WO2017032274A1 - 树形共轭化合物、树形共轭化合物-碳纳米管复合物、制备方法及应用 - Google Patents

树形共轭化合物、树形共轭化合物-碳纳米管复合物、制备方法及应用 Download PDF

Info

Publication number
WO2017032274A1
WO2017032274A1 PCT/CN2016/096014 CN2016096014W WO2017032274A1 WO 2017032274 A1 WO2017032274 A1 WO 2017032274A1 CN 2016096014 W CN2016096014 W CN 2016096014W WO 2017032274 A1 WO2017032274 A1 WO 2017032274A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
conjugated compound
conjugated
compound
dendritic
Prior art date
Application number
PCT/CN2016/096014
Other languages
English (en)
French (fr)
Inventor
高威
窦军彦
徐文亚
赵建文
马昌期
崔铮
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510534555.9A external-priority patent/CN106478927B/zh
Priority claimed from CN201510882717.8A external-priority patent/CN106832227B/zh
Priority claimed from CN201510883514.0A external-priority patent/CN106823983B/zh
Priority claimed from CN201610389312.5A external-priority patent/CN107456918B/zh
Priority claimed from CN201610388224.3A external-priority patent/CN107459529A/zh
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2017032274A1 publication Critical patent/WO2017032274A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • C07D333/10Thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Definitions

  • the invention relates to a method for dispersing or selectively separating carbon nanotubes, a carbon nanotube dispersant, a carbon nanotube composite and corresponding preparation methods and applications, for example, in preparing composite inks, films and semiconductor devices (such as field effect).
  • the application in transistors belongs to the field of optoelectronic semiconductor materials and devices.
  • Carbon nanotubes are a class of one-dimensional nanomaterials with unique structures, which have good mechanical properties, high charge mobility, excellent electrical properties, good compatibility with flexible substrates, good chemical stability and thermal stability, etc. in semiconductor electronics. There are a wide range of applications in the device.
  • Carbon nanotubes are usually prepared by chemical vapor deposition (CVD).
  • the single-walled carbon nanotubes obtained under the current preparation conditions are metal-type single-walled carbon nanotubes (m-SWCNTs) and semiconductor-type single-walled carbon nanometers.
  • m-SWCNTs metal-type single-walled carbon nanotubes
  • s-SWCNTs semiconductor-type single-walled carbon nanometers.
  • the mixture of tubes (s-SWCNTs) greatly limits the wide application of SWCNTs in semiconductor electronic devices.
  • the effective separation and purification of metal-type single-walled carbon nanotubes and semiconductor-type single-walled carbon nanotubes to obtain single-walled carbon nanotubes with single conductivity is the key to the preparation of carbon nanotube semiconductor devices with superior performance.
  • the polymer coating method has been developed into carbon because of its simple separation method, rapid separation, batch processing by solution method, high separation selectivity, fine adjustment of separation performance, and little influence on the inherent properties of carbon nanotubes. An important research direction in the field of nanotube research.
  • the polymer used in the prior art for separating semiconductor type single-walled carbon nanotubes is mainly a linear structure. So far, there have been no reports on the separation of semiconducting single-walled carbon nanotubes using compound molecules with novel three-dimensional fully conjugated spatial stereostructures. Screening and development of conjugated compounds with new spatial structures is of great significance for efficiently separating semiconductor-type single-walled carbon nanotubes, effectively forming conjugated compound carbon nanotube composites, and improving device performance.
  • the main object of the present invention is to provide a carbon nanotube dispersion or selective separation method and application based on a tree-shaped conjugated compound to overcome the deficiencies in the prior art.
  • Another object of the present invention is to provide a method of preparing the dendritic conjugated compound and use thereof.
  • the technical solution adopted by the present invention includes:
  • the present invention provides a tree-like conjugated compound having the structure represented by formula (I-A), (I-B), (II-A) or (II-B):
  • B is a branched conjugated linking unit selected from a unit having a branched structure formed of a five- or six-membered aromatic unit
  • Core is a core functional modification unit
  • FG is a terminal functional modification unit
  • m is the branch
  • the degree of branching of the conjugated linking unit B is selected from 2 or 3
  • n is the number of iterations of the repeating unit in the molecule of the dendritic conjugated compound, and is selected from 1, 2, 3 or 4.
  • a class of tree conjugated compounds has the structure of formula (I-A) or (II-A):
  • B is a branched conjugated linking unit selected from a unit having a branched structure formed of a five- or six-membered aromatic unit; and FG is a terminal functional modifying unit comprising pyrrolopyrrole represented by formula (III) Diketone unit,
  • n and n are natural integers, m is the degree of branching of the branched conjugated unit B, and its value is 2 or 3.
  • n is an algebra of a tree-shaped conjugated compound, representing the number of iterations of the repeating unit in the molecule, and its value is 1 2, 3 or 4,
  • R 1 includes a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • a type of dendritic conjugated compound has the structure of formula (I-B) or (II-B):
  • B is a branched conjugated linking unit selected from a unit having a branched structure formed of a five- or six-membered aromatic unit;
  • Core is a kernel function modification unit
  • FG is an end function modification unit
  • m is the degree of branching of the branched conjugated linking unit B, and is selected from 2 or 3;
  • n is the number of iterations of the repeating unit in the molecule of the dendritic conjugated compound, and is selected from 1, 2, 3 or 4.
  • the kernel function modifying unit Core includes a structure shown by any one of the following structural formulas:
  • R 1 includes a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group;
  • X 1 includes S or O
  • X 2 includes O, S, C, N, Si or Se and its attached C1-C20 alkyl group or C1-C20 heteroalkyl group
  • X 3 includes C or Si.
  • the terminal functional modification unit FG includes a hydrogen atom, and a structure represented by any one of the following formulas (FG-1) to (FG-10):
  • the branched conjugated linking unit B includes any one of the following structures:
  • Y includes a thiophene ring, a benzene ring unit
  • D includes a thiophene ring, a benzene ring, a fused ring unit formed of 2 to 5 five- or six-membered aromatic units, or a 2-4 five- or six-membered aromatic unit Conjugate short chain unit.
  • the embodiment of the invention further provides a method for synthesizing the tree-shaped conjugated compound, which comprises preparing the tree-shaped conjugated compound by a metal catalytic condensation reaction.
  • the metal catalyzed condensation reaction includes Suzuki condensation and/or stille condensation.
  • the embodiment of the invention further provides the use of the dendritic conjugated compound for selectively separating semiconductor carbon nanotubes, or the use of the dendritic conjugated compound as a carbon nanotube dispersant.
  • the carbon nanotubes are selected from the group consisting of semiconductor-type carbon nanotubes, particularly semiconductor-type single-walled carbon nanotubes, especially large-diameter semiconductor-type single-walled carbon nanotubes.
  • Embodiments of the present invention also provide a type of carbon nanotube dispersant comprising the dendritic conjugated compound.
  • the embodiment of the invention further provides a carbon nanotube dispersion method, which comprises: uniformly mixing the tree-shaped conjugated compound and the carbon nanotubes in a solvent to form a stable and uniform carbon nanotube dispersion liquid.
  • the embodiment of the invention further provides a method for selectively separating semiconductor carbon nanotubes, comprising:
  • Embodiments of the present invention also provide a class of the tree-shaped conjugated compound-carbon nanotube composite comprising carbon nanotubes And the dendritic conjugated compound attached to at least the surface of the carbon nanotube portion.
  • Embodiments of the present invention also provide a carbon nanotube dispersion comprising the dendritic conjugated compound-carbon nanotube composite.
  • the embodiment of the invention further provides a composite ink, comprising:
  • the composite ink further comprises an organic semiconductor.
  • the embodiment of the invention further provides a method for preparing a composite ink, which comprises:
  • the tree-shaped conjugated compound and the carbon nanotube are uniformly mixed in a solvent to form a uniform carbon nanotube dispersion.
  • the uniform carbon nanotube dispersion liquid is subjected to high-speed centrifugation, and the obtained clear liquid is the composite ink.
  • the method of preparing the composite ink comprises:
  • the dendritic conjugated compound and the carbon nanotubes having a mass ratio of 1:0.1 to 1:10 are uniformly mixed in a solvent at a temperature of ⁇ 0 ° C to form a uniform carbon nanotube dispersion.
  • the centrifugal speed of the high-speed centrifugation treatment is greater than 8000 rpm, and the centrifugation time is more than 20 minutes.
  • Embodiments of the present invention also provide a film comprising the dendritic conjugated compound-carbon nanotube composite.
  • a method of making a film comprising: applying the dispersion or the composite ink to a substrate by printing and/or coating to form the film.
  • the coating and/or printing method comprises any one of a spin coating film, a knife coating, a slit coating, an inkjet printing, a screen printing, a gravure printing, a flexographic printing, and a flexographic printing method. Or a combination of two or more, but is not limited thereto.
  • the preparation method further includes a film post-processing step, and the film post-processing step includes a cleaning and annealing operation.
  • Embodiments of the present invention also provide a film comprising the tree-shaped conjugated compound or the tree-shaped conjugated compound-carbon nanotube composite.
  • Embodiments of the present invention also provide a film that is primarily formed from the ink, the composite ink, or the carbon nanotube dispersion.
  • the embodiment of the invention further provides a method for preparing a film, comprising: forming the film by a printing or coating process using the ink, the composite ink or the carbon nanotube dispersion.
  • the printing or coating process includes any one or a combination of two or more of inkjet printing, screen printing, gravure printing, spin coating, blade coating, slit extrusion coating, but is not limited thereto. this.
  • Embodiments of the present invention also provide an apparatus comprising the dendritic conjugated compound, the dendritic conjugated compound-carbon nanotube composite or the film.
  • the device is selected from a semiconductor device.
  • the device includes a transistor (eg, a field effect transistor), an inverter, etc., but is not limited thereto.
  • a transistor eg, a field effect transistor
  • an inverter e.g., an inverter
  • the device comprises a field effect transistor, the active layer of the field effect transistor comprising the tree conjugate compound-carbon nanotube composite or the film.
  • the field effect transistor is mainly composed of a source electrode, a drain electrode, a gate electrode, a dielectric layer and an active layer.
  • 1 is a UV-vis absorption spectrum of a solution of an organic conjugated compound having a peripheral functionalized modified three-dimensional dendritic oligothiophene structure synthesized in Examples 3, 4, and 5.
  • Figure 3 is a MALDI-TOF MS image of a peripheral functionalized modified dendritic oligothiophene synthesized in Example 4.
  • Example 4 and 5 are semiconductor carbon nanotubes obtained in Example 24, Example 25 (P2-CNT, tree-shaped conjugated compound (6T-DPP, 9T-DPP), toluene) of the present invention (hereinafter referred to as "S-" Absorption spectrum of CNT").
  • FIG. 6 and FIG. 7 are the pulls of S-CNT obtained in Example 26 and Example 27 (P2-CNT, tree-shaped conjugated compound (6T-DPP, 9T-DPP), toluene) under different test conditions, respectively. Mann spectrum.
  • Example 8 and 9 are graphs showing the performance of a thin film transistor constructed in Example 21 (P2-CNT, dendritic conjugated compound (9T-DPP), toluene), respectively.
  • Example 10 is a UV-vis absorption spectrum of a three-dimensional dendritic thiophene structure organic conjugate compound solution functionalized by a DPP core synthesized in Example 29, Example 31, and Example 33.
  • Example 11 is a UV-vis normalized absorption spectrum of a film of an organic conjugated compound having a three-dimensional dendritic oligothiophene structure functionalized by a DPP core synthesized in Example 29, Example 31, and Example 33.
  • Example 12 and 13 are MALDI-TOF MS images of the peripheral functionalized modified dendritic oligothiophenes synthesized in Example 33 and Example 39, respectively.
  • Example 14 is a UV-vis absorption spectrum of a three-dimensional dendritic thiophene structure organic conjugate compound solution functionalized by DPP core synthesized in Example 34, Example 37, and Example 39.
  • FIG. 16 are semiconductor carbon nanotubes obtained in Example 48 (P2-CNT, tree-shaped conjugated compound 116) and Example 2 (P2-CNT, tree-shaped conjugated compound 119), respectively (hereinafter referred to as " Absorption spectrum of S-CNT").
  • Example 17 and 18 are S-CNTs obtained in Example 48 (P2-CNT, dendrimeric conjugated compound 116) and Example 2 (P2-CNT, dendrimeric conjugated compound 119), respectively, under different test conditions.
  • Raman spectrum obtained in Example 48 (P2-CNT, dendrimeric conjugated compound 116) and Example 2 (P2-CNT, dendrimeric conjugated compound 119), respectively, under different test conditions.
  • 19 and 20 are transfer curves and output curves of a single-walled carbon nanotube thin film transistor constructed in Example 48 (P2-CNT, dendritic conjugated compound 116, toluene) of the present invention, respectively.
  • 21 and 22 are transfer curves and output curves of a single-walled carbon nanotube thin film transistor constructed in Example 49 (P2-CNT, dendritic conjugated compound 119, toluene) of the present invention, respectively.
  • Figure 23 is a NMR spectrum of the nonlinear conjugated polymer prepared in Example 56;
  • Figure 24 is a time-of-flight mass spectrum of the nonlinear conjugated polymer prepared in Example 57;
  • Figure 25 is a chart showing the ultraviolet absorption spectrum of the nonlinear conjugated polymer prepared in Example 56;
  • Example 26 is an absorption spectrum diagram of a semiconductor carbon nanotube (abbreviated as s-CNT) in a weight ratio of different carbon nanotube-conjugated polymers in Example 56;
  • s-CNT semiconductor carbon nanotube
  • Figure 27 is a Raman spectrum of the carbon nanotube-conjugated polymer ink obtained after centrifugation in Example 56;
  • Figure 28 is a graph showing the electrical property test of the transistor constructed in Example 56.
  • Figure 29 is an atomic force microscope (AFM) diagram of the channel of the transistor constructed in Example 56.
  • the present invention provides a tree-like conjugated compound having the structure represented by formula (I-A), (I-B), (II-A) or (II-B):
  • B is a branched conjugated linking unit selected from a unit having a branched structure formed of a five- or six-membered aromatic unit
  • Core is a core functional modification unit
  • FG is an end function modification unit (or end function) a modifying unit)
  • m is the degree of branching of the branched conjugated linking unit B, and is selected from 2 or 3
  • n is the number of repeating unit iterations in the molecule of the dendrimeric conjugated compound, and is selected from 1, 2 , 3 or 4.
  • the dendrimeric conjugated compound has the chemical structure of formula (I-A) or (II-A):
  • B is a conjugated linking unit, which is a unit having a branched structure formed of a five- or six-membered aromatic unit
  • FG is a terminal functional modifying unit having a structure containing pyrrolopyrrole as shown in formula (III) a ketone unit
  • m and n are natural integers
  • m is the degree of branching of the branched conjugated unit B
  • its value is 2 or 3
  • n is an algebra of a tree-shaped conjugated compound, representing the number of iterations of the repeating unit in the molecule, The value is 1, 2, 3 or 4.
  • R 1 is selected from a hydrogen atom or a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • the pyrrolopyrroledione (DPP) structural unit FG has the advantages of low cost and easy availability, strong electron acceptability, high molar extinction coefficient, high charge mobility and easy adjustment of physical and chemical properties by directed chemical modification.
  • the molecular orbital level of the compound can be adjusted to increase the charge of the compound. Mobility, reducing the spectral bandwidth of the compound, and improving the spectral absorption capacity of the compound; on the other hand, due to the strong interaction between the pyrrolopyrroledione unit and the carbon nanotube, the carbon nanotube can be realized. Selective dispersion and separation.
  • the aforementioned terminal functional modification unit (also referred to as a terminal functional modification unit or a peripheral functional modification unit) FG containing a pyrrolopyrroledione unit may be selected from one of the following structures:
  • R 1 is selected from a hydrogen atom or a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • the peripheral functional modification unit FG containing the pyrrolopyrroledione unit further needs to introduce a terminal blocking unit to passivate the reactivity of one end.
  • the specific capping unit can be selected from but not Limited to the following structure:
  • the unit represented by the above formula (III-1) is taken as an example, and the structure of the asymmetric FG unit incorporating the capping unit may be selected from, but not limited to, the following structures:
  • the branched conjugated linking unit B may have the formula (IV-1) or (IV-2) One of the structures:
  • Y is selected from a benzene ring or a thiophene unit
  • D is selected from a benzene ring, a thiophene ring, a fused ring unit formed from 2-5 five- or six-membered aromatic units, or from 2-4 five- or six-membered aromatic units A conjugated short chain unit formed.
  • Y may be selected from thiophene, and a branched structure represented by formula (IV-1-1) is formed by ⁇ , ⁇ -disubstituted:
  • branched structural unit IV-1-1 By repeating the above-described branched structural unit IV-1-1, a branched conjugated building unit represented by the formula (IV-1-1-G1) to the formula (IV-1-1-G4) can be constructed, for example:
  • the ⁇ -position of the peripheral thiophene unit is linked to a functional modification unit having a pyrrolopyrroledione unit, and the ⁇ -position of the thiophene of the core is a hydrogen atom (as shown in the formula (IA)), or a combination thereof
  • a compound having the structure represented by the formula (II-A) is formed.
  • a compound having a molecular structure represented by formula (I-A) or formula (II-A) based on the above IV-1-1-G4 unit is as follows:
  • a conjugated unit D may also be introduced between the repeating units Y to increase the distance between the repeating units Y.
  • the conjugated unit D unit may be selected from a benzene ring, a thiophene ring, or may be selected from fused ring units formed from 2 to 5 five- or six-membered aromatic units, for example, may include But not limited to the following structure:
  • X 1 S or O
  • X 2 O
  • S, C, N, Si or Se and its attached C1 to C20 alkyl group or C1 to C20 heteroalkyl group
  • R 3 is selected from substituted or unsubstituted A C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • D may be selected from conjugated short chain units formed from 2 to 4 five- or six-membered aromatic units, including but not limited to the following structures:
  • R 4 and R 5 are independently selected from a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • the Y and D units may be thiophene units, and the corresponding branched conjugated linking unit B may have the following structure:
  • the ⁇ -position of the peripheral thiophene unit is linked to the terminal modification unit FG having a pyrrolopyrroledione unit, and the ⁇ -position of the thiophene of the core is a hydrogen atom (Formula IA), or the two are linked to each other to form a structural formula.
  • the molecule of II-A is linked to the terminal modification unit FG having a pyrrolopyrroledione unit
  • the molecular structure of the constructed tree-shaped conjugated compound includes:
  • Some embodiments of the present invention provide a class of tree-shaped conjugated compounds having a branched structure having the structure represented by formula (I-B) or (II-B):
  • B is a branched conjugated linking unit selected from the group consisting of a five- or six-membered aromatic unit having a branched structure, Core being a core functional modification unit, and FG being an end functional modification unit.
  • m and n are natural integers, m is the degree of branching of the branched conjugated linking unit B, and its value is 2 or 3.
  • n is the number of iterations of the repeating unit in the conjugated compound of the tree, and its value is 1,2. 3 or 4.
  • the molecular orbital energy level of the compound can be adjusted, the charge mobility of the compound can be regulated, and the compound can be effectively expanded.
  • the yoke reduces the spectral bandwidth of the compound and enhances the spectral absorption capacity of the compound.
  • the foregoing kernel function modifying unit Core may include a structure as shown in any one of the following structural formulas:
  • R 1 includes a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group;
  • X 1 includes S or O
  • X 2 includes O, S, C, N, Si or Se and its attached C1-C20 alkyl group or C1-C20 heteroalkyl group
  • X 3 includes C or Si.
  • the terminal function modifying unit FG includes a hydrogen atom and the following formula (FG-1) ⁇
  • the structure shown in any of (FG-10) is not limited to the following structure:
  • the terminal functional modification unit FG also needs to introduce a terminal blocking unit EG to passivate the reactivity of one end.
  • the specific capping unit can be as follows, but is not limited to the following structure:
  • R2 is selected from a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • the structure of the asymmetric FG functional modification unit incorporating the end-capping unit may be selected from, but not limited to, the following structure:
  • R1 and R2 are a linear or branched alkyl group of C1 to C20 or a heteroalkyl group of C1 to C20.
  • the branched conjugated linking unit B may have the formula (IV-1) or (IV-2) One of the structures:
  • Y is selected from the group consisting of a thiophene ring, a benzene ring unit
  • D is selected from the group consisting of a thiophene ring, a benzene ring, and 2 to 5 five- or six-membered aromatics.
  • a fused ring unit formed by a unit or a conjugated short-chain unit formed of 2 to 4 five- or six-membered aromatic units.
  • Y is selected from the group consisting of thiophenes, and the branched structure represented by formula (IV-1-1) is formed by ⁇ , ⁇ -disubstituted:
  • branched structural unit IV-1-1 By repeating the above-described branched structural unit IV-1-1, a branched conjugated building unit represented by the formula (IV-1-1-G1) to the formula (IV-1-1-G4) can be constructed, for example:
  • the compound having the molecular structure represented by the formula (I-B) or the formula (II-B) based on the above IV-1-1-G4 unit is as follows:
  • a conjugated unit D may also be introduced between the repeating units Y to increase the distance between the repeating units Y.
  • the conjugated unit D unit may be selected from a benzene ring, a thiophene ring, or may be selected from fused ring units formed from 2 to 5 five- or six-membered aromatic units, for example, may include But not limited to the following structure:
  • X 1 includes S or O
  • X 2 includes O, S, C, N, Si, Se, F and its attached C1-C20 alkyl group or C1-C20 heteroalkyl group
  • R 3 is substituted or unsubstituted. a C1-C20 alkyl group or a C1-C20 heteroalkyl group;
  • D may be selected from conjugated short chain units formed from 2 to 4 five- or six-membered aromatic units, including but not limited to the following structures:
  • R 4 and R 5 are independently selected from a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group or a C1-C20 heteroalkyl group.
  • the Y and D units may be thiophene units, and the corresponding branched conjugated linking unit B may have the following structure:
  • ⁇ -position (pa and/or pb) of the outer terminal thiophene of the branched conjugated link unit is linked to the terminal functional modification unit FG or to the ⁇ -position (ca) of the internal terminal thiophene to form the following formula ( High algebraic branched conjugated link units as indicated by V-G2), (V-G3) or (V-G4):
  • the external thiophene ⁇ -position pa and/or pb is linked to the terminal functional modification unit FG
  • the inner terminal thiophene ⁇ -position ca is linked to the core functional modification unit Core to form the formula (IB) and the formula (II-B).
  • a compound exhibiting a molecular structure is linked to the terminal functional modification unit FG
  • the inner terminal thiophene ⁇ -position ca is linked to the core functional modification unit Core to form the formula (IB) and the formula (II-B).
  • the kernel function modification unit Core is III-1
  • the end function modification unit FG is FG-1
  • the branched conjugate link unit B is V
  • the molecular structure of the tree-shaped conjugated compound includes:
  • the core function modification unit Core is III-4
  • the terminal function modification unit FG is a hydrogen atom
  • the branched conjugate link unit B is V
  • the molecular structure of the conjugated compound includes:
  • the molecular structure of the tree-shaped conjugated compound includes:
  • the kernel functionalized modification unit Core is III-1
  • the terminal functional modification unit is FG-2
  • the end group termination unit is EG-1
  • the branching structure B is V
  • the molecular structure of the constructed tree-shaped conjugated compound includes:
  • the method for synthesizing the dendritic conjugated compound described in the foregoing embodiments may include preparing the dendritic conjugated compound by a metal catalyzed condensation reaction.
  • the metal catalytic condensation reaction comprises: Suzuki condensation, stille condensation, but is not limited thereto.
  • the dendritic conjugated compound represented by the above formula (I-A) can be synthesized by the method of the reaction step represented by the reaction system (1).
  • the dendritic conjugated compound represented by the formula (II-A) can be synthesized by a method including a reaction step represented by the reaction system (2).
  • the tree-shaped conjugated compound represented by the formula (II-A) can also be synthesized by a method including a reaction step represented by the reaction system (3).
  • the dendritic conjugated compound represented by the above formula (I-B) can be synthesized by the method of the reaction step represented by the reaction system (4).
  • m is the degree of branching of the branched conjugated linking unit B, and its value is 2 or 3; n is an algebra of a tree-shaped conjugated compound, representing the number of iterations of the repeating unit in the molecule, and its value is 1,2, 3 or 4.
  • the dendritic conjugated compound represented by the formula (II-B) can be synthesized by a method including a reaction step represented by the reaction system (5).
  • m is the degree of branching of the branched conjugated linking unit B, and its value is 2 or 3; n is an algebra of a tree-shaped conjugated compound, representing the number of iterations of the repeating unit in the molecule, and its value is 1,2, 3 or 4.
  • the dendritic conjugated compound represented by the formula (II-B) can also be synthesized by a method including a reaction step represented by the reaction system (6).
  • the reaction of the dendritic conjugated compound molecule having a reactive group V1 with the dendritic conjugated compound molecule having a reactive group V 2 is carried out by a Suzuki cross-coupling reaction. Or stille cross-coupling reaction.
  • the aforementioned reactive groups V 1 and V 2 may be selected from the following three groups of reactive reactive groups, but are not limited thereto.
  • R 4 is selected from a linear or branched alkyl group having a carbon number of from 1 to 4.
  • R 5 is selected from a linear or branched alkyl group having a carbon number of 1-4.
  • the combination of V 1 and V 2 comprises (selected from the reactive reactive group 1, selected From the active reactive group group 3) or (selected from the active reactive group group 3, selected from the group of reactive reactive groups 1).
  • the combination of V 1 and V 2 comprises (selected from the reactive reactive group 1, selected From the active reactive group group 2) or (selected from the active reactive group group 2, selected from the group of reactive reactive groups 1).
  • V 1 is selected from -Br, -I; and V 2 is selected from the reactive reactive groups represented by formula (k).
  • the metal catalyst refers to a soluble metal palladium complex, for example, but not limited to: Pd(PPh 3 ) 4 , Pd(OAc) 2 , Pd 2 (dba) 3 , Pd 2 (dba) 3 ⁇ CHCl 3 , Pd(dppf)Cl 2 , a more preferred catalyst may be Pd(PPh 3 ) 4 , Pd 2 (dba) 3 , Pd 2 (dba) 3 ⁇ CHCl 3 .
  • a phosphorus ligand needs to be added in the catalytic system to improve the reaction efficiency.
  • the phosphorus ligand includes, but is not limited to, PPh 3 or HP(tBu) 3 BF 4 .
  • the molar ratio of the phosphorus ligand to the catalyst Pd atom may be 2:1.
  • an inorganic metal base solution needs to be added to the reaction system.
  • the metal base includes carbonates such as Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHCO 3 ; phosphates such as K 3 PO 4 , K 2 HPO 4 ; carboxylates such as KOAc. , NaOAc, but are not limited to this.
  • suitable solvents may include, but are not limited to, toluene, ethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane, DMF, DMSO, dichloromethane, chloroform.
  • a preferred solvent may be tetrahydrofuran or chloroform, but is not limited thereto.
  • the dendritic conjugated compound having the structure represented by the formula (IA), (IB), (II-A) or (II-B) described in the foregoing embodiment can be applied to the preparation of a carbon nanotube dispersant, particularly directly
  • the application is a carbon nanotube dispersant, especially as a semiconductor type carbon nanotube selective dispersant, wherein the carbon nanotube is selected from a semiconductor type carbon nanotube, in particular a semiconductor type single-walled carbon nanotube, especially a large diameter Semiconductor type single-walled carbon nanotubes.
  • a dendritic conjugated compound-carbon nanotube composite consisting essentially of carbon nanotubes and the dendritic conjugated compound attached to the surface of the carbon nanotubes.
  • the dendritic conjugated compound of the present invention is a nonlinear conjugated compound (polymer) having a three-dimensional tree-like stereostructure in which introduction of a B group having a spatially distorted conformation structure is obtained by obtaining a nonlinear dendritic conjugated compound.
  • these dendritic conjugated compounds have a twisted dendritic structure in space, and the conjugated compound of the dendritic twist structure can be effectively coated on the carbon nanotubes, so that the interaction force between the polymer and the carbon nanotubes The reinforcement is enhanced and the stability of the composite is also greatly improved.
  • a carbon nanotube dispersion method comprises: uniformly mixing the tree-shaped conjugated compound and the carbon nanotube in a solvent to form a stable and uniform carbon nanotube. Dispersions.
  • a method for selectively separating semiconductor carbon nanotubes which includes:
  • the carbon nanotube powder may be a commercially available carbon nanotube powder or a carbon nanotube powder prepared by various methods known in the art, which may generally include a semiconductor type carbon nanotube and a metal type. Carbon nanotubes, etc.
  • the solvent used in the solution may be selected from any solvent capable of dissolving but not destroying the molecular structure of the dendritic conjugated compound, especially an organic solvent such as chloroform, tetrahydrofuran, toluene, o-xylene, p-pair Toluene, m-xylene, acetone, trimethylbenzene, chlorobenzene and dichlorobenzene.
  • an organic solvent such as chloroform, tetrahydrofuran, toluene, o-xylene, p-pair Toluene, m-xylene, acetone, trimethylbenzene, chlorobenzene and dichlorobenzene.
  • the method for selectively separating semiconductor carbon nanotubes specifically includes:
  • a carbon nanotube dispersion comprising the dendritic conjugated compound-carbon nanotube composite is also provided.
  • a composite ink that includes the following components:
  • the tree-shaped conjugated compound having the structure represented by the formula (IA), (IB), (II-A) or (II-B) in the composite ink provided by the foregoing embodiments of the present invention can be effectively coated on the semiconductor type carbon
  • a supramolecular composite structure is formed on the tube wall of the nanotube to improve the dispersibility of the semiconductor type carbon nanotube in an organic solvent, thereby selectively dispersing the semiconductor type single-walled carbon nanotube to obtain a semiconductor-type single-walled carbon nanotube. Disperse uniform ink.
  • the linear or branched alkyl unit contained in the tree-shaped conjugated compound having the structure represented by the formula (IA), (IB), (II-A) or (II-B) in the above composite ink can also be effectively improved.
  • the solubility of the tree-shaped conjugated compound in an organic solvent, the interaction between the tree-shaped conjugated compound and the carbon nanotube, the surface defect of the carbon nanotube layer in the film, the carrier concentration and the carrier are improved.
  • the carbon nanotubes in the composite ink provided by the foregoing embodiments of the present invention can be commercialized large-diameter P2 single-walled carbon nanotubes, that is, large-diameter single-walled carbon nanotubes obtained by a commercial arc discharge method.
  • the organic solvent used in the composite ink provided by the foregoing embodiments of the present invention is preferably an organic solvent which can dissolve the tree-shaped conjugated compound and cannot disperse the carbon nanotubes by itself, and for example, may be selected from the group consisting of chloroform, tetrahydrofuran, toluene, and o. Any one or two or a combination of two or more of toluene, p-xylene and m-xylene, but is not limited thereto.
  • the solvent may further comprise one or two or more of acetone, trimethylbenzene, chlorobenzene, and dichlorobenzene, and is used for dispersing and stabilizing the disposed composite ink. Configure the processing performance of the composite ink.
  • the semiconductor type single-walled carbon nanotubes can be greatly improved in the tree-shaped conjugated compound and the organic solvent due to the selective coating of the tree-shaped conjugated compound. Dispersibility, without significant agglomeration, can effectively stabilize the formulated ink while maintaining the original mechanical and electrical properties of the semiconductor-type single-walled carbon nanotubes.
  • the weight/volume concentration of the dendritic conjugated compound-carbon nanotube composite is preferably 0.01 to 20 mg/mL.
  • the lower solid content makes the composite deposition amount insufficient during the processing and preparation of the composite.
  • the semiconductor single-walled carbon nanotubes cannot adhere and fix on the surface of the substrate well, and the higher solid content concentration tends to cause solid precipitation, which is not conducive to Stable dispersion of ink.
  • the weight mixing ratio of the tree-shaped conjugated compound to the carbon nanotube is preferably 1:0.1 to 1:10, and an excessively high content of the polymer will cause the polymer to be in the device. Residual, weakening the role of semiconductor-type single-walled carbon nanotubes in charge transport in processed devices. Too low polymer ratio is difficult to effectively adhere to semiconductor-type single-walled carbon nanotubes on a substrate, resulting in failure to form in the channel.
  • the dense carbon nanotube network structure affects the efficient transfer of charge in the processed device and reduces the electrical performance of the transistor. More preferably, the weight mixing ratio of the tree-shaped conjugated compound to the carbon nanotube is preferably 1:0.2 to 1:5.
  • the preparation of the composite ink is also provided in some more specific embodiments.
  • the composite ink can adopt the following two preparation methods.
  • the tree-shaped conjugated compound is first dissolved in at least one solvent, and then the commercial large-diameter P2 single-walled carbon nanotube is uniformly dispersed in the first at a temperature of ⁇ 0 ° C.
  • the solution of the tree-shaped conjugated compound prepared in the step is finally subjected to short-time high-speed centrifugation, and the supernatant liquid is separated to obtain an ink solution of a large-diameter commercialized carbon nanotube enriched in a semiconductor type.
  • the tree-shaped conjugated compound is first mixed with a commercial large-diameter P2 single-walled carbon nanotube, and then the solvent is used in an organic solvent, and then uniformly dispersed by ultrasonic at a temperature of ⁇ 0 ° C, and finally The short-time high-speed centrifugal separation was carried out, and the supernatant liquid was separated to prepare an ink.
  • the organic solvent may be at least selected from any one or two or a combination of two or more of chloroform, tetrahydrofuran, toluene, o-xylene, p-xylene or m-xylene, but is not limited thereto.
  • the composite ink is simple in preparation process, low in cost, simple in operation, and easy to prepare in batches.
  • the choice of solvent needs to combine the dispersing properties of carbon nanotubes in different solvents, the solubility of dendritic conjugated compounds in different solvents, and the solvent requirements of the subsequent dendritic conjugated compound-carbon nanotube composite deposition process.
  • the polarity and solubility of the solvent have a great influence on the separation of the semiconductor-type single-walled carbon nanotubes from the tree-shaped conjugated compound.
  • chloroform has very good solubility for single-walled carbon nanotubes
  • most of the dispersed carbon nanotubes exist in a state of being aggregated in a solution, and a single semiconductor type single-walled carbon nanotube cannot be realized.
  • Selectivity Dispersion which affects its application in device processing and preparation.
  • a preferred organic solvent includes an organic solvent such as toluene, o-xylene, p-xylene, and meta-xylene which cannot disperse carbon nanotubes by themselves, but these solvents have a tree-shaped conjugated compound.
  • the tree-shaped conjugated compound can selectively coat the semiconductor type single-walled carbon nanotubes to form a tree-shaped conjugated compound-carbon nanotube composite, thereby selectively separating the semiconductor type single-wall carbon nano-nano
  • an ink solution for commercializing carbon nanotubes of a large diameter enriched semiconductor type for processing a carbon nanotube thin film transistor is obtained.
  • the difference in the selected solvent affects the surface tension of the ink to a certain extent, thereby affecting the contact performance of the ink with the substrate, thereby affecting the performance of the processed carbon nanotube thin film transistor.
  • the organic solvent may be selected from any one or two or a combination of two or more of chloroform, tetrahydrofuran, toluene, o-xylene, p-xylene, m-xylene, chloroform and tetrahydrofuran. , but not limited to this.
  • the high-speed centrifugation operation employed in the preparation process of the composite ink described above is preferably a centrifugal speed of more than 8000 rpm, preferably controlled at 10,000 to 30,000 rpm, and a centrifugation time of 20 minutes or more, preferably 30 to 100 minutes.
  • a film comprising the dendritic conjugate compound-carbon nanotube complex is also provided.
  • a simple method of preparing the film is provided in some specific embodiments, for example, by using the composite ink, deposited by coating or printing, or the like.
  • the coating method includes dip coating, drop coating, spin coating, blade coating, slit coating, etc.;
  • the printing method includes inkjet printing, screen printing, gravure printing, air jet printing, Flexographic transfer, etc., but not limited to this.
  • the film is typically deposited on the substrate material during the actual deposition process to prepare the composite film.
  • the substrate material includes: silicon wafer, glass, plastic, paper, and metal foil, such as stainless steel, aluminum foil, etc., but is not limited thereto.
  • the printer in the inkjet printing described above may be a printer that uses squeeze printing ink, such as Dimatrix's 2831, 3000, 5005, MicroFab, and aerosol inkjet printers, but is not limited thereto.
  • the concentration of carbon nanotubes in the ink is preferably 0.0001 to 1 mg/mL.
  • a subsequent processing method of the film which includes solvent cleaning, annealing, and the like.
  • the solvent may be selected from any one or two or more of chloroform, tetrahydrofuran, toluene, o-xylene, p-xylene, m-xylene, chloroform and tetrahydrofuran. Combination, but not limited to this.
  • the annealing temperature used is 200 ° C or lower, preferably 25 to 120 ° C, and the annealing time is 30 to 120 min, preferably 30 to 60 min.
  • Also provided in some more specific embodiments is a device comprising the dendritic conjugated compound-carbon nanotube composite or the film.
  • the device may be a semiconductor device, and a layer of semiconductor material (for example, an active layer) comprises the film.
  • the semiconductor device may be a transistor, an inverter, or the like, but is not limited thereto.
  • the device may be a field effect transistor mainly composed of a source electrode, a drain electrode, a gate electrode, a dielectric layer and an active layer, the active layer containing the tree conjugate compound-carbon Nanotube composite or the film described.
  • the field effect transistor is a thin film transistor, which can be constructed by using the carbon nanotube-tree conjugate compound composite ink by methods such as drop coating, spin coating, dip coating, gravure printing, and inkjet printing.
  • the deposition method is diverse and the processing technology is simple.
  • the dendritic conjugated compound-carbon nanotube composite can be used as an active layer of a thin film transistor.
  • the aforementioned tree-shaped conjugated compound, tree-shaped conjugated compound-carbon nanotube composite can be applied to large-scale commercial production of high-performance printable semiconductor carbon nanotube inks and high-performance printed electronic devices.
  • the molecule of the dendritic conjugated compound in the foregoing embodiment has a three-dimensional conjugated spatial steric structure, and the molecular structure thereof is single-determined, which can overcome the difference between the polymer batches, has good repeatability, and can be applied as a dispersing agent.
  • semiconductor-type carbon nanotubes particularly semiconductor-type single-walled carbon nanotubes; preferably, three-dimensional conjugate space stereoscopically realized by adjusting solvent type, carbon nanotube concentration, and dendritic conjugate compound concentration
  • novel tree-shaped compound of the structure selectively coats the large-diameter semiconductor carbon nanotubes; and the tree-shaped conjugated compound-carbon nanotube composite has a simple processing process, and the amount of the required compound is relatively small, and is used in the separation process.
  • these tree-shaped conjugated compound-carbon nanotube composites have good semiconductor properties and can be applied to large-scale commercial production of high-performance printable semiconductor carbon nanotube inks and high Performance of printed electronic devices, for example, the use of large diameter semiconductor carbon nanotubes to achieve superior performance The thin film transistor semiconductor device.
  • Some embodiments of the present invention also provide a carbon nanotube-nonlinear conjugated polymer composite comprising carbon nanotubes and a nonlinear conjugated polymer attached to at least the surface of the carbon nanotubes, the non- The repeating unit of the linear conjugated polymer has a pyrrolopyrroledione unit (DPP) and one or more aromatic units.
  • DPP pyrrolopyrroledione unit
  • the non-linear conjugated polymer has a chemical structure represented by the following formula:
  • R 1 is selected from a linear or branched alkyl or heteroalkyl group having a carbon number of 1 to 20; and R 2 and R 3 are independently selected from a hydrogen atom, a straight chain or a branch having a carbon number of 1 to 20 An alkyl group, a heteroalkyl group or an alkylene group, or R 2 and R 3 are bonded to form a 5-8 membered substituted or unsubstituted cyclic structure; Ar 1 is selected from 1-4 five or six membered aromatic rings or aromatic a conjugated unit composed of a heterocyclic ring or a polyvalent aromatic fused ring; n represents the number of repeating units in the polymer, which is selected from any integer from 2 to 500.
  • the structure of Ar 1 may be selected from any one of formulas (II-C)-(IX-C):
  • R* is at least selected from a hydrogen atom or a C 1 -C 10 linear or branched alkyl group, and x is selected from any of 1-3.
  • the aforementioned pyrrolopyrroledione unit may have the structure represented by formula (X-C):
  • the nonlinear conjugated polymer has a main chain structure of Ar 1 represented by the formula (X-C) and the formula (VII-C).
  • R 1 is selected from a linear or branched alkyl or heteroalkyl group having a carbon number of 1 to 20; and R 2 and R 3 are independently selected from a hydrogen atom, a straight chain or a branch having a carbon number of 1 to 20
  • An alkyl group, a heteroalkyl group or an alkylene group, or R 2 is bonded to R 3 to form a cyclic structure having a 5-8 membered or unsubstituted.
  • the nonlinear conjugated polymer can be produced by a polymerization reaction.
  • the method for preparing the nonlinear conjugated polymer may include: selecting a compound having the structure represented by Formula 1 and a compound containing an Ar 1 group to carry out a polymerization reaction, thereby obtaining a Nonlinear conjugated polymer,
  • the compound containing an Ar 1 group has at least one of the following structures:
  • M includes -SnMe 3 or -B(OR) 2
  • R 1 is selected from a linear or branched alkyl or heteroalkyl group having a carbon number of 1 to 20
  • R 2 and R 3 are independently selected from a hydrogen atom, A linear or branched alkyl, heteroalkyl or alkano group having a carbon number of 1 to 20, or R 2 and R 3 are bonded to form a cyclic structure having a 5-8 membered or unsubstituted.
  • R* is a hydrogen atom or a C 1 -C 10 linear or branched alkyl group
  • n is selected from any integer of 2 to 150
  • x is independently selected from any of 1-3.
  • the polymerization reaction is a transition metal catalyzed polycondensation reaction, for example, preferably from metal catalyzed Suzuki polymerization or metal catalyzed Stille polymerization.
  • the method for preparing the nonlinear conjugated polymer comprises: 1:1 a compound having a structure represented by Formula 1 and a compound represented by any one of Formulas 2 to 9 a molar ratio of ⁇ 1:1.5 is charged, and after mixing, a catalyst and a ligand are added to form a mixed system, and in a protective atmosphere, an organic solvent in which a basic substance is dissolved, such as an organic solvent in which an alkali solution is dissolved, is added to the mixed system.
  • the transition metal-catalyzed polycondensation reaction is carried out at 25 to 50 ° C, and the reaction is carried out for 24 to 96 hours in a protective atmosphere to obtain the nonlinear conjugated polymer based on the pyrrolopyrroledione structure.
  • the catalyst may preferably be, but not limited to, Pd 2 (dba) 3 or Pd 2 (dba) 3 . CHCl 3 or the like.
  • the ligand may preferably be, but not limited to, tri-tert-butylphosphine tetrafluoroborate, tris(2-methoxyphenyl)phosphine, triphenylphosphine, tricyclohexylphosphine, tri(o-tolyl) Phosphine or tris(m-tolyl)phosphine, and the like.
  • the organic solvent may be preferably selected from tetrahydrofuran or dichloromethane, but is not limited thereto.
  • the alkaline substance may be selected from potassium phosphate or cesium carbonate used.
  • the alkali solution may preferably be a potassium phosphate or cesium carbonate aqueous solution or the like having a concentration of 2 mol/L, but is not limited thereto.
  • the protective atmosphere may be selected from an inert gas atmosphere or a nitrogen atmosphere, etc., preferably a nitrogen atmosphere.
  • the method for preparing the nonlinear conjugated polymer may include: 1:1 the compound of the structure of Formula 1 and the compound of Formula 2-9 The molar ratio of ⁇ 1:1.5 was charged, and the tetrahydrofuran in which the potassium phosphate aqueous solution was dissolved was transferred to the system, and the mixture was stirred and dissolved, and then subjected to a transition metal-catalyzed condensation reaction in a water bath at 25 to 50 ° C, and the reaction under N 2 protection was carried out for 24 to 96 hours. After the end of the reaction, a series of conventional post-treatments are carried out to obtain the nonlinear DPP conjugated polymer.
  • R 1 is 2-octyldodecyl
  • R 2 and R 3 are selected from H
  • Ar 1 is 5,5-bis (4,4,5,5 -tetramethyl-1,3,2-dioxaborolan-2-yl)-2,2':3',2"-terthiophene(3T-B) nonlinear conjugated polymer synthesis process as an example: polymerized monomer (a And monomer (b) (and other monomers in the compound of formula (a)) are commercially available or can be synthesized by methods known in the art to determine the molecular weight of the conjugated polymer and The gel permeation chromatograph used in the molecular weight distribution was PL GPC50 from Polymer Laboratories, UK, the mobile phase was chromatographically pure chloroform, and a calibration curve was prepared using a monodisperse polystyrene standard (Polymer Laboratories) at a flow rate of 1.0 mL min - 1. The test temperature is 40
  • the conjugated polymer in these examples contains a nonlinear conjugated polymer having a structure represented by DPP and Ar 1 as a main chain, wherein introduction of an Ar 1 group having a certain spatial conformation structure is to obtain a nonlinear conjugated polymer.
  • a carbon nanotube-nonlinear conjugated polymer composite ink comprising:
  • the solvent is used for dispersing and stabilizing the disposed composite ink, adjusting the surface tension of the composite ink, and improving the film forming property of the disposed composite ink, which may be preferably selected from the group consisting of toluene, o-xylene, p-xylene, and Any one or a combination of two or more of xylene and tetrahydrofuran, but is not limited thereto.
  • the ink further comprises an organic semiconductor material.
  • the organic semiconductor material is the same as the non-linear conjugated polymer.
  • the ink contains 0.0001% by weight to 0.5% by weight of the non-linear conjugated polymer.
  • the nonlinear conjugated polymer is capable of efficiently separating and dispersing the semiconductor type carbon nanotubes, thereby improving the selective separation of the semiconductor carbon tubes, and at the same time, the presence of the nonlinear conjugated polymer contributes to the device.
  • the adhesion of the active layer film to the lower layer reduces the roughness of the surface of the interface modification layer.
  • the linear alkyl unit contained in the conjugated polymer in the ink formulation can improve the solubility of the conjugated polymer in an organic solvent, adjust the interaction between the polymer and the carbon nanotube, and reduce the carbon nanotube layer in the film. Surface defects, increased carrier concentration and carrier mobility, etc., thereby adjusting the modification performance of the carbon nanotube-polymer film on the electrode interface, thereby changing the application performance of the photovoltaic device.
  • a simple method of preparing the ink comprising: dispersing carbon nanotubes in an organic solution of the nonlinear conjugated polymer to form a uniform carbon nanotube dispersion, and then The carbon nanotube dispersion liquid is subjected to high-speed centrifugation, and the obtained clear liquid is the ink.
  • the method for preparing the ink may include: after the commercialized carbon nanotubes are mixed by ultrasonic means, such as probe ultrasonic stirring, with the aid of the nonlinear conjugated polymer
  • the ink is dispersed in a solvent such as toluene to obtain a uniformly dispersed carbon nanotube solution, and after removing the metal carbon nanotubes by centrifugation, the supernatant liquid is separated to obtain the ink, which can be directly used for printing a thin film transistor or the like.
  • the method for preparing the ink may further include: commercializing the carbon nanotubes under the condition that the temperature is not higher than 0 ° C, preferably between -5 ° C and 0 ° C.
  • Organic solution dispersed in a polymer In the medium by adjusting the solvent type and the concentration of the polymer and the carbon nanotubes, a uniformly dispersed carbon nanotube solution is obtained by ultrasonic method, and the carbon nanotube solution can be obtained by high-speed centrifugation for a short period of time to obtain a high-purity semiconductor carbon nanometer. Tube solution.
  • the commercialized carbon nanotubes may be carbon nanotubes of the hiPCO, CG200, CG100, and CoMoCat series, and large-diameter carbon nanotubes obtained by an arc discharge method.
  • the aforementioned nonlinear conjugated polymer may be selected from a nonlinear pyrrolopyrroledione conjugated polymer of any of the foregoing structures, such as a copolymer of DPP and substituted ortho-benzene, a copolymer of DPP and a substituted iso-benzene, DPP and 2,3-substituted thiophene copolymer, DPP and 2,2':3',2"-substituted trithiophene copolymer, and DPP with ortho- or meta-substituted benzene containing one or more phenyl spacers, Or a copolymer of ortho-substituted thiophene containing one or more thienyl spacers, but is not limited thereto.
  • a copolymer of DPP and substituted ortho-benzene such as a copolymer of DPP and substituted ortho-benzene, a copolymer of DPP and
  • the concentration of the organic solution of the aforementioned non-linear conjugated polymer is particularly preferably 0.0001% by weight to 0.5% by weight.
  • the above organic solvent may be selected from organic solvents such as toluene, o-xylene, p-xylene, and meta-xylene which are capable of dissolving the nonlinear conjugated polymer but not dispersing the carbon nanotubes.
  • the above-described short-time high-speed centrifugation has a centrifugal speed of 20,000 to 30,000 g or more, for example, preferably 21,000 g, and a centrifugation time of 1 h or more, for example, preferably 1 h to 1.5 h.
  • a carbon nanotube-nonlinear conjugated polymer composite film (abbreviated as a film) comprising the carbon nanotube-nonlinear conjugated polymer composite.
  • the film is mainly formed using the aforementioned ink.
  • a method of making the film can include coating or printing the ink to form the film.
  • a step of curing and forming the film such as drying, may be included, and these steps can be achieved by technical means known in the art.
  • the coating or printing method used may be at least selected from, but not limited to, spin coating, blade coating, slit coating, inkjet printing, screen printing, gravure printing, flexographic printing, flexographic printing. Any of them.
  • the film may be deposited on a substrate material, such as glass, plastic, paper, and metal foil, such as stainless steel, aluminum foil, etc.
  • the corresponding coating method includes a spin coating film. , knife coating, slit coating, etc., the corresponding printing methods include inkjet printing, screen printing, gravure printing, flexographic printing and the like.
  • the printers in the aforementioned inkjet printing may use printers that squeeze ink, such as Dimapri's 2831, 3000, 5005, MicroFab, and aerosol inkjet printers.
  • the concentration of carbon nanotubes in the ink for printing is preferably from 0.0001 mg/mL to 1 mg/mL.
  • the film may also be deposited on some transparent or opaque conductive film.
  • the transparent conductive film may include: a silicon dioxide (SiO 2 ) film, an indium tin oxide (ITO) film, a fluorine-doped tin oxide (FTO), a metal grid line film, a nano metal line film, and the like. But it is not limited to this.
  • the opaque conductive film may include a nano metal film prepared by a printing method or a metal or alloy nano film deposited by vacuum, such as an Al film, an Al:Mg alloy film, or the like, but is not limited thereto.
  • the method of preparing the film may further comprise a subsequent film processing step, such as solvent cleaning and annealing.
  • the annealing temperature is below 200 ° C, preferably from 25 ° C to 120 ° C, and the annealing time is from 30 to 120 min, preferably from 30 min to 60 min.
  • Also provided in these embodiments is a device comprising the carbon nanotube-nonlinear conjugated polymer composite or the film.
  • the apparatus can further include a substrate on which the film is disposed.
  • the semiconductor carbon nanotube can be effectively used on a substrate, such as a ruthenium oxide substrate, and the semiconductor carbon nanotube-non-linear conjugated polymer ink can be directly used.
  • the thin film transistor is prepared by a drop coating or a spray printing technique on a substrate such as yttrium oxide or silicon, and has various deposition methods and simple processing techniques.
  • a transparent or opaque conductive film is also disposed between the substrate and the film, and the types of the conductive films may be as described above.
  • the device can be a semiconductor device having a layer of semiconductor material (eg, an active layer) comprising the film.
  • a layer of semiconductor material eg, an active layer
  • the semiconductor device may be a transistor, an inverter, or the like, but is not limited thereto.
  • the semiconductor device can be a field effect transistor.
  • the semiconductor device may be a field effect transistor having a source electrode, a drain electrode, a gate electrode, an insulating layer, a semiconductor layer, and the like, wherein the semiconductor layer may include the thin film.
  • the materials, structures, and the like of the source, drain, and gate electrodes are all known in the art.
  • the semiconductor device is a thin film transistor which can be constructed by a method such as drop coating, spin coating, dip coating, gravure printing, and inkjet printing using the ink.
  • the nonlinear conjugated polymer used in the foregoing embodiments is a helical DPP conjugated polymer, which has the advantages of long conjugate chain length, simple preparation, low cost, and the like, and can be adjusted with carbon by changing the structure.
  • the characteristics of the interaction between the nanotubes, and then the selective high-efficiency coating of the large-diameter semiconductor carbon nanotubes, the process is simple, the separation time is short, and the nonlinear conjugated polymer is combined with the carbon nanotubes.
  • the conductor property is suitable for preparing an organic electronic device, in particular, the semiconducting carbon nanotube coated by the nonlinear conjugated polymer can be effectively fixed on the substrate, so that only the carbon nanotube-non-linear conjugate polymerization is required.
  • the composite ink can be prepared by forming, printing or the like to form a semiconductor device, and the process is simple and easy to operate, and the cost is low.
  • a dendritic oligothiophene core building unit having a branched structure can be synthesized by reference (Chem. Eur. J. 2012, 18, 12880-1290901), Example 7, Example 8, Example 9 -C 8 H 17 in Example 10, Example 11 and Example 16 is ethylhexyl, and -C 20 H 41 in Example 12, Example 13, Example 14, and Example 15 is octyl ten. Dialkyl.
  • MALDI-TOF MS m/z calcd for C 38 H 44 N 2 O 2 S 3 : 656.3, found: 656.4 (matrix: DCTB).
  • MALDI-TOF MS m/z calcd for C 85 H 98 N 4 O 4 S 6 Si: 1458.6, found: 1458.8 (matrix: DCTB).
  • the compound 18 (1.0 g, 685 ⁇ mol) was weighed and dissolved in 100 ml of CH 2 Cl 2 , and BBr3 (1.0 Ml, 1 M, 1 mmol) was added dropwise under a nitrogen atmosphere at 0 ° C. After the addition was completed, stirring was continued for 2 h, and pumping was carried out with high vacuum. In addition to the volatile solvent. Further, pinacol (97 mg, 820 ⁇ mol) was weighed and dissolved in 100 mL of THF, and the dissolved pinacol solution was poured into the above reaction system, and stirred at room temperature overnight. After 24 hours, most of the solvent in the solution was concentrated by evaporation, and the solution was extracted with dichloromethane/water.
  • MALDI-TOF MS m/z calcd for C 68 H 105 BrN 2 O 2 S: 1092.7, Found: 1093.0 (matrix: DCTB).
  • MALDI-TOF MS m/z calcd for C 148 H 216 N 4 O 4 S 5 : 2273.5, found: 2273.0 (matrix: DCTB).
  • Example 17 The DPP peripheral functionalized modified tree conjugate compound synthesized in Example 3, Example 4, and Example 5 was formulated into a solution, the solvent was selected as chloroform, and the UV of these materials in the solution was tested. -vis absorption spectrum, see Figure 1 for details.
  • Example 18 The dendritic conjugated compound prepared in Example 3, Example 4, and Example 5 was formulated into a solution (2 mg/mL), the selected solvent was chloroform, and the method of spin coating was performed at 2000 r/min.
  • the films of the corresponding compounds were spin-coated on the cleaned quartz sheets, and the absorption spectra of the films of these compounds were tested. As shown in Fig. 2, the maximum absorption wavelength of these compound films was 752-766 nm, and the corresponding material spectral bandwidth was 1.62-1.65. eV, which belongs to the semiconductor band gap range.
  • Example 19 The matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to test the synthesized peripheral functionalized modified tree conjugated compound (Compound 8). The test results can be seen in Figure 3, and the synthesized The target dendrimer has the characteristics of large molecular weight and single crystal structure.
  • MALDI-TOF MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry
  • the metallic carbon nanotubes not coated with the tree-shaped conjugated compound are deposited on the bottom of the centrifuge tube, and the supernatant liquid is separated to obtain a high-purity composite ink enriched with the large-diameter semiconductor carbon nanotubes.
  • Example 24 Characterization of UV-Vis-IR Spectra of Tree Conjugated Compound (6T-DPP)-Carbon Nanotube Composite Ink
  • the supernatant of the dendritic conjugated compound (6T-DPP)-carbon nanotube dispersion was measured by ultraviolet-visible-near-infrared (Perkin Elmer Lambda 750), and the results are shown in Fig. 7. It can be seen from the absorption spectrum that the S22 absorption peak (900-1200 nm) of the corresponding semiconductor carbon nanotubes becomes very sharp, and the absorption background is very low, indicating that the tree-shaped conjugated compound (6T-DPP) can be selectively dispersed. Enrichment of semiconductor carbon nanotubes.
  • Example 25 Characterization of UV-Vis-IR Spectra of Tree-Shaped Conjugated Compound (9T-DPP)-Carbon Nanotube Composite Ink
  • the supernatant of the dendritic conjugated compound (9T-DPP)-carbon nanotube dispersion was measured by ultraviolet-visible-near-infrared (Perkin Elmer Lambda 750), and the results are shown in Fig. 8. It can be seen from the absorption spectrum that the S22 absorption peak (900-1200 nm) corresponding to the semiconducting carbon nanotube becomes very sharp, and the absorption background is very low, indicating that the tree-shaped conjugated compound (9T-DPP) can be selectively dispersed. Enrichment of semiconductor carbon nanotubes.
  • Example 26 Characterization of Raman Spectra of Tree Conjugated Compound (6T-DPP)-Carbon Nanotube Composite Ink
  • the Raman spectrum of the supernatant after centrifugation was measured by a Raman spectrometer.
  • the Raman spectroscopy test results are shown in FIG. Under the laser of 785 nm, a peak corresponding to the 159 cm -1 metallic carbon nanotube can be observed in the untreated carbon nanotube P2, but is selectively coated by the dendritic conjugated compound (6T-DPP) and In the sample obtained by centrifugation, the peak of the 159 cm -1 metallic carbon nanotube disappeared. Therefore, it can be considered that the method according to Embodiment 21 of the present invention can efficiently separate a large number of large-diameter semiconductor carbon nanotubes.
  • Example 27 Raman spectroscopy characterization of dendrimer conjugated compound (9T-DPP)-carbon nanotube composite ink
  • the Raman spectrum of the supernatant after centrifugation was measured by a Raman spectrometer.
  • the Raman spectroscopy test results are shown in FIG. Under the laser of 633 nm, a peak corresponding to the metallic carbon nanotube (1550-1580 cm -1 ) and a peak corresponding to the semiconductor carbon nanotube (1590 cm -1 ) can be observed in the untreated carbon nanotube P2.
  • the peak of the semiconductor carbon nanotube at 1590 cm -1 becomes sharper and simultaneously with the unseparated P 2 carbon nanotube.
  • the ratio of the peak areas of the peaks of the peak semiconductor carbon nanotubes corresponding to the metallic carbon nanotubes becomes smaller. Therefore, it can be shown that the method according to Embodiment 22 of the present invention can efficiently separate a large number of large-diameter semiconductor carbon nanotubes.
  • Example 28 Preparation and Characterization of Thin Film Transistor of Tree Conjugated Compound (9T-DPP)-Carbon Nanotube Composite Ink
  • a thin film transistor device was prepared by a droplet coating process using the ink solution of the large-diameter P2 semiconductor carbon nanotube selectively separated by the dendritic conjugated compound (9T-DPP) in the above Example 22.
  • Figure 11 is a graph showing the electrical property transfer characteristics of a transistor. As can be seen from the figure, the switching ratio and mobility of the transistor can reach 4 ⁇ 10 6 and 37.63 cm 2 /Vs or more, respectively.
  • Fig. 12 is an output characteristic curve of the electrical performance of the transistor. As can be seen from the figure, the output current of the transistor becomes smaller as the gate voltage increases, and the transistor is a p-type transistor. The transistor has excellent electrical properties and further confirms that the commercialization of large-diameter carbon nanotubes can be well performed by selective coating of a tree-shaped conjugated compound.
  • the dendritic oligothiophene core building unit having a branched structure can be synthesized by reference (Chem. Eur. J. 2012, 18, 12880-1290901).
  • MALDI-TOF MS m/z calcd for C 90 H 132 N 2 O 2 S 8 Si 4 : 1640.7; found: 1640.9; HR MS: m/z calcd for C 90 H 132 N 2 O 2 S 8 Si 4 : 1640.7132; found: 1640.7197.
  • the compound TBAF (270 mg, 855 ⁇ mol) was weighed and dissolved in 2 mL of THF to prepare a homogeneous solution. Another 50 mL reaction flask was taken, and Compound 3 (120 mg, 73.2 ⁇ mol) was weighed and dissolved in 5 mL of THF, and dissolved sufficiently. 2 ml of TBAF in THF was added dropwise to the solution of compound 103, and stirred at room temperature for 15 minutes. The reacted mixture was dropwise added to 30 ml of methanol, and the resulting precipitate was collected.
  • the compound TBAF (270 mg, 855 ⁇ mol) was weighed and dissolved in 2 mL of THF to prepare a homogeneous solution. Another 50 mL reaction flask was taken, and Compound 106 (108 mg, 37 ⁇ mol) was weighed and dissolved in 8 mL of THF, and dissolved sufficiently. 2 ml of TBAF in THF was added dropwise to the solution of compound 106 and stirred at room temperature for 15 minutes. The reacted mixture was dropwise added to 50 ml of methanol, and the resulting precipitate was collected. The crude product obtained by the precipitation was separated and purified by silica gel chromatography.
  • the eluting solvent was dichloromethane: n-hexane (1:2), and the product was concentrated, and then purified by gel permeation chromatography to give 78 mg of compound 107 in a yield of 90%. .
  • the compound TBAF (320 mg, 1014 ⁇ mol) was weighed and dissolved in 2 mL of THF to prepare a homogeneous solution. Another 50 mL reaction flask was taken, and compound 111 (240 mg, 262 ⁇ mol) was weighed and dissolved in 5 mL of THF, and dissolved sufficiently. 2 ml of TBAF in THF was added dropwise to the solution of compound 111, and stirred at room temperature for 15 minutes. The reacted mixture was dropwise added to 30 ml of methanol, and the resulting precipitate was collected.
  • MALDI-TOF MS m/z calcd for C 102 H 104 N 2 S 19 Si 8 (matrix: DCTB ): 2188.1, found: 2188.6; HR MS: m/z calcd for C 102 H 104 N 2 S 19 Si 8 : 2188.1047; found: 2188.1068.
  • the compound TBAF (577 mg, 1.83 mmol) was weighed and dissolved in 2 mL of THF to prepare a homogeneous solution. Another 50 mL reaction flask was taken, and Compound 114 (200 mg, 91.4 ⁇ mol) was weighed and dissolved in 8 mL of THF, and dissolved sufficiently. 2 ml of TBAF in THF was added dropwise to the solution of compound 114 and stirred at room temperature for 15 minutes. The reacted mixture was dropwise added to 50 ml of methanol, and the resulting precipitate was collected. The crude product obtained by precipitation was purified by silica gel column chromatography. The elutant was dichloromethane: n-hexane (1:2).
  • MALDI-TOF MS m/z calcd for C 222 H 216 N 2 S 43 Si 16 (100% abundance; matrix: DCTB): 4732.1, found: 4732.7; HR MS: m/z calcd for C 222 H 216 N 2 S 43 Si 16 : 4732.1262; found: 4732.1661.
  • the dendrimer conjugated compound (compound 103, compound 106, compound 109) functionalized by the DPP core synthesized in Example 29, Example 31, and Example 33 was formulated into a solution, and the solvent was selected as chloroform, and these were tested.
  • the UV-vis absorption spectrum of the material in solution can be seen in detail in FIG.
  • FIG. 17 is a solution of a three-dimensional dendritic thiophene structure organic conjugated compound (compound 111, compound 114, compound 116) functionalized by a DPP core synthesized in Example 34, Example 37, and Example 39. UV-vis absorption spectrum.
  • the dendrimeric conjugated compound (Compound 103, Compound 106, Compound 109) prepared in Example 29, Example 31, and Example 33 was formulated into a solution (2 mg/mL), and the selected solvent was chloroform by spin coating.
  • the film of the corresponding compound was spin-coated on the cleaned quartz plate at 2000 r/min.
  • the absorption spectra of the films of these compounds were tested. As shown in Fig. 14, the absorption wavelength of these compound films was 764-806 nm, correspondingly.
  • the material has a spectral bandwidth of 1.54-1.62 eV, which is a range of semiconductor band gaps.
  • peripheral functionalized modified tree conjugated compound (Compound 109, Compound 116) synthesized in Example 33 and Example 39 was tested by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).
  • MALDI-TOF MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry
  • Example 48 Preparation of Core Modified Tree Compound 116 - Carbon Nanotube Composite Ink
  • the carbon nanotube bundles in the above dispersion were not A metal conjugated carbon nanotube coated with a tree-shaped conjugated compound is deposited on the bottom of the centrifuge tube, and the supernatant liquid is separated to obtain a high-purity composite ink enriched with large-diameter semiconductor carbon nanotubes.
  • Example 49 Preparation of core modified tree conjugate compound 119 - carbon nanotube composite ink
  • Example 50 Kernel Modification of Tree Conjugated Compounds (Compound 116) - Characterization of UV-Vis-IR Spectra of Carbon Nanotube Composite Inks
  • the supernatant of the dendritic conjugated compound (Compound 116)-carbon nanotube dispersion was measured by ultraviolet-visible-near-infrared (Perkin Elmer Lambda 750), and the results are shown in Fig. 21. It can be seen from the absorption spectrum that the S22 absorption peak (900-1200 nm) of the corresponding semiconductor carbon nanotubes becomes very sharp, and the absorption background is very low, indicating that the tree-shaped conjugated compound (Compound 116) can be selectively dispersed and rich. Collecting semiconductor carbon nanotubes.
  • Example 51 Characterization of UV-Vis-IR Spectra of 119-Carbon Nanotube Composite Ink with Core Modified Tree Conjugated Compound
  • the supernatant of the dendritic conjugated compound (Compound 119)-carbon nanotube dispersion was measured by ultraviolet-visible-near-infrared (Perkin Elmer Lambda 750), and the results are shown in Fig. 22. It can be seen from the absorption spectrum that the S22 absorption peak (900-1200 nm) corresponding to the semiconductor carbon nanotube becomes very sharp, and the absorption background is very low, indicating that the tree-shaped conjugated compound (Compound 119) can be selectively dispersed and rich. Collecting semiconductor carbon nanotubes.
  • Example 52 Raman spectroscopy characterization of a core-modified conjugated compound 116-carbon nanotube composite ink
  • the Raman spectrum of the supernatant after centrifugation was measured by a Raman spectrometer.
  • the Raman spectroscopy test results are shown in FIG. Under the laser of 785 nm, a peak corresponding to the 159 cm -1 metallic carbon nanotube was observed in the untreated carbon nanotube P2, but the sample was obtained by selective coating and centrifugation of the dendritic conjugated compound 116. Among them, the peak of 159 cm -1 metallic carbon nanotubes disappeared. Therefore, it can be considered that the method according to Embodiment 48 of the present invention can efficiently separate a large number of large-diameter semiconductor carbon nanotubes.
  • Example 53 Characterization of Raman Spectral Properties of Core-Modified Tree Conjugated Compound 19-Carbon Nanotube Composite Ink
  • the Raman spectrum of the supernatant after centrifugation was measured by a Raman spectrometer.
  • the Raman spectroscopy test results are shown in FIG. Under the laser of 633 nm, a peak corresponding to the metallic carbon nanotube (1550-1580 cm -1 ) and a peak corresponding to the semiconductor carbon nanotube (1590 cm -1 ) can be observed in the untreated carbon nanotube P2.
  • the peak of the semiconductor carbon nanotube at 1590 cm -1 becomes sharper, and the metality is compared with the unseparated P2 carbon nanotube.
  • the ratio of the peak areas of the peaks of the semiconductor carbon nanotubes corresponding to the carbon nanotubes becomes smaller. Therefore, it can be shown that the method according to Embodiment 49 of the present invention can efficiently separate a large number of large-diameter semiconductor carbon nanotubes.
  • Example 54 Preparation and Characterization of Thin Film Transistor of Dendritic Conjugated Compound 116-Carbon Nanotube Composite Ink
  • FIG. 25 is a graph showing the electrical property transfer characteristic of the transistor. As can be seen from the figure, the switching ratio and mobility of the transistor can reach 5 ⁇ 10 6 and 17.1 cm 2 /Vs or more, respectively.
  • Fig. 26 is an output characteristic curve of the electrical performance of the transistor. As can be seen from the figure, the output current of the transistor becomes smaller as the gate voltage increases, and the transistor is a p-type transistor. The transistor has excellent electrical properties and further confirms that the commercialization of large-diameter carbon nanotubes can be well performed by selective coating of a tree-shaped conjugated compound.
  • Example 55 Preparation and Characterization of Thin Film Transistor of Dendritic Conjugated Compound 119-Carbon Nanotube Composite Ink
  • FIG. 27 is a graph showing the electrical property transfer characteristic of the transistor. As can be seen from the figure, the switching ratio and mobility of the transistor can reach 2 ⁇ 10 7 and 17.7 cm 2 /Vs or more, respectively.
  • Fig. 28 is an output characteristic curve of the electrical performance of the transistor. As can be seen from the figure, the output current of the transistor becomes smaller as the gate voltage increases, and the transistor is a p-type transistor. The transistor has excellent electrical properties and further confirms that the commercialization of large-diameter carbon nanotubes can be well performed by selective coating of a tree-shaped conjugated compound.
  • the above crude product is subjected to Soxhlet extraction using methanol, n-hexane and chloroform as a solvent, and the chloroform component is collected, the solvent is removed under reduced pressure, and dried under vacuum to obtain a purified product (ie, a nonlinear conjugated polymer, Also known as DPP conjugated polymer), the yield is 80%, and its number average molecular weight is 13,000 by gel permeation chromatography, and the polydispersity coefficient is 1.33.
  • the nuclear magnetic resonance spectrum of the DPP conjugated polymer is shown in Fig. 29, and its structure See Figure 30 for the characterization map and Figure 31 for the absorption spectrum.
  • FIG. 34 is a graph showing the electrical performance test of the transistor. The switching ratio and mobility of the transistor can reach 10 7 and 43 cm 2 /Vs or more, respectively, indicating that the selective coating of the semiconductor carbon nanotube by the DPP polymer can be very Good separation of semiconductor carbon nanotubes and metal-type carbon nanotubes is achieved.
  • Figure 35 is an atomic force profile of a carbon nanotube-conjugated polymer film in the channel of the device. It is apparent that the carbon nanotubes are uniformly dispersed in the channel and form a network structure.
  • Example 57 The procedure described in Example 56 was repeated except that the amount of monomer 201 (76.4 mg, 0.075 mmol) and 202 (37.5 mg, 0.075 mmol) was increased and, in addition, it was subjected to strict oxygen scavenging.
  • the tetrahydrofuran was replaced with a strictly deoxygenated dichloromethane at a reaction temperature of 30 °C.
  • the obtained pyrrolopyrroledione conjugated polymer had a yield of 31%, a number average molecular weight of 8,600 and a polydispersity coefficient of 1.24.
  • the switching ratio and mobility of the transistor prepared from the polymer-dispersed carbon nanotube solution were 10 6 and 20 cm 2 V -1 s -1 , respectively .
  • Example 58 The procedure described in Example 56 was repeated except that the reaction temperature was lowered to 30 °C. After the product was purified and dried, the yield of the pyrrolopyrroledione conjugated polymer was calculated to be 78%, and the product had a number average molecular weight of 16,000 and a polydispersity coefficient of 1.59.
  • the polymer structure characterization map is the same as in Figure 30, indicating that the obtained conjugated polymer backbone structure is a pyrrolopyrroledione and a trithiophene linked in the form of a covalent bond, and the number of repeating units is 4-8.
  • the switching ratio and mobility of the transistor prepared from the polymer-dispersed carbon nanotube solution were 10 7 and 32 cm 2 V -1 s -1 , respectively .
  • Example 62 As a control, please refer to the data in Small, 2015, 11, 2946-2954. Used in this document is DPP conjugated polymer 206, which adjusts the polymer-carbon nanotube interaction by adjusting the ratio of n, m.
  • the thin film transistor obtained by selectively separating the obtained semiconducting carbon nanotube ink has a mobility of 41 cm 2 V -1 s -1 and a switching ratio of 10 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)

Abstract

提供了一类树形共轭化合物,其具有下列(I-A, II-A, I-B, II-B)任一结构式所示的结构。其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元,Core为内核功能修饰单元,FG为末端功能修饰单元,m为所述支化共轭链接单元B的支化度,并选自2或3,n为所述树形共轭化合物的分子中重复单元迭代次数,并选自1,2,3或4。还提供了所述树形共轭化合物的用途,例如在制备墨水、薄膜及晶体管等功能器件中的用途,以及,所述树形共轭化合物作为碳纳米管分散剂、碳纳米管选择性分离试剂中的用途。

Description

树形共轭化合物、树形共轭化合物-碳纳米管复合物、制备方法及应用 技术领域
本发明具体涉及一种碳纳米管的分散或选择性分离方法,碳纳米管分散剂、碳纳米管复合物及相应的制备方法与应用,例如在制备复合墨水、薄膜及半导体器件(如场效应晶体管)中的应用,属于光电半导体材料与器件领域。
背景技术
碳纳米管是一类具有独特结构的一维纳米材料,具有机械性能好,电荷迁移率高,电学性能优异,与柔性基底兼容性好,化学稳定性和热稳定性好等优势,在半导体电子器件中具有非常广泛的应用。
碳纳米管通常采用化学气相沉积(CVD)的方法制备,在目前的制备条件下所得到的单壁碳纳米管均是金属型单壁碳纳米管(m-SWCNTs)和半导体型单壁碳纳米管(s-SWCNTs)的混合物,极大的限制了SWCNTs在半导体电子器件中的广泛应用。将金属型单壁碳纳米管和半导体型单壁碳纳米管进行有效地分离与纯化,获得具有单一导电性能的单壁碳纳米管是制备性能优越的碳纳米管半导体器件的关键。
根据金属型单壁碳纳米管和半导体型单壁碳纳米管在管径大小、手性、物理化学性质上存在的微小差异,相关科研工作者已经开发了多种用于分离纯化碳纳米管的有效方法,如密度梯度高速离心法、化学分离法、凝胶色谱法、电泳法、DNA包覆法和聚合物包覆法。
聚合物包覆方法由于其分离方法简便,分离快速,可溶液法批量加工,分离选择性高,分离性能可精细调节,对碳纳米管自身固有性能影响较小等优势,使其已发展成为碳纳米管研究领域中的一个重要研究方向。
但是,现有技术所采用的用于分离半导体型单壁碳纳米管的聚合物主要为线型结构。迄今为止,采用具有新型三维全共轭空间立体结构的化合物分子分离半导体型单壁碳纳米管的报道尚未有任何报道。筛选和开发具有新的空间结构的共轭化合物对高效地分离半导体型单壁碳纳米管、有效地形成共轭化合物碳纳米管复合物、提升器件性能有重要的意义。
发明内容
本发明的主要目的在于提供一种基于树形共轭化合物的碳纳米管分散或选择性分离方法与应用,以克服现有技术中的不足。
本发明的另一目的在于提供制备所述树形共轭化合物的方法及其应用。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一类树形共轭化合物,其具有式(I-A)、(I-B)、(II-A)或(II-B)所示的结构:
Figure PCTCN2016096014-appb-000001
其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元,Core为内核功能修饰单元,FG为末端功能修饰单元,m为所述支化共轭链接单元B的支化度,并选自2或3,n为所述树形共轭化合物的分子中重复单元迭代次数,并选自1,2,3或4。
在一些实施方案中,一类树形共轭化合物具有式(I-A)或(II-A)所示结构:
Figure PCTCN2016096014-appb-000002
其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元;FG为末端功能修饰单元,其包含式(III)所示的吡咯并吡咯二酮单元,
Figure PCTCN2016096014-appb-000003
m和n为自然整数,m为支化共轭单元B的支化度,其值为2或者3,n为树形共轭化合物的代数,代表着分子中重复单元迭代次数,其值为1,2,3或者4,R1包括氢原子、取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
在一些实施方案中,一类树形共轭化合物具有式(I-B)或(II-B)所示结构:
Figure PCTCN2016096014-appb-000004
其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元;
Core为内核功能修饰单元;
FG为末端功能修饰单元;
m为所述支化共轭链接单元B的支化度,并选自2或3;
n为所述树形共轭化合物的分子中重复单元迭代次数,并选自1,2,3或4。
优选的,所述内核功能修饰单元Core包括如下结构式任一者所示的结构:
Figure PCTCN2016096014-appb-000005
其中,R1包括氢原子、取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
X1包括S或O,X2包括O,S,C,N,Si或Se及其附属的C1~C20的烷基或C1~C20的杂烷基,X3包括C或Si。
优选的,所述末端功能修饰单元FG包括氢原子,以及下式(FG-1)~(FG-10)中任一者所示的结构:
Figure PCTCN2016096014-appb-000006
在具有式(I-A)、(I-B)、(II-A)或(II-B)所示结构的化合物中,优选的,所述支化共轭链接单元B包括下列的任一种结构:
Figure PCTCN2016096014-appb-000007
其中,Y包括噻吩环、苯环单元,D包括噻吩环、苯环、由2~5个五元或六元芳香单元形成的稠环单元或由2~4个五元或六元芳香单元形成的共轭短链单元。
本发明实施例还提供了一种合成所述树形共轭化合物的方法,其包括:采用金属催化缩合反应制备所述树形共轭化合物。进一步的,所述金属催化缩合反应包括Suzuki缩合和/或stille缩合。
本发明实施例还提供了所述树形共轭化合物于选择性分离半导体型碳纳米管中的应用,或者,所述树形共轭化合物作为碳纳米管分散剂的用途。
优选的,所述碳纳米管选自半导体型碳纳米管,特别是半导体型单壁碳纳米管,尤其是大管径半导体型单壁碳纳米管。
本发明实施例还提供了一类碳纳米管分散剂,其包括所述的树形共轭化合物。
本发明实施例还提供了一种碳纳米管分散方法,其包括:取所述的树形共轭化合物及碳纳米管于溶剂中均匀混合,形成稳定均匀的碳纳米管分散液。
本发明实施例还提供了一种选择性分离半导体型碳纳米管的方法,其包括:
将碳纳米管粉体加入所述树形共轭化合物的溶液中并充分混合,使其中的半导体型碳纳米管均匀分散于溶液中,
以及,移除未能分散于溶液中的碳纳米管。
本发明实施例还提供了一类所述树形共轭化合物-碳纳米管复合物,其包含碳纳米管 以及至少附着在碳纳米管部分表面上的所述树形共轭化合物。
本发明实施例还提供了包含有所述树形共轭化合物-碳纳米管复合物的碳纳米管分散体。
本发明实施例还提供了一种复合墨水,其包括:
所述树形共轭化合物-碳纳米管复合物,
以及,至少一种溶剂,用以与所述复合墨水的其余组分配合形成稳定的均匀液相分散体系。
优选的,所述复合墨水还包含有机半导体。
本发明实施例还提供了一种复合墨水的制备方法,其包括:
将所述树形共轭化合物和碳纳米管于溶剂中均匀混合,形成均匀碳纳米管分散液,
以及,对所述均匀碳纳米管分散液进行高速离心处理,所获清液即为所述复合墨水。
在一些实施方案中,所述复合墨水的制备方法包括:
在温度≤0℃的条件下,将质量比为1:0.1~1:10的所述树形共轭化合物和碳纳米管于溶剂中均匀混合,形成均匀碳纳米管分散液,
以及,对所述均匀碳纳米管分散液进行高速离心处理,所获清液即为所述复合墨水;
其中,所述高速离心处理的离心速度大于8000rpm,离心时间在20min以上。
本发明实施例还提供了一种薄膜,其包含所述树形共轭化合物-碳纳米管复合物。
在一些实施例中提供了一种薄膜的制备方法,其包括:采用印刷和/或涂布方式将所述的分散体或所述的复合墨水施加到基底上,形成所述薄膜。
其中,所述涂布和/或印刷方式包括旋转涂膜、刮刀涂布、狭缝涂布、喷墨印刷、丝网印刷、凹版印刷、柔版印刷、柔版转印方式中的任意一种或两种以上的组合,但不限于此。
进一步的,所述的制备方法还包括薄膜后处理步骤,所述薄膜后处理步骤包括清洗和退火操作。
本发明实施例还提供了一种薄膜,其包含所述的树形共轭化合物或所述树形共轭化合物-碳纳米管复合物。
本发明实施例还提供了一种薄膜,其主要由所述的墨水、所述的复合墨水或所述的碳纳米管分散体形成。
本发明实施例还提供了一种薄膜的制备方法,其包括:采用所述的墨水、所述的复合墨水或所述的碳纳米管分散体通过印刷或涂布的工艺制备形成所述薄膜。
其中,所述印刷或涂布工艺包括喷墨印刷、丝网印刷、凹版印刷、旋转涂布、刮刀涂布、狭缝挤出涂布中的任意一种或两种以上的组合,但不限于此。
本发明实施例还提供了一种装置,其包含所述树形共轭化合物,所述树形共轭化合物-碳纳米管复合物或者所述的薄膜。
优选的,所述装置选自半导体装置。
优选的,所述装置包括晶体管(例如场效应晶体管)、反相器等,但不限于此。
优选的,所述装置包括场效应晶体管,所述场效应晶体管的有源层包含所述树形共轭化合物-碳纳米管复合物或者所述的薄膜。
进一步的,所述场效应晶体管主要由源电极、漏电极、栅电极、介电层和有源层构成。
附图说明
图1为实施例3、4、5所合成的外围功能化修饰的三维树形寡聚噻吩结构的有机共轭化合物溶液的UV-vis吸收光谱图。
图2为实施例3、4、5所合成的外围功能化修饰的三维树形寡聚噻吩结构的有机共轭化合物的薄膜的UV-vis吸收光谱图。
图3为实施例4所合成的外围功能化修饰的树形寡聚噻吩的MALDI-TOF MS图。
图4和图5分别是本发明实施例24、实施例25(P2-CNT,树形共轭化合物(6T-DPP、9T-DPP),甲苯)所获半导体碳纳米管(以下简称“S-CNT”)的吸收光谱图。
图6和图7分别是本发明实施例26、实施例27(P2-CNT,树形共轭化合物(6T-DPP、9T-DPP),甲苯)所获S-CNT在不同测试条件下的拉曼光谱图。
图8和图9分别是本发明实施例21(P2-CNT,树形共轭化合物(9T-DPP),甲苯)构建的薄膜晶体管的性能曲线图。
图10为实施例29、实施例31、实施例33所合成的DPP内核功能化修饰的三维树形寡聚噻吩结构的有机共轭化合物溶液的UV-vis吸收光谱图。
图11为实施例29、实施例31、实施例33所合成的DPP内核功能化修饰的三维树形寡聚噻吩结构的有机共轭化合物的薄膜的UV-vis归一化吸收光谱图。
图12、图13分别为实施例33、实施例39所合成的外围功能化修饰的树形寡聚噻吩的MALDI-TOF MS图。
图14为实施例34、实施例37、实施例39所合成的DPP内核功能化修饰的三维树形寡聚噻吩结构的有机共轭化合物溶液的UV-vis吸收光谱图。
图15和图16分别是本发明实施例48(P2-CNT,树形共轭化合物116)、实施例2(P2-CNT,树形共轭化合物119)所获半导体碳纳米管(以下简称“S-CNT”)的吸收光谱图。
图17和图18分别是本发明实施例48(P2-CNT,树形共轭化合物116)、实施例2(P2-CNT,树形共轭化合物119)所获S-CNT在不同测试条件下的拉曼光谱图;
图19和20分别是本发明实施例48(P2-CNT,树形共轭化合物116,甲苯)构建的单壁碳纳米管薄膜晶体管的转移曲线与输出曲线图。
图21和图22分别是本发明实施例49(P2-CNT,树形共轭化合物119,甲苯)构建的单壁碳纳米管薄膜晶体管的转移曲线与输出曲线图。
图23为实施例56所制备非线性共轭聚合物的核磁谱图;
图24为实施例57所制备非线性共轭聚合物的飞行时间质谱图;
图25为实施例56所制备的非线性共轭聚合物的紫外吸收光谱图;
图26是实施例56中采用不同碳纳米管-共轭聚合物重量比时半导体碳纳米管(简称s-CNT)的吸收光谱图;
图27是实施例56离心后所获碳纳米管-共轭聚合物墨水的拉曼光谱图;
图28是实施例56所构建晶体管的电性能测试曲线;
图29是实施例56所构建晶体管沟道内的原子力显微镜(AFM)图。
具体实施方式
如前所述,鉴于现有技术中的不足,本案发明人经长期研究和大量实践,特提出本发明的技术方案,并获得了出乎意料的良好技术效果。如下将对本发明的技术方案进行较为详细的解释说明。
本发明实施例提供了一类树形共轭化合物,其具有式(I-A)、(I-B)、(II-A)或(II-B)所示的结构:
Figure PCTCN2016096014-appb-000008
其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元,Core为内核功能修饰单元,FG为末端功能修饰单元(或称端基功能修饰单元),m为所述支化共轭链接单元B的支化度,并选自2或3,n为所述树形共轭化合物的分子中重复单元迭代次数,并选自1,2,3或4。
在一些实施方案中,所述树形共轭化合物具有式(I-A)或(II-A)所示化学结构:
Figure PCTCN2016096014-appb-000009
其中,B为共轭链接单元,是由五元或六元芳香单元形成的具有支化结构的单元,FG为末端功能修饰单元,其结构中含有如式(III)所示的吡咯并吡咯二酮单元,m和n为自然整数,m为支化共轭单元B的支化度,其值为2或者3,n为树形共轭化合物的代数,代表着分子中重复单元迭代次数,其值为1,2,3或者4。
Figure PCTCN2016096014-appb-000010
其中,R1选自氢原子或取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
其中,吡咯并吡咯二酮(DPP)结构单元FG具有原料廉价易得,强受电子能力,高摩尔消光系数,高电荷迁移率以及易于通过定向化学修饰调节物理化学性能等优点。
在这些实施方案所提供的树形共轭化合物中,通过在树形共轭化合物的外围引入含有吡咯并吡咯二酮生色单元,一方面可以达调节化合物的分子轨道能级,提高化合物的电荷迁移率,降低化合物的光谱带宽,提高化合物的光谱吸收能力的目的;另一方面,由于吡咯并吡咯二酮单元与碳纳米管之间存在较强的相互作用,因而能够实现对碳纳米管的选择性分散与分离。
优选地,前述含有吡咯并吡咯二酮单元的末端功能修饰单元(亦称端基功能修饰单元或者外围功能修饰单元)FG可选自但不局限于如下结构中的一种:
Figure PCTCN2016096014-appb-000011
其中,R1选自氢原子或取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
在一些较为具体的实施方案中,前述含有吡咯并吡咯二酮单元的外围功能修饰单元FG中还需要引入端位的封端单元,钝化一端的反应活性。具体的封端单元可以选自但不 限于下述结构:
Figure PCTCN2016096014-appb-000012
进一步的,以上式(III-1)所示单元为例,结合了封端单元的不对称FG单元的结构可以选自但不限于如下结构:
Figure PCTCN2016096014-appb-000013
为了构建具有分子结构单一确定性的树形共轭化合物,在一些较为具体的实施方案中,所述支化共轭链接单元B可具有下式(IV-1)或(IV-2)所示结构中的一种:
Figure PCTCN2016096014-appb-000014
其中,Y选自苯环或噻吩单元,D选自苯环、噻吩环、由2-5个五元或六元芳香单元形成的稠环单元或由2-4个五元或六元芳香单元形成的共轭短链单元。
进一步的,Y可以选自噻吩,通过α,β-双取代的方式形成具有式(IV-1-1)所示的支化结构:
Figure PCTCN2016096014-appb-000015
利用重复上述支化结构单元IV-1-1可以构建出如式(IV-1-1-G1)至式(IV-1-1-G4)所示的支化共轭构建单元,例如:
Figure PCTCN2016096014-appb-000016
其中外围噻吩单元的α-位与具有吡咯并吡咯二酮单元的功能修饰单元相连接,而内核的噻吩α-位为氢原子(如式(I-A)所示),或者它们二者之间相连形成具有式(II-A)所示结构的化合物。
例如,基于上述IV-1-1-G4单元的、具有式(I-A)或式(II-A)所示分子结构的化合物如下:
Figure PCTCN2016096014-appb-000017
在一些较为具体的实施方案中,为了降低分子内不同基团单元之间的空间位阻作用,在重复单元Y之间还可以引入共轭单元D来提高重复单元Y之间的距离。
在一些较为具体的实施例中,所述的共轭单元D单元可以选自苯环、噻吩环,也可以选自由2~5个五元或六元芳香单元形成的稠环单元,例如可以包括但不限于以下结构:
Figure PCTCN2016096014-appb-000018
其中,X1=S或O,X2=O,S,C,N,Si或Se及其附属的C1~C20的烷基或C1~C20的杂烷基,R3选自取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
或者,D可以选自于由2~4个五元或六元芳香单元形成的共轭短链单元,包括但不限于以下结构:
Figure PCTCN2016096014-appb-000019
其中,R4,R5独立地选自氢原子,取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
优选的,Y与D单元可以为噻吩单元,而相应的支化共轭链接单元B可以具有如下结构:
Figure PCTCN2016096014-appb-000020
式中,外端噻吩α-位(p-a及p-b)与外围功能修饰单元FG相连,或者通过与内端噻吩α-位(c-a)相连形成具有式(V-G2),(V-G3),或(V-G4)的高代数支化共轭链接单元:
Figure PCTCN2016096014-appb-000021
其中外围噻吩单元的α-位与具有吡咯并吡咯二酮单元的端基修饰单元FG相连接,而内核的噻吩α-位为氢原子(结构式I-A),或者它们二者之间相连形成具有结构式II-A的分子。
以端位FG为具有III-1-EG1的结构单元,支化结构B为V,迭代数n=2和n=3为例,所构建的树形共轭化合物的分子结构包括:
Figure PCTCN2016096014-appb-000022
Figure PCTCN2016096014-appb-000023
本发明的一些实施例提供的一类具有分支结构的树形共轭化合物具有式(I-B)或(II-B)所示的结构:
Figure PCTCN2016096014-appb-000024
其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元,Core为内核功能修饰单元,FG为末端功能修饰单元。m和n为自然整数,m为支化共轭链接单元B的支化度,其值为2或3,n为树形共轭化合物的分子中重复单元迭代次数,其值为1,2,3或者4。
这些实施例所提供的树形共轭化合物中,通过在树形共轭化合物的内核引入功能修饰单元Core,可以达到调节化合物的分子轨道能级,调控化合物的电荷迁移率,有效拓展化合物的共轭,降低化合物的光谱带宽,提高化合物的光谱吸收能力的目的。
优选的,前述内核功能修饰单元Core可以包括如下结构式中任一者所示的结构:
Figure PCTCN2016096014-appb-000025
其中,R1包括氢原子、取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
X1包括S或O,X2包括O、S、C、N、Si或Se及其附属的C1~C20的烷基或C1~C20的杂烷基,X3包括C或Si。
优选的,前述实施例中,末端功能修饰单元FG包括氢原子以及下式(FG-1)~ (FG-10)中任一者所示的结构,但不限于下述结构:
Figure PCTCN2016096014-appb-000026
在一些较为具体的实施例中,上述的末端功能修饰单元FG中还需要引入端位的封端单元EG,钝化一端的反应活性。具体的封端单元可以如下,但不限于下述结构:
Figure PCTCN2016096014-appb-000027
其中,R2选自取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
以上述(FG-2)单元为例,在一些更为具体的实施例中,结合了封端单元的不对称FG功能修饰单元的结构可以选自但不限于下述结构:
Figure PCTCN2016096014-appb-000028
其中R1,R2为C1~C20的直链或支链烷基或C1~C20的杂烷基。
在一些更为具体的实施例中,为了构建具有分子结构单一确定性的树形共轭化合物,所述支化共轭链接单元B可具有式(IV-1)或(IV-2)所示结构中的一种:
Figure PCTCN2016096014-appb-000029
其中,Y选自噻吩环,苯环单元,D选自噻吩环、苯环、由2~5个五元或六元芳香 单元形成的稠环单元或由2~4个五元或六元芳香单元形成的共轭短链单元。
在一些实施方案中,Y选自噻吩,通过α,β-双取代的方式形成具有式(IV-1-1)所示的支化结构:
Figure PCTCN2016096014-appb-000030
利用重复上述支化结构单元IV-1-1可以构建出如式(IV-1-1-G1)至式(IV-1-1-G4)所示的支化共轭构建单元,例如:
Figure PCTCN2016096014-appb-000031
其中,外端噻吩α-位p-a和/或p-b与末端功能修饰单元FG相连,内端噻吩α-位c-a与内核功能修饰单元Core相连形成具有式(I-B)或式(II-B)所示分子结构的化合物。
例如,所述FG为(FG-1)时,基于上述IV-1-1-G4单元的具有式(I-B)或式(II-B)所示分子结构的化合物如下:
Figure PCTCN2016096014-appb-000032
在一些较为具体的实施例中,为了降低分子内不同基团单元之间的空间位阻作用,在重复单元Y之间还可以引入共轭单元D来提高重复单元Y之间的距离。
在一些较为具体的实施例中,所述的共轭单元D单元可以选自苯环、噻吩环,也可以选自由2~5个五元或六元芳香单元形成的稠环单元,例如可以包括但不限于以下结构:
Figure PCTCN2016096014-appb-000033
其中,X1包括S或O,X2包括O,S,C,N,Si,Se,F及其附属的C1~C20的烷基或C1~C20的杂烷基,R3取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
或者,D可以选自于由2~4个五元或六元芳香单元形成的共轭短链单元,包括但不限于以下结构:
Figure PCTCN2016096014-appb-000034
其中,R4,R5独立地选自氢原子,取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
优选的,Y与D单元可以为噻吩单元,而相应的支化共轭链接单元B可以具有如下结构:
Figure PCTCN2016096014-appb-000035
式中,支化共轭链接单元的外端噻吩的α-位(p-a和/或p-b)与末端功能修饰单元FG相连,或者与内端噻吩的α-位(c-a)相连形成具有下式(V-G2)、(V-G3)或(V-G4)所示的高代数支化共轭链接单元:
Figure PCTCN2016096014-appb-000036
其中,外端噻吩α-位p-a和/或p-b与末端功能修饰单元FG相连,内端噻吩α-位c-a与内核功能修饰单元Core相连,形成具有式(I-B)和式(II-B)所示分子结构的化合物。
以内核功能修饰单元Core为III-1,末端功能修饰单元FG为FG-1,支化共轭链接单元B为V,迭代数n=1,n=2和n=3为例,所构建的树形共轭化合物的分子结构包括:
Figure PCTCN2016096014-appb-000037
以内核功能修饰单元Core为III-4,末端功能修饰单元FG为氢原子,支化共轭链接单元B为V,迭代数n=1,n=2和n=3为例,所构建的树形共轭化合物的分子结构包括:
Figure PCTCN2016096014-appb-000038
以内核功能化修饰单元Core为III-4,末端功能修饰单元为FG-1,支化共轭链接单元B为V,迭代数n=1,n=2和n=3为例,所构建的树形共轭化合物的分子结构包括:
Figure PCTCN2016096014-appb-000039
以内核功能化修饰单元Core为III-1,末端功能修饰单元为FG-2,端基封端单元为EG-1,支化结构B为V,迭代数n=1,n=2为例,所构建的树形共轭化合物的分子结构包括:
Figure PCTCN2016096014-appb-000040
前述实施方案所述及之树形共轭化合物的合成方法可以包括:采用金属催化缩合反应制备所述树形共轭化合物。其中,所述的金属催化缩合反应包括:Suzuki缩合,stille缩合,但不限于此。
在一些较为具体的实施例中,具有前述式(I-A)所示的树形共轭化合物可通过反应体系(1)表示的反应步骤的方法制备合成。
反应体系(1):
Figure PCTCN2016096014-appb-000041
上式中,m为支化共轭单元B的支化度,其值为2或者3;n,n1,n2为树形共轭化合物的代数,代表分子中重复单元迭代次数,其值为大于或等于0的整数。n1≧1,n2≧0,n=n1+n2。当n2=0时,式(b)的结构如式(b,n2=0)所示。
V2——FG
(b,n2=0)
在一些较为具体的实施例中,具有式(II-A)所示的树形共轭化合物可通过包括以反应体系(2)表示的反应步骤的方法制备合成。
反应体系(2):
Figure PCTCN2016096014-appb-000042
上式中,m为支化共轭单元B的支化度,其值为2或者3;n,n1,n2为树形共轭化合物的代数,代表分子中重复单元迭代次数,其值为大于或等于0的整数,n1≧1,n2≧0,n=n1+n2。当n2=0时,式(b)的结构如式(b,n2=0)所示。
V2——FG
(b,n2=0)
在一些较为具体的实施例中,具有式(II-A)所示的树形共轭化合物也可通过包括以反应体系(3)表示的反应步骤的方法制备合成。
反应体系(3):
Figure PCTCN2016096014-appb-000043
上式中,m为支化共轭单元B的支化度,其值为2或者3;n为树形共轭化合物的代数,代表分子中重复单元迭代次数,其值为1,2,3或者4。
在一些实施例中,具有前述式(I-B)所示的树形共轭化合物可通过反应体系(4)表示的反应步骤的方法制备合成。
反应体系(4):
Figure PCTCN2016096014-appb-000044
上式中,m为支化共轭链接单元B的支化度,其值为2或者3;n为树形共轭化合物的代数,代表分子中重复单元迭代次数,其值为1,2,3或者4。
在一些实施例中,具有式(II-B)所示的树形共轭化合物可通过包括以反应体系(5)表示的反应步骤的方法制备合成。
反应体系(5):
Figure PCTCN2016096014-appb-000045
上式中,m为支化共轭链接单元B的支化度,其值为2或者3;n为树形共轭化合物的代数,代表分子中重复单元迭代次数,其值为1,2,3或者4。
在一些实施例中,具有式(II-B)所示的树形共轭化合物也可通过包括以反应体系(6)表示的反应步骤的方法制备合成。
反应体系(6):
Figure PCTCN2016096014-appb-000046
上式中,m为支化共轭链接单元B的支化度,其值为2或者3;n为树形共轭化合物的代数,代表分子中重复单元迭代次数,其值为1,2,3或者4,其中n1≧1,n2≧1,n=n1+n2。
如下将对上述的各反应体系及相应反应步骤进行详细的说明。
在上述的各反应体系及反应步骤中,带有反应活性基团V1的树枝状共轭化合物分子 与带有反应活性基团V2的树枝状共轭化合物分子的反应是通过Suzuki交叉偶联反应或stille交叉偶联反应实现的。
例如,前述反应活性基团V1及V2可以选自于以下三组活性反应基团,但不局限于此。
活性反应基团组1:
——F,——Br,——I。
活性反应基团组2:
Figure PCTCN2016096014-appb-000047
R4选自含碳数为1-4的直链或支链烷基。
活性反应基团组3:
Figure PCTCN2016096014-appb-000048
R5选自含碳数为1-4的直链或支链烷基。
在一些较为具体的实施方案中,当利用Suzuki缩合方法制备所述树形共轭化合物时,V1及V2的组合(V1,V2)包括(选自活性反应基团组1,选自活性反应基团组3)或(选自活性反应基团组3,选自活性反应基团组1)。
在一些较为具体的实施方案中,当利用stille缩合方法制备所述树形共轭化合物时,V1及V2的组合(V1,V2)包括(选自活性反应基团组1,选自活性反应基团组2)或(选自活性反应基团组2,选自活性反应基团组1)。
更为优选的,V1选自-Br,-I;V2选自式(k)所示的活性反应基团。
Figure PCTCN2016096014-appb-000049
所述的金属催化剂指的是可溶性的金属钯配合物,例如可选自但不限于:Pd(PPh3)4, Pd(OAc)2,Pd2(dba)3,Pd2(dba)3·CHCl3,Pd(dppf)Cl2,更优选的催化剂可以为Pd(PPh3)4,Pd2(dba)3,Pd2(dba)3·CHCl3
在一些较为具体的实施方案中,当选用不含配体的Pd催化剂Pd2(dba)3或Pd2(dba)3·CHCl3时,催化体系中还需要添加磷配体,以提高反应效率,所述的磷配体包括但不限于:PPh3或HP(tBu)3BF4,较佳的,例如磷配体与催化剂Pd原子的摩尔比例可以为2:1。
在一些较为具体的实施方案中,当选用Suzuki催化缩合制备方法时,反应体系中需要加入无机金属碱溶液。所述的金属碱包括碳酸盐,如:Na2CO3,NaHCO3,K2CO3,KHCO3;磷酸盐,如:K3PO4,K2HPO4;羧酸盐,如:KOAc,NaOAc,但均不限于此。
其中,适用的溶剂可包括但不限于甲苯、乙二醇二甲醚、四氢呋喃、1,4-二氧六环、DMF,DMSO、二氯甲烷、三氯甲烷。优选的溶剂可以为四氢呋喃或三氯甲烷,但不局限于此。
前述实施方案中述及的具有式(I-A)、(I-B)、(II-A)或(II-B)所示结构的树形共轭化合物可应用于制备碳纳米管分散剂,特别是直接应用为碳纳米管分散剂,尤其是作为半导体型碳纳米管选择性分散剂,其中所述碳纳米管选自半导体型碳纳米管,特别是半导体型单壁碳纳米管,尤其是大管径半导体型单壁碳纳米管。
在一些较为具体的实施案例中还提供了一种树形共轭化合物-碳纳米管复合物,其主要由碳纳米管和附着于碳纳米管表面的所述树形共轭化合物组成。
本发明的树形共轭化合物为具有三维树形立体结构的非线性共轭化合物(聚合物),其中,具有一定空间扭曲构象结构的B基团的引入是获得非线性树枝状共轭化合物的关键,这些树形共轭化合物在空间具有扭曲的树枝状结构,该树枝状扭曲结构的共轭化合物能够有效地包覆在碳纳米管上,使得聚合物与碳纳米管之间的相互作用力得到增强,复合物的稳定性也得到大幅提高。
例如,在一些较为具体的实施案例中还提供了一种碳纳米管分散方法,其包括:取所述的树形共轭化合物及碳纳米管于溶剂中均匀混合,形成稳定均匀的碳纳米管分散液。
例如,在一些较为具体的实施案例中还提供了一种选择性分离半导体型碳纳米管的方法,其包括:
将碳纳米管粉体加入树形共轭化合物的溶液中并充分混合,使其中的半导体型碳纳米管均匀分散于溶液中,
以及,移除未能分散于溶液中的碳纳米管。
其中,所述碳纳米管粉体可以是商业途径获取的碳纳米管粉体或利用本领域已知的各种方式制备的碳纳米管粉体,其通常可以包括半导体型碳纳米管和金属型碳纳米管等。
其中,所述溶液中采用的溶剂可以选自任何能够溶解但不破坏所述树形共轭化合物分子结构的溶剂,特别是有机溶剂,例如三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯、间二甲苯、丙酮、三甲苯,氯苯和二氯苯等。
在一些更为具体的实施例中,所述选择性分离半导体型碳纳米管的方法具体包括:
将碳纳米管粉体加入树形共轭化合物的溶液中并充分混合,使其中的半导体型碳纳米管与树形共轭化合物结合形成复合物而均匀分散于溶液中,而使其中基本不能与树形共轭化合物结合的金属型碳纳米管沉降,之后,以离心或过滤等方式移除未能分散于溶液中的金属型碳纳米管等。
例如,在一些较为具体的实施案例中还提供了包含有所述的树形共轭化合物-碳纳米管复合物的碳纳米管分散体。
较为具体的,例如,在一些较为具体的实施案例中提供了一种复合墨水,其包含以下组分:
(a)至少一种所述的树形共轭化合物,
(b)至少一种碳纳米管,
(c)至少一种溶剂,特别有机溶剂。
本发明前述实施例所提供的复合墨水中具有式(I-A)、(I-B)、(II-A)或(II-B)所示结构的树形共轭化合物能够有效地包覆在半导体型碳纳米管的管壁上形成超分子复合结构,提高半导体型碳纳米管在有机溶剂中的分散性,从而选择性的分散半导体型单壁碳纳米管,获得富集半导体型单壁碳纳米管的分散均匀的墨水。
前述复合墨水中具有式(I-A)、(I-B)、(II-A)或(II-B)所示结构的树形共轭化合物所含有的直链或支链烷基单元还能够有效地改善树形共轭化合物在有机溶剂中的溶解性、调节树形共轭化合物与碳纳米管之间的相互作用、降低薄膜中的碳纳米管层的表面缺陷,提高载流子浓度以及载流子迁移率等,从而调节碳纳米管-树形共轭化合物薄膜对电极界面的修饰性能,进而改善优化半导体器件的电学性能。
本发明前述实施例所提供的复合墨水中碳纳米管可采用商业化大管径P2单壁碳纳米管,即采用商业化电弧放电方法得到的大管径单壁碳纳米管。
本发明前述实施例所提供的复合墨水中采用的有机溶剂,优选为可以溶解树形共轭化合物而自身不能分散碳纳米管的有机溶剂,例如可选自三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯和间二甲苯中的任意一种或两种及两种以上的组合,但不限于此。
在本发明的前述实施案例中,溶剂中还可以包含丙酮、三甲苯、氯苯、二氯苯中的一种或两种及两种以上,用于分散及稳定所配置的复合墨水,提高所配置复合墨水的加工性能。
在本发明前述实施例所提供的复合墨水中,由于树形共轭化合物的选择性包覆作用,能够很大程度地提高半导体型单壁碳纳米管在树形共轭化合物以及有机溶剂中的分散性,同时不会发生明显的团聚,从而能够在保持半导体型单壁碳纳米管原有的力学和电学性能的前提下有效地稳定所配制的墨水。
在本发明前述实施例所提供的复合墨水中,树形共轭化合物-碳纳米管复合物的重量/体积浓度优选为0.01~20mg/mL。更低的固含量使得复合物加工制备过程中复合物沉积量不足,半导体型单壁碳纳米管不能很好地附着和固定在基材表面,更高的固含量浓度容易导致固体析出,不利于墨水的稳定分散。
在本发明前述实施例所提供的复合墨水中,树形共轭化合物与碳纳米管的重量混合比优选为1:0.1~1:10,过高含量的聚合物将导致聚合物在器件中的残留,弱化半导体型单壁碳纳米管在所加工器件中电荷传输方面的作用,过低的聚合物比例难以有效地在基材上附着固定半导体型单壁碳纳米管,导致无法在沟道中形成致密的碳纳米管网络结构,从而影响所加工器件中电荷的高效传输,降低晶体管的电学性能。更为优选的树形共轭化合物与碳纳米管的重量混合比例优选为1:0.2~1:5。
例如,在一些较为具体的实施案例中还提供了所述复合墨水的制备方法。其中,所述复合墨水可以采用如下两种制备方法。
例如,将所述的树形共轭化合物先溶解于至少一种溶剂中,然后在温度≤0℃的条件下,将所述的商业化大管径P2单壁碳纳米管均匀分散于第一步制备的树形共轭化合物溶液中,最后再进行短时高速离心分离,分离出上层清液即获得富集半导体型的大管径的商业化碳纳米管的墨水溶液。
例如,先将所述的树形共轭化合物与商业化大管径P2单壁碳纳米管进行混合,然后一同溶剂于有机溶剂中,然后在温度≤0℃的条件下超声均匀分散,最后再进行短时高速离心分离,分离出上层清液制备形成墨水。
所述的有机溶剂至少可选自于三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯或间二甲苯中的任意一种或两种及两种以上的组合,但不限于此。
显然,该复合墨水的制备工艺简单、成本低廉、操作简便,易于批量制备。
其中,溶剂的选择需要结合碳纳米管在不同溶剂中的分散性能、树形共轭化合物在不同溶剂中的溶解性能以及后续树形共轭化合物-碳纳米管复合物沉积过程对溶剂的要求进行综合选择。
其中,溶剂的极性以及溶解性对树形共轭化合物分离半导体型单壁碳纳米管有较大的影响。例如,三氯甲烷虽然对单壁碳纳米管有非常好的溶解性,但大部分分散的碳纳米管在溶液中是以聚集成束的状态存在,不能实现单根半导体型单壁碳纳米管的选择性 分散,从而影响了其在器件加工制备方面的应用。以制备碳纳米管薄膜晶体管为例,较为优选的有机溶剂包括甲苯、邻二甲苯、对二甲苯和间二甲苯等自身不能分散碳纳米管的有机溶剂,但这些溶剂对树形共轭化合物有良好的溶解性,在这些溶剂中树形共轭化合物可以选择性的包覆半导体型单壁碳纳米管形成树形共轭化合物-碳纳米管复合物,实现选择性分离半导体型单壁碳纳米管的目的,获得可用于制备加工碳纳米管薄膜晶体管的富集半导体型的大管径的商业化碳纳米管的墨水溶液。
此外,所选用溶剂的不同,在一定程度上会影响墨水的表面张力,进而影响墨水与基底的接触性能,从而影响所加工制备的碳纳米管薄膜晶体管的性能。优选的,所述有机溶剂可选自于三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯、间二甲苯、三氯甲烷和四氢呋喃中的任意一种或两种及两种以上的组合,但不限于此。
前述复合墨水的制备工艺中采用的高速离心操作,其优选的实施方式为:离心速度大于8000rpm,优选控制在10000~30000rpm;离心时间在20min以上,优选控制为30~100min。
例如,在一些较为具体的实施案例中还提供了一种薄膜,其中包含所述树形共轭化合物-碳纳米管复合物。
进一步地,在一些较为具体的实施案例中还提供了一种制备所述薄膜的简单方法,例如,利用所述的复合墨水,通过涂布或者印刷等方法沉积制备而成。所述涂布方式包括浸渍涂布、滴落涂布、旋转涂布、刮刀涂布、狭缝涂布等;所述的印刷方式包括喷墨打印、丝网印刷、凹版印刷、气流喷印、柔版转印等,但不限于此。
在实际沉积制备复合薄膜的过程中,所述的薄膜通常沉积在基底材料之上。所述的基底材料包括:硅片、玻璃、塑料、纸张以及金属薄片,如:不锈钢、铝箔等,但不限于此。
前述喷墨打印中的打印机可选用挤压式打印墨水的打印机,如Dimatrix的2831、3000、5005、MicroFab和气溶胶喷墨打印机等,但不限于此。
前述印刷制备复合薄膜的过程中,所述墨水中碳纳米管的浓度优选为0.0001~1mg/mL。
在一些较为具体的实施案例中提供了一种薄膜的后续处理方法,所述的后续处理工艺包括溶剂清洗和退火等。
前述的溶剂清洗工序中,溶剂可选自于三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯、间二甲苯、三氯甲烷和四氢呋喃中的任意一种或两种及两种以上的组合,但不限于此。
前述的退火工序中,采用的退火温度在200℃以下,优选为25~120℃,退火时间为 30~120min,优选为30~60min。
在一些较为具体的实施案例中还提供了一种装置,其包含所述的树形共轭化合物-碳纳米管复合物或者所述的薄膜。
其中,所述装置可以是半导体装置,其半导体材料层(例如有源层)包含所述的薄膜。进一步的,所述半导体装置可以为晶体管,反相器等,但不限于此。
例如,所述装置可以是一种场效应晶体管,其主要由源电极、漏电极、栅电极、介电层和有源层构成,所述有源层含有所述的树形共轭化合物-碳纳米管复合物或者所述的薄膜。
进一步的,所述场效应晶体管为薄膜晶体管,其可以利用所述碳纳米管-树形共轭化合物复合墨水,通过滴涂、旋涂、浸涂、凹版印刷和喷墨打印等方法构建而成,沉积方式多样,加工工艺简单。
例如,所述树形共轭化合物-碳纳米管复合物可以作为薄膜晶体管的有源层。
前述树形共轭化合物、树形共轭化合物-碳纳米管复合物可被应用于大规模商业化生产高性能可印刷半导体碳纳米管墨水和高性能的印刷电子器件。
前述实施方案中树形共轭化合物的分子具有三维共轭空间立体结构,其分子结构单一确定,可克服聚合物批次之间的差异性,可重复性好,且可应用为分散剂而良好的选择性分散半导体型碳纳米管,特别是半导体型单壁碳纳米管;优选的,通过调整溶剂种类、碳纳米管浓度和树形共轭化合物浓度等,还可有效实现三维共轭空间立体结构的新型树形化合物选择性包覆分离大管径半导体碳纳米管的目的;并且,这些树形共轭化合物-碳纳米管复合物加工工艺简单,所需化合物量相对较少,分离过程所用时间短、离心速度低,成本低廉;同时,这些树形共轭化合物-碳纳米管复合物具有良好的半导体性能,可被应用于大规模商业化生产高性能可印刷半导体碳纳米管墨水和高性能的印刷电子器件,例如,利用所获大管径半导体碳纳米管可构建出性能优越的印刷薄膜晶体管半导体器件。
本发明的一些实施例还提供了一类碳纳米管-非线性共轭聚合物复合物,其包含碳纳米管以及至少附着于所述碳纳米管表面的非线性共轭聚合物,所述非线性共轭聚合物的重复单元中具有吡咯并吡咯二酮单元(DPP)和一个或多个芳香单元。
更为具体的,在一些实施方案中,所述非线性共轭聚合物具有如下通式所表示的化学结构:
Figure PCTCN2016096014-appb-000050
其中,R1选自含碳数为1-20的直链或支链烷基或杂烷基;R2、R3独立地选自氢原子、含碳数为1-20的直链或支链烷基、杂烷基或烷杂基,或R2与R3相连形成具有5-8元取代或未取代的环状结构;Ar1选自由1-4个五或六元芳香环或芳香杂环、或多元芳香稠环组成的共轭单元;n表示聚合物中的重复单元数,其选自2~500中的任一整数。
在一些较为优选的实施方案中,Ar1的结构可选自式(Ⅱ-C)-(Ⅸ-C)中的任一种:
Figure PCTCN2016096014-appb-000051
R*至少选自氢原子或C1-C10的直链或支链烷基,x选自1-3中的任一整数。
在一些较为优选的实施案例中,前述的吡咯并吡咯二酮单元可具有式(Ⅹ-C)所示结构:
Figure PCTCN2016096014-appb-000052
例如,作为一种较为优选的实施方案,所述非线性共轭聚合物具有式(Ⅹ-C)与式(Ⅶ-C)所示的Ar1的主链结构。其中,R1选自含碳数为1-20的直链或支链烷基或杂烷基;R2、R3独立地选自氢原子、含碳数为1-20的直链或支链烷基、杂烷基或烷杂基,或R2与R3相连形成具有5-8元取代或未取代的环状结构。
所述非线性共轭聚合物可通过聚合反应制备。例如,在一些较为具体的实施例中,所述非线性共轭聚合物的制备方法可以包括:选取具有式①所示结构的化合物与包含有Ar1基团的化合物进行聚合反应,从而获得所述非线性共轭聚合物,
Figure PCTCN2016096014-appb-000053
所述包含有Ar1基团的化合物至少具有下列结构中的任一种:
Figure PCTCN2016096014-appb-000054
其中M包括–SnMe3或–B(OR)2,R1选自含碳数为1-20的直链或支链烷基或杂烷基;R2、R3独立地选自氢原子、含碳数为1-20的直链或支链烷基、杂烷基或烷杂基,或R2与R3相连形成具有5-8元取代或未取代的环状结构。R*为氢原子或C1-C10的直链或支链烷基,n选自2-150中的任一整数,x独立地选自1-3中的任一整数。
进一步的,所述聚合反应为过渡金属催化的缩聚反应,例如可优选自金属催化的Suzuki聚合或金属催化的Stille聚合反应。
在一些较为优选的实施方案中,所述非线性共轭聚合物的制备方法包括,将具有式①所示结构的化合物与式②-式⑨中任一者所示结构的化合物以1:1~1:1.5的摩尔比投料,混合后加入催化剂和配体形成混合体系,再在保护性气氛中,向该混合体系中加入溶有碱性物质的有机溶剂,例如溶有碱溶液的有机溶剂,充分搅拌溶解后于25~50℃进行过渡金属催化的缩聚反应,在保护性气氛中反应24~96h,进而获得基于吡咯并吡咯二酮结构的所述非线性共轭聚合物。
其中,所述催化剂可优选自但不限于Pd2(dba)3或Pd2(dba)3 .CHCl3等。
其中,所述配体可优选自但不限于三叔丁基膦四氟硼酸盐、三(2-甲氧基苯基)膦、三苯基膦、三环己基膦、三(邻甲苯基)膦或三(间甲苯基)膦等。
其中,所述有机溶剂可优选自四氢呋喃或二氯甲烷等,但不限于此。
其中,所述的碱性物质可以选自采用的磷酸钾或碳酸铯等。进一步的,所述碱溶液可优选为浓度为2mol/L的磷酸钾或碳酸铯水溶液等,但均不限于此。
其中,前述保护性气氛可选自惰性气体气氛或氮气气氛等,优选为氮气气氛。
在一更为具体的实施案例中,所述非线性共轭聚合物的制备方法可以包括:将式①所示结构的化合物与式②-式⑨中任一者所示的化合物以1:1~1:1.5的摩尔比投料,向该体系中转移溶有磷酸钾水溶液的四氢呋喃,充分搅拌溶解后于25~50℃的水浴中进行过渡金属催化的缩合反应,N2保护下反应24~96h,反应结束后经过一系列的常规后处理,得到所述非线性DPP共轭聚合物。
在一较为典型的实施案例之中,以所含R1为2-辛基十二烷基,R2、R3选自H,Ar1为5,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,2':3',2”-terthiophene(3T-B)的非线性共轭聚合物合成过程为例:聚合单体(a)和单体(b)(以及如式(a)所示化合物中的其他单体)可通过市售途径获取,也可通过本领域已知的方式合成。而测定共轭聚合物的分子量及分子量分布时所用凝胶渗透色谱仪为英国Polymer Laboratories公司的PL GPC50,流动相为色谱纯氯仿,并用单分散聚苯乙烯标样(Polymer Laboratories公司)绘制校正曲线,测定时流速为1.0mL min-1,测试温度为40℃。
Figure PCTCN2016096014-appb-000055
这些实施例中的共轭聚合物为主链包含有DPP与Ar1所示结构的非线性共轭聚合物,其中,具有一定空间构象结构Ar1基团的引入是获得非线性共轭聚合物的关键,同时理论计算表明,这些聚合物在空间具有折叠结构,甚至可以形成螺旋构象,该螺旋结构共轭聚合物链能够缠绕在碳纳米管上,使得聚合物与碳纳米管之间的相互作用力得到增强,复合物的稳定性也得到大幅提高。
这些实施例中还提供了一种碳纳米管-非线性共轭聚合物复合物墨水(简称墨水),其包含:
所述的碳纳米管-非线性共轭聚合物复合物;
以及,溶剂,至少用以分散所述碳纳米管-非线性共轭聚合物复合物并形成稳定分散体系。
其中,所述溶剂系用于分散及稳定所配置的复合墨水,调节复合墨水的表面张力,以及提高所配置复合墨水的成膜性能,其可优选自甲苯、邻二甲苯、对二甲苯、间二甲苯和四氢呋喃中的任意一种或两种以上的组合,但不限于此。
在一些较为优选的实施方案之中,所述墨水还包含有机半导体材料。
尤为优选的,所述有机半导体材料与所述非线性共轭聚合物相同。
较为优选的,所述墨水包含0.0001wt%~0.5wt%所述非线性共轭聚合物。
在这些实施例的墨水中,非线性共轭聚合物能够有效分离并分散半导体型碳纳米管,从而提高对半导体碳管的选择性分离,同时,非线性共轭聚合物的存在有助于器件活性层薄膜对下层的粘附力,降低界面修饰层表面的粗糙度。并且墨水配方中共轭聚合物所含有的直链烷基单元能够改善共轭聚合物在有机溶剂中的溶解性、调节聚合物与碳纳米管之间的相互作用、降低薄膜中的碳纳米管层的表面缺陷,提高载流子浓度以及载流子迁移率等,从而调节碳纳米管-聚合物薄膜对电极界面的修饰性能,进而改变光电器件的应用性能。
这些实施例中还提供了一种制备所述墨水的简单方法,其包括:将碳纳米管分散于所述非线性共轭聚合物的有机溶液中形成均匀的碳纳米管分散液,之后对所述碳纳米管分散液进行高速离心处理,所获清液即为所述墨水。
在一些较为优选的具体实施方案之中,所述墨水的制备方法可以包括:在所述非线性共轭聚合物的辅助下,将商业化碳纳米管通过超声方式,例如探针超声波搅拌混合后分散于甲苯等溶剂中,得到分散均一的碳纳米管溶液,离心除去金属型碳纳米管后,分离出上层清液,即可获得所述墨水,其可直接用于打印薄膜晶体管等。
在一些更为具体的实施方案之中,所述墨水的制备方法还可以包括:在温度不高于0℃的条件下,优选为-5℃~0℃的条件下,将商业化碳纳米管分散于聚合物的有机溶液 中,通过调整溶剂种类和聚合物以及碳纳米管的浓度等,采用超声等方法得到分散均一的碳纳米管溶液,碳纳米管溶液再经过短时间的高速离心即可获得高纯的半导体碳纳米管溶液。
其中,前述商业化碳纳米管可以hiPCO、CG200、CG100和CoMoCat系列的碳纳米管以及电弧放电方法得到的大管径碳纳米管等。
其中,前述的非线性共轭聚合物可选自前述的任一结构的非线性吡咯并吡咯二酮基共轭聚合物,如DPP与取代邻苯的共聚物、DPP与取代间苯共聚物、DPP与2,3-取代噻吩共聚物、DPP与2,2':3',2”-取代三噻吩共聚物、及DPP与含有一个或多个苯基间隔基的邻取代或间取代苯、或含有一个或多个噻吩基间隔基的邻取代噻吩的共聚物,但不限于此。
在一些更为具体的实施案例之中,为了能够获得半导体碳纳米管的纯溶液,前述非线性共轭聚合物的有机溶液的浓度尤其优选为0.0001wt%~0.5wt%。
前述的有机溶剂可以选自甲苯、邻二甲苯、对二甲苯和间二甲苯等能够溶解所述非线性共轭聚合物但不能分散碳纳米管的有机溶剂。
较为优选的,前述的短时高速离心的离心速度在20000~30000g以上,例如优选为21000g,离心时间在1h以上,例如优选为1h~1.5h。
这些实施例中还提供了一种碳纳米管-非线性共轭聚合物复合薄膜(简称薄膜),其包含所述的碳纳米管-非线性共轭聚合物复合物。
所述薄膜主要是利用前述的墨水形成的。
例如,一种制备所述薄膜的方法可以包括:将所述的墨水涂布或印刷形成所述薄膜。
当然,在该薄膜的制备方法之中,还可包含干燥等能够促使薄膜固化成型的工序,这些工序均是可以通过业界悉知的技术手段实现的。
其中,所采用的涂布或印刷方式至少可选自但不限于旋转涂膜、刮刀涂布、狭缝涂布、喷墨印刷、丝网印刷、凹版印刷、柔版印刷、柔版转印中的任一种。
在一些实施案例之中,所述薄膜可以沉积在基底材料之上,常用的基底材料包括:玻璃、塑料、纸张以及金属薄片,如:不锈钢、铝箔等,而相应的涂布方式包括旋转涂膜、刮刀涂布、狭缝涂布等,相应的印刷方式包括喷墨印刷、丝网印刷、凹版印刷、柔版转印等。
在一些实施案例之中,前述喷墨打印中的打印机可选用挤压式打印墨水的打印机,如Dimatrix的2831、3000、5005、MicroFab和气溶胶喷墨打印机等。
在一些实施案例之中,印刷用的所述墨水中碳纳米管的浓度优选为0.0001mg/mL~1mg/mL。
在一些实施案例之中,所述薄膜还可以沉积在一些透明或不透明的导电薄膜之上。换言之,所述薄膜与上述的基底材料之间还可以有一层透明或不透明的导电薄膜。
其中,所述透明的导电薄膜可以包括:二氧化硅(SiO2)薄膜、氧化铟锡(ITO)薄膜、氟掺杂氧化锡(FTO)、金属栅线网格薄膜、纳米金属线薄膜等,但不限于此。
其中,所述不透明的导电薄膜可以包括:印刷方法制备的纳米金属薄膜或者由真空沉积的金属或合金纳米薄膜,如:Al膜、Al:Mg合金薄膜等,但不限于此。
在一些较为优选的实施方案之中,所述薄膜的制备方法还可包含有后续的薄膜处理工序,例如利用溶剂清洗和退火等。
在一些较佳实施案例之中,采用的退火温度在200℃以下,优选为25℃~120℃,退火时间为30~120min,优选为30min~60min。
这些实施例中还提供了一种装置,其包含所述的碳纳米管-非线性共轭聚合物复合物或者所述的薄膜。
在一些实施案例之中,所述的装置还可包含衬底,所述薄膜设置在所述衬底上。
并且,通过所述非线性共轭聚合物的包覆作用,能够有效将半导体碳纳米管在基底,例如氧化铪基底上,使用所述半导体碳纳米管-非线性共轭聚合物墨水可以直接用于在氧化铪、硅等基底上通过滴涂或喷雾打印技术制备薄膜晶体管,沉积方式多样、加工工艺简单。
在一些实施案例之中,所述衬底与所述薄膜之间还分布有透明或不透明的导电薄膜,这些导电薄膜的种类可以如前文所述。
在一些实施方案之中,所述装置可以是半导体装置,其半导体材料层(例如有源层)包含所述的薄膜。
进一步的,所述半导体装置可以为晶体管,反相器等,但不限于此。
例如,所述半导体装置可以为场效应晶体管。
例如,所述半导体装置可以是一种场效应晶体管,其具有源电极、漏电极、栅电极、绝缘层和半导体层等,其中所述半导体层可包含所述的薄膜。
其中,所述源、漏、栅电极的材质,结构等均可以是业界已知的。
进一步的,所述半导体装置为薄膜晶体管,其可以利用所述墨水,通过滴涂、旋涂、浸涂、凹版印刷和喷墨打印等方法而构建出。
前述这些实施例中采用的非线性共轭聚合物为螺旋型DPP共轭聚合物,基于其具有长的共轭链长、制备简单、成本低廉等优势,以及其能够通过改变结构来调整与碳纳米管之间的相互作用的特点,进而利用其选择性高效包覆大管径半导体碳纳米管,该工艺简单、分离时间短,同时所述非线性共轭聚合物与碳纳米管形成的复合物具有良好的半 导体性能,适于制备有机电子器件,尤其是由所述非线性共轭聚合物包覆的半导体性碳纳米管能被有效固定于基底上,因此仅需将碳纳米管-非线性共轭聚合物复合物物墨水通过涂布、打印等方式即可制备形成半导体器件,工艺简单易操作,成本低廉。
下面将结合附图及若干实施例对本发明的技术方案进行详细的描述,显然如下所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如下实施例中,具有分枝状结构的树形寡聚噻吩核心构建单元可参考文献(Chem.Eur.J.2012,18,12880–12901)合成,实施例7、实施例8、实施例9、实施例10、实施例11和实施例16中的-C8H17为乙基己基,实施例12、实施例13、实施例14、实施例15中的-C20H41为辛基十二烷基。
实施例1:化合物3的合成
Figure PCTCN2016096014-appb-000056
称取(化合物1)(2.0g,2.13mmol),化合物2(1.5g,5.1mmol),Pd2(dba)3.CHCl3(44mg,43μmol),HP(tBu)3BF4(25mg,86μmol)在氮气氛下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(150mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,12.0mL,12.0mmol),常温过夜搅拌。反应体系逐渐变为蓝紫色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(1:4),得到2.1g蓝色固体(化合物3),产率94%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.92(d,J=4.04Hz,1H),δ=8.84(d,J=3.04Hz,1H),7.60(d,J=4.40Hz,1H),7.24-7.27(m,1H),7.22(d,J=4.12Hz,1H),7.14(d,J=3.44Hz,1H),6.74(d,J=3.60Hz,1H),4.03(d,J=2.08Hz,2H),4.01(d,J=2.00Hz,2H),2.80-2.84(m,2H),1.91-1.96(m,2H),1.66-1.74(m,2H),1.21-1.34(m;70H),0.83-0.92ppm(m,15H)。MALDI-TOF MS:m/z calcd for C64H102N2O2S3:1026.7,found:1026.0(matrix:DCTB)。
实施例2:化合物4的合成
Figure PCTCN2016096014-appb-000057
在手套箱中称取[Ir(OMe)(COD)]2(62mg,94μmol),HBPin(600mg,4.68mmol),dtbpy(50mg,186μmol),充分搅拌,使三种物质充分混合,形成催化剂体系。称取化合物3(2.4g,2.34mmol)加入100mL两口烧瓶中,向该两口烧瓶中加入50mL干燥的THF。将催化剂体系加入到盛有化合物3的两口烧瓶中,在50℃下反应4小时。当反应冷却至室温,旋蒸掉溶剂得到粗产物。粗产物通过硅胶色谱柱分离,得到化合物4(2.3g),产率85%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.95(d,J=4.16Hz,1H),δ=8.85(d,J=3.84Hz,1H),7.70(d,J=3.88Hz,1H),7.23(d,J=4.16Hz,1H),7.14(d,J=3.56Hz,1H),6.74(d,J=3.64Hz,1H),4.01-4.07(m,4H),2.80-2.84(m,2H),1.89-1.96(m,2H),1.66-1.74(m,2H),1.37(s,12H),1.21-1.34(m;70H),0.83-0.92ppm(m,15H)。MALDI-TOF MS:m/z calcd for C64H102N2O2S3:1151.8,found:1151.6(matrix:DCTB)。
实施例3:化合物6(G1-Dendron-FG1-EG2)的合成
Figure PCTCN2016096014-appb-000058
称取(化合物5)(100mg,200μmol),化合物4(530mg,460μmol),Pd2(dba)3 .CHCl3(10mg,10μmol),HP(t-Bu)3 .BF4(8mg,27μmol)在氮气氛下加入25mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(10.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,1.2mL,1.2mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂 为二氯甲烷:正己烷(1:9),得到372mg蓝色固体(化合物6),产率81%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.94(d,J=2.92Hz,1H),δ=8.93(d,J=2.96Hz,1H),8.89(t,J=4.48Hz,2H),7.34(d,J=5.28Hz,1H),7.27(d,J=1.04Hz,1H),7.26(d,J=1.04Hz,1H),7.23(d,J=3.80Hz,1H),7.21(d,J=4.24Hz,3H),7.19(d,J=5.28Hz,1H),7.13(d,J=3.56Hz,2H),7.11(d,J=3.84Hz,1H),7.05(d,J=3.84Hz,1H),6.73(d,J=3.64Hz,2H),4.02(d,J=7.00Hz,8H),2.81(t,J=7.56Hz,4H),1.94-1.99(m,4H),1.66-1.73(m,4H),1.21-1.34(m;140H),0.81-0.93ppm(m,30H)。MALDI-TOF MS:m/z calcd for C140H208N4O4S9:2297.3,found:2297.6(matrix:DCTB)。
实施例4:化合物8(G1-Dendrimer-FG1-EG2)的合成
Figure PCTCN2016096014-appb-000059
称取化合物4(630mg,546μmol),化合物7(100mg,124μmol),[Pd2(dba)3]·CHCl3(10mg,10μmol),and HP(tBu)3·BF4(8mg,27μmol)在氮气氛下加入50mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(25.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2.0mL,2.0mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离小分子杂质,再用凝胶色谱柱纯化分离得到460mg蓝色固体(化合物8),产率81%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.81(d,J=3.56Hz,4H),δ=8.76(dd,J=4.24Hz,4H),7.15-7.19(m,10H),7.07-7.09(m,8H),7.04(d,J=3.12Hz,4H),6.66(d,J=3.40Hz,4H),3.90(br,16H),2.73(br,8H),1.85(br,8H),1.57-1.65(m,8H),1.21-1.34(m;280H),0.72-0.84ppm(m,60H)。MALDI-TOF MS:m/z calcd for C280H414N8O8S18:4592.7,found:4592.3(matrix:DCTB)。
实施例5:化合物10(G2-Dendron-FG1-EG2)的合成
Figure PCTCN2016096014-appb-000060
称取化合物9(50mg,24μmol),化合物4(204mg,177μmol),[Pd2(dba)3]·CHCl3(5mg,4.8μmol),and HP(tBu)3·BF4(4mg,13.8μmol)在氮气氛下加入25mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(10.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,1.0mL,1.0mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离小分子杂质,再用凝胶色谱柱纯化分离得到146mg蓝色固体(化合物10),产率75%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.92(d,J=4.08Hz,4H),8.89(d,J=4.12Hz,2H),8.87(d,J=4.16Hz,2H),δ=7.33(d,J=5.24Hz,1H),δ=7.23(s,1H),δ=7.22(s,1H),7.13-7.20(m,12H),7.03-7.12(m,13H),6.70-6.72(m,4H),3.99(br,16H),2.78-2.82(m,8H),1.94(br,8H),1.65-1.71(m,8H),1.20-1.32(m;280H),0.79-0.92ppm(m,60H)。MALDI-TOF MS:m/z calcd for C292H420N8O8S21:4838.7,found:4838.9(matrix:DCTB)。
实施例6:化合物12(G2-Dendrimer-FG1-EG2)的合成
Figure PCTCN2016096014-appb-000061
称取化合物7(100mg,124μmol),化合物11(1.35g,559μmol),[Pd2(dba)3]·CHCl3(15mg,14μmol),and HP(tBu)3·BF4(9mg,31μmol)在氮气氛下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(100.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,10.0mL,10.0mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离小分子杂质,再用凝胶色谱柱纯化分离得到745mg蓝色固体(化合物12),产率62%。其表征数据如下:MALDI-TOF MS:m/z calcd for C584H838N16O16S42:9685.4;found:9684.7(matrix:DCTB),HR MS:m/z calcd for C584H838N16O16S42:(100%abundance)9685.3664;found:9685.3677。Mn=10463g/mol,Mw=11119,PDI=1.07。
实施例7:化合物15的合成
Figure PCTCN2016096014-appb-000062
称取(化合物13)(2.0g,3.32mmol),化合物14(1.08g,4.15mmol),Pd2(dba)3.CHCl3(86mg,83μmol),HP(tBu)3BF4(48mg,166μmol)在氮气氛下加入500mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(250mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,15.0mL,15.0mmol),常温过夜搅拌。反应体系逐渐变为蓝紫色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(1:3),得到2.0g蓝色固体(化合物15),产率92%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.96(d,1H),δ=8.88(d,1H),7.79(m,2H),7.67-7.70(m,2H),7.55(s,1H),7.43(dd,1H),7.36(m,2H),4.03-4.01(m,4H),1.50-1.60(m,2H),1.21-1.34(m;16H),0.83-0.92ppm(m,12H)。MALDI-TOF MS:m/z calcd for C38H44N2O2S3:656.3,found:656.4(matrix:DCTB)。
实施例8:化合物16的合成
Figure PCTCN2016096014-appb-000063
在手套箱中称取[Ir(OMe)(COD)]2(62mg,94μmol),HBPin(600mg,4.68mmol),dtbpy(50mg,186μmol),充分搅拌,使三种物质充分混合,形成催化剂体系。称取化合物15(2g,3.05mmol)加入100mL两口烧瓶中,向该两口烧瓶中加入50mL干燥的THF。将催化剂体系加入到盛有化合物15的两口烧瓶中,在50℃下反应4小时。当反应冷却至室温,旋蒸掉溶剂得到粗产物。粗产物通过硅胶色谱柱分离,得到化合物16(2.15g),产率90%。其表征数据如下:1HNMR(CDCl3,400MHz):δ=8.95(d,1H),8.86(d,1H),7.79(d,1H),7.65-7.72(m,2H),7.52(s,1H),7.40(dd,1H),7.36(m,2H),4.06-4.02(m,4H),1.53-1.63(m,2H),1.24-1.36(m;16H),1.28(s,12H)0.82-0.93ppm(m,12H)。MALDI-TOF MS:m/z calcd for C44H55BN2O4S3:782.3,found:782.7(matrix:DCTB)。
实施例9:化合物18的合成
Figure PCTCN2016096014-appb-000064
称取(化合物17)(200mg,653μmol),化合物16(1.29g,1650μmol),Pd2(dba)3 .CHCl3(34mg,33μmol),HP(t-Bu)3 .BF4(20mg,66μmol)在氮气氛下加入100mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(10.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2.5mL,2.5mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(1:2),得到810mg蓝色固体(化合物18),产率85%。其表征数 据如下:1H NMR(CDCl3,400MHz):δ=8.98(m,2H),δ=8.90(m,2H),7.85(m,3H),7.80(m,2H),7.68-7.74(m,4H),7.55(m,2H),7.42(m,2H),7.36-7.38(m,4H),4.06-4.02(m,8H),1.53-1.63(m,4H),1.22-1.35(m;32H),0.84-0.95ppm(m,24H),0.29(s,9H)。MALDI-TOF MS:m/z calcd for C85H98N4O4S6Si:1458.6,found:1458.8(matrix:DCTB)。
实施例10:化合物19的合成
Figure PCTCN2016096014-appb-000065
称取化合物18(1.0g,685μmol)溶于100ml CH2Cl2中,在0℃氮气氛围下逐滴加入BBr3(1.0Ml,1M,1mmol),滴加完毕后继续搅拌2h,用高真空泵移除其中的易挥发溶剂。再称取pinacol(97mg,820μmol)溶解在100mL THF中,将溶解后的pinacol溶液注入上述反应体系中,常温过夜搅拌。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(3:7),得到912mg蓝色固体(化合物19),产率88%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.99(m,2H),δ=8.92(m,2H),7.86(m,3H),7.82(m,2H),7.67-7.75(m,4H),7.54(m,2H),7.45(m,2H),7.33-7.40(m,4H),4.03-4.09(m,8H),1.54-1.65(m,4H),1.31(s,12H),1.20-1.36(m;32H),0.83-0.94ppm(m,24H)。MALDI-TOF MS:m/z calcd for C88H101BN4O6S6:1512.6,found:1512.9(matrix:DCTB)。
实施例11:化合物20的合成制备
Figure PCTCN2016096014-appb-000066
称取化合物13(100mg,215μmol),化合物19(1.5g,992μmol),[Pd2(dba)3]·CHCl3(25mg,24μmol),and HP(tBu)3·BF4(15mg,51μmol)在氮气氛围下加入250mL两口圆底 烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(100.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,10.0mL,10.0mmol),常温过夜搅拌。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离小分子杂质,再用凝胶色谱柱纯化分离得到850mg蓝色固体(化合物20),产率70%。其表征数据如下:MALDI-TOF MS:m/z calcd for C340H362N16O16S24:5692.1,found:5692.5(matrix:DCTB)。Mn=6203g/mol,Mw=6513g/mol,PDI=1.05。
实施例12:化合物22的合成
Figure PCTCN2016096014-appb-000067
称取(化合物21)(200mg,199μmol),化合物2(61mg,207μmol),Pd2(dba)3 .CHCl3(10mg,10μmol),HP(t-Bu)3 .BF4(6mg,20μmol)在氮气氛下加入100mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(20.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2.5mL,2.5mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(1:3),得到87mg蓝色固体(化合物22),产率40%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=7.78(m,2H),δ=7.69(m,2H),7.52(m,2H),7.40(m,2H),7.32(d,1H),6.74(d,1H),3.90-3.95(m,4H),2.81-2.85(m,2H),1.90-1.98(m,2H),1.66-1.74(m,2H),1.21-1.34(m;70H),0.83-0.92ppm(m,15H)。MALDI-TOF MS:m/z calcd for C68H105BrN2O2S:1092.7,Found:1093.0(matrix:DCTB)。
实施例13:化合物24的合成
Figure PCTCN2016096014-appb-000068
称取化合物23(100mg,200μmol),化合物22(546mg,500μmol),,Pd2(dba)3 .CHCl3(10mg,10μmol),HP(t-Bu)3 .BF4(8mg,27μmol)在氮气氛下加入25mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(20.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2mL,2mmol),常温过夜搅拌。反应体系逐渐变为深蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(3:7),得到372mg蓝色固体(化合物24),产率82%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=7.80(m,4H),δ=7.76(d,1H),7.70(m,4H),7.55(m,4H),7.42(m,4H),7.30-7.35(m,4H),7.20(d,1H),7.16(d,2H),6.76(d,2H),4.02(d,J=7.00Hz,8H),2.81(t,J=7.56Hz,4H),1.94-1.99(m,4H),1.66-1.73(m,4H),1.21-1.34(m;140H),0.81-0.93ppm(m,30H)。MALDI-TOF MS:m/z calcd for C148H216N4O4S5:2273.5,found:2273.0(matrix:DCTB)。
实施例14:化合物25的合成
Figure PCTCN2016096014-appb-000069
在手套箱中称取[Ir(OMe)(COD)]2(66mg,100μmol),HBPin(340mg,2.66mmol),dtbpy(54mg,200μmol),充分搅拌,使三种物质充分混合,形成催化剂体系。称取化合物24(3g,1.32mmol)加入250mL两口烧瓶中,向该两口烧瓶中加入100mL干燥的THF。将催化剂体系加入到盛有化合物24的两口烧瓶中,在50℃下反应4小时。当反应冷却至室温,旋蒸掉溶剂得到粗产物。粗产物通过硅胶色谱柱分离,得到化合物25(2.69g),产率85%。1H NMR(CDCl3,400MHz):δ=7.84(m,4H),7.60(s,1H),7.73(m,4H),7.57(m,4H),7.45(m,4H),7.32-7.37(m,4H),7.18(d,2H),6.79(d,2H),4.05(d,J=7.00Hz,8H),2.83(t,J=7.56Hz,4H),1.92-1.98(m,4H),1.64-1.71(m,4H),1.33(s,12H),1.21-1.34(m;140H),0.81-0.93ppm(m,30H)。MALDI-TOF MS:m/z calcd for C148H216N4O4S5:2399.6,found:2400.0(matrix:DCTB)。
实施例15:化合物26的合成
Figure PCTCN2016096014-appb-000070
称取化合物9(80mg,64μmol),化合物25(695mg,290μmol),[Pd2(dba)3]·CHCl3(10mg,10μmol),and HP(tBu)3·BF4(6mg,19μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(120.0mL),然后再向反应体系中 逐滴加入K2CO3水溶液(1M,3mL,3.0mmol),常温过夜搅拌。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离小分子杂质,再用凝胶色谱柱纯化分离得到392mg蓝色固体(化合物26),产率62%。其表征数据如下:MALDI-TOF MS:m/z calcd for C628H876N16O16S29:9826.0,found:9826.8(matrix:DCTB);Mn=8963g/mol,Mw=9680g/mol,PDI=1.08。
实施例16:化合物28的合成
Figure PCTCN2016096014-appb-000071
称取化合物13(50mg,107μmol),化合物27(785mg,483μmol),[Pd2(dba)3]·CHCl3(10mg,10μmol),and HP(tBu)3·BF4(6mg,19μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的脱气处理的THF(150.0mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,5mL,5.0mmol),常温过夜搅拌。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离小分子杂质,再用凝胶色谱柱纯化分离得到428mg蓝色固体(化合物28),产率65%。其表征数据如下:MALDI-TOF MS:m/z calcd for C356H362N16O16S32:6139.9,found:6139.5(matrix:DCTB)。Mn=6954g/mol,Mw=7371g/mol,PDI=1.06。
实施例17:将实施例3、实施例4、实施例5合成的DPP外围功能化修饰的树形共轭化合物配制成溶液,溶剂选定为三氯甲烷,并测试这些材料在溶液中的UV-vis吸收光谱,具体可参阅图1。
实施例18:将实施例3、实施例4、实施例5所制备的树形共轭化合物配制成溶液(2mg/mL),所选溶剂为氯仿,通过旋涂的方法以2000r/min的转速在洗净的石英片上旋涂得到相应化合物的薄膜,测试得到这些化合物薄膜的吸收光谱,如图2所示,这些化合物薄膜的最大吸收波长为752-766nm,相应的材料光谱带宽为1.62-1.65eV,属于半导体带隙范围。
实施例19:用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)测试所合成的外围功能化修饰的树形共轭化合物(化合物8),测试结果可参阅图3,可以看出所合成的目标树形大分子具有分子量大、分子结构单一明确的特点。
如下实施例21-28中以一些较为典型的树形共轭化合物为例,验证了前述具有式(IA)、(IIA)所示结构的树形共轭化合物作为碳纳米管分散剂的性能。这些树形共轭化合物的结构式分别如下:
Figure PCTCN2016096014-appb-000072
实施例21:树形共轭化合物(6T-DPP)-碳纳米管复合墨水的制备
称取2mg商业化大管径碳纳米管P2样品,溶于10毫升的甲苯溶液中,然后加入分子量为4597的树形共轭化合物6T-DPP 6mg,在冰浴的条件下用功率为60W的超声清洗机超声分散30分钟,使聚合物可以选择性地和半导体碳纳米管充分作用,得到均匀分散的分散液。再经过15000rpm离心30分钟后,使上述分散液中的碳纳米管束 以及未被树形共轭化合物包覆的金属性碳纳米管沉积在离心管的底部,分离出上层清液即可获得高纯的富集有大管径半导体碳纳米管的复合墨水。
实施例22:树形共轭化合物(9T-DPP)-碳纳米管复合墨水的制备
称取2mg商业化大管径碳纳米管P2样品,溶于10毫升的甲苯溶液中,然后加入分子量为4848的树形共轭化合物9T-DPP 6mg,在冰浴的条件下用功率为60W的超声清洗机超声分散30分钟,使聚合物可以选择性地和半导体碳纳米管充分作用,得到均匀分散的分散液。再经过15000rpm离心30分钟后,使上述分散液中的碳纳米管束以及未被树形共轭化合物包覆的金属性碳纳米管沉积在离心管的底部,分离上层清液即可获得高纯的富集有大管径半导体碳纳米管的复合墨水。
实施例23:树形共轭化合物(18T-DPP)-碳纳米管复合墨水的制备
称取2mg商业化大管径碳纳米管P2样品,溶于10毫升的甲苯溶液中,然后加入分子量为9846的树形共轭化合物18T-DPP 6mg,在冰浴的条件下用功率为60W的超声清洗机超声分散30分钟,使聚合物可以选择性地和半导体碳纳米管充分作用,得到均匀分散的分散液。再经过15000rpm离心30分钟后,使上述分散液中的碳纳米管束以及未被树形共轭化合物包覆的金属性碳纳米管沉积在离心管的底部,分离上层清液即可获得高纯的富集有大管径半导体碳纳米管的复合墨水。
实施例24:树形共轭化合物(6T-DPP)-碳纳米管复合墨水的UV-Vis-IR光谱性能表征
对树形共轭化合物(6T-DPP)-碳纳米管分散液离心后的上清液,利用紫外-可见-近红外(Perkin Elmer Lambda 750)测试其吸收光谱,其结果如图7所示。从吸收光谱图中可以看出,对应半导体碳纳米管的S22吸收峰(900-1200nm)变得非常尖锐,而且吸收背景非常低,说明树形共轭化合物(6T-DPP)可以选择性的分散富集半导体碳纳米管。
实施例25:树形共轭化合物(9T-DPP)-碳纳米管复合墨水的UV-Vis-IR光谱性能表征
对树形共轭化合物(9T-DPP)-碳纳米管分散液离心后的上清液,利用紫外-可见-近红外(Perkin Elmer Lambda 750)测试其吸收光谱,其结果如图8所示。从吸收光谱图中可以看出,对应半导体碳纳米管的S22吸收峰(900-1200nm)变得非常尖锐,而且吸收背景非常低,说明树形共轭化合物(9T-DPP)可以选择性的分散富集半导体碳纳米管。
实施例26:树形共轭化合物(6T-DPP)-碳纳米管复合墨水的Raman光谱性能表征
利用Raman光谱仪测试上述离心后的上清液的拉曼光谱。图9中表示了其拉曼光谱测试结果。在785nm的激光下,对于未处理的碳纳米管P2中可以观察到与159cm-1金属性碳纳米管相对应的峰,但是经过树形共轭化合物(6T-DPP)的选择性包覆以及离 心分离得到样品中,159cm-1金属性碳纳米管峰消失。因此,可以认定,依照本发明实施例21的方法能高效地分离出大量大管径的半导体碳纳米管。
实施例27:树形共轭化合物(9T-DPP)-碳纳米管复合墨水的Raman光谱性能表征
利用Raman光谱仪测试上述离心后的上清液的拉曼光谱。图10中表示了其拉曼光谱测试结果。在633nm的激光下,对于未处理的碳纳米管P2中可以观察到与金属性碳纳米管相对应的峰(1550-1580cm-1)和与半导体碳纳米管相对应的峰(1590cm-1),但是经过树形共轭化合物(9T-DPP)的选择性包覆以及离心分离得到样品中,1590cm-1处的半导体碳纳米管峰变得更加尖锐,同时与未分离的P2碳纳米管相比,金属性碳纳米管相对应的峰半导体碳纳米管峰的峰面积之比变得更小。因此,可以表明,依照本发明实施例22的方法能高效地分离出大量大管径的半导体碳纳米管。
实施例28:树形共轭化合物(9T-DPP)-碳纳米管复合墨水的薄膜晶体管制备以及性能表征
取上述实施例22中利用树形共轭化合物(9T-DPP)选择性包覆分离出的大管径P2半导体碳纳米管的墨水溶液用滴涂加工的方法制备薄膜晶体管器件。图11为晶体管的电性能转移特征曲线,从图中可以看出,晶体管的开关比和迁移率分别可以达到4×106和37.63cm2/Vs以上。图12为晶体管的电性能的输出特征曲线,从图中可以看出,该晶体管输出电流随栅电压增加而变小,该晶体管为p型晶体管。该晶体管具有优良的电性能进一步证实通过树形共轭化合物的选择性包覆,可以很好的进行分离商业化大管径碳纳米管。
此外,参照实施例21-28的实施方案,本案发明人还以前文列出的化合物20、26及其它化合物进行试验,并得到了相似的测试结果。
如下实施例29-47中,具有分枝状结构的树形寡聚噻吩核心构建单元可参考文献(Chem.Eur.J.2012,18,12880–12901)合成。
专利中所涉及的典型的化合物的合成过程如下所述:
实施例29:化合物103的合成
Figure PCTCN2016096014-appb-000073
称取化合物101(1.0g,984μmol),化合物102(1.25g,2.4mmol),Pd2(dba)3.CHCl3(120mg,116μmol),HP(tBu)3BF4(70mg,241μmol)在氮气氛围下加入500mL两口圆底烧瓶,向上 述两口瓶中加入脱气处理的THF(300mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,15.0mL,15.0mmol),常温过夜搅拌。反应体系逐渐变为蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(1:4),得到1.4g蓝色固体化合物103,产率88%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.93(d,J=4.16Hz;2H),7.34(s;2H),7.32(d,J=4.16Hz;2H),7.18(d,J=3.44Hz;2H),7.15(s;4H),7.12(d,J=3.48Hz;2H),4.05(d,J=7.60Hz;4H),1.98(m;2H),1.20-1.34(m;64H),0.82-0.88(m;12H),0.33(s;18H),0.31ppm(s;18H).MALDI-TOF MS:m/z calcd for C90H132N2O2S8Si4:1640.7;found:1640.9;HR MS:m/z calcd for C90H132N2O2S8Si4:1640.7132;found:1640.7197。
实施例30:化合物104的合成
Figure PCTCN2016096014-appb-000074
称取化合物TBAF(270mg,855μmol)溶于2mLTHF中,配成均匀溶液。另取一50mL反应瓶,称取化合物3(120mg,73.2μmol)溶于5mL THF中,充分溶解。将2ml TBAF的THF溶液逐滴加入到化合物103的溶液中,室温搅拌15分钟。反应后的混合物逐滴滴入到30ml甲醇中,收集产生的沉淀。沉淀得到的粗产物用硅胶色谱柱纯化分离,淋洗剂为二氯甲烷:正己烷(1:3),得到90mg化合物104,产率90%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.92(d,J=3.80Hz;2H),7.32-7.33(m;8H),7.15-7.16(m;2H),7.10(m;2H),7.01-7.05(m;4H),4.04(d,J=7.76Hz;4H),1.98(br;2H),1.20-1.34(m;64H),0.82-0.87ppm(m;12H).MALDI-TOF MS:m/z calcd for C78H100N2O2S8:1352.6;found:1352.7;HR MS:m/z calcd for C78H100N2O2S8:1352.5550;found:1352.5578。
实施例31:化合物106的合成
Figure PCTCN2016096014-appb-000075
称取化合物101(258mg,254μmol),化合物105(900mg,780mmol),Pd2(dba)3.CHCl3(60mg,57.9μmol),HP(tBu)3BF4(30mg,104μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(135mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,5.0mL,5.0mmol),常温过夜搅拌。反应体系逐渐变为蓝色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到614mg化合物106,产率83%。其表征数据如下:1H NMR(C2D2Cl4,400MHz):δ=8.93(d,J=4.00Hz;2H),7.37(br;4H),7.26(s;2H),7.24(s;2H),7.13-7.20(m;24H),4.05(br,4H),1.97(br;2H),1.20-1.35(m;64H),0.82-0.86(m;12H),0.32-0.33ppm(m;72H).MALDI-TOF MS:m/z calcd for C150H188N2O2S20Si8:2912.7,found:2913.1;HR MS:m/z calcd for C150H188N2O2S20Si8:2912.7239;found:2912.7337。
实施例32:化合物107的合成
称取化合物TBAF(270mg,855μmol)溶于2mLTHF中,配成均匀溶液。另取一50mL反应瓶,称取化合物106(108mg,37μmol)溶于8mL THF中,充分溶解。将2ml TBAF的THF溶液逐滴加入到化合物106的溶液中,室温搅拌15分钟。反应后的混合物逐滴滴入到50ml甲醇中,收集产生的沉淀。沉淀得到的粗产物用硅胶色谱柱纯化分离,淋洗剂为二氯甲烷:正己烷(1:2),浓缩收集产物后,再次用凝胶渗透色谱纯化,得到78mg化合物107,产率90%。其表征数据如下:1H NMR(C2D2Cl4,400MHz):δ=8.95(d,J=4.08Hz;2H),7.31-7.35(m;12H),7.23(s;2H),7.20(s;2H),7.09-7.15(m;16H),7.01-7.04(m;8H);4.04(br,4H),1.98(br;2H),1.20-1.35(m;64H),0.81-0.86(m;12H).MALDI-TOF MS:m/z calcd for C126H124N2O2S20:2336.4;found:2336.6;HR MS:m/z calcd for C126H124N2O2S20:2336.4077;found:2336.4024。
实施例33:化合物109的合成
Figure PCTCN2016096014-appb-000076
称取化合物101(80mg,78μmol),化合物108(480mg,198μmol),Pd2(dba)3.CHCl3(20mg,20μmol),HP(tBu)3BF4(16mg,56μmol)在氮气氛围下加入100mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(40mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,1.0mL,1.0mmol),常温过夜搅拌。反应体系逐渐变为黄绿色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到266mg化合物109,产率62%。其表征数据如下:1H NMR(C2D2Cl4,400MHz):δ=8.92(d,J=4.02Hz;2H),7.42(s,2H),7.37(br;4H),7.26(s;4H),7.24(s;8H),7.13-7.22(m;54H),4.05(br,4H),1.97(br;2H),1.20-1.35(m;64H),0.82-0.86(m;12H),0.32-0.33ppm(m;144H).MALDI-TOF MS:m/z calcd for C270H300N2O2S44Si16(average):5464.7;found:5464.3;HR MS:m/z calcd for C222H172N2O2S44:5464.7461(average);found:5464.1282。
实施例34:化合物111的合成
Figure PCTCN2016096014-appb-000077
称取化合物110(240mg,816μmol),化合物102(1048mg,2.0mmol),Pd2(dba)3.CHCl3(34mg,33μmol),HP(tBu)3BF4(20mg,67μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(100mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,8.0mL,8.0mmol),常温过夜搅拌。反应体系逐渐变为红褐色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离产物,淋洗剂为二氯甲烷:正己烷(1:5),得到650mg暗红固体化合物111,产率87%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.18(s;2H),7.88(s;2H),7.25(d,J=3.44Hz;2H),7.21(d,J=3.36Hz;2H),7.18(d,J=3.40Hz;2H),7.15(d,J=3.44Hz;2H),0.345(s;18H),0.323ppm(s;18H).MALDI-TOF MS:m/z calcd for C42H48N2S7Si4(matrix:DCTB):916.1,found:916.3;HR MS:m/z calcd for C42H48N2S7Si4:916.0940;found:916.0958。
实施例35:化合物112的合成
Figure PCTCN2016096014-appb-000078
称取化合物TBAF(320mg,1014μmol)溶于2mLTHF中,配成均匀溶液。另取一50mL反应瓶,称取化合物111(240mg,262μmol)溶于5mL THF中,充分溶解。将2ml TBAF的THF溶液逐滴加入到化合物111的溶液中,室温搅拌15分钟。反应后的混合物逐滴滴入到30ml甲醇中,收集产生的沉淀。沉淀得到的粗产物用硅胶色谱柱纯化分离,淋洗剂为二氯甲烷:正己烷(1:3),得到148mg化合物112,产率90%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.16(s;2H),7.87(s;2H),7.34-7.35(dd,J 1=1.20Hz,J 2=1.32Hz;2H),7.33-7.34(dd,J 1=1.20Hz,J 2=1.16Hz;2H),7.22-7.23(dd,J 1=1.16Hz,J 2=1.16Hz;2H),7.16-7.17(dd,J 1=1.20Hz,J 2=1.16Hz;2H),7.03-7.08(m;4H).MALDI-TOF MS:m/z calcd for C30H16N2S7(matrix:DCTB):627.9,found:628.1;HR MS:m/z calcd for C30H16N2S7:627.9358;found:627.9374。
实施例36:化合物113的合成
Figure PCTCN2016096014-appb-000079
称取化合物111(100mg,109μmol)和NBS(112mg,629μmol),溶于60mL THF中,0℃避光保护。反应体系脱气,再用N2置换保护,在0℃下搅拌反应4h。随后,反应体系升值室温后,搅拌过夜。反应结束后,浓缩溶液后再逐滴滴入到50mL甲醇中,收集沉淀物。得到的沉淀物再用硅胶色谱柱纯化分离,用CHCl3/hexane(1:5)淋洗,得到94mg化合物113,产率92%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.09(s;2H),7.86(s;2H),7.04(d,J=3.80Hz;2H),7.02(d,J=3.88Hz;2H),7.00(d,J=3.84Hz;2H),6.94(d,J=3.80Hz;2H).MALDI-TOF MS:m/z calcd for C30H12Br4N2S7(matrix:DCTB):939.6,found:939.6。
实施例37:化合物114的合成
Figure PCTCN2016096014-appb-000080
称取化合物110(150mg,514μmol),化合物105(1400mg,1.21mmol),Pd2(dba)3.CHCl3(20mg,18μmol),HP(tBu)3BF4(12mg,40μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(80mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,1.5mL,1.5mmol),常温过夜搅拌。反应体系逐渐变为红棕色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到956mg化合物114,产率85%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.17(s;2H),7.88(s;2H),7.24(s;2H),7.21(s;2H),7.18(d,J=3.80Hz;2H),7.10-7.17(m;22H),0.30-0.31ppm(m;72H).MALDI-TOF MS:m/z calcd for C102H104N2S19Si8(matrix:DCTB):2188.1,found:2188.6;HR MS:m/z calcd for C102H104N2S19Si8:2188.1047;found:2188.1068。
实施例38:化合物115的合成
Figure PCTCN2016096014-appb-000081
称取化合物TBAF(577mg,1.83mmol)溶于2mLTHF中,配成均匀溶液。另取一50mL反应瓶,称取化合物114(200mg,91.4μmol)溶于8mL THF中,充分溶解。将2ml TBAF的THF溶液逐滴加入到化合物114的溶液中,室温搅拌15分钟。反应后的混合物逐滴滴入到50ml甲醇中,收集产生的沉淀。沉淀得到的粗产物用硅胶色谱柱纯化分离,淋洗剂为二氯甲烷:正己烷(1:2),浓缩收集产物后,再次用凝胶渗透色谱纯化,得到133mg化合物115,产率90%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.17(s;2H),7.90(s;2H),7.32-7.34(m;8H),7.26(s;2H),7.15-7.23(m;14H),7.10-7.12(m;4H),7.035-7.042(m;8H).MALDI-TOF MS:m/z calcd for C78H40N2S19(matrix:DCTB):1611.8,found:1612.1;HR MS:m/z calcd for C78H40N2S19:1611.7885;found:1611.7930。
实施例39:化合物116的合成
Figure PCTCN2016096014-appb-000082
称取化合物113(80mg,85μmol),化合物105(540mg,468μmol),Pd2(dba)3.CHCl3(20mg,20μmol),HP(tBu)3BF4(16mg,56μmol)在氮气氛围下加入100mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(60mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,1.5mL,1.5mmol),常温过夜搅拌。反应体系逐渐变为褐色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到274mg化合物116,产率68%。其表征数据如下:1H NMR(CDCl3,400MHz):δ=8.15(s;2H),7.85(s;2H),7.22(s;4H),7.20(s;8H),7.10-7.18(m;56H),0.30-0.31ppm(m;144H).MALDI-TOF MS:m/z calcd for C222H216N2S43Si16(100%abundance;matrix:DCTB):4732.1,found:4732.7;HR MS:m/z calcd for C222H216N2S43Si16:4732.1262;found:4732.1661。
实施例40:化合物117的合成
Figure PCTCN2016096014-appb-000083
称取化合物113(50mg,53μmol),化合物108(540mg,775μmol),Pd2(dba)3.CHCl3(20mg,20μmol),HP(tBu)3BF4(16mg,56μmol)在氮气氛围下加入100mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(50mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2.0mL,2.0mmol),常温过夜搅拌。反应体系逐渐变为深褐色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到314mg化合物117,产率60%。其表征数据如下:MALDI-TOF MS:m/z calcd for C462H440N2S91Si32:9820.2,found:9820.7(matrix:DCTB)。Mn=10540g/mol,Mw=11202g/mol,PDI=1.06。
实施例41:化合物119的合成
Figure PCTCN2016096014-appb-000084
称取化合物101(150mg,148μmol),化合物18(1.93g,354μmol),Pd2(dba)3.CHCl3(20mg,20μmol),HP(tBu)3BF4(16mg,56μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(150mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2.0mL,2.0mmol),常温过夜搅拌。反应体系逐渐变为深绿色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到627mg化合物119,产率78%。其表征数据如下:MALDI-TOF MS:m/z calcd for C334H500N10O10S20:5151.3,found:5452.0(matrix:DCTB)。Mn=6735g/mol,Mw=6928g/mol,PDI=1.03。
实施例42:化合物121的合成
Figure PCTCN2016096014-appb-000085
称取化合物101(80mg,79μmol),化合物120(938mg,189μmol),Pd2(dba)3.CHCl3(20mg,20μmol),HP(tBu)3BF4(16mg,56μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(130mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,1.5mL,1.5mmol),常温过夜搅拌。反应体系逐渐变为墨绿色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到622mg化合物121,产率75%。其表征数据如下:MALDI-TOF MS:m/z calcd for C638H924N18O18S44:10534.0,found:10534.9(matrix:DCTB)。Mn=11526g/mol,Mw=12469g/mol,PDI=1.08。
实施例43:化合物123的合成
Figure PCTCN2016096014-appb-000086
称取化合物122(50mg,77μmol),化合物108(894mg,368μmol),Pd2(dba)3.CHCl3(20mg,20μmol),HP(tBu)3BF4(16mg,56μmol)在氮气氛围下加入250mL两口圆底烧瓶,向上述两口瓶中加入脱气处理的THF(120mL),然后再向反应体系中逐滴加入K2CO3水溶液(1M,2.0mL,2.0mmol),常温过夜搅拌。反应体系逐渐变为暗红色。24小时后,先将溶液中的大部分溶剂蒸发浓缩,再用二氯甲烷/水萃取溶液,收集有机相,用无水硫酸钠干燥有机相,过滤,旋转蒸发除去溶剂,用硅胶色谱柱分离去小分子副产物及催化剂后。用凝胶渗透色谱再次纯化分离,以THF为淋洗剂,分离纯化得到454mg化合物123,产率62%。其表征数据如下:MALDI-TOF MS:m/z calcd for C449H432S88Si32:9532.2,found:9532.8(matrix:DCTB)。Mn=10350g/mol,Mw=11282g/mol,PDI=1.09。
实施例44:
将实施例29、实施例31、实施例33合成的DPP内核功能化修饰的树形共轭化合物(化合物103,化合物106,化合物109)配制成溶液,溶剂选定为三氯甲烷,并测试这些材料在溶液中的UV-vis吸收光谱图,具体可参阅图13。
同样的,图17为实施例34、实施例37、实施例39所合成的DPP内核功能化修饰的三维树形寡聚噻吩结构的有机共轭化合物(化合物111,化合物114,化合物116)溶液的UV-vis吸收光谱图。
实施例45:
将实施例29、实施例31、实施例33所制备的树形共轭化合物(化合物103,化合物106,化合物109)配制成溶液(2mg/mL),所选溶剂为氯仿,通过旋涂的方法以2000r/min的转速在洗净的石英片上旋涂得到相应化合物的薄膜,测试得到这些化合物薄膜的吸收光谱,如图14所示,这些化合物薄膜的吸收边处的波长为764-806nm,相应的材料光谱带宽为1.54-1.62eV,属于半导体带隙范围。
实施例46:
用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)测试实施例33、实施例39所合成的外围功能化修饰的树形共轭化合物(化合物109,化合物116),测试结果可参阅图15,图16,可以看出所合成的目标树形大分子具有分子量大、分子结构单一明确的特点。
实施例48:内核修饰树形化合物116—碳纳米管复合墨水的制备
称取2mg商业化大管径碳纳米管P2样品,溶于10毫升的甲苯溶液中,然后加入6mg分子量为4597的树形共轭化合物116,在冰浴的条件下用功率为60W的超声清洗机超声分散30分钟,使聚合物可以选择性地和半导体碳纳米管充分作用,得到均匀分散的分散液。再经过15000rpm离心30分钟后,使上述分散液中的碳纳米管束以及未被 树形共轭化合物包覆的金属性碳纳米管沉积在离心管的底部,分离出上层清液即可获得高纯的富集有大管径半导体碳纳米管的复合墨水。
实施例49:内核修饰树形共轭化合物119—碳纳米管复合墨水的制备
称取2mg商业化大管径碳纳米管P2样品,溶于10毫升的甲苯溶液中,然后加入3mg分子量为5151的树形共轭化合物119,在冰浴的条件下用功率为60W的超声清洗机超声分散30分钟,使聚合物可以选择性地和半导体碳纳米管充分作用,得到均匀分散的分散液。再经过15000rpm离心30分钟后,使上述分散液中的碳纳米管束以及未被树形共轭化合物包覆的金属性碳纳米管沉积在离心管的底部,分离上层清液即可获得高纯的富集有大管径半导体碳纳米管的复合墨水。
实施例50:内核修饰树形共轭化合物(化合物116)—碳纳米管复合墨水的UV-Vis-IR光谱性能表征
对树形共轭化合物(化合物116)-碳纳米管分散液离心后的上清液,利用紫外-可见-近红外(Perkin Elmer Lambda 750)测试其吸收光谱,其结果如图21所示。从吸收光谱图中可以看出,对应半导体碳纳米管的S22吸收峰(900-1200nm)变得非常尖锐,而且吸收背景非常低,说明树形共轭化合物(化合物116)可以选择性的分散富集半导体碳纳米管。
实施例51:内核修饰树形共轭化合物119—碳纳米管复合墨水的UV-Vis-IR光谱性能表征
对树形共轭化合物(化合物119)-碳纳米管分散液离心后的上清液,利用紫外-可见-近红外(Perkin Elmer Lambda 750)测试其吸收光谱,其结果如图22所示。从吸收光谱图中可以看出,对应半导体碳纳米管的S22吸收峰(900-1200nm)变得非常尖锐,而且吸收背景非常低,说明树形共轭化合物(化合物119)可以选择性的分散富集半导体碳纳米管。
实施例52:内核修饰树形共轭化合物116—碳纳米管复合墨水的Raman光谱性能表征
利用Raman光谱仪测试上述离心后的上清液的拉曼光谱。图23中表示了其拉曼光谱测试结果。在785nm的激光下,对于未处理的碳纳米管P2中可以观察到与159cm-1金属性碳纳米管相对应的峰,但是经过树形共轭化合物116的选择性包覆以及离心分离得到样品中,159cm-1金属性碳纳米管峰消失。因此,可以认定,依照本发明实施例48的方法能高效地分离出大量大管径的半导体碳纳米管。
实施例53:内核修饰树形共轭化合物19—碳纳米管复合墨水的Raman光谱性能表征
利用Raman光谱仪测试上述离心后的上清液的拉曼光谱。图24中表示了其拉曼光谱测试结果。在633nm的激光下,对于未处理的碳纳米管P2中可以观察到与金属性碳纳米管相对应的峰(1550-1580cm-1)和与半导体碳纳米管相对应的峰(1590cm-1),但是经过树形共轭化合物119的选择性包覆以及离心分离得到样品中,1590cm-1处的半导体碳纳米管峰变得更加尖锐,同时与未分离的P2碳纳米管相比,金属性碳纳米管相对应的峰半导体碳纳米管峰的峰面积之比变得更小。因此,可以表明,依照本发明实施例49的方法能高效地分离出大量大管径的半导体碳纳米管。
实施例54:树形共轭化合物116—碳纳米管复合墨水的薄膜晶体管制备以及性能表征
取上述实施例48中利用树形共轭化合物116选择性包覆分离出的大管径P2半导体碳纳米管的墨水溶液用滴涂加工的方法制备薄膜晶体管器件。图25为晶体管的电性能转移特征曲线,从图中可以看出,晶体管的开关比和迁移率分别可以达到5×106和17.1cm2/Vs以上。图26为晶体管的电性能的输出特征曲线,从图中可以看出,该晶体管输出电流随栅电压增加而变小,该晶体管为p型晶体管。该晶体管具有优良的电性能进一步证实通过树形共轭化合物的选择性包覆,可以很好的进行分离商业化大管径碳纳米管。
实施例55:树形共轭化合物119—碳纳米管复合墨水的薄膜晶体管制备以及性能表征
取上述实施例49中利用树形共轭化合物119选择性包覆分离出的大管径P2半导体碳纳米管的墨水溶液用滴涂加工的方法制备薄膜晶体管器件。图27为晶体管的电性能转移特征曲线,从图中可以看出,晶体管的开关比和迁移率分别可以达到2×107和17.7cm2/Vs以上。图28为晶体管的电性能的输出特征曲线,从图中可以看出,该晶体管输出电流随栅电压增加而变小,该晶体管为p型晶体管。该晶体管具有优良的电性能进一步证实通过树形共轭化合物的选择性包覆,可以很好的进行分离商业化大管径碳纳米管。
此外,参照实施例48-55的实施方案,本案发明人还以其它化合物进行试验,并得到了相似的测试结果。
实施例56:
1、非线性共轭聚合物的制备:
Figure PCTCN2016096014-appb-000087
在手套箱中,将化合物201(254.8mg,0.25mmol)和202(125mg,0.25mmol)按照摩尔比1:1的比例加入到高温烘烤过的Schlenk管中,随后向其中加入催化剂三(二亚苄基丙酮)二钯-氯仿加合物(Pd2(dba)3 .CHCl3)(2.0mol%,10.0μmol,10.0mg)、配体三叔丁基膦四氟硼酸盐(HP(tBu)3BF4)(8.0eq/Pd,80.0umol,23.2mg),密封好体系后,将其移出手套箱。在氮气保护条件下,向该体系中转移溶有K3PO4(2mol L-1,2.5eq,1.25mmol,625uL)水溶液的THF/H2O(5mL),充分搅拌溶解后于40℃的水浴中进行Suzuki缩合,N2保护下反应72h,反应结束后,将混合物在甲醇中沉淀,过滤后得到粗产品。将上述粗产品依次用甲醇、正己烷、三氯甲烷作为溶剂进行索氏抽提,收集三氯甲烷组分,减压除去溶剂,经真空干燥后得到提纯产物(即非线性共轭聚合物,亦称DPP共轭聚合物),产率80%,经凝胶渗透色谱分析其数均分子量为13,000,多分散系数为1.33,该DPP共轭聚合物的核磁共振波谱图参阅图29,其结构表征图谱请参阅图30,其吸收光谱图谱请参阅图31。
2、碳纳米管-非线性共轭聚合物复合物墨水的制备
将4mg商业化电弧放电制得的碳纳米管加入到20mL的甲苯中,而后向其中加入数均分子量为13000的DPP共轭聚合物20mg,在冰浴中使用功率为60w的超声清洗机超声分散30min,得到均匀分散的分散液。再经过21000g离心1h后,使上述分散液中的碳纳米管束和金属型碳纳米管沉积到离心管的底部,分离出上层清液进行吸收光谱测定,其结果参阅图32。可以看出,碳纳米管-共轭聚合物溶液中对应的金属型碳纳米管M11吸收峰消失,对应半导体碳纳米管的S22吸收峰变得非常尖锐,说明碳纳米管束与剩余未包覆碳纳米管的聚合物已被有效去除。对上述离心后得到的碳纳米管-共轭聚合物墨水进行拉曼光谱测试,测试结果参阅图33,从图中可以得知,对于未处理的碳纳米管P2中可以观察到在150-180cm-1之间较强金属性碳纳米管对应的峰,但是经过聚合物的选择性包覆以及离心分离后的样品中,金属性碳纳米管吸收峰消失。因此能断定,依照本发明实施例56的方法能高效地分离出大量大管径的半导体碳纳米管。
3、碳纳米管-非线性共轭聚合物复合物薄膜晶体管的构建
取上述碳纳米管-共轭聚合物复合物墨水来打印制备薄膜晶体管器件,具体的薄膜晶 体管器件结构和制备工艺参见文献(Nanoscale,2014,6,1589-1595.)。图34为晶体管的电性能测试曲线,该晶体管的开关比和迁移率分别能够达到107和43cm2/Vs以上,说明通过所述DPP聚合物对半导体碳纳米管的选择性包覆,能够很好的实现半导体碳纳米管与金属型碳纳米管的有效分离。图35为碳纳米管-共轭聚合物薄膜在器件沟道中的原子力形貌图,明显看出碳纳米管均匀的分散在沟道中,并形成网络结构。
实施例57:重复实施例56所述的方法,不同之处在于:单体201(76.4mg,0.075mmol)和202(37.5mg,0.075mmol)的用量有所增加,另外,将经过严格除氧的四氢呋喃替换为经过严格除氧的二氯甲烷,反应温度为30℃。经提纯干燥后,所得吡咯并吡咯二酮基共轭聚合物的产率为31%,数均分子量为8,600,多分散系数为1.24。由该聚合物分散后的碳纳米管溶液制备的晶体管的的开关比和迁移率分别为106和20cm2V-1s-1
实施例58:重复实施例56所述的方法,不同之处在于:反应温度降至30℃。产物经提纯干燥后,计算吡咯并吡咯二酮基共轭聚合物的产率为78%,该产物的数均分子量为16,000,多分散系数为1.59。聚合物结构表征图谱同图30,说明在所得共轭聚合物主链结构为吡咯并吡咯二酮和三噻吩以共价键的形式相连,重复单元个数为4-8。由该聚合物分散后的碳纳米管溶液制备的晶体管的的开关比和迁移率分别为107和32cm2V-1s-1
实施例62:作为对照例,请参考Small,2015,11,2946-2954中的数据。该文献中所使用的是DPP共轭聚合物206,通过调整n,m的比例来调整聚合物-碳纳米管之间的相互作用。使用该材料选择性分离得到的半导体性碳纳米管墨水制得的薄膜晶体管的迁移率为41cm2V-1s-1,开关比为104
Figure PCTCN2016096014-appb-000088
需要说明的是,以上实施例所采用的各种化合物、其合成原料、工艺条件及相应薄膜、器件均是较为典型的范例,但经过本案发明人大量试验验证,于上文所列出的其它不同类型的化合物、其合成原料、工艺条件等也均是适用的,并也均可达成本发明所声称的技术效果。
应当理解,以上说明及所示的实施例,不可解析为限定本发明的设计思想。在本发 明的技术领域里的技术人员可以将本发明的技术性思想根据现有技术和本领域的常识以多样的形式改良变更,这样的改良及变更应理解为属于本发明的保护范围内。

Claims (23)

  1. 一类树形共轭化合物,其特征在于,所述树形共轭化合物具有式(I-A)、(I-B)、(II-A)或(II-B)所示的结构:
    Figure PCTCN2016096014-appb-100001
    其中,B为支化共轭链接单元,其选自由五元或六元芳香单元形成的、具有支化结构的单元,Core为内核功能修饰单元,FG为末端功能修饰单元,m为所述支化共轭链接单元B的支化度,并选自2或3,n为所述树形共轭化合物的分子中重复单元迭代次数,并选自1,2,3或4。
  2. 如权利要求1所述的树形共轭化合物,其特征在于,所述树形共轭化合物具有式(I-A)或(II-A)所示结构,其中末端功能修饰单元FG包含式(III)所示的吡咯并吡咯二酮单元:
    Figure PCTCN2016096014-appb-100002
    其中,R1选自氢原子或取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
    优选的,所述末端功能修饰单元FG包括下式(III-1),(III-2)和(III-3)所示的任意一种结构:
    Figure PCTCN2016096014-appb-100003
    优选的,所述末端功能修饰单元FG内还包括引入端位的封端单元,所述封端单元包 括下式(EG-1),(EG-2)和(EG-3)所示的任意一种结构:
    Figure PCTCN2016096014-appb-100004
    其中,R2选自取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
    进一步的,所述末端功能修饰单元FG具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100005
    其中R1,R2为C1~C20的直链或支链烷基或C1~C20的杂烷基;
  3. 如权利要求1所述的树形共轭化合物,其特征在于,所述树形共轭化合物具有式(I-B)或(II-B)所示结构,其中末端功能修饰单元FG包括氢原子,以及下式(FG-1)~(FG-10)中任一者所示的结构:
    Figure PCTCN2016096014-appb-100006
    R1包括氢原子、取代或未取代的C1~C20的烷基或C1~C20的杂烷基。
  4. 如权利要求1所述的树形共轭化合物,其特征在于,所述内核功能修饰单元Core包括如下结构式中任一者所示的结构:
    Figure PCTCN2016096014-appb-100007
    其中,R1包括氢原子、取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
    X1包括S或O,X2包括O、S、C、N、Si或Se及其附属的C1~C20的烷基或C1~C20的杂烷基,X3包括C或Si。
  5. 如权利要求1所述的树形共轭化合物,其特征在于,所述支化共轭链接单元B包括下式(IV-1)和(IV-2)所示的任意一种结构:
    Figure PCTCN2016096014-appb-100008
    其中,Y选自噻吩环,苯环单元,D选自噻吩环、苯环、由2~5个五元或六元芳香单元形成的稠环单元或由2~4个五元或六元芳香单元形成的共轭短链单元。
    优选地,Y选自噻吩,通过α,β-双取代的方式形成具有式(IV-1-1)所示的支化结构:
    Figure PCTCN2016096014-appb-100009
    进一步地,所述支化共轭链接单元B具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100010
    进一步地,所述树形共轭化合物具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100011
    Figure PCTCN2016096014-appb-100012
    优选的,D具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100013
    其中,X1=S或O,X2=O,S,C,N,Si或Se及其附属的C1~C20的烷基或C1~C20的杂烷基,R3选自氢原子,取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
    或者,优选的,D具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100014
    其中,R4,R5独立地选自氢原子,取代或未取代的C1~C20的烷基或C1~C20的杂烷基;
    进一步优选的,所述支化共轭链接单元B具有如下结构:
    Figure PCTCN2016096014-appb-100015
    式中,支化共轭链接单元的外端噻吩的α-位(p-a和/或p-b)与末端功能修饰单元FG相连,或者与内端噻吩的α-位c-a相连形成具有下式(V-G2)、(V-G3)或(V-G4)所示的高代数支化共轭链接单元:
    Figure PCTCN2016096014-appb-100016
    式(V-G2)、(V-G3)或(V-G4)所示的高代数支化共轭链接单元的外端噻吩的α-位(式中所示p位)与末端功能修饰单元FG相连接,内端噻吩的α-位为氢原子,形成具有式(I-A)所示结构的分子或者外端噻吩的α-位与内端噻吩的α-位相连形成具有式(II-A)所示结构的分子;或者,,式(V-G2)、(V-G3)或(V-G4)所示的高代数支化共轭链接单元的外端噻吩的α-位(式中所示p位)与末端功能修饰单元FG相连接,内端噻吩的α-位(式中所示c位)与内核功能修饰单元Core相连,形成具有式式(I-B)或式(II-B)所示结构的分子。
  6. 如权利要求1所述的树形共轭化合物,其特征在于,所述树形共轭化合物具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100017
    Figure PCTCN2016096014-appb-100018
    Figure PCTCN2016096014-appb-100019
    优选的,所述树形共轭化合物具有下列的任一种结构:
    Figure PCTCN2016096014-appb-100020
    优选的,所述树形共轭化合物具有下列的任一种结构
    Figure PCTCN2016096014-appb-100021
    Figure PCTCN2016096014-appb-100022
    优选的,所述树形共轭化合物为非线性共轭聚合物,并具有下式所示结构:
    Figure PCTCN2016096014-appb-100023
    其中,R1至少选自含碳数为1~20的直链或支链烷基或杂烷基,
    R2、R3至少独立地选自氢原子、含碳数为1~20的直链或支链烷基、杂烷基或烷杂基,
    或者,R2与R3连接形成具有5~8元取代或未取代的环状结构,
    Ar1至少选自由1~4个五或六元芳香环或芳香杂环或多元芳香稠环组成的非线性共轭单元,
    n为所述非线性共轭聚合物中的重复单元数,并选自2~500中的任一整数;
    优选的,Ar1的结构至少选自下列任一种结构式:
    Figure PCTCN2016096014-appb-100024
    R*至少选自氢原子或C1-C10的直链或支链烷基,x选自1-3中的任一整数。
  7. 一种合成如权利要求1-6中任一项所述的树形共轭化合物的方法,其特征在于包括:采用金属催化缩合反应制备所述树形共轭化合物,其中所述金属催化缩合反应包括Suzuki缩合或Stille缩合反应。
  8. 权利要求1-6中任一项所述的树形共轭化合物于选择性分离半导体型碳纳米管中的用途,或者,权利要求1-6中任一项所述的树形共轭化合物作为碳纳米管分散剂的用途。
  9. 一种树形共轭化合物-碳纳米管复合物,其特征在于包括:
    碳纳米管,
    以及,至少附着于碳纳米管的部分表面上的树形共轭化合物,所述树形共轭化合物选自权利要求1-6中任一项所述的树形共轭化合物。
  10. 根据权利要求9所述的树形共轭化合物-碳纳米管复合物,其特征在于:所述碳纳米管包括半导体型碳纳米管。
  11. 根据权利要求9所述的树形共轭化合物-碳纳米管复合物,其特征在于,所述树形共轭化合物为非线形共轭聚合物,并具有下式所示结构:
    Figure PCTCN2016096014-appb-100025
    其中,R1至少选自含碳数为1~20的直链或支链烷基或杂烷基,
    R2、R3至少独立地选自氢原子、含碳数为1~20的直链或支链烷基、杂烷基或烷杂基,
    或者,R2与R3连接形成具有5~8元取代或未取代的环状结构,
    Ar1至少选自由1~4个五或六元芳香环或芳香杂环或多元芳香稠环组成的非线性共轭单元,
    n为所述非线形共轭聚合物中的重复单元数,并选自2~500中的任一整数;
    进一步优选的,Ar1的结构至少选自下列任一种结构式:
    Figure PCTCN2016096014-appb-100026
    R*至少选自氢原子或C1-C10的直链或支链烷基,x选自1-3中的任一整数。
  12. 一种碳纳米管分散方法,其特征在于包括:取权利要求1-6中任一项所述的树形共轭化合物与碳纳米管在溶剂中均匀混合,形成稳定均匀的碳纳米管分散液。
  13. 一种选择性分离半导体型碳纳米管的方法,其特征在于包括:
    将碳纳米管粉体加入权利要求1-6中任一项所述的树形共轭化合物的溶液中并充分混合,使其中的半导体型碳纳米管均匀分散于溶液中,
    以及,移除未能分散于溶液中的碳纳米管。
  14. 包含有权利要求9-11中任一项所述的树形共轭化合物-碳纳米管复合物的碳纳米管分散体。
  15. 一种复合墨水,其特征在于包括:
    权利要求1-6中任一项所述的树形共轭化合物和/或权利要求9-11中任一项所述的树形共轭化合物-碳纳米管复合物,
    以及,至少一种溶剂,用以与所述复合墨水的其余组分配合形成稳定的均匀液相分散体系。
  16. 根据权利要求15所述的复合墨水,其特征在于:
    所述溶剂包括能够溶解所述树形共轭化合物的有机溶剂;
    优选的,所述有机溶剂包括三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯、间二甲苯中的任意一种或两种以上的组合;
    和/或,优选的,所述复合墨水还包含除所述树形共轭化合物以外的有机半导体;
    和/或,优选的,所述复合墨水包含0.0001~1mg/mL碳纳米管;
    和/或,优选的,所述复合墨水包含浓度为0.01~20mg/mL的所述树形共轭化合物-碳纳米管复合物;
  17. 一种制备权利要求15-16中任一项所述复合墨水的方法,其特征在于包括:
    将权利要求1-6中任一项所述的树形共轭化合物与碳纳米管于溶剂中均匀混合,形成均匀碳纳米管分散液,
    以及,对所述均匀碳纳米管分散液进行高速离心处理,所获清液即为所述复合墨水;
    优选的,所述碳纳米管选自半导体型碳纳米管;
    优选的,所述高速离心处理的离心速度大于8000rpm,尤其优选为10000~30000rpm,离心时间在20min以上,尤其优选为30~100min;
    优选的,所述高速离心处理的离心速度为20000~30000rpm;
    优选的,所述树形共轭化合物与碳纳米管的质量比为1:0.1~1:10,尤其优选为1:0.2~1:5;
    优选的,所述制备方法包括:在温度≤0℃的条件下,尤其优选在温度为-5℃~0℃的 条件下将所述树形共轭化合物与碳纳米管于溶剂中均匀混合而形成均匀碳纳米管分散液;
    优选的,所述溶剂采用有机溶剂,所述有机溶剂选自能够溶解所述树形共轭化合物但不能分散碳纳米管的有机溶剂;优选的,所述有机溶剂包括三氯甲烷、四氢呋喃、甲苯、邻二甲苯、对二甲苯、间二甲苯中的任意一种或两种以上的组合;优选的,所述有机溶剂选自甲苯、邻二甲苯、对二甲苯和间二甲苯中的任意一种以上。
  18. 一种薄膜,其特征在于包含权利要求1-6中任一项所述的树形共轭化合物或者权利要求9-11中任一项所述的树形共轭化合物-碳纳米管复合物。
  19. 一种薄膜,其特征在于主要由权利要求14所述的碳纳米管分散体或权利要求15-16中任一项所述的复合墨水形成。
  20. 一种薄膜的制备方法,其特征在于包括:至少选用印刷和/或涂布方式将权利要求14所述的碳纳米管分散体或权利要求15-16中任一项所述的复合墨水施加到基底上,形成所述薄膜;
    所述涂布和/或印刷方式包括旋转涂膜、刮刀涂布、狭缝涂布、喷墨印刷、丝网印刷、凹版印刷、柔版印刷、柔版转印方式中的任意一种或两种以上的组合。
  21. 根据权利要求20所述的制备方法,其特征在于,所述制备方法还包括薄膜后处理步骤,所述薄膜后处理步骤包括清洗和退火操作;
    优选的,所述退火操作采用的退火温度在200℃以下,尤其优选为25~120℃,退火时间为30~120min,尤其优选为30~60min。
  22. 一种装置,其特征在于包含权利要求1-6中任一项所述的树形共轭化合物、权利要求9-11所述的树形共轭化合物-碳纳米管复合物或者权利要求18-19中任一项所述的薄膜;
    优选的,所述装置选自半导体装置,优选的,所述半导体装置的半导体材料层包含所述的薄膜,优选的,所述半导体装置包括晶体管或反相器,优选的,所述装置包括场效应晶体管,所述场效应晶体管的有源层包含所述的树形共轭化合物、所述的树形共轭化合物-碳纳米管复合物或者所述的薄膜;
    优选的,所述装置包含衬底以及所述的薄膜,所述薄膜设置在所述衬底上;
    进一步优选的,所述衬底与所述薄膜之间还分布有透明或不透明的导电薄膜。
  23. 碳纳米管分散剂,其特征在于包括权利要求1-6中任一项所述的树形共轭化合物。优选的,所述的碳纳米管分散剂用于选择性分离或分散半导体型碳纳米管。
PCT/CN2016/096014 2015-08-27 2016-08-19 树形共轭化合物、树形共轭化合物-碳纳米管复合物、制备方法及应用 WO2017032274A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201510534555.9A CN106478927B (zh) 2015-08-27 2015-08-27 碳纳米管-非线性共轭聚合物、其制备方法与应用
CN201510534555.9 2015-08-27
CN201510882717.8A CN106832227B (zh) 2015-12-03 2015-12-03 树枝型共轭化合物、墨水、薄膜、其制备方法及应用
CN201510883514.0 2015-12-03
CN201510883514.0A CN106823983B (zh) 2015-12-03 2015-12-03 三维树形共轭化合物-碳纳米管复合物、制备方法及应用
CN201510882717.8 2015-12-03
CN201610389312.5 2016-06-03
CN201610389312.5A CN107456918B (zh) 2016-06-03 2016-06-03 三维树形共轭化合物-碳纳米管复合物及其应用
CN201610388224.3 2016-06-03
CN201610388224.3A CN107459529A (zh) 2016-06-03 2016-06-03 功能化修饰树形共轭化合物、墨水、薄膜及应用

Publications (1)

Publication Number Publication Date
WO2017032274A1 true WO2017032274A1 (zh) 2017-03-02

Family

ID=58099581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096014 WO2017032274A1 (zh) 2015-08-27 2016-08-19 树形共轭化合物、树形共轭化合物-碳纳米管复合物、制备方法及应用

Country Status (1)

Country Link
WO (1) WO2017032274A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574539A (zh) * 2020-05-14 2020-08-25 Tcl华星光电技术有限公司 有源层材料、有源层材料的制备方法和晶体管
CN114736419A (zh) * 2022-04-21 2022-07-12 锋特(福建)新材料科技有限公司 一种高弹发泡鞋中底材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251565A (ja) * 2009-04-16 2010-11-04 Yamagata Promotional Organization For Industrial Technology 有機エレクトロルミネッセンス素子
JP2010248112A (ja) * 2009-04-14 2010-11-04 Chemiprokasei Kaisha Ltd 芳香族炭化水素化合物、それよりなるホスト材料、それを用いた有機エレクトロルミネッセンス素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248112A (ja) * 2009-04-14 2010-11-04 Chemiprokasei Kaisha Ltd 芳香族炭化水素化合物、それよりなるホスト材料、それを用いた有機エレクトロルミネッセンス素子
JP2010251565A (ja) * 2009-04-16 2010-11-04 Yamagata Promotional Organization For Industrial Technology 有機エレクトロルミネッセンス素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA, C.Q. ET AL.: "2,2': 3',2''-Terthiophene-Based all-Thiophene Dendrons and Dendrimers: Synthesis, Structural Characterization, and Properties", CHEMISTRY-A EUROPEAN JOURNAL, vol. 18, no. 40, 31 October 2012 (2012-10-31), pages 12880 - 12901, XP055365383, ISSN: 0947-6539 *
TANAKA, S. ET AL.: "Concise Synthesis of Well-Defined Linear and Branched Oligothiophenes with Nickel-Catalyzed Regiocontrolled Cross-Coupling of 3-Substituted Thiophenes by Catalytically Generated Magnesium Amide", CHEMISTRY-A EUROPEAN JOURNAL, vol. 19, 31 January 2013 (2013-01-31), pages 1658 - 1665, XP055365385, ISSN: 0947-6539 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574539A (zh) * 2020-05-14 2020-08-25 Tcl华星光电技术有限公司 有源层材料、有源层材料的制备方法和晶体管
CN111574539B (zh) * 2020-05-14 2021-07-06 Tcl华星光电技术有限公司 有源层材料、有源层材料的制备方法和晶体管
CN114736419A (zh) * 2022-04-21 2022-07-12 锋特(福建)新材料科技有限公司 一种高弹发泡鞋中底材料及其制备方法和应用
CN114736419B (zh) * 2022-04-21 2023-03-28 锋特(福建)新材料科技有限公司 一种高弹发泡鞋中底材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN102460758B (zh) 半导体化合物和包含该半导体化合物的设备
CN101415715B (zh) 稠环化合物及其制造方法、聚合物、含有它们的有机薄膜,有机薄膜元件及有机薄膜晶体管
CN101939352B (zh) 由萘嵌苯(rylene)-(π-受体)共聚物制备的半导体材料
EP2287936A1 (en) Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
CN108461637B (zh) 一种用于聚合物太阳能电池电子传输层的杂化物及其制备方法
CN101945860A (zh) 支链型化合物、使用它的有机薄膜以及有机薄膜元件
JP2021006629A (ja) 水性組成物を形成する方法
WO2009022733A1 (ja) 組成物及び有機光電変換素子
Wan et al. Improved efficiency of solution processed small molecules organic solar cells using thermal annealing
Li et al. Direct application of P3HT-DOPO@ ZnO nanocomposites in hybrid bulk heterojunction solar cells via grafting P3HT onto ZnO nanoparticles
WO2017032274A1 (zh) 树形共轭化合物、树形共轭化合物-碳纳米管复合物、制备方法及应用
CN106823983B (zh) 三维树形共轭化合物-碳纳米管复合物、制备方法及应用
CN114605618A (zh) 一种调控聚噻吩衍生物区域规整度的方法及其产物和应用
Chevrier et al. Synthesis and properties of a P3HT-based ABA triblock copolymer containing a perfluoropolyether central segment
Wu et al. Synthesis of Long‐Chain Oligomeric Donor and Acceptors via Direct Arylation for Organic Solar Cells
CN106478927B (zh) 碳纳米管-非线性共轭聚合物、其制备方法与应用
CN106832227B (zh) 树枝型共轭化合物、墨水、薄膜、其制备方法及应用
JP2009033126A (ja) 有機トランジスタ材料および有機電界効果型トランジスタ
CN107456918B (zh) 三维树形共轭化合物-碳纳米管复合物及其应用
Adhikari et al. T-Shaped Indan-1, 3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell
Le Borgne et al. Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor
Lyons et al. Porphyrin–oligothiophene conjugates as additives for P3HT/PCBM solar cells
WO2009087948A1 (ja) フラーレン誘導体を含む組成物およびそれを用いた有機光電変換素子
Lanzi et al. A new photocrosslinkable oligothiophene for organic solar cells with enhanced stability
Zhang et al. A bipolar diketopyrrolopyrrole molecule end capped with thiophene-2, 3-dicarboxylate used as both electron donor and acceptor for organic solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16838533

Country of ref document: EP

Kind code of ref document: A1