WO2017028446A1 - 用于oled蒸发源的坩埚及其制造方法 - Google Patents

用于oled蒸发源的坩埚及其制造方法 Download PDF

Info

Publication number
WO2017028446A1
WO2017028446A1 PCT/CN2015/098910 CN2015098910W WO2017028446A1 WO 2017028446 A1 WO2017028446 A1 WO 2017028446A1 CN 2015098910 W CN2015098910 W CN 2015098910W WO 2017028446 A1 WO2017028446 A1 WO 2017028446A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
holes
evaporation source
inner panel
source according
Prior art date
Application number
PCT/CN2015/098910
Other languages
English (en)
French (fr)
Inventor
裴凤巍
刘锋
刘科雷
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15891412.7A priority Critical patent/EP3339468A4/en
Priority to US15/323,330 priority patent/US10392692B2/en
Publication of WO2017028446A1 publication Critical patent/WO2017028446A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a crucible for an OLED evaporation source and a method of fabricating the same.
  • OLED has become the most potential emerging technology to replace LCD liquid crystal display, and OLED technology is in a stage of rapid development.
  • OLED display products are generally produced by evaporation of organic materials at home and abroad.
  • the color shift and efficiency of RGB pixels depend on the uniformity of the vapor deposition film layer.
  • the ruthenium used for the evaporation source is used as the evaporation process.
  • the important components directly determine the uniformity of the vapor deposited film layer.
  • the tantalum structure used in the prior art for the OLED evaporation source is a flat-bottom structure, and the organic material itself has a large viscosity and a surface tension after liquefaction, resulting in uneven distribution of the organic material in the crucible. Part of the exposed bottom will appear during the evaporation process, which affects the uniformity of evaporation of organic materials.
  • a crucible for an OLED evaporation source comprising a body and an inner panel disposed on the body, wherein:
  • the bottom of the body gradually becomes larger from the bottom to the top.
  • the bottom of the body is disposed in a V-shape, a U-shape, or a combination thereof in a cross section perpendicular to the length direction of the body.
  • the bottom of the body in the cross section is arranged in a single V shape, two connected V shapes or more connected V shapes.
  • the bottom of the body in the cross section is arranged in a single U shape, two connected U shapes or more connected U shapes.
  • the bottom of the body in the cross section is disposed in a combined shape of a V-shape and a U-shape.
  • the inner panel is configured to have a shape that matches the bottom of the body in the cross section.
  • the inner panel is provided with a plurality of holes in a predetermined arrangement such that evaporation material within the crucible can pass through the holes to deposit on the substrate of the OLED device placed on or above the crucible on.
  • the holes in the inner panel are evenly distributed in a projection perpendicular to the horizontal plane of the height direction of the body.
  • the length direction of the body is the X coordinate axis
  • the width direction of the body is the Y coordinate axis
  • the height of the body is the coordinate system established by the Z coordinate axis
  • the hole of the inner plate is on the XY plane.
  • the projections are evenly distributed.
  • a plurality of rows of holes spaced apart from each other by a first pitch are disposed in the Y-axis direction, and a plurality of holes in each row of holes extend in the X-axis direction and phase The two adjacent holes are spaced apart from each other by a second pitch.
  • the first spacing is equal to the second spacing.
  • the holes in the adjacent two rows of holes are aligned with each other.
  • the connection of each of the one of the rows of holes to the adjacent one of the other row of holes is straight Center alignment.
  • the intermediate portion is provided with the aperture.
  • the inner panel further includes sides on opposite sides of the intermediate portion for covering the top of the body.
  • a crucible having a body, the bottom portion of the body gradually becoming larger from bottom to top in a cross section perpendicular to the length direction of the body;
  • the inner panel is placed on the upper end of the body of the crucible.
  • the embodiment of the invention improves or optimizes the structure of the crucible (specifically, the structure of the crucible bottom), can improve the uniformity of the evaporation and the material utilization rate, and the effect of the excessive amount of the substrate on the uniformity of the vapor deposition film layer, so that the vapor deposition film The performance of the layer is greatly improved.
  • FIG. 1a and 1b are schematic views of a cross section perpendicular to the width direction of a crucible for an OLED evaporation source in the prior art and a cross section perpendicular to the length direction;
  • FIGS. 2a and 2b are schematic views of a cross section perpendicular to the length direction of a crucible for an OLED evaporation source and a plan view of a crucible inner panel in accordance with a first embodiment of the present invention
  • 3a and 3b are schematic views of a cross section perpendicular to the length direction of a crucible for an OLED evaporation source and a plan view of a crucible inner panel in accordance with a second embodiment of the present invention
  • 4a and 4b are plan views of a cross section perpendicular to a length direction of a crucible for an OLED evaporation source and a plan view of an inner panel of a crucible according to a third embodiment of the present invention
  • 5a and 5b are schematic views of a cross section perpendicular to a length direction of a crucible for an OLED evaporation source and a plan view of an inner panel of a crucible according to a fourth embodiment of the present invention
  • FIG. 6 is a schematic view of a cross section perpendicular to a length direction of a crucible for an OLED evaporation source according to a fifth embodiment of the present invention.
  • Figure 7 is a schematic illustration of a cross section perpendicular to the length direction of a crucible for an OLED evaporation source in accordance with a sixth embodiment of the present invention.
  • the crucible 10 includes a body 12 and an inner panel 14 disposed on the body 12.
  • the bottom of the body 12 is designed as a flat bottom structure;
  • the inner panel 14 is provided in the form of a flat plate and is provided with holes thereon so that material is evaporated through the holes to a glass substrate disposed on or above the inner panel (ie for substrates used in OLED devices).
  • the bottom of the main body 12 may be exposed in some places, which causes the uniformity of the material to be evaporated onto the glass substrate above the inner panel 14, so sometimes the base is ensured. The amount of material added, while at the same time causing waste of materials.
  • Figure 1a shows the length L of the inner panel 14, and Figure 1b shows the width W and height H of the weir body 12.
  • the main idea of the present invention is to provide an existing curved bottom portion with a curved structure or a tapered structure having a small curvature, which ensures that the uniformity of distribution in the longitudinal direction (longitudinal direction) can be ensured when the organic material is small. It is also possible to maximize the uniformity of distribution in the short-side direction (width direction).
  • the novel ruthenium provided by the present invention can be used for an organic material having a general fluidity after liquefaction of an organic material, and the ruthenium of the prior art cannot be used for such an organic material having insufficient fluidity after liquefaction.
  • OLED devices mass-produced technologies are now using vacuum physical vapor deposition processes to fabricate corresponding devices. That is, the prepared back sheet or substrate is placed in a vacuum chamber, and each layer of organic material is evaporated on the back sheet by thermal evaporation to form an OLED device.
  • the evaporation process is an important technical route for the production of OLEDs.
  • the use of an evaporation process is an essential tool.
  • the structural design of niobium has an important influence on the film quality and production efficiency of organic materials.
  • the organic material is usually charged into the crucible. When the temperature reaches the evaporation temperature of the material, the organic material escapes to the opening above the crucible by gas, and deposits on the surface of the back sheet to form a dense vapor-deposited film. Finally, the red, green, and blue devices are formed using graphics on a high precision metal mask.
  • a crucible for an OLED evaporation source comprising a body and an inner panel disposed on the body, in a cross section perpendicular to a length direction of the body, the body The bottom gradually grows from bottom to top.
  • FIGS. 2a and 2b there are shown schematic views of a cross section perpendicular to the length direction of a crucible for an OLED evaporation source and a top view of a crucible inner panel, respectively, in accordance with a first embodiment of the present invention.
  • the crucible 20 includes a body 22 and an inner panel 24 disposed on the body.
  • the bottom 26 of the body 22 is configured in a V-shaped configuration.
  • the inner panel 24 is also provided in a V-shaped configuration, and the inner panel 24 is provided with holes 244 in a predetermined arrangement (see Fig. 2b) such that material is evaporated through the holes to the inner panel.
  • Above the glass substrate (not shown) 24 Above the glass substrate (not shown) 24 .
  • the length direction of the crucible refers to the direction in which the length of the crucible extends (sometimes referred to as the long side direction).
  • the width direction of the crucible refers to the direction in which the width of the crucible extends (sometimes referred to as short). Side direction).
  • the bottom 26 of the body 22 is arranged to be arranged in a single V shape in a cross section perpendicular to the length direction (i.e., the cross section shown in Fig. 2a).
  • Figure 2a shows the width W and height H of the body 22;
  • Figure 2b shows the length L of the inner panel 24 (as can be seen in connection with Figure 2a, the length of the body 22 is slightly shorter than the length of the inner panel 24).
  • those skilled in the art can select the length L, width W and height H of the crucible as needed. specific value.
  • the length L is 880 mm
  • the width W is 50 mm
  • the height H is 120 mm.
  • the existing crucible is set to a V-shaped structure at the bottom. Therefore, it can be applied to organic materials with poor fluidity after liquefaction of organic materials. It can be understood that the existing crucible bottom is changed to a V-shaped structure with a small curvature, and when the organic material is small, the uniformity of distribution in the longitudinal direction and the uniformity of distribution in the short-side direction can be ensured.
  • the inner panel 24 includes side portions 241, 242 on both sides and an intermediate portion 243 between the side portions.
  • the two side portions 241 and 242 can be used to cover the top of the side of the body 22.
  • the art can also arrange the inner panel 24 on the main body 22 in other ways as needed, without using the above-mentioned side portions.
  • the intermediate portion 243 includes two inclined bevels 245 that are provided with apertures 244 in the form of a predetermined arrangement (i.e., the black dots shown in Figure 2).
  • the holes 244 in the intermediate portion 243 are uniformly distributed or equidistantly distributed in a projection on a horizontal plane perpendicular to the height H direction (ie, a top view or a corresponding bottom view as shown in FIG. 2b).
  • the hole 244 on the intermediate portion 243 is projected on the XY plane.
  • a plurality of rows of holes spaced apart from each other by a first pitch are disposed in the Y-axis direction, and a plurality of holes in each row of holes extend in the X-axis direction and The adjacent two holes are spaced apart from each other by a second pitch.
  • the first spacing is equal to the second spacing.
  • each of the one of the rows of holes with the adjacent one of the other of the other row of holes when the holes in the adjacent two rows of holes are not aligned with each other.
  • the alignment is such that the distribution of the holes in the projection on the XY plane is uniform, such as shown in Figure 2b. Since the distribution of the holes in the projection in the XY plane is uniform, the evaporated material is uniformly deposited on the substrate of the OLED device disposed on or above the crucible. It can be understood that since the intermediate portion of the inner panel is actually formed into a substantially V-shaped groove, since the holes are evenly distributed in the projection, they are not evenly distributed on the inclined surface of the intermediate portion.
  • FIG. 3a and 3b respectively show a crucible of a crucible for an OLED evaporation source according to a second embodiment of the present invention.
  • the crucible 30 includes a body 32 and an inner panel 34 disposed on the body 32.
  • the bottom 36 of the body 32 is configured as a W-shaped structure.
  • the inner panel 34 is also disposed in a W-shaped configuration, and the inner panel 34 is provided with holes in a predetermined arrangement (see FIG. 3b) such that material is vapor-deposited through the holes to the inner panel 34.
  • Above the glass substrate (not shown). As shown in Fig.
  • the bottom 36 of the body 32 is arranged to be arranged in a single W shape in a cross section perpendicular to the length direction (i.e., the cross section shown in Fig. 3a). It will be appreciated that the W shape can be viewed as two connected V shapes.
  • the inner panel 34 includes side portions 341, 342 on both sides and an intermediate portion 343 between the side portions.
  • the two side portions 341 and 342 can be used to cover the sides of the body 32.
  • the intermediate portion 343 includes four inclined bevels 345, which are provided with holes 344 in a predetermined arrangement.
  • the holes 344 in the intermediate portion 343 are uniformly distributed or equidistantly distributed in a projection on a horizontal plane perpendicular to the height H direction (ie, a top view or a corresponding bottom view as shown in FIG. 3b).
  • the hole 344 on the intermediate portion 343 is projected on the XY plane. Uniformly distributed or equidistantly distributed.
  • a plurality of rows of holes spaced apart from each other by a first pitch are disposed in the Y-axis direction, and two adjacent holes are spaced apart by a second pitch in each row of holes They are spaced apart from each other.
  • the first spacing is equal to the second spacing.
  • the existing crucible is set to a W-shaped structure at the bottom, so that it can be applied to the liquidity after liquefaction of the organic material, while ensuring that the length, width and height of the crucible are constant. organic material. It can be understood that the existing crucible bottom is changed into a W-shaped structure with a small curvature, and when the organic material is small, the uniformity of distribution in the longitudinal direction and the uniformity of distribution in the short-side direction can be ensured.
  • the crucible 40 includes a body 42 and an inner panel 44 disposed on the body 42.
  • the bottom 46 of the body 42 is configured in a U-shaped configuration.
  • the inner panel 44 is also disposed in a U-shaped configuration, and the inner panel 44 is provided with holes in a predetermined arrangement (see FIG. 4b) such that material is evaporated through the holes to the inner panel 44.
  • the glass substrate not shown.
  • the bottom portion 46 of the body 42 is disposed in a cross section perpendicular to the length direction (i.e., as shown in Figure 4a).
  • the cross section shown is set to a single U shape.
  • the inner panel 44 includes side portions 441, 442 on both sides and an intermediate portion 443 between the side portions.
  • the two side portions 441 and 442 can be used to cover the sides of the body 42.
  • the intermediate portion 443 includes a U-shaped curved surface 445 on which holes 444 are formed in a predetermined arrangement.
  • the holes 444 in the intermediate portion 443 are uniformly distributed or equidistantly distributed in a projection on a horizontal plane perpendicular to the height H direction (ie, a top view or a corresponding bottom view as shown in FIG. 4b).
  • the hole 444 on the intermediate portion 443 is projected on the XY plane. Uniformly distributed or equidistantly distributed.
  • a plurality of rows of holes spaced apart from each other by a first pitch are disposed in the Y-axis direction, and two adjacent holes are spaced apart by a second pitch in each row of holes They are spaced apart from each other.
  • the first spacing is equal to the second spacing.
  • the existing crucible is set to a U-shaped structure at the bottom, so that it can be applied to the liquidity of the organic material after liquefaction, while ensuring that the length, width and height of the crucible are constant. organic material. It can be understood that the existing crucible bottom is changed into a curved structure with a small curvature. When the organic material is small, the uniformity of the distribution in the longitudinal direction and the uniformity in the distribution in the short side direction can be ensured.
  • the crucible 50 includes a body 52 and an inner panel 54 disposed on the body 52.
  • the bottom 56 of the body 52 is configured in two connected U-shaped configurations.
  • the inner panel 54 is also provided in two connected U-shaped configurations, and the inner panel 54 is provided with holes in a predetermined arrangement (see Fig. 5b) so that material is vapor deposited through the holes to the setting.
  • a glass substrate not shown above the inner panel 54.
  • the bottom 56 of the body 52 is arranged to be arranged in two connected U-shaped structures in a cross section perpendicular to the length direction (i.e., the cross section shown in Fig. 5a).
  • the inner panel 54 includes side portions 541, 542 on both sides and an intermediate portion 543 between the side portions.
  • the two side portions 541 and 542 can be used to cover the sides of the body 52.
  • the intermediate portion 543 includes two U-shaped curved faces 545 that are provided with holes 544 in a predetermined arrangement.
  • the aperture 544 in the intermediate portion 543 is perpendicular to the height H direction
  • the projections on the horizontal plane i.e., the top view or the corresponding bottom view as shown in Figure 5b
  • the hole 544 on the intermediate portion 543 is projected on the XY plane. Uniformly distributed or equidistantly distributed.
  • a plurality of rows of holes spaced apart from each other by a first pitch are disposed in the Y-axis direction, and two adjacent holes are spaced apart by a second pitch in each row of holes They are spaced apart from each other.
  • the first spacing is equal to the second spacing.
  • the existing crucible is set to have two connected U-shaped structures at the bottom, so that it can be applied to the flow of organic materials after liquefaction, while ensuring that the length, width and height of the crucible are constant. Poor organic materials. It can be understood that the existing crucible bottom is changed into a curved structure with a small curvature. When the organic material is small, the uniformity of the distribution in the longitudinal direction and the uniformity in the distribution in the short side direction can be ensured.
  • FIG. 6 is a schematic illustration of a cross section perpendicular to the length direction of a crucible for an OLED evaporation source in accordance with a fifth embodiment of the present invention.
  • the crucible 60 includes a body 62 and an inner panel 64 disposed on the body 62.
  • the bottom 66 of the body 62 is configured as a plurality of connected V-shaped structures.
  • the inner panel 64 is also provided as a plurality of connected V-shaped structures, and the inner panel 64 is provided with holes in a predetermined arrangement such that material is evaporated through the holes to the upper plate 64.
  • the bottom portion 66 of the body 62 is disposed to be disposed in a plurality of connected V-shaped structures in a cross section perpendicular to the length direction (i.e., the cross section shown in Fig. 6).
  • the crucible is arranged such that the bottom is a plurality of connected V-shaped structures, and when the organic material is small, the uniformity of distribution in the long side direction and the uniformity of distribution in the short side direction can be ensured. .
  • FIG. 7 is a schematic illustration of a cross section perpendicular to the length direction of a crucible for an OLED evaporation source in accordance with a sixth embodiment of the present invention.
  • the crucible 70 includes a body 72 and an inner panel 74 disposed on the body 72.
  • the bottom portion 76 of the body 72 is configured as a plurality of connected U-shaped structures.
  • the inner panel 74 is also provided as a plurality of connected U-shaped structures, and the inner panel 74 is provided with holes in a predetermined arrangement such that material is vapor deposited through the holes to the upper plate 74.
  • the bottom 76 of the main body 72 is set to A plurality of connected U-shaped structures are provided in a cross section perpendicular to the length direction (i.e., the cross section shown in Fig. 7).
  • Fig. 7 it is substantially the same as the structure described in the fourth embodiment except that the intermediate portion 743 of the inner panel 74 is provided in a plurality of U-shapes in cross section. Therefore, the specific arrangement of the inner panel and the hole distribution thereof will not be described in detail herein.
  • the crucible is set to have a plurality of connected U-shaped structures at the bottom, and the existing crucible bottom is set as a plurality of curved structures having a small curvature, and when the organic material is small, the long side can be ensured.
  • the uniformity of the distribution in the direction also ensures the uniformity of the distribution in the short side direction.
  • the present invention does not provide a shape in which the bottom of the crucible is provided in a combination of a V shape and a U shape, those skilled in the art can clearly recognize such a bottom shape in accordance with the circumstances illustrated in the above embodiments.
  • a specific combination of a V shape and a U shape can be set as needed by those skilled in the art, and will not be described in detail herein.
  • the specific shape of the bottom of the body of the crucible can be selected according to specific needs, and is not limited to the case of the illustrated example of the present invention.
  • embodiments of the present invention also provide a method of fabricating a crucible for an OLED evaporation source as described above, comprising the steps of:
  • a crucible having a body whose bottom portion is disposed to gradually increase from bottom to top in a cross section perpendicular to a length direction of the main body;
  • the inner panel is placed on the upper end of the body of the crucible.
  • Embodiments of the present invention provide a crucible for an OLED evaporation source, and the bottom adopts a tapered groove or a curved bottom design to avoid the influence of the reduction of the amount of the substrate on the uniformity of the evaporation material due to a large amount of evaporation of the material evaporation, and Effectively improve the uniformity of the evaporation material and improve the material usage rate.
  • the bottom of the traditional crucible is a flat bottom structure, and the organic material itself has a large viscosity and a surface tension after liquefaction, resulting in uneven distribution of the organic material in the crucible, and a partial exposure occurs during the evaporation process, which affects the uniformity of evaporation of the organic material.
  • Various embodiments of the present invention optimize the bottom structure of the crucible by setting the bottom of the body to a shape of a V shape, a U shape, or a combination thereof, increasing the uniformity of distribution of the organic material after liquefaction, thereby improving the uniformity of vaporization and Material usage rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种用于OLED蒸发源的坩埚(20,30,40,50,60,70),包括主体(22,32,42,52,62,72)和设置在主体(22,32,42,52,62,72)上的内板(24,34,44,54,64,74),在垂直于主体(22,32,42,52,62,72)的长度(L)方向的横截面中,主体(22,32,42,52,62,72)的底部从下至上逐渐变大。以及一种用于OLED蒸发源的坩埚(20,30,40,50,60,70)的制造方法。

Description

用于OLED蒸发源的坩埚及其制造方法 技术领域
本发明涉及显示技术领域,尤其涉及一种用于OLED蒸发源的坩埚及其制造方法。
背景技术
随着人们对更高品质的显示产品的追求,OLED成为了最具潜力的替代LCD液晶显示的新兴技术,OLED技术正处于快速发展的阶段。国内外普遍采用有机材料蒸镀的方式生产OLED显示产品,RGB像素的色偏、效率等取决于蒸镀膜层均匀性等特性,而在蒸镀过程中,用于蒸发源的坩埚作为蒸镀中的重要部件,直接决定着蒸镀膜层的均匀性。
然而,现有技术中用于OLED蒸发源的坩埚为平底结构,加之有机材料本身粘性较大和液化后表面张力作用,导致有机材料在坩埚中的分布不均匀。蒸镀过程中会出现部分露底,影响有机材料蒸镀的均匀性。
有鉴于此,确有需要提供一种能够至少部分地解决上述问题的新的用于OLED蒸发源的坩埚及其制造方法。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
根据本发明的一个方面,提供了一种用于OLED蒸发源的坩埚,所述坩埚包括主体和设置在主体上的内板,其中:
在垂直于主体的长度方向的横截面中,所述主体的底部从下至上逐渐变大。
在一个示例中,在垂直于主体的长度方向的横截面中所述主体的底部设置成V形、U形或者它们的组合的形状。
在一个示例中,在所述横截面中所述主体的底部设置成单个V形、两个相连的V形或更多个相连的V形。
在一个示例中,在所述横截面中所述主体的底部设置成单个U形、两个相连的U形或更多个相连的U形。
在一个示例中,在所述横截面中所述主体的底部设置成相连的V形和U形的组合形状。
在一个示例中,所述内板被设置成在所述横截面中具有与所述主体的底部相匹配的形状。
在一个示例中,所述内板上设置有成预定排布形式的多个孔,使得在坩埚内的蒸发材料能够穿过所述孔沉积在放置在所述坩埚上或上方的OLED器件的基板上。
在一个示例中,所述内板上的孔在垂直于主体的高度方向的水平面上的投影中是均匀分布的。
在一个示例中,以主体的长度方向为X坐标轴,以主体的宽度方向为Y坐标轴,以主体的高度方向为Z坐标轴建立的坐标系中,所述内板的孔在XY平面上的投影中是均匀分布的。
在一个示例中,在所述XY平面上的投影中,在Y轴方向上设置以第一间距彼此间隔开的多排孔,在每一排孔中的多个孔沿X轴方向延伸并且相邻的两个孔以第二间距彼此间隔开。
在一个示例中,所述第一间距等于第二间距。
在一个示例中,相邻的两排孔中的孔彼此对准。
在一个示例中,在相邻的两排孔中的孔不彼此对准时,将其中的一排孔中的每个孔与另一排孔中的与之相邻的两个孔的连接直线的中心对准。
在一个示例中,中间部,所述中间部上设置有所述孔。
在一个示例中,所述内板还包括位于中间部两侧的侧部,所述侧部用于盖设在主体的顶部上。
根据本发明的另一方面,提供了一种制造根据权利要求1所述的用于OLED蒸发源的坩埚的方法,包括以下步骤:
提供一具有主体的坩埚,在垂直于主体的长度方向的横截面中,所述主体的底部从下至上逐渐变大;
将内板盖设在坩埚的主体的上端上。
本发明的实施例通过对坩埚结构(具体是坩埚底部的结构)改善或优化,可以提高蒸镀的均匀性和材料使用率及由于基底用量过少对蒸镀膜层均匀性的影响,使蒸镀膜层的性能大大提高。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1a和1b是现有技术中的用于OLED蒸发源的坩埚的垂直于宽度方向的横截面的示意图和垂直于长度方向的横截面的示意图;
图2a和2b是根据本发明的第一实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图和坩埚的内板的俯视图;
图3a和3b是根据本发明的第二实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图和坩埚的内板的俯视图;
图4a和4b是根据本发明的第三实施例的用于OLED蒸发源的坩埚的沿垂直于长度方向的横截面的示意图和坩埚的内板的俯视图;
图5a和5b是根据本发明的第四实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图和坩埚的内板的俯视图;
图6是根据本发明的第五实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图;
图7是根据本发明的第六实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图。
具体实施方式
下面通过实施例,并结合附图1-7,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
参见图1a和1b,其示出了现有技术的用于OLED蒸发源的坩埚的垂直于宽度方向的横截面示意图和垂直于坩埚的纵长方向或长度方向的横截面示意图。具体地,坩埚10包括主体12和设置在主体12上的内板14。如图所示,主体12的底部设计成平底结构;内板14设置成平板形式,并且其上设置有孔,以使得将材料通过所述孔蒸镀到设置在内板上或上方的玻璃基底(即用于OLED器件的基底)上。
当蒸镀材料的剩余料不充足时,主体12的底部有些地方会出现露底,造成材料蒸镀到在内板14上方的玻璃基底上的均匀性不好,所以有些时候为了保证基底(base) 量,而加入较多的材料,同时造成了材料的浪费。
图1a示出了内板14的长度L,图1b示出了坩埚主体12的宽度W和高度H。
本发明的主要构思在于将现有的坩埚底部设置成曲率较小的弧形结构或锥形结构,保证当有机材料较少时,既能够保证长边方向(长度方向)上分布的均匀性,也能最大限度地保证短边方向(宽度方向)上分布的均匀性。这样,本发明所提供的新型的坩埚能够用于有机材料液化后流动性一般的有机材料,相比,现有技术中的坩埚不能用于这样的液化后流动性不够好的有机材料。
对于OLED器件,现在量产成熟的技术都采用真空物理气相沉积工艺来制备相应的器件。就是将制作好的背板或基底放置于真空腔内利用热蒸发的方式将每一层有机材料蒸镀在背板上形成OLED器件。蒸镀工艺是生产OLED的一种重要的技术路线,使用蒸镀工艺,坩埚又是必不可少的治具。坩埚的结构设计对有机材料成膜品质和生产效率有重要影响。通常将有机材料装入坩埚内,待温度达到材料蒸发温度时,有机材料以气体的方式逸出到坩埚上方的开口,沉积在背板表面形成致密的蒸镀薄膜。最后,利用高精度金属掩膜板上的图形形成红绿蓝器件。
在本发明的一个方面中,提供了一种用于OLED蒸发源的坩埚,所述坩埚包括主体和设置在主体上的内板,在垂直于主体的长度方向的横截面中,所述主体的底部从下至上逐渐变大。
参见图2a和2b,分别示出了根据本发明的第一实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图和坩埚的内板的俯视图。所述坩埚20包括主体22和设置在主体上的内板24。如图所示,所述主体22的底部26设置成V形结构。相应地,将内板24也设置成V形结构,并且内板24上设置有成预定排布形式的孔244(参见图2b),以使得将材料通过所述孔蒸镀到设置在内板24上方的玻璃基底(未示出)上。
在此需要说明的是,坩埚的长度方向是指坩埚的长度延伸所在的方向(有时简称为长边方向),相应地,坩埚的宽度方向是指坩埚的宽度延伸所在的方向(有时简称为短边方向)。这样的定义适用于本发明的各个实施例,故在下文不再详述。
如图2a所示,主体22的底部26设置成在垂直于的长度方向的横截面(即图2a所示的横截面)中设置成单个V形。图2a示出了坩埚主体22的宽度W和高度H;图2b示出了内板24的长度L(结合图2a可知,主体22的长度略微比内板24的长度短一些)。显然,本领域技术人员可以根据需要选择坩埚的长度L、宽度W和高度H的 具体数值。例如,在一个示例中,长度L为880mm,宽度W为50mm,高度H为120mm。
如图2a和2b所示,在保证坩埚的长宽高均不变的情况下(即与图1a和1b所示的相同的情况下),将现有的坩埚设置成底部为V字形的结构,使得其能够适用于有机材料液化后流动性较差的有机材料。可以理解,将现有坩埚底部改为曲率较小的V形结构,当有机材料较少时,既能保证长边方向上分布的均匀性也能保证短边方向上分布的均匀性。
另外,如图2b所示,内板24包括在两侧的侧部241、242和位于两侧部之间的中间部243。具体地,两个侧部241和242可以用于盖设在主体22的侧边的顶部上。当然,本领域技术还可以根据需要选择其他的方式将内板24设置在主体22上而不采用上述的侧部。
所述中间部243包括两个倾斜的斜面245,所述斜面245上设置有成预定排布形式的孔244(即图2中显示的黑点)。在一个示例中,所述中间部243上的孔244在垂直于高度H方向的水平面上的投影(即如图2b所示的俯视图或相应的仰视图)中是均匀分布的或等距分布的。具体地,以长度L方向为X坐标轴,以宽度W方向为Y坐标轴,以高度H方向为Z坐标轴建立的坐标系中,中间部243上的孔244在XY平面上的投影中是均匀分布的或等距分布的。在一个具体示例中,在所述XY平面上的投影中,在Y轴方向上设置以第一间距彼此间隔开的多排孔,在每一排孔中的多个孔沿X轴方向延伸并且相邻的两个孔以第二间距彼此间隔开。在一个优选的示例中,第一间距等于第二间距。可以理解,当相邻的两排孔中的孔彼此对准时,所述孔在XY平面上的投影中的分布是均匀的。当然,还可以在相邻的两排孔中的孔不彼此对准时,将其中的一排孔中的每个孔与另一排孔中的与之相邻的两个孔的连接直线的中心对准,从而实现所述孔在XY平面上的投影中的分布是均匀的,例如图2b所示。由于所述孔在XY平面中的投影中的分布是均匀的,故使得蒸发的材料均匀地沉积在设置在坩埚上或上方的OLED器件的基板上。可以理解,由于内板的中间部实际中成大体V形的沟槽,故由于所述孔在所述投影中是均匀分布的,故在中间部的斜面上不是均匀分布的。
需要说明的是,本领域技术人员还可以设计其他形式的孔排布方式而不限于上述的具体情形,以使得所述孔在XY平面上的投影中的分布是均匀的。鉴于这样的孔排布方式基于本发明的上述说明是显而易见的,故在此不再详细说明。
图3a和3b分别示出了根据本发明的第二实施例的用于OLED蒸发源的坩埚的垂 直于长度方向的横截面的示意图和坩埚的内板的俯视图。所述坩埚30包括主体32和设置在主体32上的内板34。如图所示,所述主体32的底部36设置成W形结构。相应地,将内板34也设置成W形结构,并且内板34上设置有成预定排布形式的孔(参见图3b),以使得将材料通过所述孔蒸镀到设置在内板34上方的玻璃基底(未示出)上。如图3a所示,主体32的底部36设置成在垂直于长度方向的横截面(即图3a所示的横截面)中设置成单个W形。可以理解,所述W形可以看成两个相连的V形。
另外,如图3b所示,内板34包括在两侧的侧部341、342和位于两侧部之间的中间部343。具体地,两个侧部341和342可以用于盖设在主体32的侧边上。
所述中间部343包括四个倾斜的斜面345,所述斜面345上设置有成预定排布形式的孔344。在一个示例中,所述中间部343上的孔344在垂直于高度H方向的水平面上的投影(即如图3b所示的俯视图或相应的仰视图)中是均匀分布的或等距分布的。具体地,以长度L方向为X坐标轴,以宽度W方向为Y坐标轴,以高度H方向为Z坐标轴建立的坐标系中,中间部343上的孔344在XY平面上的投影中是均匀分布的或等距分布的。在一个具体示例中,在所述XY平面上的投影中,在Y轴方向上设置以第一间距彼此间隔开的多排孔,在每一排孔中相邻的两个孔以第二间距彼此间隔开。在一个优选的示例中,第一间距等于第二间距。可以理解,当相邻的两排孔中的孔彼此对准时,所述孔在XY平面上的投影中的分布是均匀的。当然,还可以在相邻的两排孔中的孔不彼此对准时,将其中的一排孔中的每个孔与另一排孔中的与之相邻的两个孔的连接直线的中心对准,从而实现所述孔在XY平面上的投影中的分布是均匀的,例如图3b所示。
如图3a和3b所示,在保证坩埚的长宽高均不变的情况下,将现有的坩埚设置成底部为W字形的结构,使得其能够适用于有机材料液化后流动性较差的有机材料。可以理解,将现有坩埚底部改为曲率较小的W形结构,当有机材料较少时,既能保证长边方向上分布的均匀性也能保证短边方向上分布的均匀性。
图4a和4b分别示出根据本发明的第三实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图和坩埚的内板的俯视图。所述坩埚40包括主体42和设置在主体42上的内板44。如图所示,所述主体42的底部46设置成U形结构。相应地,将内板44也设置成U形结构,并且内板44上设置有成预定排布形式的孔(参见图4b),以使得将材料通过所述孔蒸镀到设置在内板44上方的玻璃基底(未示出)上。如图4a所示,主体42的底部46设置成在垂直于长度方向的横截面(即图4a所 示的横截面)中设置成单个U形。
另外,如图4b所示,内板44包括在两侧的侧部441、442和位于两侧部之间的中间部443。具体地,两个侧部441和442可以用于盖设在主体42的侧边上。
所述中间部443包括一个U形的弯曲面445,所述弯曲面445上设置有成预定排布形式的孔444。在一个示例中,所述中间部443上的孔444在垂直于高度H方向的水平面上的投影(即如图4b所示的俯视图或相应的仰视图)中是均匀分布的或等距分布的。具体地,以长度L方向为X坐标轴,以宽度W方向为Y坐标轴,以高度H方向为Z坐标轴建立的坐标系中,中间部443上的孔444在XY平面上的投影中是均匀分布的或等距分布的。在一个具体示例中,在所述XY平面上的投影中,在Y轴方向上设置以第一间距彼此间隔开的多排孔,在每一排孔中相邻的两个孔以第二间距彼此间隔开。在一个优选的示例中,第一间距等于第二间距。可以理解,当相邻的两排孔中的孔彼此对准时,所述孔在XY平面上的投影中的分布是均匀的。当然,还可以在相邻的两排孔中的孔不彼此对准时,将其中的一排孔中的每个孔与另一排孔中的与之相邻的两个孔的连接直线的中心对准,从而实现所述孔在XY平面上的投影中的分布是均匀的,例如图4b所示。
如图4a和4b所示,在保证坩埚的长宽高均不变的情况下,将现有的坩埚设置成底部为U字形的结构,使得其能够适用于有机材料液化后流动性较差的有机材料。可以理解,将现有坩埚底部改为曲率较小的弧形结构,当有机材料较少时,既能保证长边方向上分布的均匀性也能保证短边方向上分布的均匀性。
图5a和5b分别根据本发明的第四实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图和坩埚的内板的俯视图。所述坩埚50包括主体52和设置在主体52上的内板54。如图所示,所述主体52的底部56设置成两个相连的U形结构。相应地,将内板54也设置成两个相连的U形结构,并且内板54上设置有成预定排布形式的孔(参见图5b),以使得将材料通过所述孔蒸镀到设置在内板54上方的玻璃基底(未示出)上。如图5a所示,主体52的底部56设置成在垂直于长度方向的横截面(即图5a所示的横截面)中设置成两个相连的U形结构。
另外,如图5b所示,内板54包括在两侧的侧部541、542和位于两侧部之间的中间部543。具体地,两个侧部541和542可以用于盖设在主体52的侧边上。
所述中间部543包括两个U形的弯曲面545,所述弯曲面545上设置有成预定排布形式的孔544。在一个示例中,所述中间部543上的孔544在垂直于高度H方向的 水平面上的投影(即如图5b所示的俯视图或相应的仰视图)中是均匀分布的或等距分布的。具体地,以长度L方向为X坐标轴,以宽度W方向为Y坐标轴,以高度H方向为Z坐标轴建立的坐标系中,中间部543上的孔544在XY平面上的投影中是均匀分布的或等距分布的。在一个具体示例中,在所述XY平面上的投影中,在Y轴方向上设置以第一间距彼此间隔开的多排孔,在每一排孔中相邻的两个孔以第二间距彼此间隔开。在一个优选的示例中,第一间距等于第二间距。可以理解,当相邻的两排孔中的孔彼此对准时,所述孔在XY平面上的投影中的分布是均匀的。当然,还可以在相邻的两排孔中的孔不彼此对准时,将其中的一排孔中的每个孔与另一排孔中的与之相邻的两个孔的连接直线的中心对准,从而实现所述孔在XY平面上的投影中的分布是均匀的,例如图5b所示。
如图5a和5b所示,在保证坩埚的长宽高均不变的情况下,将现有的坩埚设置成底部为两个相连的U字形的结构,使得其能够适用于有机材料液化后流动性较差的有机材料。可以理解,将现有坩埚底部改为曲率较小的弧形结构,当有机材料较少时,既能保证长边方向上分布的均匀性也能保证短边方向上分布的均匀性。
图6是根据本发明的第五实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图。所述坩埚60包括主体62和设置在主体62上的内板64。如图所示,所述主体62的底部66设置成多个相连的V形结构。相应地,将内板64也设置成多个相连的V形结构,并且内板64上设置有成预定排布形式的孔,以使得将材料通过所述孔蒸镀到设置在内板64上方的玻璃基底(未示出)上。如图6所示,主体62的底部66设置成在垂直于长度方向的横截面(即图6所示的横截面)中设置成多个相连的V形结构。
如图6所示,其与第二实施例所述的结构大体相同,不同之处仅在于内板64的中间部643在横截面中设置成多个V形。因此,关于其的内板和孔分布的具体设置在此不再详述。如图6所示,将坩埚设置成底部为多个相连的V字形的结构,当有机材料较少时,既能保证长边方向上分布的均匀性也能保证短边方向上分布的均匀性。
图7是根据本发明的第六实施例的用于OLED蒸发源的坩埚的垂直于长度方向的横截面的示意图。所述坩埚70包括主体72和设置在主体72上的内板74。如图所示,所述主体72的底部76设置成多个相连的U形结构。相应地,将内板74也设置成多个相连的U形结构,并且内板74上设置有成预定排布形式的孔,以使得将材料通过所述孔蒸镀到设置在内板74上方的玻璃基底(未示出)上。主体72的底部76设置成 在垂直于长度方向的横截面(即图7所示的横截面)中设置成多个相连的U形结构。
如图7所示,其与第四实施例所述的结构大体相同,不同之处仅在于内板74的中间部743在横截面中设置成多个U形。因此,关于其的内板和孔分布的具体设置在此不再详述。
如图7所示,将坩埚设置成底部为多个相连的U字形的结构,将现有坩埚底部设置为多个曲率较小的弧形结构,当有机材料较少时,既能保证长边方向上分布的均匀性也能保证短边方向上分布的均匀性。
可以理解,虽然本发明没有给出将坩埚的底部设置成V形和U形组合的形状,但是本领域技术人员可以根据上述的各实施例图示的情形显而易见获知这样的底部形状。本领域技术人员可以根据需要设置V形和U形的具体组合形式,在此不再对其进行详细描述。通过本发明的上述的示例的说明可知,只要使得所述坩埚的主体底部被设置成在垂直于主体的长度方向的横截面中从下至上逐渐变大,就能够解决本发明要解决的技术问题。因此,坩埚的主体底部的具体形状可以根据具体需要进行选择,而不限于本发明图示的示例的情形。
相应地,本发明的实施例还提供了一种制造如上所述的用于OLED蒸发源的坩埚的方法,包括以下步骤:
提供一具有主体的坩埚,所述坩埚的主体底部被设置成在垂直于主体的长度方向的横截面中从下至上逐渐变大;
将内板设置在坩埚的主体的上端上。
关于内板和主体的具体设置方式可以参见上述的描述,在此不再详述。
本发明的各实施例提供用于OLED蒸发源的坩埚,底部采用锥形凹槽或弧形底部设计,避免因材料蒸镀大量蒸发后基底量的减少对蒸镀材料均匀性的影响,同时能够有效改善蒸发材料的均匀性和提高材料使用率。
传统坩埚的底部为平底结构,加之有机材料本身粘性较大和液化后表面张力作用,导致有机材料在坩埚中分布不均,蒸镀过程中会出现部分露底,影响有机材料蒸镀的均匀性。本发明的各个实施例通过优化改变坩埚的底部结构,所述主体的底部设置成V形、U形或者它们的组合的形状,增加有机材料液化后分布的均匀性,从而改善蒸渡均匀性和材料的使用率。
以上仅为本发明的一些实施例,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求 和它们的等同物限定。

Claims (16)

  1. 一种用于OLED蒸发源的坩埚,所述坩埚包括主体和设置在主体上的内板,其特征在于:
    在垂直于主体的长度方向的横截面中,所述主体的底部从下至上逐渐变大。
  2. 根据权利要求1所述的用于OLED蒸发源的坩埚,其特征在于,
    在垂直于主体的长度方向的横截面中所述主体的底部设置成V形、U形或者它们的组合的形状。
  3. 根据权利要求2所述的用于OLED蒸发源的坩埚,其特征在于,
    在所述横截面中所述主体的底部设置成单个V形、两个相连的V形或更多个相连的V形。
  4. 根据权利要求2所述的用于OLED蒸发源的坩埚,其特征在于,
    在所述横截面中所述主体的底部设置成单个U形、两个相连的U形或更多个相连的U形。
  5. 根据权利要求2所述的用于OLED蒸发源的坩埚,其特征在于,
    在所述横截面中所述主体的底部设置成相连的V形和U形的组合形状。
  6. 根据权利要求1-5中任一项所述的用于OLED蒸发源的坩埚,其特征在于,
    所述内板被设置成在所述横截面中具有与所述主体的底部相匹配的形状。
  7. 根据权利要求6所述的用于OLED蒸发源的坩埚,其特征在于,
    所述内板上设置有成预定排布形式的多个孔,使得在坩埚内的蒸发材料能够穿过所述孔沉积在放置在所述坩埚上或上方的OLED器件的基板上。
  8. 根据权利要求7所述的用于OLED蒸发源的坩埚,其特征在于,
    所述内板上的孔在垂直于主体的高度方向的水平面上的投影中是均匀分布的。
  9. 根据权利8所述的用于OLED蒸发源的坩埚,其特征在于,
    以主体的长度方向为X坐标轴,以主体的宽度方向为Y坐标轴,以主体的高度方向为Z坐标轴建立的坐标系中,所述内板的孔在XY平面上的投影中是均匀分布的。
  10. 根据权利9所述的用于OLED蒸发源的坩埚,其特征在于,
    在所述XY平面上的投影中,在Y轴方向上设置以第一间距彼此间隔开的多排孔,在每一排孔中的多个孔沿X轴方向延伸并且相邻的两个孔以第二间距彼此间隔开。
  11. 根据权利要求10所述的用于OLED蒸发源的坩埚,其特征在于,
    所述第一间距等于第二间距。
  12. 根据权利要求10所述的用于OLED蒸发源的坩埚,其特征在于,
    相邻的两排孔中的孔彼此对准。
  13. 根据权利要求11所述的用于OLED蒸发源的坩埚,其特征在于,
    在相邻的两排孔中的孔不彼此对准时,将其中的一排孔中的每个孔与另一排孔中的与之相邻的两个孔的连接直线的中心对准。
  14. 根据权利要求6-13中任一项所述的用于OLED蒸发源的坩埚,其特征在于,所述内板包括:
    中间部,所述中间部上设置有所述孔。
  15. 根据权利要求6-13中任一项所述的用于OLED蒸发源的坩埚,其特征在于,
    所述内板还包括位于中间部两侧的侧部,所述侧部用于盖设在主体的顶部上。
  16. 一种制造根据权利要求1-15中任一项所述的用于OLED蒸发源的坩埚的方法,包括以下步骤:
    提供一具有主体的坩埚;
    将内板盖设在坩埚的主体的上端上。
PCT/CN2015/098910 2015-08-19 2015-12-25 用于oled蒸发源的坩埚及其制造方法 WO2017028446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15891412.7A EP3339468A4 (en) 2015-08-19 2015-12-25 CREUSET FOR AN OVAS EVAPORATION SOURCE AND METHOD FOR MANUFACTURING THE SAME
US15/323,330 US10392692B2 (en) 2015-08-19 2015-12-25 Crucible for OLED evaporation source and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510510904.3A CN105088145B (zh) 2015-08-19 2015-08-19 用于oled蒸发源的坩埚及其制造方法
CN201510510904.3 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017028446A1 true WO2017028446A1 (zh) 2017-02-23

Family

ID=54569461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098910 WO2017028446A1 (zh) 2015-08-19 2015-12-25 用于oled蒸发源的坩埚及其制造方法

Country Status (4)

Country Link
US (1) US10392692B2 (zh)
EP (1) EP3339468A4 (zh)
CN (1) CN105088145B (zh)
WO (1) WO2017028446A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088145B (zh) 2015-08-19 2017-03-29 京东方科技集团股份有限公司 用于oled蒸发源的坩埚及其制造方法
US11807935B2 (en) * 2018-11-30 2023-11-07 Ferrotec (Usa) Corporation Crucible cover for coating with an electron beam source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424427A (zh) * 2001-09-13 2003-06-18 Lg电子株式会社 薄膜沉积装置
CN102351407A (zh) * 2011-08-25 2012-02-15 江苏阳山硅材料科技有限公司 一种熔铝石英坩埚的制作方法
US20120057222A1 (en) * 2010-09-03 2012-03-08 Yasuhiro Hashimoto Single crystal of magnesium fluoride, optical member and optical element comprising the same
CN102597334A (zh) * 2009-09-05 2012-07-18 科里斯科技有限公司 生长蓝宝石单晶的方法和设备
CN102758180A (zh) * 2011-04-28 2012-10-31 日本电波工业株式会社 光学薄膜形成用炉缸内衬
CN105088145A (zh) * 2015-08-19 2015-11-25 京东方科技集团股份有限公司 用于oled蒸发源的坩埚及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901647A (en) * 1974-04-26 1975-08-26 Xerox Corp Low radiation open-boat crucibles
US5031229A (en) * 1989-09-13 1991-07-09 Chow Loren A Deposition heaters
US5616180A (en) * 1994-12-22 1997-04-01 Northrop Grumman Corporation Aparatus for varying the flux of a molecular beam
US5532102A (en) * 1995-03-30 1996-07-02 Xerox Corporation Apparatus and process for preparation of migration imaging members
FR2733253B1 (fr) * 1995-04-24 1997-06-13 Commissariat Energie Atomique Dispositif pour deposer un materiau par evaporation sur des substrats de grande surface
TWI264473B (en) * 2001-10-26 2006-10-21 Matsushita Electric Works Ltd Vacuum deposition device and vacuum deposition method
DE10316228B3 (de) * 2003-04-09 2004-12-16 Dr. Eberl Mbe-Komponenten Gmbh Effusionszelle mit verbesserter Temperaturkontrolle des Tiegels
JP2007169729A (ja) 2005-12-22 2007-07-05 Fujifilm Corp 蒸着装置および方法、固体検出器の製造方法
US20090098280A1 (en) * 2007-10-12 2009-04-16 Jean-Pierre Tahon Vapor deposition apparatus and method of vapor deposition making use thereof
FR2981667B1 (fr) * 2011-10-21 2014-07-04 Riber Systeme d'injection pour dispositif de depot de couches minces par evaporation sous vide
JP2013209687A (ja) 2012-03-30 2013-10-10 Panasonic Corp 蒸着用ボートおよびこれを用いた蒸着装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424427A (zh) * 2001-09-13 2003-06-18 Lg电子株式会社 薄膜沉积装置
CN102597334A (zh) * 2009-09-05 2012-07-18 科里斯科技有限公司 生长蓝宝石单晶的方法和设备
US20120057222A1 (en) * 2010-09-03 2012-03-08 Yasuhiro Hashimoto Single crystal of magnesium fluoride, optical member and optical element comprising the same
CN102758180A (zh) * 2011-04-28 2012-10-31 日本电波工业株式会社 光学薄膜形成用炉缸内衬
CN102351407A (zh) * 2011-08-25 2012-02-15 江苏阳山硅材料科技有限公司 一种熔铝石英坩埚的制作方法
CN105088145A (zh) * 2015-08-19 2015-11-25 京东方科技集团股份有限公司 用于oled蒸发源的坩埚及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3339468A4 *

Also Published As

Publication number Publication date
CN105088145B (zh) 2017-03-29
EP3339468A1 (en) 2018-06-27
US10392692B2 (en) 2019-08-27
EP3339468A4 (en) 2019-04-03
CN105088145A (zh) 2015-11-25
US20170198388A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
TWI618804B (zh) 遮罩片及使用其製造有機發光二極體顯示器之方法
KR102639570B1 (ko) 증착용마스크 및 이를 이용한 oled 패널
KR101135544B1 (ko) 마스크 조립체, 이의 제조 방법 및 이를 이용한 평판표시장치용 증착 장치
EP3091577A1 (en) Pixel structure and organic light-emitting display using pixel structure
CN103911584A (zh) 一种掩膜板
JP2008248301A (ja) 蒸着装置及び蒸着方法
KR20070078713A (ko) 유기 화합물의 증착장치 및 증착방법
WO2020113751A1 (zh) 一种掩膜板
CN109487206B (zh) 掩膜版及采用该掩膜版的掩膜装置
WO2021036067A1 (zh) 掩模板及制备方法、精细金属掩模板、掩模装置及使用方法
WO2022017030A1 (zh) Oled显示面板和具有其的显示装置
WO2020143217A1 (zh) 掩膜单元及具有该掩膜单元的掩膜板组件
CN106373982A (zh) 显示基板及其制作方法、以及显示装置
US20160343994A1 (en) Knockdown mask and manufacturing method thereof
US11313025B2 (en) Mask sheet and pixel structure
CN110098239B (zh) 像素结构、显示基板、掩模板及蒸镀方法
CN103695846A (zh) 一种真空镀膜装置及方法
US20220064780A1 (en) Mask assembly
WO2017028446A1 (zh) 用于oled蒸发源的坩埚及其制造方法
WO2019184265A1 (zh) 掩模板及显示面板
WO2021189562A1 (zh) 显示面板及其制备方法、掩膜板
CN108281575B (zh) 掩膜板及其制作方法
US20150022078A1 (en) Organic electroluminesence display
JP6221585B2 (ja) 蒸着マスクおよび蒸着マスクの製造方法
US20240124966A1 (en) Mask and method for manufacturing the same, and mask assembly and method for manufacturing the same

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015891412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15323330

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015891412

Country of ref document: EP