WO2017031946A1 - 多轴无人飞行器 - Google Patents

多轴无人飞行器 Download PDF

Info

Publication number
WO2017031946A1
WO2017031946A1 PCT/CN2016/072098 CN2016072098W WO2017031946A1 WO 2017031946 A1 WO2017031946 A1 WO 2017031946A1 CN 2016072098 W CN2016072098 W CN 2016072098W WO 2017031946 A1 WO2017031946 A1 WO 2017031946A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
axis
aerial vehicle
unmanned aerial
module
Prior art date
Application number
PCT/CN2016/072098
Other languages
English (en)
French (fr)
Inventor
陶亮
申守健
秦立新
Original Assignee
河南三和航空工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南三和航空工业有限公司 filed Critical 河南三和航空工业有限公司
Publication of WO2017031946A1 publication Critical patent/WO2017031946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/11Autogyros
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines

Definitions

  • the present application relates to the field of aircraft technology, and in particular to a multi-axis unmanned aerial vehicle.
  • the traditional helicopter is a single-rotor with tail rotor layout, which provides lift by the rotation of the main rotor, and the high speed rotation of the tail rotor produces a lateral push-pull force for overcoming the counter torque generated by the main propeller.
  • This layout is simple in structure and mature in technology, and can be flexibly used to manufacture helicopters of various specifications, and the operation is relatively simple.
  • the tail beam leads to a large parking area, and the tail beam and the long-distance tail rotor drive shaft are easily damaged, the collision risk is high, the hovering performance is unstable, the tail rotor is easily damaged by foreign matter, causing a major accident, and the tail rotor needs to be consumed. About 15% of engine power.
  • multi-rotor aircraft In addition to single-rotor helicopters, many research institutes at home and abroad are also researching and developing multi-rotor aircraft, such as coaxial twin-rotor helicopters, tandem twin-rotor helicopters, cross-rotor helicopters, cross-rotor helicopters, tilt-rotor aircraft, etc. .
  • the four-axis aircraft has two problems that are difficult to solve. The first is the large load capacity, and the second is the long-haul time. Because of the weight and efficiency of the battery, these two points are difficult to break through. This also limits the field of application of multi-axis aircraft.
  • the purpose of the present application is to provide a multi-axle unmanned aerial vehicle with a large load, a long flight time, and a variety of applications, to solve the technical problem that the existing multi-axis unmanned aerial vehicle is suitable for single, easy to damage, low load, and short flight time.
  • the present application discloses a large-load, long-haul, multi-axis unmanned aerial vehicle, which is characterized in that it comprises: a frame and a power generating device and power provided on the frame. a transmission device, a variable distance device, a control device, and a plurality of rotor devices, wherein
  • the power generating device is connected to the power transmission device for providing flight power
  • the power transmission device includes a transmission belt, a transmission shaft and a gear box which are sequentially connected, the transmission belt is connected with the power generating device, and the gear box is connected with the rotor device;
  • the rotor device includes a rotor head, a hub and a propeller connected in sequence, and the rotor head is connected to the gear box;
  • the variable distance device includes a pitch lever and a steering gear, the variable distance lever is connected to the rotor head, and the steering gear is connected to the gear box;
  • the control device is respectively connected to the power generating device, the power transmission device, the rotor device and the variable distance device.
  • the power generating device is a gasoline engine.
  • control device is a programmable controller or a central processing unit.
  • control device is further provided with a three-axis gyroscope for positioning and adjusting the pitch of the rotor head.
  • control device is further connected with a wireless receiving device for receiving a wireless signal.
  • the number of the rotor devices is greater than or equal to three, which are respectively symmetrically disposed around the frame.
  • a task load area disposed on the center axis of the rack is further included for carrying the task device.
  • the mission device includes a camera, a radar, and/or a sensor.
  • the rotor apparatus further includes a rotor guard ring that is mounted to a periphery of the propeller.
  • control device includes a receiving module, a processing module, a storage module, a positioning module, and an execution module, and the processing module is respectively connected to the receiving module, the storage module, the positioning module, and the execution module.
  • the multi-axis unmanned aerial vehicle provided by the present application achieves the following effects:
  • the multi-axis unmanned aerial vehicle provided by the present application has a simple structure, is not expensive to manufacture, and the number of the rotor heads can be set according to actual power requirements to meet different realities.
  • the multi-axle unmanned aerial vehicle uses a high-power gasoline engine to achieve large loads, long-haul, for example, a 100-horsepower aero engine, plus 60 liters of gasoline at a time, can work continuously for 4-5 hours, 100 hp
  • the take-off weight can reach 350-400 kg at least, and a 150-kilogram aircraft can fly for 5 hours continuously, which makes the aircraft truly practical.
  • the multi-axis UAV provided by this application has high practical value and wide application range, and can be used in agricultural spraying, forest fire fighting, police patrol, anti-terrorism, field search and rescue, power line inspection, oil pipeline inspection, disaster investigation, aerial aerial survey. Implementation of various projects in many fields such as air travel;
  • the multi-axis unmanned aerial vehicle provided by the present application can realize the change of the flight attitude of the aircraft and the control of the rotation speed by adjusting the respective rotor heads, and has the advantages of convenient operation and flexible control;
  • the multi-axis unmanned aerial vehicle provided by the present application facilitates the change of various flight postures and flight states by adjusting each rotor head during flight, so that the multi-axis unmanned aerial vehicle has a stable structure and a wide field of view;
  • the multi-axis unmanned aerial vehicle provided by the present application can satisfy the requirement of reducing the quality of the aircraft by using the three-axis gyroscope, and the utility model has high efficiency and accurate result, and provides guarantee for accurate control and stable safety of the flight.
  • FIG. 1 is a schematic structural view of a multi-axis unmanned aerial vehicle provided by the present application.
  • FIG. 2 is a schematic structural view of a rotor device of a multi-axis unmanned aerial vehicle provided by the present application.
  • first device if a first device is coupled to a second device, the first device can be directly electrically coupled to the second device, or electrically coupled indirectly through other devices or coupling means. Connected to the second device.
  • the description of the specification is intended to be illustrative of the preferred embodiments of the invention. The scope of protection of the application is subject to the definition of the appended claims.
  • the embodiment provides a multi-axis unmanned aerial vehicle, which comprises: a rack 1 And a power generating device 2, a power transmission device 3, a distance changing device 4, a control device 5, and a plurality of rotor devices 6 disposed on the frame, wherein
  • the power generating device 2 is connected to the power transmission device 3 for providing flight power;
  • the power transmission device 3 includes a transmission belt 301, a transmission shaft 302 and a gear box 303 which are sequentially connected, and the transmission belt 301 is connected to the power generating device 2, and the gear box 303 is connected with the rotor device 6 connection;
  • the rotor device 6 includes a rotor head 601, a hub 602 and a propeller 603 connected in sequence, and the rotor head 601 is connected to the gear box 303;
  • the variable distance device 4 includes a steering gear 401 and a variable pitch rod 402, the steering gear 401 is connected to the gear box 303, and the variable distance rod 402 is connected with the rotor head 601; the control device 5. Connected to the power generating device 2, the power transmission device 3, the rotor device 6, and the variable distance device 4, respectively.
  • the power generating device 2 is a gasoline engine. Specifically, the power generating device 2 is disposed on a central axis of the frame 1. In the embodiment, preferably, the power generating device 2 is a gasoline engine, which can solve a large load that is difficult to be realized by a conventional multi-axis aircraft. Long-haul problems, for example, a 100-horsepower aero engine, with 60 liters of gasoline at a time, can work continuously for 4-5 hours, and a 100-horsepower take-off weight of at least 350-400 kg. A 150 kg aircraft can be used.
  • Continuous flight for 5 hours, making the actual application value of the aircraft higher, can be used in agricultural spraying, forest fire fighting, anti-terrorism, field search and rescue, power line inspection, oil pipeline inspection, disaster investigation, aerial aerial survey, air travel, etc.
  • the power transmission device 3 includes a transmission belt 301, a transmission shaft 302 and a gear box 303 which are sequentially connected, and the transmission belt 301 is connected to the power generating device 2, specifically, the multi-axis unmanned aerial vehicle is composed of one
  • the engine is powered to transmit power to four or more gearboxes 303 via drive belt 301, drive shaft 302, which is coupled to the rotor head 601 to drive the rotor to rotate.
  • the multi-axis aircraft on the market is basically a simple mechanism in which four propellers are directly connected to the motor, forming a cross-shaped layout, and the aircraft adjusts the flight attitude by changing the motor rotation speed to adjust the flight attitude, and the present application provides
  • the multi-axis aircraft breaks the working principle of the conventional electric multi-axis aircraft, and connects one of the power generating devices 2 and the plurality of the rotor devices 6 through the transmission belt 301 and the transmission shaft 302 to realize the power transmission function of the multi-axis aircraft.
  • the variable distance device 4 includes a steering gear 401 and a variable pitch lever 402.
  • the steering gear 401 is coupled to the rotor head 601 through the gear box 303, and the variable distance lever 402 is coupled to the rotor head 601. Further, the steering gear 401 is further connected to the control device 5; specifically, the steering gear 401 calculates and obtains an action command through a three-axis gyroscope provided in the control device 5, and changes
  • the pitch of each rotor head 601 controls the attitude of the aircraft to achieve changes in flight conditions such as advancing, retreating, and translating the aircraft.
  • the setting of the variable pitch rod 402 can adjust the pitch, use high distance at high speed, low speed when low speed (such as takeoff and climb state), and gradually increase the number of pitches later to adapt to more flight states.
  • the control device 5 is a programmable controller or a central processing unit. Specifically, the control device includes a receiving module, a processing module, a storage module, a positioning module, and an execution module, The processing module is respectively connected to the receiving module, the storage module, the positioning module and the execution module.
  • control device 5 is further provided with a three-axis gyroscope for positioning and adjusting the pitch of the rotor head 601.
  • the three-axis gyroscope can replace three single-axis gyroscopes, and the three-axis gyroscope can simultaneously measure the position, movement trajectory and acceleration in six directions.
  • the three-axis gyroscope is small in size, light in weight, and simple in structure. The reliability is good; the multi-axis unmanned aerial vehicle provided by the present application can meet the requirements for reducing the quality of the aircraft by using the three-axis gyroscope, and the use efficiency is high, the result is accurate, and the accurate control and stable safety of the flight are provided. Guarantee.
  • control device 5 is further connected with a wireless receiving device for receiving a wireless signal transmitted from the outside. Specifically, when the local workstation transmits a radio signal through the wireless transmitting device, the wireless receiving device receives the signal and transmits it to the control device 5, and then the control device 5 processes the signal and transmits the signal to the The steering gear 401, so as to achieve the purpose of adjusting the rotor pitch, realizes the flight task of the multi-axis unmanned aerial vehicle.
  • the number of the rotor devices 6 is greater than or equal to three, which are respectively symmetrically disposed around the frame. Specifically, in practical applications, the number of the rotor devices 6 may be set to 4, 6, 8, 10, 12, 14 or 16 , and the balance is disposed on both sides of the central axis of the frame 1 . Of course, those skilled in the art can also set other numbers of rotor devices 6 according to actual conditions, and will not be repeated here. In this embodiment, it is preferable that the number of the rotor devices 6 is four, and are respectively located at the four corners of the frame 1, and the number of the rotor devices 6 is set to four to meet the needs of most flights, and is effective. cut back
  • the multi-axle UAV itself has the weight and facilitates various flight attitudes and flight state changes by adjusting the individual rotor heads 601 during flight, so that the multi-axis UAV structure is stable and has a wide field of view.
  • the multi-axis unmanned aerial vehicle further includes a task load area disposed on a central axis of the rack 1 for carrying a task device, the task device including a camera, a radar, a sensor, and the like, all performing various tasks.
  • a task device including a camera, a radar, a sensor, and the like, all performing various tasks.
  • the specific equipment to be used is not described here, so it is in defense, border patrol, agricultural spraying, forest fire fighting, police patrol, anti-terrorism, field search and rescue, power line inspection, oil pipeline inspection, disaster investigation, aerial photography.
  • the application value is realized in many fields such as aerial survey and air travel.
  • the rotor device 6 includes a rotor head 601, a hub 602 and a propeller 603 connected in series, the rotor head 601 being coupled to the gear box 303; further, the rotor device 6 further includes a rotor guard 604,
  • the rotor guard ring 604 is mounted to the periphery of the propeller 603. Specifically, the rotor guard ring 604 is mounted on the periphery of the propeller 22, and the hub 602 is used to seat and couple the propeller 603 to the rotor head 601. The rotor guard ring 604 is used for protection.
  • the multi-axis unmanned aerial vehicle described in the present application achieves the following effects:
  • the multi-axis unmanned aerial vehicle provided by the present application has a simple structure, is not expensive to manufacture, and the number of the rotor heads can be set according to actual power requirements to meet different actual needs;
  • the multi-axis unmanned aerial vehicle uses a high-power gasoline engine to realize a large load, long-haul time, for example, a 100-horsepower aero engine, plus 60 liters of gasoline at a time.
  • a high-power gasoline engine for example, a 100-horsepower aero engine, plus 60 liters of gasoline at a time.
  • the take-off weight of 100 horsepower can reach 350-400 kilograms at least, and an aircraft with a load capacity of 150 kilograms can fly for 5 hours continuously, which makes the aircraft truly practical.
  • the multi-axis UAV provided by this application has high practical value and wide application range, and can be used in agricultural spraying, forest fire fighting, police patrol, anti-terrorism, field search and rescue, power line inspection, oil pipeline inspection, disaster investigation, aerial aerial survey. Implementation of various projects in many fields such as air travel;
  • the multi-axis unmanned aerial vehicle provided by the present application can realize the change of the flight attitude of the aircraft and the control of the rotation speed by adjusting the respective rotor heads, and has the advantages of convenient operation and flexible control;
  • the multi-axis unmanned aerial vehicle provided by the present application facilitates the change of various flight postures and flight states by adjusting each rotor head during flight, so that the multi-axis unmanned aerial vehicle has a stable structure and a wide field of view;
  • the multi-axis unmanned aerial vehicle provided by the present application can satisfy the requirement of reducing the quality of the aircraft by using the three-axis gyroscope, and the utility model has high efficiency and accurate result, and provides guarantee for accurate control and stable safety of the flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

一种多轴无人飞行器,包括:机架(1)和设置于机架上的动力发生装置(2)、动力传动装置(3)、变距装置(4)、控制装置(5)和多个旋翼装置(6),其中,动力发生装置(2)与动力传动装置(3)相连接,用于提供飞行动力;动力传动装置(3),包括依次连接的传动皮带(301)、传动轴(302)和齿轮箱(303),传动皮带(301)与动力发生装置(2)相连接,齿轮箱(303)与旋翼装置(6)相连接;旋翼装置(6)包括依次连接的旋翼头(601)、桨毅(602)和螺旋桨(603),旋翼头(601)与齿轮箱(303)相连接;变距装置(4)包括变距杆(402)和舵机(401),变距杆(402)与旋翼头(601)相连接,舵机(401)与齿轮箱(303)相连接;控制装置(5)分别与动力发生装置(2)、动力传动装置(3)、旋翼装置(6)和变距装置(4)相连。该多轴无人飞行器结构简单,制造成本低。

Description

多轴无人飞行器 技术领域
本申请涉及飞行器技术领域,具体地,是涉及一种多轴无人飞行器。
背景技术
目前传统直升机是单旋翼带尾桨布局,靠主旋翼旋转提供升力,尾桨高速旋转产生一个侧向推拉力,用于克服主桨产生的反扭矩。这种布局结构简单,技术成熟,可以很灵活地用来制造各种规格的直升机,操作也相对简单。但尾梁导致停放面积大,承载的尾梁和长距离的尾桨传动轴系易损伤,碰撞危险高,悬停性能不稳定,尾桨容易被异物损伤,造成重大事故,尾桨需耗用15%左右的发动机功率。
除了单旋翼直升机外,国内外很多科研机构也在研究开发多旋翼飞行器,如共轴双旋翼直升机、纵列双旋翼式直升机、横列双旋翼式直升机、交叉双旋翼式直升机、倾转旋翼机等。
而近几年随着电子技术和控制技术的发展,电动四旋翼飞行器得到了迅速的发展,每个旋翼分别有一个单独的电机控制。但该类型飞行器主要用于航拍、航模飞行表演等。但是由于采用的是电力驱动模式,飞行器的马力和续航时间都受到了很大的制约,目前还难以得到实用推广。并且传统的四轴飞行器的四个螺旋桨都是电机直连的简单机构,十字形的布局,飞行器通过改变电机转速获得旋转机身的力,从而调整飞行姿态。
由于结构和控制原理的限制,四轴飞行器有两个问题难以解决,第一是大载重量,第二是长航时,因为电池的重量和效率所限,这两点是很难突破的,这也就限制了多轴飞行器的应用领域。
因此,如何研发一种大载荷,长航时的多轴无人飞行器,便成为亟待解决的技术问题。
发明内容
本申请的目的在于提供一种大载荷,长航时、适用多样的多轴无人飞行器,以解决现有的多轴无人飞行器适用单一、易损坏、载荷低,航时短的技术问题。
因此,为有效解决上述问题,本申请公开了一种大载荷,长航时、适用多样的多轴无人飞行器,其特征在于,包括:机架和设置于机架上的动力发生装置、动力传动装置、变距装置、控制装置和多个旋翼装置,其中,
所述动力发生装置,与所述动力传动装置相连接,用于提供飞行动力;
所述动力传动装置,包括依次连接的传动皮带、传动轴和齿轮箱,所述传动皮带与所述动力发生装置相连接,所述齿轮箱与所述旋翼装置相连接;
所述旋翼装置,包括依次连接的旋翼头、桨毂和螺旋桨,所述旋翼头与所述齿轮箱相连接;
所述变距装置,包括变距杆和舵机,所述变距杆与所述旋翼头相连接,所述舵机与所述齿轮箱相连接;
所述控制装置,分别与所述动力发生装置、动力传动装置、旋翼装置和变距装置相连。
进一步地,所述动力发生装置为汽油发动机。
进一步地,所述控制装置为可编程控制器或中央处理器。
进一步地,所述控制装置还设置有三轴陀螺仪,用于定位并调整所述旋翼头的浆距。
进一步地,所述控制装置还连接有无线接收装置,用于接收无线信号。
进一步地,所述旋翼装置的数量为大于或等于三个,其分别对称设置于所述机架的周围。
进一步地,还包括设置于所述机架中心轴上的任务载荷区,用于搭载任务设备。
进一步地,所述任务设备包括摄像机、雷达和/或传感器。
进一步地,所述旋翼装置还包括旋翼护圈,所述旋翼护圈安装于所述螺旋桨的外围。
进一步地,所述控制装置包括接收模块、处理模块、存储模块、定位模块和执行模块,所述处理模块分别与接收模块、存储模块、定位模块和执行模块相连接。
与现有技术相比,本申请提供的多轴无人飞行器,达到了如下效果:
1)本申请提供的多轴无人飞行器结构结构简单,制作成本不高,并且所述旋翼头的数量可以根据实际动力需要进行设置,以满足不同的实 际需求;
2)本申请提供的多轴无人飞行器使用大功率汽油发动机,实现了大载荷,长航时,例如,100马力的航空发动机,一次加60升汽油,可以连续工作4-5小时,100马力的起飞重量最少可以达到350-400公斤,一架载重量150公斤的飞行器可以连续飞行5小时,使飞行器真正有了实际应用价值;
3)本申请提供的多轴无人飞行器实际应用价值高,应用范围广,能够在农业喷洒、森林消防、警务巡逻、反恐、野外搜救、电力巡线、石油管线巡视、灾害勘察、航拍航测、航空旅游等诸多领域进行各个项目的执行;
4)本申请提供的多轴无人飞行器,通过各个旋翼头的调整可实现飞行器的飞行姿态的变化、旋转速度的控制,具有操作方便,控制灵活的效果;
5)本申请提供的多轴无人飞行器,便于在飞行中通过调节各个旋翼头来实现各种飞行姿势和飞行状态的变化,使所述多轴无人飞行器结构稳定、观察的视野广阔;
6)本申请提供的多轴无人飞行器使用所述三轴陀螺仪能够满足对飞行器减少本身质量的要求,并且使用的效率高、结果准确,对飞行的准确控制和稳定安全提供了保障。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构 成对本申请的不当限定。在附图中:
图1为本申请提供的多轴无人飞行器的结构示意图;
图2为本申请提供的多轴无人飞行器的旋翼装置的结构示意图。
具体实施方式
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其他装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
以下结合附图对本申请作进一步详细说明,但不作为对本申请的限定。
实施例1
本实施例提供一种多轴无人飞行器,其特征在于,包括:机架1 和设置于机架上的动力发生装置2、动力传动装置3、变距装置4、控制装置5和多个旋翼装置6,其中,
所述动力发生装置2,与所述动力传动装置3相连接,用于提供飞行动力;
所述动力传动装置3,包括依次连接的传动皮带301、传动轴302和齿轮箱303,所述传动皮带301与所述动力发生装置2相连接,所述齿轮箱303与所述旋翼装置6相连接;
所述旋翼装置6,包括依次连接的旋翼头601、桨毂602和螺旋桨603,所述旋翼头601与所述齿轮箱303相连接;
所述变距装置4,包括舵机401和变距杆402,所述舵机401与所述齿轮箱303相连接,所述变距杆402与所述旋翼头601相连接;所述控制装置5,分别与所述动力发生装置2、动力传动装置3、旋翼装置6和变距装置4相连接。
具体地,
所述动力发生装置2为汽油发动机。具体地,所述动力发生装置2设置于所述机架1的中心轴上,本实施例中,优选所述动力发生装置2为汽油发动机,使其可以解决传统多轴飞行器难以实现的大荷载、长航时问题,例如,100马力的航空发动机,一次加60升汽油,可以连续工作4-5小时,100马力的起飞重量最少可以达到350-400公斤,一架载重量150公斤的飞行器可以连续飞行5小时,使飞行器的实际应用价值更高,能够在农业喷洒、森林消防、反恐、野外搜救、电力巡线、石油管线巡视、灾害勘察、航拍航测、航空旅游等 诸多领域进行各个项目的执行。
所述动力传动装置3,包括依次连接的传动皮带301、传动轴302和齿轮箱303,所述传动皮带301与所述动力发生装置2相连接,具体地,多轴无人飞行器是由一台发动机提供动力,通过传动皮带301、传动轴302将动力传递到四个或多个齿轮箱303,所述齿轮箱303与所述旋翼头601相连接,从而带动旋翼旋转。目前市场上的多轴飞行器基本上都是四个螺旋桨为电机直连的简单机构,形成十字形的布局,飞行器通过改变电机转速获得旋转机身的力,从而调整飞行姿态,而本申请所提供的多轴飞行器打破传统电动多轴飞行器的工作原理,通过传动皮带301、传动轴302将一个所述动力发生装置2与多个所述旋翼装置6相连接,实现多轴飞行器的动力传动功能。
所述变距装置4,包括舵机401和变距杆402,所述舵机401通过所述齿轮箱303与所述旋翼头601相连接,所述变距杆402与所述旋翼头601相连接;进一步地,所述舵机401还与所述控制装置5相连接;具体地,所述舵机401通过所述控制装置5中设置的三轴陀螺仪计算并得出动作指令,通过变化每个旋翼头601的浆距来控制飞行器的姿态,从而实现飞行器的前进、后退、平移等飞行状态的变化。所述变距杆402的设置能够调整桨距,高速时用高距,低速(如起飞、爬升状态)时用低距,以后又逐步增加桨距的数目,以适应更多的飞行状态。
所述控制装置5为可编程控制器或中央处理器。具体地,所述控制装置包括接收模块、处理模块、存储模块、定位模块和执行模块, 所述处理模块分别与接收模块、存储模块、定位模块和执行模块相连接。
进一步地,所述控制装置5还设置有三轴陀螺仪,用于定位并调整所述旋翼头601的浆距。具体地,所述三轴陀螺仪能替代三个单轴陀螺仪,三轴陀螺仪能够能同时测定6个方向的位置,移动轨迹和加速度,三轴陀螺仪的体积小、重量轻、结构简单、可靠性好;本申请提供的多轴无人飞行器使用所述三轴陀螺仪能够满足对飞行器减少本身质量的要求,并且使用的效率高、结果准确,对飞行的准确控制和稳定安全提供了保障。
进一步地,所述控制装置5还连接有无线接收装置,用于接收外界传来的无线信号。具体地,当地面工作站通过无线发射装置发射无线电信号时,所述无线接收装置接收该信号,并将其传输至所述控制装置5,然后所述控制装置5将信号进行处理并传输至所述舵机401,从而达到调节旋翼桨距的目的,实现多轴无人飞行器的飞行任务。
进一步地,所述旋翼装置6的数量为大于或等于三个,其分别对称设置于所述机架的周围。具体地,在实际应用中,所述旋翼装置6的数量可以设置为4、6、8、10、12、14或16个,有选其平衡设置于所述机架1的中心轴两侧,当然,本领域技术人员也可根据实际情况设置其他数量的旋翼装置6,在此不再累述。本实施例中,优选所述旋翼装置6的数量为4个,且分别位于所述机架1的四个角,所述旋翼装置6的数量设置为4个能够满足大多数飞行的需求,有效减少 所述多轴无人飞行器本身的重量,并且便于在飞行中通过调节各个旋翼头601来实现各种飞行姿势和飞行状态的变化,使所述多轴无人飞行器结构稳定、视野广阔。
进一步地,所述多轴无人飞行器还包括设置于所述机架1中心轴上的任务载荷区,用于搭载任务设备,所述任务设备包括摄像机、雷达、传感器等所有执行各种任务时需用到的特定设备,在此不再累述,使其在在国防、边境巡逻、农业喷洒、森林消防、警务巡逻、反恐、野外搜救、电力巡线、石油管线巡视、灾害勘察、航拍航测、航空旅游等诸多领域实现应用价值。
所述旋翼装置6包括依次连接的旋翼头601、桨毂602和螺旋桨603,所述旋翼头601与所述齿轮箱303相连接;进一步地,所述旋翼装置6还包括旋翼护圈604,所述旋翼护圈604安装于所述螺旋桨603的外围。具体地,所述旋翼护圈604安装于所述螺旋桨22的外围,所述桨毂602用于安置螺旋桨603并将其套接于所述旋翼头601上,所述旋翼护圈604用于保护所述螺旋桨603。
与现有技术相比,本申请所述的多轴无人飞行器,达到了如下效果:
1)本申请提供的多轴无人飞行器结构结构简单,制作成本不高,并且所述旋翼头的数量可以根据实际动力需要进行设置,以满足不同的实际需求;
2)本申请提供的多轴无人飞行器使用大功率汽油发动机,实现了大载荷,长航时,例如,100马力的航空发动机,一次加60升汽油,可 以连续工作4-5小时,100马力的起飞重量最少可以达到350-400公斤,一架载重量150公斤的飞行器可以连续飞行5小时,使飞行器真正有了实际应用价值;
3)本申请提供的多轴无人飞行器实际应用价值高,应用范围广,能够在农业喷洒、森林消防、警务巡逻、反恐、野外搜救、电力巡线、石油管线巡视、灾害勘察、航拍航测、航空旅游等诸多领域进行各个项目的执行;
4)本申请提供的多轴无人飞行器,通过各个旋翼头的调整可实现飞行器的飞行姿态的变化、旋转速度的控制,具有操作方便,控制灵活的效果;
5)本申请提供的多轴无人飞行器,便于在飞行中通过调节各个旋翼头来实现各种飞行姿势和飞行状态的变化,使所述多轴无人飞行器结构稳定、观察的视野广阔;
6)本申请提供的多轴无人飞行器使用所述三轴陀螺仪能够满足对飞行器减少本身质量的要求,并且使用的效率高、结果准确,对飞行的准确控制和稳定安全提供了保障。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。

Claims (10)

  1. 一种多轴无人飞行器,其特征在于,包括:机架和设置于机架上的动力发生装置、动力传动装置、变距装置、控制装置和多个旋翼装置,其中,所述动力发生装置,与所述动力传动装置相连接,用于提供飞行动力;所述动力传动装置,包括依次连接的传动皮带、传动轴和齿轮箱,所述传动皮带与所述动力发生装置相连接,所述齿轮箱与所述旋翼装置相连接;所述旋翼装置,包括依次连接的旋翼头、桨毂和螺旋桨,所述旋翼头与所述齿轮箱相连接;所述变距装置,包括变距杆和舵机,所述变距杆与所述旋翼头相连接,所述舵机与所述齿轮箱相连接;所述控制装置,分别与所述动力发生装置、动力传动装置、旋翼装置和变距装置相连。
  2. 根据权利要求1所述的多轴无人飞行器,其特征在于,所述动力发生装置为汽油发动机。
  3. 根据权利要求2所述的多轴无人飞行器,其特征在于,所述控制装置为可编程控制器或中央处理器。
  4. 根据权利要求3所述的多轴无人飞行器,其特征在于,所述控制装置还设置有三轴陀螺仪,用于定位并调整所述旋翼头的浆距。
  5. 根据权利要求4所述的多轴无人飞行器,其特征在于,所述控制装置还连接有无线接收装置,用于接收无线信号。
  6. 根据权利要求1所述的多轴无人飞行器,其特征在于,所述旋翼装置的数量为大于或等于三个,其分别对称设置于所述机架的周围。
  7. 根据权利要求6所述的多轴无人飞行器,其特征在于,还包括设置于所述机架中心轴上的任务载荷区,用于搭载任务设备。
  8. 根据权利要求7所述的多轴无人飞行器,其特征在于,所述任务设备包括摄像机、雷达和/或传感器。
  9. 根据权利要求6所述的多轴无人飞行器,其特征在于,所述旋翼装置还包括旋翼护圈,所述旋翼护圈安装于所述螺旋桨的外围。
  10. 根据权利要求3所述的多轴无人飞行器,其特征在于,所述控制装置包括接收模块、处理模块、存储模块、定位模块和执行模块,所述处理模块分别与接收模块、存储模块、定位模块和执行模块相连接。
PCT/CN2016/072098 2015-08-21 2016-01-26 多轴无人飞行器 WO2017031946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510518093.1A CN105000177A (zh) 2015-08-21 2015-08-21 多轴无人飞行器
CN201510518093.1 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017031946A1 true WO2017031946A1 (zh) 2017-03-02

Family

ID=54373112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072098 WO2017031946A1 (zh) 2015-08-21 2016-01-26 多轴无人飞行器

Country Status (2)

Country Link
CN (1) CN105000177A (zh)
WO (1) WO2017031946A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000177A (zh) * 2015-08-21 2015-10-28 河南三和航空工业有限公司 多轴无人飞行器
CN105730173B (zh) * 2016-05-06 2017-08-11 吉林大学 一种水陆空墙壁四栖机器人
CN109513124A (zh) * 2018-11-29 2019-03-26 燕山大学 一种超限高空中消防救援装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653705A (en) * 1979-04-24 1987-03-31 Bensen Igor B Autogyro with auxiliary rotor drive
WO2002064426A1 (en) * 2001-02-14 2002-08-22 Airscooter Corporation Ultralight coaxial rotor aircraft
CN102490896A (zh) * 2011-12-27 2012-06-13 天津曙光敬业科技有限公司 可变矩大载重四旋翼飞行器
CN103381885A (zh) * 2012-05-02 2013-11-06 田瑜 多旋翼飞行器
CN103803076A (zh) * 2012-11-15 2014-05-21 西安韦德沃德航空科技有限公司 齿轮传动的四旋翼飞行器
CN104044733A (zh) * 2014-06-16 2014-09-17 吉林大学 六旋翼涵道飞行器
CN104176248A (zh) * 2014-07-16 2014-12-03 沈阳航空航天大学 双发动机四轴四旋翼无人机
CN204056307U (zh) * 2014-06-24 2014-12-31 南京工业大学 一种无人机复合动力装置
CN105000177A (zh) * 2015-08-21 2015-10-28 河南三和航空工业有限公司 多轴无人飞行器
CN204956913U (zh) * 2015-08-21 2016-01-13 河南三和航空工业有限公司 多轴无人飞行器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653705A (en) * 1979-04-24 1987-03-31 Bensen Igor B Autogyro with auxiliary rotor drive
WO2002064426A1 (en) * 2001-02-14 2002-08-22 Airscooter Corporation Ultralight coaxial rotor aircraft
CN102490896A (zh) * 2011-12-27 2012-06-13 天津曙光敬业科技有限公司 可变矩大载重四旋翼飞行器
CN103381885A (zh) * 2012-05-02 2013-11-06 田瑜 多旋翼飞行器
CN103803076A (zh) * 2012-11-15 2014-05-21 西安韦德沃德航空科技有限公司 齿轮传动的四旋翼飞行器
CN104044733A (zh) * 2014-06-16 2014-09-17 吉林大学 六旋翼涵道飞行器
CN204056307U (zh) * 2014-06-24 2014-12-31 南京工业大学 一种无人机复合动力装置
CN104176248A (zh) * 2014-07-16 2014-12-03 沈阳航空航天大学 双发动机四轴四旋翼无人机
CN105000177A (zh) * 2015-08-21 2015-10-28 河南三和航空工业有限公司 多轴无人飞行器
CN204956913U (zh) * 2015-08-21 2016-01-13 河南三和航空工业有限公司 多轴无人飞行器

Also Published As

Publication number Publication date
CN105000177A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
US11459099B2 (en) M-wing aircraft having VTOL and biplane orientations
US10501193B2 (en) Aircraft having a versatile propulsion system
US11505302B2 (en) Rotor assembly having collective pitch control
US10442522B2 (en) Aircraft with active aerosurfaces
US10661892B2 (en) Aircraft having omnidirectional ground maneuver capabilities
US10618646B2 (en) Rotor assembly having a ball joint for thrust vectoring capabilities
CN202071985U (zh) 新型面对称布局的多旋翼无人飞行器
US10814973B2 (en) Aircraft having M-wing and gull wing configurations
WO2017031945A1 (zh) 多轴载人飞行器
US20190337629A1 (en) Hybrid tiltrotor drive system
EP3087003B1 (en) An unmanned aerial vehicle
CN102126554A (zh) 面对称布局的多旋翼无人飞行器
CN103625640A (zh) 多旋翼无人飞行器
CN103552686B (zh) 一种组合式涵道空中侦察机器人
CN104176247A (zh) 采用一台发动机直驱一个旋翼的四旋翼无人机
US20200385117A1 (en) Fuel-electric hybrid multi-axis rotor-type unmanned aerial vehicle
WO2017031946A1 (zh) 多轴无人飞行器
CN111003166A (zh) 一种纵列式电动双旋翼直升机及其控制系统
CN205221109U (zh) 多轴载人飞行器
CN110422339A (zh) 一种共轴双旋翼式无人机的组装方法
WO2019080442A1 (zh) 旋翼飞行器
CN204956913U (zh) 多轴无人飞行器
CN207791154U (zh) 垂直起降飞行装置及固定翼无人机
CN211642595U (zh) 一种纵列式电动双旋翼直升机
US20210253232A1 (en) Hover-capable aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838211

Country of ref document: EP

Kind code of ref document: A1