WO2017028419A1 - 一种异形有机硅树脂光转换体贴合封装led的工艺方法 - Google Patents

一种异形有机硅树脂光转换体贴合封装led的工艺方法 Download PDF

Info

Publication number
WO2017028419A1
WO2017028419A1 PCT/CN2015/097630 CN2015097630W WO2017028419A1 WO 2017028419 A1 WO2017028419 A1 WO 2017028419A1 CN 2015097630 W CN2015097630 W CN 2015097630W WO 2017028419 A1 WO2017028419 A1 WO 2017028419A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
film
led
light conversion
light
Prior art date
Application number
PCT/CN2015/097630
Other languages
English (en)
French (fr)
Inventor
何锦华
Original Assignee
江苏诚睿达光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏诚睿达光电有限公司 filed Critical 江苏诚睿达光电有限公司
Priority to JP2017567795A priority Critical patent/JP6630373B2/ja
Priority to US15/751,424 priority patent/US10276759B2/en
Priority to PL15901621T priority patent/PL3340321T3/pl
Priority to EP15901621.1A priority patent/EP3340321B1/en
Priority to KR1020187002434A priority patent/KR101987722B1/ko
Publication of WO2017028419A1 publication Critical patent/WO2017028419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the invention belongs to the technical field of light-converting body packaged LEDs, and in particular relates to a process method for a profiled silicone resin light conversion body to be packaged and packaged with LEDs.
  • LED has the advantages of high brightness, low heat, long life, environmental protection, and renewable utilization. It is called the most promising new generation of green lighting source in the 21st century. At present, although the theoretical life of LED can reach more than 100,000 hours, in actual use, it is subject to various factors such as chip failure, package failure, thermal overstress failure, electrical overstress failure or / and assembly failure. The failure of the package is particularly prominent, which causes the LED to appear prematurely with light decay or light failure, which will hinder the advancement of LED as a new energy-saving illumination source. In order to solve these problems, many scholars in the industry have carried out related research and proposed some improvement measures that can improve LED light efficiency and actual service life.
  • the newly developed flip-chip LED has the advantages of high luminous efficiency, high reliability and easy integration compared with the traditional formal LED, and the packaging material is greatly simplified, such as the gold wire and solid crystal glue of the traditional formal LED package. Materials such as brackets are no longer needed; the packaging process is also greatly simplified. For example, the solid crystal, wire bonding, and even splitting of the traditional LED packaging process are no longer needed, making flip-chip LEDs more and more widely used;
  • most of the existing flip-chip LED packaging technologies use a casting process of a silicone resin-based light conversion body and a flip-chip LED chip, a screen printing process, an upper and lower plate mold process, and a single roll.
  • the pendulum pressing process, etc., these processes and their associated packaging equipment can not solve the pores and thickness unevenness of the silicone resin light-converting body, resulting in low yield of the light-converting packaged LED;
  • the low production efficiency makes the product cost high.
  • Chinese Patent Application No. 201010204860.9 discloses "a method for packaging a flip-chip LED chip", the steps of which include: (a) applying a light conversion body to a surface of an LED chip by screen printing, and baking and curing the light conversion body; (b) fixing the LED chip on the chip substrate to bond the LED chip electrode to the chip substrate electrode; (c) fixing the LED chip and the chip substrate to the bottom of the holder reflector cup; (d) using the wire to fix the wire
  • the positive and negative electrodes of the chip substrate are respectively connected to the positive and negative electrodes of the bracket; (e) the mold or lens is placed on the bracket on which the LED chip and the chip substrate are fixed, and is filled with the silicone; (f) the overall structure is baked and cured.
  • the method improves the uniformity of the coating thickness of the light conversion body by the screen printing process, and improves the uniformity of the distribution of the phosphor particles, the purpose of improving the yield is achieved; however, the following significant deficiencies exist:
  • First, the screen printing The silicone-based light-converting body is coated on the surface of the LED chip, and then is affected by the thermal over-stress during the baking and curing process, and the light-converting body coating layer and the coating surface layer of the LED chip are partially generated to form irregularities.
  • the second is to fill the mold or lens cover with silica gel and LED chip package coated with light conversion body.
  • the entire LED chip packaging process is not equipped with an intelligent control system for control, which directly affects the improvement of the yield.
  • Chinese Patent Application No. 201310270747.4 discloses "LEDs coated with a light conversion body layer, a method of manufacturing the same, and an LED device", the solution comprising: an LED arrangement step of arranging LEDs on one surface in a thickness direction of a support sheet; In the method of covering the LED, a light conversion body layer is provided on one surface in the thickness direction of the support sheet, and the light conversion body layer is composed of an active energy ray-curable resin and a light conversion body which are cured by irradiation with active energy rays.
  • Forming the composition Forming the composition; curing step, irradiating the light conversion body layer with the active energy ray to cure the light conversion body layer; and cutting the light conversion body layer corresponding to the LED to obtain the light conversion body including the LED and the coated LED
  • the purpose of this method is to provide an LED device in which a light conversion body is uniformly disposed around an LED to prevent damage, thereby obtaining an LED coated with a light conversion body layer, and an LED having the light conversion body layer coated thereon;
  • the fluorescent resin composition of the light-converting body may cause the localized bubbles of the surface layer of the light-converting body to form uneven ridges due to the influence of the thermal over-stress;
  • the light-converting layer is covered.
  • the LED will still be affected by thermal overstress, resulting in a decrease in light efficiency in the use of LEDs.
  • the process in the entire packaging process is cumbersome, and the production efficiency of packaged LEDs is not high.
  • the upper and lower flat mold process will lead to flipping. The displacement of the chip will inevitably lead to a decrease in yield.
  • Ciba 201380027218.X discloses a "resin sheet laminate and a method for producing a semiconductor light-emitting device using the same", wherein the resin sheet laminate is provided with a phosphor-containing resin layer on a substrate.
  • the phosphor-containing resin layer has a plurality of blocks, and the substrate has a longitudinal direction and a width direction, and the plurality of blocks are repeatedly arranged in a row in the longitudinal direction.
  • the object of the invention is to improve the uniformity of color and brightness of the semiconductor light-emitting device to which the phosphor-containing resin layer is attached, the ease of manufacture, the degree of freedom in design, etc., by the resin sheet laminate.
  • the phosphor resin sheet used is a cured phosphor resin sheet, which will not effectively eliminate pores, irregularities or other processing defects which may remain therein; Pressurizing the press tool from the side of the semiconductor light-emitting element will damage the semiconductor light-emitting element.
  • the presence of the bonding layer also reduces the light-emitting efficiency of the LED element; and fourth, the phosphor resin sheet bonded to the light-emitting surface of the semiconductor light-emitting element The substrate is not peeled off, which directly affects the light effect of the semiconductor light-emitting element.
  • the phosphor resin layer is repeatedly arranged in the longitudinal direction in a plurality of blocks. In a manner of presenting, however, a plurality of block configurations of the phosphor resin layer are realized, and the actual operation procedure is cumbersome, which will affect the packaging efficiency of the entire component, and the arrangement error of the plurality of block regions in the position directly affects the subsequent connection between the light-emitting elements.
  • the accuracy of the fit, and if the size and thickness of multiple blocks are not full Consistent requirements can lead to serious product consistency issues.
  • the object of the present invention is to provide a process for attaching a packaged LED to a shaped silicone resin light converter in order to overcome the deficiencies of the prior art.
  • the invention has the remarkable advantages of using a continuous rolling process to package the packaged LED, and can satisfy the special organic Silicone light converters are required to fit the packaged LEDs in order to improve the production efficiency and superior yield of industrial batch LED packages.
  • a process for attaching a packaged LED to a shaped silicone resin light-converting body characterized in that it comprises a molding of a refined light conversion film, a roll-setting of a light conversion film array, and a light conversion film array
  • Step 1 Roll forming of the purified light conversion film: rolling the outer protective film A, the semi-cured light converting material and the outer protective film B through one or more sets of smooth surfaces under heating under vacuum conditions
  • the pressing device performs rolling to obtain a purified light conversion film composed of an outer protective film A, a semi-cured light conversion film and an outer protective film B;
  • the semi-cured light conversion material is a semi-cured light conversion film Or a semi-cured light conversion paste;
  • the outer protective film B is made of a meltable silicone photosensitive resin containing a light conversion material;
  • Step 2 Roll setting of the light conversion diaphragm array: passing the purified light conversion diaphragm with the outer protective film through the oppositely aligned first rolling device with the bump array under vacuum conditions Performing thermal roll forming with a second rolling device having an array of grooves to obtain an array of light-converting diaphragms composed of a grooved monolithic light-converting diaphragm; the recess is located adjacent to the outer protective film One side of B;
  • Step 3 the melt film of the light conversion film array: under vacuum light conditions, the outer protective film B of the light conversion film array of step 2 is melted to obtain a light conversion film array after melting;
  • Step 4 preparation of the LED flip chip array film: obtaining an LED flip chip array film, wherein the LED flip chip in the LED flip chip array film is arranged on the carrier film in an array manner; wherein The LED flip chip refers to a single LED flip chip or LED flip chip assembly; wherein the LED flip chip assembly is composed of two or more single LED flip chips;
  • Step 5 Rolling and bonding of the LED package components: the vacuum conversion film array after the film is melted in step 3 and the LED flip chip array film of step 4 are passed through the glossy surface under vacuum heating conditions.
  • the third rolling device and the fourth rolling device with the groove array are oppositely aligned and rolled, so that the LED flip-chip bonding in the LED flip chip array film is embedded in the film after the light conversion In the recess of the monolithic light conversion diaphragm of the diaphragm array, the LED package component is obtained; the groove shape and the groove size of the groove array of the fourth rolling device and the groove array of the second rolling device The groove shape and the groove size are the same;
  • Step 6 the curing of the LED package component: using the heating or / and photo-curing method, the LED package component of step 5 is cured by a curing device, thereby obtaining a cured LED package component;
  • Step 7 Cutting the LED package component: peeling off the outer protective film A of the cured LED package component in step 6, and cutting the cured LED package component to form a single LED package. A finished LED package component that is slit by the component.
  • the implementation principle of the present invention is: In order to better solve the key problems existing in the existing LED packaging process, the present invention subtly designs a new process of a profiled silicone resin light conversion body to roll-fit LEDs.
  • the principle of the roll-fitting packaging of the present invention is as follows: First, the roll is pressed to cause irregularities in the semi-cured light conversion film, and the pores, unevenness or the like which may remain in the semi-cured light conversion film are eliminated.
  • the rolled semi-cured light conversion film can be deformed during processing to form an optimized light conversion body luminescence required
  • the shape of the surface layer such as a curved shape, a semi-spherical shape, and a rectangular shape
  • the third is that the material of the outer protective film B is made of a meltable silicone photosensitive resin containing a light-converting material, and the outer protective film can be effectively irradiated.
  • Sheet B and semi-cured light conversion film are fused and integrated to facilitate close fitting with LED flip chip;
  • the present invention is a continuous flow process, which is beneficial to meet the processing conditions and guarantee specifications of mass production of LED package components. The same size, not only improve the production efficiency of the LED package components, but also improve the color and color consistency of the finished LED package components, so that the superior product rate is greatly improved.
  • the present invention proposes a new standard process for a continuous flow-rolled packaged LED, which overcomes the existing casting process, screen printing process, upper and lower plate molding process and single roll pendulum process.
  • the problem of light-emitting efficiency, production efficiency and excellent product rate of the packaged LED is obviously insufficient; the invention can meet the requirement of the LED condition of the semi-cured silicone resin light conversion body to be packaged, thereby improving the production efficiency and the superiority of the industrial batch LED package.
  • Product rate is obviously insufficient; the invention can meet the requirement of the LED condition of the semi-cured silicone resin light conversion body to be packaged, thereby improving the production efficiency and the superiority of the industrial batch LED package.
  • the present invention proposes a new process for forming a profiled light conversion film, which can produce various shape-shaped light-emitting surface layers such as an arc shape, a semi-spherical shape and a rectangular shape, and can effectively eliminate the pores remaining in the light conversion film. , unevenness and other processing defects, etc., thereby significantly improving the color consistency of the finished LED package components, and the profiled light-emitting surface layer can effectively improve the light-emitting efficiency and light uniformity of the finished LED package component.
  • the third is that the new melt film process proposed by the present invention not only overcomes the shortcomings of the existing stripping process scheme for the protective film layer, but also realizes the continuous flow process of the silicone resin light conversion film roll-bonding LED, and It is also suitable for the equipment system supporting the continuous process and implementing intelligent control to better meet the production requirements of industrial batch packaging LEDs, thereby significantly improving the production efficiency of industrial batch packaging LEDs.
  • the process method proposed by the invention is widely applicable to the bonding and packaging process of the silicone resin light conversion body and various power size LEDs, and fully meets the requirement of implementing fine processing of the product production process in the industrial batch packaging LED process.
  • FIG. 1 is a schematic block diagram showing a process of a method for bonding an LED of a shaped silicone resin light conversion body according to the present invention.
  • FIG. 2 is a schematic view showing the flow layout structure of a process for attaching a packaged LED to a shaped silicone resin light conversion body according to the present invention.
  • FIG. 3A is a schematic view showing the process of the first embodiment for producing a purified light conversion film in the process for attaching a packaged LED to a shaped silicone resin light conversion body according to the present invention.
  • 3B is a schematic view showing a second embodiment of a method for producing a purified light conversion film in a process for attaching a packaged LED to a shaped silicone resin light-converting body according to the present invention.
  • 3C is a schematic view showing a process of a third embodiment of producing a purified light conversion film in a process for attaching a packaged LED to a shaped silicone resin light-converting body according to the present invention.
  • FIG. 4A is a schematic view showing the process of a first embodiment of roll forming of a light conversion film array in a process for attaching a packaged LED to a shaped silicone resin light conversion body according to the present invention.
  • 4B is a schematic view showing the process of a second embodiment of roll forming of a light conversion film array in a process for attaching a packaged LED to a shaped silicone resin light-converting body according to the present invention.
  • FIG. 5 is a schematic view showing a process of melting a film of a light conversion film array in a method for bonding an LED of a shaped silicone resin light conversion body according to the present invention.
  • FIG. 6 is a schematic view showing a process of an embodiment of a rolled-roller composite type of an LED package component in a process for attaching a packaged LED to a profiled silicone resin light-converting body according to the present invention.
  • FIG. 7A is a schematic plan view showing the structure of a finished LED package component produced by the present invention.
  • FIG. 7B is a schematic plan view showing the planar structure of a finished single LED package component obtained by stretching according to the present invention.
  • 8A is a curved LED package component produced by the present invention, wherein 8A-1 is a left view, 8A-2 is a right view, 8A-3 is a bottom view, and 8A-4 is a perspective view.
  • 8B is a semi-circular LED package component produced by the present invention, wherein 8B-1 is a left view, 8B-2 is a right view, 8B-3 is a bottom view, and 8B-4 is a perspective view.
  • 8C is a rectangular LED package component produced by the present invention, wherein 8C-1 is a left view, 8C-2 is a right view, and 8C-3 is a vertical view. View, 8C-4 is a perspective view.
  • a method for bonding a packaged LED of a shaped silicone resin light conversion body comprises rolling forming of a purified light conversion film, rolling and shaping of a light conversion film array, The melt film of the light conversion film array, the preparation of the LED flip chip array film, the roll bonding type of the LED package component, the curing molding of the LED package component, and the flow pattern of the cutting process of the LED package component
  • the continuous process, the specific steps include the following:
  • Step 1 Roll forming of the purified light conversion film: rolling the outer protective film A, the semi-cured light converting material and the outer protective film B through one or more sets of smooth surfaces under heating under vacuum conditions
  • the pressing device performs rolling to obtain a purified light conversion film composed of an outer protective film A, a semi-cured light conversion film and an outer protective film B;
  • the semi-cured light conversion material is a semi-cured light conversion film Or a semi-cured light conversion paste;
  • the outer protective film B is made of a meltable silicone photosensitive resin containing a light conversion material;
  • Step 2 Roll setting of the light conversion diaphragm array: passing the purified light conversion diaphragm with the outer protective film through the oppositely aligned first rolling device with the bump array under vacuum conditions Performing thermal roll forming with a second rolling device having an array of grooves to obtain an array of light-converting diaphragms composed of a grooved monolithic light-converting diaphragm; the recess is located adjacent to the outer protective film One side of B;
  • Step 3 the melt film of the light conversion film array: under vacuum light conditions, the outer protective film B of the light conversion film array of step 2 is melted to obtain a light conversion film array after melting;
  • Step 4 preparation of the LED flip chip array film: obtaining an LED flip chip array film, wherein the LED flip chip in the LED flip chip array film is arranged on the carrier film in an array manner; wherein The LED flip chip refers to a single LED flip chip or LED flip chip assembly; wherein the LED flip chip assembly is composed of two or more single LED flip chips;
  • Step 5 Rolling and bonding of the LED package components: the vacuum conversion film array after the film is melted in step 3 and the LED flip chip array film of step 4 are passed through the glossy surface under vacuum heating conditions.
  • the third rolling device and the fourth rolling device with the groove array are oppositely aligned and rolled, so that the LED flip-chip bonding in the LED flip chip array film is embedded in the film after the light conversion In the recess of the monolithic light conversion diaphragm of the diaphragm array, the LED package component is obtained; the groove shape and the groove size of the groove array of the fourth rolling device and the groove array of the second rolling device The groove shape and the groove size are the same;
  • Step 6 the curing of the LED package component: using the heating or / and photo-curing method, the LED package component of step 5 is cured by a curing device, thereby obtaining a cured LED package component;
  • Step 7 Cutting the LED package component: peeling off the outer protective film A of the cured LED package component in step 6, and cutting the cured LED package component to form a component that is divided into individual LED packages The finished LED package component of the slit.
  • the invention is suitable for the production and processing of optoelectronic devices or electronic devices similar to LED flip chip structures.
  • any of the existing silicone resins with high light transmittance and good temperature resistance can be selected for use in the process of the present invention, in order to meet the reflow soldering temperature of ordinary LED package components and heat, light, etc. during long-term use.
  • the present invention preferably employs a methyl vinyl silicone resin; existing quantum dot phosphors and phosphors can be selected for use in the process of the present invention.
  • the mixed slurry used in the present invention does not need to include an adhesive; when the use of the finished LED package component under extreme conditions is required, and the adhesion between the light conversion body and the LED needs to be further enhanced, the present invention A binder may be included in the mixed slurry to be used.
  • the roll forming of the purified light conversion film in step 1 refers to a rolling press device for passing the outer protective film A, the semi-cured light converting material and the outer protective film B through one or more sets of smooth surfaces. Rolling, which is sequentially rolled by one or more sets of oppositely aligned smooth double-roll rolling presses or/and a smooth single-roller and a smooth surface transfer device to form a rolling device, thereby obtaining Refined light conversion diaphragm.
  • FIG. 3A shows the outer protective film A (8-3), the semi-cured light conversion film (8-1) and the outer protective film B (8-) in the step 1.
  • FIG. 3B shows the outer protective film A (8-3) in step 1, semi-cured light
  • the conversion slurry (8-2) and the outer protective film B (8-4) are rolled by a set of smooth rolling presses to obtain a purified light conversion film (8-6);
  • FIG. 3C shows In step 1, the outer protective film A (8-3), the semi-cured light converting paste (8-2), and the outer protective film B (8-4) are passed through two sets of smooth rolling presses. Rolling was performed to obtain a purified light conversion film (8-6).
  • the temperature of the roll forming of the purified light conversion film of the step 1 is 50 to 120 ° C; and the temperature of the optimum roll forming is 80 to 100 ° C.
  • the thickness of the purified light conversion film of step 1 is 800 ⁇ m or less; the thickness of the optimally purified light conversion film is 150 to 250 ⁇ m.
  • the material of the semi-cured light conversion film of step 1 is a semi-cured silicone resin phosphor film or a semi-cured silicone resin quantum dot phosphor film.
  • the outer protective film A of the first step is made of polyester, polyolefin or polyether.
  • the material and the content of the light conversion material in the outer layer protective film B are the same as the material and content of the light conversion material in the semi-cured light conversion film of step 1.
  • the material of the outer protective film B also includes bonding. Agent.
  • the first rolling device with the bump array in step 2 is a first single roller with a bump array or a first planar conveying device with a bump array;
  • the second rolling device is a second single roller with a groove array or a grooved array a two-plane conveying device; at least one of the first rolling device and the second rolling device is a single roller.
  • Figure 4A shows a purified light conversion film with an outer protective film A (8-3) and an outer protective film B (8-4) in step 2 ( 8-6) by heating and rolling the first single roller (2-1) with the aligned bump array and the second single roller (2-2) with the groove array, resulting in a concave a light conversion diaphragm array composed of a single monolithic light conversion diaphragm (8-7);
  • FIG. 4A shows a purified light conversion film with an outer protective film A (8-3) and an outer protective film B (8-4) in step 2 ( 8-6) by heating and rolling the first single roller (2-1) with the aligned bump array and the second single roller (2-2) with the groove array, resulting in a concave a light conversion diaphragm array composed of a single monolithic light conversion diaphragm (8-7);
  • FIG. 4B shows an outer protective film A (8-3) and an outer protective film B in step 2 ( 8-4)
  • the purified light conversion diaphragm (8-6) passes through the first aligned roller 1 (2-1) with the bump array aligned and the second planar transfer device with the groove array (2- 3) Heating and rolling shaping is performed to obtain an array of light conversion diaphragms composed of a grooved single-piece light conversion diaphragm (8-7).
  • the grooved single-piece light conversion diaphragm of step 2 has an outer shape of an arc shape, a semi-spherical shape or a rectangular shape.
  • the length, width and height of the groove are 1.01 to 1.05 times of the length, width and height of the LED flip chip; the length of the optimal groove is The width and height are 1.02 times the length, width and height of the LED flip chip.
  • the temperature of the roll-changing film array of step 2 is 50-120 ° C; the optimum roll-setting temperature is 80-100 ° C.
  • the melt film in the step 3 refers to the fusion of the outer protective film B and the semi-cured light conversion film described in the first step by means of optical radiation.
  • FIG. 5 shows that the light conversion diaphragm array composed of the grooved single-piece light conversion diaphragms (8-7) in the step 3 is passed through the film melting device 3, the light conversion diaphragm.
  • the outer protective film B (8-4) of the array is irradiated with light radiation, and is integrated with the semi-cured light conversion film to obtain a single light conversion film (8-8) which is grooved after the film is formed.
  • An array of light conversion diaphragms is provided.
  • the carrier film of the LED flip chip array film of step 4 is a stretchable carrier film, and the material of the stretchable carrier film is high temperature resistant polyester, polydimethylsiloxane and polyvinyl chloride. One kind.
  • Step 5 the film-transferring film array of step 3 and the LED flip-chip array film of step 4 are passed through a smooth third rolling device and a fourth rolling device with a groove array.
  • the device performs the opposite alignment rolling bonding, which means that the array of the light conversion diaphragms is disposed on the fourth single roller or the fourth planar conveying device with the groove array, and the LED is inverted.
  • the chip array film is arranged on the third single roller with the smooth surface of the roller surface or the third planar conveying device with the smooth surface, and the LED flip chip is obtained in the LED flip chip array. Laying into a recess of a monolithic light conversion diaphragm embedded in the array of the film-transferred light conversion film, thereby obtaining an LED package component; wherein:
  • the smooth third rolling device is a third single roller having a smooth surface or a third planar conveying device having a smooth surface
  • the fourth rolling device with the groove array is a grooved array
  • a fourth single roller or a fourth planar conveyor with a grooved array; at least one of the means for placing the array of light converting diaphragms and the means for placing the LED flip chip array diaphragm is a single roller.
  • FIG. 6 shows the light conversion film array composed of the monolithic light conversion film (8-8) after the film is melted in step 5, and the LED flip chip array film passes through the smooth surface.
  • the three single roller (4-1) and the fourth single roller (4-2) with the groove array are aligned and rolled to obtain LED package components (8-9).
  • the temperature of the roll-on-roll type of the LED package component is 50 to 120 ° C; and the temperature of the optimum roll-press type is 80 to 100 ° C.
  • the photocuring method of step 6 is active energy ray curing; the curing method has a curing temperature of 140-180 ° C, a curing time of 1 h or more; an optimum curing temperature of 150-160 ° C, and a curing time of 2 h; .
  • the slit width of the slit is within 20 ⁇ m; the optimum slit width is 15 ⁇ m.
  • the step of cutting the cured LED package component in step 7 means that the cured LED package component is subjected to opposite alignment rolling and cutting by a fifth rolling device with an array edge and a sixth rolling device with a smooth surface. Obtaining a finished LED package component having a slit that is divided into individual LED package components;
  • the fifth rolling device with the array edge is a fifth single roller with an array edge or a fifth planar conveyor with an array edge;
  • the sixth rolling device of the smooth surface is the sixth smooth surface a sixth roller conveyor of a single roller or a smooth surface; at least one of the fifth rolling device with the array edge and the sixth rolling device of the smooth surface is a single roller;
  • the array blade has The edge of the array of rectangular grids; the size of the rectangular grid is the same as the size of the finished single LED package component.
  • the finished LED package component of the present invention can be stretched and stretched by the stretcher to stretch the carrier film, so that the finished LED package component is stretched along the slit after being stretched.
  • a finished single LED package component is produced; see Figures 7A, 7B.
  • the finished single LED package component produced by the present invention can be a curved LED package component, an LED package component, and a rectangular LED package component; see Figures 8A, 8B, and 8C.
  • the invention discloses a method for bonding a packaged LED with a shaped silicone resin light conversion body, which is widely applicable to a bonding and packaging process of a silicone resin light conversion body and LEDs of various power sizes.
  • the equipment system used in the method for bonding a profiled silicone resin light-converting body to package an LED according to the present invention comprises a smooth rolling press device for purifying a light conversion film, and performing a smooth light conversion film
  • the rolling and pressing device, the rolling and squeezing device, the film squeezing device, and the rolling and laminating device are sequentially disposed, and constitute a process equipment that cooperates with each other;
  • the rolling and pressing device comprises one or more sets of oppositely rolling rolling surface rolling elements A and smooth surface rolling elements B;
  • the rolling forming means comprises a bump array with opposite alignment rolling a rolling device and a second rolling device having an array of grooves;
  • the rolling bonding device comprising
  • the smooth rolling device comprises a smooth single rolling roller A1 (1-1) and a smooth single roller B1 (1-2);
  • Figure 3B shows that the rolling press device comprises a smooth single-roller A1 (1-1) and a smooth single-roller B1 (1-2) which are oppositely aligned and rolled;
  • Figure 3C shows that the rolling press comprises two The group of smooth rolling elements A and the smooth rolling elements B, specifically including the oppositely rolling rolling smooth single roller A1 (1-1) and the smooth single roller B1 (1-2) and the oppositely aligned rolling light Face single roller A2 (1-3) and smooth single roller B2 (1-4); outer protective film A (8-3), semi-cured light conversion film (8-1) or semi-cured light conversion paste
  • the material (8-2) and the outer protective film B (8-4) are rolled by one or more sets of smooth rolling press devices to obtain a purified light conversion film (8-6).
  • a first rolling device with a bump array in the roll forming device is a first single roller with a bump array or a first planar conveyor with a bump array;
  • the second rolling device of the array is a second single roller with a grooved array or a second planar conveyor with a grooved array;
  • the first rolling device with a bump array and a grooved array At least one of the second rolling devices is a single roller. 4A and 4B, wherein: FIG. 4A shows that the roll forming device includes a first single roll (2-1) with a bump array aligned in opposite directions and a second single roll with a groove array. (2-2); FIG.
  • the roll forming device includes a first single roll (2-1) with a bump array aligned in opposite directions and a second flat transfer device (2-3) with a groove array
  • the purified light conversion film (8-6) with the outer protective film A (8-3) and the outer protective film B (8-4) is heated and rolled by a roll forming device to obtain A light conversion diaphragm array composed of a grooved monolithic light conversion diaphragm (8-7).
  • the film melting device is a light radiating device.
  • Figure 5 shows an array of light-converting diaphragms consisting of a grooved monolithic light-converting diaphragm (8-7) before the film is melted through the film-melting device 3, the array of light-converting membranes.
  • the outer protective film B (8-4) is irradiated with light radiation, and is integrated with the semi-cured light conversion film to obtain light composed of a single-piece light-converting film (8-8) having a groove after the film is melted. Convert the diaphragm array.
  • the smooth third rolling device in the rolling bonding device is a third single roller with a smooth surface or a third planar conveying device with a smooth surface, the grooved array
  • the four rolling device is a fourth single roller with a groove array or a fourth planar conveyor with a grooved array; at least one of the device for placing the array of light conversion diaphragms and the device for placing the LED flip chip array film It is a single roller.
  • Figure 6 shows a roll-on fitting comprising a smooth third-roller (4-1) and a fourth single-roller with a groove array (4-) 2); the light conversion diaphragm array and the LED flip chip array diaphragm composed of the monolithic light conversion diaphragm (8-8) after the melt film pass through the smooth third single roller (4-1) and the belt
  • the fourth single roller (4-2) having the groove array is subjected to opposite alignment rolling bonding to obtain LED package components (8-9).
  • the rolling press device is provided with a displacement adjusting device for adjusting the distance between the smooth rolling member A and the smooth roller member B; the rolling forming device is provided for adjusting between the first rolling device and the second rolling device Spacing displacement adjusting device; rolling pressing device is provided with adjusting third rolling A displacement adjusting device for the spacing between the pressing device and the fourth rolling device.
  • the smooth rolling element A of the rolling and pressing device is a single roller, and the radial runout distance of the roller is less than or equal to 2 ⁇ m; the rolling setting device has a bump array Wherein the first rolling device and the second rolling device with the groove array are single rollers, the roller radial runout distance is less than or equal to 2 ⁇ m; the smoothing third rolling device of the rolling bonding device In the case of a single roller with a fourth roller device having a groove array, the roller radial runout distance is 2 ⁇ m or less.
  • the groove shape is curved, semi-spherical or rectangular.
  • the bump of the bump array in the first rolling device with the bump array in the roll forming device has a rectangular shape, and the length, width and height of the LED flip chip are long, wide and high in size. 1.01 to 1.05 times.
  • the equipment system further includes a curing device for curing the LED package component, the curing device being disposed at the process equipment at the rear end of the rolling bonding device.
  • the curing device is a tunnel temperature control device or a tunnel illumination device;
  • the tunnel temperature control device includes a heating component, a temperature control component, and a conveyor channel;
  • the tunnel illumination device includes an illumination component, a light intensity adjustment component, and Conveyor channel.
  • the equipment system further includes a cutting device that cuts the cured LED package component, the cutting device being a process equipment disposed at a rear end of the curing device.
  • the cutting device is a rolling and cutting device comprising a roller member C and a smoothing roller member D with an array of blades arranged in opposite directions.
  • the rolling element C with the array cutting edge in the rolling cutting device is a single roller C with an array cutting edge or a flat conveying device C with an array cutting edge;
  • the smooth rolling member D is a smooth single roller a flat D or a flat surface transfer device D; at least one of the roller C with the array edge and the smooth roller D is a single roller;
  • the array edge is a knife edge having an array of rectangular lattices;
  • the size of the rectangular grid is the same as the size of a single LED package component.
  • the rolling cutting device is provided with an adjusted displacement adjusting device with an array of cutting edges and a smoothing member D spacing; the rolling member C and the smooth rolling member D with the array cutting edges are single rollers
  • the radial runout distance of the roller is less than or equal to 2 ⁇ m.
  • the equipment system further includes an LED flip chip array forming device for forming an LED flip chip array, the LED flip chip array forming device is a process equipment disposed at a front end of the rolling bonding device;
  • the chip array forming device includes a robot that grabs and places the LED flip chip and a planar transfer member that has a precise positioning displacement function.
  • the rolling press device, the roll forming device, the film melting device, the chip array forming device, the rolling bonding device, the curing device, and the cutting device of the equipment system are sequentially coordinated to form a continuous process equipment of a flow type.
  • the invention has been verified by trial and error and has achieved satisfactory trial results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

一种异形有机硅树脂光转换体贴合封装LED的工艺方法,包括精制光转换膜片的滚压成型、光转换膜片阵列的滚压定形、光转换膜片阵列的融膜、LED倒装芯片阵列膜片的准备、LED封装体元件的滚压贴合成型、LED封装体元件的固化成型和LED封装体元件的裁切工序构建的流程式连续工艺。具有运用连续滚压工艺贴合封装LED的显著优点,能够满足异形有机硅树脂光转换体贴合封装LED的条件需要,以利于提高工业化批量LED封装的生产效率和优品率。

Description

一种异形有机硅树脂光转换体贴合封装LED的工艺方法 技术领域
本发明属于光转换体封装LED技术领域,特别是涉及一种异形有机硅树脂光转换体贴合封装LED的工艺方法。
背景技术
LED具有高亮度、低热量、长寿命、环保、可再生利用等优点,被称为21世纪最有发展前景的新一代绿色照明光源。目前,虽然LED的理论寿命可以达到100000小时以上,然而在实际使用中,因为受到芯片失效、封装失效、热过应力失效、电过应力失效或/和装配失效等多种因素的制约,其中以封装失效尤为突出,而使得LED过早地出现了光衰或光失效的现象,这将阻碍LED作为新型节能型照明光源的前进步伐。为了解决这些问题,业界许多学者已开展了相关研究,并且提出了一些能够提高LED光效和实际使用寿命的改进措施。如近几年新发展起来的倒装LED与传统的正装LED相比,具有高光效、高可靠性和易于集成的优点,并且封装材料大幅简化,如传统正装LED封装的金线、固晶胶、支架等材料都不再需要;封装工艺流程也大幅简化,如传统正装LED封装工艺的固晶、焊线,甚至是分光等都不再需要,使得倒装LED得到越来越广泛的应用;但同时也要看到,现有倒装LED封装技术大多采用的是有机硅树脂类的光转换体与倒装LED芯片贴合的流延工艺、丝网印刷工艺、上下平板模工艺、单辊摆压工艺等,这些工艺及其相配套的封装装备均不能很好地解决有机硅树脂类光转换体存在的气孔、厚薄不均等瑕疵,造成光转换体封装LED的良品率低;同时还因生产效率低,使得产品成本居高不下。
中国专利申请201010204860.9公开了“一种倒装LED芯片的封装方法”,其步骤包括:(a)通过丝网印刷把光转换体涂覆于LED芯片表面,并对光转换体进行烘烤固化;(b)把LED芯片固定在芯片基板上,使LED芯片电极与芯片基板电极键合;(c)把LED芯片和芯片基板固定在支架反射杯的杯底;(d)利用导线将已固定的芯片基板的正负电极分别与支架的正负电极连接;(e)将封模或透镜盖在固定有LED芯片和芯片基板的支架上,并充满硅胶;(f)整体结构进行烘烤固化。该方法虽然通过丝网印刷工艺来提高光转换体涂覆厚度的均匀性,提高荧光粉颗粒分布的均匀性,以达到提高良品率的目的;但还存在以下明显不足:一是丝网印刷把有机硅树脂类的光转换体涂覆于LED芯片表面,之后在烘烤固化过程中因受热过应力影响,还是会导致光转换体涂层与LED芯片的涂覆面层局部产生气泡而形成凹凸不平的瑕疵;二是将封模或透镜盖充满硅胶与涂覆有光转换体的LED芯片封装, 之后整体结构进行烘烤固化过程中因受热过应力影响,还是会导致封模或透镜盖中的硅胶面层局部产生气泡而形成凹凸不平的瑕疵。因不能解决LED芯片封装过程中受热过应力的影响,必然会导致LED光效下降;三是整个LED芯片封装工艺未配备智能控制系统进行控制,直接影响良品率的提升。
中国专利申请201310270747.4公开了“被覆有光转换体层的LED、其制造方法以及LED装置”,该方案包括:LED配置工序,在支撑片的厚度方向的一个面上配置LED;层配置工序,以被覆LED的方式在支撑片的厚度方向的一个面上配置光转换体层,所述光转换体层由含有通过活性能量射线的照射而固化的活性能量射线固化性树脂以及光转换体的荧光树脂组合物形成;固化工序,对光转换体层照射活性能量射线,使光转换体层固化;裁切工序,与LED对应地裁切光转换体层,从而得到具备LED、和被覆LED的光转换体层的被覆有光转换体层的LED;以及LED剥离工序,在裁切工序之后,将被覆有光转换体层的LED从支撑片剥离。该方法的目的在于提供光转换体均匀配置在LED的周围以防损伤,从而得到被覆有光转换体层的LED、以及具备该被覆有光转换体层的LED的LED装置;但还存在以下明显不足:一是光转换体的荧光树脂组合物在固化过程中,因受热过应力影响,还是会导致光转换体面层的局部产生气泡而形成凹凸不平的瑕疵;二是覆有光转换体层的LED,仍然会受到热过应力影响,导致LED使用中出现光效下降;三是整个封装工艺中的工序比较繁琐,封装LED的生产效率不高;四是上下平板模工艺,会导致倒装芯片发生位移,必然会造成良品率降低。
中国专利申请:201380027218.X公开了“树脂片材层合体及使用其的半导体发光元件的制造方法”,该方案所述树脂片材层合体是在基材上设置有含荧光体树脂层,所述含荧光体树脂层具有多个区块,基材具有长度方向和宽度方向,所述多个区块在长度方向上重复配置成列。虽然该方案的发明目的在于,通过所述树脂片材层合体,提高贴附有含荧光体树脂层的半导体发光元件的颜色和亮度的均匀性、制造的容易性、设计的自由度等,但还存在以下明显不足:一是采用的荧光体树脂片材为固化的荧光体树脂片材,将无法有效消除其中可能残留的气孔、凹凸不平或其它加工瑕疵等;二是在粘接工序中,将加压工具自半导体发光元件侧向进行加压,将会损伤半导体发光元件;三是采用荧光体树脂层中含粘接剂粘接工艺,较难清除被粘接后的半导体发光元件中的残留物,粘接过程易产生气孔,会造成良品率降低,同时,粘接层的存在还降低了LED元件的出光效率;四是与半导体发光元件的发光面粘接的荧光体树脂片材的基材没有被剥离,会直接影响半导体发光元件的光效;五是荧光体树脂层以多个区块在长度方向上重复配置成列的方式呈现,然而实现该荧光体树脂层的多个区块配置,实际操作程序繁琐,将影响整个元件的封装效率,多个块区在位置上的布置差错会直接影响后续与发光元件之间的贴合的精确度,而多个区块之间在大小与厚度方面如果不能满 足一致性的要求,则可能会导致严重的产品一致性问题。
综上所述,如何克服现有技术所存在的不足已成为当今于光转换体封装LED技术领域中亟待解决的重大难题之一。
发明内容
本发明的目的是为克服现有技术的不足而提供一种异形有机硅树脂光转换体贴合封装LED的工艺方法,本发明具有运用连续滚压工艺贴合封装LED的显著优点,能够满足异形有机硅树脂光转换体贴合封装LED的条件需要,以利于提高工业化批量LED封装的生产效率和优品率。
根据本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,它包括精制光转换膜片的成型、光转换膜片阵列的滚压定形、光转换膜片阵列的融膜、LED倒装芯片阵列膜片的准备、LED封装体元件的滚压贴合成型、LED封装体元件的固化成型和LED封装体元件的裁切工序构建的流程式连续工艺,其基本步骤包括如下:
步骤1,精制光转换膜片的滚压成型:在真空条件加热下,将外层保护膜片A、半固化光转换材料以及外层保护膜片B通过一组或多组光面的滚压压合装置进行滚压,得到由外层保护膜片A、半固化光转换膜片和外层保护膜片B组成的精制光转换膜片;所述半固化光转换材料为半固化光转换膜或半固化光转换浆料;所述外层保护膜片B的材质为含有光转换材料的可融性有机硅光敏树脂;
步骤2,光转换膜片阵列的滚压定形:在真空条件下,将所述带有外层保护膜片的精制光转换膜片通过相向对准的带有凸块阵列的第一滚压装置与带有凹槽阵列的第二滚压装置进行加热滚压定形,得到由带凹槽的单块光转换膜片所组成的光转换膜片阵列;所述凹槽位于靠近外层保护膜片B的一侧;
步骤3,光转换膜片阵列的融膜:在真空光照条件下,对步骤2所述光转换膜片阵列的外层保护膜片B进行融膜,得到融膜后的光转换膜片阵列;
步骤4,LED倒装芯片阵列膜片的准备:获得LED倒装芯片阵列膜片,所述LED倒装芯片阵列膜片中的LED倒装芯片是以阵列方式排列于载体膜片上;其中,所述LED倒装芯片是指单个LED倒装芯片或LED倒装芯片组件;其中所述LED倒装芯片组件由两个或两个以上的单个LED倒装芯片组合而成;
步骤5,LED封装体元件的滚压贴合成型:在真空加热条件下,将步骤3所述融膜后的光转换膜片阵列与步骤4所述LED倒装芯片阵列膜片通过光面的第三滚压装置与带有凹槽阵列的第四滚压装置进行相向对准滚压贴合,使LED倒装芯片阵列膜片中的LED倒装芯片贴合嵌入所述融膜后光转换 膜片阵列的单块光转换膜片的凹槽中,得到LED封装体元件;所述第四滚压装置的凹槽阵列的凹槽形状和凹槽尺寸与第二滚压装置的凹槽阵列的凹槽形状和凹槽尺寸相同;
步骤6,LED封装体元件的固化成型:采用加温或/和光固化方式,将步骤5所述LED封装体元件通过固化装置进行固化,从而得到固化LED封装体元件;
步骤7,LED封装体元件的裁切:将步骤6所述固化LED封装体元件的外层保护膜片A剥离,并对固化LED封装体元件进行裁切,形成具有分割为单颗LED封装体元件的切缝的成品LED封装体元件。
本发明的实现原理是:为了更好地解决现有LED封装工艺中所存在的关键问题,本发明巧妙地设计了一种异形有机硅树脂光转换体滚压贴合封装LED的新工艺。本发明的滚压贴合封装原理在于:一是利用辊轮滚压使半固化光转换膜片中的凹凸不平之处产生流动,消除半固化光转换膜片中可能残留的气孔、凹凸不平或其它加工瑕疵等,从而得到无气孔、平整以及厚度均匀的精制光转换膜片;二是被滚压的半固化光转换膜片在加工中可变形,形成所需要的最优化的光转换体发光面层的形状,如弧形、半圆球形和矩形等;三是外层保护膜片B的材质采用含有光转换材料的可融性有机硅光敏树脂,能够通过光照方式有效地将外层保护膜片B与半固化光转换膜片融合并合成一体,以利于与LED倒装芯片紧密贴合;四是本发明为流程式连续工艺,有利于满足批量生产LED封装体元件的加工条件和保证规格尺寸完全一致,不仅提高了LED封装体元件的生产效率,同时提高了成品LED封装体元件的光色一致性,使优品率大幅提升。
本发明与现有技术相比其显著的优点在于:
一是本发明提出了流程式连续滚压贴合封装LED的新制式工艺,它克服了现有流延工艺、丝网印刷工艺、上下平板模压工艺和单辊摆压工艺等旧制式工艺所存在的贴合封装LED的出光效率、生产效率和优品率明显不足的问题;本发明能够满足半固化有机硅树脂光转换体贴合封装LED条件的需要,从而提高工业化批量LED封装的生产效率和优品率。
二是本发明提出了异形光转换膜片成型的新工艺,能够制得如弧形、半圆球形和矩形等各种异形形状的发光面层,可有效地消除光转换膜片中可能残留的气孔、凹凸不平以及其它加工瑕疵等,从而显著地提高成品LED封装体元件的光色一致性,并且异形化的发光面层能够有效地提高成品LED封装体元件的出光效率和出光均匀性。
三是本发明提出的融膜新工艺方案,不仅能够克服现有对保护膜层的剥膜工艺方案的不足,实现了有机硅树脂光转换膜片滚压贴合LED的流程式连续工艺,而且还适于配套连续化工艺的装备系统及实施智能控制,更好地满足工业化批量封装LED的生产要求,从而显著提高工业化批量封装LED的生产效率。
四是本发明提出的工艺方法广泛适用于有机硅树脂光转换体与各种功率大小LED的贴合封装工艺,完全满足工业化批量封装LED过程中对产品生产工艺过程实施精细化加工的需求。
附图说明
图1为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法的流程方框示意图。
图2为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法的流程布局结构示意图。
图3A为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中制得精制光转换膜片的第一种实施例的工序示意图。
图3B为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中制得精制光转换膜片的第二种实施例的工序示意图。
图3C为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中制得精制光转换膜片的第三种实施例的工序示意图。
图4A为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中光转换膜片阵列的滚压定形的第一种实施例的工序示意图。
图4B为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中光转换膜片阵列的滚压定形的第二种实施例的工序示意图。
图5为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中光转换膜片阵列的融膜的工序示意图。
图6为本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法中LED封装体元件的滚压贴合成型的一种实施例的工序示意图。
图7A为本发明制得的成品LED封装体元件的平面结构示意图。
图7B为本发明拉伸制得的成品单颗LED封装体元件的平面结构示意图。
图8A为本发明制得的弧形LED封装体元件,其中8A-1为左视图,8A-2为右视图,8A-3为仰视图,8A-4为立体图。
图8B为本发明制得的半圆形LED封装体元件,其中8B-1为左视图,8B-2为右视图,8B-3为仰视图,8B-4为立体图。
图8C为本发明制得的矩形LED封装体元件,其中8C-1为左视图,8C-2为右视图,8C-3为仰 视图,8C-4为立体图。
本发明附图中的编号说明如下:
1-1滚压成型步骤中光面的双辊滚压压合装置的光面单辊轮A1。
1-2滚压成型步骤中光面的双辊滚压压合装置的光面单辊轮B1。
1-3滚压成型步骤中光面的双辊滚压压合装置的光面单辊轮A2。
1-4滚压成型步骤中光面的双辊滚压压合装置的光面单辊轮B2。
1-5滚压成型步骤中的第一缓冲辊轮。
1-6滚压成型步骤中的第二缓冲辊轮。
2-1滚压定形步骤中带凸块阵列的第一单辊轮。
2-2滚压定形步骤中带凹槽阵列的第二单辊轮。
2-3滚压定形步骤中带凹槽阵列的第二平面传送装置。
2-4滚压定形步骤中带凸块阵列的第一单辊轮上的凸块。
2-5滚压定形步骤中带凹槽阵列的第二单辊轮上的凹槽。
2-6滚压定形步骤中带凹槽阵列的第二平面传送装置上的凹槽。
3融膜装置。
4-1滚压贴合成型步骤中的光面的第三单辊轮。
4-2滚压贴合成型步骤中的带凹槽阵列的第四单辊轮。
4-3滚压贴合成型步骤中的带凹槽阵列的第四单辊轮上的凹槽。
4-4 LED倒装芯片阵列膜片中的LED倒装芯片。
4-5 LED倒装芯片阵列膜片中的载体膜。
5固化装置。
6剥离和裁切装置。
7收卷辊。
8-1半固化光转换膜。
8-2半固化光转换浆料。
8-3外层保护膜片A。
8-4外层保护膜片B。
8-5半固化光转换膜片。
8-6精制光转换膜片。
8-7融膜前带凹槽的单块光转换膜片所组成的光转换膜片阵列中的单块光转换膜片。
8-8融膜后的带凹槽的单块光转换膜片所组成的光转换膜片阵列中的单块光转换膜片。
8-9滚压贴合成型后的LED封装体元件。
9-1第三缓冲辊轮。
9-2 LED倒装芯片缓冲辊轮。
具体实施方式
下面将结合附图和实施例对本发明的具体实施方式作进一步的详细说明。
实施例1。参见图1-2所示,本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,它包括精制光转换膜片的滚压成型、光转换膜片阵列的滚压定形、光转换膜片阵列的融膜、LED倒装芯片阵列膜片的准备、LED封装体元件的滚压贴合成型、LED封装体元件的固化成型和LED封装体元件的裁切工序构建的流程式连续工艺,其具体步骤包括如下:
步骤1,精制光转换膜片的滚压成型:在真空条件加热下,将外层保护膜片A、半固化光转换材料以及外层保护膜片B通过一组或多组光面的滚压压合装置进行滚压,得到由外层保护膜片A、半固化光转换膜片和外层保护膜片B组成的精制光转换膜片;所述半固化光转换材料为半固化光转换膜或半固化光转换浆料;所述外层保护膜片B的材质为含有光转换材料的可融性有机硅光敏树脂;
步骤2,光转换膜片阵列的滚压定形:在真空条件下,将所述带有外层保护膜片的精制光转换膜片通过相向对准的带有凸块阵列的第一滚压装置与带有凹槽阵列的第二滚压装置进行加热滚压定形,得到由带凹槽的单块光转换膜片所组成的光转换膜片阵列;所述凹槽位于靠近外层保护膜片B的一侧;
步骤3,光转换膜片阵列的融膜:在真空光照条件下,对步骤2所述光转换膜片阵列的外层保护膜B进行融膜,得到融膜后的光转换膜片阵列;
步骤4,LED倒装芯片阵列膜片的准备:获得LED倒装芯片阵列膜片,所述LED倒装芯片阵列膜片中的LED倒装芯片是以阵列方式排列于载体膜片上;其中,所述LED倒装芯片是指单个LED倒装芯片或LED倒装芯片组件;其中所述LED倒装芯片组件由两个或两个以上的单个LED倒装芯片组合而成;
步骤5,LED封装体元件的滚压贴合成型:在真空加热条件下,将步骤3所述融膜后的光转换膜片阵列与步骤4所述LED倒装芯片阵列膜片通过光面的第三滚压装置与带有凹槽阵列的第四滚压装置进行相向对准滚压贴合,使LED倒装芯片阵列膜片中的LED倒装芯片贴合嵌入所述融膜后光转换膜片阵列的单块光转换膜片的凹槽中,得到LED封装体元件;所述第四滚压装置的凹槽阵列的凹槽形状和凹槽尺寸与第二滚压装置的凹槽阵列的凹槽形状和凹槽尺寸相同;
步骤6,LED封装体元件的固化成型:采用加温或/和光固化方式,将步骤5所述LED封装体元件通过固化装置进行固化,从而得到固化LED封装体元件;
步骤7,LED封装体元件的裁切:将步骤6所述固化LED封装体元件的外层保护膜A剥离,并对固化LED封装体元件进行裁切,形成具有分割为单颗LED封装体元件的切缝的成品LED封装体元件。
特别需要说明的是:
本发明适用于对与LED倒装芯片结构类同的光电器件或电子器件的生产加工。
凡透光率高、耐温性好的现有有机硅树脂均可选择用于本发明的工艺方法,为了满足普通LED封装体元件在使用时的回流焊温度以及长期使用时的热、光等老化耐受条件,本发明优选采用甲基乙烯基有机硅树脂;现有量子点荧光体、荧光粉均可选择用于本发明的工艺方法。
通常情况下,本发明采用的混合浆料中不需要包括粘接剂;当选择在极端条件下使用成品LED封装体元件,需要进一步增强光转换体与LED之间的粘接力时,本发明采用的混合浆料中可以包括粘接剂。
本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法的进一步优选方案是:
步骤1所述精制光转换膜片的滚压成型,是指将外层保护膜片A、半固化光转换材料以及外层保护膜片B通过一组或多组光面的滚压压合装置进行滚压,依次通过一组或者多组相向对准的光面的双辊滚压压合装置或/和光面单辊轮与光面平面传送装置组合而成滚压装置进行滚压,从而得到精制光转换膜片。参见图3A、3B和3C所示,其中:图3A示出步骤1中外层保护膜片A(8-3)、半固化光转换膜(8-1)以及外层保护膜片B(8-4)通过一组光面的滚压压合装置进行滚压,得到精制光转换膜片(8-6);图3B示出步骤1中外层保护膜片A(8-3)、半固化光转换浆料(8-2)以及外层保护膜片B(8-4)通过一组光面的滚压压合装置进行滚压,得到精制光转换膜片(8-6);图3C示出步骤1中外层保护膜片A(8-3)、半固化光转换浆料(8-2)以及外层保护膜片B(8-4)通过两组光面的滚压压合装置进行滚压,得到精制光转换膜片(8-6)。
步骤1所述精制光转换膜片的滚压成型的温度为50~120℃;最佳滚压成型的温度为80~100℃。
步骤1所述精制光转换膜片的厚度为800μm以内;最佳精制光转换膜片的厚度为150~250μm。
步骤1所述半固化光转换膜片的材料为半固化的有机硅树脂荧光粉膜或半固化的有机硅树脂量子点荧光体膜。
步骤1所述外层保护膜A的材质为聚酯、聚烯烃或聚醚。
步骤1所述外层保护膜B中的光转换材料与步骤1所述半固化光转换膜片中的光转换材料的材质和含量相同;所述外层保护膜B的材质中还包括粘接剂。
步骤2中所述带有凸块阵列的第一滚压装置为带有凸块阵列的第一单辊轮或带有凸块阵列的第一平面传送装置;所述带有凹槽阵列的第二滚压装置为带凹槽阵列的第二单辊轮或带凹槽阵列的第 二平面传送装置;所述第一滚压装置与第二滚压装置中至少一个为单辊轮。参见图4A和4B所示,其中:附图4A示出步骤2中带有外层保护膜片A(8-3)和外层保护膜片B(8-4)的精制光转换膜片(8-6)通过相向对准的带凸块阵列的第一单辊轮(2-1)和带凹槽阵列的第二单辊轮(2-2)进行加热滚压定形,得到由带凹槽的单块光转换膜片(8-7)所组成的光转换膜片阵列;图4B示出步骤2中带有外层保护膜片A(8-3)和外层保护膜片B(8-4)的精制光转换膜片(8-6)通过相向对准的带凸块阵列的第一单辊轮1(2-1)和带凹槽阵列的第二平面传送装置(2-3)进行加热滚压定形,得到由带凹槽的单块光转换膜片(8-7)所组成的光转换膜片阵列。
步骤2所述带凹槽的单块光转换膜片的外形形状为弧形、半圆球形或矩形。
步骤2所述带凹槽的单块光转换膜片中,凹槽的长、宽、高尺寸为LED倒装芯片长、宽、高尺寸的1.01~1.05倍;最佳的凹槽的长、宽、高尺寸为LED倒装芯片长、宽、高尺寸的1.02倍。
步骤2所述光转换膜片阵列的滚压定形的温度为50~120℃;最佳滚压定形的温度为80~100℃。
步骤3所述融膜是指采用光辐射方式,将外层保护膜片B融合并与步骤1所述半固化光转换膜片合成一体。参见图5所示,图5示出步骤3中融膜前由带凹槽的单块光转换膜片(8-7)所组成的光转换膜片阵列通过融膜装置3,光转换膜片阵列的外层保护膜片B(8-4)被光辐射照射,与半固化光转换膜片合成一体,得到由融膜后带凹槽的单块光转换膜片(8-8)所组成的光转换膜片阵列。
步骤4所述LED倒装芯片阵列膜片的载体膜片为可拉伸载体膜,所述可拉伸载体膜片的材质为耐高温聚酯、聚二甲基硅氧烷和聚氯乙烯中的一种。
步骤5所述将步骤3所述融膜后的光转换膜片阵列与步骤4所述LED倒装芯片阵列膜片通过光面的第三滚压装置与带有凹槽阵列的第四滚压装置进行相向对准滚压贴合,是指将所述光转换膜片阵列设置于带凹槽阵列的第四单辊轮或者带凹槽阵列的第四平面传送装置上,将所述LED倒装芯片阵列膜片设置于辊面为光面的第三单辊轮或者平面为光面的第三平面传送装置上进行滚压贴合,使所述LED倒装芯片阵列中得LED倒装芯片贴合嵌入所述融膜后光转换膜片阵列的单块光转换膜片的凹槽中,从而得到LED封装体元件;其中:
光面的第三滚压装置为辊面为光面的第三单辊轮或者平面为光面的第三平面传送装置,所述带有凹槽阵列的第四滚压装置为带凹槽阵列的第四单辊轮或者带凹槽阵列的第四平面传送装置;放置光转换膜片阵列的装置和放置LED倒装芯片阵列膜片的装置中至少有一个为单辊轮。
参见图6所示,图6示出步骤5中由融膜后的单块光转换膜片(8-8)所组成的光转换膜片阵列与LED倒装芯片阵列膜片通过光面的第三单辊轮(4-1)与带有凹槽阵列的第四单辊轮(4-2)进行相向对准滚压贴合得到LED封装体元件(8-9)。
步骤5所述LED封装体元件的滚压贴合成型的温度为50~120℃;最佳滚压贴合成型的温度为80~100℃。
步骤6所述光固化方式为活性能量射线固化;所述加温固化方式,其固化温度为140~180℃,固化时间为大于等于1h;最佳固化温度为150~160℃,固化时间为2h。
步骤7所述切缝的缝宽为20μm以内;最佳切缝缝宽为15μm。
步骤7所述对固化LED封装体元件进行裁切,是指将固化LED封装体元件通过由带阵列刀口的第五滚压装置和光面的第六滚压装置进行相向对准滚压裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件;
所述带阵列刀口的第五滚压装置为带有阵列刀口的第五单辊轮或带有阵列刀口的第五平面传送装置;所述光面的第六滚压装置为光面的第六单辊轮或光面的第六平面传送装置;所述带有阵列刀口的第五滚压装置与所述光面的第六滚压装置中至少一个为单辊轮;所述阵列刀口为具有阵列矩形格子的刀口;所述矩形格子的尺寸和成品单颗LED封装体元件的尺寸相同。
根据需要,本发明所述的成品LED封装体元件,可再通过拉伸机对其可拉伸载体膜进行拉伸扩膜,使得成品LED封装体元件再拉伸后即沿所述切缝分割,从而制得成品单颗LED封装体元件;参见图7A、7B所示。
本发明制得的成品单颗LED封装体元件可以为弧形LED封装体元件、LED封装体元件和矩形LED封装体元件;参见图8A、8B和8C所示。
本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,广泛适用于有机硅树脂光转换体与各种功率大小的LED的贴合封装工艺。
实施例2。本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法所采用的装备系统,它包括用于精制光转换膜片的光面滚压压合装置、对精制光转换膜片进行加热滚压定形的滚压定形装置、对滚压定形后的精制光转换膜片进行融膜的融膜装置、将融膜后的精制光转换膜片与带有载体膜的LED倒装芯片阵列相向对准滚压贴合的滚压贴合装置;所述滚压压合装置、滚压定形装置、融膜装置、滚压贴合装置依次设置,且构成协同联动的工序装备;其中:所述滚压压合装置包括一组或多组相向对准滚压的光面滚件A与光面滚件B;所述滚压定形装置包括相向对准滚压的带有凸块阵列的第一滚压装置与带有凹槽阵列的第二滚压装置;所述滚压贴合装置包括相向对准滚压的光面的第三滚压装置与带有凹槽阵列的第四滚压装置。
上述本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法所采用的装备系统的具体实施方案进一步公开如下:
所述光面滚压压合装置的光面滚件A为光面单辊轮A或光面平面传送装置A,所述光面滚件B为光面单辊轮B或光面平面传送装置B;所述光面滚件A与光面辊件B中至少一个为单辊轮。参见图3A、3B和3C所示,其中:图3A示出光面滚压装置包括相向对准滚压的光面单辊轮A1(1-1)和光面单辊轮B1(1-2);图3B示出滚压压合装置包括相向对准滚压的光面单辊轮A1(1-1)和光面单辊轮B1(1-2);图3C示出滚压压合装置包括两组光面滚件A和光面滚件B,具体包括相向对准滚压的光面单辊轮A1(1-1)和光面单辊轮B1(1-2)以及相向对准滚压的光面单辊轮A2(1-3)和光面单辊轮B2(1-4);外层保护膜片A(8-3)、半固化光转换膜(8-1)或半固化光转换浆料(8-2)以及外层保护膜片B(8-4)通过一组或多组光面滚压压合装置进行滚压,得到精制光转换膜片(8-6)。
所述滚压定形装置中的带有凸块阵列的第一滚压装置为带有凸块阵列的第一单辊轮或带有凸块阵列的第一平面传送装置;所述带有凹槽阵列的第二滚压装置为带凹槽阵列的第二单辊轮或带凹槽阵列的第二平面传送装置;所述带有凸块阵列的第一滚压装置与带有凹槽阵列的第二滚压装置中至少一个为单辊轮。参见图4A和图4B所示,其中:图4A示出滚压定形装置包括相向对准的带凸块阵列的第一单辊轮(2-1)和带凹槽阵列的第二单辊轮(2-2);图4B示出滚压定形装置包括相向对准的带凸块阵列的第一单辊轮(2-1)和带凹槽阵列的第二平面传送装置(2-3);带有外层保护膜片A(8-3)和外层保护膜片B(8-4)的精制光转换膜片(8-6)通过滚压定形装置进行加热滚压定形,得到由带凹槽的单块光转换膜片(8-7)所组成的光转换膜片阵列。
所述融膜装置为光辐射装置。参见附图5所示,图5示出融膜前由带凹槽的单块光转换膜片(8-7)所组成的光转换膜片阵列通过融膜装置3,光转换膜片阵列的外层保护膜片B(8-4)被光辐射照射,与半固化光转换膜片合成一体,得到由融膜后带凹槽的单块光转换膜片(8-8)所组成的光转换膜片阵列。
所述滚压贴合装置中所述光面第三滚压装置为辊面为光面的第三单辊轮或者平面为光面的第三平面传送装置,所述带有凹槽阵列的第四滚压装置为带凹槽阵列的第四单辊轮或者带凹槽阵列的第四平面传送装置;放置光转换膜片阵列的装置和放置LED倒装芯片阵列膜片的装置中至少有一个为单辊轮。参见附图6所示,图6示出滚压贴合装置包括相向对准滚压的光面第三单辊轮(4-1)与带有凹槽阵列的第四单辊轮(4-2);由融膜后的单块光转换膜片(8-8)所组成的光转换膜片阵列与LED倒装芯片阵列膜片通过光面第三单辊轮(4-1)与带有凹槽阵列的第四单辊轮(4-2)进行相向对准滚压贴合得到LED封装体元件(8-9)。
所述滚压压合装置设有调节的光面滚件A与光面辊件B之间间距的位移调节装置;滚压定形装置设有调节第一滚压装置与第二滚压装置之间间距的位移调节装置;滚压贴合装置设有调节第三滚 压装置与第四滚压装置之间间距的位移调节装置。
所述滚压压合装置的光面滚件A与光面辊件B中凡为单辊轮的,其辊径向跳动距离小于等于2μm;所述滚压定形装置的带有凸块阵列的第一滚压装置与带有凹槽阵列的第二滚压装置中凡为单辊轮的,其辊径向跳动距离小于等于2μm;所述滚压贴合装置的光面第三滚压装置与带有凹槽阵列的第四滚压装置中凡为单辊轮的,其辊径向跳动距离小于等于2μm。
所述滚压定形装置中带有凹槽阵列的第二滚压装置与滚压贴合装置中带有凹槽阵列的第四滚压装置,其凹槽阵列上的凹槽形状相同,所述凹槽形状为弧形、半圆球形或矩形。
所述滚压定形装置中带有凸块阵列的第一滚压装置中凸块阵列的凸块的形状为矩形,且其长、宽、高尺寸为LED倒装芯片长、宽、高尺寸的1.01~1.05倍。
所述装备系统还包括用于LED封装体元件固化成型的固化装置,该固化装置设置于所述滚压贴合装置后端的工序装备。
所述固化装置为隧道式控温装置或隧道式光照装置;所述隧道式控温装置包括加温部件、温度调控部件和传送带通道;所述隧道式光照装置包括光照部件、光照强度调控部件和传送带通道。
所述装备系统还包括对固化LED封装体元件进行裁切的裁切装置,该裁切装置为设置于所述固化装置后端的工序装备。
所述裁切装置为滚压裁切装置,该滚压裁切装置包括相向对准设置的带有阵列刀口的滚件C和光面滚件D。
所述滚压裁切装置中带有阵列刀口的滚件C为带有阵列刀口的单辊轮C或带有阵列刀口的平面传送装置C;所述光面滚件D为光面的单辊轮D或光面的平面传送装置D;所述带有阵列刀口的滚件C与所述光面滚件D中至少一个为单辊轮;所述阵列刀口为具有阵列矩形格子的刀口;所述矩形格子的尺寸和单颗LED封装体元件的尺寸相同。
所述滚压裁切装置设有调节的带有阵列刀口的滚件C和光面滚件D间距的位移调节装置;所述带有阵列刀口的滚件C和光面滚件D中凡为单辊轮的,其辊径向跳动距离小于等于2μm。
所述装备系统还包括用于将LED倒装芯片阵列成型的LED倒装芯片阵列成型装置,所述LED倒装芯片阵列成型装置为设置于所述滚压贴合装置前端的工序装备;LED倒装芯片阵列成型装置包括抓取和放置LED倒装芯片的机械手和具有精确定位位移功能的平面传送部件。
所述装备系统的滚压压合装置、滚压定形装置、融膜装置、芯片阵列成型装置、滚压贴合装置、固化装置、裁切装置依次协同联动,构成流程式的连续工序装备。
本发明的具体实施方式中凡未涉到的说明属于本领域的公知技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
以上具体实施方式及实施例是对本发明提出的一种异形有机硅树脂光转换体贴合封装LED的工艺方法技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。

Claims (20)

  1. 一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,它包括精制光转换膜片的滚压成型、光转换膜片阵列的滚压定形、光转换膜片阵列的融膜、LED倒装芯片阵列膜片的准备、LED封装体元件的滚压贴合成型、LED封装体元件的固化成型和LED封装体元件的裁切工序构建的流程式连续工艺,其基本步骤包括如下:
    步骤1,精制光转换膜片的滚压成型:在真空条件加热下,将外层保护膜片A、半固化光转换材料以及外层保护膜片B通过一组或多组光面的滚压压合装置进行滚压,得到由外层保护膜片A、半固化光转换膜片和外层保护膜片B组成的精制光转换膜片;所述半固化光转换材料为半固化光转换膜或半固化光转换浆料;所述外层保护膜片B的材质为至少包括光转换材料的可融性有机硅光敏树脂;
    步骤2,光转换膜片阵列的滚压定形:在真空条件下,将所述带有外层保护膜片的精制光转换膜片通过相向对准的带有凸块阵列的第一滚压装置与带有凹槽阵列的第二滚压装置进行加热滚压定形,得到由带凹槽的单块光转换膜片所组成的光转换膜片阵列;所述凹槽位于靠近外层保护膜片B的一侧;所述带凹槽的单块光转换膜片的外形形状呈异形;
    步骤3,光转换膜片阵列的融膜:在真空光照条件下,对步骤2所述光转换膜片阵列的外层保护膜片B进行融膜,得到融膜后的光转换膜片阵列;
    步骤4,LED倒装芯片阵列膜片的准备:获得LED倒装芯片阵列膜片,所述LED倒装芯片阵列膜片中的LED倒装芯片是以阵列方式排列于载体膜片上;其中,所述LED倒装芯片是指单个LED倒装芯片或LED倒装芯片组件;其中所述LED倒装芯片组件由两个或两个以上的单个LED倒装芯片组合而成;
    步骤5,LED封装体元件的滚压贴合成型:在真空加热条件下,将步骤3所述融膜后的光转换膜片阵列与步骤4所述LED倒装芯片阵列膜片通过光面的第三滚压装置与带有凹槽阵列的第四滚压装置进行相向对准滚压贴合,使LED倒装芯片阵列膜片中的LED倒装芯片贴合嵌入所述融膜后光转换膜片阵列的单块光转换膜片的凹槽中,得到LED封装体元件;所述第四滚压装置的凹槽阵列的凹槽形状和凹槽尺寸与第二滚压装置的凹槽阵列的凹槽形状和凹槽尺寸相同;
    步骤6,LED封装体元件的固化成型:采用加温或/和光固化方式,将步骤5所述LED封装体元件通过固化装置进行固化,从而得到固化LED封装体元件;
    步骤7,LED封装体元件的裁切:将步骤6所述固化LED封装体元件的外层保护膜片A剥离,并对固化LED封装体元件进行裁切,形成具有分割为单颗LED封装体元件的切缝的成品LED封装体元件。
  2. 根据权利要求1所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述精制光转换膜片的滚压成型中,将外层保护膜片A、半固化光转换材料以及外层保护膜片 B通过一组或多组光面的滚压压合装置进行滚压,是指依次通过一组或者多组相向对准的光面的双辊滚压压合装置或/和光面单辊轮与光面平面传送装置组合而成的滚压压合装置进行滚压,从而得到精制光转换膜片。
  3. 根据权利要求2所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述精制光转换膜片的滚压成型的温度为50~120℃。
  4. 根据权利要求3所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述精制光转换膜片的厚度为800μm以内;
  5. 根据权利要求1所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述半固化光转换膜片的材料为半固化的有机硅树脂荧光粉膜或半固化的有机硅树脂量子点荧光体膜。
  6. 根据权利要求5所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述外层保护膜片A的材质为聚酯、聚烯烃或聚醚。
  7. 根据权利要求5所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于:步骤1所述外层保护膜片B中的光转换材料与步骤1所述半固化光转换膜片中的光转换材料的材质和含量相同。
  8. 根据权利要求7所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,所述外层保护膜片B的材质中包括粘接剂。
  9. 根据权利要求1-8任一所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤2中所述带有凸块阵列的第一滚压装置为带有凸块阵列的第一单辊轮或带有凸块阵列的第一平面传送装置;所述带有凹槽阵列的第二滚压装置为带凹槽阵列的第二单辊轮或带凹槽阵列的第二平面传送装置;所述第一滚压装置与第二滚压装置中至少一个为单辊轮。
  10. 根据权利要求9所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤2所述所述带凹槽的单块光转换膜片的外形形状呈异形,是指带凹槽的单块光转换膜片的外形形状为弧形、半圆球形或矩形。
  11. 根据权利要求10所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤2所述带凹槽的单块光转换膜片中,凹槽的长、宽、高尺寸为LED倒装芯片长、宽、高尺寸的1.01~1.05倍。
  12. 根据权利要求10所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤2所述光转换膜片阵列的滚压定形的温度为50~120℃。
  13. 根据权利要求1所述的一种带异形发光面层的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤3所述融膜是指采用光辐射方式,将外层保护膜片B融合并与步骤1所述半固化光转换膜片合成一体。
  14. 根据权利要求1所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于:
    步骤5所述将步骤3所述融膜后的光转换膜片阵列与步骤4所述LED倒装芯片阵列膜片通过光面的第三滚压装置与带有凹槽阵列的第四滚压装置进行相向对准滚压贴合,是指将所述光转换膜片阵列设置于带凹槽阵列的第四单辊轮或者带凹槽阵列的第四平面传送装置上,将所述LED倒装芯片阵列膜片设置于辊面为光面的第三单辊轮或者平面为光面的第三平面传送装置上进行滚压贴合,使所述LED倒装芯片阵列中的LED倒装芯片贴合嵌入所述融膜后光转换膜片阵列的单块光转换膜片的凹槽中,从而得到LED封装体元件;其中:
    光面的第三滚压装置为辊面为光面的第三单辊轮或者平面为光面的第三平面传送装置,所述带有凹槽阵列的第四滚压装置为带凹槽阵列的第四单辊轮或者带凹槽阵列的第四平面传送装置;放置光转换膜片阵列的装置和放置LED倒装芯片阵列膜片的装置中至少有一个为单辊轮。
  15. 根据权利要求14所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤5所述LED封装体元件的滚压贴合成型的温度为50~120℃。
  16. 根据权利要求1所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤6所述光固化方式为活性能量射线固化;所述加温固化方式,其固化温度为140~180℃、固化时间为大于或等于1h。
  17. 根据权利要求1所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤7所述切缝的缝宽为20μm以内。
  18. 根据权利要求1或17所述的一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤7所述对固化LED封装体元件进行裁切,是指将固化LED封装体元件通过由带阵列刀口的第五滚压装置和光面的第六滚压装置进行相向对准滚压裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件;
    所述带阵列刀口的第五滚压装置为带有阵列刀口的第五单辊轮或带有阵列刀口的第五平面传送装置;所述光面的第六滚压装置为光面的第六单辊轮或光面的第六平面传送装置;所述带有阵列刀口的第五滚压装置与所述光面的第六滚压装置中至少一个为单辊轮;所述阵列刀口为具有阵列矩形格子的刀口。
  19. 根据权利要求1所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于, 步骤4所述LED倒装芯片阵列膜片的载体膜片为可拉伸载体膜,所述可拉伸载体膜片的材质为耐高温聚酯、聚二甲基硅氧烷和聚氯乙烯中的一种。
  20. 根据权利要求19所述一种异形有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于将步骤7所述成品LED封装体元件,再通过拉伸机对其可拉伸载体膜进行拉伸扩膜,使得成品LED封装体元件在拉伸后即沿所述切缝分割,从而制得成品单颗LED封装体元件。
PCT/CN2015/097630 2015-08-18 2015-12-16 一种异形有机硅树脂光转换体贴合封装led的工艺方法 WO2017028419A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017567795A JP6630373B2 (ja) 2015-08-18 2015-12-16 不定形有機シリコン樹脂光変換体でledを貼り合せてパッケージするプロセス方法
US15/751,424 US10276759B2 (en) 2015-08-18 2015-12-16 Process method using deformable organic silicone resin photoconverter to bond-package LED
PL15901621T PL3340321T3 (pl) 2015-08-18 2015-12-16 Proces pakowania wiązanego diod led za pomocą odkształcalnego fotokonwertera organicznej żywicy silikonowej
EP15901621.1A EP3340321B1 (en) 2015-08-18 2015-12-16 Process method using deformable organic silicone resin photoconverter to bond-package led
KR1020187002434A KR101987722B1 (ko) 2015-08-18 2015-12-16 이형 유기 실리콘 수지 광변환체로 led를 본딩 패키징하는 공정방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510508162.0 2015-08-18
CN201510508162.0A CN106469778B (zh) 2015-08-18 2015-08-18 一种异形有机硅树脂光转换体贴合封装led的工艺方法

Publications (1)

Publication Number Publication Date
WO2017028419A1 true WO2017028419A1 (zh) 2017-02-23

Family

ID=58051589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097630 WO2017028419A1 (zh) 2015-08-18 2015-12-16 一种异形有机硅树脂光转换体贴合封装led的工艺方法

Country Status (7)

Country Link
US (1) US10276759B2 (zh)
EP (1) EP3340321B1 (zh)
JP (1) JP6630373B2 (zh)
KR (1) KR101987722B1 (zh)
CN (1) CN106469778B (zh)
PL (1) PL3340321T3 (zh)
WO (1) WO2017028419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10276759B2 (en) 2015-08-18 2019-04-30 Jiangsu Cherrity Optronics Co., Ltd. Process method using deformable organic silicone resin photoconverter to bond-package LED

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469780B (zh) * 2015-08-18 2018-02-13 江苏诚睿达光电有限公司 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法
CN117859203A (zh) 2021-06-25 2024-04-09 亮锐有限责任公司 Led阵列和led阵列光引擎的制造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722393A (zh) * 2004-07-16 2006-01-18 株式会社半导体能源研究所 层压系统、ic片及片卷、以及用于制造ic芯片的方法
CN102388090A (zh) * 2009-04-10 2012-03-21 道康宁东丽株式会社 光学器件及其制造方法
CN102881780A (zh) * 2011-07-15 2013-01-16 展晶科技(深圳)有限公司 发光模组及其制造方法
CN104170101A (zh) * 2012-04-12 2014-11-26 美国圣戈班性能塑料公司 制造发光装置的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167092A (ja) * 2003-12-04 2005-06-23 Nitto Denko Corp 光半導体装置の製造方法
US20110311831A1 (en) * 2008-11-25 2011-12-22 Denki Kagaku Kogyo Kabushiki Kaisha Method for manufacturing substrate for light emitting element package, and light emitting element package
JP5327042B2 (ja) * 2009-03-26 2013-10-30 豊田合成株式会社 Ledランプの製造方法
GB2472047B (en) * 2009-07-22 2011-08-10 Novalia Ltd Packaging or mounting a component
DE102010007840A1 (de) * 2010-02-11 2011-08-11 Wieland-Werke AG, 89079 Elektromechanisches Bauelement oder Gleitelement
CN101872828B (zh) 2010-06-21 2012-07-25 深圳雷曼光电科技股份有限公司 一种倒装led芯片的封装方法
JP2012142364A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp 封止部材、封止方法、および、光半導体装置の製造方法
WO2013085731A2 (en) * 2011-12-06 2013-06-13 Cooledge Lighting, Inc. Formation of uniform phosphor regions for broad-area lighting systems
JP6033557B2 (ja) * 2012-03-06 2016-11-30 日東電工株式会社 封止シート、および、それを用いた発光ダイオード装置の製造方法
KR101922457B1 (ko) * 2012-06-28 2018-11-27 도레이 카부시키가이샤 수지 시트 적층체 및 그것을 사용한 반도체 발광 소자의 제조 방법
US20140001949A1 (en) 2012-06-29 2014-01-02 Nitto Denko Corporation Phosphor layer-covered led, producing method thereof, and led device
KR101531389B1 (ko) * 2013-08-19 2015-06-24 (주)피엔티 필름 공급 및 부착 장치, 이를 구비한 반도체 칩 패키지 제조 장치, 및 반도체 칩 패키지 제조 방법
CN106469778B (zh) 2015-08-18 2017-12-22 江苏诚睿达光电有限公司 一种异形有机硅树脂光转换体贴合封装led的工艺方法
WO2017028430A1 (zh) * 2015-08-18 2017-02-23 江苏诚睿达光电有限公司 一种精制光转换体贴合封装led的工艺方法及精制装备系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722393A (zh) * 2004-07-16 2006-01-18 株式会社半导体能源研究所 层压系统、ic片及片卷、以及用于制造ic芯片的方法
CN102388090A (zh) * 2009-04-10 2012-03-21 道康宁东丽株式会社 光学器件及其制造方法
CN102881780A (zh) * 2011-07-15 2013-01-16 展晶科技(深圳)有限公司 发光模组及其制造方法
CN104170101A (zh) * 2012-04-12 2014-11-26 美国圣戈班性能塑料公司 制造发光装置的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340321A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10276759B2 (en) 2015-08-18 2019-04-30 Jiangsu Cherrity Optronics Co., Ltd. Process method using deformable organic silicone resin photoconverter to bond-package LED

Also Published As

Publication number Publication date
US20180233639A1 (en) 2018-08-16
CN106469778B (zh) 2017-12-22
KR101987722B1 (ko) 2019-06-11
JP2018525815A (ja) 2018-09-06
KR20180022860A (ko) 2018-03-06
EP3340321A4 (en) 2019-03-20
EP3340321B1 (en) 2020-05-06
PL3340321T3 (pl) 2020-08-10
JP6630373B2 (ja) 2020-01-15
EP3340321A1 (en) 2018-06-27
CN106469778A (zh) 2017-03-01
US10276759B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2017028430A1 (zh) 一种精制光转换体贴合封装led的工艺方法及精制装备系统
WO2017028417A1 (zh) 一种基于滚压式的热塑性树脂光转换体贴合封装led的工艺方法
WO2017028419A1 (zh) 一种异形有机硅树脂光转换体贴合封装led的工艺方法
WO2017028420A1 (zh) 一种异形有机硅树脂光转换体贴合封装led的装备系统
WO2017028418A1 (zh) 一种基于滚压式的热塑性树脂光转换体贴合封装led的装备系统
JP2018530901A5 (zh)
WO2017028429A1 (zh) 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法
WO2017028428A1 (zh) 一种基于串联滚压的有机硅树脂光转换体贴合封装led的装备系统
JP2018525815A5 (zh)
JP2018533194A5 (zh)
WO2017028427A1 (zh) 一种基于滚压式的热塑性树脂光转换体贴合封装led的智能控制系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567795

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187002434

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE