WO2017033897A1 - Iii型高脂血症の判定を補助する方法 - Google Patents

Iii型高脂血症の判定を補助する方法 Download PDF

Info

Publication number
WO2017033897A1
WO2017033897A1 PCT/JP2016/074402 JP2016074402W WO2017033897A1 WO 2017033897 A1 WO2017033897 A1 WO 2017033897A1 JP 2016074402 W JP2016074402 W JP 2016074402W WO 2017033897 A1 WO2017033897 A1 WO 2017033897A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
apo
ldl
type iii
type
Prior art date
Application number
PCT/JP2016/074402
Other languages
English (en)
French (fr)
Inventor
静也 山下
大作 増田
光男 磯村
Original Assignee
国立大学法人大阪大学
富士レビオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 富士レビオ株式会社 filed Critical 国立大学法人大阪大学
Priority to US15/754,817 priority Critical patent/US20180252735A1/en
Priority to EP16839244.7A priority patent/EP3343222A4/en
Priority to CN201680048952.8A priority patent/CN107923909A/zh
Priority to JP2017536425A priority patent/JP6704591B2/ja
Publication of WO2017033897A1 publication Critical patent/WO2017033897A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/044Hyperlipemia or hypolipemia, e.g. dyslipidaemia, obesity

Definitions

  • the present invention relates to a method for assisting determination of type III hyperlipidemia, which is one of the phenotypes of the WHO classification of hyperlipidemia.
  • Dyslipidemia is classified as dyslipidemia and refers to an increased state of serum lipids such as cholesterol, phospholipids and free fatty acids.
  • Dyslipidemia is a disease that develops arteriosclerosis when left untreated, and develops myocardial infarction and cerebral infarction when it progresses further, leading to death in the worst case. ing. According to the results of the 2010 Ministry of Health, Labor and Welfare National Health and Nutrition Survey, the proportion of suspected dyslipidemia among randomly selected Japanese people over the age of 30 was 22.3% for men and 17.7% for women. It has been reported.
  • the standard for dyslipidemia is the serum low density lipoprotein (LDL) -cholesterol (LDL-C ⁇ 140 mg) according to the “arteriosclerotic disease prevention guideline 2012 edition” (hereinafter, also simply referred to as “guideline”) of the Japanese Society for Arteriosclerosis. / DL), serum triglyceride (TG ⁇ 150 mg / dL), serum high density lipoprotein (HDL) -cholesterol (HDL-C ⁇ 40 mg / dL).
  • CM chylomicron
  • CM remnant chylomicron remnant
  • VLDL very low density lipoprotein
  • VLDL remnants ultra low density lipoprotein remnants
  • LDL low density lipoproteins
  • HDL high density lipoproteins
  • CM remnants and VLDL remnants are lipoproteins that carry cholesterol into the vascular wall.
  • HDL is a lipoprotein that extracts cholesterol from arteriosclerotic lesions.
  • RLP is pointed out to be involved in the development of postprandial dyslipidemic arteriosclerotic lesions and is one of the risk factors for arteriosclerosis.
  • a partial protein (apoprotein) constituting RLP is composed of exogenous CM and CM remnant including apo B-48, and endogenous VLDL and VLDL remnant including apo B-100.
  • Apo B-48 is a peptide having the same amino acid sequence as part of the amino acid sequence of Apo B-100.
  • Non-patent document 1 reports the amino acid sequence of Apo B-100 and the amino acid sequence of Apo B-48.
  • Anti-apo B-48 specific antiserum is reported in Non-Patent Documents 2-4.
  • an anti-apo B-48 monoclonal antibody and a method for measuring blood apo B-48 using the same are reported in Patent Documents 1 and 2, and a calibration curve enabling quantitative measurement of apo B-48.
  • a standard solution for preparation is reported in Patent Document 3.
  • the phenotype of the hyperlipidemia WHO classification is classified into type I, type IIa, type IIb, type III, type IV, and type V (Reference: Japanese Society for Clinical Laboratory Medicine “Guidelines for Clinical Examination by Diagnosis Group 2003”) pp.118-121).
  • Type I is high chylomicronemia
  • type IIa is hypercholesterolemia
  • type IIb is high cholesterol and hypertriglyceridemia
  • type IV is hypertriglyceridemia
  • type V is high chylomicron Is hypertension, high VLDL-cholesterolemia.
  • type IIa, type IIb, and type IV are particularly common.
  • Type III hyperlipidemia (familial ⁇ ⁇ type III hyperlipoproteinemia) is a hypertriglycerideemia and high LDL-cholesterolemia, and has a high risk of leading to arteriosclerosis. It is known that early diagnosis and treatment are very useful.
  • the method for determining the phenotype of hyperlipidemia is complicated by operation because it is based on electrophoresis, is not high in throughput, and is difficult to make an objective determination because it is a qualitative method. Therefore, it was not a daily method.
  • Non-Patent Document 5 it is useful to use the ratio of Apo B-48 value divided by TG value using the quantitative value of Apo B-48 in blood for the determination of type III hyperlipidemia.
  • TG value the ratio of Apo B-48 value divided by TG value
  • apo B-48 value / TG ratio was significantly higher in type III than in other phenotypes, clinical diagnosis of type III hyperlipidemia is not There was room for improvement.
  • type III hyperlipidemic WHO phenotype III
  • the present inventors have measured blood apo B-48 levels as a determination of type III hyperlipidemia, and combined with not only blood TG levels but also LDL-C levels to achieve type III It was found that hyperlipidemia can be determined with high judgment efficiency.
  • the present invention includes a step of measuring an Apo B-48 value, a TG value, and an LDL-C value in a blood sample separated from a living body, a ratio obtained by dividing the Apo B-48 value by a TG value, and an Apo B- Calculating the ratio of 48 values divided by LDL-C value, and both the ratio of Apo B-48 value divided by TG value and the ratio of Apo B-48 value divided by LDL-C value are both Provided is a method for assisting the determination of type III hyperlipidemia, wherein a value higher than each cut-off value indicates that there is a high possibility of being type III hyperlipidemia.
  • type III hyperlipidemia can be distinguished from other phenotypes by a simpler method than before and with high diagnostic efficiency.
  • the ROC curve of Apo B-48 prepared in Comparative Example 1 below (when I, III, and V types are positive) is shown.
  • the ROC curve of Apo B-48 prepared in Comparative Example 2 below (when type III is positive) is shown.
  • the ROC curve of Apo B-48 / TG prepared in Comparative Example 3 below is shown.
  • the ROC curve of Apo B-48 / LDL-C prepared in Comparative Example 4 below is shown.
  • the apo B-48 value, TG value, and LDL-C value in a blood sample separated from a living body are measured.
  • the Apo B-48 value, TG value, and LDL-C value are values in units of ⁇ g / mL, mg / dL, and mg / dL, respectively. It is not limited to.
  • serum or plasma, particularly serum can be preferably used as the blood sample.
  • the TG value and LDL-C value are also measured in normal health examinations, and these values can be used. However, in order to improve the accuracy of judgment by eliminating changes over time such as the influence of meals.
  • the “living body” that is a supply source of the blood sample to be used for the examination is usually a mammal, preferably a human.
  • subjects requiring hyperlipidemia type discrimination are usually dyslipidemic patients.
  • patients with dyslipidemia are serum low density lipoprotein (LDL) -cholesterol (LDL-C) ⁇ 140 mg / dL, serum triglyceride (TG) ⁇ 150 mg / dL, or serum high density lipoprotein (HDL) -cholesterol. Patients with (HDL-C) ⁇ 40 mg / dL.
  • the measurement of blood apo B-48 value is not particularly limited as long as it is a method capable of quantitatively measuring apo B-48, but an immunoassay method using an antibody specific for apo B-48 is used.
  • an immunoassay method using an antibody specific for apo B-48 is used.
  • the methods disclosed in Patent Documents 1 to 3 can be used.
  • an antibody specific for Apo B-48 it is particularly preferable to use an anti-apo B-48 monoclonal antibody that does not substantially react with Apo B-100.
  • the measurement of Apo B-48 can be performed using the chemiluminescent enzyme immunoassay method (CLEIA) based on the following two-step sandwich method, but is not limited to this method.
  • CLIA chemiluminescent enzyme immunoassay method
  • a serum or plasma sample is treated with a treatment liquid containing a surfactant as a main component to expose apo B-48 in chylomicron and chylomicron remnant.
  • this treated sample is added to and reacted with a suspension of anti-apo B-48 monoclonal antibody-binding particle (solid phase; first antibody), and after washing the particles, alkaline phosphatase-labeled apo B monoclonal antibody (first antibody) 2 antibodies) and the reaction is carried out to form a three-component sandwich complex of the first antibody-apo B-48-second antibody in the sample.
  • ⁇ TG measurement method> Any known method can be used to measure the blood TG level, but usually, a measurement method using an enzyme method from serum, which is widely used in medical institutions, can be preferably used.
  • a method for measuring the TC value and a method for measuring the HDL-C value any known method can be used.
  • a cholesterol dehydrogenase (UV) method from serum a direct method widely used in medical institutions. Can be preferably used.
  • TG ⁇ 400 mg / dL since an accurate value cannot be calculated, the direct method based on the enzyme reaction may be used without using the F formula.
  • the ratio obtained by dividing the Apo B-48 value by the TG value and the ratio obtained by dividing the Apo B-48 value by the LDL-C value are calculated from the measured three values. If any of these ratios is higher than each cut-off value, it can be determined that there is a high possibility of being type III hyperlipidemia.
  • each cut-off value can be determined preferably by ROC (Receiver Operating Characteristic) analysis, more preferably by ROC (Receiver Operating Characteristic) analysis using various dyslipidemic patients as a population.
  • the ROC analysis is an analysis based on an ROC curve in which the cut-off value is changed, the prevalence rate of prevalence at each cut-off value is plotted on the vertical axis, and the prevalence of 1-no disease is plotted on the horizontal axis. Method of adopting the cut-off value corresponding to the point closest to the point (upper left corner of the graph) where the prevalence rate and the non-practice rate are both 1 as the cut-off value with the highest diagnostic efficiency It is.
  • the “prevalence rate” is also called “positive probability rate”, “positive rate” or “sensitivity” and is a value indicating the ratio of the number of cases determined to be positive among true positive cases.
  • the “no disease correct diagnosis rate” is also referred to as “negative certainty rate” or “specificity”, and is a value indicating the ratio of the number of cases determined to be no disease among true negative cases.
  • each cut-off value is not limited to these values and is usually in the range of these values ⁇ 20%, preferably Is selected from a range of these values ⁇ 10%.
  • type III hyperlipidemia can be determined with high diagnostic efficiency by a simple operation of measuring apo B-48 value, TG value, and LDL-C value in a blood sample. it can.
  • the method using the ratio obtained by dividing the Apo B-48 value described in Non-Patent Document 5 by the TG value had a diagnostic efficiency of 72%, but the method of the present invention had 89%. It was.
  • the “diagnosis efficiency” is also called “correct diagnosis rate” and indicates the ratio of the number of correctly determined cases among all test cases.
  • Apo B-48 value, TG value, and LDL-C value were measured for sera of 123 human dyslipidemia patients judged to be dyslipidemia according to the guideline criteria (described above).
  • the phenotypic classification of hyperlipidemic WHO was 4 cases of type I, 29 cases of type IIa, 33 cases of type IIb, 11 cases of type III, 23 cases of type IV, and 23 cases of type V.
  • the Apo B-48 value was measured using an “Apo Protein B-48 Measurement Kit” (Fujirebio Inc.) and a fully automatic immunoassay device “Lumipulse Forte” (Fujirebio Inc.).
  • the TG value was calculated using a normal enzyme method
  • the LDL-C value was calculated using a normal F method.
  • Comparative Example 1 Create a ROC curve (receiver operating characteristic curve) ( Figure 1) for Apo B-48 values with Type I, Type III, and Type V as positive, Type IIa, IIb, and Type IV as negative.
  • a cut-off value of 48 values (10.0 ⁇ g / mL) was determined. Based on the cut-off value, a sample showing a measured value equal to or higher than the cut-off value was assigned as positive, and a sample showing a measured value less than the cut-off value was assigned as negative.
  • the positive certainty rate (prevalence of correct diagnosis) of the sorted samples, the negative certainty rate (non-disease correct diagnosis rate) of the sorted samples, and the combined diagnostic efficiency were calculated.
  • Comparative Example 2 A type III, positive, type I, type IIa, type IIb, type IV, and type V negative, and creating an ROC curve (receiver operating characteristic curve) (Figure 2) for Apo B-48 values.
  • a cutoff value of 48 (15.0 ⁇ g / mL) was determined. Based on the cut-off value, a sample showing a measured value equal to or higher than the cut-off value was assigned as positive, and a sample showing a measured value less than the cut-off value was assigned as negative.
  • the positive certainty rate (prevalence of correct diagnosis) of the sorted samples, the negative certainty rate (non-disease correct diagnosis rate) of the sorted samples, and the combined diagnostic efficiency were calculated.
  • Comparative Example 3 ROC curve for ratio (Apo B-48 / TG) in which type III is positive, type I, type IIa, IIb, type IV, and type V are negative and apo B-48 value is divided by TG value (Apo B-48 / TG) ) And a cut-off value (0.045) was determined. Based on the cut-off value, a sample showing a measured value equal to or higher than the cut-off value was assigned as positive, and a sample showing a measured value less than the cut-off value was assigned as negative. The positive certainty rate (prevalence of correct diagnosis) of the sorted samples, the negative certainty rate (non-disease correct diagnosis rate) of the sorted samples, and the combined diagnostic efficiency were calculated.
  • Comparative Example 4 Ratio of Apo B-48 value calculated from ROC divided by LDL-C value (Apo B-48 / LDL-) with type III positive, type I, IIa type, IIb type IV, type V negative
  • An ROC curve (FIG. 4) was created for C) and a cut-off value (0.109) was determined. Based on the cut-off value, a sample showing a measured value equal to or higher than the cut-off value was assigned as positive, and a sample showing a measured value less than the cut-off value was assigned as negative.
  • the positive certainty rate (prevalence of correct diagnosis) of the sorted samples, the negative certainty rate (non-disease correct diagnosis rate) of the sorted samples, and the combined diagnostic efficiency were calculated.
  • Example 1 Apo B-48 / TG and Apo B-48 / were determined as positive from type III, negative from type I, type IIa, type IIb, type IV, and type V, respectively from the ROC curves (FIGS. 3 and 4). Based on the LDL-C cutoff (0.045 and 0.109, respectively), all specimens showing measured values above the cutoff value are positive, and other specimens are negative, and each specimen is positive or negative. Sorted. The positive certainty rate (prevalence of correct diagnosis) of the sorted samples, the negative certainty rate (non-disease correct diagnosis rate) of the sorted samples, and the combined diagnostic efficiency were calculated.
  • Table 1 shows the prevalence of correct diagnosis, the prevalence of no disease, and the diagnosis efficiency of Comparative Examples 1 to 4 and Example 1.
  • the diagnostic efficiency of type I, type III, and type V, with the apo B-48 value determined from the ROC curve as a cutoff was 81%.
  • the type III diagnosis efficiency was 77% with the apo B-48 value determined from the ROC curve cut off.
  • the diagnosis efficiency of type III was 72% with the apo B-48 / TG value calculated from the ROC curve as a cutoff.
  • the type III diagnosis efficiency was 79% using the apo B-48 / LDL-C value determined from the ROC curve as a cutoff.
  • Example 1 the diagnosis efficiency of type III with the apo B-48 / TG value and the apo B-48 / LDL-C value calculated from the ROC curve cut off was 89%. Higher diagnostic efficiency was demonstrated by using Apo B-48 / TG and Apo B-48 / LDL-C.
  • the TG value and LDL-C value of the subject have already been measured when it is determined that the dyslipidemia.
  • the method of the present invention measures the apo B-48 value in the same serum sample from which the TG value and LDL-C value were measured, or a serum or plasma sample collected at almost the same time, and the known TG value. It was found that by combining LDL-C values, specifically, using Apo B-48 / TG and Apo B-48 / LDL-C, high type III judgment efficiency was exhibited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

要約 高脂血症のWHO表現型III型(以下III型)高脂血症を、従来よりも簡便な方法で、かつ、高い診断効率で、他の表現型と判別する方法が開示されている。III型高脂血症の判定を補助する方法は、生体から分離した血液試料中のアポB-48値、TG値及びLDL-C値を測定する工程と、アポB-48値をTG値で除した比、及びアポB-48値をLDL-C値で除した比を算出する工程とを含む。アポB-48値をTG値で除した比及びアポB-48値をLDL-C値で除した比の両方が共に各カットオフ値よりも高いことがIII型高脂血症である可能性が高いことを示す。

Description

III型高脂血症の判定を補助する方法
 本発明は、高脂血症のWHO分類の表現型の1つであるIII型高脂血症(familial type III hyperlipoproteinemia)の判定を補助する方法に関する。
 高脂血症は、脂質異常症に分類され、コレステロール、リン脂質、遊離脂肪酸などの血清脂質の増加した状態を指す。脂質異常症は、放置すると動脈硬化を発症し、さらに進展すると心筋梗塞、脳梗塞を発症し、最悪の場合には死に至る疾患であり、その効果的な診断法及び治療法の確立が待望されている。厚生労働省の平成22年国民健康・栄養調査結果では、無作為に抽出した30歳以上の日本国民において、脂質異常症が疑われる者の割合は、男性22.3%、女性17.7%であったことが報告されている。
 脂質異常症の基準は、日本動脈硬化学会の「動脈硬化性疾患予防ガイドライン2012年版」(以下、単に「ガイドライン」とも称する)では、血清低比重リポ蛋白(LDL)-コレステロール(LDL-C≧140mg/dL)、血清トリグリセリド(TG≧150mg/dL)、血清高比重リポ蛋白(HDL)-コレステロール(HDL-C<40mg/dL)とされている。
 脂質異常症に関与する代表的なリポ蛋白としては、カイロミクロン(CM)、CMの血中での中間代謝産物であるカイロミクロンレムナント(CMレムナント)、超低比重リポ蛋白(VLDL)、VLDLの血中での中間代謝産物である超低比重リポ蛋白レムナント(VLDLレムナント)、低比重リポ蛋白(LDL)、高比重リポ蛋白(HDL)等が知られている。
 動脈硬化症の病因の一つとして、体内を循環する血液中に存在するリポ蛋白のうち、血管壁へのコレステロールの沈着を促進する種々のリポ蛋白が増加し、又は、コレステロールの沈着を防止する種々のリポ蛋白が減少することが挙げられている。そこで、これらのリポ蛋白の血中量を直接測定し、脂質異常症や動脈硬化症の診断及び治療に役立てることが望まれている。
 脂質代謝の面からは、例えば、CMレムナントやVLDLレムナント(これらはレムナント様リポ蛋白(remnant-like particles;RLP)と呼ばれている)、LDL等は、コレステロールを血管壁に運び込むリポ蛋白であり、HDLは、動脈硬化巣からコレステロールを引き抜くリポ蛋白である。RLPは、食後脂質異常症の動脈硬化病変発現に関与していることが指摘され、動脈硬化症の危険因子の一つである。RLPを構成する部分蛋白(アポ蛋白)は、アポB-48を含む外因性のCM、CMレムナントと、アポB-100を含む内因性のVLDL、VLDLレムナントからなる。
 アポB-48は、アポB-100のアミノ酸配列の一部と同一のアミノ酸配列を有するペプチドである。アポB-100のアミノ酸配列もアポB-48のアミノ酸配列は非特許文献1で報告されている。抗アポB-48特異抗血清は、非特許文献2~4で報告されている。また、抗アポB-48モノクローナル抗体と、これを使用した血中アポB-48の測定方法は、特許文献1、2で報告され、アポB-48の定量的な測定を可能とする検量線作成用の標準液は、特許文献3で報告されている。
 高脂血症のWHO分類の表現型はI型、IIa型、IIb型、III型、IV型、V型に分類される(文献:日本臨床検査医学会「診断群別臨床検査のガイドライン2003」pp.118-121)。I型は高カイロミクロン血症、IIa型は高コレステロール血症、高LDLコレステロール血症、IIb型は高コレステロール・高中性脂肪血症、IV型は高中性脂肪血症、V型は高カイロミクロン血症、高VLDL-コレステロール血症である。高脂血症患者では、特にIIa型、IIb型、IV型が多くみられる。
 III型高脂血症(familial typeIII hyperlipoproteinemia)は、高トリグリセライド血症、高LDL-コレステロール血症であり、動脈硬化に至るリスクが高い一方、早期であれば食事療法に反応をしやすい表現型であることが知られ、早期の診断、治療が非常に有用である。
 しかし、従来、高脂血症の表現型の判定方法は、電気泳動法に依るため操作上の煩雑さを伴うこと、スループットが高くないこと、定性法であるため客観的な判断が困難であることから、日常的な方法とはいえなかった。
 また、非特許文献5には、III型高脂血症の判定に、血中のアポB-48定量値を用いて、アポB-48値をTG値で除した比を用いる事が有用と記載されている。しかし、アポB-48値/TG比がIII型において他の表現型と比して有意に高い値を示したものの、臨床的にIII型高脂血症を判定するには、その診断効率に改良の余地が残されていた。
特許第3440852号公報 特許第3833183号公報 特開2013-224863号公報
Nature, Vol.323, p.738 (1986年10月) J.Biol.Chem., Vol.265, No.15, pp.8358-8360 (1990年) J.Biol.Chem., Vol.267, No.2, pp.1175-1182 (1992年) Clinical Science., Vol.85, pp.521-524 (1993年) J.Atheroscler.Thromb., Vol.19, No.9, pp.862-871 (2012年)
 本発明の目的は、高脂血症のWHO表現型III型(以下III型)高脂血症を、従来よりも簡便な方法で、かつ、高い診断効率で、他の表現型と判別する方法を提供することにある。
 本発明者らは鋭意研究した結果、III型高脂血症の判定として、血中アポB-48値を測定し、血中TG値だけではなく、LDL-C値と組み合わせることで、III型高脂血症を高い判断効率で判定できることを見出した。
 すなわち、本発明は、生体から分離した血液試料中のアポB-48値、TG値及びLDL-C値を測定する工程と、アポB-48値をTG値で除した比、及びアポB-48値をLDL-C値で除した比を算出する工程とを含み、アポB-48値をTG値で除した比及びアポB-48値をLDL-C値で除した比の両方が共に各カットオフ値よりも高いことがIII型高脂血症である可能性が高いことを示す、III型高脂血症の判定を補助する方法を提供する。
 本発明の方法によれば、III型高脂血症を、従来よりも簡便な方法で、かつ、高い診断効率で他の表現型と判別することが可能となる。
下記比較例1で作成した、アポB-48のROC曲線(I,III,V型を陽性とした場合)を示す。 下記比較例2で作成した、アポB-48のROC曲線(III型を陽性とした場合)を示す。 下記比較例3で作成した、アポB-48/TGのROC曲線を示す。 下記比較例4で作成した、アポB-48/LDL-CのROC曲線を示す。
 上記のとおり、本発明の方法では、生体から分離した血液試料中のアポB-48値、TG値及びLDL-C値を測定する。本明細書では、特段の説明がない限り、アポB-48値、TG値、LDL-C値は、それぞれ、μg/mL、mg/dL、mg/dLを単位とした値とするが、これらに限定するものではない。
ここで、血液試料としては、血清又は血漿、特に血清を好ましく用いることができる。なお、TG値及びLDL-C値は、通常の健康診断でも測定されており、それらの値を利用することもできるが、食事の影響等の経時変化を排除して判定の正確性を高めるためには、上記3つの値は、単一の血液試料の値を測定することが好ましい。また、検査に供する血液試料の供給源である「生体」は、通常、哺乳動物であり、好ましくはヒトである。また、高脂血症の型判別を必要とする対象は、通常、脂質異常症患者である。なお、ヒト脂質異常症患者は、血清低比重リポ蛋白(LDL)-コレステロール(LDL-C)≧140mg/dL、血清トリグリセリド(TG)≧150mg/dL、又は血清高比重リポ蛋白(HDL)-コレステロール(HDL-C)<40mg/dLの患者である。
 アポB-48値、TG値及びLDL-C値の測定方法自体は周知であり、そのためのキットも市販されているので、これらの値は市販のキットを用いた周知の方法により測定することができる。以下、簡単に説明する。
<アポB-48の測定方法>
 血中アポB-48値の測定は、アポB-48を定量的に測定できる方法であれば特に限定されるものではないが、アポB-48に特異的な抗体を用いた免疫測定方法を好適に用いることができ、例えば、特許文献1~3に示す方法を用いることができる。アポB-48に特異的な抗体としては、特に、アポB-100とは実質的に反応しない、抗アポB-48モノクローナル抗体を使用することが好ましい。
 例えば、アポB-48の測定は、以下の2ステップサンドイッチ法を原理とする化学発光酵素免疫測定法(CLEIA)を用いて行うことが可能であるが、この方法に限定されるものではない。
 CLEIA法によるアポB-48測定方法では、まず、血清または血漿試料を、界面活性剤を主成分とする処理液で処理し、カイロミクロン及びカイロミクロンレムナント中のアポB-48を露出させる。次に、この処理済試料を、抗アポB-48モノクローナル抗体結合粒子(固相;第1抗体)懸濁液に加えて反応させ、粒子を洗浄した後、アルカリホスファターゼ標識アポBモノクローナル抗体(第2抗体)を加えて反応させ、試料中に第1抗体-アポB-48-第2抗体の3者サンドイッチ複合体を形成させる。未反応のアルカリホスファターゼ標識抗体を洗浄除去し、化学発光基質(3-(2’-スピロアダマンタン)-4-メトキシ-(3’’-ホスホリルオキシ)フェニル-1,2-ジオキセタン-2-ナトリウム塩;AMPPD)を加えて酵素反応を行う。固相に結合した試料中のアポB-48量は、酵素によるAMPPDの分解に伴う発光量に反映されるため、この発光量を測定することで、アポB-48値を求めることができる。
<TGの測定方法>
 血中TG値の測定は、公知の方法をいずれも使用可能であるが、通常、医療機関で広く用いられる、血清からの酵素法による測定方法を好適に使用できる。
<LDL-Cの測定方法>
 LDL-C値の測定は、公知の方法をいずれも使用可能である。LDL-Cは、総コレステロール値(TC)を用いてFriedelwaldの式(F式;(LDL-C)=(TC)-(HDL-C)-(TG/5))により算出するのが通常である。TC値の測定方法、HDL-C値の測定方法は、公知の方法をいずれも使用可能であるが、通常、医療機関で広く用いられる、血清からのコレステロール脱水素酵素(UV)法、直接法をそれぞれ好適に使用できる。しかし、TG≧400mg/dLの場合は、正確な値が算出できないので、F式を用いず、酵素反応を原理とする直接法を用いる事もある。
 本発明の方法では、測定した上記3つの値から、アポB-48値をTG値で除した比及びアポB-48値をLDL-C値で除した比を算出する。これらの比が、いずれも各カットオフ値よりも高い場合に、III型高脂血症である可能性が高いと判断することができる。
 ここで、各カットオフ値は、好ましくはROC(Receiver Operating Characteristic)分析により、より好ましくは各種脂質異常症患者を母集団とするROC(Receiver Operating Characteristic)分析により決定することができる。ROC分析は、カットオフ値を変化させ、それぞれのカットオフ値での有病正診率を縦軸に、1-無病正診率を横軸にプロットしたROC曲線に基づく分析であり、ROC曲線上の、有病正診率、無病正診率がともに1となる点(グラフの左上端)に最も近接する点に相当するカットオフ値を、最も診断効率の高いカットオフ値として採用する方法である。ここで、「有病正診率」は、「陽性確かさ率」、「陽性率」又は「感度」とも呼ばれ、真陽性例中に占める陽性と判定された症例数の割合を示す値であり、「無病正診率」は、「陰性確かさ率」又は「特異度」とも呼ばれ、真陰性例中に占める無病と判定された症例数の割合を示す値である。
 下記実施例では、123名のヒト脂質異常症患者についてROC分析を行った結果、アポB-48値(μg/mL)をTG値(mg/dL)で除した前記比の前記カットオフ値が0.045、アポB-48値(μg/mL)をLDL-C値(mg/dL)で除した前記比の前記カットオフ値が0.109であった。したがって、これらの値を各カットオフ値として用いることができる。もっとも、測定方法による測定値の差や母集団の差異に基づく差を考慮すれば、各カットオフ値はこれらの値に限定されるものではなく、通常、これらの値±20%の範囲、好ましくは、これらの値±10%の範囲から選択される。
 本発明の方法によれば、血液試料中のアポB-48値、TG値及びLDL-C値を測定するという簡便な操作により、高い診断効率でIII型高脂血症の判定を行うことができる。下記実施例では、非特許文献5に記載されたアポB-48値をTG値で除した比を用いた方法では、診断効率が72%であったが、本発明の方法では89%であった。なお、「診断効率」は、「正診率」とも呼ばれ、全被験例のうち、正しく判定された症例数の占める割合を示す。
 対象患者及び測定方法
 ガイドラインの基準(上述)で脂質異常症と判断された123例のヒト脂質異常症患者の血清について、アポB-48値、TG値及びLDL-C値を測定した。高脂血症のWHOの表現型分類は、I型4例、IIa型29例、IIb型33例、III型11例、IV型23例、V型23例であった。アポB-48値は、「アポ蛋白B-48測定キット」(富士レビオ株式会社製)と、全自動免疫測定装置「ルミパルスフォルテ」(富士レビオ株式会社製)とを用いて測定した。TG値は通常の酵素法、LDL-C値は通常のF式法を用いて算出した。
比較例1
 I型、III型、V型を陽性とし、IIa型、IIb型、IV型を陰性として、アポB-48値についてROC曲線(受信者動作特性曲線)(図1)を作成し、アポB-48値のカットオフ値(10.0μg/mL)を割り出した。前記カットオフ値を基準として、カットオフ値以上の測定値を示す検体を陽性、カットオフ値未満の測定値を示す検体を陰性として振り分けた。振り分けられた検体の陽性確かさ率(有病正診率)、振り分けられた検体の陰性確かさ率(無病正診率)および合算した診断効率を算出した。
比較例2
 III型を陽性とし、I型、IIa型、IIb型、IV型、V型を陰性とし、アポB-48値についてROC曲線(受信者動作特性曲線)(図2)を作成し、アポB-48値のカットオフ値(15.0μg/mL)を割り出した。前記カットオフ値を基準として、カットオフ値以上の測定値を示す検体を陽性、カットオフ値未満の測定値を示す検体を陰性として振り分けた。振り分けられた検体の陽性確かさ率(有病正診率)、振り分けられた検体の陰性確かさ率(無病正診率)および合算した診断効率を算出した。
比較例3
 III型を陽性とし、I型、IIa型、IIb型、IV型、V型を陰性とし、アポB-48値をTG値で除した比(アポB-48/TG)についてROC曲線(図3)を作成し、カットオフ値(0.045)を割り出した。前記カットオフ値を基準として、カットオフ値以上の測定値を示す検体を陽性、カットオフ値未満の測定値を示す検体を陰性として振り分けた。振り分けられた検体の陽性確かさ率(有病正診率)、振り分けられた検体の陰性確かさ率(無病正診率)および合算した診断効率を算出した。
比較例4
 III型を陽性とし、I型、IIa型、IIb型、IV型、V型を陰性とし、ROCから算出したアポB-48値をLDL-C値で除した比(アポB-48/LDL-C)についてROC曲線(図4)を作成してカットオフ値(0.109)を割り出した。前記カットオフ値を基準として、カットオフ値以上の測定値を示す検体を陽性、カットオフ値未満の測定値を示す検体を陰性として振り分けた。振り分けられた検体の陽性確かさ率(有病正診率)、振り分けられた検体の陰性確かさ率(無病正診率)および合算した診断効率を算出した。
実施例1
 III型を陽性とし、I型、IIa型、IIb型、IV型、V型を陰性とし、それぞれROC曲線(図3及び図4)から割り出したアポB-48/TG、及びアポB-48/LDL-Cのカットオフ(それぞれ0.045、0.109)を基準として、いずれもカットオフ値以上の測定値を示す検体を陽性、それ以外の検体を陰性として、各検体を陽性または陰性に振り分けた。振り分けられた検体の陽性確かさ率(有病正診率)、振り分けられた検体の陰性確かさ率(無病正診率)および合算した診断効率を算出した。
 比較例1~4及び実施例1の有病正診率、無病正診率、診断効率を表1に示す。比較例1では、ROC曲線から割り出されたアポB-48値をカットオフとしたI型、III型、V型の診断効率は81%であった。比較例2では、ROC曲線から割り出されたアポB-48値をカットオフとしたIII型の診断効率は77%であった。比較例3では、ROC曲線から割り出されたアポB-48/TG値をカットオフとした、III型の診断効率は72%であった。比較例4では、ROC曲線から割り出されたアポB-48/LDL-C値をカットオフとしたIII型の診断効率は79%であった。実施例1では、ROC曲線から算出したアポB-48/TG値及びアポB-48/LDL-C値をカットオフとしたIII型の診断効率は89%を示した。アポB-48/TG及びアポB-48/LDL-Cを用いる事でより高い診断効率を示した。
 通常、脂質異常症と判断された時点で、被験者のTG値、LDL-C値は測定済みである。本発明の方法は、TG値及びLDL-C値を測定したのと同一の血清検体、またはほぼ同時に採取された血清または血漿検体中のアポB-48値を測定し、これと既知のTG値、LDL-C値を組み合わせることで、具体的にはアポB-48/TG及びアポB-48/LDL-Cを用いることで、高いIII型判断効率を示すことがわかった。
Figure JPOXMLDOC01-appb-T000001

Claims (3)

  1.  生体から分離した血液試料中のアポB-48値、トリグリセリド値及びLDL-コレステロール値を測定する工程と、
     アポB-48値をトリグリセリド値で除した比、及びアポB-48値をLDL-コレステロール値で除した比を算出する工程とを含み、
     アポB-48値をトリグリセリド値で除した比及びアポB-48値をLDL-コレステロール値で除した比の両方が共に各カットオフ値よりも高いことが、III型高脂血症である可能性が高いことを示す、III型高脂血症の判定を補助する方法。
  2.  前記血液試料が血清試料である請求項1に記載の方法。
  3.  前記アポB-48値を、アポB-48に特異的な抗体を用いて測定する、請求項1または2に記載の方法。
PCT/JP2016/074402 2015-08-26 2016-08-22 Iii型高脂血症の判定を補助する方法 WO2017033897A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/754,817 US20180252735A1 (en) 2015-08-26 2016-08-22 Method for assisting determination of type iii hyperlipidemia
EP16839244.7A EP3343222A4 (en) 2015-08-26 2016-08-22 METHOD OF ASSISTING DETERMINATION OF TYPE III HYPERLIPIDEMIA
CN201680048952.8A CN107923909A (zh) 2015-08-26 2016-08-22 Iii型高脂血症判定的辅助方法
JP2017536425A JP6704591B2 (ja) 2015-08-26 2016-08-22 Iii型高脂血症の判定を補助する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-166764 2015-08-26
JP2015166764 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017033897A1 true WO2017033897A1 (ja) 2017-03-02

Family

ID=58100223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074402 WO2017033897A1 (ja) 2015-08-26 2016-08-22 Iii型高脂血症の判定を補助する方法

Country Status (5)

Country Link
US (1) US20180252735A1 (ja)
EP (1) EP3343222A4 (ja)
JP (1) JP6704591B2 (ja)
CN (1) CN107923909A (ja)
WO (1) WO2017033897A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833183B2 (ja) * 1997-10-15 2006-10-11 富士レビオ株式会社 ハイブリドーマ、モノクローナル抗体、測定方法及び免疫測定試薬

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007230967A1 (en) * 2006-03-23 2007-10-04 Breyer, Emelita De Guzman Apolipoprotein fingerprinting technique
CN103472240B (zh) * 2013-08-23 2016-03-23 上海北加生化试剂有限公司 人血脂(血清/血浆)质量管理参比试剂盒及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833183B2 (ja) * 1997-10-15 2006-10-11 富士レビオ株式会社 ハイブリドーマ、モノクローナル抗体、測定方法及び免疫測定試薬

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAISAKU MASUDA: "Family type III Hyperlipidemia, Mechanism and Clinical Feature", PHARMA. MED., vol. 33, no. 8, 20 August 2015 (2015-08-20), pages 29 - 33 *
See also references of EP3343222A4 *
SHIN'ICHIRO MIURA ET AL.: "Shishitsu Ijo no Shindan no Susumekata", RINSHO TO KENKYU, vol. 88, no. 10, 20 October 2011 (2011-10-20), pages 1224 - 1228, XP009509008 *
YUASA-KAWASE MIYAKO ET AL.: "Apolipoprotein B-48 to Triglyceride Ratio Is A Novel and Useful Marker for Detection of Type III hyperlipidemia after Antihyperlipidemic Intervention", J. ANTHEROSCLER. THROMB., vol. 19, no. 9, 2012, pages 862 - 871, XP055365593 *

Also Published As

Publication number Publication date
EP3343222A1 (en) 2018-07-04
US20180252735A1 (en) 2018-09-06
JP6704591B2 (ja) 2020-06-03
EP3343222A4 (en) 2019-04-24
CN107923909A (zh) 2018-04-17
JPWO2017033897A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6941324B2 (ja) 新規な肝硬変または肝線維症のマーカー
Kinpara et al. Lipoprotein (a)-cholesterol: a significant component of serum cholesterol
JP2021059558A (ja) 差異荷電粒子移動度によるリポ蛋白質の分析
JP4523587B2 (ja) A型及びb型急性大動脈解離と急性心筋梗塞の鑑別方法及び鑑別用キット
EP3009844B1 (en) Method for measuring lipoprotein's capacity to accept cholesterol and reagent kit
EP2443458A1 (en) Method for measuring lipoprotein-specific apolipoproteins
Varo et al. Influence of pre-analytical and analytical factors on soluble CD40L measurements
JP6719117B2 (ja) 免疫チェックポイント阻害剤の奏効性の判定を補助する方法、試薬キット、装置及びコンピュータプログラム
JP6028314B2 (ja) ループスアンチコアグラントの検出方法
WO2018030252A1 (ja) 尿バイオマーカーを用いたアルツハイマー病の診断補助方法
WO2017033897A1 (ja) Iii型高脂血症の判定を補助する方法
CN108535488B (zh) 利用含载脂蛋白e的高密度脂蛋白的值对冠心病发病风险的评价方法
JP6725798B2 (ja) 動脈硬化の検出方法
Zhang et al. Association between fast-migrating low-density lipoprotein subfraction as characterized by capillary isotachophoresis and intima-media thickness of carotid artery
JP7311857B2 (ja) オートタキシン測定による神経障害性疼痛を検出する方法及び検出試薬
RU2523413C1 (ru) СПОСОБ ДИАГНОСТИКИ РЕВМАТОИДНОГО АРТИРИТА ПО НАЛИЧИЮ АНТИТЕЛ К МОДИФИЦИРОВАННОМУ ЦИНТРУЛЛИНИРОВАННОМУ ВИМЕНТИНУ (Anti-MCV) В РОТОВОЙ ЖИДКОСТИ
Alemnji et al. Reference ranges for serum biochemical parameters among healthy Cameroonians to support HIV vaccine and related clinical trials
WO2015058158A1 (en) METHOD FOR DETECTION OF LIPOPROTEIN-SPECIFIC Lp-PLA2 ASSOCIATION
JP2007093312A (ja) H−fabp及びd−ダイマーによる急性大動脈解離の鑑別方法および鑑別用キット
JP2018189524A (ja) Pspla1による甲状腺疾患の検出方法、情報提供方法及び試薬
Cavanagh et al. A Novel Pool of Microparticle Cholesterol Is Elevatedin Rheumatoid Arthritis but Not in Systemic Lupus Erythematosus Patients
Rajasekariah et al. Relevance of Plasmodium falciparum Biomarkers in the Treatment and Control of Malaria
JP6799226B2 (ja) 骨髄線維症の状態の診断を補助する方法、予後の予測を補助する方法、及び治療効果のモニター方法、並びにそれらの方法に用いるマーカー及び装置
Liberek et al. Sp151renal amyloidosis–a common cause of nephrotic syndrome in older patients
JP3706193B2 (ja) 抗変性低密度リポ蛋白抗体の測定方法及びそのための試薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839244

Country of ref document: EP