WO2017034109A1 - 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크 - Google Patents

멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크 Download PDF

Info

Publication number
WO2017034109A1
WO2017034109A1 PCT/KR2016/001162 KR2016001162W WO2017034109A1 WO 2017034109 A1 WO2017034109 A1 WO 2017034109A1 KR 2016001162 W KR2016001162 W KR 2016001162W WO 2017034109 A1 WO2017034109 A1 WO 2017034109A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
storage tank
insulation
primary
sealing wall
Prior art date
Application number
PCT/KR2016/001162
Other languages
English (en)
French (fr)
Inventor
표창민
박광준
강봉호
허행성
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Publication of WO2017034109A1 publication Critical patent/WO2017034109A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/06Coverings, e.g. for insulating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation

Definitions

  • the present invention relates to an insulating system structure of a membrane storage tank and a membrane storage tank including the same.
  • Natural gas is a fossil fuel containing methane as a main component and a small amount of ethane, propane and the like, and has recently been spotlighted as a low pollution energy source in various technical fields.
  • Natural gas is transported in a gaseous state through onshore or offshore gas piping, or to a distant consumer while stored in an LNG carrier in the form of liquefied liquefied natural gas (LNG).
  • Liquefied natural gas is obtained by cooling natural gas to cryogenic temperature (about -163 °C or less), and its volume is reduced to about 1/600 than natural gas in gas state, and is suitable for long distance transportation through sea.
  • Liquefied natural gas carriers are provided with storage tanks (also called cargo holds) for storing and storing liquefied natural gas cooled by liquefying natural gas.
  • the boiling point of liquefied natural gas is about -162 °C at atmospheric pressure, so the storage tank of liquefied natural gas is a material that can withstand ultra low temperatures such as aluminum steel, stainless steel, and 35% nickel steel to store and store liquefied natural gas safely. It can be manufactured, designed to be resistant to thermal stress and heat shrinkage, and to prevent thermal intrusion.
  • LNG transporter for loading and unloading LNG to land demand by loading sea
  • LNG ReVification Vessel which reloads LNG after recharging stored LNG after arriving at land demand by loading sea, recently unloading LNG
  • FPFP LNG Floating, Production, Storage and Offloading
  • FSRUs LNG Floating Storage and Regasification Units
  • the LNG FPSO is a floating offshore structure used to liquefy the produced natural gas directly from the sea and store it in a storage tank and, if necessary, to transport the LNG stored in the storage tank to an LNG carrier.
  • the LNG FSRU is a floating offshore structure that stores LNG unloaded from LNG carriers in a storage tank at sea far from the land, and then vaporizes LNG as needed to supply land demand.
  • a storage tank for storing LNG in a cryogenic state is installed in an offshore structure such as an LNG carrier, an LNG RV, an LNG FPSO, or an LNG FSRU that transports or stores a liquid cargo such as LNG.
  • These storage tanks can be classified into independent tank type and membrane type according to whether the load of the cargo directly acts on the insulation.
  • Membrane type storage tank is divided into GTT NO 96 type and TGZ Mark III type
  • independent tank type storage tank is divided into MOSS type and IHI-SPB type.
  • the TGZ Mark III type storage tank which is a form of a conventional LNG storage tank, has a structure in which a primary sealing wall, a primary insulating wall, a secondary sealing wall, and a secondary insulating wall are stacked.
  • the primary sealing wall is a part directly contacting the liquefied natural gas stored in the storage tank and is made of a 1.2 mm thick stainless steel membrane.
  • stainless steel is excellent as a sealing ability, it is suitable as a sealing wall, but since the thermal deformation is large, the primary sealing wall is formed by forming a plurality of corrugations in consideration of thermal deformation.
  • the secondary sealing wall has a structure in which the primary insulating wall is stacked on the sealing wall and the secondary insulating wall is stacked below the sealing wall, that is, the secondary sealing wall is interposed in the middle. Therefore, despite the arrangement of the secondary sealing wall, there is a problem that the primary insulating wall and the secondary insulating wall should be able to be combined. If the secondary sealing wall is made of stainless steel, it is possible to form a laminated joint structure with heat deformation. This is difficult, and this difficulty is particularly urgent for the corner part of the membrane structure of the storage tank.
  • the present invention has been made to solve the above problems, the present invention is to provide a storage tank including the structure and the structure of the insulation system suitable for the case where the secondary sealing wall is formed of stainless steel in the membrane type storage tank There is a purpose.
  • the secondary insulation wall is provided to insulate the internal space of the liquefied natural gas storage tank from the outside, and bent to be provided in the corner of the liquefied natural gas storage tank,
  • the coupling means is fitted into the coupling hole provided in the primary heat insulating wall, characterized in that the primary heat insulating wall is coupled to the secondary heat insulating wall.
  • the secondary heat insulation wall is coupled to the first sealing wall bonding layer is coupled to the bent edge and provided with a steel plate assembled on the plywood, the first sealing wall bonding layer spaced apart and coupled to the plywood And a second sealing wall bonding layer having a metal strip formed thereon, wherein the primary insulating wall bonding means is mounted on a metal strip formed on the second sealing wall bonding layer of the secondary insulating wall.
  • the secondary sealing wall is further characterized in that it is welded to the metal strip of the first sealing wall bonding layer and the second sealing wall bonding layer.
  • the primary heat insulation wall may include a first heat insulation layer having a bent shape, a wood block coupled to both flat sides of the first heat insulation layer, a steel plate laminated on the first heat insulation layer and an upper surface of the wood block, and the wood block. It includes a second heat insulating layer coupled to the side and an upper surface plywood laminated on the upper surface of the second heat insulating layer.
  • a plurality of stud bolts are formed on both sides of the steel plate, and the plurality of stud bolts are inserted into a plurality of bolt coupling holes formed in the wood block, so that the steel plate and the wood block are coupled. .
  • a groove is formed in the lower surface of the first heat insulating layer and the wood block, one groove formed in the first heat insulating layer and one groove formed in the wood block form one coupling groove, the coupling groove
  • the lower surface of the first heat insulating layer, the wood block and the second heat insulating layer is characterized in that the lower surface plywood is bonded.
  • the secondary heat insulating wall coupling hole is formed through the plywood bonded to the upper and lower surfaces of the second heat insulating layer and the second heat insulating layer
  • the primary heat insulating wall coupling means formed in the secondary heat insulating wall is the secondary
  • the primary heat insulating wall and the secondary heat insulating wall are further characterized in that the coupling.
  • the secondary heat insulation wall is coupled to the first sealing wall bonding layer, which is joined to bent along the bent edge and provided with a steel plate assembled on the plywood, and is spaced apart and coupled to the first sealing wall bonding layer, and the metal on the plywood. And a second sealing wall bonding layer having a strip formed thereon, wherein the primary insulating wall bonding means is mounted on a metal strip formed on the second sealing wall bonding layer of the secondary insulating wall.
  • the membrane-type storage tank according to the present invention includes the above-described insulation system.
  • the secondary sealing wall using stainless steel having excellent performance even at cryogenic temperature Due to the corrugated structure formed on the sealing wall, it is possible to sufficiently cope with thermal deformation.
  • first sealing wall bonding layer and the second sealing wall bonding layer are separately formed on the corner insulation wall, and only the first sealing wall bonding layer formed at the inner edge of the corner insulation wall is made of a steel material. Even if the primary sealing wall is joined on the first sealing wall bonding layer and the second sealing wall bonding layer of the corner insulation wall, it is easy to physically join the corner portion of the first insulation wall provided above the secondary sealing wall, rather than bonding. Do.
  • first sealing wall bonding layer and the second sealing wall bonding layer are formed by dividing a plurality of the first sealing wall bonding layer and the second sealing wall so as to correspond to the wrinkles of the secondary sealing wall having the form having a wrinkle.
  • the spacing between the bonding layers also makes it possible to form secondary sealing walls of stainless steel.
  • the secondary sealing wall is made of stainless steel, it is possible to manufacture the corner portion in the form of a panel instead of a tube, thereby making it easy to work.
  • FIG. 1 schematically shows a part of a membrane storage tank according to the present invention.
  • Figure 2 shows a three-dimensional structure of the corner portion of the thermal insulation system of the membrane-type storage tank according to the present invention.
  • Figure 3 shows a secondary insulating wall constituting the thermal insulation system of the membrane-type storage tank according to the present invention.
  • FIG 4 is an enlarged view of a portion of the secondary insulation wall and the secondary sealing wall constituting the insulation system of the membrane storage tank according to the present invention.
  • Figure 5 shows the primary insulation wall constituting the insulation system of the membrane-type storage tank according to the present invention.
  • Figure 6 shows the assembly process of the primary insulation wall constituting the insulation system of the membrane-type storage tank according to the present invention.
  • FIG. 1 schematically shows a part of the membrane-type storage tank for storing the liquefied natural gas according to the present invention.
  • the membrane type storage tank includes a primary sealing wall 110, a primary insulating wall 120, a secondary sealing wall 200, and a secondary insulating wall 300. ).
  • the primary sealing wall 110 is installed on the primary insulating wall 120 to contact the liquefied natural gas while the liquid liquefied natural gas (LNG) stored in the storage tank.
  • LNG liquid liquefied natural gas
  • the secondary sealing wall 200 is installed between the primary insulating wall 120 and the secondary insulating wall 300 serves to liquid-tighten the liquefied natural gas when the primary sealing wall 110 leaks.
  • the primary sealing wall 110 is formed with a plurality of wrinkles in order to prevent breakage during shrinkage and stretching due to temperature changes.
  • the wrinkled portion is stretched or shrunk by a temperature change according to the loading of the liquefied natural gas to prevent breakage due to thermal deformation applied to the primary sealing wall 110.
  • the primary sealing wall 110 may be made of stainless steel.
  • the present invention relates to the corner portion of the liquefied natural gas storage tank of this structure.
  • the corner portion of the membrane-type storage tank according to the present invention is a double-layer laminated membrane and a membrane for sealing to form a thermal insulation system.
  • Figure 2 shows a three-dimensional structure of the corner portion of the thermal insulation system of the membrane-type storage tank according to the present invention.
  • the insulation system of the membrane storage tank according to the present invention includes a secondary insulation wall 300 bent in a shape suitable for a corner and a secondary sealing wall stacked on the secondary insulation wall 300. And a stainless steel material stacked on the primary sealing wall 120 and the primary insulating wall 120 that is stacked on the secondary sealing wall 200 and bent in the same form as the secondary insulating wall 300. It consists of a primary sealing wall (not shown).
  • Insulation system of the membrane-type storage tank according to the present invention in order to configure not only the primary sealing wall but also the secondary sealing wall 200 is made of stainless steel, the optimum of the secondary insulating wall 300 and the primary insulating wall 120.
  • the primary heat insulating wall coupling means 332 provided in the secondary heat insulating wall 300 to be described later is fitted into the coupling hole 127 provided in the primary heat insulating wall 120, thereby providing a secondary heat insulating wall ( 300 and the primary insulating wall 120 is coupled.
  • the secondary heat insulating wall 300 according to the present invention by the heat insulating layer 310 formed of polyurethane foam or the like, so that the internal space of the liquefied natural gas storage tank is thermally blocked from the outside. do.
  • the heat insulation layer 310 corresponding to the corner portion may have a bent shape to fit the corner portion, and may form an angle of about 90 degrees.
  • the sealing wall coupling layers 320 and 330 are assembled on the heat insulating layer 310, and the sealing wall is laminated as the membrane on the sealing wall coupling layers 320 and 330.
  • the sealing wall bonding layer in the present invention is assembled by being divided into a first sealing wall bonding layer 320 and a second sealing wall bonding layer 330 assembled along the bent edge of the heat insulation layer 310.
  • the first sealing wall bonding layer 320 formed at the corner is formed by the steel plate 321 coupled to the plywood 322 by a screw, and the first sealing wall bonding layer 320 is bent of the heat insulation layer 310. It is formed along the corners, as shown in the first sealing wall bonding layer 320 is divided into a plurality of bonding is bonded (bonding).
  • the second sealing wall bonding layer 330 is made of plywood, is assembled on a flat surface instead of the corner of the insulating layer 310, and is arranged to be spaced apart from the first sealing wall bonding layer 320, and the insulating layer 310 is formed. A plurality is dividedly arranged and bonded along the longitudinal direction of the cross section.
  • the metal strip 331 (steel strip) is formed in a predetermined pattern on the second sealing wall coupling layer 330.
  • Secondary insulating wall 300 of the present invention is made of a configuration for forming a sealing wall made of stainless steel (SUS) laminated on the insulating wall to seal the storage tank inner space, and the sealing wall is secondary sealing As the wall, the secondary heat insulating wall 120 to be described later is formed on the secondary sealing wall and is configured to be coupled with the secondary heat insulating wall 300.
  • SUS stainless steel
  • the secondary sealing wall 200 stacked on the secondary insulating wall 300 is welded to the metal strip 331 and the first sealing wall bonding layer 320 on the second sealing wall bonding layer 330. Are stacked.
  • the metal strip 331 is formed in the form of a lattice to be suitable for stacking the second sealing wall bonding layer 330.
  • the second sealing wall 200 formed of stainless steel has a plurality of wrinkles 210 formed therein to prevent breakage and shrinkage due to temperature change.
  • the first sealing wall bonding layer 320 and the second sealing wall bonding layer 330 are spaced apart from each other so that the plurality of wrinkles 210 may be seated in the secondary heat insulating wall 300 of the present invention.
  • the first sealing wall bonding layer 320 and the second sealing wall bonding layer 330 are formed by dividing a plurality, so that a gap is formed between them.
  • the crease 210 of the second sealing wall 200 may be seated in the gap formed therein.
  • the primary heat insulation wall coupling means 332 is mounted, and the coupling means may be formed as an anchor, or the like, such that the primary insulation wall 120 may be fitted.
  • the corner insulation wall of the membrane-type storage tank according to the present invention has a configuration in which the sealing wall having a corrugation formed of stainless steel can be welded, even though the sealing wall is stainless steel,
  • the membrane-type storage tank can be configured as such a laminated structure.
  • Figure 5 shows a primary heat insulation wall constituting the insulation system of the membrane-type storage tank according to the present invention
  • Figure 6 is an assembly process of the primary insulation wall constituting the insulation system of the membrane-type storage tank according to the present invention. It is shown.
  • the primary heat insulation wall 120 is a wood block coupled to both flat side surfaces of the first heat insulation layer 121 and the first heat insulation layer 121 provided in a bent form.
  • a top plywood 125 and a bottom surface plywood 126 bonded to a bottom surface of the first heat insulation layer 121, the wood block 122, and the second heat insulation layer 124 are stacked on the top surface.
  • the steel plate 123 is provided in a bent form to fit the corner portion of the membrane-type storage tank of the present invention, a number of stud bolts (123-1) are formed on the lower surface of the steel plate (123).
  • a plurality of bolt coupling holes 122-1 are formed in the wood block 122 to be coupled to the bottom surface of the steel plate 123 to correspond to the stud bolts 123-1, such that the wood block 123 is provided on the bottom surface of the steel plate 123. 122) is combined.
  • the wood blocks 122 are coupled to both sides of the steel plate 123, and the first heat insulating layer 121 is coupled between the wood blocks 122.
  • the first heat insulating layer 121 is difficult to be bonded to the steel plate 123, and instead is fixedly coupled to the wood block 122.
  • grooves are formed in the lower surfaces of the first heat insulating layer 121 and the wood block 122, respectively, and these grooves face each other to form one coupling groove 127.
  • the block-shaped coupling key 128 By inserting the block-shaped coupling key 128 into the coupling groove 127, the first heat insulation layer 121 and the wood block 122 are coupled.
  • the coupling key 128 may be made of wood, and the coupling key 128 may be fitted or fixed by screws, thereby coupling the first insulation layer 121 and the wood block 122 to each other.
  • the bottom plywood 126 is bonded to the bottom surface of the first heat insulating layer 121 and the wood block 122 thus joined.
  • the second insulating layer 124 is bonded to the side surface of the wood block 122 on the lower surface plywood 126, and the upper surface plywood 125 is laminated on the upper surface of the second insulating layer 124.
  • the primary sealing wall 110 is bonded by welding on the primary insulating wall 120.
  • the present invention does not constitute a heat insulating layer on the entire corner portion, but separates the plywood to be formed on the upper and lower surfaces outside the steel, thereby facilitating the process and reducing the material cost.
  • the coupling between the primary insulation wall and the secondary insulation wall is made through a layer having plywood formed on the upper and lower surfaces thereof, and the position corresponds to the position of the primary insulation wall coupling means of the secondary insulation wall described above. .
  • the second heat insulation wall coupling hole 129 is formed through the second heat insulation layer 124, the upper surface plywood 125, and the lower surface plywood 126, and the second insulation wall coupling hole 129 described above.

Abstract

본 발명에 의한 멤브레인형 저장탱크의 단열시스템은, 액화천연가스 저장탱크의 내부 공간을 외부와 단열시키기 위해 마련되고, 액화천연가스 저장탱크의 코너에 마련되도록 절곡된 형태를 갖는 2차 단열벽, 상기 2차 단열벽 상에 적층되고, 주름부를 가지는 스테인리스 강 소재로 마련되는 2차 밀봉벽, 상기 2차 밀봉벽 상에 적층되고, 상기 2차 단열벽과 결합되도록 절곡된 형태를 갖는 1차 단열벽 및 상기 1차 단열벽 상에 적층 마련되고, 액화천연가스 저장탱크의 내측 방향으로 주름부가 형성된 스테인리스 강 소재의 1차 밀봉벽을 포함하고, 상기 2차 단열벽 상에 마련되는 1차 단열벽 결합수단이 상기 1차 단열벽에 마련되는 결합홀에 끼워짐으로써, 상기 1차 단열벽이 상기 2차 단열벽에 결합되는 것을 특징으로 함으로써, 본 발명에 의하면, 멤브레인 타입의 저장탱크에서 2차 밀봉벽이 스테인리스 강으로 형성되는 경우에도 적합한 단열시스템의 구조와 이를 포함하는 저장탱크가 제공된다.

Description

멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크
본 발명은 멤브레인형 저장탱크의 단열시스템 구조와 이를 포함하는 멤브레인형 저장탱크에 관한 것이다.
천연가스(natural gas)는 메탄(methane)을 주성분으로 하고, 소량의 에탄(ethane), 프로판(propane) 등을 포함하는 화석연료로서, 최근 다양한 기술 분야에서 저공해 에너지원으로서 각광받고 있다.
천연가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는 액화된 액화천연가스(LNG)의 상태로 LNG 수송선에 저장된 채 원거리의 소비처로 운반된다. 액화천연가스는 천연가스를 극저온(대략 -163℃ 이하)으로 냉각하여 얻어지는 것으로 가스 상태의 천연가스일 때보다 그 부피가 대략 1/600로 줄어들어 해상을 통한 원거리 운반에 매우 적합하다.
액화천연가스 운반선에는 천연가스를 냉각하여 액화시킨 액화천연가스를 보관 및 저장할 수 있는 저장탱크(cargo, 화물창이라고도 함)가 구비된다. 액화천연가스의 끓는점은 대기압에서 약 -162℃ 정도이므로, 액화천연가스의 저장탱크는 액화천연가스를 안전하게 보관하고 저장하기 위해 알루미늄강, 스테인리스강, 35% 니켈강 등과 같은 초저온에 견딜 수 있는 재료로 제작될 수 있으며, 열응력 및 열수축에 강인하고, 열침입을 막을 수 있는 구조로 설계된다.
LNG를 싣고 바다를 운항하여 육상 수요처에 LNG를 하역하기 위한 LNG 수송선, LNG를 싣고 바다를 운항하여 육상 수요처에 도착한 후 저장된 LNG를 재기화하여 천연가스 상태로 하역하는 LNG RV(Regasification Vessel), 최근에는 LNG FPSO(Floating, Production, Storage and Offloading)나 LNG FSRU(Floating Storage and Regasification Unit)와 같은 부유식 해상 구조물에도 LNG 수송선이나 LNG RV에 설치되는 저장탱크가 포함된다.
LNG FPSO는, 생산된 천연가스를 해상에서 직접 액화시켜 저장탱크 내에 저장하고, 필요 시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 부유식 해상 구조물이다. 또 LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 LNG를 저장탱크에 저장한 후 필요에 따라 LNG를 기화시켜 육상수요처에 공급하는 부유식 해상 구조물이다.
이와 같이 LNG와 같은 액체화물을 해상에서 수송하거나 보관하는 LNG 수송선, LNG RV, LNG FPSO, LNG FSRU 등의 해상 구조물 내에는 LNG를 극저온 상태로 저장하기 위한 저장탱크가 설치되어 있다.
이러한 저장탱크는 단열재에 화물의 하중이 직접적으로 작용하는지 여부에 따라 독립탱크형(Independent Tank)과 멤브레인형(Membrane Type)으로 분류할 수 있다. 멤브레인형 저장탱크는 GTT NO 96형과 TGZ Mark Ⅲ형으로 나눠지며, 독립탱크형 저장탱크는 MOSS형과 IHI-SPB형으로 나눠진다.
종래의 액화천연가스 저장탱크의 한 형태인 TGZ Mark Ⅲ형 저장탱크는 1차 밀봉벽, 1차 단열벽, 2차 밀봉벽 및 2차 단열벽이 적층되는 구조이다. 1차 밀봉벽은 저장탱크에 저장된 액화천연가스와 직접 접하는 부분으로서 1.2㎜ 두께의 스테인리스강 멤브레인(Membrane)으로 이루어진다.
스테인리스 강이 밀폐 능력이 뛰어나므로 밀봉벽으로서 적합하지만, 또한 열변형이 크기 때문에 1차 밀봉벽에는 열변형을 감안하여 다수의 주름을 형성하여 구성된다.
그러나, 1차 밀봉벽과 달리 2차 밀봉벽은 밀봉벽 상부에 1차 단열벽이 적층되고, 밀봉벽 하부에 2차 단열벽이 적층되는 구조, 즉 2차 밀봉벽이 중간에 개재되는 구조이기 때문에, 2차 밀봉벽의 배치에도 불구하고 1차 단열벽과 2차 단열벽이 결합될 수 있어야 하는 문제가 있는데, 2차 밀봉벽이 스테인리스 강인 경우에는 더욱 열변형과 함께 적층 결합 구조를 형성시키는 것이 어려운 점이 있고, 그러한 어려움은 특히 저장탱크의 멤브레인 구조 중 코너부의 경우 더욱 절실하다.
그러므로, 기존에 2차 밀봉벽으로서 스테인리스 강을 사용하기 어려웠고, 이를 사용하는 경우에는 코너부를 패널 형태가 아닌 튜브 형태로 제작하는 것이 고작이었다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 멤브레인 타입의 저장탱크에서 2차 밀봉벽이 스테인리스 강으로 형성되는 경우에 적합한 단열시스템의 구조와 이를 포함하는 저장탱크를 제공하는 데 그 목적이 있다.
본 발명에 따른 멤브레인형 저장탱크의 단열시스템은, 액화천연가스 저장탱크의 내부 공간을 외부와 단열시키기 위해 마련되고, 액화천연가스 저장탱크의 코너에 마련되도록 절곡된 형태를 갖는 2차 단열벽, 상기 2차 단열벽 상에 적층되고, 주름부를 가지는 스테인리스 강 소재로 마련되는 2차 밀봉벽, 상기 2차 밀봉벽 상에 적층되고, 상기 2차 단열벽과 결합되도록 절곡된 형태를 갖는 1차 단열벽 및 상기 1차 단열벽 상에 적층 마련되고, 액화천연가스 저장탱크의 내측 방향으로 주름부가 형성된 스테인리스 강 소재의 1차 밀봉벽을 포함하고, 상기 2차 단열벽 상에 마련되는 1차 단열벽 결합수단이 상기 1차 단열벽에 마련되는 결합홀에 끼워짐으로써, 상기 1차 단열벽이 상기 2차 단열벽에 결합되는 것을 특징으로 한다.
여기서, 상기 2차 단열벽은, 절곡된 모서리를 따라 결합되고 플라이우드 상에 강철판이 조립되어 마련되는 제1 밀봉벽 결합층과, 상기 제1 밀봉벽 결합층과 이격되어 결합되며 플라이우드 상에 금속 스트립이 형성된 제2 밀봉벽 결합층을 포함하고, 상기 1차 단열벽 결합수단은 상기 2차 단열벽의 제2 밀봉벽 결합층 상에 형성되는 금속 스트립 상에 장착되는 것을 보다 구체적인 특징으로 한다.
상기 2차 밀봉벽은 상기 제1 밀봉벽 결합층과 상기 제2 밀봉벽 결합층의 금속 스트립에 용접되는 것을 또한 특징으로 한다.
그리고, 상기 1차 단열벽은, 절곡된 형태의 제1 단열층, 상기 제1 단열층의 평탄한 양 측면에 결합되는 우드 블럭, 상기 제1 단열층과 상기 우드 블럭의 상면에 적층되는 강철판, 상기 우드 블럭의 측면에 결합되는 제2 단열층 및 상기 제2 단열층의 상면에 적층되는 상면 플라이우드를 포함한다.
여기서, 상기 강철판에는 스터드 볼트가 양 측부에 다수 형성되고, 상기 다수의 스터드 볼트는 상기 우드 블럭에 형성되는 다수의 볼트 결합홀에 끼워짐으로써, 상기 강철판과 상기 우드 블럭이 결합되는 것을 특징으로 한다.
또한, 상기 제1 단열층과 상기 우드 블럭의 하면에는 홈이 형성되고, 상기 제1 단열층에 형성되는 하나의 홈과 상기 우드 블럭에 형성되는 하나의 홈은 하나의 결합홈을 형성하며, 상기 결합홈에 블럭 형태의 결합 키가 삽입됨으로써, 상기 제1 단열층과 상기 우드 블럭이 고정 결합되는 것을 특징으로 한다.
그리고, 상기 제1 단열층, 상기 우드 블럭 및 상기 제2 단열층의 하면에는 하면 플라이우드가 접합되는 것을 특징으로 한다.
여기서, 상기 제2 단열층과 상기 제2 단열층의 상면과 하면에 접합된 플라이우드를 관통하여 2차 단열벽 결합홀이 형성되고, 2차 단열벽에 형성되는 1차 단열벽 결합수단이 상기 2차 단열벽 결합홀에 결함됨으로써, 상기 1차 단열벽과 상기 2차 단열벽이 결합되는 것을 또한 특징으로 한다.
이러한 상기 2차 단열벽은, 절곡된 모서리를 따라 결합되고 플라이우드 상에 강철판이 조립되어 마련되는 제1 밀봉벽 결합층과, 상기 제1 밀봉벽 결합층과 이격되어 결합되며 플라이우드 상에 금속 스트립이 형성된 제2 밀봉벽 결합층을 포함하고, 상기 1차 단열벽 결합수단은 상기 2차 단열벽의 제2 밀봉벽 결합층 상에 형성되는 금속 스트립 상에 장착되는 것을 보다 구체적인 특징으로 한다.
아울러, 본 발명에 의한 멤브레인형 저장탱크는 상술한 단열시스템을 포함한다.
본 발명의 멤브레인형 저장탱크의 코너부 단열벽과 이를 포함하는 멤브레인형 저장탱크 및 액화천연가스 저장탱크의 단열시스템에 의하면, 극저온에서도 우수한 성능을 갖는 스테인리스 강을 2차 밀봉벽으로 사용하면서도 2차 밀봉벽에 형성되는 주름 구조로 인해서 열변형에 충분히 대응이 가능하다.
그리고, 코너부 단열벽 상에 제1 밀봉벽 결합층과 제2 밀봉벽 결합층을 분리 형성하고, 코너부 단열벽의 내측 모서리에 형성되는 제1 밀봉벽 결합층만 스틸 소재로 이루어짐으로써, 2차 밀봉벽이 코너부 단열벽의 제1 밀봉벽 결합층과 제2 밀봉벽 결합층 상에 결합되더라도, 2차 밀봉벽 상측에 마련되는 제1 단열벽의 코너부와 본딩이 아닌 물리적 결합이 용이하다.
또한, 주름을 가지는 형태로 구성되는 2차 밀봉벽의 주름에 대응하여, 제1 밀봉벽 결합층과 제2 밀봉벽 결합층이 다수 분할되어 형성되고, 제1 밀봉벽 결합층과 제2 밀봉벽 결합층 간에도 간격을 형성함으로써, 2차 밀봉벽을 스테인리스 강으로 형성시킬 수 있게 한다.
이렇게 2차 밀봉벽을 스테인리스 강으로 형성시키는 것이 가능하여, 인바강(Invar steel)으로 구현하는 것에 비해 소재비를 대폭 줄이는 것이 가능하다.
한편, 2차 밀봉벽을 스테인리스 강으로 구성하면서도, 코너부를 튜브가 아닌 패널 형태로 제작이 가능하여 작업성이 용이하다.
그리고, 제1 밀봉벽 결합층만을 스틸 소재로 구성함으로써, 제2 밀봉벽 결합층까지 스틸로 구성하는 것에 비해 경제적이다.
도 1은 본 발명에 의한 멤브레인형 저장탱크의 일부를 개략적으로 도시한 것이다.
도 2는 본 발명에 의한 멤브레인형 저장탱크의 단열시스템의 코너부 구조를 입체적으로 도시한 것이다.
도 3은 본 발명에 의한 멤브레인형 저장탱크의 단열시스템을 구성하는 2차 단열벽을 도시한 것이다.
도 4는 본 발명에 의한 멤브레인형 저장탱크의 단열시스템을 구성하는 2차 단열벽과 2차 밀봉벽 일부를 확대 도시한 것이다.
도 5는 본 발명에 의한 멤브레인형 저장탱크의 단열시스템을 구성하는 1차 단열벽을 도시한 것이다.
도 6은 본 발명에 의한 멤브레인형 저장탱크의 단열시스템을 구성하는 1차 단열벽의 조립과정을 도시한 것이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선, 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
먼저, 도 1을 참조하여 본 발명의 실시 예에 의한 액화천연가스 저장탱크를 설명한다. 도 1은 본 발명에 의한 액화천연가스를 저장하기 위한 멤브레인형 저장탱크의 일부를 개략적으로 도시한 것이다.
도 1에 도시된 바와 같이, 본 발명의 실시 예에 의한 멤브레인형 저장탱크는 1차 밀봉벽(110), 1차 단열벽(120), 2차 밀봉벽(200) 및 2차 단열벽(300)을 포함한다.
1차 밀봉벽(110)은 1차 단열벽(120) 위에 설치되어 액화천연가스와 접하면서 저장탱크에 저장된 액화천연가스(LNG)를 액밀한다.
2차 밀봉벽(200)은 1차 단열벽(120)과 2차 단열벽(300) 사이에 설치되어 1차 밀봉벽(110)이 새는 경우 액화천연가스를 액밀하는 역할을 한다.
1차 밀봉벽(110)에는 온도 변화에 의한 수축 및 신장 시 파손 등을 방지하기 위해서 다수의 주름부가 형성된다. 주름부는 액화천연가스의 선하적에 따른 온도 변화에 의하여 신장되거나 수축되어 1차 밀봉벽(110)에 가해지는 열적 변형에 따른 파손을 방지한다.
1차 밀봉벽(110)은 스테인레스 스틸로 제작될 수 있다.
본 발명은 이러한 구조 중 액화천연가스 저장탱크의 코너부에 관계한다.
본 발명에 의한 멤브레인형 저장탱크의 코너부는 패널 형태의 단열벽과 밀봉을 위한 멤브레인이 이중으로 적층되어 단열시스템을 구성한다.
도 2는 본 발명에 의한 멤브레인형 저장탱크의 단열시스템의 코너부 구조를 입체적으로 도시한 것이다.
도 2를 참조하면, 본 발명에 의한 멤브레인형 저장탱크의 단열시스템은, 코너에 적합한 형태로 절곡된 2차 단열벽(300)과, 2차 단열벽(300) 상에 적층되는 2차 밀봉벽(200)과, 2차 밀봉벽(200)에 적층되고 2차 단열벽(300)과 동일한 형태로 절곡된 1차 단열벽(120) 및 1차 단열벽(120) 상에 적층되는 스테인리스 강 소재의 1차 밀봉벽(미도시)으로 구성된다.
본 발명에 의한 멤브레인형 저장탱크의 단열시스템은, 1차 밀봉벽 뿐 아니라 2차 밀봉벽(200)도 스테인리스 강으로 구성하기 위해서 2차 단열벽(300)과 1차 단열벽(120)의 최적의 구조를 제안한다.
또한, 멤브레인형 저장탱크의 코너부에 적합하도록 절곡된 2차 단열벽(300)과 1차 단열벽(120)의 모서리에 강철판을 구성시키기 위한 2차 단열벽(300)과 1차 단열벽(120)의 최상의 구조를 제안하고 있다.
그에 따라, 후술할 2차 단열벽(300)에 마련되는 1차 단열벽 결합수단(332)이 1차 단열벽(120)에 마련되는 결합홀(127)에 끼워짐으로써, 2차 단열벽(300)과 1차 단열벽(120)이 결합되게 한다.
이하에서는, 이를 위한 2차 단열벽(300) 및 1차 단열벽(120)의 구조를 각각 살펴보도록 한다.
도 3 및 도 4를 참조하면, 본 발명에 의한 2차 단열벽(300)은 폴리우레탄 폼 등으로 형성되는 단열층(310)에 의해, 액화천연가스 저장탱크의 내부 공간이 외부와 열적으로 차단되도록 한다.
코너부에 해당하는 단열층(310)은 코너부에 맞도록 절곡된 형태를 가지며, 대체로 90도 내외의 각을 형성할 수 있다.
이러한 단열층(310) 상에 밀봉벽 결합층(320,330)이 조립되고, 밀봉벽 결합층(320,330) 상에 멤브레인으로서 밀봉벽이 적층이 되는 구조를 가진다.
본 발명에서의 밀봉벽 결합층은 단열층(310)의 절곡된 모서리를 따라 조립되는 제1 밀봉벽 결합층(320)과 제2 밀봉벽 결합층(330)으로 구분되어 조립된다.
코너에 형성되는 제1 밀봉벽 결합층(320)은 플라이우드(322)에 강철판(321)이 스크류에 의해 결합되어 형성되고, 이러한 제1 밀봉벽 결합층(320)이 단열층(310)의 절곡된 모서리를 따라 형성되고, 도시와 같이 제1 밀봉벽 결합층(320)은 다수가 분할 배열되어 본딩(bonding) 결합된다.
그리고, 제2 밀봉벽 결합층(330)은 플라이우드로 마련되며, 단열층(310)의 코너가 아닌 평탄면에 조립되고, 제1 밀봉벽 결합층(320)과 이격되어 배열되며, 단열층(310)의 길이 방향을 따라서 다수가 분할 배열되어 본딩(bonding) 결합된다.
이러한 제2 밀봉벽 결합층(330) 상에는 금속 스트립(331, steel strip)이 일정한 패턴으로 형성된다.
본 발명의 2차 단열벽(300)은 저장탱크 내부공간을 밀봉시키기 위해 단열벽 상에 적층 형성시키는 밀봉벽을 스테인리스 강(SUS)으로 구성하기 위한 구성으로 이루어지며, 또한 밀봉벽은 2차 밀봉벽으로서 2차 밀봉벽 상에는 후술할 1차 단열벽(120)이 적층되어 2차 단열벽(300)과 결합될 수 있는 구성으로 이루어진다.
그래서, 2차 단열벽(300) 상에 적층 형성되는 2차 밀봉벽(200)은 제2 밀봉벽 결합층(330) 상의 금속 스트립(331)과 제1 밀봉벽 결합층(320)에 용접됨으로써 적층된다.
금속 스트립(331)은 제2 밀봉벽 결합층(330)을 적층시키기에 적합하도록 격자 형태로서 형성된다.
스테인리스 강으로 마련되는 제2 밀봉벽(200)은 온도 변화에 의한 수축 및 신장 시 파손 등을 방지하기 위해서 다수의 주름부(210)가 형성된다.
이러한 다수의 주름부(210)가 안착될 수 있도록 본 발명의 2차 단열벽(300)에서 제1 밀봉벽 결합층(320)과 제2 밀봉벽 결합층(330)은 이격되어 그 사이에 틈이 형성되도록 하고, 제1 밀봉벽 결합층(320)과 제2 밀봉벽 결합층(330)은 각각 다수가 분할되어 형성됨으로써, 각각의 사이에 틈이 형성되도록 한다.
이에 따라 형성되는 틈에 제2 밀봉벽(200)의 주름부(210)가 안착될 수 있게 된다.
또한, 제2 밀봉벽 상에 후술할 1차 단열벽(120)이 적층되어 2차 단열벽(300)과 결합될 수 있도록, 제2 밀봉벽 결합층(330)의 금속 스트립(331) 상에는 1차 단열벽 결합수단(332)이 장착되고, 이러한 결합수단은 앵커(anchor) 등으로 마련되어, 1차 단열벽(120)이 끼워질 수 있는 등으로 형성될 수 있다.
이상과 같이, 본 발명에 의한 멤브레인형 저장탱크의 코너부 단열벽은 스테인리스 스틸로 형성되고 주름을 가지는 밀봉벽이 용접 결합될 수 있는 구성을 가지고, 밀봉벽이 스테인리스 스틸임에도 불구하고, 밀봉벽 상으로 저장탱크의 내측에 해당되는 1차 단열벽이 적층되어 2차 단열벽에 용이하게 결합될 수 있는 구성을 가짐으로써, 이러한 적층 구조로서 멤브레인형 저장탱크가 구성될 수 있다.
도 5는 본 발명에 의한 멤브레인형 저장탱크의 단열시스템을 구성하는 1차 단열벽을 도시한 것이고, 도 6은 본 발명에 의한 멤브레인형 저장탱크의 단열시스템을 구성하는 1차 단열벽의 조립과정을 도시한 것이다.
도 5 및 도 6을 참조하면, 본 발명에 의한 1차 단열벽(120)은, 절곡된 형태로 마련되는 제1 단열층(121), 제1 단열층(121)의 평탄한 양 측면에 결합되는 우드 블럭(122), 제1 단열층(121)과 우드 블럭(122) 상면에 적층되는 강철판(123), 우드 블럭(122)의 측면에 결합되는 제2 단열층(124), 제2 단열층(124)의 상면에 적층되는 상면 플라이우드(125) 및 제1 단열층(121), 우드 블럭(122) 및 제2 단열층(124)의 하면에 접합되는 하면 플라이우드(126)를 포함한다.
우선 강철판(123)은 본 발명의 멤브레인형 저장탱크의 코너부에 적합하도록 절곡된 형태로서 마련되고, 강철판(123)의 하면에는 스터드 볼트(123-1)가 다수 형성된다.
그리고, 강철판(123) 하면에 결합될 우드 블럭(122)에는 다수의 볼트 결합홀(122-1)이 스터드 볼트(123-1)에 대응되게 형성됨으로써, 강철판(123)의 하면에 우드 블럭(122)이 결합된다.
강철판(123)의 양 측부에 우드 블럭(122)이 결합되고, 우드 블럭(122) 사이에는 제1 단열층(121)이 결합되게 된다.
이러한 제1 단열층(121)은 강철판(123)과 접합되기 어렵고, 대신 우드 블럭(122)과 고정 결합된다.
이를 위해, 제1 단열층(121)과 우드 블럭(122)의 하면에는 각각 홈이 형성되고, 이들 홈은 마주하여 하나의 결합홈들(127)을 형성하게 된다.
그러한 결합홈(127)에 블럭 형태의 결합 키(128)를 삽입함으로써, 제1 단열층(121)과 우드 블럭(122)이 결합된다.
이러한 결합 키(128)는 우드 재질일 수 있고, 결합 키(128)는 끼움 결합되거나, 나사에 의해 고정될 수도 있고, 이에 의해서 제1 단열층(121)과 우드 블럭(122)이 결합을 이룬다.
이렇게 결합된 제1 단열층(121)과 우드 블럭(122)의 하면에는 하면 플라이우드(126)가 접합된다. 하면 플라이우드(126) 상의 우드 블럭(122)의 측면으로는 제2 단열층(124)이 접합되고, 제2 단열층(124)의 상면에는 상면 플라이우드(125)가 적층이 된다.
그리고, 1차 밀봉벽(110)은 1차 단열벽(120) 상에 용접함으로써 결합시킨다.
이와 같이, 본 발명은 코너부 전체의 단열층 상을 스틸로 구성하지 않고, 스틸 외측으로 상 하면에 플라이우드가 형성되도록 분리하여, 공정에 용이하며, 재료비의 절감이 가능하다.
그리고, 1차 단열벽의 2차 단열벽과의 결합을 상 하면에 플라이우드가 형성된 층을 통해서 이루어지도록 하고, 그 위치는 상술한 2차 단열벽의 1차 단열벽 결합수단의 위치에 대응된다.
즉, 제2 단열층(124)과 상면 플라이우드(125), 하면 플라이우드(126)를 관통하여 2차 단열벽 결합홀(129)이 형성되고, 2차 단열벽 결합홀(129)에 앞서 설명한 2차 단열벽(300)의 1차 단열벽 결합수단(332)이 결합됨으로써, 1차 단열벽(120)과 2차 단열벽(300)이 스테인리스 스틸 소재의 2차 밀봉벽(200)의 구성에도 불구하고 용이하고 효율적으로 물리적인 결합이 가능하게 된다.
이상과 같이 본 발명에 따른 멤브레인형 저장탱크의 단열시스템과 이를 포함하는 멤브레인형 저장탱크는, 예시된 도면을 참조하여 설명하였으나, 본 발명은 이상에서 설명된 실시 예와 도면에 의해 한정되지 않으며, 특허청구범위 내에서 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들에 의해 다양한 수정 및 변형이 이루어질 수 있음은 물론이다.
* 부호의 설명*
110 : 1차 밀봉벽
120 : 1차 단열벽
121 : 제1 단열층
122 : 우드 블럭
122-1 : 볼트 결합홀
123 : 강철판
123-1 : 스터드 볼트
124 : 제2 단열층
125 : 상면 플라이우드
126 : 하면 플라이우드
127 : 결합홈
128 : 결합 키
129 : 2차 단열벽 결합홀
200 : 2차 밀봉벽
210 : 주름부
300 : 2차 단열벽
320 : 제1 밀봉벽 결합층
330 : 제2 밀봉벽 결합층
331 : 금속 스트립
332 : 1차 단열벽 결합수단

Claims (10)

  1. 액화천연가스 저장탱크의 내부 공간을 외부와 단열시키며, 액화천연가스 저장탱크액화천연가스 저장탱크의 내부 공간을 외부와 단열시키기 위해 마련되고, 액화천연가스 저장탱크의 코너에 마련되도록 절곡된 형태를 갖는 2차 단열벽;
    상기 2차 단열벽 상에 적층되고, 주름부를 가지는 스테인리스 강 소재로 마련되는 2차 밀봉벽;
    상기 2차 밀봉벽 상에 적층되고, 상기 2차 단열벽과 결합되도록 절곡된 형태를 갖는 1차 단열벽; 및
    상기 1차 단열벽 상에 적층 마련되고, 액화천연가스 저장탱크의 내측 방향으로 주름부가 형성된 스테인리스 강 소재의 1차 밀봉벽을 포함하고,
    상기 2차 단열벽 상에 마련되는 1차 단열벽 결합수단이 상기 1차 단열벽에 마련되는 결합홀에 끼워짐으로써, 상기 1차 단열벽이 상기 2차 단열벽에 결합되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  2. 청구항 1에 있어서,
    상기 2차 단열벽은,
    절곡된 모서리를 따라 결합되고 플라이우드 상에 강철판이 조립되어 마련되는 제1 밀봉벽 결합층과,
    상기 제1 밀봉벽 결합층과 이격되어 결합되며 플라이우드 상에 금속 스트립이 형성된 제2 밀봉벽 결합층을 포함하고,
    상기 1차 단열벽 결합수단은 상기 2차 단열벽의 2차 밀봉벽 결합층 상에 형성되는 금속 스트립 상에 장착되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  3. 청구항 1에 있어서,
    상기 2차 밀봉벽은 상기 제1 밀봉벽 결합층과 상기 제2 밀봉벽 결합층의 금속 스트립에 용접되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  4. 청구항 1에 있어서,
    상기 1차 단열벽은,
    절곡된 형태의 제1 단열층;
    상기 제1 단열층의 평탄한 양 측면에 결합되는 우드 블럭;
    상기 제1 단열층과 상기 우드 블럭의 상면에 적층되는 강철판;
    상기 우드 블럭의 측면에 결합되는 제2 단열층; 및
    상기 제2 단열층의 상면에 적층되는 상면 플라이우드를 포함하는,
    멤브레인형 저장탱크의 단열시스템.
  5. 청구항 4에 있어서,
    상기 강철판에는 스터드 볼트가 양 측부에 다수 형성되고,
    상기 다수의 스터드 볼트는 상기 우드 블럭에 형성되는 다수의 볼트 결합홀에 끼워짐으로써, 상기 강철판과 상기 우드 블럭이 결합되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  6. 청구항 4에 있어서,
    상기 제1 단열층과 상기 우드 블럭의 하면에는 홈이 형성되고, 상기 제1 단열층에 형성되는 하나의 홈과 상기 우드 블럭에 형성되는 하나의 홈은 하나의 결합홈을 형성하며,
    상기 결합홈에 블럭 형태의 결합 키가 삽입됨으로써, 상기 제1 단열층과 상기 우드 블럭이 고정 결합되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  7. 청구항 4에 있어서,
    상기 제1 단열층, 상기 우드 블럭 및 상기 제2 단열층의 하면에는 하면 플라이우드가 접합되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  8. 청구항 7에 있어서,
    상기 제2 단열층과 상기 제2 단열층의 상면과 하면에 접합된 플라이우드를 관통하여 2차 단열벽 결합홀이 형성되고,
    2차 단열벽에 형성되는 1차 단열벽 결합수단이 상기 2차 단열벽 결합홀에 결함됨으로써, 상기 1차 단열벽과 상기 2차 단열벽이 결합되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  9. 청구항 8에 있어서,
    상기 2차 단열벽은,
    절곡된 모서리를 따라 결합되고 플라이우드 상에 강철판이 조립되어 마련되는 제1 밀봉벽 결합층과,
    상기 제1 밀봉벽 결합층과 이격되어 결합되며 플라이우드 상에 금속 스트립이 형성된 제2 밀봉벽 결합층을 포함하고,
    상기 1차 단열벽 결합수단은 상기 2차 단열벽의 제2 밀봉벽 결합층 상에 형성되는 금속 스트립 상에 장착되는 것을 특징으로 하는,
    멤브레인형 저장탱크의 단열시스템.
  10. 청구항 1 내지 9 중 어느 한 항에 의한 단열시스템을 포함하는 멤브레인형 저장탱크.
PCT/KR2016/001162 2015-08-21 2016-02-03 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크 WO2017034109A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0117942 2015-08-21
KR1020150117942A KR101751839B1 (ko) 2015-08-21 2015-08-21 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크

Publications (1)

Publication Number Publication Date
WO2017034109A1 true WO2017034109A1 (ko) 2017-03-02

Family

ID=58100253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001162 WO2017034109A1 (ko) 2015-08-21 2016-02-03 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크

Country Status (2)

Country Link
KR (1) KR101751839B1 (ko)
WO (1) WO2017034109A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086790A1 (fr) * 2017-11-06 2019-05-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638283B1 (ko) * 2018-12-27 2024-02-20 한화오션 주식회사 액화천연가스 저장탱크의 코너부 단열구조
CN113494677B (zh) * 2020-03-18 2023-03-24 大宇造船海洋株式会社 液化天然气储罐的隔热结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667500B1 (ko) * 2005-04-15 2007-01-10 한국가스공사 액화천연가스 저장탱크 및 그 제조용 모듈
JP2011519005A (ja) * 2008-06-20 2011-06-30 サムスン ヘヴィ インダストリーズ カンパニー リミテッド 液化天然ガス貨物タンクのコーナーパネル
KR20110131919A (ko) * 2010-06-01 2011-12-07 한국과학기술원 단열 구조체 및 이를 갖는 극저온 액체저장탱크
KR20120013246A (ko) * 2011-12-16 2012-02-14 삼성중공업 주식회사 액화천연가스 저장 탱크
KR20150028493A (ko) * 2013-09-06 2015-03-16 대우조선해양 주식회사 액화천연가스 화물창의 단열 구조 및 단열 구조의 연결 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280332B1 (ko) 2011-05-27 2013-07-01 삼성중공업 주식회사 액화천연가스 화물창의 단열구조물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667500B1 (ko) * 2005-04-15 2007-01-10 한국가스공사 액화천연가스 저장탱크 및 그 제조용 모듈
JP2011519005A (ja) * 2008-06-20 2011-06-30 サムスン ヘヴィ インダストリーズ カンパニー リミテッド 液化天然ガス貨物タンクのコーナーパネル
KR20110131919A (ko) * 2010-06-01 2011-12-07 한국과학기술원 단열 구조체 및 이를 갖는 극저온 액체저장탱크
KR20120013246A (ko) * 2011-12-16 2012-02-14 삼성중공업 주식회사 액화천연가스 저장 탱크
KR20150028493A (ko) * 2013-09-06 2015-03-16 대우조선해양 주식회사 액화천연가스 화물창의 단열 구조 및 단열 구조의 연결 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086790A1 (fr) * 2017-11-06 2019-05-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3073272A1 (fr) * 2017-11-06 2019-05-10 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
KR20200088360A (ko) * 2017-11-06 2020-07-22 가즈트랑스포르 에 떼끄니가즈 밀봉되고 단열된 탱크
CN111527340A (zh) * 2017-11-06 2020-08-11 气体运输技术公司 密封且热绝缘的容器
CN111527340B (zh) * 2017-11-06 2021-11-23 气体运输技术公司 密封且热绝缘的容器
KR102501626B1 (ko) 2017-11-06 2023-02-21 가즈트랑스포르 에 떼끄니가즈 밀봉되고 단열된 탱크

Also Published As

Publication number Publication date
KR20170022664A (ko) 2017-03-02
KR101751839B1 (ko) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2016003214A1 (ko) 액화천연가스 저장탱크 및 액화천연가스 저장 탱크의 단열벽
WO2017034117A1 (ko) 앵커 스트립이 제거된 액화가스 화물창의 인슐레이션 구조, 그 인슐레이션 구조를 구비하는 화물창, 및 그 화물창을 구비하는 액화가스 운반선
WO2017034118A1 (ko) 액화가스 화물창의 90도 코너 부의 단열 구조, 그 단열 구조를 구비하는 화물창, 및 그 화물창을 제조하는 시공방법
WO2017014426A1 (ko) 액화천연가스 저장탱크의 고정장치
WO2020138846A1 (ko) 액화천연가스 저장탱크의 코너부 단열구조
WO2016003213A1 (ko) 액화천연가스 저장탱크 및 액화천연가스 저장 탱크의 단열벽 고정장치
WO2016021948A1 (ko) 액화천연가스 저장탱크의 코너 구조체
WO2017034109A1 (ko) 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크
WO2016047934A1 (ko) 액화천연가스 화물창 단열 시스템
KR102535971B1 (ko) 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크
WO2020141619A1 (ko) 극저온 액화가스 운반선의 화물창 및 액화가스 연료용기의 멤브레인형 단열시스템
KR101826684B1 (ko) 멤브레인형 액화천연가스 저장탱크
WO2021118014A1 (ko) 액화가스 저장탱크의 코너 구조체
WO2020130650A1 (ko) 액화천연가스 저장탱크의 단열벽 고정장치
WO2017014389A1 (ko) 액화천연가스 저장탱크 및 액화천연가스 저장탱크의 단열벽
WO2017034107A1 (ko) 멤브레인형 저장탱크의 코너부 단열벽, 그것을 포함하는 멤브레인형 저장탱크 및 액화천연가스 저장탱크의 단열시스템
KR20170043100A (ko) 멤브레인형 액화천연가스 저장탱크
WO2017065363A1 (ko) 멤브레인형 저장탱크의 멤브레인 용접을 위한 멤브레인 어셈블리 및 이를 포함하는 멤브레인 용접장치 가이드 시스템
WO2022270675A1 (ko) 코너 구조체 및 이를 갖는 액화가스 저장탱크
WO2017034121A1 (ko) 멤브레인형 액화가스 화물창의 주름 멤브레인 시트 자동 용접시스템, 멤브레인형 액화가스 화물창의 주름 멤브레인 시트 자동 용접장치 가이드 고정구조, 및 멤브레인형 액화가스 화물창의 주름 멤브레인 시트 자동 용접장치 가이드 구조
WO2019132535A1 (ko) 멤브레인 접합구조 및 상기 멤브레인 접합구조를 포함하는 액화가스 저장탱크
KR20160008907A (ko) 액화천연가스 저장탱크
KR20160004754A (ko) 액화천연가스 저장탱크 및 액화천연가스 저장 탱크의 단열벽 고정장치
WO2019132531A1 (ko) 극저온 액화가스 운반선의 화물창 및 액화가스 연료용기의 멤브레인형 단열시스템
WO2020101407A1 (ko) 멤브레인형 저장탱크의 단열구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16839400

Country of ref document: EP

Kind code of ref document: A1