WO2017029856A1 - Ni基超合金部品のリサイクル方法 - Google Patents

Ni基超合金部品のリサイクル方法 Download PDF

Info

Publication number
WO2017029856A1
WO2017029856A1 PCT/JP2016/065901 JP2016065901W WO2017029856A1 WO 2017029856 A1 WO2017029856 A1 WO 2017029856A1 JP 2016065901 W JP2016065901 W JP 2016065901W WO 2017029856 A1 WO2017029856 A1 WO 2017029856A1
Authority
WO
WIPO (PCT)
Prior art keywords
superalloy
single crystal
unidirectionally solidified
recycled
based single
Prior art date
Application number
PCT/JP2016/065901
Other languages
English (en)
French (fr)
Inventor
原田 広史
京子 川岸
敏治 小林
忠晴 横川
真人 大澤
道也 湯山
進補 鈴木
裕一朗 城
悟志 宇多田
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to US15/932,302 priority Critical patent/US10689741B2/en
Priority to JP2017535266A priority patent/JPWO2017029856A1/ja
Publication of WO2017029856A1 publication Critical patent/WO2017029856A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/04Single or very large crystals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention uses a waste material of a Ni-based single crystal superalloy part or a Ni-based unidirectionally solidified superalloy part that has been used once, and the jet is re-used as a Ni-base superalloy without refining the superalloy and recovering the alloy elements.
  • the present invention relates to a recycling method for Ni-based single crystal superalloy parts and Ni-based unidirectionally solidified superalloy parts suitable for use in turbine blades and turbine vanes such as engines and gas turbines.
  • Ni-base superalloys there are three known Ni-base superalloys, polycrystal, unidirectionally solidified and single crystal depending on the casting method. Of these, Ni-based single crystal superalloy has the highest strength, followed by Ni-based unidirectionally solidified superalloy and Ni-based polycrystalline superalloy.
  • Ni-base superalloy parts using these are used as turbine blades and turbine vanes such as jet engines and gas turbines.
  • the turbine inlet gas temperature is 1000 ° C. to 1700 ° C., which is a high temperature corresponding to a melting point of 1453 ° C. of nickel and a melting point of 1535 ° C. of iron.
  • turbine blades and turbine vanes are treated as consumables even when a heat shielding coating is applied.
  • a heat shielding coating For example, when a jet airplane takes off from the heat shielding coating of a jet engine component due to dust or the like, damage to the turbine blade and turbine vane progresses during the flight. Damaged turbine blades and turbine vanes are replaced during routine inspections. Replaced turbine blades and turbine vanes are repaired if damage is minor (may include regeneration processing as described in Patent Documents 1, 2, 3, and 4 to be described later). If there is, discard it. Since repeated repairs are limited to a few times at the most, all turbine blades and turbine vanes are eventually discarded.
  • Patent Document 1 proposes a method for regenerating a turbine rotor blade and a turbine vane made of a cast polycrystalline Ni-base superalloy damaged by creep.
  • the process performed for the purpose of parts repair is regenerated, and the process performed for the purpose of converting parts that have become unrepairable into parts again is referred to as recycling.
  • Patent Document 2 the strength deteriorates due to high temperature use. In this case, it has been proposed to extend the remaining life of the single crystal material by performing complete solution heat treatment and aging heat treatment on the Ni-base superalloy material.
  • Patent Documents 1 and 2 are methods for regenerating a metal structure by regenerative heat treatment for a Ni-base superalloy material.
  • Regenerative heat treatment is a method in which a deteriorated metal microstructure is restored only by heat treatment, and once the deteriorated structure is extinguished by solution treatment, a healthy fine precipitate structure is regenerated again by aging treatment. For this reason, when the degree of damage to the turbine blades and the turbine vanes is large, the regenerative heat treatment cannot be dealt with and must be discarded.
  • Patent Document 3 when the Ni-based superalloy component deteriorates in strength due to high temperature use, the heat-resistant protective layer is temporarily removed to perform the corrosion layer, oxide layer, Corrosion products and oxidation products are removed, and cracks in the heat-resistant protective layer are also repaired. Thereafter, it has been proposed to recoat the heat-resistant protective layer.
  • Ni-base superalloy parts are highly sensitive to contamination by impurity elements (for example, see Non-Patent Document 1).
  • conventional cast polycrystalline turbine rotor blades and turbine vanes cannot guarantee the creep characteristics, thermal fatigue characteristics, and environmental resistance characteristics of superalloys recycled by remelting.
  • recycling of Ni-based superalloy parts once used, while maintaining the composition of the superalloy is almost impossible for airlines and power generation companies that own product jet engines and gas turbines. It hasn't been done.
  • Ni-base superalloy parts may contain expensive and rare rare metals such as hafnium and rhenium.
  • rare metals there are cases where it is difficult to secure a stable supply destination because resource countries are unevenly distributed as well as price issues. For this reason, when trying to manufacture a new product, it is often difficult to provide the product at the delivery date contracted with the customer at the contract price due to the price fluctuation of rare metals and the supply risk.
  • price stabilization and stable supply for example, Ukraine's rhenium export suspension in 2007, see Non-Patent Document 2.
  • the inventors of the present invention have proposed a manufacturing process for a recycled product in which the composition of the superalloy is substantially maintained by remelting the Ni-based superalloy component once used in Patent Document 6.
  • recycled products have not been used by airlines or power generation companies.
  • the present invention solves the above problems, and can significantly reduce the recycling cost of Ni-base superalloy parts and the lifetime cost of a high-efficiency gas turbine engine using Ni-base superalloy parts,
  • An object of the present invention is to provide a method for recycling Ni-base superalloy parts having high temperature strength and oxidation resistance comparable to those of new products.
  • the present inventors conducted intensive research, and in the Ni-base superalloy, the reason why the creep characteristics, thermal fatigue characteristics, and environmental resistance characteristics required for turbine rotor blades, turbine vanes, etc. could not be maintained due to the mixing of impurity elements.
  • the present inventors conducted further research and clarified that sulfur has an adverse effect on strength and oxidation resistance, among other impurity elements, and desulfurized during dissolution, and the composition changed due to other reasons such as desulfurization.
  • the Ni-based single crystal superalloy component recycling method is a Ni-based single crystal superalloy component coated with a thermal barrier coating containing ceramic, as shown in FIG. Is a recycling method of the Ni-based single crystal superalloy component when the Ni-based single crystal superalloy base material is damaged, and the melting point of the ceramic is higher than the melting point of the Ni-based single crystal superalloy.
  • step (S104) The step of melting and desulfurizing the Ni-based single crystal superalloy component at a temperature below (S104) and heating the temperature of the recycled Ni-based single crystal superalloy component mold to a temperature higher than the melting temperature of the Ni-based single crystal superalloy
  • step (S106) molten Ni-based single crystal superalloy that has been subjected to desulfurization treatment is poured into a melting stock mold or a recycled Ni-based single crystal superalloy part mold to obtain a casting raw material.
  • a process for producing an alloy ingot hereinafter referred to as a melting stock or a process for growing a Ni-based single crystal superalloy (S108, S110) and a mold for melting stock or a mold for recycled Ni-based single crystal superalloy parts Removing the melting stock or the recycled Ni-based single crystal superalloy component (S112).
  • the recovered Ni-based single crystal superalloy component is damaged, and thus impurities may exist on the surface thereof.
  • washing is performed.
  • the damage generated in the coating layer of the thermal barrier coating includes peeling, floating, chipping, sintering, and melting. Examples of damages that occur in the Ni-based single crystal superalloy substrate include cracks, deformation, defects, corrosion, formation of an oxide layer, adhesion of corrosion products, adhesion of oxidation products, deterioration of metal structure, and melting.
  • the Ni-based single crystal superalloy part is melted and desulfurized, and the melting temperature is set to be equal to or higher than the melting point of the Ni-based single crystal superalloy and lower than the melting point of the ceramic.
  • the lower limit of the melting temperature needs to be higher than around 1350 ° C., which is the melting point of the Ni-based single crystal superalloy, and is set to a temperature at which the melting rate can be obtained practically, for example, 1500 ° C. to 1600 ° C.
  • the upper limit of the melting temperature needs to be lower than the melting point 2050 ° C. when the ceramic is alumina and the melting point 2720 ° C. of zirconia.
  • the melting temperature is preferably in the range of 1400 ° C. to 1700 ° C., particularly preferably 1500 as the range in which the melting rate of the Ni-based single crystal superalloy parts is not too slow and the alloy elements are less evaporated and the composition control is easy.
  • the range is from 1 ° C to 1600 ° C.
  • the desulfurization treatment is performed in order to eliminate the adverse effect of the sulfur component on the Ni-based single crystal superalloy parts.
  • the Ni-based single crystal superalloy part is affected by the sulfur component contained in the fuel and sulfurous acid gas in the atmosphere due to long-term use and flight, and the sulfur component penetrates into the Ni-based single crystal superalloy part. And if a recycle of a recycled product is performed in a state where the sulfur component has penetrated into the Ni-based single crystal superalloy component, the high temperature strength is reduced.
  • the desulfurization process is performed using, for example, a calcia (CaO) crucible when the Ni-based single crystal superalloy part to be recycled is remelted.
  • CaO calcia
  • the mold is a mold having a shape for casting a melted stock or recycled Ni-based single crystal superalloy part.
  • the mold In casting a single crystal part, the mold is heated to a temperature higher than the melting temperature of the Ni-based single crystal superalloy. deep.
  • the mold temperature for single crystal parts is suitable for growing Ni-based single crystal superalloys. If the temperature is too high, it becomes difficult to control solidification.
  • a range of 1400 ° C. to 1600 ° C. is preferable, and a range of 1450 ° C. to 1500 ° C. is particularly preferable.
  • Ni-based single crystal superalloy that has been subjected to desulfurization treatment is poured into a mold to form a melting stock or a single crystal part.
  • the Ni-based single crystal superalloy has a micro-phase in which a ⁇ ′ phase (L1 2 ordered phase having a basic composition of Ni 3 Al) is preferably co-precipitated in a ⁇ phase (Ni solid solution) as a parent phase.
  • the interfacial dislocation network having a texture and formed at the matching interface is strengthened by suppressing the movement of dislocations.
  • the melting stock or recycled Ni-based single crystal superalloy part is removed from the mold.
  • the method for recycling the Ni-based single crystal superalloy part according to the second invention is a method for recycling the Ni-based single crystal superalloy part according to the first invention, as shown in FIG. 3, for example.
  • a step (S202) of peeling the thermal barrier coating of the superalloy component may be included.
  • the thermal barrier coating excluding the bond coating of the Ni-based single crystal superalloy component may be stripped or the thermal barrier coating including the bond coating may be stripped.
  • the thermal barrier coating remains on the Ni-based single crystal superalloy part used for recycling, it is removed. By doing so, the influence of ceramics or metal elements contained in the thermal barrier coating is reduced.
  • a method for recycling a Ni-based single crystal superalloy part in which a Ni-based single crystal superalloy part coated with an oxidation-resistant coating or an uncoated Ni-based single crystal superalloy part is coated with an oxidation-resistant coating.
  • a step of melting and desulfurizing the superalloy component a step of heating the temperature of the recycled Ni-based single crystal superalloy component mold above the melting temperature of the Ni-based single crystal superalloy, and a melting stock mold or recycled Ni-based
  • a molten Ni-based single crystal superalloy that has been desulfurized is poured into a mold for a single crystal superalloy component to produce a melting stock, or a Ni-based single crystal superalloy is formed.
  • a method for recycling a Ni-based single crystal superalloy part according to a fourth invention is a method for recycling a Ni-based single crystal superalloy part according to the third invention, further comprising a Ni-based single crystal superalloy coated with an oxidation resistant coating.
  • a step of stripping the oxidation resistant coating of the alloy part may be included.
  • the step of desulfurizing the Ni-based single crystal superalloy component has a sulfur component of 3 PPM or less in the Ni-based single crystal superalloy component.
  • the desulfurization treatment may be performed as described above, and more preferably 2 PPM or less.
  • the sulfur component of the Ni-based single crystal superalloy component exceeds 3 PPM, the high-temperature strength is insufficient as compared with the genuine material. If the sulfur component of the Ni-based single crystal superalloy component is 2 PPM or less, the high-temperature strength is recovered to the same level as that of the genuine material.
  • the recycling method for the Ni-based single crystal superalloy component according to the sixth invention is the recycling method for the Ni-based single crystal superalloy component according to the first to fifth inventions, and further, the recycled Ni-based single crystal superalloy. It is preferable to include a step (S105, S207) of adding a deficient element and adjusting the composition so that the alloy composition falls within the composition range allowed for the genuine material of the Ni-based single crystal superalloy part.
  • the recycled Ni-based single crystal superalloy part of the seventh invention includes a step of forming a single crystal by unidirectional solidification in the growth process of the Ni-based single crystal superalloy, and further, a Ni-based single crystal superalloy part It is good to include the process (S122, S124) which performs the solution treatment and aging precipitation process of this.
  • the ⁇ ′ phase that is the strengthening phase of the alloy is preferably heated to a temperature higher than the temperature at which it completely dissolves in the solid solution, held for a sufficient period of time, homogenized, and rapidly cooled to obtain a coarse ⁇ ′ phase. It refers to a heat treatment that prevents the precipitation of.
  • the aging precipitation treatment refers to a heat treatment in which a product that has undergone a solution treatment (solution heat treatment) is soaked at an appropriate temperature in order to enhance hardness, strength, corrosion resistance, or the like.
  • solution heat treatment for example, after being held at 1050 ° C. to 1150 ° C. for about 5 hours to 10 hours and air-cooled, further kept at 850 ° C. to 900 ° C. for 20 hours, followed by air-cooling two-stage heat treatment.
  • the recycling method of the Ni-based single crystal superalloy part according to the eighth invention further includes a step of coating the recycled Ni-based single crystal superalloy part with a thermal barrier coating including a bond coating and a ceramic, or an oxidation resistant coating.
  • a coating step (S126) may be included.
  • the thermal barrier coating is composed of a ceramic top coat having a low thermal conductivity and a bond coating for preventing oxidation of the substrate.
  • As the bond coating a metal coating containing a large amount of Al, an equilibrium coating that suppresses oxidation resistance and diffusion to the base material, or the like is used.
  • the Ni-based single crystal superalloy component recycling method provides at least one of a Ni-based single crystal superalloy turbine blade, turbine vane, combustor liner, splash plate, duct segment, or turbine disk. It is good to use for a kind.
  • a recycling method for a Ni-based unidirectionally solidified superalloy part according to a tenth aspect of the present invention is, for example, as shown in FIG. 9, in a Ni-based unidirectionally solidified superalloy part coated with a thermal barrier coating containing ceramic, A method for recycling the Ni-based unidirectionally solidified superalloy component when the coating layer is damaged or the Ni-based unidirectionally solidified superalloy substrate is damaged, and is above the melting point of the Ni-based unidirectionally solidified superalloy.
  • a step of heating above the melting temperature of the alloy (S 306), and a melted Ni-based super alloy that has been desulfurized in a melting stock mold or a recycled Ni-based unidirectionally solidified superalloy component mold A step of pouring gold to produce a melting stock or growing a Ni-based unidirectionally solidified superalloy (S308, S310), a mold for melting stock or a mold for recycled Ni-based unidirectionally solidified superalloy parts Removing the melting stock or the recycled Ni-based unidirectionally solidified superalloy component from (312).
  • the recycling method of the Ni-based unidirectionally solidified superalloy component of the eleventh invention is a recycling method of the Ni-based unidirectionally solidified superalloy component of the tenth invention, as shown in FIG. 9, for example.
  • the thermal barrier coating excluding the bond coating of the Ni-based unidirectionally solidified superalloy component, or the step of peeling the thermal barrier coating including the bond coating (S402) may be included.
  • a method for recycling a Ni-based unidirectionally solidified superalloy part in which a Ni-based unidirectionally solidified superalloy part coated with an oxidation-resistant coating or an uncoated Ni-based unidirectionally solidified superalloy part.
  • a method for recycling a Ni-based unidirectionally solidified superalloy component when a coating layer is damaged or a Ni-based unidirectionally solidified superalloy substrate is damaged, the melting point of the Ni-based unidirectionally solidified superalloy The step of melting and desulfurizing the Ni-based unidirectionally solidified superalloy component as described above, the step of heating the temperature of the recycled Ni-based unidirectionally solidified superalloy component mold above the melting temperature of the Ni-based unidirectionally solidified superalloy, Melting stock is prepared by pouring molten desulfurized Ni-base superalloy into a mold for melting stock or a mold for recycled Ni-based unidirectionally solidified superalloy parts.
  • Ni-based unidirectionally solidified superalloy or growing a Ni-based unidirectionally solidified superalloy and removing the melting stock or recycled Ni-based unidirectionally solidified superalloy component from the melting stock mold or recycled Ni-based unidirectionally solidified superalloy component mold Including.
  • the recycling method of the Ni-based unidirectionally solidified superalloy part according to the thirteenth aspect of the invention is the recycling method of the Ni-based unidirectionally solidified superalloy part according to the twelfth aspect of the invention, which is further coated with an oxidation resistant coating.
  • a step of stripping the oxidation resistant coating of the Ni-based unidirectionally solidified superalloy component may be included.
  • the step of desulfurizing the Ni-based unidirectionally solidified superalloy part includes a sulfur component of 3 PPM in the Ni-based unidirectionally solidified superalloy part.
  • Desulfurization treatment may be performed so that the following is satisfied, and more preferably 2 PPM or less.
  • the sulfur component of the Ni-based unidirectionally solidified superalloy component exceeds 3 PPM, the high-temperature strength is insufficient as compared with the genuine material. If the sulfur component of the Ni-based unidirectionally solidified superalloy component is 2 PPM or less, the high temperature strength is restored to the same level as that of the genuine material.
  • the recycling method for Ni-based unidirectionally solidified superalloy parts according to the fifteenth invention is a recycling method for Ni-based unidirectionally solidified superalloy parts according to the tenth to fourteenth inventions, wherein the recycled Ni-based unidirectionally solidified superalloy parts are recycled.
  • the Ni-based unidirectionally solidified superalloy component recycling method according to the sixteenth aspect of the invention further includes a step (S322, S324) of performing solution treatment and aging precipitation treatment of the recycled Ni-based unidirectionally solidified superalloy component. Good.
  • the recycled Ni-based superalloy parts are further coated with a thermal barrier coating including a bond coating and a ceramic or with an oxidation resistant coating. It is good to include the process to do.
  • the recycling method for Ni-based unidirectionally solidified superalloy parts according to the eighteenth aspect of the invention is a method for recycling a Ni-based unidirectionally solidified superalloy turbine blade, turbine vane, combustor liner, splash plate, duct segment, or turbine disk. It is good to use at least one kind.
  • Ni-based single crystal superalloy parts or Ni-based unidirectionally solidified superalloy parts of the present invention sulfur components contained in the fuel and sulfurous acid gas in the atmosphere by long-term use and flight The sulfur component is removed even if the sulfur component penetrates into the Ni-based single crystal superalloy part or Ni-based unidirectionally solidified superalloy part under the influence of the Ni-based single crystal superalloy part or Ni-based unidirectionally solidified superalloy parts have a sulfur composition that is about the same as that of genuine materials, and high-temperature strength is the same as genuine Ni-based single crystal superalloy parts or Ni-based unidirectionally solidified superalloy parts. Is obtained.
  • Ni-based single crystal superalloy parts or Ni-based unidirectionally solidified superalloy parts can be recycled without wear and tear of rare metals, which alleviates the problem of securing rare metal suppliers and refines superalloys.
  • the problem of disposal of industrial waste that occurs in large quantities when recovering alloy elements is alleviated.
  • the Ni-based single crystals essential for improving the efficiency of gas turbines. The spread of superalloy parts or Ni-based unidirectionally solidified superalloy parts is promoted.
  • FIG. 1 is an overall perspective view of a used aircraft engine high-temperature high-pressure turbine blade after the ceramic coating is peeled off, and is a photograph substituted for a drawing.
  • FIG. 2 is a schematic configuration diagram of a vacuum high-frequency melting apparatus.
  • FIG. 3 is a flowchart for explaining the recycling method of the Ni-base superalloy component of the present invention, and shows the case of a single crystal alloy.
  • FIG. 4 shows a creep test result at 1100 ° C. and 137 MPa.
  • FIG. 5 shows the results of repeated oxidation tests conducted at 1100 ° C. for 1 hour and then at room temperature for 1 hour.
  • FIG. 6 is a diagram for explaining the relationship between the creep rupture life and the sulfur composition amount of a Ni-based single crystal superalloy.
  • FIG. 7 is a diagram for explaining the relationship between the creep rupture life and the sulfur composition amount of a Ni-based single crystal superalloy.
  • FIG. 8 is a graph showing a comparison of high cycle fatigue test results of genuine material (comparative material 1) and recycled material (Example 1) according to the method of the present invention.
  • FIG. 9 is a flowchart for explaining the recycling method of the Ni-base superalloy component of the present invention, and shows a case of a unidirectionally solidified alloy.
  • FIG. 2 is a schematic configuration diagram of a vacuum high-frequency melting apparatus.
  • the vacuum high-frequency melting apparatus has a molten crucible 10, a mold heating furnace 20, a mold 30, a mold lifting mechanism (not shown), and a vacuum vessel 50.
  • the molten metal crucible 10 is a crucible for melting and desulfurizing Ni-base superalloy parts, and for example, a calcia (CaO) crucible is used.
  • the molten crucible 10 has, for example, a cup shape having a spout, and a heating high-frequency coil 12 is provided on the outer peripheral portion.
  • Induction heating is a heating method that uses a phenomenon in which when a conductor is inserted into a coil connected to an AC power source, the coil and conductor are not in contact with each other, but the conductor is heated from the surface. Joule heat generated by resistance is used.
  • the mold heating furnace 20 includes a molten metal inlet 21, a lid heat insulating part 22, a lid heat generating part 23, a peripheral wall high-frequency coil 24, a peripheral wall heat insulating part 25, a peripheral wall heat generating part 26, a bottom peripheral heat generating part 27, a bottom peripheral heat insulating part 28, and a bottom surface.
  • a heat insulating portion 29 is provided.
  • the molten metal receiving port 21 is a guide part for pouring the molten metal poured from the molten metal crucible 10 into the mold 30.
  • the lid heating unit 23, the peripheral wall heating unit 26, and the bottom edge heating unit 27 are heating elements for heating the temperature inside the mold heating furnace 20 to a temperature at which the molten metal is maintained, and induction heating by the peripheral wall high-frequency coil 24 is performed. Used.
  • the lid heat insulating part 22, the peripheral wall heat insulating part 25, the bottom peripheral heat insulating part 28, and the bottom heat insulating part 29 are for maintaining the mold 30 installed in the furnace of the mold heating furnace 20 at the melting temperature of the Ni-based single crystal superalloy. Used for.
  • the mold 30 is a mold having a shape for casting a melting stock or a recycled Ni-based single crystal superalloy part, and the mold for the single crystal part is heated to a temperature higher than the melting temperature of the Ni-based single crystal superalloy.
  • the mold 30 may be a normal sand mold, but a precision casting method or a lost wax method may be used.
  • the mold 30 is manufactured using a precision casting method such as the lost wax method because the finished product is required to have dimensional accuracy and surface roughness.
  • the precision casting method is a method in which a mold is not used as a mold, and a complicated shape of a model can be cast by making a mold material into a slurry having good fluidity.
  • the lost wax method is a method in which a wax is used as a model, the model is wrapped with a plurality of refractory layers, and then the mold wax is eluted or incinerated to make a mold.
  • the selector unit 32 is an elongated tube having a diameter of several millimeters, and is provided between the mold 30 and the chill plate (cooling plate) 38. Only one crystal orientation is selected and grown, and a Ni-based superalloy is formed. Single crystal.
  • the in-mold molten metal portion 34 is a molten Ni-base superalloy in the mold 30.
  • the base solidified part 36 is a base part of a recycled Ni-based single crystal superalloy part solidified by the chill plate 38.
  • a water-cooled copper disk is used for the chill plate 38.
  • the mold lifting mechanism lifts and lowers the mold 30 on the chill plate 38.
  • Single-crystal solidified recycled Ni-based single crystal superalloy parts are manufactured by an improved Bridgman method in which a mold is drawn downward from a mold heating furnace, cooled by radiation heat radiation, and solidified upward from the bottom. For cooling, conduction cooling by contacting with gas or liquid may be used together.
  • the vacuum vessel 50 is a sealed vessel that accommodates the molten metal crucible 10, the mold heating furnace 20, the mold 30 and the mold lifting mechanism, and can perform casting of recycled Ni-based single crystal superalloy parts in a vacuum.
  • the solidification structure of recycled Ni-based single crystal superalloy parts is affected by the combination of the solid-liquid interface temperature gradient and the solidification rate.
  • a high-speed solidification method is adopted. By making this combination appropriate, a grain boundary crack and an equiaxed crystal do not occur, and a structure having a fine dendrite interval is obtained.
  • FIG. 3 is a flow chart for explaining the recycling method of the Ni-based single crystal superalloy part of the present invention, and shows a case where the apparatus of FIG. 2 is used.
  • a Ni-based single crystal superalloy part to be recycled is prepared (S100).
  • the parts to be recycled are of the following types.
  • the thermal barrier coating layer is damaged or the Ni-based single crystal superalloy substrate is damaged (thermal barrier)
  • the coating for example, ceramics such as alumina and zirconia can be used
  • the coating layer of the oxidation-resistant coating is damaged or the Ni-based single crystal superalloy substrate is damaged
  • the Ni-based single crystal superalloy substrate is damaged
  • Recycling methods that fall under the above (i) to (iii) and that are technically and economically difficult to continue to use in a gas turbine, or that are shown in this patent rather than being repaired It is judged that it is economically superior to use.
  • the surface of a Ni-based single crystal superalloy part that is a part to be recycled is preferably cleaned (S102). Then, the parts to be recycled are dried. Next, the parts to be recycled are put into the molten crucible 10, and the Ni-based single crystal superalloy parts are melted and desulfurized at a temperature not lower than the melting point of the Ni-based single crystal superalloy and lower than the melting point of the ceramic (S104). ).
  • the desulfurization treatment is not limited to the calcia (CaO) crucible, and has the following modes.
  • (A) A type in which calcia (CaO) is charged as a solid or powder into a molten crucible and separated from the molten metal after a lapse of time that the desulfurization treatment is normally completed.
  • the molten metal crucible is a crucible made of ceramic such as alumina or zirconia.
  • CaF 2 may be used instead of calcia (CaO).
  • calcia (CaO) MgO, SrO, BaO, Ra m O n (Ra: lanthanide), or may be used a mixture of these.
  • D In place of calcia (CaO), MgF 2 , SrF 2 , BaF 2 , Ra m F n (Ra: lanthanoid) or a mixture thereof may be used.
  • a step of adjusting the deviation from the pure material composition may be provided (S105). Since the bond coating of Ni-based single crystal superalloy parts contains a metal coating layer, re-melting the Ni-based single crystal superalloy parts without completely peeling the metal coating layer, the elemental composition compared to the genuine material The ratio varies. Also, Ni-based single crystal superalloy parts generate sulfides due to the sulfur component contained in the fuel and the effect of sulfurous acid gas in the atmosphere due to long-term use and flight. Easy to lose Al.
  • composition ratio recovery process in which elements lost due to the residual metal coating layer and sulfurous acid gas are added as compared with the genuine material to recover the element composition ratio to approximately the same as that of the genuine material (S105).
  • the term “substantially identical” refers to those within the allowable range as the composition ratio of the genuine material.
  • a mold for melting stock or a mold 30 for recycled Ni-based single crystal superalloy parts is placed in the mold heating furnace 20, and the temperature of the mold 30 is set to be equal to or higher than the melting temperature of the Ni-based single crystal superalloy by the mold heating furnace 20.
  • Heat (S106) Then, the molten Ni-based single crystal superalloy in the molten crucible 10 is poured into the mold 30 (S108). A Ni-based single crystal superalloy is grown in the mold 30 using the mold lifting mechanism and the chill plate 38 (S110). Then, the recycled Ni-based single crystal superalloy component is removed from the mold 30 (S112).
  • the mold heating step (S106) and the single crystal growth step (S110) can be omitted, and the solidified melting stock can be taken out (S112).
  • the parts to be recycled may be pretreated. That is, the thermal barrier coating of the part to be recycled is peeled off (S202), and then the surface of the part to be recycled is cleaned (S204). Subsequently, the same processing as in the above-described S104 to S112 is continued. That is, the parts to be recycled are put into the molten crucible 10, and the Ni-based single crystal superalloy parts are melted at a temperature equal to or higher than the melting point of the Ni-based single crystal superalloy and desulfurized (S206).
  • a step of adjusting the deviation from the pure material composition may be provided as a step of compensating for the loss of Al or the like that occurs as a side reaction during the melting and desulfurization processing of the Ni-based single crystal superalloy component (S207).
  • a mold for melting stock or a mold 30 for recycled Ni-based single crystal superalloy parts is placed in the mold heating furnace 20, and the temperature of the mold 30 is set to be equal to or higher than the melting temperature of the Ni-based single crystal superalloy by the mold heating furnace 20.
  • Heat (S208).
  • the molten Ni-based single crystal superalloy in the molten crucible 10 is poured into the mold 30 (S210).
  • a Ni-based single crystal superalloy is grown in the mold 30 using the mold lifting mechanism and the chill plate 38 (S212).
  • the recycled Ni-based single crystal superalloy component is removed from the mold 30 (S214).
  • the mold heating step (S208) and the single crystal growth step (S212) can be omitted, and the solidified melting stock can be taken out (S214).
  • the thermal barrier coating excluding the bond coating or the thermal barrier coating including the bond coating may be peeled off, or the Ni-based single crystal superalloy part having only the oxidation-resistant coating applied as it is or in an oxidation-resistant manner.
  • the coating may be peeled off and applied to an uncoated Ni-based single crystal superalloy part.
  • the melting stock produced in S112 and S214 is stored (S114, S216).
  • To manufacture recycled Ni-based single crystal superalloy parts from the melting stock prepare a mold corresponding to the shape of the target turbine rotor blade or turbine vane, etc., and use the vacuum high-frequency melting device to re-melt the crucible. 10 (S120) and solidify in one direction to form a single crystal.
  • the recycled Ni-based single crystal superalloy part is a turbine blade or turbine vane of Ni-based single crystal superalloy
  • solution treatment of the recycled Ni-based single crystal superalloy part is performed (S122), and then aging Precipitation processing (S124) is performed.
  • the strengthening phase ⁇ ′ phase
  • the recycled Ni-based single crystal superalloy component is coated with a thermal barrier coating or an oxidation resistant coating containing ceramic as required (S126).
  • Example 1 of a Ni-based single crystal superalloy a jet engine used HPT (high pressure turbine) blade made of PWA1484 (trademark) material is directly subjected to high-frequency melting in a vacuum, and desulfurized using a calcia (CaO) crucible. After that, a single crystal test piece was cast (hereinafter referred to as a composition-corrected desulfurization treatment material). As a comparative material 1, a single crystal test piece was cast using a genuine melting stock of Ni-based single crystal superalloy PWA1484 (trademark) (hereinafter referred to as a genuine material).
  • a jet engine used HPT rotor blade made of PWA1484 (trademark) material was directly subjected to high-frequency melting in a vacuum as it was without adjusting the composition components, and a single crystal test piece was cast (hereinafter simply recycled). Called material).
  • a jet crucible used for a PWA 1484 (trademark) material is adjusted to the same level as a genuine material, and a melting crucible made of ceramic such as alumina or zirconia is used. Then, high-frequency melting was directly performed in vacuum to cast a single crystal test piece (hereinafter referred to as an alloy composition correction material). Table 1 shows the elemental composition of each test material.
  • FIG. 4 is a diagram showing a creep test result at 1100 ° C. and 137 MPa.
  • the test piece subjected to composition adjustment and desulfurization exhibited a creep rupture life equivalent to that of the normal material.
  • Specific numerical values are shown in the creep test results of 1100 ° C. and 137 MPa for the regular and recycled materials in Table 2.
  • the composition-corrected desulfurized material of Example 1 showed the same or slightly larger creep life as that of the genuine material. Further, the elongation of the composition-corrected desulfurized material of Example 1 shows a practically sufficient value. From these results, it was confirmed that the recycling method for Ni-based single crystal superalloy parts of the present invention is effective.
  • the simple recycled material of Comparative Example 2 the creep life is about 40% shorter than that of the genuine material, but the elongation is larger than that of the genuine material.
  • the creep life is about 30% shorter than that of the genuine material, but the elongation is larger than that of the genuine material.
  • FIG. 5 is a diagram showing the results of a repeated oxidation test conducted under the condition of holding at 1100 ° C. for 1 hour and then holding at room temperature for 1 hour.
  • the weight increase in 45 cycles was +0.003 [mg / mm 2 ], which continued to show a weight increase. Therefore, oxidation from the Ni-base superalloy part was performed. No peeling of the object occurred, and the oxidation resistance was equal to or better than that of the regular material.
  • the weight reduction at 45 cycles shows a large reduction value of ⁇ 0.001 [mg / mm 2 ].
  • the alloy composition correction material of Comparative Example 3 shows a decreased value from a maximum value +0.0025 [mg / mm 2] Yes.
  • FIG. 6 is a diagram for explaining the relationship between the creep rupture life and the sulfur composition amount of the Ni-based single crystal superalloy, and shows the case where the sulfur composition amount is 0 ppm, 10 ppm, 20 ppm, and 100 ppm.
  • the sulfur composition amount of the Ni-based single crystal superalloy is 100 ppm, the creep rupture life is halved compared to 0 ppm.
  • FIG. 7 is a diagram for explaining the relationship between the creep rupture life and the sulfur composition amount of the Ni-based single crystal superalloy, and compares the comparative materials 1 to 3 of the present invention with Example 1.
  • the sulfur content of the composition-corrected desulfurized material is 2 ppm, which is the same as that of genuine material. On the other hand, it is about 10 ppm for simple recycled materials and about 6 ppm for alloy composition correction materials.
  • desulfurization treatment using a calcia (CaO) crucible according to the following chemical reaction formula, due to the presence of an appropriate amount of Al, for example, a melting treatment of 5 to 10 minutes, the sulfur composition amount is simply recycled material.
  • FIG. 8 shows the effect of the present invention on the high cycle fatigue life of a Ni-based single crystal superalloy according to Comparative Material 1 and Example 1.
  • the test conditions are 1000 ° C., maximum stress 600 megapascal, 60 hertz sine wave, and the sulfur composition amount of Example 1 is 2 ppm, which is the same as that of Comparative Material 1.
  • the high cycle fatigue life of Example 1 is 1,220,000 to 1,780,000 cycles, which is equal to or more than the 410,000 to 807,000 cycles of the comparative material 1 which is a genuine material.
  • the above results show that the present invention allows the parts to be recycled without degrading the high cycle fatigue life, which is an important requirement for turbine parts.
  • a method of manufacturing a recycled Ni-based unidirectionally solidified superalloy part will be described below.
  • Recycled Ni-based unidirectionally solidified superalloy parts are manufactured using the vacuum high-frequency melting apparatus shown in FIG.
  • the Ni-based single crystal superalloy is replaced with Ni-based unidirectionally solidified superalloy unless it contradicts its properties. That is, the shape of the recycled Ni-based unidirectionally solidified superalloy component mold is the same as that of the recycled Ni-based single crystal superalloy component casting except that the selector portion 32 is not provided.
  • FIG. 9 is a flowchart for explaining the recycling method of the Ni-based unidirectionally solidified superalloy part of the present invention, and shows a case where the apparatus of FIG. 1 is used.
  • a Ni-based unidirectionally solidified superalloy part to be recycled is prepared (S300).
  • the surface of the Ni-based unidirectionally solidified superalloy part that is the part to be recycled is preferably cleaned (S302). Then, the parts to be recycled are dried. Next, the parts to be recycled are put into the molten metal crucible 10 and the Ni-based unidirectionally solidified superalloy parts are melted and desulfurized at a temperature not lower than the melting point of the Ni-based unidirectionally solidified superalloy and lower than the melting point of the ceramic. (S304).
  • a step of compensating for the loss of Al or the like that occurs as a side reaction during the melting / desulfurization treatment of the Ni-based unidirectionally solidified superalloy component a step of adjusting the deviation from the genuine material composition may be provided (S305).
  • the melting stock mold or the recycled Ni-based unidirectionally solidified superalloy component mold 30 is placed in the mold heating furnace 20, and the temperature of the mold 30 is changed by the mold heating furnace 20 to the melting temperature of the Ni-based unidirectionally solidified superalloy. Heat to the above (S306). Then, the molten Ni-base superalloy in the molten crucible 10 is poured into the mold 30 (S308). A Ni-based unidirectionally solidified superalloy is grown in the mold 30 using the mold lifting mechanism and the chill plate 38 (S310). Then, the recycled Ni-based unidirectionally solidified superalloy component is removed from the mold 30 (S312). In the case of recycling to the melting stock, the mold heating step (S306) and the single crystal growth step (S310) can be omitted, and the solidified melting stock can be taken out (S312).
  • the parts to be recycled may be pretreated. That is, the thermal barrier coating of the part to be recycled is peeled off (S402), and then the surface of the part to be recycled is cleaned (S404). Subsequently, the same processing as in S304 to S312 described above is continued. That is, the parts to be recycled are put into the molten crucible 10, and the Ni-based unidirectionally solidified superalloy parts are melted at a temperature equal to or higher than the melting point of the Ni-based unidirectionally solidified superalloy (S406).
  • a step of adjusting the deviation from the pure material composition may be provided as a step of compensating for the loss of Al or the like that occurs as a side reaction during the melting and desulfurization processing of the Ni-based unidirectionally solidified superalloy component (S407).
  • the melting stock mold or the recycled Ni-based unidirectionally solidified superalloy component mold 30 is placed in the mold heating furnace 20, and the temperature of the mold 30 is changed by the mold heating furnace 20 to the melting temperature of the Ni-based unidirectionally solidified superalloy. It heats above (S408). Then, the molten Ni-base superalloy in the molten crucible 10 is poured into the mold 30 (S410). A Ni-based unidirectionally solidified superalloy is grown in the mold 30 using the mold lifting mechanism and the chill plate 38 (S412). Then, the recycled Ni-based unidirectionally solidified superalloy component is removed from the mold 30 (S414). In the case of recycling to the melting stock, the mold heating step (S408) and the single crystal growth step (S412) can be omitted, and the solidified melting stock can be taken out (S414).
  • the thermal barrier coating excluding the bond coating or the thermal barrier coating including the bond coating may be peeled off, or the Ni-based unidirectionally solidified superalloy part having only the oxidation-resistant coating applied as it is or in an acid-resistant manner.
  • the coating may be peeled off and applied to an uncoated Ni-based unidirectionally solidified superalloy part.
  • the melting stock produced in S312 and S414 is stored (S314, S416).
  • To manufacture recycled Ni-based unidirectionally solidified superalloy parts from the melting stock prepare a mold corresponding to the shape of the target turbine blade and turbine vane, etc. It is melted in the crucible 10 (S320) and solidified in one direction to obtain a one-way solidified part.
  • the recycled Ni-based unidirectionally solidified superalloy part is a Ni-based unidirectionally solidified superalloy turbine blade or turbine vane, etc.
  • solution treatment of the recycled Ni-based unidirectionally solidified superalloy part is performed (S322)
  • an aging precipitation process is performed.
  • the strengthening phase ⁇ ′ phase
  • the strengthening phase becomes an appropriate size and shape.
  • it is coated with a thermal barrier coating or an oxidation resistant coating containing ceramic (S326).
  • the recycling to the melting stock and the case of the turbine rotor blade or the turbine vane as the recycled Ni-based single crystal superalloy component are shown, but the present invention is not limited to this. Even if it is a large part compared to a turbine blade, turbine vane, or duct segment, such as a combustor liner, a splash plate, or a turbine disk, a single-crystal part or one-way Applicable by using solidified parts.
  • the sulfur component is affected by the sulfur component contained in the fuel or sulfurous acid gas in the atmosphere due to long-term use or flight, and the sulfur component is Ni-based single crystal. Even if it enters the inside of the superalloy part, the sulfur composition of the Ni-based single crystal superalloy part can be reduced to the same level as that of the genuine material by the desulfurization treatment. Therefore, even if the initial manufacturing cost is higher than ordinary casting alloys and unidirectionally solidified alloys, the recycling costs related to maintenance and maintenance costs are low, so the lifetime cost of Ni-based single crystal superalloy parts is reduced. The spread of Ni-based single crystal superalloy parts is promoted.
  • Ni-based single crystal superalloy parts that have already been manufactured can be recycled without wear and tear of rare metals, the problem of securing rare metal suppliers is alleviated, and a large amount is required when refining superalloys and recovering alloy elements. There is an advantage that the problem of the industrial waste treatment that occurs in the country is also alleviated.
  • the recycling method by direct remelting of the Ni-based single crystal superalloy parts of the present invention is similarly applied to Ni-based unidirectionally solidified superalloy parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Ni基単結晶/一方向凝固超合金基材の表面に少なくともセラミックを含む遮熱コーティングを設けてなるNi基単結晶/一方向凝固超合金部品のリサイクル方法であって、Ni基単結晶/一方向凝固超合金の融点以上であってセラミックの融点未満の温度で、Ni基単結晶/一方向凝固超合金部品を溶解し脱硫処理する工程と、リサイクルNi基単結晶/一方向凝固超合金部品用鋳型の温度をNi基単結晶/一方向凝固超合金の溶解温度以上に加熱する工程と、鋳型に脱硫処理済みの溶解したNi基単結晶/一方向凝固超合金を注湯して、メルティングストックを製造する若しくはNi基単結晶/一方向凝固超合金を成長させる工程と、鋳型からメルティングストック若しくはリサイクルNi基単結晶/一方向凝固超合金部品を取り外す工程とを含む。

Description

Ni基超合金部品のリサイクル方法
 本発明は、一旦使用したNi基単結晶超合金部品又はNi基一方向凝固超合金部品の廃材を用いて、超合金を精製して合金元素を回収することなく、再びNi基超合金としてジェットエンジンやガスタービンなどのタービン動翼やタービンベーンなどに使用する場合に用いて好適な、Ni基単結晶超合金部品及びNi基一方向凝固超合金部品のリサイクル方法に関する。
 Ni基超合金には、鋳造法に応じて多結晶、一方向凝固、単結晶の三種類が知られている。このうち強度については、Ni基単結晶超合金がもっとも強度が高く、次いでNi基一方向凝固超合金、Ni基多結晶超合金の順になっている。
 また、これらを用いたNi基超合金部品は、例えばジェットエンジンやガスタービンなどのタービン動翼やタービンベーンとして利用されている。例えばジェットエンジンでは、タービン入口ガス温度が1000℃から1700℃と、ニッケルの融点1453℃や鉄の融点1535℃に相当する高い温度となっている。一般にタービン入口ガス温度が高いほどエネルギー効率が高まり、燃料価格の上昇をエンジン効率の向上で相殺している。
 他方で、タービン入口ガス温度はニッケルの融点温度よりも高い場合が多いので、熱遮蔽コーティングをしている場合でさえ、タービン動翼やタービンベーンは消耗品として扱われている。例えばジェット機の離陸時に、砂塵などでジェットエンジン部品の熱遮蔽コーティングが剥離すると、タービン動翼やタービンベーンは飛行途中に損傷が進行する。損傷したタービン動翼やタービンベーンは、定期検査時に交換される。交換したタービン動翼やタービンベーンは、損傷が軽度であれば修理(後述する特許文献1、2、3、4で述べられているような再生処理を含む場合もある)し、損傷が重度であれば廃棄している。繰り返し修理はせいぜい数回程度が限度であるため、現在ではすべてのタービン動翼やタービンベーンが最終的には廃棄されている。
 そこで、特許文献1では、クリープ損傷を受けた鋳造多結晶Ni基超合金製タービン動翼やタービンベーンの再生方法が提案されている。(以降、部品修理を目的として行われる処理を再生、修理不能となった部品を再度部品化することを目的として行われる処理をリサイクルと呼ぶ)また、特許文献2では、高温使用により強度が劣化した場合に、Ni基超合金材料に対して完全溶体化熱処理と時効熱処理を行うことで、単結晶材料の余寿命を延長することが提案されている。
 特許文献1、2の再生方法は、Ni基超合金材料に対して、再生熱処理によって金属組織を再生する方法である。再生熱処理は、劣化した金属ミクロ組織を熱処理のみで元に戻す方法で、溶体化処理によって、劣化した組織をいったん消滅させた後、時効処理によって、再度健全な微細析出組織を再生する。このため、タービン動翼やタービンベーンの損傷の程度が大きい場合には再生熱処理では対処不可能となり、廃棄するしかなかった。
 さらに、特許文献3では、Ni基超合金部品が高温使用により強度劣化した場合に、若返り処理・再生処理・補修を行うに際して、一旦耐熱性の保護層を除去して、腐食層・酸化層・腐食生成物・酸化生成物の除去が行われると共に、耐熱性保護層のクラックも修理される。その後、耐熱性の保護層の再被覆を行なうことが提案されている。
 そして、Ni基超合金部品では、合金基材の磨耗やクラックに対して、例えば特許文献4に示す方法で、単結晶を維持しながら、磨耗やクラックの補修が行われている。しかし、最終的に製品寿命が尽きて使用済み廃材になると、特許文献1、2、3、4に提案されたような再生処理では再生不能であり、例えば特許文献5に示す方法で、部品素材から高いコストをかけて一部の高価な元素のみ精製している。
 一般にNi基超合金部品は、不純物元素の混入に対する感受性が高いことが知られている(例えば、非特許文献1参照)。実際、従来の鋳造多結晶タービン動翼やタービンベーンなどでは、再溶解によりリサイクルされた超合金のクリープ特性、熱疲労特性、耐環境特性を保証できなかった。このため、一旦使用したNi基超合金部品の再溶解による、超合金の組成をほぼ維持したままのリサイクルは、製品であるジェットエンジンやガスタービンを所有する航空会社や発電事業者においては、全く行われてこなかった。
 他方で、Ni基超合金部品は、ハフニウム、レニウム等の高価で希少なレアメタルを含有している場合がある。レアメタルは、価格面の問題ばかりでなく、資源国が偏在しているため、供給先を安定的に確保することが困難な場合がある。このため、新しく製品を製造しようとする場合には、レアメタルの価格変動と供給リスクの影響を受けて、顧客との約定価格で契約した納品時期に当該製品を提供するのが困難な事態がしばしば発生しており(例えば、2007年のカザフスタンのレニウム輸出停止措置、非特許文献2参照)、価格安定化および安定供給が強く求められている。
 そこで、本発明者らは、特許文献6で、一旦使用したNi基超合金部品の再溶解による、超合金の組成をほぼ維持したままのリサイクル品の製造工程を提案している。しかし、現在の段階では、航空会社や発電事業者によるリサイクル品の使用には至っていない。
特開昭61-119661号公報 特許第3069580号公報 特表2010-520814号公報 米国特許第6024792号公報 特表平10-508657号公報 特開2014-70231号公報
High Temperature Alloys for Gas Turbines and Other Applications 1986 (D. Reidel Publishing Company) D.p.787 レアメタルシリーズ2011 レニウムの需要・供給及び価格の動向 金属資源レポート 国立研究開発法人石油天然ガス・金属鉱物資源機構 2011/11/30
 本発明は上記課題を解決するもので、Ni基超合金部品のリサイクルコストの大幅削減とNi基超合金部品を使用した高効率ガスタービン機関のライフタイムコストの大幅な削減が可能であると共に、新造品と同程度の高温強度と耐酸化性を有するNi基超合金部品のリサイクル方法を提供することを目的とする。
 すなわち、本発明者らは鋭意研究を行ない、Ni基超合金において、不純物元素の混入によりタービン動翼やタービンベーンなどに要求されるクリープ特性、熱疲労特性、耐環境特性が維持できなかった理由を考察した。Ni基超合金では、これら不純物元素の結晶粒界への偏析が結晶粒界の弱化を招き合金強度を低下させることが、タービン動翼やタービンベーンなどに要求されるクリープ特性を維持できない原因である。そこで、本発明者らはさらに鋭意研究を行い、不純物元素の中でも特に硫黄が強度や耐酸化性に悪影響を与えることを明らかにするとともに、溶解時に脱硫を行い、脱硫他の理由により変動した組成を純正材同等に補正することにより、純正材と同等にクリープ破断寿命と耐酸化性を回復させる技術を開発した。この結果、ジェットエンジン部品やガスタービン部品を、直接再溶解により、純正材同等のクリープ破断寿命と耐酸化性を有する形でリサイクルする方法を発明した。
 第1の発明のNi基単結晶超合金部品のリサイクル方法は、例えば図2に示すように、セラミックを含む遮熱コーティングで被覆されたNi基単結晶超合金部品において、遮熱コーティングの被覆層が損壊し、又はNi基単結晶超合金基材に損傷が発生した場合の当該Ni基単結晶超合金部品のリサイクル方法であって、Ni基単結晶超合金の融点以上であってセラミックの融点未満の温度で、Ni基単結晶超合金部品を溶解し脱硫処理する工程(S104)と、リサイクルNi基単結晶超合金部品用鋳型の温度をNi基単結晶超合金の溶解温度以上に加熱する工程(S106)と、メルティングストック用鋳型またはリサイクルNi基単結晶超合金部品用鋳型に脱硫処理済みの溶解したNi基単結晶超合金を注湯して、鋳造原材料として用いる合金インゴット(以後メルティングストックと呼ぶ)を製造する工程またはNi基単結晶超合金を成長させる工程(S108、S110)と、メルティングストック用鋳型またはリサイクルNi基単結晶超合金部品用鋳型からメルティングストックまたはリサイクルNi基単結晶超合金部品を取り外す工程(S112)と、を含む。
 このように構成された第1の発明のNi基単結晶超合金部品のリサイクル方法では、回収したNi基単結晶超合金部品は損傷しているため、その表面に不純物が存在する可能性があり、好ましくは洗浄を行う。ここで、遮熱コーティングの被覆層に生じる損壊には、剥がれ、浮き、欠損、焼結、溶融がある。Ni基単結晶超合金基材に生じる損傷には、クラック、変形、欠損、腐食、酸化層の生成、腐食生成物の付着、酸化生成物の付着、金属組織劣化、溶融の類型がある。
 次に、Ni基単結晶超合金部品を溶解し脱硫処理するが、溶解温度はNi基単結晶超合金の融点以上であってセラミックの融点未満の温度とする。溶解温度の下限値は、Ni基単結晶超合金の融点である1350℃付近よりも高い必要があり、溶解速度が実用的に得られる温度、例えば1500℃~1600℃とする。溶解温度の上限値は、セラミックがアルミナの場合の融点2050℃やジルコニアの融点2720℃よりも低い必要があり、他方で溶解温度を上げ過ぎると合金元素の蒸発が激しくなり組成制御が困難になるため、2000℃以下が好ましい。溶解温度は、Ni基単結晶超合金部品の溶解速度が遅すぎないで、かつ、合金元素の蒸発が少なく組成制御が容易な範囲として、1400℃から1700℃の範囲がよく、特に好ましくは1500℃から1600℃の範囲である。
 脱硫処理は、硫黄成分がNi基単結晶超合金部品に与える悪影響を除くために行う。Ni基単結晶超合金部品は長期間の使用や飛行によって、燃料に含まれる硫黄成分や大気中の亜硫酸ガスの影響を受けて、硫黄成分がNi基単結晶超合金部品の内部に侵入する。そして、硫黄成分がNi基単結晶超合金部品の内部に侵入した状態で、リサイクル品の再溶解を行うと高温強度の低下を招く。脱硫処理には、リサイクル対象のNi基単結晶超合金部品の再溶解の際に、例えばカルシア(CaO)るつぼを使用して行う。
 鋳型は、メルティングストック用またはリサイクルNi基単結晶超合金部品を鋳造するための形状を有する鋳型であって、単結晶部品鋳造にあたっては、Ni基単結晶超合金の溶解温度以上に加熱しておく。単結晶部品用鋳型温度は、Ni基単結晶超合金を成長させるのに適した温度がよく、温度が高すぎると凝固の制御が困難になるから、Ni基単結晶超合金の融点と比較して若干高い程度がよく、例えば1400℃から1600℃の範囲とし、特に好ましくは1450℃から1500℃の範囲とする。
 そして、鋳型に脱硫処理済みの溶解したNi基単結晶超合金を注湯して、メルティングストックとするか、あるいは単結晶部品とする。Ni基単結晶超合金は、母相であるγ相(Ni固溶体)中に、好ましくは60~70vol%のγ’相(NiAlを基本組成とするL1規則相)が整合析出したミクロ組織を有し、整合界面に形成される界面転位網が転位の移動を抑止することにより強化している。続いて、鋳型からメルティングストックまたはリサイクルNi基単結晶超合金部品を取り外す。
 第2の発明のNi基単結晶超合金部品のリサイクル方法は、例えば図3に示すように、第1の発明のNi基単結晶超合金部品のリサイクル方法であって、さらに、Ni基単結晶超合金部品の遮熱コーティングを剥離する工程(S202)を含むとよい。
 好ましくは、第2の発明のリサイクル方法では、Ni基単結晶超合金部品のボンドコーティングを除く遮熱コーティングを剥離しても、ボンドコーティングを含む遮熱コーティングを剥離してもよい。
 このように構成された第2の発明のNi基単結晶超合金部品のリサイクル方法では、リサイクルに使用するNi基単結晶超合金部品について、遮熱コーティングが残留している場合は、これを剥離することで、遮熱コーティングに含まれるセラミックス又は金属元素の影響を低減している。
 第3の発明のNi基単結晶超合金部品のリサイクル方法は、耐酸化コーティングで被覆されたNi基単結晶超合金部品またはコーティングされていないNi基単結晶超合金部品において、耐酸化コーティングの被覆層が損壊し、又はNi基単結晶超合金基材に損傷が発生した場合の当該Ni基単結晶超合金部品のリサイクル方法であって、Ni基単結晶超合金の融点以上でNi基単結晶超合金部品を溶解し脱硫処理する工程と、リサイクルNi基単結晶超合金部品用鋳型の温度をNi基単結晶超合金の溶解温度以上に加熱する工程と、メルティングストック用鋳型またはリサイクルNi基単結晶超合金部品用鋳型に脱硫処理済みの溶解したNi基単結晶超合金を注湯して、メルティングストックを製造させ、またはNi基単結晶超合金を成長させる工程と、メルティングストック用鋳型またはリサイクルNi基単結晶超合金部品用鋳型からメルティングストックまたはリサイクルNi基単結晶超合金部品を取り外す工程とを含む。
 第4の発明のNi基単結晶超合金部品のリサイクル方法は、第3の発明のNi基単結晶超合金部品のリサイクル方法であって、さらに、耐酸化コーティングで被覆されたNi基単結晶超合金部品の耐酸化コーティングを剥離する工程を含むとよい。
 好ましくは、第5の発明のNi基単結晶超合金部品のリサイクル方法は、Ni基単結晶超合金部品を脱硫処理する工程が、当該Ni基単結晶超合金部品の硫黄成分が3PPM以下となるように脱硫処理するとよく、さらに好ましくは2PPM以下とするとよい。Ni基単結晶超合金部品の硫黄成分が3PPMを超えると、純正材と比較して高温強度が不足する。Ni基単結晶超合金部品の硫黄成分が2PPM以下であれば、純正材と同じ程度まで高温強度が回復する。
 好ましくは、第6の発明のNi基単結晶超合金部品のリサイクル方法は第1乃至第5の発明のNi基単結晶超合金部品のリサイクル方法であって、さらに、リサイクルNi基単結晶超合金の合金組成が、当該Ni基単結晶超合金部品の純正材に許容される組成範囲に入るように、欠乏する元素について添加して、組成調整を行う工程(S105、S207)を含むとよい。
 好ましくは、第7の発明のリサイクルNi基単結晶超合金部品は、Ni基単結晶超合金の成長工程に、一方向凝固によって単結晶とする工程を含み、さらに、Ni基単結晶超合金部品の溶体化処理と時効析出処理を行う工程(S122、S124)を含むとよい。溶体化処理は、合金の強化相であるγ’相が、好ましくは完全に固溶体に溶解する温度以上に加熱して、十分な時間保持し均質化を行うと共に、急冷して粗大なγ’相の析出を阻止する熱処理をいう。溶体化処理では、例えば、1250℃~1380℃で0.5時間乃至4時間の熱処理後空冷する。時効析出処理は、硬さ、強さ又は耐食性などを増進させるために適切な温度で、溶体化処理(固溶化熱処理)済の製品を均熱保持する熱処理をいう。時効処理として、例えば、1050℃~1150℃で5時間乃至10時間程度保持し、空冷した後、さらに850℃~900℃で20時間保持した後空冷の2段階熱処理を施す。
 好ましくは、第8の発明のNi基単結晶超合金部品のリサイクル方法は、さらに、リサイクルNi基単結晶超合金部品を、ボンドコーティングおよびセラミックを含む遮熱コーティングで被覆する工程または耐酸化コーティングで被覆する工程(S126)を含むとよい。遮熱コーティングは、熱伝導率の低いセラミックスのトップコートと、基材の酸化を防止するボンドコーティングよりなる。ボンドコーティングには、Alを多く含む金属コーティングや、耐酸化性と基材に対する拡散を抑制した平衡コーティング等が用いられる。
 好ましくは、第9の発明のNi基単結晶超合金部品のリサイクル方法は、Ni基単結晶超合金のタービン動翼、タービンベーン、燃焼器ライナー、スプラッシュプレート、ダクトセグメント、又はタービンディスクの少なくとも一種類に用いるとよい。
 主応力方向に結晶粒界を有さない一方向凝固材についても、脱硫により純正材と同等のクリープ強度と耐酸化性を得ることが可能であり、本発明のリサイクル方法が適用可能である。
 第10の発明のNi基一方向凝固超合金部品のリサイクル方法は、例えば図9に示すように、セラミックを含む遮熱コーティングで被覆されたNi基一方向凝固超合金部品において、遮熱コーティングの被覆層が損壊し、又はNi基一方向凝固超合金基材に損傷が発生した場合の当該Ni基一方向凝固超合金部品のリサイクル方法であって、Ni基一方向凝固超合金の融点以上であってセラミックの融点未満の温度で、Ni基一方向凝固超合金部品を溶解し脱硫処理する工程(S304)と、リサイクルNi基一方向凝固超合金部品用鋳型の温度をNi基一方向凝固超合金の溶解温度以上に加熱する工程(S306)と、メルティングストック用鋳型またはリサイクルNi基一方向凝固超合金部品用鋳型に脱硫処理済みの溶解したNi基超合金を注湯して、メルティングストックを製造させ、またはNi基一方向凝固超合金を成長させる工程(S308、S310)と、メルティングストック用鋳型またはリサイクルNi基一方向凝固超合金部品用鋳型からメルティングストックまたはリサイクルNi基一方向凝固超合金部品を取り外す工程(S312)とを含む。
 好ましくは、第11の発明のNi基一方向凝固超合金部品のリサイクル方法は、例えば図9に示すように、第10の発明のNi基一方向凝固超合金部品のリサイクル方法であって、さらに、Ni基一方向凝固超合金部品のボンドコーティングを除く遮熱コーティング、またはボンドコーティングを含む遮熱コーティングを剥離する工程(S402)を含むとよい。
 第12の発明のNi基一方向凝固超合金部品のリサイクル方法は、耐酸化コーティングで被覆されたNi基一方向凝固超合金部品またはコーティングされていないNi基一方向凝固超合金部品において、耐酸化コーティングの被覆層が損壊し、又はNi基一方向凝固超合金基材に損傷が発生した場合の当該Ni基一方向凝固超合金部品のリサイクル方法であって、Ni基一方向凝固超合金の融点以上でNi基一方向凝固超合金部品を溶解し脱硫処理する工程と、リサイクルNi基一方向凝固超合金部品用鋳型の温度をNi基一方向凝固超合金の溶解温度以上に加熱する工程と、メルティングストック用鋳型またはリサイクルNi基一方向凝固超合金部品用鋳型に脱硫処理済みの溶解したNi基超合金を注湯して、メルティングストックを製造させ、またはNi基一方向凝固超合金を成長させる工程と、メルティングストック用鋳型またはリサイクルNi基一方向凝固超合金部品用鋳型からメルティングストックまたはリサイクルNi基一方向凝固超合金部品を取り外す工程とを含む。
 好ましくは、第13の発明のNi基一方向凝固超合金部品のリサイクル方法は、第12の発明のNi基一方向凝固超合金部品のリサイクル方法であって、さらに、耐酸化コーティングで被覆されたNi基一方向凝固超合金部品の耐酸化コーティングを剥離する工程を含むとよい。
 好ましくは、第14の発明のNi基一方向凝固超合金部品のリサイクル方法は、Ni基一方向凝固超合金部品を脱硫処理する工程が、当該Ni基一方向凝固超合金部品の硫黄成分が3PPM以下となるように脱硫処理するとよく、さらに好ましくは2PPM以下とするとよい。Ni基一方向凝固超合金部品の硫黄成分が3PPMを超えると、純正材と比較して高温強度が不足する。Ni基一方向凝固超合金部品の硫黄成分が2PPM以下であれば、純正材と同じ程度まで高温強度が回復する。
 好ましくは、第15の発明のNi基一方向凝固超合金部品のリサイクル方法は第10乃至第14の発明のNi基一方向凝固超合金部品のリサイクル方法であって、リサイクルNi基一方向凝固超合金の合金組成が、当該Ni基一方向凝固超合金部品の純正材に許容される組成範囲に入るように、欠乏する元素について添加して、組成調整を行う工程(S305、S407)を含むとよい。
 好ましくは、第16の発明のNi基一方向凝固超合金部品のリサイクル方法は、さらに、リサイクルNi基一方向凝固超合金部品の溶体化処理と時効析出処理を行う工程(S322、S324)を含むとよい。
 好ましくは、第17の発明のNi基一方向凝固超合金部品のリサイクル方法は、さらに、リサイクルNi基超合金部品を、ボンドコーティングおよびセラミックを含む遮熱コーティングで被覆する工程または耐酸化コーティングで被覆する工程を含むとよい。
 好ましくは、第18の発明のNi基一方向凝固超合金部品のリサイクル方法は、Ni基一方向凝固超合金のタービン動翼、タービンベーン、燃焼器ライナー、スプラッシュプレート、ダクトセグメント、又はタービンディスクの少なくとも一種類に用いるとよい。
 本発明のNi基単結晶超合金部品又はNi基一方向凝固超合金部品の直接再溶解によるリサイクル方法によれば、長期間の使用や飛行によって、燃料に含まれる硫黄成分や大気中の亜硫酸ガスの影響を受けて、硫黄成分がNi基単結晶超合金部品又はNi基一方向凝固超合金部品の内部に侵入していても、硫黄成分が除去されるため、Ni基単結晶超合金部品又はNi基一方向凝固超合金部品の硫黄組成が純正材と同程度に低下して、高温強度が純正材のNi基単結晶超合金部品又はNi基一方向凝固超合金部品と同程度のリサイクル品が得られる。
 また、既に製造済みのNi基単結晶超合金部品又はNi基一方向凝固超合金部品が、レアメタルの損耗なくリサイクルできるので、レアメタルの供給先確保の問題が緩和されると共に、超合金を精製して合金元素を回収する場合に多量に発生する産業廃棄物処理の問題も緩和される利点がある。さらに、本発明のNi基単結晶超合金部品又はNi基一方向凝固超合金部品のリサイクル方法の普及によって、レアメタル需要と価格が安定するため、ガスタービンの高効率化に必須のNi基単結晶超合金部品又はNi基一方向凝固超合金部品の普及が促進される。
図1は、セラミックコーティング剥離後の使用済み航空機エンジン高温高圧タービン動翼の全体斜視図で、図面代用写真である。 図2は、真空高周波溶解装置の概略構成図である。 図3は、本発明のNi基超合金部品のリサイクル方法を説明する流れ図で、単結晶合金の場合を示している。 図4は、1100℃、137MPaにおけるクリープ試験結果である。 図5は、1100℃、1時間保持後に室温1時間保持の条件で行った繰り返し酸化試験の結果である。 図6は、Ni基単結晶超合金のクリープ破断寿命と硫黄組成量の関係を説明する図である。 図7は、Ni基単結晶超合金のクリープ破断寿命と硫黄組成量の関係を説明する図である。 図8は、純正材(比較材1)と本発明方法によるリサイクル材(実施例1)の高サイクル疲労試験結果の比較を示すグラフである。 図9は、本発明のNi基超合金部品のリサイクル方法を説明する流れ図で、一方向凝固合金の場合を示している。
 以下、図面を用いて本発明を説明する。
 図2は、真空高周波溶解装置の概略構成図である。図において、真空高周波溶解装置は、溶湯るつぼ10、鋳型加熱炉20、鋳型30、鋳型昇降機構(図示せず)、及び真空容器50を有している。
 溶湯るつぼ10は、Ni基超合金部品を溶解し脱硫処理するためのるつぼで、例えばカルシア(CaO)るつぼが使用される。溶湯るつぼ10は、例えば注ぎ口を有するコップ形状をしており、外周部に加熱用の高周波コイル12が設けられている。誘導加熱は、交流電源につながれたコイルの中に,導体を挿入すると、コイルと導体は非接触にもかかわらず、導体が表面から加熱される現象を用いる加熱方法で、うず電流と導体の電気抵抗で発生するジュール熱を用いている。
 鋳型加熱炉20は、溶湯受け口21、蓋部断熱部22、蓋部発熱部23、周壁高周波コイル24、周壁断熱部25、周壁発熱部26、底周縁発熱部27、底周縁断熱部28、底面断熱部29を有している。溶湯受け口21は、溶湯るつぼ10から注がれる溶湯を、鋳型30に注ぎ込むための案内部である。蓋部発熱部23、周壁発熱部26、底周縁発熱部27は、鋳型加熱炉20の炉内温度を溶湯が維持される温度に加熱するための発熱体で、周壁高周波コイル24による誘導加熱を用いている。蓋部断熱部22、周壁断熱部25、底周縁断熱部28、底面断熱部29は、鋳型加熱炉20の炉内に設置される鋳型30をNi基単結晶超合金の溶解温度に保持するために用いる。
 鋳型30は、メルティングストック又はリサイクルNi基単結晶超合金部品を鋳造するための形状を有する鋳型であって、単結晶部品用鋳型はNi基単結晶超合金の溶解温度以上に加熱しておく。メルティングストック用の場合は、鋳型30は通常の砂型でよいが、精密鋳造法やロストワックス法を用いてもよい。タービン動翼やタービンベーン用の場合では、出来上がった製品に格段に寸法精度、表面粗さが要求されるために、鋳型30は例えばロストワックス法のような精密鋳造法を用いて製作される。精密鋳造法は鋳型に金型を用いない方法で、鋳型材料を流動性のよいスラリーとすることで、模型の複雑な形状を鋳造できる。ロストワックス法は、模型にろうを用い、模型を複数の耐火物層で包んだ後、模型のろうを溶出又は焼却して鋳型を作る方法である。
 セレクタ部32は、直径数mm程度の細長い管で、鋳型30とチルプレート(冷却板)38の間に設けられており、一つの結晶方位だけを選択して成長させて、Ni基超合金の単結晶とする。鋳型内溶湯部34は、鋳型30内のNi基超合金の溶湯である。基部凝固部36は、チルプレート38によって凝固したリサイクルNi基単結晶超合金部品の基部である。チルプレート38は、例えば水冷銅盤を用いる。
 鋳型昇降機構は、チルプレート38に乗った鋳型30を昇降する。単結晶凝固したリサイクルNi基単結晶超合金部品は、鋳型加熱炉から鋳型を下方に引出し、ふく射放熱で冷却し、下部から上方に向かって凝固させる改良ブリッジマン法で製造される。冷却には、気体または液体と接触させることによる伝導冷却を併用してもよい。真空容器50は、溶湯るつぼ10、鋳型加熱炉20、鋳型30、鋳型昇降機構を収容する密閉容器で、リサイクルNi基単結晶超合金部品の鋳造を全て真空中で行なうことができる。
 リサイクルNi基単結晶超合金部品の凝固組織は、固液界面の温度勾配と凝固速度の組み合わせに影響される。健全な単結晶組織を経済的に実現させるためには高速凝固法を採用する。この組み合わせを適正にすることで、粒界割れや等軸晶が発生せず、デンドライト間隔が細かい組織を得る。
 リサイクルNi基単結晶超合金部品の鋳造では、温度勾配が小さいと、異結晶やフレッケル等の欠陥が発生するため、凝固界面での温度勾配をできるだけ大きくして、単結晶を安定して成長させる。
 このように構成された真空高周波溶解装置を用いて、リサイクルNi基単結晶超合金部品を製造する方法を次に説明する。
 図3は、本発明のNi基単結晶超合金部品のリサイクル方法を説明する流れ図で、図2の装置を用いる場合を示している。まず、リサイクル対象となるNi基単結晶超合金部品を用意する(S100)。このリサイクル対象部品は、以下の類型のものである。
(i)セラミックを含む遮熱コーティングで被覆されたNi基単結晶超合金部品において、遮熱コーティングの被覆層が損壊し、又はNi基単結晶超合金基材に損傷が発生したもの(遮熱コーティングとしては、例えば、アルミナ、ジルコニア等のセラミックを用いることができる)、
(ii)耐酸化コーティングが被覆されたNi基単結晶超合金部品において、耐酸化コーティングの被覆層が損壊し、またはNi基単結晶超合金基材に損傷が発生したもの、
(iii)コーティングされていないNi基単結晶超合金部品において、Ni基単結晶超合金基材に損傷が発生したもの、
(iv)上記(i)~(iii)に該当するものであって、ガスタービンでの継続使用が技術的・経済的に困難なもの、または修理するよりも本特許に示されているリサイクル方法を用いる方が経済的に優位であると判断されるものである。
 まず、リサイクル対象部品であるNi基単結晶超合金部品の表面を好ましくは洗浄する(S102)。そしてリサイクル対象部品を乾燥させる。次に、リサイクル対象部品を溶湯るつぼ10に投入して、Ni基単結晶超合金の融点以上であってセラミックの融点未満の温度で、Ni基単結晶超合金部品を溶解し脱硫処理する(S104)。なお、脱硫処理はカルシア(CaO)るつぼに限定されるものではなく、次の態様がある。
(a)カルシア(CaO)を固体又は粉末で溶湯るつぼに投入して、脱硫処理が通常完了する程度の時間経過後に溶融金属と分離する類型。ここで、溶湯るつぼはアルミナ、ジルコニア等のセラミックを素材とするるつぼである。
(b)カルシア(CaO)に代えて、CaFを用いてもよい。
(c)カルシア(CaO)に代えて、MgO、SrO、BaO、Ra(Ra:ランタノイド)、もしくはこれらを混合したものを用いてもよい。
(d)カルシア(CaO)に代えて、MgF、SrF、BaF、Ra(Ra:ランタノイド)もしくはこれらを混合したものを用いてもよい。
 Ni基単結晶超合金部品溶解・脱硫処理の際に副反応として起きる、Al等の減量を補填する工程として、純正材組成との乖離を調整する工程を設けてもよい(S105)。Ni基単結晶超合金部品のボンドコーティングは金属被覆層を含んでいるため、金属被覆層を完璧に剥離しないでNi基単結晶超合金部品を再溶解させると、純正材と比較して元素組成比率が変動する。また、Ni基単結晶超合金部品は長期間の使用や飛行によって、燃料に含まれる硫黄成分や大気中の亜硫酸ガスの影響を受けて硫化物が生成して剥離するため、硫化物を生成しやすいAlが失われやすい。そこで、残存金属被覆層や亜硫酸ガスの影響で、純正材と比較して失われた元素を添加して、純正材と大略同一の元素組成比率に回復させる組成比率回復処理も行うとよい(S105)。大略同一とは、純正材の組成比率として許容範囲に含まれる範囲のものをいう。
 他方で、メルティングストック用鋳型またはリサイクルNi基単結晶超合金部品用鋳型30を鋳型加熱炉20内に置き、鋳型加熱炉20によって鋳型30の温度をNi基単結晶超合金の溶解温度以上に加熱する(S106)。そして、溶湯るつぼ10の溶解したNi基単結晶超合金を鋳型30に注湯する(S108)。鋳型昇降機構とチルプレート38を用いて、鋳型30内でNi基単結晶超合金を成長させる(S110)。そして、鋳型30からリサイクルNi基単結晶超合金部品を取り外す(S112)。メルティングストックへとリサイクルする場合は、上記鋳型加熱工程(S106)と単結晶成長工程(S110)を省略し、凝固したメルティングストックを取り出す(S112)ことができる。
 なお、リサイクル対象部品を前処理してもよい。すなわち、リサイクル対象部品の遮熱コーティングを剥離し(S202)、次にリサイクル対象部品の表面を洗浄する(S204)。続いて、上述のS104~S112と同様の処理を続ける。即ち、リサイクル対象部品を溶湯るつぼ10に投入して、Ni基単結晶超合金の融点以上でNi基単結晶超合金部品を溶解し脱硫処理する(S206)。Ni基単結晶超合金部品の溶解・脱硫処理の際に副反応として起きるAl等の減量を補填する工程として、純正材組成との乖離を調整する工程を設けてもよい(S207)。
 他方で、メルティングストック用鋳型またはリサイクルNi基単結晶超合金部品用鋳型30を鋳型加熱炉20内に置き、鋳型加熱炉20によって鋳型30の温度をNi基単結晶超合金の溶解温度以上に加熱する(S208)。そして、溶湯るつぼ10の溶解したNi基単結晶超合金を鋳型30に注湯する(S210)。鋳型昇降機構とチルプレート38を用いて、鋳型30内でNi基単結晶超合金を成長させる(S212)。そして、鋳型30からリサイクルNi基単結晶超合金部品を取り外す(S214)。メルティングストックへとリサイクルする場合は、上記鋳型加熱工程(S208)と単結晶成長工程(S212)を省略し、凝固したメルティングストックを取り出す(S214)ことができる。
 このようにすると、リサイクル対象部品の遮熱コーティングの材質が、メルティングストックまたはリサイクルNi基単結晶超合金部品の性質に悪影響を与える場合でも、当該影響を少なくできる。このリサイクル方法では、ボンドコーティングを除く遮熱コーティングもしくはボンドコーティングを含む遮熱コーティングを剥離しても良く、また、耐酸化コーティングのみを施してあるNi基単結晶超合金部品にそのまま、もしくは耐酸化コーティングを剥離して適用しても良く、コーティングされていないNi基単結晶超合金部品にそのまま適用してもよい。
 メルティングストックへとリサイクルする場合には、S112やS214で出来上がったメルティングストックを貯蔵する(S114、S216)。メルティングストックよりリサイクルNi基単結晶超合金部品を製造するには、目的とするタービン動翼やタービンベーンなどの形状に対応した鋳型を準備して、真空高周波溶解装置を用いて、再度溶湯るつぼ10で溶解して(S120)、一方向凝固させて単結晶とする。
 リサイクルNi基単結晶超合金部品が、Ni基単結晶超合金のタービン動翼やタービンベーンなどの場合には、リサイクルNi基単結晶超合金部品の溶体化処理を行ない(S122)、次に時効析出処理(S124)を行う。この溶体化処理と時効析出処理により、強化相(γ′相)が適切なサイズ・形状になる。続いて、リサイクルNi基単結晶超合金部品を、必要に応じて、セラミックを含む遮熱コーティングもしくは耐酸化コーティングで被覆する(S126)。
 Ni基単結晶超合金の実施例1として、PWA1484(商標)材製のジェットエンジン使用済みHPT(high pressure turbine)動翼を真空中で直接高周波溶解し、カルシア(CaO)るつぼを用いて脱硫処理した後に、単結晶試験片を鋳造した(以後組成補正脱硫処理材と呼称する)。比較材1として、Ni基単結晶超合金PWA1484(商標)材の純正メルティングストックを用いて単結晶試験片を鋳造した(以後純正材と呼称する)。比較材2として、PWA1484(商標)材製のジェットエンジン使用済みHPT動翼を、組成成分の調整をすることなく、そのまま真空中で直接高周波溶解し、単結晶試験片を鋳造した(以後単純リサイクル材と呼称する)。比較材3として、PWA1484(商標)材製のジェットエンジン使用済みHPT動翼を、純正材と同視できる程度に組成成分の調整をして、アルミナ、ジルコニア等のセラミックを素材とする溶融るつぼを用いて真空中で直接高周波溶解し、単結晶試験片を鋳造した(以後合金組成補正材と呼称する)。表1に、各供試材の元素組成を示す。
Figure JPOXMLDOC01-appb-T000001
 これらを用いて、高温強度比較のためクリープ試験と典型的条件での高温耐酸化試験を行った。図4は、1100℃、137MPaにおけるクリープ試験結果を示す図である。組成調整および脱硫を行った試験片は、正規材と同等のクリープ破断寿命を示した。具体的な数値については、表2の正規材とリサイクル材の1100℃、137MPaのクリープ試験結果に示す。
Figure JPOXMLDOC01-appb-T000002
 表2のクリープ試験では、実施例1の組成補正脱硫処理材が、純正材と同一又は僅かに大きなクリープ寿命を示した。また、実施例1の組成補正脱硫処理材の伸びは実用上十分な値を示している。これらの結果から、本発明のNi基単結晶超合金部品のリサイクル方法が有効であることが確認された。これに対して、比較例2の単純リサイクル材では、クリープ寿命が純正材よりも40%程度短いが、伸びは純正材よりも大きな値を示している。比較例3の合金組成補正材では、クリープ寿命が純正材よりも30%程度短いが、伸びは純正材よりも大きな値を示している。
 図5は、1100℃、1時間保持後に室温1時間保持の条件で行った繰り返し酸化試験の結果を示す図である。実施例1の組成補正脱硫処理材は、45サイクルでの重量増加は、+0.003[mg/mm]であって、引続き重量増加を示していることから、Ni基超合金部品からの酸化物の剥離は生じておらず、正規材と同等以上の耐酸化性を示した。これに対して、比較例2の単純リサイクル材では、45サイクルでの重量減少は、-0.001[mg/mm]と大きな減少値を示している。比較例3の合金組成補正材では、45サイクルでの重量増加は、+0.001[mg/mm]であり、極大値である+0.0025[mg/mm]から減少した値を示している。これらの結果は、比較例2、比較例3のリサイクル方法では、耐酸化性が比較例1の純正材より低下することを示している。
以上より、繰り返し酸化試験の結果、本発明により、タービン部品の重要な要求特性である耐酸化性を劣化させることなく部品をリサイクルできることが示された。
 図6は、Ni基単結晶超合金のクリープ破断寿命と硫黄組成量の関係を説明する図で、硫黄組成量が0ppm、10ppm、20ppm、100ppmの場合を示している。Ni基単結晶超合金の硫黄組成量が100ppmの場合には、0ppmと比較して、クリープ破断寿命が半分になる。
 図7は、Ni基単結晶超合金のクリープ破断寿命と硫黄組成量の関係を説明する図で、本発明の比較材1~3と実施例1を対している。組成補正脱硫処理材の硫黄組成量は2ppmであり、純正材と同一になっている。これに対して、単純リサイクル材では10ppm、合金組成補正材では6ppm程度になっている。カルシア(CaO)るつぼを用いて脱硫処理場合には、次の化学反応式に従って、適切量のAlが存在することによって、例えば5分乃至10分程度の溶融処理で、硫黄組成量は単純リサイクル材の10ppmから組成補正脱硫処理材の2ppmに減少する。
[化1]
 6CaO+2Al=3Ca+3CaO・Al
 CaO+2/3・Al+S=CaS+1/3・Al
 図8は、本発明がNi基単結晶超合金の高サイクル疲労寿命に及ぼす影響を、比較材1と実施例1によって示したものである。試験条件は、1000℃、最大応力600メガパスカル、60ヘルツ正弦波であり、実施例1の硫黄組成量は比較材1と同一の2ppmである。
 実施例1の高サイクル疲労寿命は1,220,000~1,780,000サイクルであり、純正材である比較材1の410,000~807,000サイクルと同等以上となっている。以上の結果は、本発明により、タービン部品の重要な要求特性である高サイクル疲労寿命を劣化させることなく部品をリサイクルできることを示している。
 続いて、本発明の実施の形態として、リサイクルNi基一方向凝固超合金部品を製造する方法を次に説明する。リサイクルNi基一方向凝固超合金部品は、図2に示した真空高周波溶解装置を用いて製造する。なお、前述の真空高周波溶解装置の説明において、その性質に反しない限り、Ni基単結晶超合金とあるのをNi基一方向凝固超合金と読み替える。即ち、リサイクルNi基一方向凝固超合金部品用鋳型の形状は、リサイクルNi基単結晶超合金部品用鋳造と比較して、セレクタ部32の設けられていない点を除いて、同じである。
 図9は、本発明のNi基一方向凝固超合金部品のリサイクル方法を説明する流れ図で、図1の装置を用いる場合を示している。まず、リサイクル対象となるNi基一方向凝固超合金部品を用意する(S300)。
 まず、リサイクル対象部品であるNi基一方向凝固超合金部品の表面を好ましくは洗浄する(S302)。そしてリサイクル対象部品を乾燥させる。次に、リサイクル対象部品を溶湯るつぼ10に投入して、Ni基一方向凝固超合金の融点以上であってセラミックの融点未満の温度で、Ni基一方向凝固超合金部品を溶解し脱硫処理する(S304)。Ni基一方向凝固超合金部品の溶解・脱硫処理の際に副反応として起きるAl等の減量を補填する工程として、純正材組成との乖離を調整する工程を設けてもよい(S305)。
 他方で、メルティングストック用鋳型またはリサイクルNi基一方向凝固超合金部品用鋳型30を鋳型加熱炉20内に置き、鋳型加熱炉20によって鋳型30の温度をNi基一方向凝固超合金の溶解温度以上に加熱する(S306)。そして、溶湯るつぼ10の溶解したNi基超合金を鋳型30に注湯する(S308)。鋳型昇降機構とチルプレート38を用いて、鋳型30内でNi基一方向凝固超合金を成長させる(S310)。そして、鋳型30からリサイクルNi基一方向凝固超合金部品を取り外す(S312)。メルティングストックへとリサイクルする場合は、上記鋳型加熱工程(S306)と単結晶成長工程(S310)を省略し、凝固したメルティングストックを取り出す(S312)ことができる。
 なお、リサイクル対象部品を前処理してもよい。すなわち、リサイクル対象部品の遮熱コーティングを剥離し(S402)、次にリサイクル対象部品の表面を洗浄する(S404)。続いて、上述のS304~S312と同様の処理を続ける。即ち、リサイクル対象部品を溶湯るつぼ10に投入して、Ni基一方向凝固超合金の融点以上でNi基一方向凝固超合金部品を溶解し脱硫処理する(S406)。Ni基一方向凝固超合金部品の溶解・脱硫処理の際に副反応として起きるAl等の減量を補填する工程として、純正材組成との乖離を調整する工程を設けてもよい(S407)。
 他方で、メルティングストック用鋳型またはリサイクルNi基一方向凝固超合金部品用鋳型30を鋳型加熱炉20内に置き、鋳型加熱炉20によって鋳型30の温度をNi基一方向凝固超合金の溶解温度以上に加熱する(S408)。そして、溶湯るつぼ10の溶解したNi基超合金を鋳型30に注湯する(S410)。鋳型昇降機構とチルプレート38を用いて、鋳型30内でNi基一方向凝固超合金を成長させる(S412)。そして、鋳型30からリサイクルNi基一方向凝固超合金部品を取り外す(S414)。メルティングストックへとリサイクルする場合は、上記鋳型加熱工程(S408)と単結晶成長工程(S412)を省略し、凝固したメルティングストックを取り出す(S414)ことができる。
 このようにすると、リサイクル対象部品の遮熱コーティングの材質が、メルティングストックまたはリサイクルNi基一方向凝固超合金部品の性質に悪影響を与える場合でも、当該影響を少なくできる。このリサイクル方法では、ボンドコーティングを除く遮熱コーティングもしくはボンドコーティングを含む遮熱コーティングを剥離しても良く、また、耐酸化コーティングのみを施してあるNi基一方向凝固超合金部品にそのまま、もしくは耐酸化コーティングを剥離して適用しても良く、コーティングされていないNi基一方向凝固超合金部品にそのまま適用してもよい。
 メルティングストックへとリサイクルする場合には、S312やS414で出来上がったメルティングストックを貯蔵する(S314、S416)。メルティングストックよりリサイクルNi基一方向凝固超合金部品を製造するには、目的とするタービン動翼やタービンベーンなどの形状に対応した鋳型を準備して、真空高周波溶解装置を用いて、再度溶湯るつぼ10で溶解して(S320)、一方向凝固させて一方向凝固部品とする。
 リサイクルNi基一方向凝固超合金部品が、Ni基一方向凝固超合金のタービン動翼やタービンベーンなどの場合には、リサイクルNi基一方向凝固超合金部品の溶体化処理を行ない(S322)、次に時効析出処理(S324)を行う。この溶体化処理と時効析出処理により、強化相(γ′相)が適切なサイズ・形状になる。続いて、必要に応じて、セラミックを含む遮熱コーティングもしくは耐酸化コーティングで被覆する(S326)。
 また、上記実施の形態においては、メルティングストックへのリサイクル並びに、リサイクルNi基単結晶超合金部品としてタービン動翼又はタービンベーンの場合を示したが、本発明はこれに限定されるものではなく、燃焼器ライナー、スプラッシュプレート、又はタービンディスク等の、タービン動翼やタービンベーン、又はダクトセグメント等に比較して大型な部品であっても、真空高周波溶解装置を用いて単結晶部品や一方向凝固部品とすることで、適用可能である。
 本発明のNi基単結晶超合金部品のリサイクル方法によれば、長期間の使用や飛行によって、燃料に含まれる硫黄成分や大気中の亜硫酸ガスの影響を受けて、硫黄成分がNi基単結晶超合金部品の内部に侵入していても、脱硫処理によってNi基単結晶超合金部品の硫黄組成を純正材と同程度に低下させることができる。そこで、初期の製造コストが普通鋳造合金や一方向凝固合金と比較して高くても、保守維持費に係るリサイクルコストが低廉であるため、Ni基単結晶超合金部品のライフタイムコストが低下し、Ni基単結晶超合金部品の普及が促進される。
 また、既に製造済みのNi基単結晶超合金部品が、レアメタルの損耗なくリサイクルできるので、レアメタルの供給先確保の問題が緩和されると共に、超合金を精製して合金元素を回収する場合に多量に発生する産業廃棄物処理の問題も緩和される利点がある。
 さらに、本発明のNi基単結晶超合金部品の直接再溶解によるリサイクル方法は、Ni基一方向凝固超合金部品にも同様に適用される。
10 溶湯るつぼ(カルシアるつぼ)
20 鋳型加熱炉
30 鋳型
50 真空容器

Claims (18)

  1.  Ni基単結晶超合金基材の表面に少なくともセラミックを含む遮熱コーティングを設けてなるNi基単結晶超合金部品のリサイクル方法であって、
     前記Ni基単結晶超合金の融点以上であって前記セラミックの融点未満の温度で、前記Ni基単結晶超合金部品を溶解し脱硫処理して、脱硫処理したNi基単結晶超合金を調製する工程と、
     前記Ni基単結晶超合金を用いて、リサイクルNi基単結晶超合金部品またはメルティングストックを形成する工程を含み、
     前記リサイクルNi基単結晶超合金部品を直接形成する場合には、
     リサイクルNi基単結晶超合金部品用鋳型の温度を前記Ni基単結晶超合金の溶解温度以上に加熱する工程と、
     前記リサイクルNi基単結晶超合金部品用鋳型に前記溶解したNi基単結晶超合金を注湯して、Ni基単結晶超合金を成長させる工程と、
     前記リサイクルNi基単結晶超合金部品用鋳型からリサイクルNi基単結晶超合金部品を取り外す工程と、を含み、
     メルティングストックからリサイクルNi基単結晶超合金部品を形成する場合には、
     メルティングストック用鋳型に、前記溶解したNi基単結晶超合金を注湯して、メルティングストックを形成する工程と、
     前記メルティングストック用鋳型からメルティングストックを取り外す工程と、
     前記メルティングストックからNi基単結晶超合金部品を製造する工程と、
     を含むことを特徴とするNi基単結晶超合金部品のリサイクル方法。
  2.  前記Ni基単結晶超合金部品のボンドコーティングを除く遮熱コーティング、またはボンドコーティングを含む遮熱コーティングを剥離する工程を含むことを特徴とする請求項1に記載のNi基単結晶超合金部品のリサイクル方法。
  3.  Ni基単結晶超合金基材の表面に耐酸化コーティングを設けてなるNi基単結晶超合金部品、または表面に耐酸化コーティングを設けないNi基単結晶超合金部品のリサイクル方法であって、
     前記Ni基単結晶超合金の融点以上で前記Ni基単結晶超合金部品を溶解し脱硫処理して、脱硫処理したNi基単結晶超合金を調製する工程と、
     前記Ni基単結晶超合金を用いて、リサイクルNi基単結晶超合金部品またはメルティングストックを形成する工程を含み、
     前記リサイクルNi基単結晶超合金部品を直接形成する場合には、
     リサイクルNi基単結晶超合金部品用鋳型の温度を前記Ni基単結晶超合金の溶解温度以上に加熱する工程と、
     前記リサイクルNi基単結晶超合金部品用鋳型に前記溶解したNi基単結晶超合金を注湯して、Ni基単結晶超合金を成長させる工程と、
     前記リサイクルNi基単結晶超合金部品用鋳型からリサイクルNi基単結晶超合金部品を取り外す工程とを含み、
     メルティングストックからリサイクルNi基単結晶超合金部品を形成する場合には、
     メルティングストック用鋳型に、前記溶解したNi基単結晶超合金を注湯して、メルティングストックを形成する工程と、
     前記メルティングストック用鋳型からメルティングストックを取り外す工程と、
     前記メルティングストックからNi基単結晶超合金部品を製造する工程と、
     を含むことを特徴とするNi基単結晶超合金部品のリサイクル方法。
  4.  前記耐酸化コーティングで被覆されたNi基単結晶超合金部品の耐酸化コーティングを剥離する工程を含むことを特徴とする請求項3に記載のNi基単結晶超合金部品のリサイクル方法。
  5.  前記Ni基単結晶超合金部品を脱硫処理する工程は、当該Ni基単結晶超合金部品の硫黄成分が3PPM以下となるように脱硫処理することを特徴とする請求項1乃至4の何れか1項に記載のNi基単結晶超合金部品のリサイクル方法。
  6.  前記リサイクルNi基単結晶超合金の合金組成が、当該Ni基単結晶超合金部品の純正材に許容される組成範囲に入るように、欠乏する元素について添加して、組成調整を行う工程を含むことを特徴とする請求項1乃至5の何れか1項に記載のNi基単結晶超合金部品のリサイクル方法。
  7.  前記リサイクルNi基単結晶超合金の成長工程は、一方向凝固によって単結晶とする工程と、
     前記リサイクルNi基単結晶超合金部品の溶体化処理と時効析出処理を行う工程を含むことを特徴とする請求項1乃至6の何れか1項に記載のNi基単結晶超合金部品のリサイクル方法。
  8.  前記リサイクルNi基単結晶超合金部品を、ボンドコーティングおよびセラミックを含む遮熱コーティングで被覆する工程または耐酸化コーティングで被覆する工程を含むことを特徴とする請求項1乃至7の何れか1項に記載のNi基単結晶超合金部品のリサイクル方法。
  9.  前記リサイクルNi基単結晶超合金部品は、Ni基単結晶超合金のタービン動翼、タービンベーン、燃焼器ライナー、スプラッシュプレート、ダクトセグメント、又はタービンディスクの少なくとも一種類であることを特徴とする請求項1乃至8の何れか1項に記載のNi基単結晶超合金部品のリサイクル方法。
  10.  Ni基一方向凝固超合金基材の表面に少なくともセラミックを含む遮熱コーティングを設けてなるNi基一方向凝固超合金部品のリサイクル方法であって、
     前記Ni基一方向凝固超合金の融点以上であって前記セラミックの融点未満の温度で、前記Ni基一方向凝固超合金部品を溶解し脱硫処理して、脱硫処理したNi基超合金を調製する工程と、
     前記Ni基一方向凝固超合金を用いて、リサイクルNi基一方向凝固超合金部品またはメルティングストックを形成する工程を含み、
     前記リサイクルNi基一方向凝固超合金部品を直接形成する場合には、
     リサイクルNi基一方向凝固超合金部品用鋳型の温度を前記Ni基一方向凝固超合金の溶解温度以上に加熱する工程と、
     前記リサイクルNi基一方向凝固超合金部品用鋳型に前記溶解したNi基超合金を注湯して、Ni基一方向凝固超合金を成長させる工程と、
     前記リサイクルNi基一方向凝固超合金部品用鋳型からリサイクルNi基一方向凝固超合金部品を取り外す工程と、を含み、
     メルティングストックからリサイクルNi一方向凝固超合金部品を形成する場合には、
     メルティングストック用鋳型に、前記溶解したNi基一方向凝固超合金を注湯して、メルティングストックを形成する工程と、
     前記メルティングストック用鋳型からメルティングストックを取り外す工程と、
     前記メルティングストックからNi基一方向凝固超合金を製造する工程と、
     を含むことを特徴とするNi基一方向凝固超合金部品のリサイクル方法。
  11.  前記Ni基一方向凝固超合金部品のボンドコーティングを除く遮熱コーティング、またはボンドコーティングを含む遮熱コーティングを剥離する工程を含むことを特徴とする請求項10に記載のNi基一方向凝固超合金部品のリサイクル方法。
  12.  Ni基一方向凝固超合金基材の表面に耐酸化コーティングを設けてなるNi基一方向凝固超合金部品、または表面に耐酸化コーティングを設けないNi基一方向凝固超合金部品のリサイクル方法であって、
     前記Ni基一方向凝固超合金の融点以上であって前記セラミックの融点未満の温度で、前記Ni基一方向凝固超合金部品を溶解し脱硫処理して、脱硫処理したNi基超合金を調製する工程と、
     前記Ni基一方向凝固超合金を用いて、リサイクルNi基一方向凝固超合金部品またはメルティングストックを形成する工程を含み、
     前記リサイクルNi基一方向凝固超合金部品を直接形成する場合には、
     リサイクルNi基一方向凝固超合金部品用鋳型の温度を前記Ni基一方向凝固超合金の溶解温度以上に加熱する工程と、
     前記リサイクルNi基一方向凝固超合金部品用鋳型に前記溶解したNi基超合金を注湯して、Ni基一方向凝固超合金を成長させる工程と、
     前記リサイクルNi基一方向凝固超合金部品用鋳型からリサイクルNi基一方向凝固超合金部品を取り外す工程と、を含み、
     メルティングストックからリサイクルNi一方向凝固超合金部品を形成する場合には、
     メルティングストック用鋳型に、前記溶解したNi基一方向凝固超合金を注湯して、メルティングストックを形成する工程と、
     前記メルティングストック用鋳型からメルティングストックを取り外す工程と、
     前記メルティングストックからNi基一方向凝固超合金を製造する工程と、
     を含むことを特徴とするNi基一方向凝固超合金部品のリサイクル方法。
  13.  前記耐酸化コーティングで被覆されたNi基一方向凝固超合金部品の耐酸化コーティングを剥離する工程を含むことを特徴とする請求項12に記載のNi基一方向凝固超合金部品のリサイクル方法。
  14.  前記Ni基一方向凝固超合金部品を脱硫処理する工程は、当該Ni基一方向凝固超合金部品の硫黄成分が3PPM以下となるように脱硫処理することを特徴とする請求項10乃至13の何れか1項に記載のNi基一方向凝固超合金部品のリサイクル方法。
  15.  前記リサイクルNi基一方向凝固超合金の合金組成が、当該Ni基一方向凝固超合金部品の純正材に許容される組成範囲に入るように、欠乏する元素について添加して、組成調整を行う工程を含むことを特徴とする請求項10乃至14の何れか1項に記載のNi基一方向凝固超合金部品のリサイクル方法。
  16.  前記リサイクルNi基一方向凝固超合金部品の溶体化処理と時効析出処理を行う工程を含むことを特徴とする請求項10乃至15の何れか1項に記載のNi基一方向凝固超合金部品のリサイクル方法。
  17.  前記リサイクルNi基一方向凝固超合金部品を、ボンドコーティングおよびセラミックを含む遮熱コーティングで被覆する工程または耐酸化コーティングで被覆する工程を含むことを特徴とする請求項10乃至16の何れか1項に記載のNi基一方向凝固超合金部品のリサイクル方法。
  18.  前記リサイクルNi基一方向凝固超合金部品は、Ni基一方向凝固超合金のタービン動翼、タービンベーン、燃焼器ライナー、スプラッシュプレート、ダクトセグメント、又はタービンディスクの少なくとも一種類であることを特徴とする請求項10乃至17の何れか1項に記載のNi基一方向凝固超合金部品のリサイクル方法。
PCT/JP2016/065901 2015-08-18 2016-05-30 Ni基超合金部品のリサイクル方法 WO2017029856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/932,302 US10689741B2 (en) 2015-08-18 2016-05-30 Ni-based superalloy part recycling method
JP2017535266A JPWO2017029856A1 (ja) 2015-08-18 2016-05-30 Ni基超合金部品のリサイクル方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-160748 2015-08-18
JP2015160748 2015-08-18

Publications (1)

Publication Number Publication Date
WO2017029856A1 true WO2017029856A1 (ja) 2017-02-23

Family

ID=58050737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065901 WO2017029856A1 (ja) 2015-08-18 2016-05-30 Ni基超合金部品のリサイクル方法

Country Status (3)

Country Link
US (1) US10689741B2 (ja)
JP (1) JPWO2017029856A1 (ja)
WO (1) WO2017029856A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725645A (zh) * 2020-12-22 2021-04-30 大冶市兴进铝业有限公司 一种新型铝型材制备装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167729A (ja) * 1984-09-11 1986-04-07 Mitsui Eng & Shipbuild Co Ltd ニツケル基超合金の製造方法
JPS62167835A (ja) * 1985-11-26 1987-07-24 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Waspaloy成形品の製造方法
JPH0610082A (ja) * 1992-03-09 1994-01-18 Hitachi Metals Ltd 高耐食高強度超合金、高耐食高強度単結晶鋳造物、ガスタービンおよびコンバインドサイクル発電システム
US5922148A (en) * 1997-02-25 1999-07-13 Howmet Research Corporation Ultra low sulfur superalloy castings and method of making
US20090142221A1 (en) * 2007-11-30 2009-06-04 Honeywell International, Inc. Engine components and methods of forming engine components
JP2014070231A (ja) * 2012-09-28 2014-04-21 National Institute For Materials Science Ni基単結晶超合金部品の直接リサイクル法
JP2014173142A (ja) * 2013-03-08 2014-09-22 Sakurai Chuzou Co Ltd 銅合金鋳物の製造方法及びその方法に用いられるブリケット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572738B1 (fr) 1984-11-08 1987-02-20 Snecma Methode de regeneration de pieces en superalliage base nickel en fin de potentiel de fonctionnement
JPS6442516A (en) 1987-08-07 1989-02-14 Mitsui Shipbuilding Eng Method for denitriding, desulfurizing, and deoxidizing fe-base, co-base, or ni-base alloy
JPH03236434A (ja) 1990-06-25 1991-10-22 Mitsui Eng & Shipbuild Co Ltd 硫黄、酸素及び窒素の各含有量が極めて低いニッケル基合金
US5346563A (en) * 1991-11-25 1994-09-13 United Technologies Corporation Method for removing sulfur from superalloy articles to improve their oxidation resistance
DE4439041C2 (de) 1994-11-02 1998-08-13 Starck H C Gmbh Co Kg Verfahren zum Aufschluß und Rückgewinnung der metallischen Bestandteile aus rheniumhaltigen Superlegierungen
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
JP3069580U (ja) 1999-12-10 2000-06-23 毅 大角 自動車の電源装置
KR101301232B1 (ko) 2007-03-14 2013-08-28 지멘스 악티엔게젤샤프트 납땜 합금 및 부품 수리 방법
JP5155141B2 (ja) 2008-12-26 2013-02-27 日本冶金工業株式会社 熱間加工性に優れたNi基合金の精錬方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167729A (ja) * 1984-09-11 1986-04-07 Mitsui Eng & Shipbuild Co Ltd ニツケル基超合金の製造方法
JPS62167835A (ja) * 1985-11-26 1987-07-24 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Waspaloy成形品の製造方法
JPH0610082A (ja) * 1992-03-09 1994-01-18 Hitachi Metals Ltd 高耐食高強度超合金、高耐食高強度単結晶鋳造物、ガスタービンおよびコンバインドサイクル発電システム
US5922148A (en) * 1997-02-25 1999-07-13 Howmet Research Corporation Ultra low sulfur superalloy castings and method of making
US20090142221A1 (en) * 2007-11-30 2009-06-04 Honeywell International, Inc. Engine components and methods of forming engine components
JP2014070231A (ja) * 2012-09-28 2014-04-21 National Institute For Materials Science Ni基単結晶超合金部品の直接リサイクル法
JP2014173142A (ja) * 2013-03-08 2014-09-22 Sakurai Chuzou Co Ltd 銅合金鋳物の製造方法及びその方法に用いられるブリケット

Also Published As

Publication number Publication date
JPWO2017029856A1 (ja) 2018-08-09
US20190010594A1 (en) 2019-01-10
US10689741B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
Perrut et al. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys
Harris et al. Development of the rhenium containing superalloys CMSX-4 & CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines
Erickson The development and application of CMSX-10
KR102261357B1 (ko) 합금 용해 및 정련 방법
US8220697B2 (en) Weldability of alloys with directionally-solidified grain structure
JP4659164B2 (ja) 一方向凝固鋳造品並びにその製造方法
JP4885530B2 (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
Satyanarayana et al. Nickel-based superalloys
CN108441741B (zh) 一种航空航天用高强度耐腐蚀镍基高温合金及其制造方法
US20100071812A1 (en) Unidirectionally-solidification process and castings formed thereby
US8852500B2 (en) Ni-base superalloy, method for producing the same, and turbine blade or turbine vane components
JP2009114501A (ja) ニッケル基単結晶合金
US20130022803A1 (en) Unidirectionally-solidification process and castings formed thereby
JP4719583B2 (ja) 強度、耐食性及び耐酸化特性に優れた一方向凝固用ニッケル基超合金及び一方向凝固ニッケル基超合金の製造方法
CN106521244A (zh) 一种稀土改性的高Mo的Ni3Al基单晶高温合金及其制备方法
CA2864507C (en) High strength single crystal superalloy
Harris et al. Development of two rhenium-containing superalloys for single-crystal blade and directionally solidified vane applications in advanced turbine engines
Cui et al. Microstructual evolution and stability of second generation single crystal nickel-based superalloy DD5
CN102041412A (zh) 含镍合金、其制造方法和由其得到的制品
CN109371288A (zh) 低铼、高强度抗热腐蚀的镍基单晶高温合金及其制造方法
US20100034692A1 (en) Nickel-base superalloy, unidirectional-solidification process therefor, and castings formed therefrom
WO2010082632A1 (ja) Ni基単結晶超合金
WO2017029856A1 (ja) Ni基超合金部品のリサイクル方法
JP6048805B2 (ja) Ni基単結晶超合金部品の直接リサイクル法
JP2016056448A (ja) ニッケル基超合金物品及び物品を形成するための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836848

Country of ref document: EP

Kind code of ref document: A1