CN107925497B - 基于灵活帧结构的蜂窝通信方法及其设备 - Google Patents

基于灵活帧结构的蜂窝通信方法及其设备 Download PDF

Info

Publication number
CN107925497B
CN107925497B CN201680048160.0A CN201680048160A CN107925497B CN 107925497 B CN107925497 B CN 107925497B CN 201680048160 A CN201680048160 A CN 201680048160A CN 107925497 B CN107925497 B CN 107925497B
Authority
CN
China
Prior art keywords
rat
information
terminal
resource
system information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680048160.0A
Other languages
English (en)
Other versions
CN107925497A (zh
Inventor
朴承勋
文廷敃
郑柄薰
柳善姬
郑丁寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN107925497A publication Critical patent/CN107925497A/zh
Application granted granted Critical
Publication of CN107925497B publication Critical patent/CN107925497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • H04L47/365Dynamic adaptation of the packet size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明涉及用于聚合用于支持超4G系统的更高数据速率的5G通信系统与IoT技术的通信技术及其系统。本发明可以应用于基于5G通信技术和有关IoT的技术的智能服务(例如,智能家庭、智能建筑、智能城市、智能汽车或者互连汽车、保健、数字教育、零售业、有关安保和安全的服务等)。根据本发明的实施例的用于终端的通信方法可以包括步骤:通过CDCH发送RAT发现请求消息到基站;从基站接收RAT发现响应消息和与RAT相关联的系统信息;和通过根据系统信息配置的资源区域从基站接收UE特定配置消息。

Description

基于灵活帧结构的蜂窝通信方法及其设备
技术领域
本发明涉及通信方法和设备,且具体来说,涉及用于使用设计用于支持多种通信技术的5G通信系统的帧结构发送信号的方法和设备。
背景技术
为了满足因为第四代(4G)通信系统的商业化的无线数据业务的增加的需要,开发焦点在第五代(5G)或者预5G通信系统上。为此,5G或者预5G通信系统被称为超4G网络通信系统或者后长期演化(LTE)系统。正在考虑在毫米波(mmWave)频带(例如,60GHz频带)中实现5G通信系统以达到更高数据速率。为了通过减小5G通信系统中的传播损耗来增加传播距离,进行了关于各种技术的讨论,比如波束形成、大规模多输入多输出(MIMO)、全维度MIMO(FD-MIMO)、阵列天线、模拟波束形成和大规模天线。此外,为了增强5G通信系统的网络性能,进行了各种技术的开发,比如演进小小区、先进小小区、云无线电接入网络(RAN)、超密集网络、装置到装置(D2D)通信、无线回程、移动网络、合作通信、协调多点(CoMP)和干扰抵消。此外,进行中的研究包括作为先进编码调制(ACM)的混合移动键控(FSK)和正交幅值调制(QAM)(FQAM)和滑动窗口重叠编码(SWSC),滤波器组多载波(FBMC)、非正交多址接入(NOMA)和稀疏码多址接入(SCMA)的使用。
同时,因特网从其中由人生成和消耗信息的以人为中心的通信网络演化为其中分布的物品或者组件交换和处理信息的物联网(IoT)。基于云服务器的大数据处理技术和IoT的组合产生了万物联网(IoE)技术。为了保证实现IoT所需的感测技术、有线/无线通信和网络基础设施、服务接口技术和安全性技术,近来的研究聚焦于传感器网络、机器到机器(M2M)和机器类型通信(MTC)技术。在IoT环境中,可以提供能够收集和分析从连接的物品生成的数据以创建对人的生活的新价值的智能因特网技术。IoT通过传统的信息技术(IT)和各种产业的融合,可应用于各种领域,比如智能家庭、智能建筑、智能城市、智能汽车或者互联汽车、智能电网、保健、智能电器和智能医疗。
因此,存在将IoT应用于5G通信系统的各种尝试。例如,通过比如波束形成、MIMO和阵列天线的5G通信技术实现传感器网络、M2M和MTC技术。作为大数据处理技术的上述云RAN的应用是5G和IoT技术之间的融合的示例。
5G通信系统的主要设计目标之一是提供应付爆炸性的数据增长的通信吞吐量。为实现该目标,研究主要在巨大带宽、小小区和下一代传输方案的方面中进行。为了保证巨大带宽,正在考虑利用除了6GHz以下的当前使用中的许可频带之外的6GHz以上的许可频带和非许可/共享频带。还可以通过小小区概念的引入来增加给定带宽中的空间重新使用。
同时,5G通信系统应该设计用于支持IoT服务和高可靠性/低延迟通信服务以及传统的移动通信服务。还可能需要考虑用于服务扩展,即,用于支持未来期望的服务的未来兼容性,而不改变包括基站的网络基础设施。
在LTE中,作为4G通信标准的代表之一,如下确定发送/接收链路的容量。终端(用户设备(UE))执行对于在下行链路中由基站(演进节点B(eNB))发送的参考信号的测量以向基站报告信号质量。参考信号的示例可以包括由小区内的所有UE接收的公共/小区特定参考信号(CRS)、发现参考信号(DRS)和信道状态信息-参考信号(CSI-RS),和由特定UE接收的专用/解调参考信号(DMRS)。UE可以周期性地或者非周期性地观察/测量CRS/DRS/CSI-RS,并在eNB的控制下,向eNB发送指示所测量的信道质量的信道质量指示符(CQI)。UE可以使用上行链路控制信道用于周期性测量报告或者使用上行链路数据信道用于非周期性测量报告。eNB通过基于由UE发送的CQI分配物理信道资源块来调度UE,并将作为调度结果的资源分配信息发送到UE。资源分配信息在物理下行链路控制信道(PDCCH)中以用小区无线电网络临时标识符(C-RNTI)或者多媒体广播/多播服务(MBMS)无线电网络临时标识符(M-RNTI)加扰的控制信号的形式传送,且UE可以在控制信号中指示的物理下行链路共享信道(PDSCH)中分配的物理信道块上接收。
在上行链路中,eNB可以对由UE发送的参考信号执行测量以确定信号质量。UE的参考信号的示例使用由eNB周期性地分配(大约2~320毫秒)的探测参考信号(SRS)。虽然在当前标准中不是特定的,还可以考虑使用在上行链路中由UE发送的与数据一起发送的DMRS。eNB可以通过基于作为对由UE发送的参考信号的测量的结果生成的CQI分配物理信道资源块来调度UE,并将分配信息发送到UE。分配信息在物理下行链路控制信道(PDCCH)中以用C-RNTI或者M-RNTI加扰的控制信号的形式传送,且UE在由控制信号指示的物理上行链路共享信道(PUSCH)中发送物理信道资源块。
LTE支持两个不同双工模式:频分双工(FDD)和时分双工(TDD)。为了应对下行链路和上行链路之间的业务波动和业务量反转,从经济角度采取采用TDD用于5G通信系统可能更适合,因为TDD使得可以在一个载波中实现下行链路和上行链路两者。下行链路和上行链路的资源比率应该是动态地可变的。
同时,考虑在其间的干扰而部署彼此靠近的小小区eNB可能增加成本。此外,为了使用非许可/共享频带,需要考虑与其他系统/运营商装置的共存。在这方面,需要考虑小小区eNB当中的干扰控制和资源访问方案。
此外,需要用于覆盖各种服务特性的改进的资源访问方法。
发明内容
技术问题
本发明提供能够使用灵活地适于业务负载的帧结构来控制干扰和支持各种服务的资源访问和传输方法。
本发明的目的不限于上述,且本领域技术人员将从以下描述中清楚地理解未在这里描述的其它目的。
技术方案
根据本发明的一方面,基站和终端的资源访问过程和操作方法包括:用于在基站或者终端发送参考信号的条件和操作;用于在基站和终端接收参考信号和测量信号质量的条件和操作;用于终端报告信道质量或者拥塞的条件和操作;基站和终端用于改变与资源访问有关的变量的操作;和终端用于改变与资源访问有关的变量的操作。
根据本发明的另一方面,终端的通信方法包括:在公共发现信道(CDCH)上发送无线电接入技术(RAT)发现请求消息到基站,从基站接收RAT发现响应消息和有关RAT的系统信息,和在根据系统信息配置的资源区域中从基站接收终端特定(UE特定)配置消息。
另外,发送RAT发现请求消息包括:从基站接收包括CDCH配置信息的公共配置消息,和在根据CDCH配置信息配置的CDCH上将RAT发现请求信号发送到基站。
另外,接收RAT发现响应消息和系统信息包括:从基站接收包括用于发送系统信息的位置信息的RAT发现响应消息,和根据用于发送系统信息的位置信息接收系统信息。
另外,接收RAT发现响应消息和系统信息包括:从基站接收RAT发现响应消息,和接收关于根据RAT发现请求消息的传输资源的位置确定的接收资源或者根据RAT发现响应消息的接收资源的位置确定的接收资源的系统信息。
根据本发明的另一方面,基站的通信方法包括:在公共发现信道(CDCH)上从终端接收无线电接入技术(RAT)发现请求消息,将RAT发现响应消息和有关RAT的系统信息发送到终端,和在根据系统信息配置的资源区域中将终端特定(UE特定)配置消息发送到终端。
另外,接收RAT发现请求消息包括:将包括CDCH配置信息的公共配置消息发送到终端;和在基于CDCH配置信息配置的CDCH上从终端接收RAT发现请求信号。
另外,发送RAT发现响应消息和系统信息包括:将包括用于发送系统信息的位置信息的RAT发现响应消息发送到终端,和根据用于发送系统信息的位置信息发送系统信息。
另外,发送RAT发现响应消息和系统信息包括:将RAT发现响应消息发送到终端,和发送关于根据RAT发现请求消息的接收资源的位置确定的发送资源或者根据RAT发现响应消息的发送资源的位置确定的发送资源的系统信息。
根据本发明的另一方面,终端包括:收发器,配置为发送和接收信号;和控制器,配置为在公共发现信道(CDCH)上发送无线电接入技术(RAT)发现请求消息到基站,从基站接收RAT发现响应消息和有关RAT的系统信息,和在根据系统信息配置的资源区域中从基站接收终端特定(UE特定)配置消息。
根据本发明的又一方面,基站包括:收发器,发送和发送信号;和控制器,在公共发现信道(CDCH)上从终端接收无线电接入技术(RAT)发现请求消息,将RAT发现响应消息和有关RAT的系统信息发送到终端,和在根据系统信息配置的资源区域中将终端特定(UE特定)配置消息发送到终端。
技术效果
本发明在提供用于支持5G通信系统中的变化的业务和多种服务的控制和接入方法方面是有益的。
本发明在提供能够使用灵活地适于业务负载的帧结构来控制干扰和支持各种服务的资源访问和传输方法方面是有益的。
本发明的优点不限于上述,且本领域技术人员可以从以下描述中清楚地理解未在这里描述的其它优点。
附图说明
图1是图示根据本发明的实施例的5G接入网络架构的图;
图2是用于解释5G通信系统中的资源分配的示例的图;
图3是用于解释根据本发明的实施例的用于在eNB之间交换帧结构信息的方法的图;
图4是用于解释根据本发明的实施例的基于帧结构信息配置帧结构的原理的图;
图5是图示根据本发明的实施例的HA或者D-SA方法的图;
图6是图示根据本发明的实施例的5G通信系统中的公共发现信道的传输的图;
图7是图示根据本发明的实施例的用于公共发现信道传输的资源分配的图;
图8是图示根据本发明的实施例的用于向UE通知CDCH配置的过程的信号流图;
图9是图示根据本发明的另一实施例的用于向UE通知CDCH配置的过程的信号流图;
图10到图17是图示根据本发明的实施例的UE的简化的初始/随机接入过程的信号流图;
图18是图示根据本发明的实施例的低等待时间通信服务方法的图;
图19A到图19C是用于解释根据本发明的实施例的调度过程的图;
图20是图示根据本发明的实施例的调度过程的图;
图21是图示根据本发明的另一实施例的调度过程的图;
图22是图示根据本发明的实施例的子帧结构的图;
图23是图示根据本发明的实施例的帧结构的图;
图24到图32是图示根据本发明的实施例的示例性子帧配置的图;
图33和图34是用于解释根据本发明的实施例的接下来的帧信息通知方法的图;
图35是图示根据本发明的实施例的示例性DBS的图;
图36是图示根据本发明的实施例的用于提供5G通信服务的机制的图;
图37和图38是用于解释根据本发明的实施例的用于UE在毫米波频带中报告无线电链路失败(RLF)的方法的图;
图39是图示用于在毫米波频带中报告RLF时由UE使用的子帧结构的图;
图40是图示根据本发明的实施例的用于5G通信的示例性频率共享的图;
图41和图42是用于解释根据本发明的实施例的频率共享操作的图;
图43是图示根据本发明的实施例的UE的配置的框图;和
图44是图示根据本发明的实施例的eNB的配置的框图。
具体实施方式
可以省略在现有技术中公知的和与本发明不直接相关的技术说明的详细描述以避免模糊本发明的主题。这是为了省略不必要描述从而使得本发明的主题清楚。
将理解当元件被称为“连接到”或者“耦合到”另一元件时,它可以直接连接到或者耦合到该另一元件,或者可以存在介于其间的元件。将理解术语“包括”、“包含”、“含有”和/或“具有”当在这里使用时,指定包括以下元件而不排除其它的。
虽然分开地示出组件以指示不同特征,但这不意味着组件配置为单独的硬件或者软件单元。也就是,而仅为了说明的方便分开地列举组件,且至少两个组件可以实现为单个组件或者一个组件可以划分为负责相应的功能的多个组件。集成和分开的组件的实施例包括在本发明的范围中而不脱离本发明的精神。
组件的部分可以不是用于本发明的不可避免的功能的基本组件且可以是仅用于性能增强的可选组件。本发明可以仅以除用于性能增强的可选组件之外的实现本发明的主题所需的基本组件实现,且这种仅具有除可选组件之外的基本组件的配置可以包括在本发明的权利要求中。
可以忽略在这里包括的公知功能和结构的详细说明以避免模糊本发明的主题。将参考附图详细描述本发明的示例性实施例。另外,考虑本发明中的功能性定义以下术语,且它们可以根据用户或者操作者的意图、使用等而变化。因此,应该基于本说明书的总体内容做出定义。
将理解流程图和/或框图的每个块以及流程图和/或框图中的块的组合可以由计算机程序指令实现。计算机程序指令可以提供给通用计算机、专用计算机或者其他可编程数据处理设备的处理器,以使得经由计算机或者其他可编程数据处理设备的处理器执行的指令创建用于实现在流程图和/或框图中指定的功能/动作的装置。这些计算机程序指令还可以存储在可以引导计算机或者其他可编程数据处理设备以特定方式运作的非瞬时计算机可读存储器中,以使得非瞬时计算机可读存储器中存储的指令产生嵌入实现流程图和/或框图中指定的功能/动作的指令装置的制造品。计算机程序指令还可以加载到计算机或者其他可编程数据处理设备上以使得在计算机或者其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,以使得在计算机或者其他可编程设备上执行的指令提供用于实现在流程图和/或框图中指定的功能/动作的步骤。
根据本公开的各种实施例,术语"模块"指,但不限于执行某些任务的软件或者硬件组件,比如现场可编程门阵列(FPGA)或者专用集成电路(ASIC)。模块可以有益地配置为位于可寻址的存储介质上且配置为在一个或多个处理器上执行。因此,举例来说,模块或单元可以包括组件,比如软件组件、面向对象的软件组件、类组件和任务组件、处理、功能、属性、过程、子例程、程序代码段、驱动器、固件、微码、电路、数据、数据库、数据结构、表、阵列和变量。在组件和模块中提供的功能性可以组合为更少的组件和模块或者进一步分成附加的组件和模块。另外,可以实现组件和模块以使得它们运行装置或者安全多媒体卡中的一个或多个CPU。
在进行以下本发明的详细说明之前,释义遍及说明书使用的某些词和短语的定义可能是有益的。但是,应当注意该词和短语不限于在这里的示例性解释。
术语“基站”表示将多个多个其他装置彼此连接的实体且可以可互换地称为BS、基站收发器(BTS)、节点B(NB)、演进节点B(eNB)和接入点(AP)。特别地在包括主基站和辅基站作为本发明的基础的异构网络中,主基站可以可互换地称为宏BS、宏eNB(MeNB)和主小区(PCell);且辅基站可以可互换地称为小BS、小eNB(SeNB)和辅小区(SCell)。
术语“终端”表示与基站通信的实体,且可以可互换地称为用户设备(UE)、装置、移动站(MS)和移动设备(ME)。
在异构网络中,终端可以通过PCell传递系统信息、控制信号、和比如语音的移动性敏感业务,和通过SCell传递突发数据业务。
在基站的覆盖区域中,终端可以以无线电资源控制(RRC)空闲状态或者RRC连接状态操作。
处于RRC空闲状态的终端选择基站(或者小区),监视寻呼信道,和接收系统信息(SI)而不与基站通信数据。
处于RRC连接状态的终端监视控制信道并通过数据信道与基站通信数据。处于RRC连接状态的终端可以向服务基站报告与服务和邻近基站相关联的测量结果以协助服务基站的调度操作。
图1是图示根据本发明的实施例的5G接入网络架构的图。
5G通信系统应该设计用于支持各种接入方案。在这方面,可以考虑图1的网络架构。
参考图1,可以通过操作、管理和维护(OAM)服务器或者集中式无线电资源管理(C-RRM)服务器110控制第一eNB(SeNB1或者eNB1)120和第二eNB(SeNB2或者eNB2)125,如由附图标记150和155表示的。替代地,第一eNB 120和第二eNB 125可以直接交换控制信号来以分布式方式被控制,如由附图标记160和165表示的。在eNB之间以分布式方式受控的情况下,第一和第二eNB 120和125可以经由有线链路160或者无线链路165交换控制信号。在下行链路中,可以在由eNB 120和125服务的UE130、135、137、140、145和147当中进行保护免于资源冲突。但是,可以考虑在5G通信系统中在两个相邻eNB 120和125之间共享资源。在该情况下,可以对于由相邻eNB 120和125服务的UE 130、135、137、140、145和147考虑采用基于竞争的资源访问或者分布式调度资源访问,如由附图标记190、191、193和195表示的。可以对于由eNB 120和125之一或者两者服务的UE 130、135、137、140、145和147,在上行链路中考虑采用基于竞争的资源访问或者分布式调度资源访问。
图2是用于解释5G通信系统中的资源分配的示例的图。
在使用许可和未许可频带两者的高密度小小区环境中,如图2所示,可能以无计划方式配备eNB。在该环境下,位置彼此靠近的第一和第二eNB 210和213之间的干扰高,且需要正交地分配资源。也就是,在第一eNB 210已经分配第一UE 220的第一资源上发送的信号250可能作为对位于第二eNB213的覆盖内的第二UE 223的干扰信号,如由附图标记255表示的。同样地,在第二eNB 213已经分配给第二UE 223的第二资源上发送的信号260可能作为对第一UE 220的干扰信号,如由附图标记265表示的。为了避免该情形,第一和第二eNB 210和213可以正交地分配资源。在第二和第三eNB213和215之间的干扰低的情况下,可以分配用于无线电资源重新使用(频谱重新使用)的相同资源。也就是,在第二和第三eNB 213和215位置彼此远离的情况下,如图所示,在第二eNB 213已经分配给第二UE 223的第二资源上发送的信号260不可能作为对第三UE 225的干扰信号,如由附图标记267表示的。同样地,在第三eNB 215已经分配给第三UE 225的第二资源上发送的信号270不可能作为对第二UE223的干扰信号,如由附图标记275表示的。因此,第二和第三eNB 213和215可以分配用于资源重新使用的相同资源。
在本发明中,考虑通过eNB经由eNB间有线或者无线链路的资源分配信息的交换和基于干扰量的资源分配的调整。
在5G通信系统中,可能需要支持用于支持各种服务的不同类型的资源访问方案。资源访问方案可以分类为两个类别:调度接入(SA)和基于竞争的接入(CBA)。SA可以由用于资源分配的一个装置或者多个装置控制:前者是集中式SA(C-SA)且后者是分布式SA(D-SA),其中多个对等装置交换信号和消息用于平等关系的SA的控制。SA还可以被称为无竞争接入(CFA)。C-SA还可以被称作集中式资源分配,且D-SA还可以被称作分布式资源分配。D-SA可以实现为CA和SA的组合从而被称为混合接入(HA)。
本发明提出了一种资源分配方法,其中eNB通过eNB间有线或者无线链路交换关于资源访问方案特定的帧结构的信息和基于根据帧结构信息预测的干扰量调整资源方案。帧结构信息可以包括资源访问类型和上行链路/下行链路/对等链路资源分配信息。这里,术语“对等链路”表示用于侧链路、装置到装置(D2D)或者网格连接的双向链路。帧结构信息可以包括与时间和频率轴上的单元相关联的资源访问类型和上行链路/下行链路/对等链路资源分配信息。帧结构信息还可以包括指示完全使用、部分使用和未使用之一的资源分配信息。此外,帧结构信息可以包括指示发送功率值的资源分配信息。
例如,eNB可以通过X2接口与相邻eNB交换它想要使用的关于帧结构的信息。eNB还可以经由OAM服务器或者移动性管理实体(MME)与相邻/分组eNB交换帧结构信息。eNB可以使用通过在其间建立的控制信道发送的信标与相邻/分组eNB交换帧结构信息。描述针对考虑eNB间信号功率/质量测量功能而在eNB之间建立控制信道的情况。
图3A和图3B是用于解释根据本发明的实施例的用于在eNB之间交换帧结构信息的方法的图,且图4是用于解释根据本发明的实施例的基于帧结构信息配置帧结构的原理的图。
参考图3A和图3B,第一和第二eNB可以经eNB间控制信道(eNB间协作信道)310发送信标350、355、360和365。在该情况下,信标350、355、360和365可以跨整个带宽发送,如图3A中举例说明的,或者在整体带宽的部分发送,如图3B中举例说明的。这里,帧结构可以基于第一eNB的信标355和365配置。也就是,可以基于第一eNB的信标355和365配置集中式调度接入320、基于竞争的接入323和分布式调度接入325。同时,第一eNB可以监视eNB间控制信道310,以在与发送它的信标355和365的定时不同的定时,接收由其他eNB(例如,第二eNB)发送的信标350和360。因为eNB间控制信道是半双工的,信标350、355、360和365应该在时分复用(TDM)模式或者具有冲突避免的载波感测多址接入(CSMA/CA)模式下以时间分离的方式发送。即使由UE服务或者已经在UE上驻留的其它UE不得不接收信标和基于该信标更新帧结构。
参考图4,第一和第二eNB可以交换子帧n 410和子帧n+1 420的帧结构信息,并考虑第一和第二eNB之间的可能干扰和从帧结构信息获取的第一和第二eNB的资源分配方案,以每个资源调整或者确定资源分配方案的方式,更新和确定子帧n+k 430和子帧n+k+1 440的帧结构。在经由网络在eNB之间交换帧结构信息的情况下,k可以设置为0。在通过eNB间控制信道交换帧结构信息的情况下,k可以设置为大于0的值,因为eNB间控制信道是资源约束的。
更详细地,eNB可以基于由相邻eNB发送的信标的接收信号强度,将相邻eNB标识为干扰者,并根据优先规则确定与相邻eNB的资源分配信息。优先规则可以包括优先资源分配方案的规则和优先eNB的规则。例如,在下行链路(DL)和上行链路(UL)之间冲突的情况下,可以优先下行链路。同时,在UL和上行链路竞争(U-CA)之间冲突的情况下,可以优先上行链路。在具有关于相同资源的相同优先级的资源分配方案之间冲突的情况下,可以基于eNB的优先级优先使用资源。为了实现该目的,可能需要eNB在它们的信标350、355、360和365中包括指示它们的优先级的值。eNB的优先级可以根据预定生成模式确定,根据来自MME或者OAM服务器的指示符配置,或者设置为由eNB生成的任意值。
图5是图示根据本发明的实施例的混合接入或者分布式调度接入方法的图。
参考图5,混合接入或者分布式调度接入可以通过组合基于竞争的接入(CBA)和调度接入(SA)实现。也就是,混合接入(HA)的特征在于eNB对于小数据大小在CBA区域中交换信号以便赢得竞争的eNB在SA区域中执行传输。CBA类型1由UE间信令表征,CBA类型2由eNB间信令,且CBA类型3由UE间、eNB间和UE-eNB信令表征。
资源访问方案配置方法可以概述如下:
1)eNB使用eNB间有线控制协议,或者在集中式服务器的控制下,通过信标或者系统信息消息的方式交换包括资源访问方案的资源分配信息。
2)eNB可以基于关于它的信标、SI或者同步/参考信号测量的接收信号强度,确定相邻eNB的信号强度。
3)eNB通过考虑资源访问方案,估计由相邻eNB发送的信号的干扰影响。
4)eNB基于可能干扰计算接下来的子帧的资源访问方案和资源分配,并通过信标/SI消息或者有线网络与相邻eNB共享计算结果。
5)UE接收由eNB发送的信标/SI消息,标识改变资源访问方案的资源,执行基于此的控制信号的检测、数据信号的检测、数据传输方案的确定、信道测量和能量感测中的至少一个。
图6是图示根据本发明的实施例的5G通信系统中的公共发现信道的传输的图,且图7是图示根据本发明的实施例的用于公共发现信道传输的资源分配的图。
参考图6,第一和第二eNB 620和625可以连接到OAM或者C-RRM服务器610。第一UE630可以位于第一eNB 620的覆盖内,且第二UE 635可以位于第二eNB 625的覆盖内。
在5G通信系统中,可以配置公共发现信道(CDCH)650、651、652和653以便用包括eNB 620和625以及UE 630和635的各种网络实体即时地交换小尺寸的信息。
CDCH 650、651、652和653可以布置在时间或者频率轴上,如图7中举例说明的。在同步网络的情况下,eNB可以为CDCH 650、651、652和653分配相同时间资源,如图7的部分(a)所示。在异步网络的情况下,eNB可以为CDCH 650、651、652和653分配不同时间资源,如图7的部分(b)所示,并共享信息。还可以考虑对于独立于同步/异步网络的CDCH配置为CDCH650、651、652和653分配频率资源,如图7的部分(c)所示;但是,在该情况下,由于半双工约束需要额外的调度操作。额外调度操作的示例可以包括为eNB 620和625分配额外时间/频率/代码资源以接收由UE 630和635发送的上行链路CDCH 651和652,为eNB 620和625分配额外时间/频率/代码资源以发送下行链路CDCH 651和652到UE 630和635,为eNB 620和625分配额外时间/频率/代码资源以交换CDCH 650,和为UE 630和635分配时间/频率/代码资源以交换CDCH 653。
图8是图示根据本发明的实施例的用于向UE通知CDCH配置的过程的信号流图。
参考图8,在步骤810,网络(即,eNB 620)可以将指示CDCH配置的公共配置消息发送到UE 630。公共配置消息包括至少每个服务通常需要的系统信息,而无论UE 630的类型和有关的配置信息如何。eNB 620可以a)以公共时间/频率资源将公共配置消息发送到UE620而无论UE/服务的类型,或者b)通过每个连接网络(每个无线电接入技术(RAT))控制信道或者数据信道将公共配置消息发送到连接到用户/服务特定网络的UE 630。公共配置消息可以包括RAT(服务,片段)信息和RAT(服务,片段)ID中的至少一个。如果公共配置消息不包括RAT信息/ID,则UE应该具有先前存储的RAT信息/ID。
如果接收到公共配置消息,则UE 630可以在步骤820监视以检测用于发送RAT发现信号的条件的达成。如果达成RAT发现信号传输条件,则UE630可以在步骤830在基于公共配置消息中包括的信息配置的CDCH上,将RAT发现请求信号发送到eNB 620。
图9是图示根据本发明的另一实施例的用于向UE通知CDCH配置的过程的信号流图。
参考图9,UE 630可以在步骤910接收由第一eNB 620发送的公共配置消息。在接收到公共配置消息时,UE 630可以通过步骤920到940将RAT发现请求消息发送到第二eNB625。UE 630可以通过经由关于eNB 620和625的同步信号和参考信号的信号质量测量的小区(重)选择和驻留小区选择,选择eNB 625作为RAT发现请求消息的目的地。同时,在驻留小区选择过程中,UE 630可以在步骤930可选地再一次检查公共配置消息。这里,eNB 620和625可以将包括版本信息的公共配置消息发送到UE 630,且在该情况下,UE 630可以取消接收包括相同版本信息的公共配置消息的操作。虽然典型地第一和第二eNB 620和625是物理分开的装置,但是这两个eNB可以是属于较高层网络(即,RAT或者片段)且在一个物理实体中分开的虚拟实体。
图10到图17是图示根据本发明的实施例的UE的简化的初始/随机接入过程的信号流图。
作为示例,CDCH可以用于缩短UE 630的随机接入过程。参考图17,UE 630可以在步骤1710通过CDCH将包括关于UE 630感兴趣的服务的信息的RAT发现请求消息发送到eNB620。然后,eNB 620可以在步骤1720将RAT发现响应消息发送到UE 630,RAT发现响应消息向UE 630通知a)隐含地或者2)明确地发送与服务有关的系统信息的位置。之后,eNB 620可以在步骤1730在相应的位置发送配置用于UE 630的系统信息(SI)。同时,在步骤1710发送的RAT发现请求消息可以触发随机接入信道(RACH)过程,在该随机接入信道(RACH)过程中,eNB 620确定用于由UE 630使用的网络特定ID和有关传输的信息,并在步骤1740将包括网络特定ID和有关传输的信息的UE特定配置消息发送到UE 630。UE特定配置消息可以在由系统信息指示的资源区域中发送。
在下文中做出各个操作的详细说明。
图10示出示例性的隐含SI信息传输方法。在步骤1010,如参考图8和图9描述的,eNB 620可以将包括CDCH配置信息的公共配置消息发送到UE 630,且在接收到公共配置消息时,UE 630可以监视是否达成用于发送RAT发现请求消息的条件。如果达成条件,则UE630可以在步骤1020将RAT发现请求消息发送到eNB 620。
响应于来自UE 630的RAT发现请求消息,eNB 620可以在步骤1030将RAT发现响应消息和与由UE 630请求的RAT有关的SI一起发送到UE630。RAT特定SI的传输位置可以取决于接收RAT发现响应消息的位置或者发送RAT发现请求消息的位置而预先确定或者确定。
图11和图12示出替代的隐含SI信息传输方法。在步骤1110或者1210,eNB 620可以将包括CDCH配置信息的公共配置消息发送到UE 630,且在接收到公共配置消息时,UE 630可以监视是否达成用于发送RAT发现请求信号的条件。如果达成条件,则UE 630可以在步骤1120或者1220将RAT发现请求消息发送到eNB 620。
响应于来自UE 630的RAT发现请求消息,eNB 620可以在不同定时将RAT发现响应消息和与所请求的RAT有关的SI发送到UE 630。也就是,eNB620可以在步骤1130或者1230将RAT发现响应消息发送到UE 630,并在步骤1140或者1240将与由UE 630请求的RAT有关的SI发送到UE 630。RAT特定SI的传输位置可以取决于如在图11中举例说明的接收RAT发现响应消息的位置或者如图12所示的发送RAT发现请求消息的位置而预先确定或者确定。在图12的实施例中,发送RAT发现响应消息的步骤可以省略或者推迟到接下来的时间点。
图13示出示例性的明确的SI信息传输方法。在步骤1310,eNB 620可以将包括CDCH配置信息的公共配置消息发送到UE 630,且在接收到公共配置消息时,UE 630可以监视是否达成用于发送RAT发现请求信号的条件。如果达成条件,则UE 630可以在步骤1320将RAT发现请求消息发送到eNB620。
响应于来自UE 630的RAT发现请求消息,eNB 620可以在不同定时将RAT发现响应消息和与由UE 630请求的RAT有关的SI发送到UE 630。也就是,eNB 620可以在步骤1330将RAT发现响应消息发送到UE 630和在步骤1340将与由UE 630请求的RAT有关的SI发送到UE630。RAT特定SI的传输位置可以由eNB 620通过RAT发现响应消息的方式指定,或者由RAT发现响应消息中包括的UE特定指示符指示的UE特定控制信道指示。
图14示出示例性的UE特定配置信息传输方法。在步骤1410,eNB 620可以将包括公共配置信息的公共系统信息或者RAT特定控制信道(当接入特定RAT时)信息发送到UE 630。在步骤1420,UE 630可以在公共RAT资源上发送RAT发现请求消息到eNB 620。在步骤1430,eNB 620可以响应于通过广播信道或者分配给UE 630的UE特定信道的来自UE 630的请求,发送与RAT配置有关的系统信息(SI)。在步骤1440,eNB 620可以将用于RAT接入和发送/接收的UE特定配置信息或者包括配置信息的RAT发现响应消息发送到UE 630。根据本发明的实施例,如果公共配置信息包括用于接收每个RAT的UE特定配置的资源分配信息或者RAT发现响应消息,则可以省略RAT特定SI传输或者接收步骤。
eNB 620可以在随机接入过程中将每个UE的配置信息发送到UE 630。
参考图15,可以使用由UE 630发送的RA前同步码和由eNB 620发送的RA响应来简化用于特定RAT接入的随机接入(RA)过程。也就是,在步骤1510,eNB 620可以通过公共系统信息或者RAT特定控制信道(当接入特定RAT时)的方式将公共配置信息发送到UE 630。在步骤1520,UE 630可以通过通过应用公共配置标识的公共RA信道(公共RACH)发送公共RA前同步码。在接收到RA前同步码时,eNB 620可以在步骤1550将关于RAT特定资源的RA响应消息发送到UE 630。如果公共资源和RAT特定资源的频率环境彼此不同,则已经另外接收RAT特定SI的UE 630可以在步骤1540进一步通过RAT特定RACH发送RA前同步码到eNB 620。在步骤1530,eNB 620可以响应于来自UE 630的请求将与RAT配置有关的SI发送到UE 630。
为了UE 630区分由eNB 620发送的RAT特定RA响应消息,UE不得不具有计算与通过公共资源或者CDCH发送/接收的RA前同步码相关联的RAT特定RA-RNTI的能力。传统的RA-RNTI可以如等式(1)中计算:
[等式1]
RA-RNTI=1+t_id+10*f_id
其中t_id表示在时间轴上标识的RACH资源,且f_id表示在频率轴上标识的RACH资源。f_id仅在TDD中配置,且f_id在FDD中设置为0。因为每个子帧配置RACH资源,所以t_id对应于子帧索引。在LTE中,t_id可以对应于构成帧的10个子帧之一,即,子帧0到9之一。也就是,在传统系统中,RA-RNTI由用于发送RA前同步码的RACH资源的索引确定。
但是,在本发明中,用于RAT的公共资源和RAT特定资源可以非常不同地配置。因为传统的RA前同步码传输资源,即,RACH资源的配置可以取决于RAT不同地理解,所以RA特定RA-RNTI可以基于a)明确地用于确定RA-RNTI的由UE 630提供的变量或者b)用于将通过公共RA过程获得的RA-RNTI转换为用于RAT特定RA过程的RA-RNTI的等式确定。
a)的示例可以包括:a-1)UE 630发送包括在基于公共配置信息的预定范围中选择的随机值的RA请求消息,a-2)UE 630发送包括在公共配置信息中提供的RAT特定变量(例如,配置为质数)和随机值的组合的RA请求消息,和a-3)UE 630发送从在公共配置信息提供的RAT特定RA前同步码组中选出的随机前同步码。
b)的示例可以包括:b-1)UE 630比较公共RA配置和RAT特定RA配置并选择与当实际上在公共RACH上发送公共RA配置时的时间点对应的最近的RAT特定RA过程中使用的RACH资源,以基于所选的RACH资源的索引确定RA-RNTI,和b-2)UE 630比较公共RA配置和RAT特定RA配置,并基于与以逻辑RACH资源次序(例如,时间、频率和时间-频率)在公共RACH上发送的逻辑资源索引对应的RAT特定RA中的逻辑资源索引确定RA-RNTI。在b-2)的情况下,如果公共RA配置指示10个子帧和8个频率资源块(RB),如果在第二帧中发送RA前同步码,且如果RAT特定RA配置指示3个子帧和4个频率RB,则可以通过等式(2)和(3)确定每个RAT的t_id、f_id或者t_f_id。
[等式2]
RAT_t_id=Common_t_id x[Max_common_subframe]/[Max_RAT_subframe]=Common_t_id x 10/3
RAT_f_id=Common_f_id x[Max_common_RBs]/[Max_RAT_RBs]=Common_f_id x8/4
RAT_t_f_id=Common_t_f_id x{[Max_common_subframe]x[Max_common_RBs]}
/{[Max_RAT_subframe]x[Max_RAT_RBs]}=Common_t_f_id x{10x 8}/{3x4}
[等式3]
RAT_t_id={[frame_index]x[Max_common_subframe]+Common_t_id}Mod[Max_RAT_subframe]={2x 10+Common_t_id}Mod 3
RAT_f_id={Common_f_id}Mod[Max_RAT_RBs]={Common_f_id}Mod 4
RAT_t_f_id={[frame_index]x{[Max_common_subframe]x[Max_common_RBs]}}+Common_t_id x Common_f_id}Mod{[Max_RAT_subframe]x[Max_RAT_RBs]}={2x 10x 8+Common_t_id}Mod{3x 4}
参考图16A和图16B,如果扩展传统的过程,则应该分别执行公共RA过程和RAT特定RA过程。
在图16A中,UE 630和eNB 620可以通过步骤1610到1620完成在公共资源上的RA前同步码/响应过程。之后,UE 630在步骤1625通过分开的过程接收由eNB 620发送的RAT特定SI以检查RAT特定RA资源配置,且如果在相应的RAT达成RA过程启动条件,则在步骤1630和1635在RAT特定RACH/资源上执行RA前同步码/响应过程。
图16B不同于图16A在于eNB 620在公共资源上使用RAT响应消息将RAT特定SI发送到UE 630。也就是,通过步骤1650到1660在公共资源上完成RA前同步码/响应过程。在该情况下,eNB 620可以将RAT响应消息和RAT特定SI一起发送到UE 630。UE 630可以检查RAT特定RA资源配置,且如果在相应的RAT中达成RA过程启动条件,则在步骤1665和1670在RAT特定RACH/资源上执行RA前同步码/响应过程。
返回到图17,以组合方式执行RAT发现请求/响应过程和公共RA/RAT特定RA连接过程。也就是,UE 630的RAT特定资源信息获取过程(如由附图标记1710、1720和1730表示的)和用于UE特定网络接入的UE特定配置过程(如由附图标记1710和1740;1750表示的)可以由一个RAT发现请求消息启动。
图18是图示根据本发明的实施例的低等待时间通信服务方法的图。
5G通信系统设计用于使能低等待时间通信服务。低等待时间通信服务的需要可以以各种资源访问方案的可支持性满足。如图18的部分(a)中举例说明的,帧可以配置有下行链路1810中的SA和上行链路1820中的CBA。在该情况下,如图18的部分(b)中举例说明的,UE630可以在步骤1830接收下行链路数据。这里,UE 630可以在步骤1840发送与下行链路数据对应的确认(ACK)消息,而没有用于上行链路传输1820的来自eNB 620的明确资源分配。因此,UE 630和eNB 620可以在步骤1850快速地执行接下来的传输。在该图中,传输时间间隔(TTI)是传输周期的单元。
UE 630可以在基于竞争的模式下在从由eNB 620配置的上行链路竞争资源池中选出的资源中执行传输,而没有来自eNB 620的任何指令,且eNB620不得不标识已经执行传输的UE 630。为了eNB 620标识已经发送HARQ-ACK/NACK的UE 630,UE 630可以根据以下操作的至少一个向eNB620通知:
a)发送以与应用于相应的数据(例如,C-RNTI)的相同信息的加扰的HARQ-ACK/NACK
b)与HARQ-ACK/NACK一起发送传送相应的数据的DL子帧的索引
c)在以UE标识信息(例如,UE ID和C-RNTI)映射的时间-频率资源的位置处发送HARQ-ACK/NACK
还可能需要考虑比如等待时间的新量度而以与传统的调度器不同的方式设计5G通信系统。还可能需要考虑资源区域由UE的类别划分的情况。
图19A到图19C是用于解释根据本发明的实施例的调度过程的图。
参考图19A到19C,eNB 620可以收集eNB 620或者UE 630的测量结果1910、1915、1950、1951、1952、1953、1960、1961和1962,并基于当前无线电条件1920和存储的传输位速率1925计算比例公平量度(proportional fairness metric),以使得调度器1930基于比例公平量度确定资源量(PRB)以及调制和编码方案(MCS)索引1935,如由附图标记1953和1963表示的。因此,eNB 620或者UE 630可以执行传输1940、1945、1954、1955、1956、1957、1964、1965、1966、1967、1968和1969。
可以如图19的部分(b)和(c)中举例说明地那样执行上行链路和下行链路过程。
图20是图示根据本发明的实施例的调度过程的图,且图21是图示根据本发明的另一实施例的调度过程的图。
参考图20和图21,可以在进一步考虑等待时间或者抖动2030的情况下如举例说明的那样修改调度器。
参考图20,UE 630可以根据业务或者服务类型通过适当的子调度器2040、2043和2045分配资源。根据许多量度的组合改变子调度器2040、2043和2045。由调度器2050收集和调整子调度器2040、2043和2045的计算结果。可以由调度器2050执行最终的资源分配和MCS确定操作2060。在该图中示出但是没有描述的其他组件以与参考图19描述的类似方式操作。
参考图21,调度器2050可以确定服务特定资源池,且然后服务特定子调度器2080、2083和2085可以执行每个UE的资源分配和MCS确定2090、2093和2095。在该图中示出但是没有描述的其他组件以与参考图19描述的类似方式操作。
图20和图21中举例说明的两个类型的调度器对于eNB 620或者网络向UE 630提供各种服务是必需的。可能需要报告用于特定用途子调度器2040、2043、2045、2080、2083和2085的操作的量度,比如信道测量结果、所需的延迟和功耗。因此,eNB 620或者网络可以配置用于在UE 630的初始接入或者RRC建立过程期间由片段、承载或者PDU的报告的控制信号的类型。虽然对于相同物理层报告发送控制信号,但是实际信息可以取决于配置的控制信号类型改变。UE 630可以根据在初始接入过程中配置的报告类型配置报告控制信号并将其发送到eNB 620,且eNB 620可以基于在将报告类型转换为RRC重新配置之前配置的类型操作。因为UE 630可以接收多个服务,所以可能需要UE 630发送用于在报告中标识调度器2050的调度器ID或者用于报告每个调度器ID要配置的资源。
同时,为了提供用于5G通信的灵活和动态帧结构,本发明提出了用于通过根据模块化原理组合作为最小建造块的基本子帧来配置帧的方法。
图22是图示根据本发明的实施例的子帧结构的图,且图23是图示根据本发明的实施例的帧结构的图。
参考图22,帧可以包括4个不同类型的子帧。四个类型的子帧是下行链路(DL)子帧2210,上行链路(UL)子帧2220,下行链路-保护时段-上行链路(DL-GP-UL)子帧2230和UL-DL(或者DL-UL)子帧2240。需要DL-GP-UL子帧2230中的GP以保证当eNB从DL切换到UL时用于实现与eNB的UL同步的定时前进的额外裕度。UL-DL子帧可能需要非常短的RF变换时间(几或者几十μs)。
参考图23,帧由图22中举例说明的四个类型的子帧2210、2220、2230和2240组成。除子帧的资源之外,eNB可以向UE分配如由附图标记2330和2350表示的分组为一个资源的多个子帧的资源,而无论子帧2210、2220、2230和2240的类型如何。例如,可以向UE分配作为部分DL子帧2310的DL-GP-UL子帧2230的DL部分和作为部分UL子帧2320和2340的DL-GP-UL子帧2230的UL部分。还可以向UE分配由两个DL子帧2210和DL-GP-UL子帧2230的DL部分构成的级联DL子帧2230。还可以向UE分配由一个UL子帧2220和UL-DL子帧2240的UL部分构成的级联UL子帧2350。关于级联子帧2330和2350的信息可以包括在用于DL分配或者UL准许的控制信号中。在级联具有不同长度的子帧的情况下,物理层可以向MAC层通知级联的子帧2330和2350的格式或者在级联的子帧中可用的符号/位的数目以帮助调度。
但是,该使用灵活帧结构的方法可能导致来自相邻eNB的显著串扰的问题。串扰现象可能导致在服务eNB的下行链路和相邻eNB的上行链路之间的冲突以及在服务eNB的上行链路和相邻eNB的下行链路之间的冲突的两个情形下的问题。
具体来说,对控制信号的干扰可能对系统具有重大的影响。在这方面,本发明提出了能够最小化对控制信号的干扰的基于最小化结构的灵活帧配置方法。为了说明的方便,该方法被称为原子设计。下行链路控制信号可以用于发送调度分配、准许和与上行链路传输对应的ACK。上行链路控制信号可以用于发送调度请求、缓冲器状态请求、与下行链路传输对应的ACK和探测参考信号(SRS)。
图24到图32是图示根据本发明的实施例的示例性子帧配置的图。
为了减少对控制信号的干扰,可以考虑用于在基本子帧中的固定位置布置DL控制信号和UL控制信号的方法或者用于在DL和UL控制信号位置周围放置GP的方法以最小化干扰。原子设计结构在使得可以在任何需要的时间即时地使用控制信道方面是有益的,因为每个子帧具有DL和UL控制信道。例如,eNB可以使用子帧k+n中的UL控制信道(或者UL数据信道上的捎带(piggybacking))计算(调度)用于发送与在子帧k发送的DL数据对应的HARQ-ACK/NACK的值n,并使用指示DL数据传输的子帧k中的DL控制信道向UE通知n。替代地,eNB可以与n一起发送用于子帧k的DL控制信道中的UE的UL数据传输的UL准许,以使得UE在子帧k+n中发送UL数据信号。替代地,eNB可以调度UE以在子帧k+n的DL控制信道(或者通过在其上捎带的DL数据信道)中发送与在子帧k发送的UL数据对应的HARQ-ACK/NACK,并使用指示子帧k中的UL数据传输的UL准许或者RRC控制信号向UE通知调度结果。
替代地,eNB可以在子帧k向UE通知多个子帧中的资源分配,且然后在子帧k+n指令取消/改变分配的资源。在该情况下,可以改变传输定时、传输方案、用于传输的物理层时间-频率资源和子帧结构。替代地,eNB可以以关于系统时间的模块化操作(例如,帧/子帧数目)或者明确地和动态地向UE通知比如SR、BSR和SRS的UL信号的资源位置。根据实施例,为了除通过一般RRC控制的用于系统时间的预定的半静态UL控制信号分配之外的原子子帧的无约束改变,可以a)向UE通知在通过RRC信令或者SI配置的定时的附加偏移,b)取消最接近的特定UL控制信号定时,或者c)改变最接近的特定UL控制信号定时。
首先,做出用于在基本子帧中的固定位置放置DL控制信号和UL控制信号的方法的描述。
参考图24到图27,DL控制信号(DL cnt)和UL控制信号(UL cnt)在每个子帧中固定在相同时间和/或频率位置。如果在同步的网络/eNB当中使用这种子帧结构,则可以至少在DL和UL控制信道上避免eNB间或者UE间干扰。
参考图24,每个子帧由顺序布置的DL控制信道(DL cnt)、间隙(GP)、UL控制信道(UL cnt)和数据(DL cnt/GP/UL cnt/数据)组成。在该情况下,因为DL和UL控制信道和数据信道在时间上是分开的,所以分开地处理控制和数据信道是有益的。该方法还在异步HARQ操作中,通过允许UE预先通过UL控制信道发送比如UL数据类型和HARQ处理ID的HARQ相关变量而在任何时间eNB接收UL数据的自由度方面是有益的。替代地,可以在UL LBT之后发送UL控制信道或者数据的操作中优先UL控制信道传输。
图25中举例说明的子帧结构的特征在于UL cnt先于DL cnt,这使得UE可以发送比如SRS的参考信号,且因此与图24中举例说明的子帧结构相比,除通过将DL cnt和UL cnt放在一起带来的优点之外,eNB可以快速地完成信道测量。在相同频率用于DL和UL的TDD模式中,由于信道相互性特性,eNB可以基于UL参考信号确定用于DL或者UL数据的MCS。根据ULRS的信道测量结果,eNB可以将MCS应用于等于接收UL参考信号(RS)的子帧的子帧,或者当检测到处理延迟时在接收UL RS的子帧之后的第n子帧的数据传输。
图26中举例说明的子帧结构的特征在于与图24和图25中举例说明的子帧结构相比,将DL cnt和DL数据放在一起且将UL数据和UL cnt放在一起。该子帧结构在需要在控制信道发送/接收之后立即发送/接收数据的情况下是有用的。
图27中举例说明的子帧结构与图26的子帧结构相同,除了在子帧的结尾进一步添加DL cnt。该子帧结构在可以发送/接收与在结尾布置DL cnt的相同子帧中的UL数据对应的HARQ ACK/NACK方面是有益的。
接下来,做出用于通过在DL和UL控制信号位置周围布置GP而最小化干扰的方法的描述。
参考图28到图30,DL控制信号(DL cnt)和UL控制信号(UL cnt)在每个子帧中未固定在相同时间和/或频率位置,但是它们以间隙时段(GP)放在一起。如果在同步网络/eNB当中使用这种子帧结构,可以至少减少DL和UL控制信道之间的干扰。但是,在这种实施例中,系统不得不明确地或者以子帧集合的ID向UE通知GP的长度,因为根据GP的长度调整干扰量。在比如接收部分干扰抵消或者LBT之类的其他方法可应用到的某个场景中,eNB可以向UE通知GP长度集合0。
参考图28,子帧分类为DL子帧和UL子帧。也就是,子帧可以以DL cnt/GP/DL数据或者GP/UL cnt/UL数据的形式配置。该子帧配置的特征在于控制信道总是先于数据,从而使得可以在数据传输之前发送用于数据传输的信道测量结果和信息。
图29的子帧结构的特征在于与图28中举例说明的子帧结构相比,DL控制信道(DLcnt)/UL控制信道(UL cnt)在每个子帧的开始之后与相反方向(UL或者DL)控制信道布置在一起。这里,新添加的控制信道可以布置有GP以避免DL和UL之间的干扰。
参考图30,可以通过如上所述调整GP的长度来控制想要的控制信道上的干扰量。
同时,可以略微修改原子建造块类型。也就是,可以做出对原子建造块中控制信道或者GP的改变。
参考图31,可以删除UL cnt,在子帧的结尾放置GP,或者也删除GP,如图31的部分(a)中举例说明的。虽然做出这种改变,但是使用GP抵消UL cnt的干扰是有益的,如图31的部分(b)中举例说明的。图31的部分(a)还例示在整个带宽的一部分而不是跨整个带宽布置DL cnt的情况。
还可以组合在图31的部分(a)和(b)中举例说明的原子建造块以导出图31的部分(c)中所示的各种子帧结构。在该情况下,可以具有固定的TTI和固定的双工模式3110,动态TTI和固定双工模式3120,固定TTI和动态双工模式3130,或者动态TTI和动态双工模式3140。
这里,即使配置动态TTI,优选地以半静态方式操作双工模式,以用于减轻数据区域中的串扰干扰。参考图32做出用于操作动态TTI的控制信令方法的描述。
参考图32的部分(a),eNB可以通过RRC信令向UE通知默认TTI模式(一般TTI)。为了切换到短TTI,eNB可以通过一般TTI的DL控制信道中的L1(物理层)信令接下来的n子帧中预先向UE通知用于子帧n+k的短TTI的使用。
参考图32的部分(b),可以通过RRC信令向UE通知至少一个TTI模式的可能位置。这里,eNB可以通过RRC信令向UE通知一般TTI配置和短TTI配置。TTI模式可以通过以下确定:1)预先在特定TTI模式中指示的DL控制信道中通过L1信令在接下来的子帧n向UE通知用于子帧n+k的TTI模式,或者2)预先通过用于多个TTI模式的L1信令在接下来的子帧n向UE通知用于子帧n+k的TTI模式。
在使用如上配置的可变子帧的情况下,如果根据在相对长的间隔广播的系统信息进行控制,则可能难以反映业务条件的快速改变。因此,本发明提出了用于在每个帧发送关于接下来的帧的信息的方法。例如,可以以Dl控制信号(例如,PDCCH或者PDSCH的上层信号)在帧的任何地方将接下来的帧信息发送到UE。接下来的帧信息可以包括子帧的数目和每个子帧的类型。在配置不连续帧的情况下,可以向UE通知帧的开始时间点的绝对值或者关于相应帧的参考时间点确定的相对值。还可以新引入用于向UE通知空帧/子帧的间隙帧/子帧。还可以向UE通知所指示的帧的重复的数目。如果没有接收到指示接下来帧的重复的数目的信息,则UE可以在已经通知的帧配置最近无限地重复直到新指示到达为止的假定下操作。在下文中做出其详细说明。
图33和图34是用于解释根据本发明的实施例的接下来的帧信息通知方法的图。
参考图33的部分(a),在子帧的长度固定的假定下示出帧结构。AT1和AT2表示根据原子设计的建造块类型1和2。AT1和AT2可以包括由eNB调度的DL或者UL数据。可以配置帧以使得GP位于AT2的开始和AT1的结尾。可以配置帧以具有分开的间隙指示以指示图33的部分(a)的帧中的GP位置。AT1应该是包括至少一个DL控制信道的子帧,且eNB可以通过DL控制信道向UE通知接下来的子帧n或者子帧k之后的帧配置。
参考图33的部分(b),在子帧的长度可变的假定下示出帧结构。AT1和AT2表示根据原子设计的建造块类型1和2。AT1和AT2可以包括由eNB调度的DL或者UL数据。可以配置帧以使得GP位于AT2的开始和AT1的结尾,或者包括指示GP位置的分开的间隙指示。AT1应该是包括至少一个DL控制信道的子帧,且eNB可以通过DL控制信道向UE通知子帧k之后的帧配置。在图33的部分(b)的帧结构中,子帧长度是可变;因此,如果UE未接收到帧指示符,则对于UE可能难以确定用于接收控制信道的参考时间。因此,eNB可以通过RRC信令或者SI预先向UE通知周期性定时,并调度或者控制以在相应的定时发送接下来的帧配置指示符。
与图34图举例说明的帧配置方法相关联,可以考虑如下的附加操作。
a)UE可以根据从eNB接收到的帧指示符以近来接收的帧配置重写旧的帧配置。这意味着更新关于相同帧的信息和添加新的帧。如果帧索引失配,则可以以子帧为单位应用相同原理。也就是,可以更新关于相同子帧的信息和添加新子帧。
b)可以配置用于同步、RACH、寻呼和测量的半静态帧信息。固定帧结构不由动态帧配置改变。eNB可以通过RRC信令或者系统信息(SI)将关于用于接收同步信号、参考信号或者寻呼消息的帧(或者子帧)的信息发送到UE。eNB可以在通过RRC信令或者SI发送RA前同步码时向UE通知供UE使用的RACH资源。UE的初始接入所需的公共同步信号可以在UE预先配置,或者通过单独的控制信号或者包括SI的信号由另一网络发送到UE。
c)如果根据旧的UL准许调度的UL数据传输受改变的帧/子帧配置影响,则UE不得不做出关于其的确定。UE可以执行至少一个以下操作。1)如果由UL准许指示的UL数据传输定时属于改变的帧/子帧,则UE取消UL数据传输。2)如果由UL准许指示的UL数据传输定时通过改变的帧/子帧改变为DL数据传输,则UE取消UL数据传输。3)如果由UL准许指示的UL数据传输定时不顾改变的帧/子帧而配置有DL数据传输,则UE不取消UL数据传输。4)如果即使由UL准许指示的UL数据传输定时不顾改变的帧/子帧而配置有UL数据传输,也改变比如子帧长度的影响数据发送/接收的变量,则UE取消UL数据传输。
同时,如果取消UL数据传输,则eNB可以发送具有对于取消的UL数据传输比现在存在的更短的UL准许-UL数据延迟的单独的UL准许或者明确地包括延迟值的UL准许。这可以称为快速UL数据重发。在由于帧/子帧配置而取消UL数据传输的情况下,UE可以在缓冲器中保存数据块,且如果从eNB接收到具有相同HARQ处理ID的UL准许,则发送存储的数据块。虽然取决于UE实现确定以上操作中存储数据块的时间,但是eNB可以对UE配置单独的缓冲器器存储时间,或者将缓冲器存储时间限于用于促进eNB的调度操作的帧长度。
接下来,做出动态突发(burst)调度(DBS)的描述。
图35是图示根据本发明的实施例的示例性DBS的图。
通过指示比如定时和RB的配置参数的信号指示符(单个指示)的方式分配用于数据突发及其他信号的资源。
DBS分类为以下类型:
-类型-1DBS通过单个PDCCH的方式为数据突发和反馈分配资源。
-类型-2DBS通过单个PDCCH的方式为初始传输和重发分配资源。
如果用于多个UE的重发(re-tx)资源重叠,则eNB可以重写现有的DL分配或者分配基于优先级的共享UL资源。
-类型-3DBS通过单个PDCCH的方式为多个数据突发分配资源。
还可以同时为UL和DL数据突发分配资源。
可以根据业务属性和服务需要(例如,高可靠性和低等待时间使用)组合DBS类型。
同时,下行链路控制信息(DCI)格式可以取决于DBS类型至少包括如下信息。
在类型-1DBS(用于DL数据的DL分配)的情况下,DCI可以包括如在表1中列出的信息字段。
【表1】
Figure BDA0001579655780000261
在类型-1DBS(用于UL数据的UL准许)的情况下,DCI可以包括如在表2中列出的信息字段。
【表2】
Figure BDA0001579655780000262
Figure BDA0001579655780000271
虽然类型-2DBS可以如类型-1DBS那样分配重发资源,但是可以通过应用以下的至少一个改进效率:1)允许多个UE共享重发资源,2)对于多个HARQ处理ID允许共享重发资源,和3)允许共享重发资源以在多个子帧中发送相同HARQ处理ID,因为重发资源不处于确认用于传输的状态下。在类型-2DBS的情况下,除对于类型-1DBS在DCI中包括的信息字段之外,DCI可以进一步包括在表3中列出的信息字段中的至少一个。
【表3】
Figure BDA0001579655780000272
类型-3DBS类似于传统的多子帧调度,特征在于在一个UL准许或者DL分配中分配多个子帧,除了类型-3DBS还为HARQ-ACK/NACK分配反馈资源。虽然可以分开地指示用于与每个数据突发(分组)对应的反馈的资源位置,但是优选地为了DCI资源利用效率而指示与第一传输对应的反馈的资源位置。用于与其他传输对应的反馈的资源位置可以通过以下之一确定:a)通过假定相等地保持第一传输和相应的反馈之间的间隔,b)假定与在第一传输之后的传输对应的反馈在传送与第一传输对应的反馈的子帧之后的连续子帧传送,和c)假定与在第一传输之后的传输对应的反馈复用到在其上发送与第一传输对应的反馈的资源。
DBS的特征在于可以考虑数据和频带(FB)以及全部新传输(新-tx)分组和重发(re-tx)分组调度资源突发,以减小反馈资源分配延迟或者重发资源分配延迟。
eNB可以使用从预定数目的资源集合中选出的资源映射模式向UE分配资源。资源映射模式可以包括分配的RB、时段、数据/FB和MCS等。
用于重发的资源的预分配可能导致资源的浪费。在这方面,可以考虑资源共享方案。
在图35中,附图标记3510、3520和3550表示分别分配给第一到第三UE的资源块。画圈的数字指示初始传输和重发。
图36是图示根据本发明的实施例的用于提供5G通信服务的机制的图。
参考图36,可以使用未许可频带3655作为5G通信中用于毫米波带(mmWave频带)3650的备份链路。例如,如果毫米波链路的吞吐量陡降,则辅eNB(例如,SeNB)3620可以基于来自UE 3630的报告切换到未许可频带3655以缓解吞吐量的下降。这是由于与毫米波频带3650相比,未许可频带3655具有相对低的传播衰减,这使得与准许频带3660相比可以保证宽带。
更详细地,主eNB(例如,MeNB)3610和辅eNB(例如,SeNB)3620可以以DC结构集成。SeNB 3620可以具有两个可切换频带(频谱)(例如,毫米波频带3650和工业、科学和医学的(ISM)5GHz频带3655)。典型地,UE 3630可以通过MeNB 3610的频段3660和SeNB的毫米波频带3650服务。如果服务在毫米波频带3650中失败,则UE 3630可以通过MeNB 3610的频段3660和SeNB 3620的ISM 5GHz频带3655服务。但是,毫米波频带3650遭受高衰减且因此可能故障。从衰减的观点,ISM 5GHz频带3655可以具有比毫米波频带3650更好的链路属性。可以通过MeNB 3610的频段(例如,亚6GHz)3660或者SeNB 3620的ISM 5GHz频带3655来触发毫米波频带3650和ISM 5GHz频带3655之间的切换。
图37和图38是用于解释根据本发明的实施例的用于UE报告毫米波频带中的无线电链路失败(RLF)的方法的图,且图39是图示用于在毫米波频带中报告RLF时由UE使用的子帧结构的图。
参考图37,UE 3630可以向MeNB 3610报告毫米波频带3650中的RLF,如由附图标记3710表示的。UE 3630可以在毫米波频带3650中由SeNB 3620服务,如图37的部分(a)所示。在该情形下,可能发生UE 3630和SeNB 3620之间的毫米波频带3650的链路上的吞吐量下降,如由附图标记3700表示的(例如,链路故障),如图37的部分(b)所示。在该情况下,UE3630可以向MeNB 3610报告RLF,如由附图标记3710表示的。MeNB 3610可以将触发从毫米波频带3650到未许可频带3655的切换的消息发送到SeNB 3620,如由附图标记3720表示的,如图37的部分(c)所示。之后,UE 3630可以在未许可频带3655中由SeNB 3620服务。
参考图38,UE 3630可以经由SeNB 3620报告毫米波频带3650的RLF。如图38的部分(a)所示,UE 3630可以在毫米波频带3650中由SeNB 3620服务。在该情形下,可能发生UE3630和SeNB 3620之间的毫米波频带3650的链路上的吞吐量下降,如由附图标记3800表示的(例如,链路故障),如图38的部分(b)所示。在该情况下,UE 3630可以向SeNB 3620报告RLF,如由附图标记3810表示的。之后,SeNB 3620可以在未许可频带3655中服务UE 3630,如图38的部分(c)所示。该方法与在图37的实施例中的向MeNB 3610报告RLF的方法相比,可以使得快速地报告RLF。
为了UE 3630快速地向SeNB 3620报告RLF,需要设计网络以允许提示上行链路传输,而无论未许可频带3655中的LBT规则。
参考图39,eNB 3620可以考虑服务需要在预定载波以预定间隔发送轮询信号“P”。轮询信号可以以传统的主同步信号/辅同步信号(PSS/SSS)、CRS/CSI-RS或者DRS配置。因为轮询信号消耗非常短的时间,所以eNB3620可以以相对短的间隔发送轮询信号而无论LBT规则。不需要用于在预定GP之后响应于轮询信号发送上行线路信号的信道感测操作。因此,在轮询信号“P”的接收之后已经配置RACH且然后感受到毫米波链路上的突然的RLF的UE 3630可以为了轮询信号监视未许可频带3655。UE 3630可以发送RLF故障报告到eNB 3620或者在轮询信号中预先配置的或者指示的RACH资源上执行一般随机接入过程。
做出5G频带共享(频谱共享)的描述。
图40是图示根据本发明的实施例的用于5G通信的示例性频率共享的图,且图41和图42是用于解释根据本发明的实施例的频率共享操作的图。
参考图40,5G通信系统设计用于共享多用途频率共享。例如,可以考虑能够使用多个运营商网络的移动虚拟网络运营商(MVNO)4010。MVNO4010没有物理移动通信网络,但是从移动网络运营商(MNO)4020和4025租用频谱以在它自己的品牌名称下提供通信服务。如图40所示,第一eNB(eNB1)4030属于第一MNO(MNO1)4020,且第二eNB(eNB2)4035属于第二MNO(MNO2)4025。MVNO 4010或者平台提供者可以租用两个MNO 4020和4025的网络以向第一到第三UE 4040、4043和4045提供某些服务。
从已经租用MNO1 4020和MNO2 4025的网络和频率的MVNO 4010的观点,如果必要,可以执行频率共享和调整MNO特定资源之间的比率以改进通信服务的质量。
参考图41,除用于MNO1 4020和MNO2 4025的30MHz专用频带之外,可以保证60MHz共享频带。在该情况下,如果连接到MNO2 4025的eNB24035的用户的数目增加,则MVNO 4010可以分配60MHz频带的50MHz带宽供eNB2 4035使用。在以载波为单位(例如,以10MHz为单位)共享频率的情况下可以考虑该方法。
考虑小小区的业务在量上显著变化和频繁变化,仅以10MHz为单位的频率共享难以期望足够的吞吐量改进。在该情况下,可以考虑以几毫秒为单位的时间频率共享方案。
可以每个MNO 4020或者4025应用时间频率共享。参考图42,除传统的Rel-12双连接(DC)之外可以应用共享方案。在传统的DC中,MeNB和SeNB每个都具有独立的调度器。典型地,当MeNB和SeNB位于分开的位置且通过非理想的回程链路连接时这是有意义的。因为回程链路不理想,在2.5GHz操作的MeNB和在3.5GHz操作的SeNB根据传统标准(Rel-12)在频域中分开,如由附图标记4210表示的。但是,本发明使得可以应用时间频率共享方案。例如,可以允许MeNB使用3.5GHz频带(DC+MeNB CA),如由附图标记4220表示的。这类似于当MeNB使用2.5GHz频带作为用于带宽扩展的主载波时使用3.5GHz频带作为辅载波的载波聚合(CA)方案。但是,可能需要在3.5GHz频带中应用共享接入方案以避免资源冲突和干扰,因为3.5GHz频带在由SeNB使用中,即使它是许可频带。可以符合LBT或者在未许可频带中使用的载波感测多址接入/冲突避免(CSMA-CA)地实现共享接入方案。共享接入方案可以是基于明确eNB间协议的有效率的资源共享接入方案。除在MeNB的CA之外,还可以允许SeNB使用用于CA的2.5GHz频带(DC+MeNB CA+SeNB CA),如由附图标记4230表示的。但是,在该情况下,当MeNB使用用于保证2.5GHz频带上MeNB的操作的一般集中式资源访问方案时,仅SeNB可以以机会主义方式使用2.5GHz频带。
为了实现有效率的资源共享接入方案,代替传统的LBT或者其他基于载波感测的资源访问方案,可以考虑基于明确的信号交换的资源访问方案。例如,eNB可以使用前同步码信号(例如,初始信号和保留信号)或者广播信道将比如小区ID和PLMN ID的信息发送到另一eNB。eNB基于相邻小区的小区ID或者PLMN ID知道相邻eNB的存在。eNB可以在以上信号中或者与以上信号一起发送资源共享信息。资源共享信息可以包括要使用的资源的开始时间和长度、要使用的资源的频率、用于资源访问的变量和发送功率中的至少一个。用于资源访问的变量可以包括用于CBA中的竞争窗口的大小。
同时,eNB可以基于由网络配置的每个eNB资源分配量来确定要使用的资源的大小。例如,如果确定以1:2的比率分配第一和第二eNB的资源,则第一eNB可以尝试5毫秒的资源访问,同时第二eNB可以尝试10毫秒的资源访问。当然,如果第一eNB不能识别第二eNB的活动,则它可以根据需要向UE分配资源而没有任何限制。替代地,如果配置为以1:2的比率分配第一和第二eNB的资源,则第一eNB可以使用具有16的长度的竞争窗口,同时第二eNB可以使用具有32的长度的竞争窗口。这里,可以控制时间/频率资源量、资源访问所需的变量、发送功率和重发数目中的至少一个。
为了有效率的资源共享,除了要使用的资源之外,eNB还可以向相邻eNB通知不使用的资源。该通知可以使用占用信号和空白信号执行。根据本发明的实施例,eNB可以发送指示资源的开始点和长度的1位占用/空白指示符。在该情况下,占用信号可以配置为包括关于仅下行链路资源,下行链路和上行链路资源两者,或者下行链路、上行链路和对等链路资源的指示。根据本发明的实施例,当改变资源类型时,占用信号可以进一步包括指示改变的指示符。
图43是图示根据本发明的实施例的UE的框图。
在图43的实施例中,UE可以包括收发器4320和用于控制UE的总体操作的控制器4310。
控制器4310可以控制UE以执行本发明的上述实施例之一的操作。例如,控制器4310可以控制UE以通过CDCH发送RAT发现请求消息到eNB,从eNB接收RAT发现响应消息和与RAT有关的系统信息,并且在根据从eNB接收到的系统信息配置的资源区域中接收UE特定配置消息。
收发器4320可以执行根据本发明的以上实施例之一的发送和接收操作。根据本发明的实施例,收发器4320可以包括用于发送信号到其他网络实体的发射器4323和用于从其他网络实体接收信号的接收器4325。例如,收发器4320可以发送RAT发现请求消息到eNB,和从eNB接收RAT发现响应消息、SI和UE特定配置消息。
虽然描述为单独的装置,但是控制器4310和收发器4320可以实现为比如单个芯片的组件。
图44是图示根据本发明的实施例的eNB的配置的框图。
在图44的实施例中,eNB可以包括收发器4420和用于控制eNB的总体操作的控制器4410。
控制器4410可以控制eNB以执行上述实施例的操作之一。例如,控制器4410可以通过CDCH从UE接收RAT发现请求消息,和将RAT发现响应消息和有关RAT的系统信息发送到UE,并且将在根据系统信息配置的资源区域中将UE特定配置消息发送到UE。
收发器4420可以执行根据上述实施例之一的信号的发送和接收操作。根据本发明的实施例,收发器4420可以包括用于发送信号到其他网络实体的发射器4423和用于从其他网络实体接收信号的接收器4425。例如,收发器4420可以从UE接收RAT发现请求消息和发送RAT发现响应消息、SI和UE特定配置消息。
虽然描述为单独的装置,控制器4410和收发器4420可以实现为比如单个芯片的一个组件。
eNB和UE的上述操作可以通过实现在eNB或者UE的某个组件中存储相应的程序代码的存储器装置来实现。也就是,eNB或者UE的控制器可以从存储器装置读出程序代码,并通过处理器或者中央处理单元(CPU)执行以实现上述操作。
构成实体、eNB或者UE的各种组件、模块可以以比如基于互补金属氧化物半导体的逻辑电路的硬件电路、固件、软件和/或硬件和固件的组合,和/或在机器可读介质中存储的软件元素的形式实现。例如,可以通过比如晶体管、逻辑门和按需半导体的电路的方式执行各种电气结构和方法。
虽然已经使用专用名词描述了本发明的各种实施例,但是以说明性的而不是限制性的感念考虑说明书和附图以帮助理解本发明。对本领域技术人员很明显可以对其做出各种修改和改变而不脱离本发明的更宽的精神和范围。
虽然已经使用专用名词描述了本发明的优选实施例,但是以说明性的而不是限制性的概念考虑说明书和附图以帮助理解本发明。对本领域技术人员很明显可以对其做出各种修改和改变而不脱离本发明的更宽的精神和范围。

Claims (12)

1.一种终端的通信方法,所述方法包括:
在公共发现信道CDCH上向基站发送(1710)用于请求服务的无线电接入技术RAT发现请求消息;
从基站接收(1720)包括关于用于RAT相关系统信息的资源的信息的RAT发现响应消息;
基于关于用于RAT相关系统信息的资源的信息从基站接收(1730)RAT相关系统信息,所述RAT相关系统信息包括关于用于终端的服务的信息;和
在基于RAT相关系统信息的资源区域上从基站接收(1740)用于配置终端的终端特定配置信息,
其中,所述RAT相关系统信息还包括关于用于接收终端特定配置信息的资源区域的信息。
2.如权利要求1所述的方法,其中,发送RAT发现请求消息包括:
从基站接收(1410)包括CDCH配置信息的公共配置消息;和
在根据CDCH配置信息配置的CDCH上向基站发送(1420)RAT发现请求消息。
3.如权利要求1所述的方法,其中,接收RAT相关系统信息包括:
从基站接收(1730)关于根据RAT发现请求消息的发送资源的位置确定的接收资源或者根据RAT发现响应消息的接收资源的位置确定的接收资源的信息。
4.一种基站的通信方法,所述方法包括:
在公共发现信道CDCH上从终端接收(1710)用于请求服务的无线电接入技术RAT发现请求消息;
向终端发送(1720)包括关于用于RAT相关系统信息的资源的信息的RAT发现响应消息;
基于关于用于RAT相关系统信息的资源的信息向终端发送(1730)RAT相关系统信息,所述RAT相关系统信息包括关于用于终端的服务的信息;和
在基于RAT相关系统信息的资源区域上向终端发送(1740)用于配置终端的终端特定配置信息,
其中,所述RAT相关系统信息还包括关于用于接收终端特定配置信息的资源区域的信息。
5.如权利要求4所述的方法,其中,接收RAT发现请求消息包括:
向终端发送(1410)包括CDCH配置信息的公共配置消息;和
在根据CDCH配置信息配置的CDCH上从终端接收(1420)RAT发现请求消息。
6.如权利要求4所述的方法,其中,发送RAT相关系统信息包括:
向终端发送(1730)关于根据RAT发现请求消息的发送资源的位置确定的接收资源或者根据RAT发现响应消息的接收资源的位置确定的接收资源的信息。
7.一种终端,包括:
收发器;和
控制器,配置为:
在公共发现信道CDCH上向基站发送(1710)用于请求服务的无线电接入技术RAT发现请求消息;
从基站接收(1720)包括关于用于RAT相关系统信息的资源的信息的RAT发现响应消息;
基于关于用于RAT相关系统信息的资源的信息从基站接收(1730)RAT相关系统信息,所述RAT相关系统信息包括关于用于终端的服务的信息;和
在基于RAT相关系统信息的资源区域上从基站接收(1740)用于配置终端的终端特定配置信息,
其中,所述RAT相关系统信息还包括关于用于接收终端特定配置信息的资源区域的信息。
8.如权利要求7所述的终端,其中,所述控制器配置为从基站接收(1410)包括CDCH配置信息的公共配置消息,和在根据CDCH配置信息配置的CDCH上向基站发送(1420)RAT发现请求消息。
9.如权利要求7所述的终端,其中,所述控制器配置为从基站接收(1730)关于根据RAT发现请求消息的发送资源的位置确定的接收资源或者根据RAT发现响应消息的接收资源的位置确定的接收资源的信息。
10.一种基站,包括:
收发器;和
控制器,配置为:
在公共发现信道CDCH上从终端接收(1710)用于请求服务的无线电接入技术RAT发现请求消息;
向终端发送(1720)包括关于用于RAT相关系统信息的资源的信息的RAT发现响应消息;
基于关于用于RAT相关系统信息的资源的信息向终端发送(1730)包括初始接入所需的基本信息和用于获取第二系统信息的信息的第一系统信息,所述RAT相关系统信息包括关于用于终端的服务的信息;和
在基于RAT相关系统信息的资源区域上向终端发送(1740)用于配置终端的终端特定配置信息,
其中,所述RAT相关系统信息还包括关于用于接收终端特定配置信息的资源区域的信息。
11.如权利要求10所述的基站,其中,所述控制器配置为向终端发送(1410)包括CDCH配置信息的公共配置消息,和在根据CDCH配置信息配置的CDCH上从终端接收(1420)RAT发现请求消息。
12.如权利要求10所述的基站,其中,所述控制器配置为向终端发送(1730)关于根据RAT发现请求消息的发送资源的位置确定的接收资源或者根据RAT发现响应消息的接收资源的位置确定的接收资源的信息。
CN201680048160.0A 2015-08-21 2016-08-19 基于灵活帧结构的蜂窝通信方法及其设备 Active CN107925497B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562208198P 2015-08-21 2015-08-21
US62/208,198 2015-08-21
PCT/KR2016/009212 WO2017034247A1 (ko) 2015-08-21 2016-08-19 유연한 프레임 구조 기반 셀룰라 통신 방법 및 그 장치

Publications (2)

Publication Number Publication Date
CN107925497A CN107925497A (zh) 2018-04-17
CN107925497B true CN107925497B (zh) 2020-11-03

Family

ID=58100216

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680048712.8A Active CN107925985B (zh) 2015-08-21 2016-08-11 用于在无线通信系统中发送或接收寻呼的方法和装置
CN201680048160.0A Active CN107925497B (zh) 2015-08-21 2016-08-19 基于灵活帧结构的蜂窝通信方法及其设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680048712.8A Active CN107925985B (zh) 2015-08-21 2016-08-11 用于在无线通信系统中发送或接收寻呼的方法和装置

Country Status (6)

Country Link
US (3) US10659993B2 (zh)
EP (2) EP3340703B1 (zh)
KR (3) KR102513274B1 (zh)
CN (2) CN107925985B (zh)
AU (1) AU2016312707B2 (zh)
WO (2) WO2017034194A1 (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513274B1 (ko) 2015-08-21 2023-03-24 삼성전자주식회사 무선 통신 시스템에서 복합 재전송을 수행하는 방법 및 장치
CN108476499B (zh) * 2016-01-19 2022-09-23 诺基亚通信公司 无线网络中相同链路方向的子帧部分之间的保护时段
US11102675B2 (en) * 2016-02-03 2021-08-24 Sony Corporation Wireless communication apparatus, communication method, computer program, and wireless communication system
US10979998B2 (en) * 2016-02-05 2021-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, communication device and methods performed therein
US10673579B2 (en) * 2016-03-03 2020-06-02 Lg Electronics Inc. Method and apparatus for transreceiving wireless signal in wireless communication system based on downlink scheduling information including different time unit types
KR102078189B1 (ko) * 2016-03-11 2020-02-20 주식회사 케이티 무선 액세스 망 슬라이싱 제어 장치와 그 장치가 무선 베어러 전송을 제어하는 방법
US10057787B2 (en) 2016-04-06 2018-08-21 Futurewei Technologies, Inc. System and method for millimeter wave communications
US11071105B2 (en) 2016-04-26 2021-07-20 Lg Electronics Inc. Method and apparatus for configuring sensing gap in frame structure for new radio access technology in wireless communication system
US10834554B2 (en) * 2016-05-24 2020-11-10 Blackberry Limited Customization of device configuration settings
PT3445093T (pt) * 2016-07-11 2021-03-23 Guangdong Oppo Mobile Telecommunications Corp Ltd Transmissão de informações dedicadas baseada na validade das informações de agendamento
CN107634924B (zh) * 2016-07-18 2020-08-11 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
US10470149B2 (en) * 2016-07-27 2019-11-05 Lg Electronics Inc. Method and apparatus for performing MM attach and service request procedure for network slice based new radio access technology in wireless communication system
JP6855701B2 (ja) * 2016-08-10 2021-04-07 ソニー株式会社 通信装置、通信方法及び記録媒体
WO2018052349A1 (en) * 2016-09-15 2018-03-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for autonomous device selection of transmission resources
US11115267B2 (en) * 2016-11-04 2021-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for radio link monitoring
CN108024360B (zh) * 2016-11-04 2023-11-21 华为技术有限公司 免授权传输的方法、终端和网络设备
CN108307335B (zh) * 2017-01-13 2022-10-28 中兴通讯股份有限公司 一种数据传输方法、装置及系统
US11012974B2 (en) * 2017-02-02 2021-05-18 Convida Wireless, Llc Apparatuses for transmission of paging blocks in swept downlink beams
US10306590B2 (en) * 2017-02-21 2019-05-28 Qualcomm Incorporated Paging for mmW shared radio frequency spectrum bands
EP3576466B1 (en) * 2017-03-01 2021-10-27 Huawei Technologies Co., Ltd. Service processing method and device
US10764785B2 (en) * 2017-03-07 2020-09-01 Htc Corporation Device and method of handling network slice information
CN108633004B (zh) 2017-03-17 2019-08-23 工业和信息化部电信研究院 URLLC业务占用eMBB业务资源指示信道指示方法
KR102449701B1 (ko) * 2017-03-21 2022-09-30 삼성전자 주식회사 직교 주파수 분할 다중 접속 시스템에서 주파수 도약이 가능한 다중-뉴머롤로지 데이터 송수신 방법 및 장치
US11115257B2 (en) 2017-03-23 2021-09-07 Huawei Technologies Co., Ltd. System and method for multiplexing traffic
WO2018208054A1 (ko) * 2017-05-06 2018-11-15 엘지전자 주식회사 무선 통신 시스템에서 단말의 d2d 동작 방법 및 상기 방법을 이용하는 단말
US10925094B2 (en) * 2017-05-12 2021-02-16 Qualcomm Incorporated Scheduling request techniques in wireless transmissions
CN109246410B (zh) * 2017-05-31 2021-04-02 江苏慧光电子科技有限公司 全息影像的成像方法和数据生成方法及装置
CN110679179B (zh) * 2017-06-02 2021-10-29 鸿颖创新有限公司 用于服务驱动的移动性管理的方法、装置及系统
EP3416450A1 (en) * 2017-06-14 2018-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Joint resource pools for uplink communications
US10750476B2 (en) 2017-07-11 2020-08-18 Qualcomm Incorporated Synchronization signal transmission for mobility
US11071088B2 (en) 2017-08-07 2021-07-20 Nokia Solutions And Networks Oy Network slice-specific paging for wireless networks
CN111108785B (zh) * 2017-08-11 2022-11-25 上海诺基亚贝尔股份有限公司 用于无线网络的网络切片特定寻呼周期
CN111901842B (zh) * 2017-10-26 2023-07-25 Oppo广东移动通信有限公司 无线通信方法和设备
KR102511434B1 (ko) * 2017-11-14 2023-03-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법 및 장비
CN109150592B (zh) * 2018-07-28 2021-12-28 华南理工大学 Lte-d2d无线专网的系统
US11317473B2 (en) 2018-08-03 2022-04-26 Apple Inc. Device-capability-based and standalone paging in new radio unlicensed band
US10757700B2 (en) 2018-10-07 2020-08-25 At&T Intellectual Property I, L.P. Frame structure coordination in wireless communication systems with integrated access and backhaul links in advanced networks
US12057944B2 (en) * 2018-11-08 2024-08-06 Nec Corporation Method and devices for hybrid automatic repeat request
US10560918B1 (en) * 2018-11-16 2020-02-11 Verizon Patent And Licensing Inc. Systems and methods for a network paging policy based on device mobility category
US20210410101A1 (en) * 2018-11-21 2021-12-30 Sony Corporation Systems, methods, and computer program products for delaying a user equipment paging operation in a network based on propagation channel characteristics
FR3089376A1 (fr) * 2018-11-29 2020-06-05 Orange Activation ou désactivation d’un sous-ensemble virtuel d’un réseau dédié à un service pour un terminal
WO2020144890A1 (ja) * 2019-01-10 2020-07-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法
US20220116156A1 (en) * 2019-01-10 2022-04-14 Ntt Docomo, Inc. User terminal and radio communication method
EP3911002A4 (en) * 2019-01-10 2022-07-06 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
US12041625B2 (en) * 2019-01-11 2024-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission presence detection
CN111435880B (zh) 2019-01-11 2021-07-20 华为技术有限公司 一种能力配置方法及装置
AR118068A1 (es) 2019-02-14 2021-09-15 Ericsson Telefon Ab L M Dispositivo de comunicación inalámbrica, nodo de red de acceso por radio, métodos, y programas informáticos para la escalada de paginación con menor consumo de energía
CN110149646B (zh) * 2019-04-10 2022-04-15 中国电力科学研究院有限公司 一种基于时延和吞吐量的智能电网资源管理方法及系统
CN114928824A (zh) * 2019-06-05 2022-08-19 华为技术有限公司 一种车联网的数据发送方法及装置
CN112152760B (zh) * 2019-06-27 2022-03-29 华为技术有限公司 一种psfch的发送方法及装置
US11197249B2 (en) * 2019-07-29 2021-12-07 Qualcomm Incorporated Transmit-power control mode selection
CN111836318B (zh) * 2019-08-21 2021-12-03 维沃移动通信有限公司 链路失败处理的方法和通信设备
KR20210037353A (ko) 2019-09-27 2021-04-06 삼성전자주식회사 페이징 메시지를 수신하는 전자 장치 및 전자 장치의 동작 방법
WO2021081731A1 (zh) * 2019-10-29 2021-05-06 北京小米移动软件有限公司 连接建立方法及装置、基站、用户设备和核心网设备
US11825416B2 (en) * 2019-11-25 2023-11-21 Qualcomm Incorporated Skipping downlink frequency hops in unlicensed frequency band
US11026149B1 (en) * 2020-01-31 2021-06-01 Dish Wireless Llc Systems and methods for reducing slice access failures
WO2021201761A1 (en) * 2020-03-31 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Inter-frequency re-direction via paging
WO2022021089A1 (zh) * 2020-07-28 2022-02-03 北京小米移动软件有限公司 无线通信的方法、终端、基站、通信设备及存储介质
CN115997417A (zh) * 2020-08-05 2023-04-21 谷歌有限责任公司 替代无线电接入技术或资源的可用性检查
US20220132508A1 (en) * 2020-10-23 2022-04-28 At&T Intellectual Property I, L.P. Resource coordination for multiple parent integrated access and backhaul
US11729698B1 (en) 2021-08-04 2023-08-15 T-Mobile Innovations Llc Wireless communication network access control based on wireless network slice usage
EP4388780A2 (en) * 2021-09-19 2024-06-26 Google Llc User equipment slicing assistance information
US20230254702A1 (en) * 2022-02-07 2023-08-10 Qualcomm Incorporated Shared spectrum resource allocation in open radio access networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652958A (zh) * 2007-04-05 2010-02-17 艾利森电话股份有限公司 用于在电信系统中促成高效多媒体广播/多播服务的方法
CN102118222A (zh) * 2009-12-30 2011-07-06 株式会社泛泰 用户设备、基站和用于帧发送与接收的方法
WO2014163335A1 (ko) * 2013-04-01 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159235B2 (en) * 2000-01-28 2007-01-02 Sedna Patent Services, Llc Method and apparatus for content distribution via non-homogeneous access networks
US8233431B2 (en) * 2004-08-13 2012-07-31 Nokia Corporation WCDMA uplink HARQ operation during the reconfiguration of the TTI length
US8644292B2 (en) * 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
KR100777827B1 (ko) * 2006-03-22 2007-11-22 에스케이 텔레콤주식회사 네이버 리스트를 이용하여 이동통신 단말기에 페이징서비스를 제공하는 시스템 및 방법
KR101208133B1 (ko) * 2006-04-26 2012-12-04 한국전자통신연구원 이동 통신 시스템에서의 페이징 정보 전송 방법
JP4703513B2 (ja) * 2006-08-22 2011-06-15 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される無線基地局及び方法
RU2009143675A (ru) * 2007-04-26 2011-06-20 Интердиджитал Текнолоджи Корпорейшн (Us) Способ и устройство механизма измерения и реализации схемы эффективного пейджинга и реализации схемы широковещания в выделенной соте mbms в системах lte
WO2008155764A2 (en) * 2007-06-18 2008-12-24 Duolink Ltd. Wireless network architecture and method for base station utilization
US8295861B2 (en) * 2008-01-09 2012-10-23 Research In Motion Limited Apparatus, and associated method, for paging a mobile station
US8743823B2 (en) * 2009-02-12 2014-06-03 Qualcomm Incorporated Transmission with collision detection and mitigation for wireless communication
KR101206432B1 (ko) 2009-08-25 2012-11-29 한국전자통신연구원 광대역 무선 통신 시스템에서 페이징 방법
US20110053617A1 (en) 2009-08-26 2011-03-03 Electronics And Telecommunications Research Institute Paging method in communication system
KR101328169B1 (ko) * 2009-08-26 2013-11-13 한국전자통신연구원 펨토셀을 지원하는 통신 시스템에서의 페이징 서비스 제공 방법
US8559343B2 (en) 2009-12-23 2013-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Flexible subframes
US8897818B2 (en) * 2010-11-11 2014-11-25 Blackberry Limited System and method for reducing energy consumption of mobile devices using early paging indicator
KR20120111248A (ko) * 2011-03-31 2012-10-10 주식회사 팬택 이종 무선네트워크 시스템에서 페이징 제어장치 및 방법
WO2012170794A1 (en) * 2011-06-10 2012-12-13 Interdigital Patent Holdings, Inc. Method and apparatus for performing neighbor discovery
WO2013010247A1 (en) * 2011-07-21 2013-01-24 Research In Motion Limited Dynamic cyclic prefix mode for uplink radio resource management
US9537633B2 (en) 2011-07-29 2017-01-03 Qualcomm Incorporated Method and apparatus for aggregating carriers of multiple radio access technologies
WO2013109100A1 (ko) 2012-01-18 2013-07-25 엘지전자 주식회사 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치
US9787438B2 (en) * 2012-04-27 2017-10-10 Lg Electronics Inc. TTI bundling method in wireless access systems and apparatus for same
KR102144600B1 (ko) 2012-08-23 2020-08-14 인터디지탈 패튼 홀딩스, 인크 디바이스간 탐색을 수행하기 위한 방법 및 장치
KR102189629B1 (ko) 2012-09-05 2020-12-11 삼성전자주식회사 비대칭형 멀티 캐리어 통신 네트워크 환경에서 하이브리드 자동 반복 요구 동작을 수행하는 방법 및 시스템
US9008049B2 (en) * 2012-09-11 2015-04-14 Qualcomm Incorporated Forward link frame generation in a machine-to-machine (M2M) wireless wide area network (WAN)
CN103874170A (zh) * 2012-12-10 2014-06-18 中兴通讯股份有限公司 一种用户设备及利用扩展寻呼周期进行寻呼的方法和系统
CN104885389B (zh) 2013-01-17 2018-05-11 英特尔Ip公司 用于时分双工(tdd)传输的上行链路(ul)和下行链路(dl)帧资源的动态配置
TW201442548A (zh) 2013-03-14 2014-11-01 Interdigital Patent Holdings 在機會型多rat聚合系統中賦能直接鏈路設置的方法及裝置
KR102046111B1 (ko) 2013-03-29 2019-11-18 삼성전자주식회사 장치 간 통신 방법 및 장치
EP2806670A1 (en) 2013-05-21 2014-11-26 Alcatel Lucent Method of device discovery for device-to-device communication in a telecommunication network, user equipment device and computer program product
CN105432131A (zh) 2013-07-29 2016-03-23 Lg电子株式会社 用于ims服务的寻呼方法和设备
CN104349421B (zh) * 2013-08-08 2020-03-17 中兴通讯股份有限公司 设备发现方法和用户设备、网络侧设备
US9584649B2 (en) * 2013-12-17 2017-02-28 Electronics And Telecommunications Research Institute Method and apparatus for accessing base station by service
US20150223169A1 (en) * 2014-02-06 2015-08-06 Nokia Corporation Method, apparatus, and computer program product for initial indication of block allocation within page for wireless networks
US9769789B2 (en) * 2014-08-22 2017-09-19 Qualcomm Incorporated Techniques for transmitting and receiving paging messages over an unlicensed radio frequency spectrum band
US20160255527A1 (en) * 2015-02-26 2016-09-01 Qualcomm Incorporated Gap scheduling for single radio voice call continuity
WO2016141989A1 (en) * 2015-03-12 2016-09-15 Huawei Technologies Co., Ltd. Adaptation of subcarrier frequency spacing based on energy efficiency indicator
US9843923B2 (en) * 2015-07-08 2017-12-12 At&T Intellectual Property I, L.P. Adaptive group paging for a communication network
KR102513274B1 (ko) 2015-08-21 2023-03-24 삼성전자주식회사 무선 통신 시스템에서 복합 재전송을 수행하는 방법 및 장치
EP4021032A1 (en) * 2015-11-19 2022-06-29 SK Telecom Co., Ltd. Method and apparatus for selecting core network in mobile communication system
US10791562B2 (en) * 2017-01-05 2020-09-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652958A (zh) * 2007-04-05 2010-02-17 艾利森电话股份有限公司 用于在电信系统中促成高效多媒体广播/多播服务的方法
CN102118222A (zh) * 2009-12-30 2011-07-06 株式会社泛泰 用户设备、基站和用于帧发送与接收的方法
WO2014163335A1 (ko) * 2013-04-01 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
CN107925985A (zh) 2018-04-17
WO2017034194A1 (ko) 2017-03-02
KR20170022889A (ko) 2017-03-02
KR102513274B1 (ko) 2023-03-24
EP3340703A1 (en) 2018-06-27
WO2017034247A1 (ko) 2017-03-02
AU2016312707A1 (en) 2018-04-12
EP3340500A4 (en) 2018-08-29
US20200288348A1 (en) 2020-09-10
EP3340703A4 (en) 2019-08-21
CN107925985B (zh) 2021-07-06
US20180249441A1 (en) 2018-08-30
EP3340703B1 (en) 2021-03-10
EP3340500A1 (en) 2018-06-27
KR20170022946A (ko) 2017-03-02
US10735992B2 (en) 2020-08-04
KR102493575B1 (ko) 2023-01-31
EP3340500B1 (en) 2020-12-16
US11109274B2 (en) 2021-08-31
US10659993B2 (en) 2020-05-19
KR20170022826A (ko) 2017-03-02
US20180249374A1 (en) 2018-08-30
CN107925497A (zh) 2018-04-17
KR102552872B1 (ko) 2023-07-07
AU2016312707B2 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
CN107925497B (zh) 基于灵活帧结构的蜂窝通信方法及其设备
US11665623B2 (en) Method and system for handling radio link monitoring (RLM) using bandwidth part (BWP) configurations
US11411664B2 (en) Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
US20220201528A1 (en) Method and device for measuring and reporting channel state in sidelink communication
EP3782319B1 (en) Selectively multiplexing physical uplink shared channel and physical uplink control channel communications
US11546827B2 (en) Method and device for changing wireless path in wireless communication system
US11558830B2 (en) Concurrent physical sidelink feedback channel transmission
CN111434175B (zh) 在无线通信系统中确定无线资源的装置和方法
CN105122917B (zh) 动态tdd配置用户设备和方法
US11758580B2 (en) Channel access procedures for an unlicensed radio frequency spectrum band
TW201947981A (zh) 為超可靠低時延通訊(urllc)分配實體上行鏈路控制通道(pucch)資源
JP6777627B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US11647527B2 (en) Method and apparatus for allocating dynamic resources of integrated access and backhaul nodes in wireless communication system
TW201924276A (zh) 用於針對於雙rat通訊的分時多工的方法和裝置
US11765714B2 (en) Method and device for supporting latency services via a logical channel in a mobile communication system
EP4093131A1 (en) Prioritization method and device for plurality of collision resources
US20230119439A1 (en) Method and device for transmission/reception based on time unit group in wireless communication system
US20230231616A1 (en) Beam sweep and beam indication on physical sidelink channels
CN114026940A (zh) 用于上行链路传输的方法、终端设备和网络节点
US20230262739A1 (en) Inter-user-equipment sidelink scheduling
US20230353314A1 (en) Method and apparatus for uplink control information transmission in wireless communication system
KR20230175130A (ko) 비면허 대역에서 사이드링크 통신을 위한 방법 및 장치
KR20230152571A (ko) Lte 사이드링크와 nr 사이드링크 간의 공존 방법 및 장치
KR20220135049A (ko) 무선 통신 시스템에서 우선순위에 기초하여 사이드링크 릴레이 탐색 메시지를 전송하는 방법 및 장치
KR20210009261A (ko) 무선 통신 시스템에서 혼잡을 제어하기 위한 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant