terminal in order to reduce the paging reception burden in which the idle terminal receives paging for each service, receives paging for a single slice instead of receiving paging for each slice.
  • the single slice may use a low power or low latency slice.
  • Embodiments of the present invention improve the terminal power efficiency and transmit data by designing a paging reception operation, which is an idle state operation of a multi-slice capable terminal, as a cross-slice based paging reception instead of a slice-by-slice reception in a wireless communication system supporting multiple services. It is proposed to keep the delay to a minimum. And the conditions related to such a paging operation of the present invention is as follows.
  • the operation for cross-slice paging proposed in the embodiments of the present invention may be performed through the following four steps.
  • Step 1 Set up a paging slice for each terminal.
  • Step 2 Receive system information (SI) for cross-slice paging reception, and receive a paging message designed based on cross-slice paging.
  • SI system information
  • Step 3 After the paging reception of the UE, the RACH operation from the RRC_idle state to the RRC_connected state operates in the RACH or early RACH per slice. (The description of the RACH and early RACH for each slice will be described later.)
  • Step 4 When switching to the RRC_connected state, the slice resource of the terminal is activated in whole or in part.
  • the paging reception operation in the idle state of the terminal of the New RAT communication system supporting a plurality of services is performed as a cross-slice-based paging reception operation instead of a paging reception operation for each slice and thus the terminal.
  • An improvement in power efficiency can be expected.
  • the terminal power efficiency improvement is performed by performing a cross-slice paging reception operation instead of a multi-slice paging reception performed independently of a plurality of slices. on duration time, frequency).
  • a terminal standby power consumption may be reduced in a paging operation for one slice.
  • the delay can be reduced when switching the state of the UE from the RRC_idle state to the RRC_connected state, thereby improving terminal power efficiency and delay performance.
  • a configuration example of the step 1 to step 4 method for cross-slice paging is as follows.
  • Step 1 A network entity (for example, a mobility management entity (MME)) that manages mobility of a terminal is based on a slice capable of supporting each terminal and the capability feedback of the terminal reflecting energy efficiency information of the corresponding slice. Can be determined.
  • the MME may determine the paging slice based on the subscription information of the terminal instead of the feedback information of the terminal.
  • the subscription information may be provided, for example, from a home subscriber server (HSS).
  • HSS home subscriber server
  • the base station may receive the information on the paging slice determined by the MME and instruct the terminal to correspond to the paging slice.
  • the base station may provide the terminal with information for configuring the paging slice through control signaling.
  • the system information (SI) includes a common SI broadcasted to all terminals and a slice-only SI corresponding to a slice required for cross-slice paging.
  • the common SI may include at least one of information on a common slice and indication information on the slice-only SI.
  • the slice-only SI may be set for each slice (service).
  • the terminal may receive a paging message designed based on cross-slice paging by receiving system information (SI) for the paging reception.
  • the paging message may include new fields along with the terminal ID.
  • the new fields may include, for example, at least one of fields for a slice indicator, a RACH, and an activation slice option. Detailed description of the new fields will be described later.
  • examples of deferring / deferring operations that may be performed when a paging reception error of the terminal occurs are as follows (1) to (3).
  • Options for the deferring / deferring operation when the paging reception error occurs and information about the time window size and candidate slice for paging reception may be set by the MME.
  • the setting operation may be set by determining the paging deferring option and related parameters in consideration of the inter-base station movement of the terminal with idle mobility, and the base station receives the configuration information from the MME and releases the RRC setting or RRC release of the terminal (release). ) May be provided to the terminal.
  • Step 3 When the arrival of traffic to the corresponding UE is confirmed upon paging reception, examples of possible options in the RACH operation of the UE are as follows (1) to (4).
  • Slice-only RACH Transition from RRC_Idle state to RRC_connected state with RACH resources per slice based on the service of paged traffic.
  • the UE In the case of slice-only RACH, the UE must know the RACH configuration of all slices in advance, so that every service There is a burden of receiving an SI.
  • Cross-Slice RACH (when performing RACH with paging slice): an operation of transitioning from RRC_Idle state to RRC_connected state with RACH resource of paging slice regardless of service of traffic indicated in paging arriving at UE, in this case paging Since the slice is predetermined, the terminal may know the paging slice in advance before receiving the paging. Therefore, since only SI for each service of the corresponding paging slice needs to be received, the SI reception burden of the UE is reduced.
  • Cross-Slice RACH (when performing RACH with early slice): Transition from RRC_idle state to RRC_connected state with RACH resource of paging slice regardless of service of traffic indicated on paging arriving at UE, in this case UE Uses the nearest earliest RACH resource at any point in time, so it is necessary to know the RACH settings of all slices in advance. Accordingly, although the UE has a burden of receiving all SIs for each service, since the closest earliest RACH resource is utilized at any point in time, the delay of an operation of transitioning from the RRC_idle state to the RRC_connected state is reduced, thereby improving user delay QoS.
  • the UE when performing the cross-slice RACH operation, the UE transitions from the RRC_idle state to the RRC_connected state. In the RRC configuration, the UE should inform the base station of the service information of the corresponding traffic. In addition, the slice (service) information is added to the new field (s) of the connection request corresponding to message 3 of the existing RACH procedure, so that the RRC (corresponding to message 4 of the existing RACH procedure) directly to the corresponding service even when performing a cross-slice RACH. By performing (re) setting, it is possible to operate so that the data transmission delay does not occur during the connection state operation.
  • Step 4 After performing the RACH procedure, the UE switches to the RRC_connected state.
  • the operation of step 4 is to activate a slice resource of the terminal (activation), and to activate all of the slices of the terminal, to activate some of the slices of the terminal, but corresponds to the service of traffic indicated in paging arriving at the terminal At least one of activating a slice, and activating some of the slices of the terminal, but activating the paging slice irrespective of the service of traffic indicated on the paging arriving at the terminal.
  • the operation of receiving the system information for receiving paging other than the cross-slice paging setting and operation option for power saving of the multi-slicable terminal and the slice RACH to the RRC_Connected state and the slice activating operation It is an example.
  • a slice capable of improved QoS support such as a high link capacity or a low delay.
  • the low energy consumption slice supports relatively low QoS among services supported by a multi-slice capable terminal, but has a low power consumption, which is advantageous in terms of energy efficiency.
  • Step 1 Cross-slice paging setup action
  • FIG. 1 is a diagram illustrating a cross-slice paging setting operation in a wireless communication system supporting a plurality of services according to an embodiment of the present invention.
  • the operation of FIG. 1 includes setting a paging slice indication to the terminal based on the information on the terminal capability for cross-slice paging configuration.
  • the terminal 10 transmits UE slicing capability information to the base station 30.
  • the information is based on, for example, terminal performance information considering energy efficiency of each slice.
  • the paging slice may be set for each terminal, and capability feedback (that is, UE slicing capability information) reflecting the slices that can be supported for each terminal and energy efficiency information of the corresponding slice is transmitted from the terminal 101 to the base station 30.
  • the MME 50 determines a paging slice for the terminal 10 in steps 103 and 105, and transmits information on the determined paging slice (hereinafter, paging slice information) to the base station ( To 30).
  • the base station 30 transmits the paging slice information to the terminal 10 through control signaling for RRC configuration.
  • the base station 30 transmits data traffic to the terminal 10.
  • the paging slice information may be transmitted to the terminal 10 through control signaling for resetting or releasing the RRC in step 111.
  • the terminal 10 receives paging from a Paging Occasion (PO) calculated for paging reception.
  • PO Paging Occasion
  • the method for displaying the multi-slice paging option may use 1) and 2) below.
  • the display method of the paging slice information is a method of setting one representative slice selected from among a plurality of slices that can be served to the terminal by a cross-slice paging method.
  • Table 2 below shows an example of slice priority according to a paging slice determination rule.
  • the paging slice determination rule for each terminal is determined according to key performance priority.
  • High capacity slice selection (3)
  • Low power slice selection (4)
  • Slice selection with low paging loading in the corresponding tracking area unit (TAU) area Selection of (allocated) slices with more radio resources in the corresponding TAU area It may include at least one.
  • the MME 50 determines the paging slice and transmits the paging slice information to the terminal 10 by transmitting the paging slice information to the base station 30, the following methods 1) and 2) may be used.
  • Option 1 Explicit paging slice indication: control signaling method for explicitly indicating paging slice per terminal
  • Option 2 implicit paging slice rule transmission: a method for providing a terminal with a decision rule of a paging slice per terminal
  • the method of option 1 may use a method of transmitting through control signaling for controlling a specific terminal such as RRC (re) setting and / or RRC release for setting between a base station and a terminal in an RRC_connected state.
  • a specific terminal such as RRC (re) setting and / or RRC release for setting between a base station and a terminal in an RRC_connected state.
  • the option 2 method may use a method of applying the same paging slice selection rule in a cell, in a TAU, or in an MME through system information such as MIB or SIBx.
  • a paging indicator may be used to transmit paging slice information for each slice as a primary, and to indicate the paging slice information to be transmitted during actual paging.
  • FIG. 2 is a diagram illustrating a cross-slice paging reception operation in a wireless communication system supporting a plurality of services according to an embodiment of the present invention.
  • a terminal receives a common SI broadcasted to all terminals.
  • the common SI may include at least one of information on a common slice and indication information on a slice-only SI.
  • the common SI may store a minimum amount of information to reduce a transmission burden of a common control signal.
  • the common SI adds slice dedicated SI Info such as [Broadcast period, Radio Resource] in addition to information on downlink included in the existing MIB, such as [Bandwidth, SFN, Scheduling Info]. Indicate a received resource of the slice-only SI to be transmitted and subsequently transmitted.
  • the terminal receiving the common SI receives a slice-only SI based on the indication information about the slice-only SI.
  • the slice-only SI may transmit different parameter settings for each service to transmit slice-only paging information, for example, [paging period, Paging Frame / Paging occasion calculation, Slice Dedicated RACH resource configuration information].
  • the SI required to receive the terminal may be changed according to the cross-slice paging option.
  • the common SI should be received by all terminals, and the slice-only SI receives only SI corresponding to a slice required for cross-slice paging, and in case of receiving a paging with a candidate slice during a PO Time Window extended reception operation, candidate The SI associated with the slice may also be received.
  • the UE having received the slice-only SI receives a paging message in a slice corresponding to cross-slice paging.
  • the information included in the fields of the payload of the page message may include, for example, at least one of information on an existing UE ID, slice indicator, RACH, and slice activation, as shown in Table 3 below.
  • Table 4 illustrates, for example, eight operating states according to option values in the fields of the payload of the page message.
  • the operating states represent one possible embodiment of the RACH and connected state transition operations.
  • Option Slice Indicator RACH options Slice (De) activation options One X Common RACH All Slice Activation 2 X Common RACH Paging Slice activation only (Slice cross scheduling) 3 X Earliest RACH All Slice Activation 4 X Earliest RACH Paging Slice activation only (Slice cross scheduling) 5 O Slice Dedicated RACH Data arrival slice Activation only 6 O Slice Dedicated RACH Paging Slice activation only (Slice cross scheduling) 7 O Earliest RACH Data arrival slice Activation only 8 O Earliest RACH Paging Slice activation only (Slice cross scheduling)
  • step 205 when the paging reception error occurs in step 205, at least one of the above-described deferring / deferring operations may be performed.
  • FIG. 3 is a diagram illustrating an example of a deferring / deferring operation when a cross-slice paging reception error is performed in a terminal according to an embodiment of the present invention.
  • the MME 50 determines the paging slice for the terminal 10, and delivers the paging slice information to the base station (30).
  • the base station 30 transmits the paging slice information to the terminal 10 through control signaling for resetting or releasing the RRC.
  • the paging is not transmitted in the determined paging slice in step 313.
  • examples of possible deferring / deferring operations are the same as at least one of 1) to 3) of FIG. 3, and if the paging is transmitted to the candidate slice, the UE slices the candidate slice in step 315. It can receive the paging transmitted through the (candidate slice).
  • the UE performs a switching operation from the RRC_Idle state to the RRC_connected state by performing RACH upon arrival of paging to the corresponding UE after paging reception as in operations 401 to 405 of FIG. 4. .
  • RACH operation Common Slice RACH, Slice Dedicated RACH, Cross Slice RACH
  • RACH performed with paging slice or RACH performed with early slice the detailed description thereof will be omitted.
  • FIG. 5 is a diagram for describing the effect of an earliest cross-slice RACH (RACH) in a wireless communication system supporting a plurality of services according to an embodiment of the present invention.
  • RACH cross-slice RACH
  • the UE may expect a delay reduction by performing a promotion operation in an RRC_connected state with an RACH resource allocated first regardless of a slice.
  • FIG. 6 is a diagram illustrating an earliest RACH procedure in a wireless communication system supporting a plurality of services according to an embodiment of the present invention.
  • a UE transmits a PRACH preamble to a base station, and in step 603, the base station allocates resources for transmission of Message 3 to the UE in response to a PRACH preamble, and in step 605.
  • the terminal performs a connection request using Message 3 using the allocated resources, and in step 607, the base station performs RRC connection establishment in response to the connection request.
  • the UE When performing the cross-slice RACH operation according to the earliest RACH procedure of FIG. 6, the UE should inform the base station of service information of the corresponding traffic in the transition RRC configuration from the RRC_idle state to the RRC_connected state.
  • information for distinguishing whether a corresponding RACH is MO / MT and slice information of downlink data arriving at a connection request corresponding to Message 3 in the earliest RACH procedure are added as a new field.
  • slice RACH we propose a method to prevent data transmission delay in connection state operation by directly performing (Message 4) RRC (re) setting to a corresponding service.
  • Step 4 Enable / disable service by service in RRC_connected state>
  • step 207 the UE switches to the RRC_connected state and then activates a slice resource of the UE.
  • Examples of options for activating a slice resource are the same as described above. In this case, activation or deactivation may be performed for each slice.
  • Table 5 shows an example of a tagging operation option for activating only a paging slice when a terminal operates in a connected state and then arriving information of other slices.
  • a cross-slice scheduling method according to slice activation when a UE operates in a connected state is as follows.
  • the terminal receives the scheduling information in the activated slice. That is, the UE continuously receives PDCCH only for the activated slice or performs C-DRX operation.
  • the terminal does not perform a reception operation on another slice.
  • This method depends on common / dedicated PDCCH design issues.
  • the terminal performs activation when downlink (DL) traffic arrives on an inactivated slice, and the options thereof are the same as options 1) to 3) below.
  • DL downlink
  • FIG. 7 illustrates an example of a signaling procedure for activating a deactivated slice when DL traffic arrives at a deactivated slice according to an embodiment of the present invention. After the UE of FIG. After that, the procedure for activating when DL traffic arrives on the deactivated slice is shown.
  • the terminal receives paging in step 701 and performs an RACH procedure in step 703. Thereafter, in step 705, the terminal receives data traffic corresponding to slice 1 (at this time, slice 2 is assumed to be inactive), and when DL traffic arrives at slice 2 in step 707, at least in step 709, at least one of the options 1 to 3 Slice 2 is activated using one method. In step 711, the UE receives DL traffic in the activated slice 2.
  • the PF is a frame allocated to the terminal to receive paging
  • the PO is a subframe interval allocated to the terminal to receive paging among a plurality of subframes constituting the PF.
  • the UE may receive paging in a subframe satisfying the PF and the PO. Equation for calculating the PF and PO may refer to the relevant 3GPP standard.
  • An embodiment of the present invention proposes a new PF and PO setting method for receiving paging by service (per slice).
  • the present embodiment first proposes two methods of setting a paging cycle for each service.
  • Method 1 The paging cycle Tc is operated separately for each service (reflecting QoS delay), but in the existing system, a single cell specific paging cycle is used (Tc transmission is SIB2: RadioResourceConfigCommonSIB), but in the present embodiment, the paging cycle Tc Manage a large number of services (Tc1, Tc2, Tc3, ... etc.). In this case, the nB-related standard used for the paging period and the Tc and PF / PO calculation equations transmitted to the SIB may be changed according to Method 1.
  • nB is a parameter for controlling the frequency of PF and PO within the paging cycle
  • FIG. 8 is a diagram illustrating an example of a method of operating a paging period for each service in a wireless communication system supporting a plurality of services according to an embodiment of the present invention.
  • a paging period for each service is set differently and illustrates an example of operating in multiples.
  • the base station in connection with the paging transmission operation of the base station, it is possible to minimize the base station activation (transmission) time by synchronizing the transmission of the paging PF / PO for each service.
  • the reception (activation) time of the terminal may be minimized by synchronizing the paging PF / PO for each service.
  • an embodiment of the present invention proposes a method of controlling a DRX offset for setting PF and PO for each service.
  • FIG. 9 is a diagram illustrating an example of a method of controlling a DRX offset for each service for PF / PO setting in a wireless communication system supporting a plurality of services according to an embodiment of the present invention.
  • the base station (eg, NR cell) 31 sets a paging period for each service and includes information on DRX offset synchronization and paging deferring / deferring rule for each service.
  • the DRX configuration information is transmitted to the terminal 10.
  • the terminal 10 is switched to the idle state, and in step 907, the terminal idle mobility is generated.
  • paging for each service is aggregated and transmitted through DRX offset synchronization, and in step 913 and 915, the terminal receives the aggregated paging to perform an RACH procedure.
  • the MME 50 sets DRX for each service, and the terminal and the base station can minimize the activation period in the idle state of the terminal.
  • DRX Offset synchronization is performed in downlink, and DRX Offset synchronization is performed for each service in a terminal.
  • DRX offset synchronization is performed between a plurality of terminals.
  • there is RACH deferring transmission in uplink and RACH aggregation is performed for each service in a terminal.
  • an embodiment of the present invention proposes a method for transmitting a paging cycle and a PF / PO setting rule through SIB2.
  • a paging cycle for each service is set differently, and a PF / PO group is set.
  • the same paging rule is applied to the same service.
  • power efficiency may be improved by selecting the same PF / PO group as shown in FIGS. 10A and 10B.
  • a paging period and a PF / PO setting rule are transmitted through SIB2.
  • terminals using the same service may improve power efficiency if they are the same PF / PO group.
  • the embodiment of the present invention proposes a method for providing paging period (PF / PO) information through the page indicator without using SIB2 (that is, the SI-based SIB2 reception operation with a page indicator can be omitted).
  • the base station proposes a method of operating the same paging indicator group by grouping terminals receiving paging for the same service at reference numeral 1101 of FIG. 11.
  • the base station transmits paging in steps 1103 and 1105 for each PF / PO group corresponding to different paging indicators, and does not transmit paging for other PF / PO groups.
  • the terminal receives the PF / PO group corresponding to the paging indicator, the other terminal can be expected to reduce the terminal power by operating in a sleep state.
  • FIG. 12 is a diagram illustrating a device configuration according to an embodiment of the present invention, and the device of FIG. 12 may be applied to the terminal 10, the base station 30, and the MME 50.
  • the device configuration of FIG. 12 includes a controller 1201 and a communication interface 1203, and the controller 1201 performs operations throughout the device such that transmission and reception of paging through a paging slice is performed according to the method described with reference to FIGS. It controls the related signaling and controls the operation for establishing a new PF and PO for receiving paging for each service.
  • the communication interface 1203 is for data communication with another network entity, and may be implemented as at least one communication interface for wired or wireless communication such as a transmitter, a receiver, or a transceiver.
  • a base station transmits a communication interface 1203 for communicating with another network entity, a paging slice corresponding to a service for which paging is transmitted to a terminal, and transmits the information to the terminal.
  • a controller 1201 that controls sending the paging via a paging slice.
  • a terminal receives a communication interface 1203 for communicating with another network entity, a paging slice corresponding to a service for transmitting the paging from a base station, and receives the paging slice. It may be implemented including a controller including a controller for controlling the receiving of the paging through.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 페이징을 효율적으로 송수신하는 방법 및 장치에 대한 것으로서, 본 개시의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 기지국이 페이징을 전송하는 방법은, 단말에게 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 전송하는 과정과, 상기 단말에게 상기 페이징 슬라이스를 통해 상기 페이징을 전송하는 과정을 포함한다.

Description

무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치
본 발명은 무선 통신 시스템에서 페이징(paging)을 송수신하는 방법 및 장치에 대한 것으로서, 특히 다수의 서비스를 지원할 수 있는 무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치에 대한 것이다.
4G(4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(beyond 4G network) 통신 시스템 또는 LTE 이후(post LTE)의 시스템이라 불리고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(full dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network: cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(device to device communication: D2D), 무선 백홀(wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(coordinated multi-points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(advanced coding modulation: ACM) 방식인 FQAM (hybrid FSK and QAM modulation) 및 SWSC(sliding window superposition coding)과, 진보된 접속 기술인 FBMC(filter bank multi carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 사물 인터넷(Internet of Things : IoT) 망으로 진화하고 있다. IoE(Internet of Everything) 기술은 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 하나의 예가 될 수 있다.
IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술 등과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication) 등의 기술이 연구되고 있다.
IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT 기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
한편 5G 통신 시스템과 같은 차세대 통신 시스템을 위한 통신 기술들이 연구되고 있으며, 그 통신 기술들의 일 예는 다수의 서비스들을 지원하는 무선 통신 시스템에서 다수의 QoS(Quality of Service)들을 지원할 수 있는 기술이다. 상기 다수의 QoS를 지원할 수 있는 통신 시스템의 예로 3GPP(3rd Generation Partnership Project)에서 논의되는 NR(New Radio) study Item에는 서비스(or 슬라이스(slice)라 칭한다.) 별로 상이한 QoS를 만족시키기 위한 물리 계층 프레임(PHY Frame) 구조 및 부반송파 간격(sub-carrier spacing)이 서비스 별로 최적화된 통신 시스템의 설계가 진행 중이다. 이러한 통신 시스템에서는 서비스 별로 독립적인 페이징 신호가 전송될 것이다. 이 경우 다수의 서비스들을 지원하는 단말은 서비스 별로 전송되는 페이징 신호를 각각 독립적으로 수신해야 할 것이며, 단말이 아이들(idle) 상태에 있다면, 단말의 전력 소모는 증가될 것이다.
본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 페이징을 효율적으로 송수신하는 방법 및 장치와 이를 이용한 통신 방법 및 장치를 제공한다.
또한 본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 전력 소모를 절감할 수 있는 페이징 송수신 방법 및 장치를 제공한다.
또한 본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 cross-slice 페이징을 송수신하는 방법 및 장치를 제공한다.
또한 본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 효율적인 RACH 절차를 위한 방법 및 장치를 제공한다.
또한 본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 서비스 별 페이징 주기를 운용하는 방법 및 장치를 제공한다.
또한 본 발명은 다수의 서비스들을 지원하는 무선 통신 시스템에서 페이징을 위한 PF/PO 설정 방법 및 장치를 제공한다.
본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 기지국이 페이징을 전송하는 방법은, 단말에게 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 전송하는 과정과, 상기 단말에게 상기 페이징 슬라이스를 통해 상기 페이징을 전송하는 과정을 포함한다.
또한 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 기지국은, 다른 네트워크 엔터티와 통신을 위한 통신 인터페이스와, 단말에게 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 전송하고, 상기 단말에게 상기 페이징 슬라이스를 통해 상기 페이징을 전송하는 것을 제어하는 제어기를 포함한다.
또한 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 단말이 페이징을 수신하는 방법은, 기지국으로부터 상기 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 수신하는 과정과, 상기 페이징 슬라이스를 통해 상기 페이징을 수신하는 과정을 포함한다.
또한 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 단말은, 다른 네트워크 엔터티와 통신을 위한 통신 인터페이스와, 기지국으로부터 상기 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 수신하고, 상기 페이징 슬라이스를 통해 상기 페이징을 수신하는 것을 제어하는 제어기를 포함하는 제어기를 포함한다.
또한 본 발명의 실시 예에서 상기 페이징 슬라이스의 결정 규칙은, key performance 우선 순위에 따라 (1) 지연 최소화 슬라이스 선택, (2) 고용량 슬라이스 선택, (3) 저전력 슬라이스 선택, (4) 해당 TAU(Tracking Area Unit) 영역에서 페이징 Loading이 낮은 슬라이스 선택, 그리고 (5) 해당 TAU영역에서 더 많은 무선자원을 확보한 (할당한) 슬라이스 선택 중 적어도 하나를 포함한다.
또한 본 발명의 실시 예에서 상기 페이징의 수신 오류 발생 시 수행될 수 있는 연기/보완(deferring) 동작은, (1) 단말 페이징 수신 없이 바로 sleep 상태로 전환하는 동작, (2) 페이징을 수신하는 time window (PF/PO: Paging Frame/Paging Occasion)을 확장하는 동작, 그리고 (3) 페이징 슬라이스 확장 동작으로 페이징 슬라이스로 지정된 페이징 자원 이외의 후보 슬라이스(candidate slice)로 페이징을 수신하는 동작 중 적어도 하나를 포함하며, 상기 연기/보완(deferring) 동작에 대한 옵션 및 페이징 수신을 위한 time window 크기 및 후보 슬라이스 등에 대한 정보는 MME에 의해 설정될 수 있다. 그리고 이러한 설정 동작은 idle mobility로 단말의 기지국 간 이동을 고려하여 MME가 페이징 deferring 옵션 및 관련 파라미터를 결정하여 설정할 수 있으며, 기지국은 MME로부터 그 설정 정보를 전달 받아 단말의 RRC 설정 혹은 RRC 해제(release)시 단말에게 시그널링할 수 있다.
또한 본 발명의 실시 예에서 상기 페이징을 전달하는 메시지는 단말 식별자와 함께 슬라이스 식별자, RACH 관련 정보, 활성 슬라이스에 대한 정보 중 적어도 하나를 포함하며, 상기 RACH 관련 정보는 상기 페이징 슬라이스의 RACH 자원, 슬라이스별 RACH 자원, 공용 RACH 자원, earliest RACH 자원 중 하나를 이용하여 RACH를 수행하는 RACH 옵션 정보를 포함한다.
또한 본 발명의 실시 예에서 해당 RACH가 MO/MT 인지 구별하는 정보와, 상기 earliest RACH 절차에서 Message 3에 해당하는 연결 요청(connection request)에 도착한 하향링크 데이터의 슬라이스 정보를 신규 필드로 추가하여 cross-slice RACH 수행 시에도 해당 서비스로 바로 (Message 4) RRC (재)설정을 수행할 수 있다.
또한 본 발명의 실시 예에서 상기 RACH 절차를 수행한 후 단말이 RRC_connected 상태로 전환하는 동작은 단말의 전체 슬라이스 모두 활성화하는 동작, 단말의 슬라이스들 중 일부 슬라이스를 활성화하되 단말로 도착하는 페이징에 표시된 트래픽의 서비스에 해당하는 슬라이스를 활성화하는 동작, 그리고 단말의 슬라이스들 중 일부 슬라이스를 활성화하되 단말로 도착하는 페이징에 표시된 트래픽의 서비스와는 상관없이 페이징 슬라이스를 활성화하는 동작 중 적어도 하나를 포함한다.
또한 본 발명의 실시 예에서는 서비스 별(슬라이스 별) 페이징의 수신을 위한 새로운 PF와 PO를 설정하고, 페이징 주기 Tc 를 서비스 별로 (QoS 지연 반영) 별도 운용하고, Tc 를 배수(예컨대, 정수 배)로 운용하여 Tx/Rx duration을 최소화할 수 있다.
또한 본 발명의 실시 예에서는 동일한 서비스에 페이징을 수신하는 단말들을 그룹핑하여 동일한 페이징 지시자 그룹으로 동작하도록 할 수 있다.
도 1는 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 cross-slice 페이징 설정 동작을 나타낸 도면,
도 2는 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 cross-slice 페이징 수신 동작을 나타낸 도면,
도 3은 본 발명의 실시 예에 따라 단말에서 cross-slice 페이징 수신 오류 시 연기/보완(deferring) 동작의 일 예를 나타낸 도면,
도 4는 본 발명의 실시 예에 따라 단말에 페이징 도착 시 RACH 수행을 통한 RRC_Idle 상태에서 RRC_connected 상태로 전환 동작과 RACH 자원의 예를 나타낸 도면,
도 5는 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 earliest RACH(cross-slice RACH)의 효과를 설명하기 위한 도면,
도 6은 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 earliest RACH 절차를 설명하기 위한 도면,
도 7은 본 발명의 실시 예에 따라 비활성화된 슬라이스에 DL 트래픽 도착 시 비활성화된 슬라이스를 활성화하기 위한 시그널링 절차의 일 예를 나타낸 도면,
도 8은 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 서비스 별 페이징 주기를 운용하는 방법의 일 예를 나타낸 도면,
도 9는 본 발명의 실시 예에 따른 PF/PO 설정을 위해 서비스별 DRX offset을 제어하는 방법의 일 예를 나타낸 도면,
도 10은 본 발명의 실시 예에 따른 PF/PO 그룹 설정의 일 예를 나타낸 도면,
도 11은 본 발명의 실시 예에 따른 페이징 지시자를 이용하는 PF/PO 그룹 설정 방법을 나타낸 도면,
도 12는 본 발명의 실시 예에 따른 장치 구성을 나타낸 도면.
하기에서 본 발명의 실시 예들을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
이하 본 개시의 다양한 실시 예들을 첨부된 도면을 참조하여 설명하기로 한다. 실시 예들 및 이에 사용된 용어들은 본 개시에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시 예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 본 문서에서, "A 또는 B" 또는 "A 및/또는 B 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. "제 1," "제 2," "첫째," 또는 "둘째,"등의 표현들은 해당 구성 요소들을, 순서 또는 중요도에 상관없이 수식할 수 있고, 한 구성 요소를 다른 구성 요소와 구분하기 위해 사용될 뿐 해당 구성 요소들을 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성 요소가 상기 다른 구성 요소에 직접적으로 연결되거나, 다른 구성 요소(예: 제 3 구성요소)를 통하여 연결될 수 있다.
본 개시에서, "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, 하드웨어적 또는 소프트웨어적으로 "~에 적합한," "~하는 능력을 가지는," "~하도록 변경된," "~하도록 만들어진," "~를 할 수 있는," 또는 "~하도록 설계된"과 상호 호환적으로(interchangeably) 사용될 수 있다. 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리(저장부)에 저장된 적어도 하나의 소프트웨어 프로그램을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(예: CPU 또는 application processor)를 의미할 수 있다.
그리고 본 명세서에서 단말(user equipment : UE)는 이동 단말(mobile station : MS), 터미널(terminal), 디바이스(device) 등의 다양한 명칭으로 칭해질 수 있으며, 기지국(base station : BS)은 eNB, AP(access point) 등의 다양한 명칭으로 칭해질 수 있다.
이하 설명될 본 발명의 실시 예들은 일 예로 3GPP RAN(radio access network) 5G SI(Study Item)에서 논의되고 있는 에너지 효율 KPI(key performance indicators)를 달성하기 위한 기지국 및 단말의 동작에 적용될 수 있다. 3GPP의 3GPP RAN 5G SI에서 논의되고 있는 기술은 향후 단말 및 기지국 네트워크의 전력 효율성을 대폭 향상시킬 수 있는 에너지 효율적 동작과 관련된다. 또한 고주파수 대역에서 밀리미터 파(mmW) 동작 시 필수적인 Beamforming 전송 방식에 따른 전력 추가 소모 가능성을 해결하기 위해 해당 셀의 측정(measurement) 동작 및 Active 동작 시간을 감소시킬 수 있는 연구 또한 논의되고 있다. 또한 본 발명의 실시 예들에서 제안하는 기술들은 새로운 무선 접속 기술(New RAT : NR) 기반의 무선 통신 시스템에서 다수의 서비스들을 지원하는 경우, 페이징 동작을 효율적으로 구성하여 단말 및/또는 기지국에서 전력 효율을 향상시킬 수 있는 방안에 대한 것이다.
이하 본 명세서에서 사용되는 용어들을 간략히 정의하면, "페이징"은 무선 통신 시스템에서 송수신되는 페이징 신호, 페이징 동작을 통해 전송되는 페이징 메시지, 또는 그 페이징 동작으로 이해될 수 있다. "슬라이스(slice)"는 무선 통신 시스템에서 제공되는 서비스로 이해될 수 있다. 본 명세서에서 상기 슬라이스와 서비스는 설명의 편의상 혼용되어 사용될 것이나, 동일한/유사한 의미로 이해될 수 있다. 상기 서비스의 일 예로 3GPP의 3GPP RAN 5G SI에서 논의되고 있는 New RAT 기반의 서비스는 eMMB(enhanced mobile service), mMTC(massive machine type communication), URLLC(ultra reliable and low latency communications) 등이 있다. 상기 eMMB는 향상된 이동 광대역 서비스로서, 예컨대, UHD(ultra high definition) 서비스, 홀로그램 영상 서비스, 가상 현실 서비스 등과 같이 대용량 데이터 전송이 필요한 서비스가 될 수 있다. 상기 mMTC는 대규모 기기간(즉 다수의 단말들간) 통신 서비스로서 대규모 사물 인터넷(Internet of Things : IoT) 서비스 등이 될 수 있다. 그리고 상기 URLLC는 공장 자동화, 원격 수술, 자율형 차량 등과 같이 초고신뢰성 및 저지연 통신이 요구되는 서비스가 될 수 있다. 본 발명의 실시 예들이 적용될 수 있는 서비스는 상기 eMMB, mMTC, 그리고 URLLC에 한정되지 않고, 서로 다른 QoS들이 요구되는 다양한 서비스들이 될 수 있다. 그리고 이러한 다양한 서비스들은 예컨대, 5G 기반의 동일 시스템에서 제공될 수 있다. 그리고 "페이징 슬라이스(paging slice)"는 페이징이 전송되는 슬라이스(즉 서비스)이다. "교차 슬라이스(Cross-Slice)"는 단말에게 서비스 제공이 가능한 다수의 슬라이스들 중 페이징 전송을 위해 선택된 하나(또는 복수)의 슬라이스이다. "교차 슬라이스 페이징(Cross-Slice paging)"은 교차 슬라이스를 통해 전송되는 페이징을 의미한다.
그리고 상기 New RAT 기반의 eMMB, mMTC, 그리고 URLLC에서 요구되는 서비스별 서로 다른 QoS의 예시는 아래 <표 1>과 같다.
  eMBB mMTC URLLC
Data Rate Very high(e.g. peak rate 10 Gbps) Not much considered Not much considered
Latency Low Not much considered Very Low(e.g. 1 ms end-to-end)
Mobility 0km/h to 500km/h Not much considered Not much considered
Reliability Not much considered Not much considered Very High(e.g. Packet loss rate: as low as 1e-04)
Power Consumption Not much considered Very Low Not much considered
Connection Density High (e.g. 200-2500 UEs/km2) Very High (e.g.1M connections/km2) High(e.g. 10k sensor /10km2)
또한 상기 <표 1>의 예와 같이 동일 시스템에서 지원할 수 있는 서비스별 QoS 특성이 다르기 때문에 서비스별 전송 특성 또한 다르게 설계될 수 있다. 예를 들어 서비스별 주파수 대역(High/Low frequency), 주파수 폭(Wide/Narrow bandwidth), 전송주기(PHY Numerology (Subframe length, carrier spacing)) 등의 전송 특성이 서비스별 QoS 특성에 따라 다르게 설계될 수 있다. 다수의 서비스들을 지원하는 동일 시스템에서 다수의 서비스들(슬라이스들)을 지원할 수 있는 단말을 다중 슬라이스 능력(multi-slice capability)이 있는 단말(이하, "다중 슬라이스 가능 단말(multi-slice capable UE)" 또는 간략히 단말이라 칭하기로 한다.)이라 한다. 만약 상기 다중 슬라이스 가능 단말이 서비스 별로 독립적으로 전송되는 페이징에 대해 각각 독립적으로 수신 동작을 수행할 경우, 아이들 상태(즉 대기 상태)에 있는 다중 슬라이스 가능 단말은 전력 소모량이 크게 증가될 것이다.
따라서 본 발명의 실시 예들에서는 아이들 상태의 단말이 서비스 별로 페이징을 수신해야 하는 페이징 수신 부담을 줄이기 위해 아이들 상태의 단말이 슬라이스 별로 페이징을 수신하는 대신 단일 슬라이스(single slice)에 대해 페이징을 수신하여도 동작할 수 있는 방안을 제안한다. 상기 단일 슬라이스는 저전력 또는 저지연 슬라이스를 이용할 수 있다.
본 발명의 실시 예들은 다수의 서비스를 지원하는 무선 통신 시스템에서 다중 슬라이스 가능 단말의 아이들 상태 동작인 페이징 수신 동작을 슬라이스 별 수신이 아닌 Cross-Slice 기반 페이징 수신으로 설계하여 단말 전력 효율 향상 및 데이터 전송 지연이 최소한으로 유지하도록 제안된 것이다. 그리고 이러한 본 발명의 페이징 동작과 관련된 조건들은 예컨대 아래와 같다.
조건 1) 다수의 슬라이스들에 대한 페이징을 하나 또는 복수의 슬라이스들에 교차하여 cross-slice 페이징 동작함에 있어 송수신 절차 및 시간을 최소한으로 유지하되 셀 내 단말 전체에 대한 페이징 정보 전송은 지연 없이 수행되어야 한다.
조건 2) 개선된 cross-slice 페이징의 송수신 절차 및 시간이 최소한으로 되도록 페이징 동작 시 단말의 추가 동작까지 고려한 전력 소모는 이전 방법보다 전력 효율이 높아야 한다.
본 발명의 실시 예들에서 제안한 cross-slice 페이징을 위한 동작은 다음과 같은 4 단계를 통해 수행될 수 있다.
1 단계 : 단말 별 페이징 슬라이스를 설정한다.
2 단계 : cross-slice 페이징 수신을 위한 시스템 정보(system information : SI) 수신하고, cross-slice 페이징 기반으로 설계된 페이징 메시지를 수신한다.
3 단계 : 단말의 페이징 수신 이후 RRC_idle 상태에서 RRC_connected 상태로 전환하는 RACH 동작에서 슬라이스 별 RACH 혹은 early RACH로 동작한다.(여기서 상기 슬라이스 별 RACH, early RACH에 대한 설명은 후술하기로 한다.)
4 단계 : RRC_connected 상태로 전환시 단말의 슬라이스 자원을 전체 혹은 부분적으로 활성화시킨다.
상기한 1 단계 내지 4 단계의 동작을 통해, 다수의 서비스들을 지원하는 New RAT 통신 시스템의 단말의 아이들 상태에서 페이징 수신 동작은 슬라이스 별 페이징 수신 동작이 아닌 cross-slice 기반 페이징 수신 동작으로 수행되어 단말 전력 효율 향상이 기대될 수 있다.
이러한 본 발명의 실시 예에서 단말 전력 효율 향상은 다수의 슬라이스들로 독립적으로 수행하는 multi-slice 페이징 수신 대신 cross-slice 페이징 수신 동작을 수행함으로써 페이징 수신 대상의 무선 자원 개수(혹은 단말의 DRX 동작에서 on duration 시간, 주파수)를 감소하는 효과가 있다. 또한 단일 슬라이스 페이징 수신에서도 페이징 동작에서 고전력 슬라이스 대신 저전력 슬라이스로 페이징을 대신 수행할 수 있기 때문에 하나의 슬라이스에 대한 페이징 동작에 단말 대기 상태 전력 소모를 감소시킬 수 있다. 또한 슬라이스 별 할당된 RACH 자원을 cross-slice로 활용하여 RRC_idle 상태에서 RRC_connected 상태로 단말의 상태 전환 시 지연을 감소시킬 수 있어 단말 전력 효율 향상은 물론 지연 성능 향상도 동시에 기대될 수 있다.
본 발명의 실시 예들에서 상기 cross-slice 페이징을 위한 1 단계 내지 4 단계 방법의 구성 예를 설명하면, 다음과 같다.
1 단계 : 단말 별로 지원 가능한 슬라이스 및 해당 슬라이스의 에너지 효율 정보를 반영한 단말의 성능 피드백(capability feedback)을 기반으로, 단말의 이동성을 관리하는 네트워크 엔터티(일 예로 MME(Mobility Management Entity))는 페이징 슬라이스를 결정할 수 있다. 다른 예로 MME는 단말의 피드백 정보 대신에 단말의 가입 정보를 근거로 페이징 슬라이스를 결정할 수도 있다. 상기 가입 정보는 예컨대, HSS(Home Subscriber Server)로부터 제공될 수 있다. 그리고 기지국은 상기 MME가 결정한 페이징 슬라이스에 대한 정보를 전달 받아 단말에게 해당 페이징 슬라이스를 지시할 수 있다. 기지국은 상기 페이징 슬라이스의 설정을 위한 정보를 제어 시그널링을 통해 단말에게 제공할 수 있다.
2 단계 : 페이징 수신을 위해 시스템 정보(SI)는 모든 단말들이 수신하도록 방송되는 공통 SI와, cross-slice 페이징에 필요한 슬라이스에 해당되는 슬라이스 전용 SI를 포함한다. 상기 공통 SI는 공통 슬라이스(common slice)에 대한 정보와 상기 슬라이스 전용 SI에 대한 지시 정보 중 적어도 하나를 포함할 수 있다. 상기 슬라이스 전용 SI는 슬라이스(서비스) 별로 설정될 수 있다. 단말은 상기 페이징 수신을 위해 시스템 정보(SI)를 수신하여 cross-slice 페이징 기반으로 설계된 페이징 메시지를 수신할 수 있다. 페이징 슬라이스에서 페이징 수신 동작을 위해 상기 페이징 메시지에는 단말 ID와 함께 새로운 필드들이 포함될 수 있다. 상기 새로운 필드들은 예컨대, slice indicator, RACH, activation slice option에 대한 필드들 중 적어도 하나를 포함할 수 있다. 상기 새로운 필드들에 대한 구체적인 설명은 후술하기로 한다. 또한 본 발명의 실시 예에서 단말의 페이징 수신 오류 발생시 수행될 수 있는 연기/보완(deferring) 동작들의 예는 아래 (1) 내지 (3)과 같다.
(1) 단말 페이징 수신 없이 바로 sleep 상태로 전환하는 동작
(2) 페이징을 수신하는 time window (PF/PO: Paging Frame/Paging Occasion)을 확장하는 동작
(3) 페이징 슬라이스 확장 동작으로 페이징 슬라이스로 지정된 페이징 자원 이외의 후보 슬라이스(candidate slice)로 페이징을 수신하는 동작
상기 페이징 수신 오류 발생시 연기/보완(deferring) 동작에 대한 옵션 및 페이징 수신을 위한 time window 크기 및 후보 슬라이스 등에 대한 정보는 MME에 의해 설정될 수 있다. 그리고 이러한 설정 동작은 idle mobility로 단말의 기지국 간 이동을 고려하여 MME가 페이징 deferring 옵션 및 관련 파라미터를 결정하여 설정할 수 있으며, 기지국은 MME로부터 그 설정 정보를 전달 받아 단말의 RRC 설정 혹은 RRC 해제(release)시 단말에게 제공할 수 있다.
3 단계 : 페이징 수신 시 해당 단말에 트래픽 도착이 확인된 경우, 단말의 RACH 동작에서 가능한 옵션들의 예는 다음 (1) 내지 (4)와 같다.
(1) 공통 슬라이스 RACH: 슬라이스 의존성이 없는 공용 RACH 자원으로 RRC_Idle 상태에서 RRC_connected 상태로 천이하는 동작
(2) 슬라이스 전용 RACH : 페이징된 트래픽의 서비스에 기반하여 슬라이스 별 RACH 자원으로 RRC_Idle 상태에서 RRC_connected 상태로 천이하는 동작, 슬라이스 전용 RACH의 경우 단말은 모든 슬라이스들의 RACH 설정을 미리 알고 있어야 하므로 모든 서비스 별 SI를 수신해야 하는 부담이 있다.
(3) Cross-Slice RACH (페이징 슬라이스로 RACH 수행하는 경우) : 단말에 도착하는 페이징에 표시된 트래픽의 서비스와는 상관없이 페이징 슬라이스의 RACH 자원으로 RRC_Idle 상태에서 RRC_connected 상태로 천이하는 동작, 이 경우 페이징 슬라이스는 미리 결정되어 있으므로 단말은 페이징 수신 전에 해당 페이징 슬라이스를 미리 알 수 있다. 따라서 해당 페이징 슬라이스의 서비스 별 SI만 수신이 필요하므로 단말의 SI 수신 부담이 경감된다.
(4) Cross-Slice RACH (early slice 로 RACH 수행하는 경우): 단말에 도착하는 페이징에 표시된 트래픽의 서비스와는 상관없이 페이징 슬라이스의 RACH 자원으로 RRC_idle 상태에서 RRC_connected 상태로 천이하는 동작, 이 경우 단말은 임의 시점에서 가장 가까운 earliest RACH 자원을 활용하므로 모든 슬라이스의 RACH 설정을 미리 알고 있어야 한다. 따라서 단말이 모든 서비스 별 SI를 수신해야 하는 부담이 있지만, 임의 시점에서 가장 가까운 earliest RACH 자원을 활용하므로 RRC_idle 상태에서 RRC_connected 상태로 천이하는 동작의 지연이 감소하여 사용자 지연 QoS는 향상될 수 있다. 또한 Cross-Slice RACH 동작 수행 시에는 RRC_idle 상태에서 RRC_connected 상태로 천이 RRC 설정에서 단말은 해당 트래픽의 서비스 정보를 기지국에게 알려야 하므로 해당 RACH가 MO(Mobile Originated)/MT(Mobile Terminated) 인지 구별하는 정보와, 슬라이스(서비스) 정보를 기존 RACH 절차 중 message 3에 해당하는 connection request의 신규 필드(들)에 추가하여 Cross-Slice RACH 수행 시에도 해당 서비스로 바로 (기존 RACH 절차 중 message 4에 해당되는) RRC (재)설정을 수행하여 연결 상태 동작 시 데이터 전송 지연이 발생하지 않도록 동작할 수 있다.
4 단계 : RACH 절차를 수행한 후 단말이 RRC_connected 상태로 전환하는 동작이다. 4 단계의 동작은 단말의 슬라이스 자원을 활성화(activation) 시키는 옵션으로는 단말의 전체 슬라이스 모두 활성화하는 동작, 단말의 슬라이스들 중 일부 슬라이스를 활성화하되 단말로 도착하는 페이징에 표시된 트래픽의 서비스에 해당하는 슬라이스를 활성화하는 동작, 그리고 단말의 슬라이스들 중 일부 슬라이스를 활성화하되 단말로 도착하는 페이징에 표시된 트래픽의 서비스와는 상관없이 페이징 슬라이스를 활성화하는 동작 중 적어도 하나를 포함한다.
상기한 본 발명의 실시 예들에서는, 다중 슬라이스 가능 단말의 전력 절감을 위한 Cross-Slice 페이징 설정 및 동작 옵션에 다른 페이징 수신을 위한 시스템 정보의 수신 동작 및 RRC_Connected 상태로 슬라이스 RACH하는 동작과 슬라이스 활성화하는 동작을 예시한 것이다. 본 발명의 실시 예들에서 다중 슬라이스 가능 단말이 지원하는 서비스들(슬라이스들) 중에는 링크 용량(link capacity)이 높거나 지연이 작거나 등과 같이 보다 향상된 QoS 지원이 가능한 슬라이스가 존재할 수 있다. 그리고 저전력 소모(low energy consumption) 슬라이스는 다중 슬라이스 가능 단말이 지원하는 서비스들 중에서 상대적으로 낮은 QoS을 지원하지만, 그 전력 소모량이 적어 에너지 효율성 측면에서 유리하다.
이하 본 발명의 실시 예들에서 상기 cross-slice 페이징을 위한 1 단계 내지 4 단계 방법에 따른 동작들을 구체적으로 설명하기로 한다.
<1 단계 : cross-slice 페이징 설정 동작>
도 1는 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 cross-slice 페이징 설정 동작을 나타낸 도면이다. 도 1의 동작은 cross-slice 페이징 설정을 위해, 단말 성능에 대한 정보를 근거로 단말에게 페이징 슬라이스 지시를 설정하는 동작을 포함한다.
도 1을 참조하면, 101 단계에서 단말(10)은 기지국(30)에게 단말 슬라이싱 성능(UE slicing capability) 정보를 전송한다. 상기 정보는 예컨대, 슬라이스 별 에너지 효율을 고려한 단말 성능 정보를 기반으로 한다. 페이징 슬라이스는 단말 별로 설정될 수 있으며, 단말 별 지원 가능한 슬라이스 및 해당 슬라이스의 에너지 효율 정보를 반영한 성능 피드백(capability feedback)(즉 UE slicing capability 정보)가 단말(101)로부터 기지국(30)으로 전송된다. 그러면 기지국(30)으로부터 그 성능 피드백을 수신한 MME(50)은 103, 105 단계에서 단말(10)에 대한 페이징 슬라이스를 결정하고, 결정된 페이징 슬라이스에 대한 정보(이하, 페이징 슬라이스 정보)를 기지국(30)에게 전달한다. 그러면 107 단계에서 기지국(30)은 RRC 설정을 위한 제어 시그널링을 통해 상기 페이징 슬라이스 정보를 단말(10)에게 전송한다. 그리고 109 단계에서 기지국(30)은 단말(10)에게 데이터 트래픽을 전송한다. 또한 상기 페이징 슬라이스 정보는 111 단계와 같이 RRC 재설정 or 해제를 위한 제어 시그널링을 통해 단말(10)에게 전송될 수 있다.
이후 113 단계에서 단말(10)이 아이들 상태로 전환되면, 115, 117 단계에서 해당 단말(10)로 전송되는 페이징은 상기 페이징 슬라이스 정보를 이용하여 지시된 페이징 슬라이스에서 전송된다. 그리고 119 단계에서 단말(10)은 페이징 수신을 위해 계산된 PO(Paging Occasion)에서 페이징을 수신한다.
한편 본 실시 예에서 multi-slice 페이징 옵션을 표시하는 방법은 아래 1), 2)을 이용할 수 있다.
1) 슬라이스 독립적인(Independent) 페이징으로 기존 동작으로 각각 슬라이스 페이징을 독립적으로 전송하는 방법
2) Cross-Slice 페이징 방법으로 단말에 서비스 가능한 다수 슬라이스들 중 선택된 하나의 대표 슬라이스로 페이징 동작을 전송하는 방법
본 실시 예에서 상기 페이징 슬라이스 정보의 표시 방법은 cross-slice 페이징 방법으로 단말에게 서비스 가능한 다수 슬라이스들 중 선택된 하나의 대표 슬라이스를 단말에게 설정하는 방법이다.
아래 <표 2>는 페이징 슬라이스를 결정 규칙에 따른 슬라이스 우선 순위 일 예를 나타낸 것으로서, <표 2>의 예에서 단말 별 페이징 슬라이스 결정 규칙은 key performance 우선 순위에 따라 (1) 지연 최소화 슬라이스 선택 (2) 고용량 슬라이스 선택 (3) 저전력 슬라이스 선택 (4) 해당 TAU(Tracking Area Unit) 영역에서 페이징 Loading이 낮은 슬라이스 선택 (5) 해당 TAU영역에서 더 많은 무선자원을 확보한 (할당한) 슬라이스 선택 중 적어도 하나를 포함할 수 있다.
Figure PCTKR2016008862-appb-T000001
그리고 MME(50)가 페이징 슬라이스를 결정한 후 기지국(30)에게 전달하여 단말(10)에게 페이징 슬라이스 정보를 전송하는 방법으로는 아래 옵션 1), 옵션 2)의 방법을 이용할 수 있다.
옵션 1) 명시적(explicit) 페이징 슬라이스 표시 : 단말당 페이징 슬라이스를 명시적으로 표시하는 제어 시그널링 방법
옵션 2) 내재적(implicit) 페이징 슬라이스 규직(rule) 전송 : 단말당 페이징 슬라이스의 결정 규칙을 단말에게 제공하는 방법
상기 옵션 1의 방법은, RRC_connected 상태에서 기지국과 단말간 설정을 위한 RRC (재)설정 및/또는 RRC 해제와 같은 특정 단말을 제어하기 위한 제어 시그널링을 통해 전송하는 방법을 이용할 수 있다.
상기 옵션 2의 방법은, MIB나 SIBx 같은 시스템 정보를 통해 셀 내/혹은 TAU 내에/혹은 MME 내에 동일한 페이징 슬라이스 선택 규칙을 적용하는 방법을 이용할 수 있다.
상기 페이징 슬라이스 정보의 전송을 위한 다른 방법으로는 페이징 지시자를 이용하여 슬라이스 별 페이징 유무를 1차로 전송하고 여기에 실제 페이징 수행시에 전송할 상기 페이징 슬라이스 정보를 지시하는 방법을 이용할 수 있다.
<2 단계 : Cross-Slice 페이징 수신 동작>
도 2는 본 발명의 실시 예에 따라 다수의 서비스들을 지원하는 무선 통신 시스템에서 cross-slice 페이징 수신 동작을 나타낸 도면이다.
도 2를 참조하면, 201 단계에서 단말은 모든 단말들이 수신하도록 방송되는 공통 SI를 수신한다. 상기 공통 SI는 공통 슬라이스(common slice)에 대한 정보와 슬라이스 전용 SI에 대한 지시 정보 중 적어도 하나를 포함할 수 있다. 일 예로 상기 공통 SI 는 최소한의 정보를 수납하여 공통 제어 신호의 전송 부담을 감소 시킬 수 있다. 상기 공통 SI는 기존의 MIB에 포함된 다운 링크에 대한 정보, 예컨대 [Bandwidth, SFN, Scheduling Info] 이외에 슬라이스 전용 SI에 대한 지시 정보(slice dedicated SI Info), 예컨대 [Broadcast period, Radio Resource]를 추가로 전송하여 이어서 전송될 슬라이스 전용 SI의 수신 자원을 표시한다.
203 단계에서 상기 공통 SI를 수신한 단말은 상기 슬라이스 전용 SI에 대한 지시 정보를 근거로 슬라이스 전용 SI를 수신한다. 상기 슬라이스 전용 SI는 서비스 별로 다른 파라미터 설정을 각각 전송하여 슬라이스 전용 페이징 정보, 예컨대 [Paging period, Paging Frame/Paging occasion 계산시 필요한 Parameter, Slice Dedicated RACH resource 설정정보]를 포함한 전송을 수행할 수 있다.
이때 cross-slice 페이징 옵션에 따라 단말의 수신이 필요한 SI는 변경될 수 있다. 예를 들어 상기 공통 SI는 모든 단말이 수신해야 하고 슬라이스 전용 SI는 cross-slice 페이징에 필요한 슬라이스에 해당되는 SI만 수신하고, PO Time Window 확장 수신 동작 시 candidate 슬라이스로 페이징을 수신하는 동작의 경우 candidate 슬라이스와 관련된 SI도 수신할 수 있다.
205 단계에서 상기 슬라이스 전용 SI를 수신한 단말은 cross-slice 페이징에 해당되는 슬라이스에서 페이징 메시지를 수신한다. 그리고 상기 페이지 메시지의 페이로드의 필드들에 포함되는 정보는 아래 <표 3>과 같이 예컨대, 기존의 UE ID, 슬라이스 지시자, RACH 및 슬라이스 활성화에 대한 정보 중 적어도 하나를 포함할 수 있다.
Figure PCTKR2016008862-appb-T000002
그리고 아래 <표 4>는 상기 페이지 메시지의 페이로드의 필드들에서 옵션 값들에 따른 예컨대, 8 개의 동작 상태들을 예시한 것이다. 그 동작 상태들은 RACH 및 connected 상태 전환 동작의 가능한 일 실시 예들을 나타낸 것이다.
Option Slice Indicator RACH options Slice (De)activation options
1 X Common RACH All Slice Activation
2 X Common RACH Paging Slice activation only (Slice cross scheduling)
3 X Earliest RACH All Slice Activation
4 X Earliest RACH Paging Slice activation only (Slice cross scheduling)
5 O Slice Dedicated RACH Data arrival slice Activation only
6 O Slice Dedicated RACH Paging Slice activation only (Slice cross scheduling)
7 O Earliest RACH Data arrival slice Activation only
8 O Earliest RACH Paging Slice activation only (Slice cross scheduling)
한편 상기 205 단계에서 페이징 수신 오류 발생시 전술한 연기/보완(deferring) 동작들 중 적어도 하나가 수행될 수 있다.
도 3은 본 발명의 실시 예에 따라 단말에서 cross-slice 페이징 수신 오류 시 연기/보완(deferring) 동작의 일 예를 나타낸 도면이다.
301, 303 단계에서 MME(50)는 단말(10)에 대한 페이징 슬라이스를 결정하고, 그 페이징 슬라이스 정보를 기지국(30)에게 전달한다. 305 단계에서 기지국(30)은 RRC 재설정 혹은 해제를 위한 제어 시그널링을 통해 상기 페이징 슬라이스 정보를 단말(10)에게 전송한다. 이후 307 단계에서 단말(10)이 idle 상태로 전환되고, 309 단계에서 전송된 페이징이 311 단계에서 페이징 슬라이스 할당 실패되는 경우, 313 단계에서 상기 결정된 페이징 슬라이스에서 페이징은 전송되지 않는다. 이때 가능한 연기/보완(deferring) 동작의 옵션들의 예는 도 3의 1) 내지 3) 중 적어도 하나와 같으며, 만약 후보 슬라이스(candidate slice)로 페이징을 전송하는 경우, 단말은 315 단계에서 후보 슬라이스(candidate slice)를 통해 전송된 페이징을 수신할 수 있다.
<3 단계 : RRC_Idle 상태에서 RRC_connected 상태로 전환 동작(RACH)>
한편 다시 도 2의 설명으로 돌아가서, 207 단계에서 단말은 도 4의 401 단계 내지 405 단계의 동작과 같이 페이징 수신 이후 해당 단말에 페이징 도착 시 RACH 수행을 통해 RRC_Idle 상태에서 RRC_connected 상태로 전환 동작을 수행한다. 본 실시 예에서 페이징 수신 이후 RRC_Idle 상태에서 RRC_connected 상태로 전환하는 3 단계의 동작에서 페이징 수신 시 해당 단말에 트래픽 도착이 확인된 경우, RACH 동작의 옵션들(Common Slice RACH, Slice Dedicated RACH, Cross Slice RACH(Paging Slice 로 RACH 수행 또는 Early Slice 로 RACH 수행))과 동일하므로 구체적인 설명은 생략하기로 한다.
한편 Cross Slice RACH(Early Slice 로 RACH 수행)의 경우 earliest RACH 자원을 활용하므로 RRC_Idle 상태에서 RRC_connected 상태로 천이하는 동작의 지연이 감소하여 사용자 지연 QoS 향상을 기대할 수 있다.
도 5는 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 earliest RACH(cross-slice RACH)의 효과를 설명하기 위한 도면이다. 도 5를 참조하면, 참조 번호 501과 같이 단말은 슬라이스에 관계 없이 먼저 할당 받은 RACH 자원으로 RRC_connected 상태로 promotion 동작하여 지연 감소를 기대할 수 있다.
도 6은 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 earliest RACH 절차를 설명하기 위한 도면이다.
도 6을 참조하면, earliest RACH 절차의 601 단계에서 단말이 기지국으로 PRACH 프리앰블을 전송하고, 603 단계에서 기지국이 단말에게 PRACH 프리앰블에 대한 응답으로 Message 3의 전송을 위한 자원을 할당하고, 605 단계에서 단말이 할당된 자원을 이용하여 Message 3를 이용하여 연결 요청을 수행하고, 607 단계에서 기지국이 상기 연결 요청에 대한 응답으로 RRC 연결 설정을 수행한다.
도 6의 earliest RACH 절차에 따른 cross-slice RACH 동작 수행 시 RRC_idle 상태에서 RRC_connected 상태로 천이 RRC 설정에서 단말은 해당 트래픽의 서비스 정보를 기지국에게 알려야 한다. 이를 위해 본 실시 예에서는 해당 RACH가 MO/MT 인지 구별하는 정보와, 상기 earliest RACH 절차에서 Message 3에 해당하는 연결 요청(connection request)에 도착한 하향링크 데이터의 슬라이스 정보를 신규 필드로 추가하여 cross-slice RACH 수행 시에도 해당 서비스로 바로 (Message 4) RRC (재)설정을 수행하여 연결 상태 동작 시 데이터 전송 지연이 발생하지 않도록 하는 방안을 제안한다.
<4 단계 : RRC_connected 상태에서 서비스별 활성화/비활성화>
다시 도 2의 설명으로 돌아가서, 207 단계에서 단말은 RRC_connected 상태로 전환한 후, 단말의 슬라이스 자원을 활성화(activation) 시킨다. 슬라이스 자원을 활성화(activation) 시키는 옵션들의 예는 전술한 설명과 동일하다. 이때 활성화 또는 비활성화는 슬라이스 별로 수행될 수 있다.
아래 <표 5>는 본 발명의 실시 예에서 단말이 connected 상태로 동작 시 페이징 슬라이스만 활성화하고, 이후 다른 슬라이스 도착 정보에 대한 tagging 동작 옵션의 일 예를 나타낸 것이다.
Option Slice Activation Cross-slice scheduling
1 All Slice Activation Not needed
2 Paging Slice activation only Needed(if Paging slice ≠ Data slice)
3 Data arrival slice activation only Not needed(but activation need if DL traffic arrives in other slices)
본 실시 예에서 단말이 연결 상태로 동작 시 슬라이스 활성화에 따른 cross-slice scheduling 방법은 아래와 같다.
단말은 활성화된 슬라이스로 스케줄링 정보를 수신한다. 즉 단말은 활성화된 슬라이스에 대해서만 PDCCH 연속 수신하거나, 혹은 C-DRX 동작을 수행한다.
그리고 단말은 다른 슬라이스에 대해서는 수신 동작을 수행하지 않는다.
이 방법은 common/dedicated PDCCH 설계 이슈에 의존한다.
또한 단말은 비활성화된 슬라이스에 다운링크(DL) 트래픽 도착 시 활성화를 수행하며, 그 옵션들은 예컨대, 아래 옵션1) 내지 옵션3)과 같다.
옵션 1) RRC Reconfiguration ( ~100s ms)
옵션 2) New MAC CE ( ~10s ms)
옵션 3) PDCCH DCI new Field ( ~1s ms)
도 7은 본 발명의 실시 예에 따라 비활성화된 슬라이스에 DL 트래픽 도착 시 비활성화된 슬라이스를 활성화하기 위한 시그널링 절차의 일 예를 나타낸 것으로서, 도 7의 단말은 연결 상태에서 동작 시 일부 슬라이스를 활성화한 후 이후 비활성화된 슬라이스에 DL 트래픽 도착 시 활성화를 위한 절차를 나타낸 것이다.
도 7을 참조하면, 701 단계에서 단말은 페이징을 수신하고, 703 단계에서 RACH 절차를 수행한다. 이후 705 단계에서 단말은 슬라이스1에 해당하는 데이터 트래픽을 수신하고(이때 슬라이스2는 비활성화 상태임을 가정함) 707 단계에서 슬라이스2에 DL 트래픽이 도착한 경우, 709 단계에서 상기 옵션 1 내지 옵션 3 중 적어도 하나의 방법을 이용하여 슬라이스2는 활성화된다. 이후 711 단계에서 단말은 활성화된 슬라이스2에서 DL 트래픽을 수신한다.
이하 다수의 서비스들을 지원하는 본 발명의 무선 통신 시스템에서 서비스 별(슬라이스 별) 페이징의 수신을 위한 새로운 PF와 PO를 설정하는 본 발명의 실시 예를 설명하기로 한다. 일반적인 3GPP 기반의 통신 시스템에서 상기 PF는 페이징을 수신하기 위해 단말에게 할당된 프레임이고, 상기 PO는 상기 PF를 구성하는 다수의 서브프레임들 중에서 페이징을 수신하기 위해 상기 단말에게 할당된 서브프레임 구간이다. 단말은 상기 PF와 PO를 만족하는 서브프레임에서 페이징을 수신할 수 있다. 상기 PF와 PO를 계산하기 위한 수학식은 관련 3GPP 규격을 참조할 수 있다.
본 발명의 실시 예에서는 서비스 별(슬라이스 별) 페이징의 수신을 위한 새로운 PF와 PO 설정 방법을 제안한다.
이를 위해 본 실시 예에서는 먼저 서비스 별 페이징 주기를 설정하는 두 가지 방법을 제안한다.
방법 1: 페이징 주기 Tc 를 서비스 별로 (QoS 지연 반영) 별도 운용, 기존 시스템에서는 셀 특정 페이징(Cell Specific Paging) 주기를 단일로 운용하였으나(Tc 전송은 SIB2: RadioResourceConfigCommonSIB), 본 실시 예에서는 페이징 주기 Tc를 서비스 별로 다수(Tc1, Tc2, Tc3,...etc.) 운용한다. 이 경우 SIB로 전송하는 Paging 주기 및 Tc, PF/PO 계산식에 활용되는 nB 관련 규격은 상기 방법 1에 따라 변경될 수 있다. 여기서 상기 "nB"는 paging cycle 이내에 PF 및  PO의 빈도를 조절하는 parameter이며, 관련 규격은 N = Number of paging frames per paging cycle = min(T, nB), Ns = number of paging subframes in a radio frame used for paging = max (1,nB/T)와 같이 규정되어 있다.
방법 2: 서비스 별 페이징 주기 Tc 를 배수(예컨대, 정수 배)로 운용하여 Tx/Rx duration을 최소화함, 서비스 별 페이징 주기를 Tc1, Tc2, Tc3 이라 하면, 이 경우 QoS 지연 고려 PF/PO를 자유롭게 설정할 수 있다.이러한 서비스 별 페이징 주기를 e.g. Tc2 = X Tc1, Tc3 = Y Tc1와 같이, 배수로 운용하여 DTX를 최대화할 수 있다.
도 8은 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 서비스 별 페이징 주기를 운용하는 방법의 일 예를 나타낸 도면이다. 도 8을 참조하면, 참조 번호 801과 같이 서비스 별 페이징 주기가 다르게 설정되며, 배수로 운용된 예를 나타낸 것이다.
본 실시 예에 의하면, 기지국의 페이징 전송 동작과 관련하여, 서비스 별 페이징 PF/PO를 전송을 동기화하여 기지국 활성화(전송) 시간을 최소화할 수 있다. 단말의 페이징 수신 동작과 관련하여, 상기 서비스 별 페이징 PF/PO 를 동기화하여 단말의 수신(활성화) 시간을 최소화할 수 있다.
또한 본 발명의 실시 예에서는 서비스 별 PF와 PO 설정을 위해 DRX offset을 제어하는 방법을 제안한다.
도 9는 본 발명의 실시 예에 따른 다수의 서비스들을 지원하는 무선 통신 시스템에서 PF/PO 설정을 위해 서비스별 DRX offset을 제어하는 방법의 일 예를 나타낸 도면이다.
도 9를 참조하면, 901, 903 단계에서 기지국(예컨대, NR 셀)(31)은 서비스 별 페이징 주기를 설정하고, 서비스 별 DRX offset 동기와 페이징 연기/보완(deferring) 규칙에 대한 정보를 포함하는 DRX 설정 정보를 단말(10)에게 전송한다. 905 단계에서 단말(10)이 아이들 상태로 전환되고, 907 단계에서 단말 아이들 mobility가 발생된다. 이후 909, 911 단계에서 서비스 별 페이징이 DRX offset 동기화를 통해 집성(aggregation)되어 전송되며, 913, 915 단계에서 단말은 그 집성된 페이징을 수신하여 RACH 절차를 수행한다. 도 9의 방법에서 MME(50)는 서비스 별 DRX를 설정하며, 단말의 아이들 상태에서 단말과 기지국은 활성화 기간을 최소화할 수 있다. 하향링크에서 DRX Offset 동기가 이루어지고, 단말 내 서비스 별 DRX Offset 동기가 이루어진다. 그리고 다수의 단말들 간 DRX offset 동기가 이루어진다. 또한 상향링크에서 RACH deferring 전송이 있으며, 단말 내 서비스 별 RACH 집성(aggregation)이 이루어진다.
또한 본 발명의 실시 예에서는 SIB2를 통해 페이징 주기 및 PF/PO 설정 규칙 전송을 위한 방법을 제안한다. 본 실시 예에서는 서비스 별 페이징 주기가 다르게 설정되고, PF/PO 그룹이 설정된다.
일 예로 동일 서비스 별로 동일한 페이징 규칙이 적용된다. 이 경우 동일 서비스를 이용하는 단말들은 페이징 주기가 동일 하므로 도 10의 (a), (b)와 같이 동일한 PF/PO 그룹으로 선택하여 전력 효율을 향상시킬 수 있다. 또한 본 실시 예에서는 SIB2를 통해 페이징 주기 및 PF/PO 설정 규칙(일 예로, nB parameter)을 전송한다. SIB2에서 설정하는 페이징 주기 및 PF/PO 그룹 설정 시, 동일 서비스를 이용하는 단말들은 동일 PF/PO 그룹이면 전력 효율을 향상 시킬 수 있다.
또한 본 발명의 실시 예에서는 SIB2를 이용하지 않고(즉 페이지 지시자 탑재 SI기반 SIB2 수신 동작 생략 가능), 상기 페이지 지시자를 통해 페이징 주기(PF/PO) 정보를 제공하는 방법을 제안한다. 기지국은 도 11의 참조 번호 1101에서 동일한 서비스에 페이징을 수신하는 단말들을 그룹핑하여 동일한 페이징 지시자 그룹으로 동작하는 방법을 제안한다. 기지국의 경우 서로 다른 페이징 지시자에 해당되는 각 PF/PO 그룹에 대해 1103, 1105 단계에서 페이징을 전송하고, 이외의 PF/PO 그룹에 대해서는 페이징을 전송하지 않는다. 단말은 페이징 지시자에 해당되는 PF/PO 그룹을 수신하고, 이외의 단말은 슬립 상태로 동작하여 단말 전력 절감을 기대할 수 있다..
도 12는 본 발명의 실시 예에 따른 장치 구성을 나타낸 도면으로서, 도 12의 장치는 상기한 단말(10), 기지국(30), 및 MME(50)에 적용될 수 있다.
도 12의 장치 구성은 제어기(1201) 및 통신 인터페이스(1203)를 포함하며, 제어기(1201)는 도 1 내지 도 11에서 설명한 방식에 따라 페이징 슬라이스를 통해 페이징의 송수신이 수행되도록 장치 전반의 동작과 관련 시그널링을 제어하고, 서비스 별 페이징의 수신을 위한 새로운 PF와 PO 설정을 위한 동작을 제어한다. 그리고 상기 통신 인터페이스(1203)는 다른 네트워크 엔터티와의 데이터 통신을 위한 것이며, 송신기, 수신기 또는 송수신기 등과 같은 유무선 통신을 위한 적어도 하나의 통신 인터페이스로 구현될 수 있다.
일 구성 예로 본 발명의 실시 예에 따른 기지국은, 다른 네트워크 엔터티와 통신을 위한 통신 인터페이스(1203)과, 단말에게 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 전송하고, 상기 단말에게 상기 페이징 슬라이스를 통해 상기 페이징을 전송하는 것을 제어하는 제어기(1201)를 포함하여 구현될 수 있다. 일 구성 예로 본 발명의 실시 예에 따른 단말은, 다른 네트워크 엔터티와 통신을 위한 통신 인터페이스(1203)과, 기지국으로부터 상기 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 수신하고, 상기 페이징 슬라이스를 통해 상기 페이징을 수신하는 것을 제어하는 제어기를 포함하는 제어기를 포함하여 구현될 수 있다.

Claims (15)

  1. 다수의 서비스들을 지원하는 무선 통신 시스템에서 기지국이 페이징을 전송하는 방법에 있어서,
    단말에게 상기 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 전송하는 과정; 및
    상기 단말에게 상기 페이징 슬라이스를 통해 상기 페이징을 전송하는 과정을 포함하는 페이징 전송 방법.
  2. 제 1 항에 있어서,
    상기 페이징 슬라이스는 상기 다수의 슬라이스들 중에서 상기 페이징 전송을 위해 선택된 교차 슬라이스를 포함하며,
    상기 교차 슬라이스를 위한 전용 시스템 정보를 통해 상기 페이징 슬라이스에 대한 정보가 제공되는 페이징 전송 방법.
  3. 제 1 항에 있어서,
    상기 다수의 서비스들은 동일한 시스템에서 제공되고 각각 요구되는 QoS가 상이한 페이징 전송 방법.
  4. 제 1 항에 있어서,
    상기 페이징을 전달하는 메시지는 단말 식별자와 함께 슬라이스 식별자, RACH 관련 정보, 활성 슬라이스에 대한 정보 중 적어도 하나를 포함하며,
    상기 RACH 관련 정보는 상기 페이징 슬라이스의 RACH 자원, 슬라이스별 RACH 자원, 공용 RACH 자원, earliest RACH 자원 중 하나를 이용하여 RACH를 수행하는 RACH 옵션 정보를 포함하는 페이징 전송 방법.
  5. 제 1 항에 있어서,
    상기 단말로부터 상기 페이징 슬라이스의 결정을 위해 요구되는 단말 능력 정보를 수신하는 과정을 더 포함하며,
    상기 페이징 슬라이스에 대한 정보는 상기 단말의 이동성을 관리하는 네트워크 엔터티에 의해 결정되는 페이징 전송 방법.
  6. 다수의 서비스들을 지원하는 무선 통신 시스템에서 기지국에 있어서,
    다른 네트워크 엔터티와 통신을 위한 통신 인터페이스; 및
    단말에게 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 전송하고, 상기 단말에게 상기 페이징 슬라이스를 통해 상기 페이징을 전송하는 것을 제어하는 제어기를 포함하는 기지국.
  7. 제 2 항 내지 제 5 항의 방법 중 어느 한 항의 방법에 따라 동작하도록 적용된 제 6 항의 기지국.
  8. 다수의 서비스들을 지원하는 무선 통신 시스템에서 단말이 페이징을 수신하는 방법에 있어서,
    기지국으로부터 상기 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 수신하는 과정; 및
    상기 페이징 슬라이스를 통해 상기 페이징을 수신하는 과정을 포함하는 페이징 수신 방법.
  9. 제 8 항에 있어서,
    상기 페이징 슬라이스는 상기 다수의 슬라이스들 중에서 상기 페이징 전송을 위해 선택된 교차 슬라이스를 포함하는 페이징 수신 방법.
  10. 제 9 항에 있어서,
    상기 교차 슬라이스를 위한 전용 시스템 정보를 통해 상기 페이징 슬라이스에 대한 정보가 제공되는 페이징 수신 방법.
  11. 제 8 항에 있어서,
    상기 페이징을 전달하는 메시지는 단말 식별자와 함께 슬라이스 식별자, RACH 관련 정보, 활성 슬라이스에 대한 정보 중 적어도 하나를 포함하는 페이징 수신 방법.
  12. 제 11 항에 있어서,
    상기 RACH 관련 정보는 상기 페이징 슬라이스의 RACH 자원, 슬라이스별 RACH 자원, 공용 RACH 자원, earliest RACH 자원 중 하나를 이용하여 RACH를 수행하는 RACH 옵션 정보를 포함하는 페이징 수신 방법.
  13. 제 11 항에 있어서,
    상기 페이징 슬라이스의 결정을 위해 요구되는 단말 능력 정보를 전송하는 과정을 더 포함하며, 상기 페이징 슬라이스에 대한 정보는 상기 단말 능력 정보를 근거로 상기 단말의 이동성을 관리하는 네트워크 엔터티에 의해 결정되는 페이징 수신 방법.
  14. 다수의 서비스들을 지원하는 무선 통신 시스템에서 단말에 있어서,
    다른 네트워크 엔터티와 통신을 위한 통신 인터페이스; 및
    기지국으로부터 상기 페이징이 전송되는 서비스에 해당하는 페이징 슬라이스에 대한 정보를 수신하고, 상기 페이징 슬라이스를 통해 상기 페이징을 수신하는 것을 제어하는 제어기를 포함하는 제어기를 포함하는 단말.
  15. 제 9 항 내지 제 13 항의 방법 중 어느 한 항의 방법에 따라 동작하도록 적용된 제 14 항의 단말.
PCT/KR2016/008862 2015-08-21 2016-08-11 무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치 WO2017034194A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/754,109 US10659993B2 (en) 2015-08-21 2016-08-11 Method and apparatus for transmitting or receiving paging in wireless communication system
EP16839483.1A EP3340703B1 (en) 2015-08-21 2016-08-11 Method and apparatus for transmitting or receiving paging in wireless communication system
AU2016312707A AU2016312707B2 (en) 2015-08-21 2016-08-11 Method and apparatus for transmitting or receiving paging in wireless communication system
CN201680048712.8A CN107925985B (zh) 2015-08-21 2016-08-11 用于在无线通信系统中发送或接收寻呼的方法和装置
US16/876,764 US11109274B2 (en) 2015-08-21 2020-05-18 Method and apparatus for transmitting or receiving paging in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562208198P 2015-08-21 2015-08-21
US62/208,198 2015-08-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/754,109 A-371-Of-International US10659993B2 (en) 2015-08-21 2016-08-11 Method and apparatus for transmitting or receiving paging in wireless communication system
US16/876,764 Continuation US11109274B2 (en) 2015-08-21 2020-05-18 Method and apparatus for transmitting or receiving paging in wireless communication system

Publications (1)

Publication Number Publication Date
WO2017034194A1 true WO2017034194A1 (ko) 2017-03-02

Family

ID=58100216

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/008862 WO2017034194A1 (ko) 2015-08-21 2016-08-11 무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치
PCT/KR2016/009212 WO2017034247A1 (ko) 2015-08-21 2016-08-19 유연한 프레임 구조 기반 셀룰라 통신 방법 및 그 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009212 WO2017034247A1 (ko) 2015-08-21 2016-08-19 유연한 프레임 구조 기반 셀룰라 통신 방법 및 그 장치

Country Status (6)

Country Link
US (3) US10659993B2 (ko)
EP (2) EP3340703B1 (ko)
KR (3) KR102513274B1 (ko)
CN (2) CN107925985B (ko)
AU (1) AU2016312707B2 (ko)
WO (2) WO2017034194A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166254A1 (zh) * 2017-03-17 2018-09-20 中国信息通信研究院 占用业务资源指示信道指示方法、装置和存储介质
WO2018171532A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and method for multiplexing traffic
CN110999437A (zh) * 2017-08-07 2020-04-10 上海诺基亚贝尔股份有限公司 用于无线网络的特定于网络切片的寻呼
CN111787619A (zh) * 2017-11-14 2020-10-16 Oppo广东移动通信有限公司 无线通信方法和设备
CN111901842A (zh) * 2017-10-26 2020-11-06 Oppo广东移动通信有限公司 无线通信方法和设备

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513274B1 (ko) 2015-08-21 2023-03-24 삼성전자주식회사 무선 통신 시스템에서 복합 재전송을 수행하는 방법 및 장치
CN108476499B (zh) * 2016-01-19 2022-09-23 诺基亚通信公司 无线网络中相同链路方向的子帧部分之间的保护时段
US11102675B2 (en) * 2016-02-03 2021-08-24 Sony Corporation Wireless communication apparatus, communication method, computer program, and wireless communication system
US10979998B2 (en) * 2016-02-05 2021-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, communication device and methods performed therein
US10673579B2 (en) * 2016-03-03 2020-06-02 Lg Electronics Inc. Method and apparatus for transreceiving wireless signal in wireless communication system based on downlink scheduling information including different time unit types
KR102078189B1 (ko) * 2016-03-11 2020-02-20 주식회사 케이티 무선 액세스 망 슬라이싱 제어 장치와 그 장치가 무선 베어러 전송을 제어하는 방법
US10057787B2 (en) * 2016-04-06 2018-08-21 Futurewei Technologies, Inc. System and method for millimeter wave communications
WO2017188733A1 (en) 2016-04-26 2017-11-02 Lg Electronics Inc. Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
US10834554B2 (en) * 2016-05-24 2020-11-10 Blackberry Limited Customization of device configuration settings
DK3445093T3 (da) * 2016-07-11 2021-04-12 Guangdong Oppo Mobile Telecommunications Corp Ltd Informationstransmissionsfremgangsmåde og -anordning (dedikeret informationstransmission baseret på gyldighed af planlægningsinformation)
CN107634924B (zh) * 2016-07-18 2020-08-11 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
US10470149B2 (en) * 2016-07-27 2019-11-05 Lg Electronics Inc. Method and apparatus for performing MM attach and service request procedure for network slice based new radio access technology in wireless communication system
JP6855701B2 (ja) * 2016-08-10 2021-04-07 ソニー株式会社 通信装置、通信方法及び記録媒体
WO2018052349A1 (en) * 2016-09-15 2018-03-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for autonomous device selection of transmission resources
CN108024360B (zh) * 2016-11-04 2023-11-21 华为技术有限公司 免授权传输的方法、终端和网络设备
CA3041946C (en) * 2016-11-04 2023-03-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for radio link monitoring
CN108307335B (zh) * 2017-01-13 2022-10-28 中兴通讯股份有限公司 一种数据传输方法、装置及系统
KR102454598B1 (ko) * 2017-02-02 2022-10-17 아이피엘에이 홀딩스 인크. 스위핑된 다운링크 빔들에서 페이징 블록들의 전송을 위한 장치들
US10306590B2 (en) 2017-02-21 2019-05-28 Qualcomm Incorporated Paging for mmW shared radio frequency spectrum bands
US11737014B2 (en) * 2017-03-01 2023-08-22 Huawei Technologies Co., Ltd. Service processing method and device
US10764785B2 (en) * 2017-03-07 2020-09-01 Htc Corporation Device and method of handling network slice information
KR102449701B1 (ko) * 2017-03-21 2022-09-30 삼성전자 주식회사 직교 주파수 분할 다중 접속 시스템에서 주파수 도약이 가능한 다중-뉴머롤로지 데이터 송수신 방법 및 장치
EP3609253B1 (en) * 2017-05-06 2022-03-09 LG Electronics Inc. Method for s-tti operation of terminal in wireless communication system and terminal using said method
US10925094B2 (en) * 2017-05-12 2021-02-16 Qualcomm Incorporated Scheduling request techniques in wireless transmissions
CN109246410B (zh) * 2017-05-31 2021-04-02 江苏慧光电子科技有限公司 全息影像的成像方法和数据生成方法及装置
WO2018219352A1 (en) * 2017-06-02 2018-12-06 Fg Innovation Ip Company Limited Methods, devices, and systems for service-driven mobility management
EP3416450A1 (en) * 2017-06-14 2018-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Joint resource pools for uplink communications
US10750476B2 (en) 2017-07-11 2020-08-18 Qualcomm Incorporated Synchronization signal transmission for mobility
WO2019028838A1 (en) * 2017-08-11 2019-02-14 Nokia Solutions And Networks Oy NETWORK TRENCH-SPECIFIC PAGING CYCLES FOR WIRELESS NETWORKS
CN109150592B (zh) * 2018-07-28 2021-12-28 华南理工大学 Lte-d2d无线专网的系统
US11317473B2 (en) 2018-08-03 2022-04-26 Apple Inc. Device-capability-based and standalone paging in new radio unlicensed band
US10757700B2 (en) 2018-10-07 2020-08-25 At&T Intellectual Property I, L.P. Frame structure coordination in wireless communication systems with integrated access and backhaul links in advanced networks
WO2020093336A1 (en) * 2018-11-08 2020-05-14 Nec Corporation Method and devices for hybrid automatic repeat request
US10560918B1 (en) * 2018-11-16 2020-02-11 Verizon Patent And Licensing Inc. Systems and methods for a network paging policy based on device mobility category
CN113170412A (zh) * 2018-11-21 2021-07-23 索尼集团公司 基于传播信道特性延迟网络中用户设备寻呼操作的系统、方法和计算机程序产品
FR3089376A1 (fr) * 2018-11-29 2020-06-05 Orange Activation ou désactivation d’un sous-ensemble virtuel d’un réseau dédié à un service pour un terminal
JP7337101B2 (ja) * 2019-01-10 2023-09-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法
US20220116156A1 (en) * 2019-01-10 2022-04-14 Ntt Docomo, Inc. User terminal and radio communication method
US20220103310A1 (en) * 2019-01-10 2022-03-31 Ntt Docomo, Inc. User terminal and radio communication method
CN111435880B (zh) * 2019-01-11 2021-07-20 华为技术有限公司 一种能力配置方法及装置
WO2020144015A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission presence detection
CN110149646B (zh) * 2019-04-10 2022-04-15 中国电力科学研究院有限公司 一种基于时延和吞吐量的智能电网资源管理方法及系统
CN112055326B (zh) * 2019-06-05 2022-04-29 华为技术有限公司 一种车联网的数据发送方法及装置
CN112152760B (zh) * 2019-06-27 2022-03-29 华为技术有限公司 一种psfch的发送方法及装置
US11197249B2 (en) * 2019-07-29 2021-12-07 Qualcomm Incorporated Transmit-power control mode selection
CN111836318B (zh) * 2019-08-21 2021-12-03 维沃移动通信有限公司 链路失败处理的方法和通信设备
KR20210037353A (ko) 2019-09-27 2021-04-06 삼성전자주식회사 페이징 메시지를 수신하는 전자 장치 및 전자 장치의 동작 방법
CN115052369A (zh) * 2019-10-29 2022-09-13 北京小米移动软件有限公司 连接建立方法及装置、基站、用户设备和核心网设备
US11825416B2 (en) * 2019-11-25 2023-11-21 Qualcomm Incorporated Skipping downlink frequency hops in unlicensed frequency band
US11026149B1 (en) * 2020-01-31 2021-06-01 Dish Wireless Llc Systems and methods for reducing slice access failures
US20230262752A1 (en) * 2020-07-28 2023-08-17 Beijing Xiaomi Mobile Software Co., Ltd. Method for wireless communication, terminal, base station, communication device, and storage medium
CN115997417A (zh) * 2020-08-05 2023-04-21 谷歌有限责任公司 替代无线电接入技术或资源的可用性检查
US20220132508A1 (en) * 2020-10-23 2022-04-28 At&T Intellectual Property I, L.P. Resource coordination for multiple parent integrated access and backhaul
US11729698B1 (en) 2021-08-04 2023-08-15 T-Mobile Innovations Llc Wireless communication network access control based on wireless network slice usage
WO2023043850A2 (en) * 2021-09-19 2023-03-23 Google Inc. User equipment slicing assistance information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070095680A (ko) * 2006-03-22 2007-10-01 에스케이 텔레콤주식회사 네이버 리스트를 이용하여 이동통신 단말기에 페이징서비스를 제공하는 시스템 및 방법
US20080268878A1 (en) * 2007-04-26 2008-10-30 Interdigital Technology Corporation Method and apparatus of measurement mechanism and efficient paging and broadcasting scheme implementation in mbms dedicated cell of lte systems
KR20110021648A (ko) * 2009-08-26 2011-03-04 한국전자통신연구원 펨토셀을 지원하는 통신 시스템에서의 페이징 서비스 제공 방법
KR20110021174A (ko) * 2009-08-25 2011-03-04 한국전자통신연구원 광대역 무선 통신 시스템에서 페이징 방법
WO2015016546A1 (ko) * 2013-07-29 2015-02-05 엘지전자 주식회사 Ims 서비스를 위한 페이징 방법 및 장치

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159235B2 (en) * 2000-01-28 2007-01-02 Sedna Patent Services, Llc Method and apparatus for content distribution via non-homogeneous access networks
US8233431B2 (en) * 2004-08-13 2012-07-31 Nokia Corporation WCDMA uplink HARQ operation during the reconfiguration of the TTI length
US8644292B2 (en) * 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
KR101208133B1 (ko) * 2006-04-26 2012-12-04 한국전자통신연구원 이동 통신 시스템에서의 페이징 정보 전송 방법
JP4703513B2 (ja) * 2006-08-22 2011-06-15 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される無線基地局及び方法
EP2130325B1 (en) 2007-04-05 2017-07-19 Telefonaktiebolaget LM Ericsson (publ) Facilitation of a multimedia broadcast/multicast service mbms session in a radio access network
WO2008155764A2 (en) * 2007-06-18 2008-12-24 Duolink Ltd. Wireless network architecture and method for base station utilization
US8295861B2 (en) * 2008-01-09 2012-10-23 Research In Motion Limited Apparatus, and associated method, for paging a mobile station
US8743823B2 (en) * 2009-02-12 2014-06-03 Qualcomm Incorporated Transmission with collision detection and mitigation for wireless communication
US20110053617A1 (en) 2009-08-26 2011-03-03 Electronics And Telecommunications Research Institute Paging method in communication system
US8559343B2 (en) 2009-12-23 2013-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Flexible subframes
KR101094013B1 (ko) 2009-12-30 2011-12-15 주식회사 팬택 사용자 단말기 및 그의 무선자원을 이용한 프레임 송수신 방법, 그리고, 기지국의 무선자원을 이용한 프레임 전송 방법
US8897818B2 (en) * 2010-11-11 2014-11-25 Blackberry Limited System and method for reducing energy consumption of mobile devices using early paging indicator
KR20120111248A (ko) * 2011-03-31 2012-10-10 주식회사 팬택 이종 무선네트워크 시스템에서 페이징 제어장치 및 방법
US9510177B2 (en) 2011-06-10 2016-11-29 Interdigital Patent Holdings, Inc. Method and apparatus for performing neighbor discovery
EP2735204A1 (en) * 2011-07-21 2014-05-28 BlackBerry Limited Dynamic cyclic prefix mode for uplink radio resource management
US9537633B2 (en) * 2011-07-29 2017-01-03 Qualcomm Incorporated Method and apparatus for aggregating carriers of multiple radio access technologies
US20140342747A1 (en) 2012-01-18 2014-11-20 Lg Electronics Inc. Device-to-device communication method and a device therefor
US9787438B2 (en) * 2012-04-27 2017-10-10 Lg Electronics Inc. TTI bundling method in wireless access systems and apparatus for same
CN104584670B (zh) 2012-08-23 2019-04-19 交互数字专利控股公司 用于执行装置到装置发现的方法和设备
KR102189629B1 (ko) 2012-09-05 2020-12-11 삼성전자주식회사 비대칭형 멀티 캐리어 통신 네트워크 환경에서 하이브리드 자동 반복 요구 동작을 수행하는 방법 및 시스템
US9008049B2 (en) * 2012-09-11 2015-04-14 Qualcomm Incorporated Forward link frame generation in a machine-to-machine (M2M) wireless wide area network (WAN)
CN103874170A (zh) * 2012-12-10 2014-06-18 中兴通讯股份有限公司 一种用户设备及利用扩展寻呼周期进行寻呼的方法和系统
EP2946496A4 (en) 2013-01-17 2016-09-28 Intel Ip Corp DYNAMIC CONFIGURATION OF UPLINK (UL) AND DOWN (DL) FRAME RESOURCES FOR TIME-DIVISION DUPLEX TRANSMISSION (TDD)
TW201442548A (zh) * 2013-03-14 2014-11-01 Interdigital Patent Holdings 在機會型多rat聚合系統中賦能直接鏈路設置的方法及裝置
KR102046111B1 (ko) 2013-03-29 2019-11-18 삼성전자주식회사 장치 간 통신 방법 및 장치
US9756609B2 (en) 2013-04-01 2017-09-05 Lg Electronics Inc. Multimedia broadcast/multicast service method and apparatus for device-to-device (D2D) communication in wireless communication system
EP2806670A1 (en) * 2013-05-21 2014-11-26 Alcatel Lucent Method of device discovery for device-to-device communication in a telecommunication network, user equipment device and computer program product
CN104349421B (zh) * 2013-08-08 2020-03-17 中兴通讯股份有限公司 设备发现方法和用户设备、网络侧设备
US9584649B2 (en) * 2013-12-17 2017-02-28 Electronics And Telecommunications Research Institute Method and apparatus for accessing base station by service
US20150223169A1 (en) * 2014-02-06 2015-08-06 Nokia Corporation Method, apparatus, and computer program product for initial indication of block allocation within page for wireless networks
US9769789B2 (en) * 2014-08-22 2017-09-19 Qualcomm Incorporated Techniques for transmitting and receiving paging messages over an unlicensed radio frequency spectrum band
US20160255527A1 (en) * 2015-02-26 2016-09-01 Qualcomm Incorporated Gap scheduling for single radio voice call continuity
WO2016141989A1 (en) * 2015-03-12 2016-09-15 Huawei Technologies Co., Ltd. Adaptation of subcarrier frequency spacing based on energy efficiency indicator
US9843923B2 (en) * 2015-07-08 2017-12-12 At&T Intellectual Property I, L.P. Adaptive group paging for a communication network
KR102513274B1 (ko) 2015-08-21 2023-03-24 삼성전자주식회사 무선 통신 시스템에서 복합 재전송을 수행하는 방법 및 장치
EP4021032A1 (en) * 2015-11-19 2022-06-29 SK Telecom Co., Ltd. Method and apparatus for selecting core network in mobile communication system
US10791562B2 (en) * 2017-01-05 2020-09-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070095680A (ko) * 2006-03-22 2007-10-01 에스케이 텔레콤주식회사 네이버 리스트를 이용하여 이동통신 단말기에 페이징서비스를 제공하는 시스템 및 방법
US20080268878A1 (en) * 2007-04-26 2008-10-30 Interdigital Technology Corporation Method and apparatus of measurement mechanism and efficient paging and broadcasting scheme implementation in mbms dedicated cell of lte systems
KR20110021174A (ko) * 2009-08-25 2011-03-04 한국전자통신연구원 광대역 무선 통신 시스템에서 페이징 방법
KR20110021648A (ko) * 2009-08-26 2011-03-04 한국전자통신연구원 펨토셀을 지원하는 통신 시스템에서의 페이징 서비스 제공 방법
WO2015016546A1 (ko) * 2013-07-29 2015-02-05 엘지전자 주식회사 Ims 서비스를 위한 페이징 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340703A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903971B2 (en) 2017-03-17 2021-01-26 China Academy Of Information And Communications Technology System and method for indicating occupation of service resources via an indication channel
WO2018166254A1 (zh) * 2017-03-17 2018-09-20 中国信息通信研究院 占用业务资源指示信道指示方法、装置和存储介质
WO2018171532A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and method for multiplexing traffic
US11115257B2 (en) 2017-03-23 2021-09-07 Huawei Technologies Co., Ltd. System and method for multiplexing traffic
EP3665982A4 (en) * 2017-08-07 2020-08-12 Nokia Solutions and Networks Oy NETWORK SLICE SPECIFIC PAGING FOR WIRELESS NETWORKS
US11071088B2 (en) 2017-08-07 2021-07-20 Nokia Solutions And Networks Oy Network slice-specific paging for wireless networks
CN110999437A (zh) * 2017-08-07 2020-04-10 上海诺基亚贝尔股份有限公司 用于无线网络的特定于网络切片的寻呼
CN110999437B (zh) * 2017-08-07 2022-04-19 上海诺基亚贝尔股份有限公司 用于无线网络的特定于网络切片的寻呼
CN111901842A (zh) * 2017-10-26 2020-11-06 Oppo广东移动通信有限公司 无线通信方法和设备
CN111901842B (zh) * 2017-10-26 2023-07-25 Oppo广东移动通信有限公司 无线通信方法和设备
CN111787619A (zh) * 2017-11-14 2020-10-16 Oppo广东移动通信有限公司 无线通信方法和设备
US11737053B2 (en) 2017-11-14 2023-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN111787619B (zh) * 2017-11-14 2024-01-05 Oppo广东移动通信有限公司 无线通信方法和设备

Also Published As

Publication number Publication date
US20200288348A1 (en) 2020-09-10
US20180249441A1 (en) 2018-08-30
CN107925985B (zh) 2021-07-06
AU2016312707B2 (en) 2020-05-21
EP3340500B1 (en) 2020-12-16
EP3340500A4 (en) 2018-08-29
US11109274B2 (en) 2021-08-31
EP3340703B1 (en) 2021-03-10
KR20170022826A (ko) 2017-03-02
EP3340500A1 (en) 2018-06-27
KR102493575B1 (ko) 2023-01-31
KR102552872B1 (ko) 2023-07-07
US20180249374A1 (en) 2018-08-30
AU2016312707A1 (en) 2018-04-12
EP3340703A4 (en) 2019-08-21
CN107925985A (zh) 2018-04-17
KR20170022889A (ko) 2017-03-02
KR102513274B1 (ko) 2023-03-24
CN107925497B (zh) 2020-11-03
WO2017034247A1 (ko) 2017-03-02
CN107925497A (zh) 2018-04-17
US10659993B2 (en) 2020-05-19
EP3340703A1 (en) 2018-06-27
KR20170022946A (ko) 2017-03-02
US10735992B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2017034194A1 (ko) 무선 통신 시스템에서 페이징을 송수신하는 방법 및 장치
WO2018030711A1 (en) Method and apparatus for supporting flexible ue bandwidth in next generation communication system
WO2017034272A1 (en) Method and apparatus for communication in wireless communication system
WO2021006690A1 (en) Method and apparatus for handling scheduling request (sr) cancellation, random access (ra) prioritization and concurrent occurrence of beam failure recovery (bfr) on primary cell (pcell) and secondary cell (scell)
CN102036346B (zh) 一种调度信息传输的方法及系统
EP3408999A1 (en) Method and apparatus for wireless communication in wireless communication system
WO2011099753A2 (en) Method of receiving and transmitting message in a mobile communication system using a mtc device and apparatus for the same
WO2021060893A1 (en) Method and apparatus handling paging and system information (si) of a multi-universal subscriber identify module (musim) user equipment (ue)
WO2021120018A1 (zh) 一种通信方法及装置
EP3354105A1 (en) Method for performing random access procedure in enhanced coverage mode in a wireless communication system and device therefor
WO2020091480A1 (en) Method and apparatus of system information (si) change notification on unlicensed carrier
WO2016163798A1 (ko) 이동 통신 시스템에서 mac pdu를 수신하는 방법 및 장치
WO2019190297A1 (en) Method and apparatus for providing cellular iot service in mobile communication system
WO2015170940A1 (ko) 단말 간 통신을 위한 동기 신호 전송 방법 및 장치
WO2021194219A1 (ko) 무선 통신 시스템에서 방송 서비스의 연속성을 지원하는 방법 및 장치
WO2021192882A1 (en) Communication system
WO2018230941A1 (ko) 단말의 망 접속 방법 및 이동성 지원과 데이터 전달 방법 및 장치
WO2021230595A1 (ko) 무선 통신 시스템에서 mbs 서비스 연속성을 위한 bwp 설정 방법 및 장치
WO2022086213A1 (ko) 무선 통신 시스템에서 mbs 통신을 위한 방법 및 장치
WO2022086203A1 (en) Methods and systems for sending interest indication for multicast and broadcast services in 5g wireless network
WO2018231012A1 (ko) 차세대 이동 통신 시스템에서 망혼잡을 제어하는 방법 및 장치
WO2019054824A1 (en) APPARATUS AND METHOD FOR IDENTIFYING DOWNLINK TRANSMISSION BEAM IN A CELLULAR NETWORK
WO2018084539A2 (ko) 무선 통신 시스템에서 서비스 제공 방법 및 장치
CN112544118A (zh) 用于随机接入的方法、设备和计算机可读介质
WO2020067693A1 (en) Method and apparatus for transmitting buffer status report in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15754109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016312707

Country of ref document: AU

Date of ref document: 20160811

Kind code of ref document: A