WO2017033726A1 - タービン動翼、及び、ガスタービン - Google Patents

タービン動翼、及び、ガスタービン Download PDF

Info

Publication number
WO2017033726A1
WO2017033726A1 PCT/JP2016/073284 JP2016073284W WO2017033726A1 WO 2017033726 A1 WO2017033726 A1 WO 2017033726A1 JP 2016073284 W JP2016073284 W JP 2016073284W WO 2017033726 A1 WO2017033726 A1 WO 2017033726A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
cooling
cooling passage
trailing edge
leading edge
Prior art date
Application number
PCT/JP2016/073284
Other languages
English (en)
French (fr)
Inventor
啓太 ▲高▼村
羽田 哲
秀勝 渥美
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020177031352A priority Critical patent/KR102001757B1/ko
Priority to US15/569,247 priority patent/US10655478B2/en
Priority to DE112016001691.3T priority patent/DE112016001691B4/de
Priority to CN201680022383.XA priority patent/CN107532477B/zh
Publication of WO2017033726A1 publication Critical patent/WO2017033726A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air

Definitions

  • the present invention relates to a turbine blade and a gas turbine.
  • Priority is claimed on Japanese Patent Application No. 2015-165539, filed Aug. 25, 2015, the content of which is incorporated herein by reference.
  • Turbine blades in gas turbines have a cooling structure inside because they are exposed to high temperature and high pressure working fluid.
  • a flow path is internally provided as a cooling structure, and compressed air extracted from the compressor is circulated as the cooling air in the flow path, thereby cooling the turbine blades from the inside.
  • the temperature of the working fluid flowing around and the length of the turbine moving blade itself differ between the turbine moving blade on the front side and the turbine moving blade on the rear side of the gas turbine, and hence the cooling conditions are different. Therefore, the structure of the cooling flow path inside the turbine bucket is different between the front stage side and the rear stage side.
  • Patent Document 1 discloses an example of a cooling structure on the rear side.
  • the turbine blade disclosed in Patent Document 1 has a cavity in which pin fins are projected from an inner wall in the hub portion and the blade root portion, and a cavity is formed in the wing tip side from the hub portion.
  • a multi-hole is bored in communication with the opening provided at the end of the wing and allowing the cooling air to pass from the cavity to the opening.
  • the cooling air flows through the inside of the multihole in order to cool the blade end side.
  • the cooling air in order to secure a necessary heat transfer coefficient, it is necessary to increase the flow velocity of the cooling air serving as the cooling medium flowing therein, resulting in an increase in pressure loss. For this reason, it is necessary to supply cooling air so that high supply pressure may be obtained on the blade root side which is the upstream side.
  • the cooling air serving as the cooling medium in the gas turbine blade is generated by, for example, extracting air from the compressor.
  • An object of the present invention is to provide a turbine blade and a gas turbine capable of effectively performing cooling while minimizing the amount of supply of a cooling medium.
  • a turbine blade has a leading edge and a trailing edge. Between the leading edge and the trailing edge, a wing body having a pressure side and a suction side is provided.
  • the wing body includes a first cooling passage, a second cooling passage, a post, and a plurality of protrusions.
  • the first cooling passage portion is disposed close to the front edge and the cooling medium flows.
  • the second cooling passage is disposed near the trailing edge to allow the coolant to flow.
  • the pillar portion is provided between the first cooling passage portion and the second cooling passage portion, and is formed continuously between the base and the end portion of the wing body.
  • the plurality of protrusions protrude from the inner wall surface of the first cooling passage portion and the inner wall surface of the second cooling passage portion.
  • the leading edge side and the trailing edge side which are particularly likely to be high temperature, can be effectively cooled by the first cooling passage portion and the second cooling passage portion, and between the leading edge side and the trailing edge side that are relatively unlikely to be high temperature
  • the cross-sectional area of the entire cooling passage can be reduced.
  • the cooling passage itself is also provided with the projecting portion as described above, so that the cooling effect can be obtained while securing a constant cross-sectional area as compared with the multi-hole, whereby pressure loss when flowing through the cooling passage can be obtained. It can be minimized and the supply pressure can be suppressed. For this reason, the supply amount of the cooling medium required to cool the turbine blade can be minimized.
  • the first cooling passage portion of the turbine blade of the first aspect may be provided with a plurality of cooling passages between the column portion and the leading edge.
  • the plurality of cooling passages may include a leading edge cooling passage and a first intermediate cooling passage.
  • the leading edge side cooling passage extends in the wing height direction and is disposed along the airfoil centerline, and is disposed closest to the leading edge.
  • the first intermediate cooling passage is disposed closer to the column than the leading edge cooling passage, and has a flow passage cross-sectional area larger than the leading edge cooling passage.
  • the second cooling passage portion of the turbine blade according to the first or second aspect is provided with a plurality of cooling passages between the pillar portion and the trailing edge. It is also good.
  • the plurality of cooling passages may include a trailing edge cooling passage and a second intermediate cooling passage.
  • the trailing edge side cooling passage extends in the wing height direction and is disposed along the airfoil centerline, and is disposed closest to the trailing edge.
  • the second intermediate cooling passage is disposed closer to the post than the trailing edge cooling passage, and has a flow passage cross-sectional area larger than the trailing edge cooling passage.
  • the protrusion of the turbine bucket according to the second or third aspect has a first protrusion and a second protrusion smaller than the first protrusion.
  • the first protrusion may be provided in at least one of the first intermediate cooling passage and the second intermediate cooling passage.
  • the second protrusion may be provided in at least one of the leading edge side cooling passage and the trailing edge side cooling passage.
  • the flow velocity of the cooling medium flowing in the first intermediate cooling passage and the second intermediate cooling passage can be reduced relative to the flow velocity of the cooling medium flowing in the leading edge side cooling passage and the trailing edge side cooling passage.
  • the leading edge side and the trailing edge side can be effectively cooled, and the amount of the cooling medium flowing through the first intermediate cooling passage and the second intermediate cooling passage can be reduced to supply the cooling medium as a whole. The amount can be reduced.
  • the tip shroud provided at the wing tip of the wing body may be provided.
  • the first cooling passage portion may include, between the column portion and the leading edge, a plurality of cooling passages extending in the blade height direction and aligned along the blade centerline.
  • the second cooling passage portion may include a plurality of cooling passages extending in the blade height direction and aligned along the blade centerline, between the column portion and the trailing edge.
  • the tip shroud may include a first discharge passage, a second discharge passage, and a third discharge passage. The first discharge passage discharges the cooling medium flowing through the leading edge side cooling passage disposed closest to the leading edge among the plurality of cooling passages of the first cooling passage portion.
  • the second discharge passage discharges the cooling medium flowing through a trailing edge cooling passage disposed closest to the trailing edge among the plurality of cooling passages of the second cooling passage portion.
  • the third discharge passage discharges the cooling medium flowing through an intermediate cooling passage provided between the leading edge side cooling passage and the trailing edge side cooling passage.
  • the first discharge passage of the turbine blade of the fifth aspect may penetrate the tip shroud in the extending direction of the leading edge side cooling passage.
  • the first discharge passage can be formed shorter. Therefore, it can suppress that the pressure loss of the cooling medium which flows through a front edge side cooling passage increases, and can suppress that the flow velocity of a cooling medium falls. As a result, the leading edge of the wing body can be cooled efficiently.
  • the second discharge passage of the turbine blade may penetrate the tip shroud in the extending direction of the trailing edge side cooling passage.
  • the second discharge passage can be formed shorter. Therefore, it is possible to suppress an increase in pressure loss of the cooling medium flowing through the trailing edge side cooling passage, and to suppress a decrease in the flow velocity of the cooling medium. As a result, the trailing edge of the wing body can be cooled efficiently.
  • a passage main body in which the third discharge passage of the turbine bucket according to any one of the fifth to seventh embodiments extends in a direction intersecting with the extending direction of the leading edge cooling passage.
  • You may provide a part.
  • the passage body may be open at a side surface of the tip shroud.
  • the tip shroud can be cooled by the cooling medium flowing through the third discharge passage while the cooling medium flowing through the intermediate cooling passage is discharged to the outside through the third discharge passage.
  • the third discharge passage can be made longer compared to the first discharge passage and the second discharge passage. For this reason, compared with the front edge side cooling passage or the rear edge side cooling passage, the amount of the cooling medium flowing through the intermediate cooling passage can be reduced, and the supply amount of the cooling medium can be suppressed as a whole.
  • the third discharge passage of the turbine blade of the eighth aspect includes a cavity portion that is in communication with the intermediate cooling passage and has a larger flow passage cross-sectional area than the intermediate cooling passage.
  • the passage body portion may extend from the cavity portion in a direction intersecting with the wing height direction and open at a side surface of the tip shroud.
  • a gas turbine includes the turbine blade of any one of the first to ninth aspects. With this configuration, the amount of the cooling medium for cooling the turbine blades can be reduced, and therefore the efficiency can be improved.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2 in the embodiment of the present invention. It is a cross section which follows the camber line of the bucket in the embodiment of this invention. It is a fragmentary sectional view showing a pillar pin fin in an embodiment of this invention.
  • FIG. 4 is an enlarged view of the blade tip of FIG. 3 in the embodiment of the present invention near the tip of the blade; It is a top view of the tip shroud in the embodiment of the present invention. It is a fragmentary sectional view equivalent to FIG. 5 in the modification of embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view of a gas turbine according to an embodiment of the present invention.
  • the gas turbine 10 of this embodiment includes a compressor 20, a combustor 30, and a turbine 40.
  • the direction in which the axis Ar extends is taken as the axial direction Da.
  • the circumferential direction about the axis Ar is simply referred to as a circumferential direction Dc.
  • a direction perpendicular to the axis Ar is taken as a radial direction Dr.
  • the compressor 20 side is referred to as the upstream side Dau and the opposite side is referred to as the downstream side Dad in the axial direction Da with reference to the turbine 40.
  • the side closer to the axis Ar is referred to as the radially inner side Dri
  • the opposite side is referred to as the radially outer side Dro.
  • the compressor 20 compresses the air A and supplies it to the combustor 30.
  • the compressor 20 includes a compressor rotor 21, a compressor casing 25, a plurality of moving blade arrays 23, a plurality of stationary blade arrays 26, and an IGV (inlet guide vane) 27.
  • the compressor rotor 21 rotates about an axis Ar.
  • the compressor rotor 21 includes a rotor shaft 22 and a plurality of moving blade rows 23.
  • the rotor shaft 22 extends in the axial direction Da around the axis Ar.
  • the moving blade row 23 is disposed in the axial direction Da.
  • the moving blade arrays 23 each include a plurality of moving blades 23 a in the circumferential direction Dc.
  • the plurality of moving blades 23 a are attached to the rotor shaft 22.
  • the compressor casing 25 covers the compressor rotor 21.
  • a plurality of rows of stationary blade rows 26 are respectively disposed on the downstream side Dad of the moving blade row 23.
  • the stator blade array 26 is disposed between the compressor casing 25 and the compressor rotor 21 and includes a plurality of stator blades 26 a in the circumferential direction Dc.
  • the IGV 27 is provided at the suction port of the compressor casing 25. The IGV 27 adjusts the flow rate of the air A sucked into the compressor casing 25.
  • the IGV 27 includes a plurality of guide vanes 28 and a driver 29 that drives the plurality of guide vanes 28.
  • the combustor 30 burns the fuel in the air compressed by the compressor 20 to generate a high temperature and high pressure combustion gas.
  • the combustion gas is supplied to the turbine 40.
  • the turbine 40 is driven using the combustion gas generated by the combustor 30.
  • the turbine 40 includes a turbine rotor 41, a turbine casing 45, a plurality of moving blade arrays 43, and a plurality of stationary blade arrays 46.
  • the turbine rotor 41 rotates about an axis Ar.
  • the turbine rotor 41 and the compressor rotor 21 described above are located on the same axis Ar and are connected to each other.
  • a gas turbine rotor 11 is configured by the turbine rotor 41 and the compressor rotor 21.
  • the gas turbine rotor 11 is connected to, for example, a rotor of the generator GEN.
  • the turbine casing 45 covers the turbine rotor 41.
  • the turbine casing 45 and the compressor casing 25 are connected to each other.
  • a gas turbine casing 15 is formed by the turbine casing 45 and the compressor casing 25.
  • FIG. 2 is a sectional view of an essential part of a gas turbine according to an embodiment of the present invention.
  • the turbine rotor 41 includes a rotor shaft 42 and a plurality of moving blade arrays 43.
  • the rotor shaft 42 extends in the axial direction Da around the axis Ar.
  • the multiple rows of moving blade arrays 43 are disposed in the axial direction Da.
  • the turbine rotor 41 in this embodiment comprises four rows of moving blade arrays 43.
  • Each of the moving blade arrays 43 includes a plurality of moving blades (turbine moving blades) 43a aligned in the circumferential direction Dc.
  • the plurality of moving blades 43 a are attached to the rotor shaft 42.
  • a plurality of rows of stationary blade arrays 46 are disposed on the upstream side Dau of the moving blade array 43.
  • the plurality of rows of vane arrays 46 each include a plurality of vanes 46 a in the circumferential direction Dc.
  • the turbine casing 45 includes an outer casing 45a, an inner casing 45b, and a plurality of split rings 45c.
  • the outer casing 45 a is formed in a cylindrical shape that forms an outer shell of the turbine casing 45.
  • the inner casing 45b is inside the outer casing 45a, and is formed in a tubular shape by a plurality of annular rings.
  • the inner casing 45b is fixed to the outer casing 45a.
  • the split ring 45c is disposed inside the inner casing 45b, and is disposed between the stationary blade rows 46 adjacent in the axial direction Da. In other words, the moving blade row 43 is disposed radially inward Dri of the split ring 45c.
  • An annular space is formed between the rotor shaft 42 and the turbine casing 45 in which the stationary blades 46 a and the moving blades 43 a are disposed.
  • the annular space is a combustion gas passage 49 through which the combustion gas G supplied from the combustor 30 flows.
  • the rotor shaft 42 is formed with a cooling air passage 42p for flowing cooling air.
  • the cooling air passing through the cooling air passage 42p is introduced into the inside of the moving blade 43a and is used for cooling the moving blade 43a.
  • the inner casing 45b is formed with a cooling air passage 45p for flowing the cooling air.
  • the cooling air passage 45p penetrates the inner casing 45b from the radially outer side Dro to the radially inner side Dri.
  • the cooling air passing through the cooling air passage 45p is introduced into the interior of the vane 46a and into the division ring 45c, and is used to cool the vane 46a and the division ring 45c.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2 in the embodiment of the present invention.
  • FIG. 4 is a cross section along the camber line of the moving blade in the embodiment of the present invention.
  • the moving blade 43a shown in FIG. 3 is, for example, a moving blade 43a constituting the third row of moving blade arrays 43 when viewed from the upstream side among the above-mentioned four rows of moving blade arrays 43 provided.
  • the moving blade 43 a includes a blade root 50, a blade body 51, and a tip shroud 52.
  • the wing body 51 includes a convex suction surface 53, a concave pressure surface 54, a leading edge 55, and a trailing edge 56.
  • the leading edge 55 is the end of the most upstream side Dau in the extending direction of the camber line C which is the airfoil centerline.
  • the trailing edge is the end of the downstream side Dad in the extending direction of the camber line C.
  • the wing body 51 has an airfoil cross section in which the suction surface 53 and the pressure surface 54 are continuous via the leading edge 55 and the trailing edge 56.
  • the blade main body 51 of the moving blade 43a of the third row of moving blade arrays 43 has a blade height H (see FIG.
  • the wing main body 51 is formed in a tapered shape in which the width gradually decreases from the wing root 50 toward the wing tip 57.
  • the moving blade 43 a includes therein a first cooling passage portion 58, a second cooling passage portion 59, and a column portion 60.
  • the first cooling passage portion 58 is disposed near the front edge 55.
  • the second cooling passage portion 59 is disposed near the trailing edge 56.
  • the first cooling passage portion 58 and the second cooling passage portion 59 extend in a blade height direction (radial direction Dr) which is a direction intersecting the blade cross section described above.
  • the first cooling passage portion 58 and the second cooling passage portion 59 penetrate from the blade root 50 (base) of the moving blade 43a to the blade tip 57 (end).
  • the inside of the first cooling passage portion 58 and the inside of the second cooling passage portion 59 communicate with the cooling air passage 42p on the blade root 50 side. Thereby, the cooling air of the cooling air passage 42p flows into the first cooling passage portion 58 and the second cooling passage portion 59 from the blade root 50 side of the moving blade 43a.
  • the cooling air that has flowed into the first cooling passage portion 58 and the second cooling passage portion 59 flows from the blade root 50 to the blade tip 57, and flows in the blade height direction from the blade root 50 to the blade tip 57 of the moving blade 43 a. Cool the entire area.
  • the pillar portion 60 is provided between the first cooling passage portion 58 and the second cooling passage portion 59.
  • the column portion 60 is formed to be continuous between the blade root 50 and the blade tip 57 of the blade body 51.
  • the column portion 60 is formed to extend between the suction surface 53 and the pressure surface 54.
  • the column portion 60 in this embodiment is, similarly to the wing main body 51, formed in a tapered shape in which the width gradually decreases as the wing end 57 is approached.
  • the width direction is referred to as the width direction.
  • the first cooling passage portion 58 is constituted by a plurality of cooling passages 63.
  • the plurality of cooling passages 63 are provided between the column portion 60 and the front edge 55 and extend in the wing height direction.
  • the cooling passages 63 constituting the first cooling passage portions 58 are provided along the camber line C.
  • the first cooling passage portion 58 includes two cooling passages 63.
  • the cooling passage 63 near the front edge 55 is referred to as the front edge side cooling passage 64
  • the cooling passage 63 near the column portion 60 is referred to as the column side cooling passage 65 (first intermediate cooling passage). .
  • a partition wall 70 is formed between the front edge side cooling passage 64 of the first cooling passage portion 58 and the column side cooling passage 65.
  • the width of the partition wall 70 in the direction of the camber line C is formed sufficiently smaller than the width of the above-described column portion 60.
  • the second cooling passage portion 59 is constituted by a plurality of cooling passages 63.
  • the plurality of cooling passages 63 are provided between the column portion 60 and the trailing edge 56 and extend in the wing height direction.
  • the cooling passages 63 constituting the second cooling passage portions 59 are provided along the camber line C.
  • the second cooling passage portion 59 includes two cooling passages 63.
  • the cooling passage 63 near the trailing edge 56 will be referred to as the trailing edge cooling passage 67
  • the cooling passage 63 near the column 60 will be referred to as the column side cooling passage 66 (second intermediate cooling passage). .
  • a partition wall 70 is formed between the rear edge side cooling passage 67 of the second cooling passage portion 59 and the column side cooling passage 66 in the same manner as the first cooling passage portion 58.
  • the width of the partition wall 70 in the direction of the camber line C is formed sufficiently small compared to the width of the above-described column portion 60, and the width thereof is equal to the width of the partition wall 70 of the first cooling passage portion 58.
  • the width of the column portion 60 and the arrangement of the column portion 60 in the camber line C direction can be a temperature that can occur between the leading edge 55 and the trailing edge 56 and the middle portion M of the wing body 51 in the camber line C direction. It is set according to the difference. For example, when it is assumed that the temperature difference that may occur between the leading edge 55 and the trailing edge 56 and the middle portion M is increased, the temperature difference may be increased by expanding the width of the column 60 in the camber line C direction. Can be suppressed. This is because the cooling of the portion where the column portion 60 is disposed is prevented, and the temperature decrease is suppressed.
  • the pillars 60 may be arranged. By doing this, it is possible to efficiently suppress the temperature drop in the portion where the temperature drop is likely to occur.
  • the flow passage cross-sectional area of the leading edge side cooling passage 64 is smaller than the flow passage cross-sectional area of the column side cooling passage 65. Cooling air is supplied to the leading edge side cooling passage 64 and the column side cooling passage 65, respectively.
  • the column-side cooling passage 65 has a mechanism that blocks the flow of cooling air on the blade root 50 side or the blade tip 57 side.
  • the mechanism is an orifice provided on the blade root 50 side or a cavity portion of the tip shroud 52 provided on the blade tip 57. Therefore, the flow velocity of the cooling air flowing through the leading edge side cooling passage 64 is higher than the flow velocity of the cooling air flowing through the column side cooling passage 65.
  • the heat transfer coefficient of the cooling air flowing through the leading edge side cooling passage 64 is higher than the heat transfer coefficient of the cooling air flowing through the column side cooling passage 65.
  • the cooling capacity is higher than that of the column side cooling passage 65.
  • the second cooling passage portion 59 has a flow passage cross-sectional area of the rear edge side cooling passage 67 smaller than the flow passage cross-sectional area of the column cooling passage 66 of the second cooling passage portion 59. Cooling air is supplied to the trailing edge side cooling passage 67 and the column side cooling passage 66, respectively.
  • the column side cooling passage 66 like the column side cooling passage 66, has a mechanism for blocking the flow of the cooling air. Therefore, the flow velocity of the cooling air flowing through the trailing edge side cooling passage 67 is higher than the flow velocity of the cooling air flowing through the column side cooling passage 66. That is, the trailing edge side cooling passage 67 has a higher cooling capacity than the column side cooling passage 66.
  • FIG. 5 is a partial cross-sectional view showing a columnar pin fin in the embodiment of the present invention.
  • columnar pin fins 82 are provided in the first cooling passage portion 58 and the second cooling passage portion 59.
  • the columnar pin fins 82 are provided with a plurality of protrusions 83.
  • the projecting portions 83 are formed in a columnar shape extending over the inner surface of the suction surface 53 and the inner surface of the pressure surface 54.
  • FIG. 4 exemplifies the case where the columnar pin fins 82 are provided on the entire inner wall surfaces 58a and 59a of the front edge side cooling passage 64, the rear edge side cooling passage 67 and the column side cooling passages 65 and 66.
  • the range in which the columnar pin fins 82 are provided is not limited to the entire surface.
  • a region in which the columnar pin fins 82 are not formed may be provided in part of the inner wall surfaces 58a and 59a in the wing height direction, and in the extending direction of the camber line C, the columnar pin fins 82 are formed in part of the inner wall surfaces 58a and 59a. You may provide an area which is not Here, in FIG. 3, illustration of the columnar pin fins 82 is omitted.
  • the columnar pin fins 82 have, as the projecting portions 83, first projecting portions 83 a and second projecting portions 83 b having different sizes.
  • the first protrusion 83 a is provided on the inner wall surface 58 a, 59 a of the column side cooling passage 65, 66.
  • the second protrusion 83 b is provided on the inner wall surfaces 58 a and 59 a of the front edge side cooling passage 64 and the rear edge side cooling passage 67.
  • the second protrusion 83 b is formed to be relatively smaller than the first protrusion 83 a.
  • the second protrusion 83 b is formed to have a smaller surface area than the first protrusion 83 a.
  • FIG. 6 is an enlarged view of the vicinity of the blade tip of the blade of FIG. 3 in the embodiment of the present invention.
  • FIG. 7 is a plan view of a tip shroud in an embodiment of the present invention. As shown in FIGS. 6 and 7, the tip shroud 52 is integrally provided on the wing tip 57 of the wing body 51. The tip shroud 52 has an annular shape connected to the circumferential direction Dc by arranging the plurality of moving blades 43 a in the circumferential direction.
  • the tip shroud 52 is provided with a fin F (see FIG. 7) at a central position of the outer peripheral surface in the axial direction Da or the like.
  • the fins F project radially outward Dro. Therefore, a slight gap is formed between the fin F and the split ring 45c, and the amount of leakage of the combustion gas G can be reduced.
  • the fin F first contacts the split ring 45c when the clearance between the moving blade 43a and the split ring 45c decreases for some reason. Thus, it is possible to reduce damage to the split ring 45c and the moving blade 43a by the fins F contacting the split ring 45c first.
  • the tip shroud 52 includes a first discharge passage 72, a second discharge passage 73, and a third discharge passage 74.
  • the first discharge passage 72, the second discharge passage 73, and the third discharge passage 74 respectively discharge the cooling air flowing inside the blade main body 51 to the outside of the blade main body 51.
  • the first discharge passage 72, the third discharge passage 74 and the second discharge passage 73 are formed in the tip shroud 52 in this order from the front edge 55 side to the rear edge 56 side. .
  • the first discharge passage 72 discharges the cooling air flowing through the leading edge side cooling passage 64.
  • the first discharge passage 72 is formed to penetrate the tip shroud 52 in the direction in which the leading edge side cooling passage 64 extends (in the blade height direction). In other words, the first discharge passage 72 extends so as to extend the leading edge side cooling passage 64 to the radially outer side Dro, and opens toward the radially outer side Dro.
  • the first discharge passage 72 in this embodiment has the same flow passage cross-sectional shape as the leading edge side cooling passage 64. That is, the cooling air flowing in the leading edge side cooling passage 64 flows from the blade root 50 of the moving blade 43a toward the radially outer side Dro from the blade root 50 to the blade tip 57, and without changing the flow direction as it is. It is discharged toward the outer side Dro. As described above, since the cooling air is blown away from the tip shroud 52, the leading edge side cooling passage 64 serves as a low pressure loss passage, and the flow rate of the cooling air can be increased.
  • the second discharge passage 73 discharges the cooling air flowing through the trailing edge side cooling passage 67.
  • the second discharge passage 73 is formed to pass through the tip shroud 52 in the direction in which the trailing edge cooling passage 67 extends.
  • the second discharge passage 73 extends so as to extend the rear edge side cooling passage 67 to the radially outer side Dro, and opens toward the radially outer side Dro.
  • the second discharge passage 73 in this embodiment has the same flow passage cross-sectional shape as the rear edge side cooling passage 67.
  • the cooling air flowing in the trailing edge side cooling passage 67 flows from the blade root 50 of the moving blade 43a toward the radially outer side Dro from the blade root 50 to the blade tip 57, and the radial direction of the tip shroud 52 without changing the flow direction as it is. It is discharged toward the outer side Dro.
  • the trailing edge side cooling passage 67 serves as a low pressure loss passage, and the flow velocity of the cooling air can be increased.
  • the third discharge passage 74 discharges the cooling air flowing through the column side cooling passages 65 and 66 to the outside of the moving blade 43a.
  • the third discharge passage 74 includes a cavity 75 and a passage body 76. Two cavity portions 75 in this embodiment are provided.
  • the cavities 75 are provided on the radially outer side Dro of the column-side cooling passage 65 of the first cooling passage portion 58, and are provided on the radially outer side Dro of the column-side cooling passage 66 of the second cooling passage portion 59.
  • the cavity portions 75 communicate with the column-side cooling passages 65 of the first cooling passage portion 58 and communicate with the column-side cooling passages 66 of the second cooling passage portion 59. In other words, the cavity portion 75 is not in communication with the leading edge side cooling passage 64 and the trailing edge side cooling passage 67.
  • the passage body 76 extends along the tip shroud 52, as shown in FIG. In other words, the passage body 76 extends in a direction intersecting with the extending direction (the wing height direction) of the column-side cooling passages 65 and 66.
  • a plurality of passage bodies 76 are provided, and open at the side surfaces of the tip shroud 52 respectively.
  • the passage body 76 in this embodiment extends from the cavity 75 along the tip shroud 52 and opens at the side surface 77 of the tip shroud 52.
  • the passage bodies 76 extend in the direction in which the suction surface 53 of the wing body 51 faces and in the direction in which the pressure surface 54 faces.
  • the plurality of passage bodies 76 respectively extend from the cavity 75 toward the side 77 of the tip shroud 52 closest to the cavity 75.
  • the third discharge passage 74 is provided between the inner surface 78 close to the pressure surface 54 of the cavity 75 on the front edge 55 side and the side surface 77 a of the tip shroud 52 facing the upstream Dau.
  • a passage body 76 is formed.
  • the third discharge passage 74 is a plurality of passage bodies between the inner side 79 close to the suction surface 53 of the cavity 75 on the front edge 55 side and the side 77 b of the tip shroud 52 facing the circumferential direction Dc. 76 are formed.
  • the third discharge passage 74 is provided with a plurality of passage main portions 76 between the inner side surface 80 close to the pressure surface 54 of the cavity portion 75 on the trailing edge 56 side and the side surface 77 c of the tip shroud 52 facing the circumferential direction Dc. Is formed.
  • the third discharge passage 74 has a plurality of passage bodies 76 between the inner surface 81 close to the suction surface 53 of the cavity 75 on the trailing edge 56 side and the side 77 d of the tip shroud 52 facing the downstream Dad. Is formed.
  • the passage body 76 is formed in a straight line.
  • the passage body 76 is not limited to the linear shape.
  • the passage body 76 may have a curved shape such as an arc shape or an S shape.
  • the case where passage main-body parts 76 opening to the same side 77 are arranged in parallel was illustrated, it is not restricted parallel. It may be arranged to be separated from each other as the side surface 77 is approached.
  • the cooling air flows through the first cooling passage portion 58 in which the projecting portion 83 is formed on the inner wall surface 58a, the front edge 55 side of the wing main body 51 can be cooled efficiently.
  • the cooling air flows through the second cooling passage portion 59 in which the projecting portion 83 is formed on the inner wall surface 59a, the trailing edge 56 side of the wing main body 51 can be cooled.
  • the front edge 55 side and the rear edge 56 side which are likely to become high temperature can be effectively cooled by the first cooling passage portion 58 and the second cooling passage portion 59, the front edge 55 and the rear
  • the cross-sectional area of the entire cooling passage can be reduced.
  • the turbine rotor blade of the present embodiment can suppress the temperature decrease of the intermediate portion M between the first cooling passage portion 58 and the second cooling passage portion 59.
  • the strength of the moving blade 43a can be improved.
  • the first cooling passage portion 58 and the second cooling passage portion 59 are provided with the columnar pin fins 82, thereby securing a constant cross-sectional area compared to the conventional multi-hole.
  • a cooling effect can be obtained, which makes it possible to minimize pressure loss when the cooling air flows through the cooling passage, and to suppress the supply pressure of the cooling air. For this reason, the supply amount of cooling air required to cool the moving blades 43a can be minimized.
  • the front edge side cooling passage 64 has a flow passage cross-sectional area smaller than the flow passage cross-sectional area of the column cooling passage 65, and a low pressure loss passage It becomes.
  • the column side cooling passage 65 becomes a flow passage of high pressure loss by a mechanism (for example, an orifice provided on the blade root 50 side or the cavity portion 75 of the tip shroud 52) that obstructs the flow of cooling air. For this reason, in the turbine rotor blade of the present embodiment, the flow velocity of the cooling air flowing into the leading edge side cooling passage 64 can be increased, and the cooling performance can be improved closer to the leading edge 55.
  • the trailing edge side cooling passage 67 has a passage cross-sectional area smaller than the passage cross-sectional area of the column-side cooling passage 66, and serves as a low pressure loss passage.
  • the column side cooling passage 66 becomes a flow passage of high pressure loss by a mechanism (for example, an orifice or a cavity portion 75 provided on the blade root 50 side) which obstructs the flow of the cooling air. For this reason, in the turbine rotor blade of the present embodiment, the flow velocity of the cooling air flowing to the trailing edge side cooling passage 67 can be increased, and the cooling performance can be improved as it approaches the trailing edge 56.
  • the first protrusion 83a is formed smaller than the second protrusion 83b.
  • the turbine bucket of the present embodiment can suppress pressure loss of the cooling air flowing through the leading edge side cooling passage 64 and the trailing edge side cooling passage 67.
  • the pressure loss of the cooling air flowing through the column side cooling passages 65 and 66 can be increased.
  • the flow velocity of the cooling air flowing through the column-side cooling passages 65 and 66 can be reduced relative to the flow velocity of the cooling air flowing through the leading edge side cooling passage 64 and the trailing edge side cooling passage 67.
  • the front edge 55 side and the rear edge 56 side can be effectively cooled, and the amount of cooling air flowing to the column side cooling passages 65 and 66 is reduced, so that the amount of cooling air supplied as a whole. Can be suppressed. Furthermore, even under an environment where the temperature difference between the leading edge 55 and trailing edge 56 and the intermediate portion M between the leading edge 55 and trailing edge 56 tends to be large, the leading edge 55 and trailing edge 56, and intermediate The occurrence of a temperature difference with the part M can be further suppressed.
  • the cooling air flowing from the blade root 50 of the blade body 51 to the blade tip 57 and flowing through the column side cooling passages 65 and 66 can be discharged to the outside through the third discharge passage 74 of the tip shroud 52.
  • the cooling air flowing through the leading edge side cooling passage 64, the trailing edge side cooling passage 67, and the column side cooling passages 65 and 66 can be discharged separately to the outside of the moving blade 43a.
  • the leading edge side cooling passage 64, the trailing edge side cooling passage 67, and the column side cooling can be achieved simply by changing the flow passage cross-sectional area of each of the first discharge passage 72, the second discharge passage 73, and the third discharge passage 74.
  • the flow rates of the respective cooling air flowing through the passages 65 and 66 can be easily made different.
  • the first discharge passage 72 and the second discharge passage 73 penetrate the tip shroud 52 in the blade height direction, respectively. 73 can be made shorter. Therefore, it is possible to suppress an increase in pressure loss of the cooling air flowing through the leading edge side cooling passage 64 and the trailing edge side cooling passage 67, and to suppress a decrease in the flow velocity of the cooling air. As a result, the leading edge 55 and the trailing edge 56 of the wing body 51 can be cooled efficiently.
  • the passage main body portion 76 of the third discharge passage 74 is formed along the tip shroud 52, so that the cooling air flowing through the column side cooling passages 65 and 66 is the third discharge.
  • the chip shroud 52 can be cooled while being discharged to the outside through the passage 74.
  • the passage length of the third discharge passage 74 can be made longer as compared with the first discharge passage 72 and the second discharge passage 73. Therefore, compared to the front edge side cooling passage 64 and the rear edge side cooling passage 67, the amount of cooling air flowing through the column side cooling passages 65 and 66 can be reduced, and the amount of cooling air supplied as a whole can be suppressed. .
  • the cavity 75 with a large cross-sectional area in the tip shroud 52, for example, when trying to process the passage body 76 from the side surface 77 toward the cavity 75, some positional deviation is allowed. Ru. Therefore, the third discharge passage 74 can be easily formed. Further, since the tip shroud 52 is lightened, the centrifugal load can be reduced.
  • the present invention is not limited to the above-described embodiment, and includes the above-described embodiment with various modifications added thereto, without departing from the spirit of the present invention. That is, the specific shape, configuration, and the like described in the embodiment are merely examples, and can be appropriately modified.
  • FIG. 8 is a partial cross-sectional view corresponding to FIG. 5 in a modification of the embodiment of the present invention.
  • the case where the columnar pin fins 82 are formed has been described as an example.
  • the present invention is not limited to the columnar pin fins 82.
  • one-side pin fins 71 may be provided instead of the columnar pin fins 82.
  • the single-sided pin fins 71 are protrusions (protrusions) T protruding inward from the inner wall surfaces 58a and 59a of the first cooling passage portion 58 and the second cooling passage portion 59, and the leading edge side cooling passage 64 and the trailing edge side cooling It may be provided on the inner wall surfaces 58a and 59a of the passage 67 and the column side cooling passages 65 and 66, respectively. Similar to the columnar pin fins 82 described above, the single-sided pin fins 71 include first protrusions (first protrusions: not shown) and second protrusions (second protrusions: not shown) having different sizes. It may be provided.
  • a first projection is provided on the inner wall surface 58a, 59a of the column side cooling passage 65, 66, and a second projection is provided on the inner wall surface 58a, 59a of the front edge side cooling passage 64 and the rear edge side cooling passage 67.
  • the second protrusion may be formed relatively smaller than the first protrusion.
  • the second protrusion may have a smaller surface area than the first protrusion.
  • the wing main body 51 includes both the leading edge side cooling passage 64 and the trailing edge side cooling passage 67 has been described.
  • the wing body may include only one of the leading edge side cooling passage 64 and the trailing edge side cooling passage 67.
  • the first cooling passage portion 58 includes the two cooling passages 63 (the front edge side cooling passage 64, the column side cooling passage 65), and the second cooling passage portion 59 includes the two cooling passages 63.
  • the case where the rear edge side cooling passage 67 and the column side cooling passage 66 are provided has been described.
  • the first cooling passage portion 58 may be formed by one cooling passage 63, and similarly, the second cooling passage portion 59 may be formed by one cooling passage 63.
  • the case where the second protrusion 83 b is smaller than the first protrusion 83 a has been described as an example. However, it is not limited to this configuration.
  • the number of second protrusions 83b per unit area is smaller than the number of first protrusions 83a per unit area while the first protrusions 83a and the second protrusions 83b are formed to have the same size. You may.
  • the first protrusion 83a and the second protrusion 83b may be formed to have the same configuration, that is, the same size and the same number.
  • cooling medium is air
  • the cooling medium is not limited to air.
  • the case where the third discharge passage 74 has the cavity portion 75 has been described.
  • the cavity 75 may be omitted.
  • path 74 was formed along the chip
  • the passage body 76 may be open on the tip shroud 52 near the side 77, for example.
  • the direction in which the first discharge passage 72 and the second discharge passage 73 pass may be made shorter than the third discharge passage 74, and is not limited to the wing height direction.
  • the moving blades 43a of the third row of moving blade arrays 43 have been described as an example.
  • the moving blade 43a may be a moving blade having the tip shroud 52, and may be the moving blade 43a in the moving blade row 43 other than the third row.
  • First cooling passage portion 58a inner wall surface 59: second cooling passage portion 59a: inner wall surface 60: pillar portion 62: first end portion 63: cold Passageway 64: front edge side cooling passage 65: Column side cooling passage 66: Column side cooling passage 67 ... Trailing side cooling passage 70 ... Partition wall 71 ... Single-sided pin fin 72 ... First discharge passage 73 ... Second discharge passage 74 ...
  • Third discharge Passageway 75 Cavity part 76: Passage body 77: Side 77a: Side 77b: Side 77c: Side 77d: Side 78: Inner side 79: Inner side 80: Inner side 81: Inner side 82: Column-shaped pin fin 83: Projection 83a ... 1st projection part 83b ... 2nd projection part T ... projection part F ... fin M ... middle part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

ガスタービンの翼本体(51)は、第一冷却通路部(58)と、第二冷却通路部(59)と、柱部(60)と、複数の突出部とを備える。第一冷却通路部(58)は、前縁(55)に近い側に設けられる。第二冷却通路部(59)は、前記後縁(56)に近い側に設けられる。柱部(60)は、前記第一冷却通路部(58)と前記第二冷却通路部(59)との間に設けられて、前記翼本体(51)の基部と端部との間に連続して形成される。複数の突出部は、前記第一冷却通路部(58)の内壁面と、前記第二冷却通路部(59)の内壁面とから突出する。

Description

タービン動翼、及び、ガスタービン
 この発明は、タービン動翼、及び、ガスタービンに関する。
 本願は、2015年8月25日に、日本に出願された特願2015-165539号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンにおけるタービン動翼は、高温・高圧の作動流体に曝されるため、内部に冷却構造を有している。具体的には、例えば、冷却構造として内部に流路を有し、圧縮機から抽気された圧縮空気を冷却空気としてこの流路に流通させることで、内部からタービン動翼を冷却している。ガスタービンの前段側のタービン動翼と後段側のタービン動翼とでは、周囲を流れる作動流体の温度、タービン動翼自体の長さ等が異なり、それ故に冷却条件が異なる。従って、前段側と後段側では、タービン動翼内部の冷却流路の構造も異なっている。
 特許文献1には、後段側の冷却構造の一例が開示されている。具体的には、特許文献1に記載のタービン動翼は、ハブ部及び翼付根部の内部に、内壁からピンフィンを突起させた空洞を設けるとともに、ハブ部より翼端側の翼内部に、空洞と翼端部に設けた開口と連通し空洞から開口へ冷却空気を通過させるマルチホールが穿設されている。
特開平9-53407号公報
 特許文献1に記載のタービン動翼では、冷却空気は翼端側を冷却するためにマルチホールの内部を流通することになる。マルチホールは、必要な熱伝達率を確保するために、その内部に流通する冷却媒体となる冷却空気の流速を高くする必要があり、結果として圧損が大きくなってしまう。このため、上流側となる翼付根部側で高い供給圧となるように冷却空気を供給する必要がある。高い供給圧の冷却空気を供給することになると、翼付根部側での漏れ流れが多くなるため、冷却空気の供給量が増大してしまっていた。上記のとおりガスタービン動翼において冷却媒体となる冷却空気は、例えば、圧縮機から抽気して生成される。このように圧縮機から抽気された空気は、タービンを回転させる仕事に使われることなくタービン翼などの冷却に用いられる。すなわち、ガスタービンの性能を向上させるためには、タービン翼に用いられる冷却媒体の量を最小限に抑える必要があった。
 この発明は、冷却媒体の供給量を最小限に抑えつつ効果的に冷却を行うことが可能なタービン動翼、及び、ガスタービンを提供することを目的とする。
 この発明の第一態様によれば、タービン動翼は、前縁と後縁とを有している。これら前縁と後縁との間には、正圧面及び負圧面を有する翼本体を備えている。前記翼本体は、第一冷却通路部と、第二冷却通路部と、柱部と、複数の突出部と、を備える。第一冷却通路部は、前記前縁に近設され冷却媒体が流れる。第二冷却通路部は、前記後縁に近設され冷却媒体が流れる。柱部は、前記第一冷却通路部と前記第二冷却通路部との間に設けられ前記翼本体の基部と端部との間に連続して形成される。複数の突出部は、前記第一冷却通路部の内壁面及び前記第二冷却通路部の内壁面から突出する。
 内壁面に突出部が形成された第一冷却通路部に冷却媒体を流すことで、翼本体の前縁に近い側を効率よく冷却できる。同様に、内壁面に突出部が形成された第二冷却通路部に冷却媒体を流すことで、翼本体の後縁に近い側を冷却できる。このように、特に高温となりやすい前縁側及び後縁側を第一冷却通路部及び第二冷却通路部により効果的に冷却することができるとともに、相対的に高温となりにくい前縁側と後縁側との間において柱部を設けることで冷却通路全体の断面積を小さくすることができる。冷却通路自体も上記のとおり突出部を備えた構造とすることで、マルチホールと比べて一定の断面積を確保しつつ冷却効果を得ることができ、これにより冷却通路を流通する際の圧損を最小限にすることができ、供給圧を抑制することができる。このため、タービン翼を冷却するのに必要な冷却媒体の供給量を最小限にすることができる。
 この発明の第二態様によれば、第一態様に係るタービン動翼の第一冷却通路部が、前記柱部と前記前縁との間に、複数の冷却通路を備えるようにしてもよい。複数の冷却通路は、前縁側冷却通路と、第一中間冷却通路とを含むようにしても良い。前縁側冷却通路は、翼高さ方向に延びるとともに翼型中心線に沿って配設されて、最も前記前縁の近くに配設される。第一中間冷却通路は、前記前縁側冷却通路よりも前記柱部に近い側に配設されて前記前縁側冷却通路よりも大きい流路断面積を有する。
 このように構成することで、冷却媒体を前縁側冷却通路と第一中間冷却通路とにそれぞれ供給した場合、前縁側冷却通路に流れる冷却媒体の流速を相対的に高めることができる。これにより、前縁に近いほど冷却性能を向上することができる。その結果、第一中間冷却通路が設けられた部分と比べて相対的に高温になりやすい前縁側冷却通路が設けられた前縁側を効果的に冷却することができる。
 この発明の第三態様によれば、第一又は第二態様に係るタービン動翼の第二冷却通路部は、前記柱部と前記後縁との間に、複数の冷却通路を備えるようにしてもよい。複数の冷却通路は、後縁側冷却通路と、第二中間冷却通路と、を含むようにしても良い。後縁側冷却通路は、翼高さ方向に延びるとともに翼型中心線に沿って配設されて、最も前記後縁の近くに配設される。第二中間冷却通路は、前記後縁側冷却通路よりも前記柱部に近い側に配設されて前記後縁側冷却通路よりも大きい流路断面積を有する。
 このように構成することで、冷却媒体を後縁側冷却通路と第二中間冷却通路とにそれぞれ供給した場合、後縁側冷却通路に流れる冷却媒体の流速を相対的に高めることができる。これにより、後縁に近いほど冷却性能を向上することができる。その結果、第二中間冷却通路が設けられた部分と比べて相対的に高温になりやすい後縁側冷却通路が設けられた後縁側を効果的に冷却することができる。
 この発明の第四態様によれば、第二又は第三態様に係るタービン動翼の突出部は、第一突出部と、前記第一突出部よりも小さい第二突出部と、を有していてもよい。前記第一突出部は、前記第一中間冷却通路及び前記第二中間冷却通路の少なくとも一方に設けられていても良い。前記第二突出部は、前記前縁側冷却通路及び前記後縁側冷却通路の少なくとも一方に設けられるようにしても良い。
 このように構成することで、第一中間冷却通路及び前記第二中間冷却通路と比較して、前縁側冷却通路及び後縁側冷却通路に流れる冷却媒体の圧損を抑制できる。これにより、前縁側冷却通路及び後縁側冷却通路に流れる冷却媒体の流速に対して、第一中間冷却通路及び前記第二中間冷却通路に流れる冷却媒体の流速を低減することができる。その結果、前縁側及び後縁側を効果的に冷却することができるとともに、第一中間冷却通路及び前記第二中間冷却通路に流通する冷却媒体の量を低減することで、全体として冷却媒体の供給量を抑制することができる。
 この発明の第五態様によれば、第一態様に係るタービン動翼において、前記翼本体の翼端に設けられるチップシュラウドを備えていてもよい。前記第一冷却通路部は、前記柱部と前記前縁との間に、翼高さ方向に延びるとともに翼型中心線に沿って並ぶ複数の冷却通路を備えていてもよい。前記第二冷却通路部は、前記柱部と前記後縁との間に、翼高さ方向に延びるとともに翼型中心線に沿って並ぶ複数の冷却通路を備えていても良い。前記チップシュラウドは、第一排出通路と、第二排出通路と、第三排出通路と、を備えるようにしてもよい。第一排出通路は、前記第一冷却通路部の複数の冷却通路のうち最も前記前縁の近くに配設される前縁側冷却通路を流れる冷却媒体を排出する。第二排出通路は、前記第二冷却通路部の複数の冷却通路のうち最も前記後縁の近くに配設される後縁側冷却通路を流れる冷却媒体を排出する。第三排出通路は、前記前縁側冷却通路と前記後縁側冷却通路との間に設けられる中間冷却通路を流れる冷却媒体を排出する。
 このように構成することで、チップシュラウドを有している場合に、翼本体の基部から翼端に向かい前縁側冷却通路を流れる冷却媒体を、チップシュラウドの第一排出通路を介して外部に排出できる。さらに、翼本体の基部から翼端に向かい後縁側冷却通路を流れる冷却媒体を、チップシュラウドの第二排出通路を介して外部に排出できる。加えて、翼本体の基部から翼端に向かい中間冷却通路を流れる冷却媒体を、チップシュラウドの第三排出通路を介して外部に排出できる。
 この発明の第六態様によれば、第五態様に係るタービン動翼の第一排出通路が、前記前縁側冷却通路の延びる方向に、前記チップシュラウドを貫通するようにしてもよい。
 このように構成することで、第一排出通路をより短く形成できる。そのため、前縁側冷却通路を流れる冷却媒体の圧損が増大することを抑制して、冷却媒体の流速が低下することを抑制できる。その結果、翼本体の前縁を効率よく冷却できる。
 この発明の第七態様によれば、第五又は第六態様に係るタービン動翼はの第二排出通路が、前記後縁側冷却通路の延びる方向に、前記チップシュラウドを貫通するようにしてもよい。
 このように構成することで、第二排出通路をより短く形成できる。そのため、後縁側冷却通路を流れる冷却媒体の圧損が増大することを抑制して、冷却媒体の流速が低下することを抑制できる。その結果、翼本体の後縁を効率よく冷却できる。
 この発明の第八態様によれば、第五から第七態様の何れか一つの態様に係るタービン動翼の第三排出通路が、前記前縁側冷却通路の延びる方向と交差する方向に延びる通路本体部を備えてもよい。前記通路本体部は、前記チップシュラウドの側面に開口するようにしてもよい。
 このように構成することで、中間冷却通路を流れる冷却媒体が第三排出通路を通じて外部に排出される途中で、第三排出通路を流れる冷却媒体によりチップシュラウドを冷却することができる。さらに、第一排出通路や第二排出通路と比較して第三排出通路を長くできる。このため、前縁側冷却通路や後縁側冷却通路に比べて、中間冷却通路に流通する冷却媒体の量を低減することでき、全体として冷却媒体の供給量を抑制することができる。
 この発明の第九態様によれば、第八態様に係るタービン動翼の第三排出通路は、前記中間冷却通路に連通されるとともに前記中間冷却通路よりも流路断面積が大きいキャビティ部を備えていても良い。前記通路本体部は、前記キャビティ部から前記翼高さ方向と交差する方向に延びて前記チップシュラウドの側面に開口するようにしても良い。
 このように構成することで、チップシュラウドに第三排出通路を容易に形成することができる。
 この発明の第十態様によれば、ガスタービンは、第一から第九態様の何れか一つの態様のタービン動翼を備えている。
 このように構成することで、タービン動翼を冷却するための冷却媒体の量を低減できるため、効率を向上することができる。
 上記タービン動翼、及び、ガスタービンによれば、冷却媒体の供給量を最小限に抑えつつ効果的に冷却を行うことが可能となる。
この発明の実施形態におけるガスタービンの模式的な断面図である。 この発明の実施形態におけるガスタービンの要部断面図である。 この発明の実施形態における図2のIII-III線に沿う断面図である。 この発明の実施形態における動翼のキャンバーラインに沿う断面である。 この発明の実施形態における柱状ピンフィンを示す部分断面図である。 この発明の実施形態における図3の動翼の翼端近くを拡大した拡大図である。 この発明の実施形態におけるチップシュラウドの平面図である。 この発明の実施形態の変形例における図5に相当する部分断面図である。
 次に、この発明の実施形態におけるタービン翼、及び、ガスタービンを図面に基づき説明する。
 図1は、この発明の実施形態におけるガスタービンの模式的な断面図である。
 図1に示すように、この実施形態のガスタービン10は、圧縮機20と、燃焼器30と、タービン40とを備えている。
 以下の説明においては、軸線Arが延びる方向を軸方向Daとする。さらに、この軸線Arを中心とした周方向を単に周方向Dcとする。さらに、軸線Arに対して垂直な方向を径方向Drとする。さらに、軸方向Daでタービン40を基準にして圧縮機20側を上流側Dau、その反対側を下流側Dadとする。さらに、径方向Drで軸線Arに近づく側を径方向内側Dri、その反対側を径方向外側Droとする。
 圧縮機20は、空気Aを圧縮して燃焼器30に供給する。この圧縮機20は、圧縮機ロータ21と、圧縮機車室25と、複数列の動翼列23と、複数列の静翼列26と、IGV(inlet guide vane)27とを備えている。
 圧縮機ロータ21は、軸線Arを中心として回転する。この圧縮機ロータ21は、ロータ軸22と、複数列の動翼列23と、を備えている。ロータ軸22は、軸線Arを中心として軸方向Daに延びる。動翼列23は、軸方向Daに配設されている。これら動翼列23は、周方向Dcに複数の動翼23aをそれぞれ備えている。これら複数の動翼23aは、ロータ軸22に取り付けられている。
 圧縮機車室25は、圧縮機ロータ21を覆っている。
 複数列の静翼列26は、動翼列23の下流側Dadに、それぞれ配設されている。これら静翼列26は、圧縮機車室25と圧縮機ロータ21との間に配され、周方向Dcに複数の静翼26aをそれぞれ備えている。
 IGV27は、圧縮機車室25の吸込み口に設けられる。このIGV27は、圧縮機車室25内に吸い込まれる空気Aの流量を調整する。IGV27は、複数のガイドベーン28と、これら複数のガイドベーン28を駆動する駆動器29と、を備えている。
 燃焼器30は、圧縮機20で圧縮された空気中で燃料を燃焼させて、高温・高圧の燃焼ガスを生成する。この燃焼ガスは、タービン40に供給される。
 タービン40は、燃焼器30により生成された燃焼ガスを用いて駆動する。このタービン40は、タービンロータ41と、タービン車室45と、複数列の動翼列43と、複数列の静翼列46と、を備えている。
 タービンロータ41は、軸線Arを中心として回転する。このタービンロータ41と、上述した圧縮機ロータ21とは、同一軸線Ar上に位置し、互いに接続されている。これらタービンロータ41と圧縮機ロータ21とによって、ガスタービンロータ11が構成されている。ガスタービンロータ11は、例えば、発電機GENのロータ等に接続される。
 タービン車室45は、タービンロータ41を覆う。このタービン車室45と、圧縮機車室25とは、互いに接続されている。これらタービン車室45と圧縮機車室25とによって、ガスタービン車室15が構成されている。
 図2は、この発明の実施形態におけるガスタービンの要部断面図である。
 図2に示すように、タービンロータ41は、ロータ軸42と、複数列の動翼列43と、を備えている。
 ロータ軸42は、軸線Arを中心として軸方向Daに延びる。
 複数列の動翼列43は、軸方向Daに配設されている。この実施形態におけるタービンロータ41は、四列の動翼列43を備えている。これら動翼列43は、周方向Dcに並ぶ複数の動翼(タービン動翼)43aをそれぞれ備えている。これら複数の動翼43aは、ロータ軸42に取り付けられている。
 複数列の静翼列46は、動翼列43の上流側Dauに、それぞれ配設されている。これら複数列の静翼列46は、周方向Dcに複数の静翼46aをそれぞれ備えている。
 タービン車室45は、外側車室45aと、内側車室45bと、複数の分割環45cと、を備えている。
 外側車室45aは、タービン車室45の外殻をなす筒状に形成されている。
 内側車室45bは、外側車室45aの内側にあり、複数の円環により筒状に形成されている。内側車室45bは、外側車室45aに固定されている。
 分割環45cは、内側車室45bの内側にあり、軸方向Daで隣り合う静翼列46同士の間に配設されている。言い換えれば、分割環45cの径方向内側Driには、動翼列43が配設されている。
 ロータ軸42とタービン車室45との間には、静翼46a及び動翼43aが配置される環状の空間が形成される。この環状の空間は、燃焼器30から供給された燃焼ガスGが流れる燃焼ガス流路49となっている。
 ロータ軸42は、冷却空気を流すための冷却空気通路42pが形成されている。この冷却空気通路42pを通った冷却空気は、動翼43aの内部に導入されて、この動翼43aの冷却に利用される。
 同様に、内側車室45bは、冷却空気を流すための冷却空気通路45pが形成されている。この冷却空気通路45pは、内側車室45bを径方向外側Droから径方向内側Driに貫通している。この冷却空気通路45pを通った冷却空気は、静翼46aの内部及び分割環45cの内部に導入されて、これら静翼46a及び分割環45cの冷却に利用される。
 図3は、この発明の実施形態における図2のIII-III線に沿う断面図である。図4は、この発明の実施形態における動翼のキャンバーラインに沿う断面である。
 図3に示す動翼43aは、例えば、上述した四列設けられた動翼列43のうち、上流側から見て三列目の動翼列43を構成する動翼43aである。図4に示すように、動翼43aは、翼根50と、翼本体51と、チップシュラウド52と、を備えている。
 図3に示すように、翼本体51は、凸面状の負圧面53と、凹面状の正圧面54と、前縁55と、後縁56と、を備えている。前縁55は、翼型中心線であるキャンバーラインCの延びる方向で最も上流側Dauの端部である。後縁は、キャンバーラインCの延びる方向で最も下流側Dadの端部である。翼本体51は、負圧面53と正圧面54とが前縁55及び後縁56を介して連続してなる翼型断面となっている。この三列目の動翼列43の備える動翼43aの翼本体51は、一列目や二列目の動翼列43の動翼43aの翼本体51と比較して、翼高さH(図2参照)が大きい。さらに、翼本体51は、翼根50から翼端57に向かって漸次幅が小さくなるテーパー状に形成されている。
 動翼43aは、その内部に第一冷却通路部58と、第二冷却通路部59と、柱部60と、を備えている。第一冷却通路部58は、前縁55に近設されている。第二冷却通路部59は、後縁56に近設されている。これら第一冷却通路部58と第二冷却通路部59は、図4に示すように、上述した翼型断面と交差する方向である翼高さ方向(径方向Dr)に延びている。さらに、第一冷却通路部58と第二冷却通路部59は、動翼43aの翼根50(基部)から翼端57(端部)に至るように貫通している。
 第一冷却通路部58の内部と第二冷却通路部59の内部は、翼根50側で冷却空気通路42pと連通している。これにより、冷却空気通路42pの冷却空気が、動翼43aの翼根50側から第一冷却通路部58及び第二冷却通路部59に流入する。この第一冷却通路部58及び第二冷却通路部59に流入した冷却空気は、翼根50から翼端57に流れて、動翼43aの翼根50から翼端57までの翼高さ方向の全域を冷却する。
 柱部60は、第一冷却通路部58と第二冷却通路部59との間に設けられている。この柱部60は、翼本体51の翼根50と翼端57との間を連続するように形成されている。柱部60は、負圧面53と正圧面54との間に渡るように形成されている。この実施形態における柱部60は、翼本体51と同様に、翼端57に近づくにつれて漸次幅が小さくなるテーパー状に形成されている。ここで、上述した柱部60において、キャンバーラインCに沿う方向を幅方向と称している。
 第一冷却通路部58は、複数の冷却通路63により構成される。これら複数の冷却通路63は、柱部60と前縁55との間に設けられ、翼高さ方向に延びている。これら第一冷却通路部58を構成する冷却通路63は、キャンバーラインCに沿って設けられている。この実施形態において第一冷却通路部58は、二つの冷却通路63を備えている。以下、二つの冷却通路63のうち、前縁55に近い冷却通路63を前縁側冷却通路64と称し、柱部60に近い冷却通路63を柱側冷却通路65(第一中間冷却通路)と称する。
 第一冷却通路部58の前縁側冷却通路64と柱側冷却通路65との間には、仕切壁70が形成されている。この仕切壁70は、キャンバーラインC方向の幅が、上述した柱部60の幅と比較して十分に小さく形成されている。
 第二冷却通路部59は、第一冷却通路部58と同様に、複数の冷却通路63により構成される。これら複数の冷却通路63は、柱部60と後縁56との間に設けられ、翼高さ方向に延びている。これら第二冷却通路部59を構成する冷却通路63は、キャンバーラインCに沿って設けられている。この実施形態において第二冷却通路部59は、二つの冷却通路63を備えている。以下、二つの冷却通路63のうち、後縁56に近い冷却通路63を後縁側冷却通路67と称し、柱部60に近い冷却通路63を柱側冷却通路66(第二中間冷却通路)と称する。
 第二冷却通路部59の後縁側冷却通路67と柱側冷却通路66との間には、第一冷却通路部58と同様に、仕切壁70が形成されている。この仕切壁70は、キャンバーラインC方向の幅が、上述した柱部60の幅と比較して十分に小さく形成され、第一冷却通路部58の仕切壁70と同等の幅とされている。
 ここで、柱部60の幅や、キャンバーラインC方向における柱部60の配置は、前縁55及び後縁56と、キャンバーラインC方向における翼本体51の中間部Mとの間に生じ得る温度差に応じて設定される。
 例えば、前縁55及び後縁56と、中間部Mとの間に生じ得る温度差が大きくなると想定される場合に、キャンバーラインC方向における柱部60の幅を拡大することで、上記温度差を抑制できる。これは、柱部60が配置される箇所の冷却が妨げられて、温度低下が抑制されるためである。
 前縁55及び後縁56と、中間部Mとの間に生じ得る温度差が大きいと想定される場合には、キャンバーラインC方向における中間部Mのうち、特に低温となる箇所を中心にして柱部60を配置してもよい。このようにすることで、温度低下が生じ易い箇所が温度低下することを効率よく抑制できる。
 第一冷却通路部58において、前縁側冷却通路64の流路断面積は柱側冷却通路65の流路断面積よりも小さくなっている。前縁側冷却通路64と柱側冷却通路65には、それぞれ冷却空気が供給される。柱側冷却通路65は、翼根50側又は翼端57側に冷却空気の流れを妨げる機構を有している。例えば、この機構としては、翼根50側に設けられるオリフィスや翼端57に設けられるチップシュラウド52のキャビティ部である。そのため、前縁側冷却通路64を流れる冷却空気の流速は、柱側冷却通路65を流れる冷却空気の流速よりも高い。言い換えれば、第一冷却通路部58においては、前縁側冷却通路64を流れる冷却空気の熱伝達率が柱側冷却通路65を流れる冷却空気の熱伝達率よりも高くなるため、前縁側冷却通路64は、柱側冷却通路65よりも冷却能力が高くなる。
 第二冷却通路部59は、第一冷却通路部58と同様に、後縁側冷却通路67の流路断面積が第二冷却通路部59の柱側冷却通路66の流路断面積よりも小さい。後縁側冷却通路67と柱側冷却通路66には、それぞれ冷却空気が供給される。柱側冷却通路66は、柱側冷却通路66と同様に冷却空気の流れを妨げる機構を有している。そのため、後縁側冷却通路67を流れる冷却空気の流速は、柱側冷却通路66を流れる冷却空気の流速よりも高い。つまり、後縁側冷却通路67は、柱側冷却通路66よりも冷却能力が高くなる。
 図5は、この発明の実施形態における柱状ピンフィンを示す部分断面図である。
 図4、図5に示すように、第一冷却通路部58及び第二冷却通路部59には、柱状ピンフィン82が設けられている。柱状ピンフィン82は、複数の突出部83を備えている。これら突出部83は、負圧面53の内面と正圧面54の内面とに渡る柱状に形成されている。ここで、図4において、柱状ピンフィン82が、前縁側冷却通路64、後縁側冷却通路67及び柱側冷却通路65,66の各内壁面58a,59aの全面に設けられる場合を例示した。しかし、柱状ピンフィン82を設ける範囲は全面に限られない。例えば、翼高さ方向において内壁面58a,59aの一部に柱状ピンフィン82が形成されない領域を設けてもよく、キャンバーラインCの延びる方向において内壁面58a,59aの一部に柱状ピンフィン82が形成されない領域を設けてもよい。ここで、図3においては、柱状ピンフィン82の図示を省略している。
 図4に示すように、柱状ピンフィン82は突出部83として、それぞれ大きさの異なる第一突出部83aと第二突出部83bがある。第一突出部83aは、柱側冷却通路65,66の内壁面58a,59aに設けられている。第二突出部83bは、前縁側冷却通路64及び後縁側冷却通路67の各内壁面58a,59aに設けられている。この第二突出部83bは、第一突出部83aよりも相対的に小さく形成されている。例えば、第二突出部83bは、第一突出部83aよりも、その表面積が小さくなるように形成されている。
 図6は、この発明の実施形態における図3の動翼の翼端近くを拡大した拡大図である。
図7は、この発明の実施形態におけるチップシュラウドの平面図である。
 図6、図7に示すように、チップシュラウド52は、翼本体51の翼端57に一体に設けられている。チップシュラウド52は、複数の動翼43aが周方向に配置されることで、周方向Dcに連なって円環状を成している。
 このチップシュラウド52には、その外周面の軸方向Daの中心位置等に、フィンF(図7参照)が設けられている。このフィンFは、径方向外側Droに向けて突出している。このため、フィンFと分割環45cとの間は僅かな隙間となり、燃焼ガスGの漏れる量を少なくすることができる。このフィンFは、動翼43aと分割環45cとの隙間が何らかの原因により減少するような場合に、最初に分割環45cと接触する。このようにフィンFが最初に分割環45cに接触することで、分割環45cや動翼43aのダメージを軽減することが可能となっている。
 チップシュラウド52は、第一排出通路72と、第二排出通路73と、第三排出通路74とを備えている。これら第一排出通路72、第二排出通路73及び第三排出通路74は、上述した翼本体51の内部を流れる冷却空気をそれぞれ翼本体51の外部に排出する。
 図6に示すように、第一排出通路72、第三排出通路74及び第二排出通路73は、チップシュラウド52に前縁55側から後縁56側に向かって、この順で形成されている。
 第一排出通路72は、前縁側冷却通路64を流れる冷却空気を排出する。第一排出通路72は、前縁側冷却通路64の延びる方向(翼高さ方向)にチップシュラウド52を貫通するように形成されている。言い換えれば、第一排出通路72は、前縁側冷却通路64を径方向外側Droに延長するように延び、径方向外側Droを向いて開口している。この実施形態における第一排出通路72は、前縁側冷却通路64と同じ流路断面形状となっている。つまり、前縁側冷却通路64を流れる冷却空気は、動翼43aの翼根50から翼端57に向かって径方向外側Droに流れて、そのまま流れの向きを変えることなく、チップシュラウド52の径方向外側Droに向かって排出される。このように、冷却空気がチップシュラウド52からふき抜けるため、前縁側冷却通路64は低圧損の流路となり、冷却空気の流速を高くすることができる。
 第二排出通路73は、後縁側冷却通路67を流れる冷却空気を排出する。第二排出通路73は、チップシュラウド52を後縁側冷却通路67の延びる方向に貫通するように形成されている。言い換えれば、第二排出通路73は、第一排出通路72と同様に、後縁側冷却通路67を径方向外側Droに延長するように延び、径方向外側Droを向いて開口している。この実施形態における第二排出通路73は、後縁側冷却通路67と同じ流路断面形状となっている。つまり、後縁側冷却通路67を流れる冷却空気は、動翼43aの翼根50から翼端57に向かって径方向外側Droに流れて、そのまま流れの向きを変えることなく、チップシュラウド52の径方向外側Droに向かって排出される。このように、冷却空気がチップシュラウド52からふき抜けるため、後縁側冷却通路67は低圧損の流路となり、冷却空気の流速を高くすることができる。
 第三排出通路74は、柱側冷却通路65,66を流れる冷却空気を動翼43aの外部へ排出する。第三排出通路74は、キャビティ部75と、通路本体部76と、を備えている。この実施形態におけるキャビティ部75は、二つ設けられている。これらキャビティ部75は、第一冷却通路部58の柱側冷却通路65の径方向外側Droに設けられ、第二冷却通路部59の柱側冷却通路66の径方向外側Droに設けられている。これらキャビティ部75は、第一冷却通路部58の柱側冷却通路65と連通し、第二冷却通路部59の柱側冷却通路66と連通している。言い換えれば、キャビティ部75は、前縁側冷却通路64と後縁側冷却通路67には連通されていない。
 通路本体部76は、図7に示すように、チップシュラウド52に沿って延びている。言い換えれば、通路本体部76は、柱側冷却通路65,66の延びる方向(翼高さ方向)と交差する方向に延びている。通路本体部76は複数設けられて、それぞれチップシュラウド52の側面に開口している。この実施形態における通路本体部76は、キャビティ部75からチップシュラウド52に沿って延びてチップシュラウド52の側面77に開口している。これら通路本体部76は、翼本体51の負圧面53の向く方向と、正圧面54の向く方向とにそれぞれ延びている。この実施形態においては、複数の通路本体部76は、それぞれキャビティ部75から最も近いチップシュラウド52の側面77に向かって延びている。
 より具体的には、第三排出通路74は、前縁55側のキャビティ部75の正圧面54に近い内側面78と、上流側Dauを向くチップシュラウド52の側面77aとの間に、複数の通路本体部76が形成されている。同様に、第三排出通路74は、前縁55側のキャビティ部75の負圧面53に近い内側面79と、周方向Dcを向くチップシュラウド52の側面77bとの間に、複数の通路本体部76が形成されている。
 さらに、第三排出通路74は、後縁56側のキャビティ部75の正圧面54に近い内側面80と、周方向Dcを向くチップシュラウド52の側面77cとの間に、複数の通路本体部76が形成されている。同様に、第三排出通路74は、後縁56側のキャビティ部75の負圧面53に近い内側面81と、下流側Dadを向くチップシュラウド52の側面77dとの間に複数の通路本体部76が形成されている。
 この実施形態においては、通路本体部76が直線状に形成される場合を例示した。しかし、通路本体部76は直線状に限られない。例えば、通路本体部76を円弧状や、S字状など、曲線を含む形状としても良い。さらに、同一の側面77に開口する通路本体部76同士が平行に配される場合を例示したが、平行に限られない。側面77に近づくにつれて互いに離間するように配しても良い。
 上述した実施形態によれば、内壁面58aに突出部83が形成された第一冷却通路部58に冷却空気が流れるので、翼本体51の前縁55側を効率よく冷却することができる。
 同様に、内壁面59aに突出部83が形成された第二冷却通路部59に冷却空気が流れるので、翼本体51の後縁56側を冷却することができる。特に、高温となりやすい前縁55側及び後縁56側を第一冷却通路部58及び第二冷却通路部59により効果的に冷却することができるとともに、相対的に高温となりにくい前縁55と後縁56との間の部分に柱部60を設けることで冷却通路全体の断面積を小さくすることができる。
 そして、この柱部60は、第一冷却通路部58と第二冷却通路部59との間において、翼本体51の翼根50と翼端57との間に連続して形成されているため、柱部60の形成箇所には冷却空気が流れない。したがって、本実施形態のタービン動翼は、第一冷却通路部58と第二冷却通路部59との間の中間部Mの温度低下を抑制できる。つまり、前縁55及び後縁56と、第一冷却通路部58と第二冷却通路部59との間の中間部Mとに温度差が生じることを抑制できると共に、冷却通路を流れる冷却空気のヒートアップを抑制できる。さらに、柱部60を設けることで、動翼43aの強度を向上できる。その結果、熱反りを抑制するとともに十分な強度を確保することが可能となる。
 また、本実施形態のタービン動翼では、第一冷却通路部58及び第二冷却通路部59に柱状ピンフィン82を備えた構造とすることで、従来のマルチホールと比べて一定の断面積を確保しつつ冷却効果を得ることができ、これにより冷却空気が冷却通路を流れる際の圧損を最小限にすることができ、冷却空気の供給圧を抑制することができる。このため、動翼43aを冷却するために必要な冷却空気の供給量を最小限にすることができる。
 さらに、上述した実施形態によれば、第一冷却通路部58において前縁側冷却通路64は、柱側冷却通路65の流路断面積よりも小さい流路断面積を有し、低圧損の流路となる。これに対して、柱側冷却通路65は、冷却空気の流れを妨げる機構(例えば、翼根50側に設けられるオリフィスやチップシュラウド52のキャビティ部75)により、高圧損の流路となる。このため、本実施形態のタービン動翼は、前縁側冷却通路64に流れる冷却空気の流速を高くすることができ、前縁55に近いほど冷却性能を向上させることができる。その結果、柱側冷却通路65が設けられた部分と比べて相対的に高温になりやすい前縁側冷却通路64が設けられた前縁55側を効果的に冷却することができ、前縁55と柱部60との間に温度差が生じることを更に抑制することができると共に、動翼43aの前縁55側を冷却するために必要な冷却空気の供給量を最小限にすることができる。
 同様に、第二冷却通路部59において後縁側冷却通路67は、柱側冷却通路66の流路断面積よりも小さい流路断面積を有し、低圧損の流路となる。これに対して、柱側冷却通路66は、冷却空気の流れを妨げる機構(例えば、翼根50側に設けられるオリフィスやキャビティ部75)により、高圧損の流路となる。このため、本実施形態のタービン動翼は、後縁側冷却通路67に流れる冷却空気の流速を高くすることができ、後縁56に近いほど冷却性能を向上させることができる。その結果、柱側冷却通路66が設けられた部分と比べて相対的に高温になりやすい後縁側冷却通路67が設けられた後縁56側を効果的に冷却することができ、後縁56と柱部60との間に温度差が生じることを更に抑制することができると共に、動翼43aの後縁56側を冷却するために必要な冷却空気の供給量を最小限にすることができる。
 さらに、上述した実施形態によれば、第一突出部83aが第二突出部83bよりも小さく形成されている。このため、本実施形態のタービン動翼は、前縁側冷却通路64及び後縁側冷却通路67に流れる冷却空気の圧損を抑制できる。その一方で、前縁側冷却通路64及び後縁側冷却通路67と比較して、柱側冷却通路65,66に流れる冷却空気の圧損を大きくできる。これにより、前縁側冷却通路64及び後縁側冷却通路67に流れる冷却空気の流速に対して、柱側冷却通路65,66に流れる冷却空気の流速を低減することができる。その結果、前縁55側及び後縁56側を効果的に冷却することができるとともに、柱側冷却通路65,66に流通する冷却空気の量を低減することで、全体として冷却空気の供給量を抑制することができる。さらに、前縁55及び後縁56と、これら前縁55及び後縁56の間の中間部Mとの温度差が大きくなり易い環境下であっても、前縁55及び後縁56と、中間部Mとに温度差が生じることをより一層抑制できる。
 さらに、本実施形態のタービン動翼は、動翼43aがチップシュラウド52を有している場合に、翼本体51の翼根50から翼端57に向かい前縁側冷却通路64を流れる冷却空気を、チップシュラウド52の第一排出通路72を介して外部に排出できる。さらに、翼本体51の翼根50から翼端57に向かい後縁側冷却通路67を流れる冷却空気を、チップシュラウド52の第二排出通路73を介して外部に排出できる。加えて、翼本体51の翼根50から翼端57に向かい柱側冷却通路65,66を流れる冷却空気を、チップシュラウド52の第三排出通路74を介して外部に排出できる。その結果、前縁側冷却通路64、後縁側冷却通路67、及び、柱側冷却通路65,66を流れる冷却空気を個別に動翼43aの外部に排出することができる。さらに、第一排出通路72、第二排出通路73、及び、第三排出通路74のそれぞれの流路断面積を変えるだけで、前縁側冷却通路64、後縁側冷却通路67、及び、柱側冷却通路65,66を流れる各冷却空気の流速を容易に異ならせることもできる。
 さらに、本実施形態のタービン動翼は、第一排出通路72と第二排出通路73とが、それぞれチップシュラウド52を翼高さ方向に貫通することで、第一排出通路72と第二排出通路73とをより短く形成できる。そのため、前縁側冷却通路64及び後縁側冷却通路67を流れる冷却空気の圧損が増大することを抑制して、冷却空気の流速が低下することを抑制できる。その結果、翼本体51の前縁55及び後縁56を効率よく冷却できる。
 さらに、本実施形態のタービン動翼は、第三排出通路74の通路本体部76がチップシュラウド52に沿って形成されることで、柱側冷却通路65,66を流れる冷却空気が、第三排出通路74を通じて外部に排出される途中で、チップシュラウド52を冷却することができる。
 さらに、本実施形態のタービン動翼は、第一排出通路72や第二排出通路73と比較して第三排出通路74の通路長を長くできる。そのため、前縁側冷却通路64や後縁側冷却通路67に比べて、柱側冷却通路65,66に流通する冷却空気の量を低減することでき、全体として冷却空気の供給量を抑制することができる。
 さらに、チップシュラウド52に断面積の大きなキャビティ部75が形成されることで、例えば、キャビティ部75に向けて側面77から通路本体部76を加工しようとした場合に、多少の位置ずれが許容される。そのため、第三排出通路74を容易に形成することができる。また、チップシュラウド52が軽くなるため、遠心荷重を低減できる。
 さらに、動翼23aを冷却するための冷却空気量を低減できるため、ガスタービン10の効率を向上することができる。
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 図8は、この発明の実施形態の変形例における図5に相当する部分断面図である。
 例えば、上述した実施形態においては、柱状ピンフィン82が形成される場合を一例に説明した。しかし、柱状ピンフィン82に限られない。例えば、図8に示す変形例のように、柱状ピンフィン82に代えて片側ピンフィン71を設けるようにしても良い。片側ピンフィン71は、第一冷却通路部58及び第二冷却通路部59の内壁面58a,59aから内側に向かって突出する突起部(突出部)Tであり、前縁側冷却通路64、後縁側冷却通路67及び柱側冷却通路65,66のそれぞれの内壁面58a,59aに設けてもよい。この片側ピンフィン71は、上述した柱状ピンフィン82と同様に、互いに大きさの異なる第一突起部(第一突出部:図示せず)と第二突起部(第二突出部:図示せず)を備えるようにしてもよい。さらに、例えば、第一突起部を柱側冷却通路65,66の内壁面58a,59aに設け、第二突起部を前縁側冷却通路64及び後縁側冷却通路67の内壁面58a,59aに設けてもよい。この場合、第二突起部は、第一突起部よりも相対的に小さく形成してもよい。例えば、第二突起部は、第一突起部よりも、その表面積を小さく形成してもよい。
 さらに、上述した実施形態においては、翼本体51が、前縁側冷却通路64と後縁側冷却通路67との両方を備える場合について説明した。しかし、この構成に限られない。例えば、翼本体が前縁側冷却通路64と後縁側冷却通路67との何れか一方のみを備えるようにしても良い。
 同様に、上述した実施形態においては、第一冷却通路部58が2つの冷却通路63(前縁側冷却通路64、柱側冷却通路65)を備え、第二冷却通路部59が2つの冷却通路63(後縁側冷却通路67、柱側冷却通路66)を備える場合について説明した。しかし、第一冷却通路部58は、一つの冷却通路63により形成されても良く、同様に第二冷却通路部59は、一つの冷却通路63により形成されても良い。
 さらに、実施形態においては、第二突出部83bが第一突出部83aよりも小さい場合を一例に説明した。しかし、この構成に限られるものではない。例えば、第一突出部83aと第二突出部83bとを同じ大きさで形成しつつ、単位面積当たりの第二突出部83bの数量を、単位面積当たりの第一突出部83aの数量よりも少なくしても良い。さらに、第一突出部83aと第二突出部83bとを同一の構成、すなわち同じ大きさ、同じ数量で形成するようにしても良い。
 さらに、上述した実施形態においては、冷却媒体が空気の場合を一例に説明したが、冷却媒体は空気に限られない。
 さらに、上述した実施形態においては、第三排出通路74がキャビティ部75を有する場合について説明した。しかし、キャビティ部75を省略するようにしても良い。
 さらに、上述した各実施形態においては、第三排出通路74の通路本体部76がチップシュラウド52に沿って形成され、側面77に開口する場合について説明した。しかし、この構成に限られない。通路本体部76が、例えば、側面77近傍のチップシュラウド52上に開口していても良い。
 さらに、上述した各実施形態においては、第一排出通路72と、第二排出通路73とが、それぞれ翼高さ方向にチップシュラウド52を貫通する場合について説明した。しかし、第一排出通路72と、第二排出通路73との貫通する方向は、第三排出通路74よりも短く形成できれば良く、翼高さ方向に限られない。
 さらに、上述した実施形態においては、三列目の動翼列43の動翼43aを一例に説明した。しかし、動翼43aはチップシュラウド52を備える動翼であればよく、三列目以外の動翼列43における動翼43aであっても良い。
10…ガスタービン 11…ガスタービンロータ 15…ガスタービン車室 20…圧縮機 21…圧縮機ロータ 22…ロータ軸 23…動翼列 25…圧縮機車室 26…静翼列 26a…静翼 30…燃焼器 40…タービン 41…タービンロータ 42…ロータ軸 42p…冷却空気通路 43…動翼列 43a…動翼 45…タービン車室 45a…外側車室 45b…内側車室 45c…分割環 45p…冷却空気通路 46…静翼列 46a…静翼 49…燃焼ガス流路 50…翼根 51…翼本体 52…チップシュラウド 53…負圧面 54…正圧面 55…前縁 56…後縁 57…翼端 58…第一冷却通路部 58a…内壁面 59…第二冷却通路部 59a…内壁面 60…柱部 62…第一端部 63…冷却通路 64…前縁側冷却通路 65…柱側冷却通路 66…柱側冷却通路 67…後縁側冷却通路 70…仕切壁 71…片側ピンフィン 72…第一排出通路 73…第二排出通路 74…第三排出通路 75…キャビティ部 76…通路本体部 77…側面 77a…側面 77b…側面 77c…側面 77d…側面 78…内側面 79…内側面 80…内側面 81…内側面 82…柱状ピンフィン 83…突出部 83a…第一突出部 83b…第二突出部 T…突起部 F…フィン M…中間部

Claims (10)

  1.  前縁と後縁とを有し、これら前縁と後縁との間に正圧面及び負圧面を有する翼本体を備え、
     前記翼本体は、
     前記前縁に近設され冷却媒体が流れる第一冷却通路部と、
     前記後縁に近設され冷却媒体が流れる第二冷却通路部と、
     前記第一冷却通路部と前記第二冷却通路部との間に設けられ前記翼本体の基部と端部との間に連続して形成される柱部と、
     前記第一冷却通路部の内壁面及び前記第二冷却通路部の内壁面から突出する複数の突出部と、を備えるタービン動翼。
  2.  前記第一冷却通路部は、前記柱部と前記前縁との間に、翼高さ方向に延びるとともに翼型中心線に沿って配設されて、最も前記前縁の近くに配設される前縁側冷却通路と、前記前縁側冷却通路よりも前記柱部に近い側に配設されて前記前縁側冷却通路よりも大きい流路断面積を有する第一中間冷却通路と、を含む複数の冷却通路を備える請求項1に記載のタービン動翼。
  3.  前記第二冷却通路部は、前記柱部と前記後縁との間に、翼高さ方向に延びるとともに翼型中心線に沿って配設されて、最も前記後縁の近くに配設される後縁側冷却通路と、前記後縁側冷却通路よりも前記柱部に近い側に配設されて前記後縁側冷却通路よりも大きい流路断面積を有する第二中間冷却通路と、を含む複数の冷却通路を備える請求項1又は請求項2に記載のタービン動翼。
  4.  前記突出部は、
     第一突出部と、前記第一突出部よりも小さい第二突出部と、を有し、
     前記第一突出部は、前記第一中間冷却通路及び前記第二中間冷却通路の少なくとも一方に設けられ、
     前記第二突出部は、前記前縁側冷却通路及び前記後縁側冷却通路の少なくとも一方に設けられる請求項2又は請求項3に記載のタービン動翼。
  5.  前記翼本体の翼端に設けられるチップシュラウドを備え、
     前記第一冷却通路部は、
     前記柱部と前記前縁との間に、翼高さ方向に延びるとともに翼型中心線に沿って並ぶ複数の冷却通路を備え、
     前記第二冷却通路部は、
     前記柱部と前記後縁との間に、翼高さ方向に延びるとともに翼型中心線に沿って並ぶ複数の冷却通路を備え、
     前記チップシュラウドは、
     前記第一冷却通路部の複数の冷却通路のうち最も前記前縁の近くに配設される前縁側冷却通路を流れる冷却媒体を排出する第一排出通路と、
     前記第二冷却通路部の複数の冷却通路のうち最も前記後縁の近くに配設される後縁側冷却通路を流れる冷却媒体を排出する第二排出通路と、
     前記前縁側冷却通路と前記後縁側冷却通路との間に設けられる中間冷却通路を流れる冷却媒体を排出する第三排出通路と、
    を備える請求項1に記載のタービン動翼。
  6.  前記第一排出通路は、
     前記前縁側冷却通路の延びる方向に、前記チップシュラウドを貫通する請求項5に記載のタービン動翼。
  7.  前記第二排出通路は、
     前記後縁側冷却通路の延びる方向に、前記チップシュラウドを貫通する請求項5又は請求項6に記載のタービン動翼。
  8.  前記第三排出通路は、
     前記チップシュラウドに沿って延びる通路本体部を備え、
     前記通路本体部は、前記チップシュラウドの側面に開口する請求項5から請求項7の何れか一項に記載のタービン動翼。
  9.  前記第三排出通路は、
     前記中間冷却通路に連通されるとともに前記中間冷却通路よりも流路断面積が大きいキャビティ部を備え、
     前記通路本体部は、
     前記キャビティ部から前記翼高さ方向と交差する方向に延びて前記チップシュラウドの側面に開口する請求項8に記載のタービン動翼。
  10.  請求項1から請求項9の何れか一項に記載のタービン動翼を備えるガスタービン。
PCT/JP2016/073284 2015-08-25 2016-08-08 タービン動翼、及び、ガスタービン WO2017033726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177031352A KR102001757B1 (ko) 2015-08-25 2016-08-08 터빈 동익 및 가스 터빈
US15/569,247 US10655478B2 (en) 2015-08-25 2016-08-08 Turbine blade and gas turbine
DE112016001691.3T DE112016001691B4 (de) 2015-08-25 2016-08-08 Turbinenschaufel und Gasturbine
CN201680022383.XA CN107532477B (zh) 2015-08-25 2016-08-08 涡轮动叶及燃气轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165539A JP6025940B1 (ja) 2015-08-25 2015-08-25 タービン動翼、及び、ガスタービン
JP2015-165539 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017033726A1 true WO2017033726A1 (ja) 2017-03-02

Family

ID=57326539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073284 WO2017033726A1 (ja) 2015-08-25 2016-08-08 タービン動翼、及び、ガスタービン

Country Status (6)

Country Link
US (1) US10655478B2 (ja)
JP (1) JP6025940B1 (ja)
KR (1) KR102001757B1 (ja)
CN (1) CN107532477B (ja)
DE (1) DE112016001691B4 (ja)
WO (1) WO2017033726A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570377B2 (ja) * 2015-08-28 2019-09-04 キヤノン株式会社 トナー
US11060407B2 (en) 2017-06-22 2021-07-13 General Electric Company Turbomachine rotor blade
JP7477284B2 (ja) * 2019-11-14 2024-05-01 三菱重工業株式会社 タービン翼及びガスタービン

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200002A (ja) * 1995-01-24 1996-08-06 Mitsubishi Heavy Ind Ltd ガスタービンの動翼
JPH11500507A (ja) * 1994-10-26 1999-01-12 ウエスチングハウス・エレクトリック・コーポレイション 冷却式シュラウドを備えたガスタービン翼
JP2006242050A (ja) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd ガスタービンの翼冷却構造
JP2009517574A (ja) * 2005-07-27 2009-04-30 シーメンス アクチエンゲゼルシヤフト ガスタービンにおける冷却形タービン翼およびそのタービン翼の利用
JP2009167934A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd ガスタービン動翼およびガスタービン
WO2010109954A1 (ja) * 2009-03-26 2010-09-30 三菱重工業株式会社 タービン翼およびガスタービン
JP2010281316A (ja) * 2009-05-19 2010-12-16 Alstom Technology Ltd 冷却能力が改良されたガスタービン羽根

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704763A (en) * 1990-08-01 1998-01-06 General Electric Company Shear jet cooling passages for internally cooled machine elements
JPH05195704A (ja) * 1992-01-22 1993-08-03 Hitachi Ltd タービン翼及びガスタービン
US5472316A (en) * 1994-09-19 1995-12-05 General Electric Company Enhanced cooling apparatus for gas turbine engine airfoils
CN1162346A (zh) * 1994-10-26 1997-10-15 西屋电气公司 具有受冷却围带的燃气涡轮叶片
JP2984583B2 (ja) 1995-08-18 1999-11-29 三菱重工業株式会社 ガスタービン動翼
JPH09303103A (ja) * 1996-05-16 1997-11-25 Toshiba Corp 閉ループ冷却形タービン動翼
JPH10212903A (ja) 1997-01-28 1998-08-11 Mitsubishi Heavy Ind Ltd ガスタービン翼
EP1041247B1 (en) * 1999-04-01 2012-08-01 General Electric Company Gas turbine airfoil comprising an open cooling circuit
US6491496B2 (en) * 2001-02-23 2002-12-10 General Electric Company Turbine airfoil with metering plates for refresher holes
US6471479B2 (en) * 2001-02-23 2002-10-29 General Electric Company Turbine airfoil with single aft flowing three pass serpentine cooling circuit
GB2382383B (en) * 2001-11-27 2005-09-21 Rolls Royce Plc Gas turbine engine aerofoil
US7137780B2 (en) * 2004-06-17 2006-11-21 Siemens Power Generation, Inc. Internal cooling system for a turbine blade
US7195458B2 (en) * 2004-07-02 2007-03-27 Siemens Power Generation, Inc. Impingement cooling system for a turbine blade
US7377747B2 (en) * 2005-06-06 2008-05-27 General Electric Company Turbine airfoil with integrated impingement and serpentine cooling circuit
US7819629B2 (en) 2007-02-15 2010-10-26 Siemens Energy, Inc. Blade for a gas turbine
US8167560B2 (en) * 2009-03-03 2012-05-01 Siemens Energy, Inc. Turbine airfoil with an internal cooling system having enhanced vortex forming turbulators
US8511990B2 (en) * 2009-06-24 2013-08-20 General Electric Company Cooling hole exits for a turbine bucket tip shroud
JP5489597B2 (ja) 2009-08-21 2014-05-14 三菱重工業株式会社 翼体及びガスタービン
US8764379B2 (en) * 2010-02-25 2014-07-01 General Electric Company Turbine blade with shielded tip coolant supply passageway
US10323524B2 (en) * 2015-05-08 2019-06-18 United Technologies Corporation Axial skin core cooling passage for a turbine engine component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500507A (ja) * 1994-10-26 1999-01-12 ウエスチングハウス・エレクトリック・コーポレイション 冷却式シュラウドを備えたガスタービン翼
JPH08200002A (ja) * 1995-01-24 1996-08-06 Mitsubishi Heavy Ind Ltd ガスタービンの動翼
JP2006242050A (ja) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd ガスタービンの翼冷却構造
JP2009517574A (ja) * 2005-07-27 2009-04-30 シーメンス アクチエンゲゼルシヤフト ガスタービンにおける冷却形タービン翼およびそのタービン翼の利用
JP2009167934A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd ガスタービン動翼およびガスタービン
WO2010109954A1 (ja) * 2009-03-26 2010-09-30 三菱重工業株式会社 タービン翼およびガスタービン
JP2010281316A (ja) * 2009-05-19 2010-12-16 Alstom Technology Ltd 冷却能力が改良されたガスタービン羽根

Also Published As

Publication number Publication date
CN107532477B (zh) 2020-03-24
JP2017044092A (ja) 2017-03-02
JP6025940B1 (ja) 2016-11-16
US10655478B2 (en) 2020-05-19
DE112016001691T5 (de) 2017-12-21
US20180128116A1 (en) 2018-05-10
KR102001757B1 (ko) 2019-07-18
DE112016001691B4 (de) 2021-10-21
KR20170134553A (ko) 2017-12-06
CN107532477A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
KR101852290B1 (ko) 터빈 정익, 터빈, 및 터빈 정익의 개조 방법
WO2017033920A1 (ja) タービン動翼、及び、ガスタービン
US8529193B2 (en) Gas turbine engine components with improved film cooling
US7121787B2 (en) Turbine nozzle trailing edge cooling configuration
EP2666964B1 (en) Gas turbine engine blades with cooling hole trenches
TWI632289B (zh) 葉片、及具備該葉片的燃氣渦輪機
JP5948436B2 (ja) 翼冷却回路
US20170138211A1 (en) Ring segment cooling structure and gas turbine having the same
JP5683573B2 (ja) 分割環冷却構造およびガスタービン
US10082031B2 (en) Rotor of a turbine of a gas turbine with improved cooling air routing
EP3485147B1 (en) Impingement cooling of a blade platform
US9528381B2 (en) Structural configurations and cooling circuits in turbine blades
US11624286B2 (en) Insert for re-using impingement air in an airfoil, airfoil comprising an impingement insert, turbomachine component and a gas turbine having the same
JP2019078204A (ja) ガスタービン静翼、及びこれを備えているガスタービン
WO2017033726A1 (ja) タービン動翼、及び、ガスタービン
US11199099B2 (en) Gas turbine engines with improved airfoil dust removal
JP5518235B2 (ja) 分割環冷却構造およびガスタービン
KR102486287B1 (ko) 에어포일에서 충돌 공기를 재사용하기 위한 삼중 벽 충돌 인서트, 충돌 인서트를 포함하는 에어포일, 터보머신 구성요소, 및 이를 포함하는 가스 터빈
JP7130664B2 (ja) 改良された冷却回路を備えるブレード
EP3241991A1 (en) Turbine assembly
JP2017101589A (ja) ガスタービン動翼冷却構造およびガスタービン
JP6583780B2 (ja) 翼及びこれを備えるガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15569247

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177031352

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016001691

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839073

Country of ref document: EP

Kind code of ref document: A1