WO2017026754A1 - 통신 네트워크에서 신호의 송수신 방법 및 장치 - Google Patents

통신 네트워크에서 신호의 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2017026754A1
WO2017026754A1 PCT/KR2016/008658 KR2016008658W WO2017026754A1 WO 2017026754 A1 WO2017026754 A1 WO 2017026754A1 KR 2016008658 W KR2016008658 W KR 2016008658W WO 2017026754 A1 WO2017026754 A1 WO 2017026754A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
drs
sss
slot
crs
Prior art date
Application number
PCT/KR2016/008658
Other languages
English (en)
French (fr)
Inventor
정회윤
유성진
엄중선
박승근
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to CN201680027635.8A priority Critical patent/CN107637003B/zh
Priority to US15/549,413 priority patent/US10630440B2/en
Priority to EP16835394.4A priority patent/EP3352393B1/en
Priority to HRP20230723TT priority patent/HRP20230723T1/hr
Publication of WO2017026754A1 publication Critical patent/WO2017026754A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to a technique for transmitting and receiving signals in a cellular communication network, and more particularly, to a technique for transmitting and receiving a discovery reference signal or discovery signal (DRS).
  • DRS discovery reference signal
  • the wireless communication technology is classified into a wireless communication technology using a licensed band, and a wireless communication technology using an unlicensed band (eg, an industrial scientific medical band) according to a band used. Can be. Since the use of the licensed band is exclusively given to one operator, the wireless communication technology using the licensed band can provide better reliability and communication quality than the wireless communication technology using the unlicensed band.
  • a licensed band e.g., an industrial scientific medical band
  • an unlicensed band eg, an industrial scientific medical band
  • Representative wireless communication technologies using licensed bands include long term evolution (LTE), LTE-A (advanced), etc. defined in the 3rd generation partnership project (3GPP) standard, and support LTE (or LTE-A, etc.).
  • LTE long term evolution
  • LTE-A advanced 3rd generation partnership project
  • UE user equipment
  • Typical wireless communication technologies using unlicensed bands include wireless local area networks (WLANs) as defined in the IEEE 802.11 standard, and each access point and station supporting WLANs transmits signals through the unlicensed band.
  • WLANs wireless local area networks
  • LTE (or LTE-A, etc.) services are provided over the unlicensed band
  • coexistence with communication nodes eg, access points, stations, etc.
  • communication nodes eg, access points, stations, etc.
  • a communication node eg, base station, UE, etc.
  • LTE Long Term Evolution
  • LBT listen before talk
  • a communication node supporting LTE (or LTE-A, etc.) may not transmit a signal at a desired time.
  • interference may occur between a signal transmitted from a communication node supporting LTE (or LTE-A, etc.) and a signal transmitted from a communication node supporting WLAN. Accordingly, there is a need for a method of transmitting and receiving signals for coexistence in an unlicensed band.
  • An object of the present invention for solving the above problems is to provide a method and apparatus for transmitting and receiving a discovery reference signal (DRS).
  • DRS discovery reference signal
  • a method of operating a UE supporting an unlicensed band comprises the steps of: receiving DMTC related information including a DMTC period and a DMTC offset from a base station, based on the DMTC related information Identifying a DMTC interval in which the DRS is transmitted, and receiving the DRS from the base station through a subframe other than the subframe corresponding to the DRS period in the DMTC interval.
  • the DRS may be transmitted through a subframe after the subframe corresponding to the DRS period in the DMTC period.
  • the DRS may include a CRS, a PSS, an SSS, and a CSI-RS.
  • the CRS may be a CRS at antenna port 0.
  • the radio frame in the unlicensed band may be composed of subframes # 0 to # 9, and the PSS may be configured in subframe # 0 or subframe # 5.
  • the radio frame in the unlicensed band may be composed of subframes # 0 to # 9, and the SSS may be configured in subframe # 0 or subframe # 5.
  • the radio frame may be composed of subframes # 0 to subframe # 9.
  • the SSS is set to at least one subframe among subframes # 1 to # 4, the SSS is a subframe.
  • the sequence for the SSS set in the frame # 0 may be used.
  • the radio frame may be configured of subframes # 0 to subframe # 9.
  • the SSS is set to at least one subframe among subframes # 6 to subframe # 9, the SSS is a subframe.
  • the sequence for the SSS set in the frame # 5 may be used.
  • a radio frame may consist of subframes # 0 to subframe # 9, each of the subframes consists of two slots, and the sequence of the CRS corresponds to the number of the slot in which the SSS is configured. Can be generated based on this.
  • the sequence of the CRS may be generated based on slot numbers 0 and 1.
  • the sequence of the CRS may be generated based on slot numbers 10 and 11.
  • a method of operating a base station in a communication network comprising: transmitting configuration information indicating a DMTC interval, generating a DRS, and in the DMTC interval of an unlicensed band;
  • the DRS is transmitted through a subframe other than the subframe corresponding to the DRS period.
  • the DRS may be transmitted through a subframe after the subframe corresponding to the DRS period in the DMTC period.
  • the DRS may include a CRS, a PSS, an SSS, and a CSI-RS.
  • the CRS may be a CRS at antenna port 0.
  • the radio frame in the unlicensed band may be composed of subframes # 0 to # 9, and the PSS may be configured in subframe # 0 or subframe # 5.
  • the radio frame in the unlicensed band may be composed of subframes # 0 to # 9, and the SSS may be configured in subframe # 0 or subframe # 5.
  • the radio frame may be composed of subframes # 0 to subframe # 9.
  • the SSS is set to at least one subframe among subframes # 1 to # 4, the SSS is a subframe.
  • the sequence for the SSS set in the frame # 0 may be used.
  • the radio frame may be configured of subframes # 0 to subframe # 9.
  • the SSS is set to at least one subframe among subframes # 6 to subframe # 9, the SSS is a subframe.
  • the sequence for the SSS set in the frame # 5 may be used.
  • a radio frame may consist of subframes # 0 to subframe # 9, each of the subframes consists of two slots, and the sequence of the CRS corresponds to the number of the slot in which the SSS is configured. Can be generated based on this.
  • the sequence of the CRS may be generated based on slot numbers 0 and 1.
  • the sequence of the CRS may be generated based on slot numbers 10 and 11.
  • the success rate of signal transmission in the unlicensed band can be improved. That is, signals can be efficiently transmitted and received in the unlicensed band.
  • the performance of the communication network can be improved.
  • FIG. 1 is a conceptual diagram illustrating a first embodiment of a wireless communication network.
  • FIG. 2 is a conceptual diagram illustrating a second embodiment of a wireless communication network.
  • FIG. 3 is a conceptual diagram illustrating a third embodiment of a wireless communication network.
  • FIG. 4 is a conceptual diagram illustrating a fourth embodiment of a wireless communication network.
  • FIG. 5 is a block diagram illustrating an embodiment of a communication node constituting a wireless communication network.
  • FIG. 6 is a conceptual diagram illustrating an embodiment of a type 1 frame.
  • FIG. 7 is a conceptual diagram illustrating an embodiment of a type 2 frame.
  • FIG. 8 is a conceptual diagram illustrating an embodiment of a resource grid of a slot included in a subframe.
  • FIG. 9 is a conceptual diagram illustrating an embodiment of a CRS based on one antenna port (ie, antenna port 0).
  • FIG. 10 is a conceptual diagram illustrating one embodiment of a CRS based on two antenna ports (ie, antenna ports 0 and 1).
  • FIG. 11 is a conceptual diagram illustrating an embodiment of a CRS based on four antenna ports (ie, antenna ports 0, 1, 2, and 3).
  • FIG. 12 is a conceptual diagram illustrating an embodiment of a CSI-RS based on the CSI-RS configuration 0.
  • FIG. 13 is a conceptual diagram illustrating an embodiment of a PSS and SSS configuration when a regular CP is used in a network based on the FDD scheme.
  • FIG. 14 is a conceptual diagram illustrating an embodiment of a PSS and SSS configuration when a regular CP is used in a network based on the TDD scheme.
  • 15 is a conceptual diagram illustrating an embodiment of a DRS configuration in a network based on the FDD scheme.
  • FIG. 16 is a conceptual diagram illustrating an embodiment of a DRS configuration in a network based on a TDD scheme.
  • FIG. 17 is a conceptual diagram illustrating an embodiment of a DRS configuration based on signals corresponding to antenna ports 0 and 1.
  • FIG. 17 is a conceptual diagram illustrating an embodiment of a DRS configuration based on signals corresponding to antenna ports 0 and 1.
  • FIG. 18 is a conceptual diagram illustrating an embodiment of a DRS configuration based on signals corresponding to antenna ports 0 to 3.
  • FIG. 19 is a conceptual diagram illustrating another embodiment of a DRS configuration based on signals corresponding to antenna ports 0 to 3.
  • FIG. 19 is a conceptual diagram illustrating another embodiment of a DRS configuration based on signals corresponding to antenna ports 0 to 3.
  • 20 is a conceptual diagram illustrating another embodiment of the DRS configuration in a network based on the TDD scheme.
  • 21 is a conceptual diagram illustrating an embodiment of a PSS and SSS configuration.
  • 22 is a conceptual diagram illustrating another embodiment of the PSS and SSS configuration.
  • FIG. 23 is a conceptual diagram illustrating an embodiment of repeating PSS and SSS configurations in the time domain.
  • 24 is a conceptual diagram illustrating a first embodiment of a DRS configuration.
  • 25 is a conceptual diagram illustrating a second embodiment of a DRS configuration.
  • 26 is a conceptual diagram illustrating a third embodiment of a DRS configuration.
  • FIG. 27 is a conceptual diagram illustrating a fourth embodiment of a DRS configuration.
  • FIG. 28 is a conceptual diagram illustrating a fifth embodiment of a DRS configuration.
  • 29 is a conceptual diagram illustrating a sixth embodiment of a DRS configuration.
  • FIG. 30 is a conceptual diagram illustrating a seventh embodiment of a DRS configuration.
  • FIG. 31 is a conceptual diagram illustrating an eighth embodiment of a DRS configuration.
  • FIG. 32 is a conceptual diagram illustrating a ninth embodiment of the DRS configuration.
  • FIG. 33 is a conceptual diagram illustrating a tenth embodiment of a DRS configuration.
  • 34 is a conceptual diagram illustrating an eleventh embodiment of a DRS configuration.
  • 35 is a conceptual diagram illustrating a twelfth embodiment of the DRS configuration.
  • 36 is a flowchart illustrating an embodiment of a method of transmitting / receiving DRS.
  • 37 is a timing diagram illustrating DRS transmission and reception timing indicated by DMTC related information.
  • 38 is a timing diagram illustrating an embodiment of DRS delay transmission.
  • 39 is a timing diagram illustrating an embodiment of a delay period of a DRS.
  • 40 is a timing diagram illustrating another embodiment of a delay period of a DRS.
  • 41 is a conceptual diagram illustrating a subframe number based on each of burst time synchronization and DRS time synchronization.
  • FIG. 42 is a conceptual diagram illustrating a first embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • FIG. 43 is a conceptual diagram illustrating a second embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • FIG. 44 is a conceptual diagram illustrating a third embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • 45 is a conceptual diagram illustrating a fourth embodiment of a subframe number used for generation and detection of a CRS included in a DRS.
  • 46 is a conceptual diagram illustrating a fifth embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • FIG. 47 is a conceptual diagram illustrating a sixth embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • wireless communication network to which embodiments according to the present invention are applied will be described.
  • the wireless communication network to which embodiments according to the present invention are applied is not limited to the contents described below, and the embodiments according to the present invention may be applied to various wireless communication networks.
  • FIG. 1 is a conceptual diagram illustrating a first embodiment of a wireless communication network.
  • the first base station 110 may be a cellular communication (eg, long term evolution (LTE), LTE-A (advanced), LAA (3GPP) standard defined in a 3rd generation partnership project (3GPP) standard). licensed assisted access, etc.).
  • the first base station 110 is a multiple input multiple output (MIMO) (for example, single user (SU) -MIMO, multi user (MI) -MIMO, massive MIMO, etc.), coordinated multipoint (CoMP), carrier Aggregation (carrier aggregation (CA)) and the like may be supported.
  • MIMO multiple input multiple output
  • the first base station may operate in a licensed band F1 and form a macro cell.
  • the first base station 110 may be connected to another base station (eg, the second base station 120, the third base station 130, etc.) through an ideal backhaul or non-idal backhaul.
  • the second base station 120 may be located within the coverage of the first base station 110.
  • the second base station 120 may operate in an unlicensed band F3 and form a small cell.
  • the third base station 130 may be located within the coverage of the first base station 110.
  • the third base station 130 may operate in the unlicensed band F3 and form a small cell.
  • Each of the second base station 120 and the third base station 130 may support a wireless local area network (WLAN) defined in an Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard.
  • IEEE Institute of Electrical and Electronics Engineers
  • Each of the first base station 110 and the user equipment (UE) (not shown) connected to the first base station 110 transmits and receives a signal through a carrier aggregation (CA) between the licensed band F1 and the unlicensed band F3. can do.
  • CA carrier aggregation
  • FIG. 2 is a conceptual diagram illustrating a second embodiment of a wireless communication network.
  • each of the first base station 210 and the second base station 220 may support cellular communication (eg, LTE, LTE-A, LAA, etc. defined in the 3GPP standard).
  • Each of the first base station 210 and the second base station 220 may support MIMO (eg, SU-MIMO, MU-MIMO, large scale MIMO, etc.), CoMP, Carrier Aggregation (CA), and the like.
  • MIMO eg, SU-MIMO, MU-MIMO, large scale MIMO, etc.
  • CoMP Carrier Aggregation
  • CA Carrier Aggregation
  • Each of the first base station 210 and the second base station 220 may operate in the licensed band F1 and form a small cell.
  • Each of the first base station 210 and the second base station 220 may be located within the coverage of the base station forming the macro cell.
  • the first base station 210 may be connected to the third base station 230 through an ideal backhaul or a non-idal backhaul.
  • the second base station 220 may be connected to the fourth base station 240 through an ideal backhaul or a non-idal backhaul.
  • the third base station 230 may be located within the coverage of the first base station 210.
  • the third base station 230 may operate in the unlicensed band F3 and form a small cell.
  • the fourth base station 240 may be located within the coverage of the second base station 220.
  • the fourth base station 240 may operate in the unlicensed band F3 and form a small cell.
  • Each of the third base station 230 and the fourth base station 240 may support a WLAN defined in the IEEE 802.11 standard.
  • Each of the first base station 210, the UE connected to the first base station 210, the second base station 220 and the UE connected to the second base station 220 is a carrier between the licensed band F1 and the unlicensed band F3. Signals may be transmitted and received via aggregation CA.
  • FIG. 3 is a conceptual diagram illustrating a third embodiment of a wireless communication network.
  • each of the first base station 310, the second base station 320, and the third base station 330 may employ cellular communication (eg, LTE, LTE-A, LAA, etc. defined in the 3GPP standard).
  • Can support Each of the first base station 310, the second base station 320, and the third base station 330 may be a MIMO (eg, SU-MIMO, MU-MIMO, large scale MIMO, etc.), CoMP, Carrier Aggregation (CA), or the like.
  • Can support The first base station 310 may operate in the licensed band F1 and form a macro cell.
  • the first base station 310 may be connected to another base station (eg, the second base station 320, the third base station 330, etc.) through an ideal backhaul or non-idal backhaul.
  • the second base station 320 may be located within the coverage of the first base station 310.
  • the second base station 320 may operate in the licensed band F1 and form a small cell.
  • the third base station 330 may be located within the coverage of the first base station 310.
  • the third base station 330 may operate in the licensed band F1 and form a small cell.
  • the second base station 320 may be connected to the fourth base station 340 through an ideal backhaul or a non-idal backhaul.
  • the fourth base station 340 may be located within the coverage of the second base station 320.
  • the fourth base station 340 may operate in the unlicensed band F3 and form a small cell.
  • the third base station 330 may be connected to the fifth base station 350 through an ideal backhaul or a non-idal backhaul.
  • the fifth base station 350 may be located within the coverage of the third base station 330.
  • the fifth base station 350 may operate in the unlicensed band F3 and form a small cell.
  • Each of the fourth base station 340 and the fifth base station 350 may support a WLAN defined in the IEEE 802.11 standard.
  • First base station 310 UE (not shown) connected to first base station 310, second base station 320, UE (not shown) connected to second base station 320, and third base station 330
  • Each UE (not shown) connected to the third base station 330 may transmit and receive a signal through a carrier aggregation CA between the licensed band F1 and the unlicensed band F3.
  • FIG. 4 is a conceptual diagram illustrating a fourth embodiment of a wireless communication network.
  • each of the first base station 410, the second base station 420, and the third base station 430 may employ cellular communication (eg, LTE, LTE-A, LAA, etc. defined in the 3GPP standard).
  • Can support Each of the first base station 410, the second base station 420, and the third base station 430 may be a MIMO (eg, SU-MIMO, MU-MIMO, large scale MIMO, etc.), CoMP, Carrier Aggregation (CA), or the like.
  • Can support The first base station 410 may operate in the licensed band F1 and form a macro cell.
  • the first base station 410 may be connected to another base station (eg, the second base station 420, the third base station 430, etc.) through an ideal backhaul or non-idal backhaul.
  • the second base station 420 may be located within the coverage of the first base station 410.
  • the second base station 420 may operate in the licensed band F2 and form a small cell.
  • the third base station 430 may be located within the coverage of the first base station 410.
  • the third base station 430 may operate in the licensed band F2 and form a small cell.
  • Each of the second base station 420 and the third base station 430 may operate in a licensed band F2 different from the licensed band F1 in which the first base station 410 operates.
  • the second base station 420 may be connected to the fourth base station 440 through an ideal backhaul or a non-idal backhaul.
  • the fourth base station 440 may be located within the coverage of the second base station 420.
  • the fourth base station 440 may operate in the unlicensed band F3 and form a small cell.
  • the third base station 430 may be connected to the fifth base station 450 through an ideal backhaul or a non-idal backhaul.
  • the fifth base station 450 may be located within the coverage of the third base station 430.
  • the fifth base station 450 may operate in the unlicensed band F3 and form a small cell.
  • Each of the fourth base station 440 and the fifth base station 450 may support a WLAN defined in the IEEE 802.11 standard.
  • Each of the UE (not shown) connected to the first base station 410 and the first base station 410 may transmit and receive a signal through a carrier aggregation CA between the licensed band F1 and the unlicensed band F3.
  • Each of the second base station 420, the UE (not shown) connected to the second base station 420, the third base station 430, and the UE (not shown) connected to the third base station 430 are each licensed band (F2).
  • a signal may be transmitted and received via carrier aggregation CA between the license and the unlicensed band F3.
  • a communication node (ie, a base station, a UE, etc.) constituting the wireless communication network described above may transmit a signal based on a listen before talk (LBT) procedure in an unlicensed band. That is, the communication node may determine the occupied state of the unlicensed band by performing an energy detection operation. The communication node may transmit a signal when it is determined that the unlicensed band is in an idle state. In this case, the communication node may transmit a signal when the unlicensed band is in an idle state during a contention window according to a random backoff operation. On the other hand, the communication node may not transmit a signal when it is determined that the unlicensed band is busy.
  • LBT listen before talk
  • the communication node may transmit a signal based on a carrier sensing adaptive transmission (CSAT) operation. That is, the communication node may transmit a signal based on a preset duty cycle. The communication node may transmit a signal if the current duty cycle is a duty cycle assigned for a communication node supporting cellular communication. On the other hand, the communication node may not transmit a signal if the current duty cycle is a duty cycle assigned for a communication node that supports communication other than cellular communication (eg, WLAN, etc.). The duty cycle may be adaptively determined based on the number of communication nodes supporting WLANs present in the unlicensed band, the usage state of the unlicensed band, and the like.
  • CSAT carrier sensing adaptive transmission
  • the communication node may perform discontinuous transmission in the unlicensed band. For example, if a maximum transmission duration or maximum channel occupancy time (max COT) is set in the unlicensed band, the communication node is within the maximum transmission period (or maximum channel occupancy time). You can send a signal.
  • the communication node may transmit the remaining signals in the next maximum transmission period (or the maximum channel occupation time) when all signals are not transmitted within the current maximum transmission period (or the maximum channel occupation time).
  • the communication node may select a carrier having relatively little interference in the unlicensed band and may operate on the selected carrier.
  • the communication node may adjust the transmission power to reduce interference to other communication nodes.
  • the communication node may be a code division multiple access (CDMA) based communication protocol, a wideband CDMA (WCDMA) based communication protocol, a time division multiple access (TDMA) based communication protocol, or a frequency division multiple access (FDMA) based communication protocol. It may support a single carrier (SC) -FDMA based communication protocol, an orthogonal frequency division multiplexing (OFDM) based communication protocol, an orthogonal frequency division multiple access (OFDMA) based communication protocol, and the like.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • SC single carrier
  • OFDM orthogonal frequency division multiplexing
  • OFDMA orthogonal frequency division multiple access
  • the base station is a NodeB (NB), an evolved NodeB (eNB), a base transceiver station (BTS), a radio base station, a radio transceiver, an access point. AP), access node, and the like.
  • the UE is a terminal, an access terminal, a mobile terminal, a station, a subscriber station, a portable subscriber station, a mobile station. ), Nodes, devices, and the like.
  • the communication node may have a structure as follows.
  • FIG. 5 is a block diagram illustrating an embodiment of a communication node constituting a wireless communication network.
  • the communication node 500 may include at least one processor 510, a memory 520, and a transceiver 530 connected to a network to perform communication.
  • the communication node 500 may further include an input interface device 540, an output interface device 550, a storage device 560, and the like.
  • Each component included in the communication node 500 may be connected by a bus 570 to communicate with each other.
  • the processor 510 may execute a program command stored in at least one of the memory 520 and the storage device 560.
  • the processor 510 may refer to a central processing unit (CPU), a graphics processing unit (GPU), or a dedicated processor on which methods according to embodiments of the present invention are performed.
  • Each of the memory 520 and the storage device 560 may be configured of at least one of a volatile storage medium and a nonvolatile storage medium.
  • the memory 520 may be configured as at least one of a read only memory (ROM) and a random access memory (RAM).
  • the corresponding second communication node corresponds to the method (for example, the method performed in the first communication node).
  • the reception or transmission of a signal may be performed. That is, when the operation of the UE is described, the base station corresponding thereto may perform an operation corresponding to the operation of the UE. In contrast, when the operation of the base station is described, the UE corresponding thereto may perform an operation corresponding to the operation of the base station.
  • carrier aggregation may be applied between a cell in an unlicensed band and a cell in a licensed band.
  • the configuration, add, modify, or release of a cell in an unlicensed band is referred to as radio resource control (RRC) signaling (e.g., an RRCConnectionReconfiguration message (hereinafter referred to as an "RRC message").
  • RRC radio resource control
  • the transmission / reception procedure may be sent from the cell of the licensed band to the UE.
  • the RRC message may include information necessary for the operation and operation of the cell of the unlicensed band.
  • the section in which a signal can be continuously transmitted in the cell in the unlicensed band may be limited within the maximum transmission section.
  • the signal when a signal is transmitted based on the LBT, the signal may be transmitted when transmission of another communication node is completed.
  • LTE (or LTE-A, etc.) service is provided through an unlicensed band
  • transmission of a communication node supporting LTE (or, LTE-A, etc.) may have aperiodic, non-continuous, and opportunistic characteristics.
  • a signal continuously transmitted by a communication node supporting LTE (or LTE-A, etc.) for a period of time in an unlicensed band may be referred to as an "unlicensed band burst."
  • a channel defined in the licensed band for example, a physical control format indicator channel (PCFICH), a physical hybrid-request request (PHICH) indicator channel, a physical downlink control channel (PDCCH), and a physical downlink shared PDSCH) channel, physical multicast channel (PMCH), physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), etc. and signals (e.g., synchronization signal, reference signal, etc.)
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid-request request
  • PDCH physical downlink control channel
  • PUSCH physical downlink shared PDSCH
  • signals e.g., synchronization signal, reference signal, etc.
  • Consecutive sets of subframes consisting of one or more combinations may be transmitted on an unlicensed band. In this case, transmission of subframes may be referred to as "unlicensed band transmission".
  • Frames used for transmission in the unlicensed band may be classified into a downlink unlicensed band burst frame, an uplink unlicensed band burst frame, and a downlink / uplink unlicensed band burst frame.
  • the downlink unlicensed band burst frame may include a subframe to which “unlicensed band transmission” is applied and may further include an “unlicensed band signal”.
  • the "unlicensed band signal” may be located before the subframe to which "unlicensed band transmission” applies.
  • the "unlicensed band signal” is used to match the timing (or OFDM symbol timing) of the subframe to which "unlicensed band transmission” is applied and the timing (or OFDM symbol timing) of the subframe in the licensed band. Can be configured.
  • the "unlicensed band signal” may be used for automatic gain control (AGC), synchronization acquisition, channel estimation, and the like, which are required for receiving data based on "unlicensed band transmission”.
  • AGC automatic gain control
  • a cellular communication network may support a frequency division duplex (FDD) scheme, a time division duplex (TDD) scheme, and the like.
  • FDD frequency division duplex
  • TDD time division duplex
  • a frame based on the FDD scheme may be defined as a “type 1 frame”
  • a frame based on the TDD scheme may be defined as a “type 2 frame”.
  • FIG. 6 is a conceptual diagram illustrating an embodiment of a type 1 frame.
  • a radio frame 600 may include 10 subframes, and the subframe may include two slots.
  • the radio frame 600 may include 20 slots (eg, slot # 0, slot # 1, slot # 2, slot # 3, ..., slot # 18, slot # 19).
  • the radio frame 600 length T f may be 10 ms.
  • the subframe length may be 1 ms.
  • the slot length T slot may be 0.5 ms.
  • T s may be 1 / 30,720,000 s .
  • the slot may consist of a plurality of OFDM symbols in the time domain and may consist of a plurality of resource blocks (RBs) in the frequency domain.
  • the resource block may be composed of a plurality of subcarriers in the frequency domain.
  • the number of OFDM symbols constituting the slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP may be classified into a normal CP and an extended CP. If a regular CP is used, the slot may consist of seven OFDM symbols, in which case the subframe may consist of fourteen OFDM symbols. If the extended CP is used, the slot may consist of six OFDM symbols, in which case the subframe may consist of twelve OFDM symbols.
  • FIG. 7 is a conceptual diagram illustrating an embodiment of a type 2 frame.
  • the radio frame 700 may include two half frames, and the half frame may include five subframes.
  • the radio frame 700 may include ten subframes.
  • the radio frame 700 length T f may be 10 ms.
  • the length of the half frame may be 5ms.
  • the subframe length may be 1 ms.
  • T s may be 1 / 30,720,000 s .
  • the radio frame 700 may include a downlink subframe, an uplink subframe, and a special subframe.
  • Each of the downlink subframe and the uplink subframe may include two slots.
  • the slot length T slot may be 0.5 ms.
  • each of subframe # 1 and subframe # 6 may be a special subframe.
  • the special subframe may include a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the downlink pilot time slot may be considered as a downlink period and may be used for cell discovery, time and frequency synchronization acquisition, etc. of the UE.
  • the guard period may be used for solving the interference problem of uplink data transmission caused by the downlink data reception delay.
  • the guard period may include a time required for switching from the downlink data reception operation to the uplink data transmission operation.
  • the uplink pilot time slot may be used for uplink channel estimation, time and frequency synchronization acquisition, and the like.
  • the length of each of the downlink pilot time slot, the guard period, and the uplink pilot time slot included in the special subframe may be variably adjusted as necessary.
  • the number and position of each of the downlink subframe, the uplink subframe, and the special subframe included in the radio frame 700 may be changed as necessary.
  • FIG. 8 is a conceptual diagram illustrating an embodiment of a resource grid of a slot included in a subframe.
  • a resource block of a slot included in a downlink subframe or an uplink subframe may be composed of seven OFDM symbols in the time domain when normal CP is used, and 12 subframes in the frequency domain. It may consist of carriers.
  • a resource consisting of one OFDM symbol in the time domain and one subcarrier in the frequency domain may be referred to as a "resource element (RE)".
  • resource allocation for one UE may be performed in units of resource blocks, and mapping of reference signals, synchronization signals, etc. may be performed in units of resource elements. Can be performed.
  • the reference signal may be used for channel estimation, channel quality measurement, and the like for data demodulation.
  • the reference signal may be generated based on a sequence.
  • the sequence used for generating the reference signal may be a constant amplitude zero auto-correlation (CAZAC) sequence, a psedo-random (PN) sequence, a cyclically shifted sequence, or the like.
  • the CAZAC sequence may include a zacoff-chu (ZC) -based sequence.
  • the PN sequence may include an m-sequence, a gold sequence, a kasami sequence, and the like.
  • Reference signals include cell-specific reference signals (CRS), UE-specific reference signals, channel state information-reference signals (CSI-RS), and location reference signals. (positioning reference signal; PRS) and the like.
  • the CRS may be sent to all UEs belonging to the cell and may be used for channel estimation.
  • the UE specific reference signal may be transmitted to a specific UE or a specific group belonging to a cell, and may be used for data demodulation at a specific UE or a specific group.
  • the specific group may include at least one UE.
  • CSI-RS can be used for the measurement of channel quality.
  • the CRS may be set for each antenna port. CRS per antenna port may be as follows.
  • FIG. 9 is a conceptual diagram illustrating one embodiment of a CRS based on one antenna port (ie, antenna port 0), and FIG. 10 illustrates one embodiment of a CRS based on two antenna ports (ie, antenna ports 0 and 1).
  • FIG. 11 is a conceptual diagram illustrating an embodiment of a CRS based on four antenna ports (ie, antenna ports 0, 1, 2, and 3).
  • a base station may use a plurality of antennas, and a resource grid for each of the plurality of antennas may be set.
  • l may indicate an OFDM symbol number (or OFDM symbol index, OFDM symbol position). If the slot consists of seven OFDM symbols in the time domain (that is, a regular CP is used), l denotes OFDM symbol # 0, OFDM symbol # 1, OFDM symbol # 2, OFDM symbol # 3, and OFDM symbol # 4, OFDM symbol # 5 and OFDM symbol # 6 may be indicated.
  • k may indicate a subcarrier number (or subcarrier index, subcarrier position). If the resource block consists of 12 subcarriers in the frequency domain, k is subcarrier # 0, subcarrier # 1, subcarrier # 2, subcarrier # 3, subcarrier # 4, subcarrier # 5, subcarrier # 6, subcarrier # 7, subcarrier # 8, subcarrier # 9, subcarrier # 10, subcarrier # 11.
  • From antenna port 0 R 0 may indicate the CRS for the first antenna from a plurality of antennas.
  • From antenna port 1 R 1 may indicate the CRS for the second antenna of the plurality of antennas.
  • From antenna port 2 R 2 is from a plurality of antennas may indicate the CRS for the third antenna.
  • From antenna port 3 R 3 may indicate the CRS for a fourth antenna of the plurality of antennas.
  • the positions of R 0 , R 1 , R 2, and R 3 in the subframe may not overlap each other.
  • the resource element used for the CRS of one antenna may not be used for the CRS of another antenna.
  • the CRS may be configured every six subcarriers. That is, there may be five subcarriers between CRSs within the same OFDM symbol.
  • the position of the CRS in the frequency domain and the time domain of the subframe may be set regardless of the UE. That is, a sequence used for generation of a CRS (hereinafter, referred to as a "CRS sequence") may be configured regardless of the UE. Therefore, all UEs located in the cell can receive the CRS.
  • the location of the CRS and the CRS sequence may be set based on a cell ID.
  • the position of the CRS in the time domain may be set based on the antenna number, the number of OFDM symbols in the resource block, and the like.
  • the position of the CRS in the frequency domain may be set based on an antenna number, the number of OFDM symbols in a resource block, a cell ID, an OFDM symbol number, a slot number, and the like.
  • the CRS sequence may be applied in units of OFDM symbols in a subframe.
  • the CRS sequence may vary according to a cell ID, a slot number, an OFDM symbol number, a type of CP, and the like.
  • the number of subcarriers for which a reference signal (for example, CRS) for each antenna port is configured in one OFDM symbol may be two.
  • the subframe includes N RB resource blocks in the frequency domain
  • the number of subcarriers for which a reference signal (for example, CRS) for each antenna port is configured in one OFDM symbol may be “2 ⁇ N RB ”.
  • the length of the CRS sequence may be “2 ⁇ N RB ”.
  • the CRS sequence may be defined as in Equation 1 below.
  • Equation 1 May indicate a CRS sequence.
  • l may indicate an OFDM symbol number.
  • n s may indicate a slot number.
  • m may indicate an index of a resource block.
  • Equation 2 The function c (*) of Equation 1 may be defined as Equation 2 below.
  • N c may be 1600.
  • An initial value of the function x 1 (*) of Equation 2 may be defined as Equation 3 below.
  • the initial value c init of the function x 2 (*) in Equation 2 may be set differently in some cases.
  • the function x 2 (*) may be initialized according to a cell ID, slot number, OFDM symbol number, type of CP, etc. for each OFDM symbol.
  • An initial value c init of the function x 2 (*) of Equation 2 may be defined as Equation 4 below.
  • N CP may be set to 1 when a regular CP is used, and may be set to 0 when an extended CP is used. May indicate a cell ID. l may indicate an OFDM symbol number. n s may indicate a slot number.
  • the reference signal transmitted through the l-th OFDM symbol of the k-th subcarrier in the resource block of the antenna port p May be defined as in Equation 5 below.
  • the subcarrier number k and the OFDM symbol number l may be defined as in Equation 6 below.
  • May indicate the number of OFDM symbols in one slot in downlink. May indicate the number of resource blocks in downlink. May indicate the maximum number of resource blocks in downlink. V used to determine the subcarrier number may be defined as in Equation 7 below.
  • p may indicate the number of the antenna port.
  • n s may indicate a slot number.
  • the frequency shift value v shift according to the cell is " mod 6 ", where" x mod y "may be an operation indicating the remaining value when x is divided by y.
  • CSI-RS may be used for estimation of channel state information (CSI) in an LTE network.
  • the UE may estimate the CSI based on the CSI-RS transmitted from the base station, and report the estimated CSI to the base station.
  • the CSI may include a channel quality indicator (CQI), a precoding matrix indicator (PMI), a rank indicator (RI), and the like.
  • the CSI-RS may have up to 32 different configurations.
  • the CSI-RS configuration may be different depending on the number of antenna ports used in the cell.
  • the CSI-RS configuration used between adjacent cells may be different.
  • the antenna port used for the transmission of the CSI-RS may be referred to as a "CSI-RS port".
  • the resource element to which the CSI-RS is allocated in the resource grid of the CSI-RS port may be referred to as "CSI-RS pattern" or "CSI-RS resource configuration".
  • Table 1 below indicates an embodiment of a CSI-RS configuration that can be used in a type 1 frame (ie, a frame based on the FDD scheme) and a type 2 frame (ie, a frame based on the TDD scheme) when a regular CP is used. Can be.
  • Table 2 below may indicate an embodiment of a CSI-RS configuration that may be used in a type 2 frame when a regular CP is used. That is, Table 2 below may indicate an embodiment of the CSI-RS configuration for the type 2 frame only.
  • a resource element to which the corresponding CSI-RS is allocated in the CSI-RS port may be determined.
  • k ' may indicate a subcarrier number.
  • l ' may indicate an OFDM symbol number.
  • n s may indicate a slot number.
  • CSI-RS sequence in n s ( ) Is used as a reference symbol for the CSI-RS port. It can be mapped according to.
  • Equation 8 Variables in Equation 8 may be defined as in Equation 9 below.
  • the CSI-RS sequence may be defined as in Equation 10 below.
  • Function c (*) of Equation 10 below may be the same as function c (*) of Equation 2.
  • Equation 11 An initial value c init of the CSI-RS may be defined as in Equation 11 below. In Equation 11 below May be the same as the cell ID.
  • FIG. 12 is a conceptual diagram illustrating an embodiment of a CSI-RS based on the CSI-RS configuration 0.
  • R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21, and R 22 may indicate CSI-RS.
  • Each of R 15 and R 16 may be allocated to OFDM symbols # 5 and # 6 in subcarrier # 9 in the first slot of the subframe.
  • Each of R 17 and R 18 may be allocated to OFDM symbols # 5 and # 6 in subcarrier # 3 in the first slot of the subframe.
  • Each of R 19 and R 20 may be allocated to OFDM symbols # 5 and # 6 in subcarrier # 8 in the first slot of the subframe.
  • Each of R 21 and R 22 may be allocated to OFDM symbols # 5 and # 6 in subcarrier # 2 in the first slot of the subframe.
  • CSI-RS subframe structure as shown in the following Table 3 can be determined (I CSI RS) by CSI-RS period (T CSI-RS) and a CSI-RS subframe offset ( ⁇ CSI-RS) based on a.
  • the CSI-RS may be transmitted in a radio frame and slot that satisfy Equation 12 below.
  • n f may indicate a radio frame number and n s may indicate a slot number.
  • the synchronization signal may be transmitted from the base station.
  • the UE may synchronize time and frequency synchronization between itself and the base station based on the synchronization signal, and identify the cell ID.
  • the synchronization signal may be classified into a primary synchronization signal (PSS) and a secondary synchronization signal (secondary synchronization signal).
  • PSS can be used to obtain time and frequency domain synchronization, such as OFDM symbol synchronization, slot synchronization, and the like.
  • the SSS may be used to obtain frame synchronization and may be used for identification of a cell group ID, CP type (ie, normal CP, extended CP).
  • FIG. 13 is a conceptual diagram illustrating an embodiment of a PSS and SSS configuration when a regular CP is used in a network based on the FDD scheme.
  • the PSS may be configured in OFDM symbol # 6 in the first slot of subframe # 0 and OFDM symbol # 6 in the first slot of subframe # 5.
  • the SSS may be configured in OFDM symbol # 5 in the first slot of subframe # 0 and OFDM symbol # 5 in the first slot of subframe # 5.
  • FIG. 14 is a conceptual diagram illustrating an embodiment of a PSS and SSS configuration when a regular CP is used in a network based on the TDD scheme.
  • the PSS may be configured in OFDM symbol # 2 in the first slot of subframe # 1 and OFDM symbol # 2 in the first slot of subframe # 6.
  • the SSS may be configured in OFDM symbol # 6 in the second slot of subframe # 0 and OFDM symbol # 6 in the second slot of subframe # 5.
  • the synchronization signal may be generated based on the sequence.
  • the synchronization signal may be used for purposes such as cell ID classification by using different sequences.
  • 504 cell IDs can be identified by using a combination of three sequences for PSS and 168 sequences for SSS.
  • 168 cell groups may be distinguished by the SSS, and a unique ID within each cell group may be distinguished by the PSS.
  • the cell ID ( ) And It can be generated based on. Can be distinguished by SSS, and ⁇ 0,1,2,... , 167 ⁇ . May be identified by the PSS and may indicate one of ⁇ 0,1,2 ⁇ .
  • PSS is represented by the Zadoff-chu sequence Can be generated based on
  • Zadoff-chu sequence ( ) The root index (u) is shown in Table 4 below. It can be set according to.
  • Transmission location of the PSS in the time and frequency domain ( ) May be defined as in Equation 15 below.
  • k may indicate a subcarrier number.
  • l may indicate an OFDM symbol number. May indicate the total number of resource blocks in downlink. May indicate the number of subcarriers constituting one resource block.
  • d (n) is a Zadoff-chu sequence (14) May be).
  • the PSS may be configured in the resource element indicated by Equation 15.
  • the PSS may be configured in the OFDM symbols shown in FIGS. 13 and 14.
  • the subcarrier indicated by Equation 16 below may be used for a guard subcarrier. That is, the PSS may not be transmitted in the subcarrier indicated by Equation 16 below.
  • the SSS may be generated based on a form of interleaved concatenation in which two m-sequences having a length of 31 are interleaved.
  • the m-sequence d (2n) and d (2n + 1) may be set based on the subframe number (eg, subframe # 0 and subframe # 5) through which the SSS is transmitted as shown in Equation 17 below. Can be.
  • n may have a value from 0 to 30.
  • m 0 and m 1 are shown in Table 5 and Table 6 below. It can be set based on.
  • Equation 17 the function s (*) may be defined as in Equation 19 below.
  • Equation 17 the function c (*) may be defined as Equation 21 below.
  • the function z (*) may be defined as in Equation 23 below.
  • m 0 and m 1 may be the values listed in Tables 5 and 6. " " May be defined, and the function x (*) may be defined as in Equation 24 below.
  • k may indicate a subcarrier number.
  • l may indicate an OFDM symbol number. May indicate the total number of resource blocks in downlink. May indicate the number of subcarriers constituting one resource block.
  • the SSS may be transmitted at the location indicated by Equation (25). In addition, in the time domain, the SSS may be allocated to the OFDM symbols shown in FIGS. 13 and 14. Meanwhile, the subframe indicated by Equation 26 below may be used for a guard subcarrier. That is, the SSS may not be transmitted in the subcarrier indicated by Equation 26 below.
  • the base station may transmit a discovery signal or discovery reference signal (DRS) for radio resource management (RRM), detection of time and frequency synchronization, and the like.
  • DRS discovery signal or discovery reference signal
  • RRM radio resource management
  • the DRS may be configured in one to five subframes.
  • the DRS may be configured in two to five subframes.
  • the DRS includes a reference signal (eg, CRS, CSI-RS (eg, non-zero-power CSI-RS), etc.) corresponding to antenna port 0, a synchronization signal (eg, PSS, SSS). can do.
  • the PSS and the SSS may be transmitted on the first subframe. If the DRS is configured in two or more subframes in a network based on the TDD scheme, the SSS may be transmitted on the first subframe and the PSS may be transmitted on the second subframe.
  • 15 is a conceptual diagram illustrating an embodiment of a DRS configuration in a network based on the FDD scheme.
  • the DRS may include a reference signal corresponding to antenna port 0 (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • the CSI-RS may not be included in the DRS, in which case the DRS may be composed of CRS, PSS, and SSS.
  • CRS may be configured in OFDM symbol # 0 of slot # 0
  • a signal eg, a reference signal or a synchronization signal
  • the CRS may be configured in OFDM symbol # 4 of slot # 0
  • the SSS may be configured in OFDM symbol # 5 of slot # 1
  • the PSS may be configured in OFDM symbol # 6 of slot # 0.
  • CSI-RS may be configured in place of SSS and PSS in OFDM symbols # 5 and # 6 of slot # 0.
  • CRS may be configured in OFDM symbol # 0 of slot # 1 in subframe # 0, and a signal (eg, a reference signal or a synchronization signal) may not be configured in OFDM symbol # 1 of slot # 1.
  • CSI-RS may be configured in OFDM symbols # 2 and # 3 of slot # 1
  • CRS may be configured in OFDM symbol # 4 of slot # 1
  • CSI-RS may be configured.
  • the CRS and CSI-RS configuration in subframes # 1 to # 4 may be the same as the configuration of the CRS and CSI-RS in subframe # 0.
  • PSS and SSS may not be configured in subframes # 1 to # 4.
  • the CSI-RS may be configured in an OFDM symbol corresponding to the OFDM symbol number in which the PSS and SSS of the subframe # 0 are configured. Accordingly, the CSI-RS may be configured instead of the PSS and the SSS in the subframes # 1 to # 4.
  • the number of subcarriers occupied by the CSI-RS may be configured differently from the number of subcarriers occupied by the PSS and the SSS.
  • FIG. 16 is a conceptual diagram illustrating an embodiment of a DRS configuration in a network based on a TDD scheme.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • CRS may be configured in OFDM symbol # 0 of slot # 0
  • a signal eg, a reference signal or a synchronization signal
  • CRS may be configured in OFDM symbol # 4 of slot # 0
  • CSI-RS may be configured in OFDM symbols # 5 and # 6 of slot # 0.
  • CRS may be configured in OFDM symbol # 0 of slot # 1 in subframe # 0 and CSI-RS may be configured in OFDM symbols # 1 to # 3 of slot # 1.
  • a signal for example, a reference signal or a synchronization signal
  • CRS may not be configured in OFDM symbol # 1 of slot # 1 in subframe # 0
  • CSI-RS in OFDM symbols # 2 to # 3 of slot # 1.
  • CRS may be configured in OFDM symbol # 4 of slot # 1
  • CSI-RS may be configured in OFDM symbol # 5 of slot # 1
  • SSS may be configured in OFDM symbol # 6 of slot # 1.
  • the CSI-RS may be configured in OFDM symbols # 5 and # 6 of slot # 1 in subframe # 0. That is, the CSI-RS may be configured instead of the SSS in the OFDM symbol # 6 of the slot # 1.
  • CRS may be configured in OFDM symbol # 0 of slot # 2
  • a signal eg, a reference signal or a synchronization signal
  • PSS may be configured in OFDM symbol # 2 of # 2
  • a signal eg, a reference signal or a synchronization signal
  • CSI-RS may be configured instead of PSS in OFDM symbol # 2 of slot # 2 in subframe # 1
  • CSI-RS may be configured in OFDM symbol # 3 of slot # 2.
  • CRS may be configured in OFDM symbol # 4 of slot # 2
  • CSI-RS may be configured in OFDM symbols # 5 and # 6 of slot # 2.
  • CRS may be configured in OFDM symbol # 0 of slot # 3 in subframe # 1
  • CSI-RS may be configured in OFDM symbols # 1 to # 3 of slot # 3.
  • a signal for example, a reference signal or a synchronization signal
  • CSI-RS may be configured in OFDM symbols # 2 and # 3 of slot # 3.
  • CRS may be configured in OFDM symbol # 4 of slot # 3
  • CSI-RS may be configured in OFDM symbols # 5 and # 6 of slot # 3.
  • the CRS, PSS, SSS, and CSI-RS configurations in subframes # 2 to # 4 may be the same as the CRS, PSS, SSS, and CSI-RS configurations in subframes # 0 and # 1.
  • PSS and SSS may not be configured in subframes # 2 to # 4, and in this case, CRS and CSI-RS configuration in subframes # 2 to # 4 may be CRS and CSI- in subframes # 0 and # 1. It may be the same as the RS configuration.
  • the SSS may be configured in the subframes # 2 and # 4, and the PSS may be configured in the subframe # 3.
  • the PSS may be configured in subframes # 2 and # 4
  • the SSS may be configured in subframe # 3.
  • the CSI-RS may be configured in an OFDM symbol corresponding to the CSI-RS.
  • the number of subcarriers occupied by the CSI-RS may be configured differently from the number of subcarriers occupied by the PSS and the SSS.
  • 15 and 16 illustrate an embodiment of the DRS configuration when the DRS is configured in five subframes (eg, subframes # 0 to # 4).
  • the DRS may be preferentially configured in a subframe having a relatively small number.
  • the DRS may be configured in subframes # 0 to # 2
  • the DRS configuration in subframes # 0 to # 2 is illustrated in FIGS. 15 and 16. It may be the same as the DRS configuration in subframes # 0 to # 2.
  • the DRS configuration may be changed as necessary.
  • the DRS may be configured based on reference signals (eg, CRS, CSI-RS, etc.) corresponding to antenna ports 0 and 1, and synchronization signals (eg, PSS, SSS).
  • the DRS may be configured based on reference signals (eg, CRS, CSI-RS, etc.) and synchronization signals (eg, PSS, SSS) corresponding to antenna ports 0 to 3.
  • FIG. 17 is a conceptual diagram illustrating an embodiment of a DRS configuration based on signals corresponding to antenna ports 0 and 1.
  • FIG. 17 is a conceptual diagram illustrating an embodiment of a DRS configuration based on signals corresponding to antenna ports 0 and 1.
  • the DRS may include reference signals (eg, CRS, CSI-RS, etc.) and synchronization signals (eg, PSS, SSS) corresponding to antenna ports 0 and 1.
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • CRS may be configured in OFDM symbol # 0 of slot # 0
  • a signal eg, a reference signal or a synchronization signal
  • the CRS may be configured in OFDM symbol # 4 of the SRS
  • the SSS may be configured in OFDM symbol # 5 of slot #
  • the PSS may be configured in OFDM symbol # 6 of slot # 0.
  • CRS may be configured in OFDM symbol # 0 of slot # 1
  • a signal eg, a reference signal or a synchronization signal
  • CSI-RS may be configured in OFDM symbols # 2 and # 3
  • CRS may be configured in OFDM symbol # 4 in slot # 1
  • CSI-RS is configured in OFDM symbols # 5 and # 6 in slot # 1.
  • the DRS may be configured in up to five subframes.
  • the DRS configuration in subframes # 1 to # 4 may be the same as or similar to the DRS configuration in subframe # 0 described above.
  • an additional signal eg, CRS
  • the DRS illustrated in FIG. 17 may be applied to a network based on the FDD scheme and a network based on the TDD scheme.
  • FIG. 18 is a conceptual diagram illustrating an embodiment of a DRS configuration based on signals corresponding to antenna ports 0 to 3.
  • the DRS may include reference signals (eg, CRS, CSI-RS, etc.) and synchronization signals (eg, PSS, SSS) corresponding to antenna ports 0 to 3.
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • CRS may be configured in OFDM symbols # 0 and # 1 of slot # 0, and a signal (eg, a reference signal or a synchronization signal) may not be configured in OFDM symbols # 2 and # 3 of slot # 0,
  • CRS may be configured in OFDM symbol # 4 of slot #
  • SSS may be configured in OFDM symbol # 5 of slot # 0
  • PSS may be configured in OFDM symbol # 6 of slot # 0.
  • CRS may be configured in OFDM symbols # 0 and # 1 of slot # 1
  • CSI-RS may be configured in OFDM symbols # 2 and # 3 of slot # 1
  • CRS may be configured in the CSI
  • CSI-RS may be configured in the OFDM symbols # 5 and # 6 of the slot # 1.
  • the DRS shown in FIG. 18 further includes signals based on antenna ports 2 and 3 as compared to the DRS shown in FIG. 17, so that the CRS is in OFDM symbol # 1 of slot # 0 and OFDM symbol # 1 of slot # 1. It may be further configured.
  • the DRS may be configured in up to five subframes.
  • the DRS configuration in subframes # 1 to # 4 may be the same as or similar to the DRS configuration in subframe # 0 described above.
  • an additional signal eg, CRS
  • the DRS illustrated in FIG. 18 may be applied to a network based on the FDD scheme and a network based on the TDD scheme.
  • FIG. 19 is a conceptual diagram illustrating another embodiment of a DRS configuration based on signals corresponding to antenna ports 0 to 3.
  • FIG. 19 is a conceptual diagram illustrating another embodiment of a DRS configuration based on signals corresponding to antenna ports 0 to 3.
  • the DRS may include reference signals (eg, CRS, CSI-RS, etc.) and synchronization signals (eg, PSS, SSS) corresponding to antenna ports 0 to 3.
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include a CSI-RS configured in OFDM symbols # 2 and # 3 of slot # 0 as compared to the DRS illustrated in FIG. 18.
  • the CSI-RSs configured in OFDM symbols # 2 and # 3 of slot # 0 are the same as the CSI-RSs configured in OFDM symbols # 2 and # 3 of slot # 1, so that all subcarriers (eg, subcarriers) in the frequency domain # 0 to # 11).
  • the CSI-RS configured in the OFDM symbols # 2 and # 3 of the slot # 0 is the same as the CSI-RS configured in the OFDM symbols # 5 and # 6 of the slot # 1 and specific subcarriers (eg, Subcarriers # 2, # 3, # 8 and # 9).
  • Additional reference signals may be transmitted on at least one subcarrier in the corresponding OFDM symbol.
  • a signal for example, a reference signal or a synchronization signal
  • the CSI-RS is configured to perform OFDM symbols # 1 to slot # 0 on slot # 0. It may be configured in addition to # 3.
  • the DRS illustrated in FIG. 19 may be applied to a network based on the FDD scheme and a network based on the TDD scheme.
  • a reference signal (eg, CRS, CSI-RS, etc.) may be additionally configured in the same or similar manner as described above.
  • reference signals (OF symbols of OFDM symbols # 1 to # 3 of slot # 0 in subframe # 0 and OFMA symbols # 1 and # 3 of slot # 2 in subframe # 1) may be used.
  • CRS, CSI-RS, etc. may be additionally configured.
  • 20 is a conceptual diagram illustrating another embodiment of the DRS configuration in a network based on the TDD scheme.
  • the DRS may include reference signals (eg, CRS, CSI-RS, etc.) and synchronization signals (eg, PSS, SSS) corresponding to antenna ports 0 to 3.
  • CSI-RS may be further configured in OFDM symbols # 2 and # 3 of slot # 0.
  • the CSI-RS may be further configured in OFDM symbols # 1 and # 3 of slot # 2 in subframe # 1.
  • CRS and CSI-RS may be configured together in OFDM symbol # 1 of slot # 2.
  • only CRS or CSI-RS may be configured in OFDM symbol # 1 of slot # 2 in subframe # 1.
  • PSS and SSS may be configured identically or not configured identically.
  • the DRS configuration in subframes # 2 and # 4 may be the same as the DRS configuration in subframe # 0, and the DRS configuration in subframe # 3 may be It may be the same as the DRS configuration of subframe # 1.
  • CSI-RS may be configured in an OFDM symbol corresponding to the OFDM symbol number in which the SSS of subframe # 0 and the PSS of subframe # 1 are configured among the OFDM symbols constituting subframes # 2 to # 4.
  • the number of subcarriers occupied by the CSI-RS may be configured differently from the number of subcarriers occupied by the PSS and the SSS. For example, the number of subcarriers occupied by the CSI-RS in one resource block may be less than 12.
  • the DRS may be transmitted discontinuously, and accordingly, the CSI-RS may be separately configured in a subframe.
  • the CSI-RS period may be set based on the length of the DRS interval.
  • the CSI-RS may be configured based on Equation 27 below.
  • ⁇ CSI-RS may indicate a CSI-RS period.
  • T DRS may indicate the length of the DRS interval.
  • the PSS and SSS may be transmitted on all subcarriers or some subcarriers among the subcarriers occupied by the DRS.
  • the PSS and SSS may be transmitted on subcarriers corresponding to six resource blocks.
  • 21 is a conceptual diagram illustrating an embodiment of a PSS and SSS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • the PSS and the SSS may be transmitted through a bandwidth corresponding to one resource block among system bandwidths.
  • the PSS and the SSS may be transmitted through some of the system bandwidths as shown in Equation 25.
  • the CSI-RS may be transmitted through a bandwidth in which the PSS and the SSS are not transmitted among the system bandwidths.
  • the size of the bandwidth over which the PSS and SSS are transmitted is not limited to the above description, and the PSS and SSS may be transmitted through various sizes of bandwidths.
  • the PSS and SSS may be repeatedly transmitted in the time and frequency domain.
  • 22 is a conceptual diagram illustrating another embodiment of the PSS and SSS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • PSS and SSS may be repeatedly transmitted in the frequency domain.
  • the PSS and SSS configuration may be applied to a network based on the FDD scheme or a network based on the TDD scheme. For example, in a network based on the TDD scheme, the PSS and the SSS may be transmitted through some of the system bandwidth or the system bandwidth.
  • the PSS and the SSS transmitted through the six resource blocks located in the middle of the system bandwidth may be referred to as the "basic PSS” and the “basic SSS”, respectively.
  • the PSS and SSS transmitted through resource blocks other than six resource blocks located in the middle of the system bandwidth may be referred to as an "extended PSS” and an "extended SSS", respectively.
  • a PSS occupying the whole system bandwidth may be configured, and the PSS occupying the whole system bandwidth may be referred to as "full-band PSS”.
  • an SSS that occupies the entire system bandwidth may be configured, and the SSS occupying the entire system bandwidth may be referred to as a "full-band SSS”.
  • the extended PSS and the extended SSS may be generated based on Equations 14 to 26. That is, the full-band PSS composed of the basic PSS and the extended PSS may have a form in which the basic PSS is repeatedly transmitted in the frequency domain.
  • the transmission position of the full-band PSS in the time and frequency domain may be defined as Equation 28 below.
  • may be defined as in Equation 29 below.
  • the guard subcarrier for the basic PSS may be repeated in the frequency domain in the same manner as the basic PSS.
  • the guard subcarrier of the full band PSS may be defined as in Equation 30 below.
  • Equation 31 the transmission position of the full band SSS in the time and frequency domain may be defined as in Equation 31 below.
  • may be defined as in Equation 29.
  • the guard subcarrier for the basic SSS can be repeated in the frequency domain the same as the basic SSS.
  • the guard subcarrier of the full band SSS may be defined as in Equation 32 below.
  • the DRS may include a PSS and an SSS repeatedly configured in the time domain.
  • the PSSs and SSSs included in the existing DRS (that is, the DRS including the PSS configured in one OFDM symbol and the SSS configured in one OFDM symbol) may be referred to as “basic PSS” and “basic SSS”, respectively.
  • PSS and SSS that are additionally configured in the DRS in addition to the basic PSS and the basic SSS may be referred to as "additional PSS" and "additional SSS”.
  • the base PSS may be the same as or different from the additional PSS.
  • the primary SSS can be the same as or different from the additional SSS.
  • a plurality of PSSs and a plurality of SSSs may exist in the time domain of the DRS, each of the plurality of PSSs may be generated based on a different sequence, and each of the plurality of SSSs may be generated based on a different sequence. .
  • the basic PSS and the basic SSS can be used for cell ID detection, time and frequency synchronization acquisition, etc. which are the original functions of the synchronization signal.
  • the additional PSS and the additional SSS may be used for additional functions (eg, stabilization of time and frequency synchronization, generating and detecting additional cell IDs, and the like). If the cell ID defined in Equation 13 needs to be distinguished from the additional cell ID, the additional cell ID may be generated using at least one of the additional PSS and the additional SSS, and the additional cell ID is at least one of the additional PSS and the additional SSS. Can be detected based on one. Additional cell IDs based on additional PSS and additional SSS ( ) May be defined as in Equation 33 below.
  • the extended cell ID may be configured by a combination of an existing cell ID and an additional cell ID. Expanded cell ID ( ) May be defined as in Equation 34 below.
  • an additional cell ID based on the additional PSS may be defined as in Equation 35 below.
  • the additional cell ID based on the additional SSS may be defined as in Equation 36 below.
  • the additional PSS may be used for transmitting additional information in addition to additional cell ID related functions and extended cell ID related functions.
  • the additional PSS may be used for transmitting DRS related information (eg, DRS length, number of antenna ports corresponding to CRSs included in the DRS).
  • the UE can confirm the DRS related information by detecting the additional PSS.
  • the DRS related information may be transmitted through additional PSSs generated based on different sequences.
  • the functions of the additional SSS eg, the function of additional synchronization acquisition, the function of additional cell ID detection, the function of extended cell ID detection, etc.
  • whether or not to multiplex the DRS and the PDSCH in the current subframe may be indicated according to the sequence of the additional PSS.
  • FIG. 23 is a conceptual diagram illustrating an embodiment of repeating PSS and SSS configurations in the time domain.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • SSS may be configured in OFDM symbols # 2 and # 5 of slot # 0.
  • PSS may be configured in OFDM symbols # 3 and # 6 of slot # 0.
  • an additional PSS and an additional SSS may be transmitted through an OFDM symbol except for transmission positions of the CRS, the basic PSS, and the basic SSS.
  • the location where the additional PSS and the additional SSS are transmitted is not limited to the above description, and the additional PSS and the additional SSS may be transmitted at various locations within the subframe.
  • the additional PSS and the additional SSS may be transmitted through OFDM symbols # 2 and # 3 of slot # 1 or may be transmitted through OFDM symbols # 5 and # 6 of slot # 1. Therefore, the PSS and the SSS may be repeatedly transmitted two or more times in one subframe. That is, the PSS repeated two or more times and the SSS repeated two or more times in one DRS may be configured.
  • the PSS or SSS may be configured in an OFDM symbol except for an OFDM symbol in which a CRS is configured in a subframe.
  • the sequence of the additional PSS and the additional SSS may be the same as the sequence of the base PSS and the base SSS included in the DRS. If the same PSS and SSS are repeatedly configured in the DRS, the OFDM symbol number in which the additional PSS and the additional SSS are configured (or the relative position of the OFDM symbol in which the additional PSS and the additional SSS are configured relative to the OFDM symbol in which the basic PSS and the basic SSS are configured) ) May be set in advance. In this case, in terms of reception of the DRS, the UE can acquire time synchronization without a big problem.
  • a short DRS having a shorter length than the existing DRS may be configured.
  • the short DRS may include CRS, PSS, and SSS, and each of the CRS, PSS, and SSS may be configured in at least one OFDM symbol.
  • the short DRS may further comprise a CSI-RS.
  • the short DRS may not include at least one of the CRS and the CSI-RS.
  • 24 is a conceptual diagram illustrating a first embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS includes a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, and a CRS configured in OFDM symbol # 0 in slot # 1. It may include. Therefore, the DRS may have a length corresponding to four OFDM symbols and may be a short DRS composed of a minimum required signal.
  • 25 is a conceptual diagram illustrating a second embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS) corresponding to four antenna ports.
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS is a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, and OFDM symbols # 0 and # 1 in slot # 1. It may include a configured CRS. Accordingly, the DRS may have a length corresponding to five OFDM symbols and may be a short DRS composed of a minimum required signal.
  • the DRS illustrated in FIG. 25 may provide improved channel estimation performance and RRM performance compared to the DRS illustrated in FIG. 24.
  • 26 is a conceptual diagram illustrating a third embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include a CSI-RS and a CRS as compared to the DRS shown in FIG. 25.
  • the DRS is a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, and an OFDM symbol # 0 and # 1 in slot # 1.
  • the CRS may not be configured in OFDM symbol # 4 of slot # 1.
  • the DRS may have a length corresponding to eight OFDM symbols and may be a short DRS composed of a minimum required signal. Since the DRS further includes a CSI-RS, it may be used for channel estimation based on the CSI-RS.
  • the CRS configured in OFDM symbol # 4 of slot # 1 may be used to interpolate channel estimation information between CRSs.
  • FIG. 27 is a conceptual diagram illustrating a fourth embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include a CSI-RS as compared to the DRS illustrated in FIG. 26, and thus, improved channel estimation performance may be provided.
  • the DRS is a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, and an OFDM symbol # 0 and # 1 in slot # 1.
  • CRS configured, CSI-RS configured in OFDM symbols # 2 and # 3 in slot # 1, CRS configured in OFDM symbol # 4 in slot # 1, and CSI-RS configured in OFDM symbols # 5 and # 6 in slot # 1. can do.
  • the DRS may have a length corresponding to 10 OFDM symbols and may be a short DRS composed of a minimum required signal.
  • FIG. 28 is a conceptual diagram illustrating a fifth embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS includes an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, a CRS configured in OFDM symbols # 0 and # 1 in slot # 1, an OFDM symbol # 2 in slot # 1, and CSI-RS configured in # 3, CRS configured in OFDM symbol # 4 in slot # 1, and CSI-RS configured in OFDM symbols # 5 and # 6 in slot # 1.
  • the CRS and the CSI-RS may not be configured in the slot # 1.
  • the DRS may have a length corresponding to nine OFDM symbols and may be a short DRS composed of a minimum required signal. Since the beginning of the DRS consists of a synchronization signal, the UE may first detect a synchronization signal in the DRS from the base station, and then detect other signals in the DRS.
  • 29 is a conceptual diagram illustrating a sixth embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS is an SSS configured in OFDM symbol # 2 in slot # 0, a PSS configured in OFDM symbol # 3 in slot # 0, a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, PSS configured in OFDM symbol # 6 in slot # 0 and CRS configured in OFDM symbol # 0 in slot # 1.
  • the synchronization signal may be repeatedly configured in the DRS.
  • the SSS may be repeatedly transmitted through OFDM symbols # 2 and # 5 of slot # 0, and the PSS may be repeatedly transmitted through OFDM symbols # 3 and # 6 of slot # 0.
  • the DRS may have a length corresponding to six OFDM symbols and may be a short DRS composed of a minimum required signal.
  • the SSS configured in OFDM symbol # 2 in slot # 0 and the PSS configured in OFDM symbol # 3 in slot # 0 may be used as an initial signal to indicate the start of DRS and may be used for time and frequency synchronization acquisition, channel estimation, and the like. .
  • the SSS configured in OFDM symbol # 2 of slot # 0 may be the same as or different from the SSS configured in OFDM symbol # 5 of slot # 0.
  • the PSS configured in OFDM symbol # 3 of slot # 0 may be the same as or different from the PSS configured in OFDM symbol # 6 of slot # 0.
  • the synchronization signal transmitted through OFDM symbols # 2 and # 3 of slot # 0 may be configured irrespective of the subframe number to which the DRS is transmitted, in which case OFDM symbols # 2 and The same signal may be transmitted through # 3.
  • FIG. 30 is a conceptual diagram illustrating a seventh embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include a CRS as compared to the DRS shown in FIG. 29.
  • the DRS is a CRS configured in OFDM symbols # 0 and # 1 in slot # 0, an SSS configured in OFDM symbol # 2 in slot # 0, a PSS configured in OFDM symbol # 3 in slot # 0, and an OFDM symbol # 4 in slot # 0.
  • CRS configured, SSS configured in OFDM symbol # 5 in slot # 0, PSS configured in OFDM symbol # 6 in slot # 0, and CRS configured in OFDM symbols # 0 and # 1 in slot # 1.
  • the DRS may have a length corresponding to nine OFDM symbols and may be a short DRS composed of a minimum required signal.
  • CRSs configured in OFDM symbols # 0 and # 1 of slot # 0 in the DRS may be CRSs corresponding to four antenna ports.
  • a CRS other than the CRS configured in the OFDM symbol # 1 of the slot # 1 may be additionally configured in the DRS. Therefore, by additionally configuring the CRS in the DRS, channel estimation performance, RRM performance, and the like can be improved.
  • FIG. 31 is a conceptual diagram illustrating an eighth embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include a CRS and a CSI-RS as compared to the DRS shown in FIG. 30.
  • the DRS is a CRS configured in OFDM symbols # 0 and # 1 in slot # 0, an SSS configured in OFDM symbol # 2 in slot # 0, a PSS configured in OFDM symbol # 3 in slot # 0, and an OFDM symbol # 4 in slot # 0.
  • CRS configured, SSS configured in OFDM symbol # 5 in slot # 0, PSS configured in OFDM symbol # 6 in slot # 0, CRS configured in OFDM symbols # 0 and # 1 in slot # 1, OFDM symbol # 2 in slot # 1 And CSI-RS configured in # 3 and CRS configured in OFDM symbol # 4 of slot # 1.
  • the CRS may not be configured in OFDM symbol # 4 of slot # 1.
  • the DRS may have a length corresponding to 12 OFDM symbols and may be a short DRS composed of a minimum required signal. Additional channel estimation may be possible by the CSI-RS included in the DRS.
  • FIG. 32 is a conceptual diagram illustrating a ninth embodiment of the DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include CRS, PSS, and SSS as compared to the DRS shown in FIG. 25.
  • the DRS is a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, and an OFDM symbol # 0 and # 1 in slot # 1.
  • CRS configured, SSS configured in OFDM symbol # 2 in slot # 1, PSS configured in OFDM symbol # 3 in slot # 1, and CRS configured in OFDM symbol # 4 in slot # 1.
  • the CRS may not be configured in OFDM symbol # 4 of slot # 1.
  • the DRS may have a length corresponding to eight OFDM symbols and may be a short DRS composed of a minimum required signal.
  • a synchronization signal (eg, additional PSS or additional SSS) may be repeatedly transmitted through OFDM symbols # 2 and # 3 of slot # 1.
  • the SSS configured in OFDM symbol # 2 of slot # 1 may be the same as or different from the SSS configured in OFDM symbol # 5 of slot # 0.
  • the PSS configured in OFDM symbol # 3 of slot # 1 may be the same as or different from the PSS configured in OFDM symbol # 6 of slot # 0.
  • FIG. 33 is a conceptual diagram illustrating a tenth embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may be configured of some signals among the signals included in the DRS shown in FIG. 30.
  • the DRS is a CRS configured in OFDM symbols # 0 and # 1 in slot # 0, an SSS configured in OFDM symbol # 2 in slot # 0, a PSS configured in OFDM symbol # 3 in slot # 0, and an OFDM symbol # 4 in slot # 0.
  • the DRS may have a length corresponding to seven OFDM symbols and may be a short DRS composed of a minimum required signal.
  • the reference signal and the synchronization signal may not be configured in slot # 1.
  • 34 is a conceptual diagram illustrating an eleventh embodiment of a DRS configuration.
  • the DRS may include a reference signal (eg, CRS, CSI-RS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may further include CRS, PSS, SSS, and CSI-RS as compared to the DRS shown in FIG. 24.
  • the DRS is a CRS configured in OFDM symbol # 4 in slot # 0, an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, and an OFDM symbol # 0 and # 1 in slot # 1.
  • CRS configured, CSI-RS configured in OFDM symbols # 2 and # 3 in slot # 1, CRS configured in OFDM symbol # 4 in slot # 1, SSS configured in OFDM symbol # 5 in slot # 1, and OFDM symbol in slot # 1 It may include the PSS configured in # 6.
  • the DRS may have a length corresponding to 10 OFDM symbols and may be a short DRS composed of a minimum required signal. Additional SSS and additional PSS may be transmitted through OFDM symbols # 5 and # 6 of slot # 1.
  • the SSS configured in OFDM symbol # 5 of slot # 1 may be the same as or different from the SSS configured in OFDM symbol # 5 of slot # 0.
  • the PSS configured in OFDM symbol # 6 of slot # 1 may be the same as or different from the PSS configured in OFDM symbol # 6 of slot # 0.
  • 35 is a conceptual diagram illustrating a twelfth embodiment of the DRS configuration.
  • the DRS may include a reference signal (eg, CRS, etc.) and a synchronization signal (eg, PSS, SSS).
  • slot # 0 may be the first slot constituting any subframe
  • slot # 1 may be the second slot constituting any subframe.
  • the DRS may be configured of some signals among the signals included in the DRS shown in FIG. 34.
  • the DRS includes an SSS configured in OFDM symbol # 5 in slot # 0, a PSS configured in OFDM symbol # 6 in slot # 0, a CRS configured in OFDM symbols # 0 and # 1 in slot # 1, an OFDM symbol # 2 in slot # 1, and CSI-RS configured in # 3, CRS configured in OFDM symbol # 4 in slot # 1, SSS configured in OFDM symbol # 5 in slot # 1, and PSS configured in OFDM symbol # 6 in slot # 1.
  • the DRS may have a length corresponding to nine OFDM symbols and may be a short DRS composed of a minimum required signal.
  • the CRS may not be configured in the OFDM symbol # 4 of the slot # 0, and in this case, the synchronization signal may be located at the start of the DRS.
  • the synchronization signal configured in the OFDM symbols # 5 and # 6 of the slot # 0 may be used for detecting the DRS, starting notification of the DRS, and the like.
  • the actual DRS may be composed of signals configured in slot # 1.
  • the SSS configured in OFDM symbol # 5 of slot # 0 may be the same as the SSS configured in OFDM symbol # 5 of slot # 1
  • the PSS configured in OFDM symbol # 6 of slot # 0 may be the OFDM symbol # of slot # 1. It may be the same as the PSS configured in 6.
  • 36 is a flowchart illustrating an embodiment of a method of transmitting / receiving DRS.
  • a base station and a UE may support a licensed band (eg, primary cell (PCell)) and an unlicensed band (eg, secondary cell (SCell)).
  • the timing of radio frames and subframes in an unlicensed band may be the same as or different from the timing of radio frames and subframes in a licensed band.
  • CA carrier aggregation
  • the timing of the radio frame and subframe in the unlicensed band may be the same as the timing of the radio frame and subframe in the licensed band.
  • the base station and the UE may configure the wireless communication network described with reference to FIGS. 1 to 4.
  • the base station and the UE may be configured identically or similarly to the communication node 500 described with reference to FIG. 5.
  • the base station may transmit the discovery signal measurement timing configuration (DMTC) related information to the UE (S3600).
  • DMTC related information may be transmitted through a licensed band or an unlicensed band.
  • DMTC related information may be transmitted to the UE through RRC signaling in a licensed band.
  • the DMTC related information may be transmitted to the UE through a control channel (eg, PDCCH, EPDCCH, etc.) in the licensed or unlicensed band.
  • the DMTC related information may include a DMTC period, a DMTC interval, a DMTC offset (for example, a start time of the DMTC interval), a DRS transmission period, a DRS interval, and the like.
  • the DMTC related information may include only a DMTC period and a DMTC offset.
  • Information included in the DMTC-related information is not limited to the above description, and the DMTC-related information may include various information required for DRS transmission and reception.
  • DMTC period, DMTC interval, DMTC offset, DRS transmission period, and DRS interval indicated by DMTC related information may be defined as follows.
  • 37 is a timing diagram illustrating DRS transmission and reception timing indicated by DMTC related information.
  • a start time of a DMTC interval may be set based on a DMTC period and a DMTC offset.
  • the DMTC interval may consist of a plurality of subframes.
  • the length of the DMTC interval may be 6ms, in which case the DMTC interval may consist of six subframes.
  • the DRS may be transmitted through any subframe among a plurality of subframes included in the DMTC interval.
  • the section in which the DRS is transmitted in the DMTC section may be referred to as a "DRS section".
  • DMTC period may be 40ms, 80ms, 160ms and the like.
  • the DMTC period is not limited to the above description and may be variously set.
  • the DMTC period may be set to less than 40 ms, or may be set to exceed 160 ms.
  • the variable T may be defined as in Equation 37 below.
  • the DMTC interval may be started in a subframe indicated by Equation 39 among the variable T and the radio frame indicated by Equation 38 below.
  • FLOOR (X) may indicate a minimum integer value greater than X.
  • the DRS section may be set in the DMTC section.
  • the DRS period may consist of a plurality of subframes.
  • the DRS interval may consist of five subframes.
  • the DRS interval may be set based on the DRS transmission period.
  • DRS may be transmitted through the DRS interval.
  • the transmission time of the DRS may be determined based on the timing of the cell in which the DRS is transmitted.
  • the UE may receive DMTC related information from the base station and may check a transmission time point of the DRS based on the DMTC related information (S3610). For example, when the DMTC-related information includes the DMTC period and the DMTC offset, the UE may check the DMTC period based on the DMTC period and the DMTC offset, and may select any subframe among a plurality of subframes included in the DMTC period. It can be determined that the DRS is transmitted through. Alternatively, the UE may determine that the DRS is transmitted through the DRS interval when the DTC interval and the DRS transmission period are included in the DMTC related information. In this case, the UE may determine that the DRS is transmitted based on the DRS transmission period.
  • the base station may transmit the DRS to the UE through any subframe among a plurality of subframes constituting the DMTC period indicated by the DMTC related information (S3620). Alternatively, the base station may transmit the DRS to the UE through the DRS interval.
  • the DRS may be at least one of the DRSs described with reference to FIGS. 15 to 35, and may be transmitted through an unlicensed band.
  • the base station may basically transmit the DRS according to the DRS transmission period. However, due to the nature of the unlicensed band, a case in which the DRS cannot be transmitted according to the DRS transmission period (for example, when another communication node occupies a resource corresponding to the DRS interval in the unlicensed band) may occur. In this case, the base station may transmit the DRS through the subframe located before the DRS interval in the DMTC interval, or transmit the DRS through the subframe located after the DRS interval in the DMTC interval (that is, DRS delay transmission). have. DRS delay transmission may be performed as follows.
  • 38 is a timing diagram illustrating an embodiment of DRS delay transmission.
  • the second transmission time of the DRS is "t 0 + P", but the transmission of the DRS is not performed at "t 0 + P" If it is not possible, the DRS may be sent at "t 0 + P + a" delayed by a.
  • a may be a multiple of the slot length (eg, 0.5 ms) or a multiple of the subframe length (eg, 1 ms).
  • the third transmission time of the DRS may be determined based on the first transmission time and the DRS transmission period regardless of the second transmission time. For example, the DRS may be transmitted at the third transmission time point "t 0 + 2P". Meanwhile, even when delay transmission of the DRS is allowed, the DRS may be transmitted within a preset maximum delay period.
  • the maximum delay period may be set as follows.
  • 39 is a timing diagram illustrating an embodiment of a delay period of a DRS.
  • the DRS may be transmitted at t 0 , which is a first transmission time point. If transmission of the DRS is not possible at the second transmission time point "t 0 + P", the DRS transmission may be delayed until the DRS section may be terminated in the DMTC section. For example, if the DMTC interval is from t s to "t s + D" and the length of the DRS interval is r, the maximum delay interval can be "(t s + D)-(t 0 + P) -r". have. Therefore, the DRS transmission should start within "(t s + D)-(t 0 + P) -r".
  • the DRS transmission may be delayed until a point at which the DRS interval may end Xms before the end of the DMTC interval.
  • the maximum delay period may be "(t s + D)-(t 0 + P) -r-Xms".
  • Xms may be 0.5ms, 1ms and the like. Therefore, the DRS transmission should start within "(t s + D)-(t 0 + P) -r-Xms".
  • the third transmission time of the DRS may be determined based on the first transmission time and the DRS transmission period regardless of the second transmission time. For example, the DRS may be transmitted at the third transmission time point "t 0 + 2P".
  • 40 is a timing diagram illustrating another embodiment of a delay period of a DRS.
  • the DRS may be transmitted at t 0 , the first transmission time point. If transmission of the DRS is not possible at the second transmission time point "t 0 + P", the DRS transmission may be delayed until the end of the DMTC interval. For example, when the DMTC interval is from t s to “t s + D” and the length of the DRS interval is r, the maximum delay interval may be “(t s + D) ⁇ (t 0 + P)”. Therefore, the DRS transmission should be started within "(t s + D)-(t 0 + P)". Alternatively, the DRS transmission may be delayed until Xms before the end of the DMTC interval.
  • the maximum delay period may be "(t s + D)-(t 0 + P) -Xms".
  • Xms may be 0.5ms, 1ms and the like. Therefore, the DRS transmission should start within "(t s + D)-(t 0 + P) -Xms".
  • the third transmission time of the DRS may be determined based on the first transmission time and the DRS transmission period regardless of the second transmission time. For example, the DRS may be transmitted at the third transmission time point "t 0 + 2P".
  • the DRS may be transmitted outside the DMTC interval. Even in this case, the DRS may be transmitted within the maximum delay period.
  • the maximum delay period may be set to a multiple of the DMTC interval, 1/2 of the DRS transmission period, and the like. If transmission of the DRS is not possible within the aforementioned maximum delay period, the corresponding DRS may not be transmitted.
  • the DRS when the DRS is delayed transmitted, a sequence (hereinafter, referred to as an "SSS sequence"), a CRS sequence, and the like, which are used for generating an SSS included in the DRS, will be described.
  • the DRS When the DRS is delayed transmitted, the DRS may be transmitted on subframes other than subframes # 0 and # 5.
  • the SSS sequence for delayed DRS (hereinafter referred to as “delayed DRS”) may be the same as the SSS sequence for DRS not delayed transmitted (eg, DRS transmitted over subframes # 0 or # 5). have.
  • the SSS sequence for delayed DRS is a subframe as shown in Equation 40 below. It may be the same as the SSS sequence for the DRS transmitted through # 0.
  • the SSS sequence for delayed DRS is represented by subframe # 5 as shown in Equation 40 below. It may be the same as the sequence of the SSS for the DRS transmitted through. Equation 40 below may be generated based on Equation 17.
  • an SSS sequence for the DRS may be generated.
  • the sequence of the SSS for the DRS may be generated based on a sequence corresponding to subframe # 0 in Equation 17, or may be generated based on a sequence corresponding to subframe # 5 in Equation 17. .
  • the CRS sequence for delayed DRS may be configured as follows.
  • the CRS sequence may be generated based on a cell ID, a slot number, an OFDM symbol number, and the like.
  • the slot number is related to the number of the subframe, and the slot number and the subframe number may be inferred through detection of the SSS included in the DRS.
  • a time synchronization obtained through a signal transmitted in an unlicensed band (eg, an unlicensed band burst) or a time synchronization obtained through a signal transmitted in a licensed band may be referred to as "burst time synchronization”.
  • the time synchronization obtained through the SSS included in the DRS may be referred to as "DRS time synchronization”.
  • DRS time synchronization When the DRS is transmitted on subframes other than subframes # 0 and # 5 (that is, when the DRS is delayed transmitted), the burst time synchronization may be different from the DRS time synchronization.
  • 41 is a conceptual diagram illustrating a subframe number based on each of burst time synchronization and DRS time synchronization.
  • a DRS configured based on an SSS configured in subframe # 0 based on burst time synchronization may be transmitted through subframe # 1 based on burst time synchronization.
  • the UE may receive the DRS and may recognize the subframe number where the DRS was transmitted as subframe # 0 (ie, subframe # 0 based on DRS time synchronization). In this case, the UE may detect the CRS included in the DRS using the CRS sequence based on the subframe # 0 based on the DRS time synchronization, the slot number constituting the subframe # 0, and the like.
  • the UE may recognize the subframe number in which the DRS is transmitted based on the burst time synchronization as the subframe # 1 (that is, the subframe # 1 based on the burst time synchronization) regardless of the DRS time synchronization.
  • the UE may detect the CRS included in the DRS using the CRS sequence based on the subframe # 1 based on the burst time synchronization, the slot number constituting the subframe # 1, and the like.
  • the base station may generate a CRS included in the DRS based on a subframe number based on burst time synchronization, a slot number constituting the subframe, and the like.
  • the CRS sequence may be generated based on Equations 1 to 4.
  • the base station may generate a CRS included in the DRS based on a subframe number based on DRS time synchronization, a slot number constituting the subframe, and the like.
  • the subframe number used for generating the CRS included in the DRS may be as follows.
  • FIG. 42 is a conceptual diagram illustrating a first embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • the SSS sequence may be generated based on the subframe # 0 or the like.
  • the SSS sequence may be generated based on the subframe # 5 or the like.
  • the subframe number used for generating the CRS sequence may be the same as the subframe number according to burst time synchronization.
  • the base station may generate a CRS using a CRS sequence based on a subframe number based on burst time synchronization, a slot number constituting the subframe, and the like.
  • the UE may detect the CRS using a CRS sequence based on a subframe number based on burst time synchronization, a slot number constituting the subframe, and the like.
  • FIG. 43 is a conceptual diagram illustrating a second embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • the SSS sequence may be generated based on the subframe # 0 or the like.
  • the SSS sequence may be generated based on the subframe # 5 or the like.
  • the subframe number used for generating the CRS sequence may be the same as the subframe number used for generating the SSS sequence. In this case, the CRS sequence may be generated based on Equation 1, Equation 2, Equation 3, and Equation 41 below.
  • a slot number constituting a subframe used for generation of the SSS sequence may indicate a slot number constituting a subframe used for generation of the SSS sequence.
  • the CRS sequence for the DRS transmitted through at least one subframe among subframes # 0 to # 4 is slot # 0 constituting subframe # 0. And based on # 1.
  • a CRS sequence for DRS transmitted through at least one subframe among subframes # 5 to # 9 may be generated based on slots # 10 and # 11 constituting subframe # 5.
  • the base station may generate the CRS using the CRS sequence based on the subframe number used for generating the SSS sequence, the slot number constituting the subframe, and the like.
  • the UE may obtain the DRS time synchronization by detecting the SSS included in the DRS, and detect the CRS included in the DRS based on the DRS time synchronization.
  • FIG. 44 is a conceptual diagram illustrating a third embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • the CRS sequence for the DRS is a subframe number used for generating an SSS sequence. , Based on the slot number constituting the corresponding subframe.
  • the CRS sequence for the subframe in which the PDSCH is configured may be generated based on a subframe number based on burst time synchronization, a slot number constituting the subframe, and the like.
  • the UE may acquire the DRS time synchronization by detecting the SSS included in the DRS, and detect the CRS included in the DRS using a subframe number based on the DRS time synchronization, a slot number constituting the subframe, and the like. can do.
  • the UE may detect the CRS from the subframe in which the PDSCH is configured using the CRS sequence based on the subframe number corresponding to the burst time synchronization, the slot number constituting the subframe, and the like.
  • 45 is a conceptual diagram illustrating a fourth embodiment of a subframe number used for generation and detection of a CRS included in a DRS.
  • a PDSCH (or PDCCH, EPDCCH, etc.) is transmitted through a subframe before or after a subframe in which DRS is transmitted
  • a CRS sequence for the DRS and a CRS sequence for the subframe in which the PDSCH is configured A subframe number based on burst time synchronization, a slot number constituting the subframe, and the like may be generated.
  • the UE may detect the CRS from the subframe in which the DRS and the PDSCH are configured using the CRS sequence based on the subframe number corresponding to the burst time synchronization, the slot number constituting the subframe, and the like.
  • 46 is a conceptual diagram illustrating a fifth embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • a CRS sequence for a DRS and a CRS sequence for a subframe in which a PDSCH is configured It may be generated based on a subframe number used for generating an SSS sequence, a slot number constituting the corresponding subframe, and the like.
  • the UE may acquire the DRS time synchronization by detecting the SSS included in the DRS, and the subframe in which the DRS and the PDSCH are configured using a subframe number based on the DRS time synchronization, a slot number constituting the subframe, and the like.
  • CRS can be detected from.
  • FIG. 47 is a conceptual diagram illustrating a sixth embodiment of a subframe number used for generating and detecting a CRS included in a DRS.
  • a CRS sequence for the DRS is a subframe used for generating a sequence of the SSS. It may be generated based on the number, the slot number constituting the corresponding subframe. Based on the DRS time synchronization, the DRS may be determined to be transmitted on subframe # 0. The subframe number located before the subframe # 0 through which the DRS is transmitted may be decremented by one.
  • subframe numbers located before subframe # 0 through which the DRS is transmitted are sequentially set to # 9, # 8, # 7, # 6, # 5, # 4, # 3, # 2, # 1, and the like. Can be.
  • the subframe number located after the subframe # 0 through which the DRS is transmitted may be increased by one.
  • the subframe numbers located after the subframe # 0 where the DRS is transmitted are sequentially set to # 1, # 2, # 3, # 4, # 5, # 6, # 7, # 8, # 9, etc. Can be.
  • the CRS sequence for the subframe in which the PDSCH is configured based on the set subframe number may be generated.
  • the CRS sequence for the subframe located before the subframe # 0 in which the DRS is transmitted among the subframes configured with the PDSCH may be generated based on the subframe # 9, the slots # 18 and # 19 constituting the subframe # 9, and the like.
  • CRS sequences for subframes located after subframe # 0 in which the DRS is transmitted are included in subframes # 1 and # 2 and slots # 2 to # 5 constituting subframes # 1 and # 2. Can be generated based on this.
  • the UE may detect the CRS included in the DRS using the CRS sequence based on the subframe # 0, the slots # 0 and # 1 constituting the subframe # 0, and the subframes # 9, # 1, and #. 2, CRS may be detected from subframes in which PDSCH is configured using a CRS sequence based on slots # 18, # 19, # 2 to # 5, etc. constituting subframes # 9, # 1, and # 2.
  • the UE may receive a DRS from a base station.
  • the DRS may be received through any subframe among the subframes constituting the DMTC interval.
  • the UE may detect the synchronization signal and the reference signal from the DRS using the sequence described above.
  • the UE may acquire time and frequency synchronization using the detected synchronization signal, and perform RRM, channel estimation, channel quality measurement, etc. using the detected reference signal (S3630).
  • the methods according to the invention can be implemented in the form of program instructions that can be executed by various computer means and recorded on a computer readable medium.
  • Computer-readable media may include, alone or in combination with the program instructions, data files, data structures, and the like.
  • the program instructions recorded on the computer readable medium may be those specially designed and constructed for the present invention, or may be known and available to those skilled in computer software.
  • Examples of computer readable media include hardware devices that are specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include machine language code, such as produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate with at least one software module to perform the operations of the present invention, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

통신 네트워크에서 신호의 송수신 방법 및 장치가 개시된다. 비면허 대역을 지원하는 UE의 동작 방법은, 기지국으로부터 DMTC 주기 및 DMTC 오프셋을 포함하는 DMTC 관련 정보를 수신하는 단계, 상기 DMTC 관련 정보에 기초하여 DRS가 전송되는 DMTC 구간을 확인하는 단계, 및 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이외의 서브프레임을 통해 상기 DRS를 상기 기지국으로부터 수신하는 단계를 포함한다. 따라서, 통신 네트워크의 성능이 향상될 수 있다.

Description

통신 네트워크에서 신호의 송수신 방법 및 장치
본 발명은 셀룰러 통신 네트워크에서 신호의 송수신 기술에 관한 것으로, 더욱 상세하게는 DRS(discovery reference signal 또는 discovery signal)의 송수신 기술에 관한 것이다.
정보통신 기술의 발전과 더불어 다양한 무선 통신 기술이 개발되고 있다. 무선 통신 기술은 사용 대역에 따라 크게 면허 대역(licensed band)을 사용하는 무선 통신 기술, 비면허 대역(unlicensed band)(예를 들어, ISM(industrial scientific medical) 대역)을 사용하는 무선 통신 기술 등으로 분류될 수 있다. 면허 대역의 사용권은 한 사업자(operator)에게 독점적으로 주어지므로, 면허 대역을 사용하는 무선 통신 기술은 비면허 대역을 사용하는 무선 통신 기술에 비해 더 나은 신뢰성과 통신 품질 등을 제공할 수 있다.
면허 대역을 사용하는 대표적인 무선 통신 기술로 3GPP(3rd generation partnership project) 표준에서 규정된 LTE(long term evolution), LTE-A(advanced) 등이 있으며, LTE(또는, LTE-A 등)를 지원하는 기지국 및 UE(user equipment) 각각은 면허 대역을 통해 신호를 송수신할 수 있다. 비면허 대역을 사용하는 대표적인 무선 통신 기술로 IEEE 802.11 표준에서 규정된 WLAN(wireless local area network) 등이 있으며, WLAN을 지원하는 액세스 포인트(access point) 및 스테이션(station) 각각은 비면허 대역을 통해 신호를 송수신할 수 있다.
한편, 최근 모바일 트래픽은 폭발적으로 증가하고 있으며, 이러한 모바일 트래픽을 면허 대역을 통해 처리하기 위해서 추가적인 면허 대역의 확보가 필요하다. 그러나 면허 대역은 유한하고, 보통 면허 대역은 사업자들 간의 주파수 대역 경매 등을 통해 확보될 수 있으므로, 추가적인 면허 대역을 확보하기 위해 천문학적 비용이 소모될 수 있다. 이러한 문제를 해소하기 위해, 비면허 대역을 통해 LTE(또는, LTE-A 등) 서비스를 제공하는 방안이 고려될 수 있다.
비면허 대역을 통해 LTE(또는, LTE-A 등) 서비스가 제공되는 경우, WLAN을 지원하는 통신 노드(예를 들어, 액세스 포인트, 스테이션 등)와의 공존이 필요할 수 있다. 비면허 대역에서 공존을 위해, LTE(또는, LTE-A 등)를 지원하는 통신 노드(예를 들어, 기지국, UE 등)는 LBT(listen before talk) 등에 기초하여 비면허 대역을 사용할 수 있다. 이 경우, LTE(또는, LTE-A 등)를 지원하는 통신 노드는 원하는 시점에 신호를 전송하지 못할 수 있다. 또한, 비면허 대역에서 LTE(또는, LTE-A 등)를 지원하는 통신 노드로부터 전송된 신호와 WLAN을 지원하는 통신 노드로부터 전송된 신호 간의 간섭이 발생될 수 있다. 따라서, 비면허 대역에서 공존을 위한 신호의 송수신 방법이 필요하다.
한편, 발명의 배경이 되는 기술은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래 기술이 아닌 내용을 포함할 수 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 DRS(discovery reference signal 또는 discovery signal)의 송수신 방법 및 장치를 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 비면허 대역을 지원하는 UE의 동작 방법은, 기지국으로부터 DMTC 주기 및 DMTC 오프셋을 포함하는 DMTC 관련 정보를 수신하는 단계, 상기 DMTC 관련 정보에 기초하여 DRS가 전송되는 DMTC 구간을 확인하는 단계, 및 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이외의 서브프레임을 통해 상기 DRS를 상기 기지국으로부터 수신하는 단계를 포함한다.
여기서, 상기 DRS는 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이후의 서브프레임을 통해 전송될 수 있다.
여기서, 상기 DRS는 CRS, PSS, SSS 및 CSI-RS를 포함할 수 있다.
여기서, 상기 CRS는 안테나 포트 0에서 CRS일 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 PSS는 서브프레임 #0 또는 서브프레임 #5에 설정될 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 SSS는 서브프레임 #0 또는 서브프레임 #5에 설정될 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 SSS가 서브프레임 #1 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #0에 설정되는 SSS를 위한 시퀀스를 사용할 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 SSS가 서브프레임 #6 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #5에 설정되는 SSS를 위한 시퀀스를 사용할 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있고, 서브프레임들 각각은 2개의 슬롯들로 구성되며, 상기 CRS의 시퀀스는 상기 SSS가 설정된 슬롯의 번호에 기초하여 생성될 수 있다.
여기서, 상기 SSS가 서브프레임 #0 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 0 및 1에 기초하여 생성될 수 있다.
여기서, 상기 SSS가 서브프레임 #5 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 10 및 11에 기초하여 생성될 수 있다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 통신 네트워크에서 기지국의 동작 방법은, DMTC 구간을 지시하는 설정 정보를 전송하는 단계, DRS를 생성하는 단계, 및 비면허 대역의 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이외의 서브프레임을 통해 상기 DRS를 전송하는 단계를 포함한다.
여기서, 상기 DRS는 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이후의 서브프레임을 통해 전송될 수 있다.
여기서, 상기 DRS는 CRS, PSS, SSS 및 CSI-RS를 포함할 수 있다.
여기서, 상기 CRS는 안테나 포트 0에서 CRS일 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 PSS는 서브프레임 #0 또는 서브프레임 #5에 설정될 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 SSS는 서브프레임 #0 또는 서브프레임 #5에 설정될 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 SSS가 서브프레임 #1 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #0에 설정되는 SSS를 위한 시퀀스를 사용할 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있으며, 상기 SSS가 서브프레임 #6 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #5에 설정되는 SSS를 위한 시퀀스를 사용할 수 있다.
여기서, 상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성될 수 있고, 서브프레임들 각각은 2개의 슬롯들로 구성되며, 상기 CRS의 시퀀스는 상기 SSS가 설정된 슬롯의 번호에 기초하여 생성될 수 있다.
여기서, 상기 SSS가 서브프레임 #0 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 0 및 1에 기초하여 생성될 수 있다.
여기서, 상기 SSS가 서브프레임 #5 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 10 및 11에 기초하여 생성될 수 있다.
본 발명에 의하면, 비면허 대역에서 신호의 전송 성공률이 향상될 수 있다. 즉, 비면허 대역에서 신호가 효율적으로 송수신될 수 있다. 따라서, 통신 네트워크의 성능이 향상될 수 있다.
도 1은 무선 통신 네트워크의 제1 실시예를 도시한 개념도이다.
도 2는 무선 통신 네트워크의 제2 실시예를 도시한 개념도이다.
도 3은 무선 통신 네트워크의 제3 실시예를 도시한 개념도이다.
도 4는 무선 통신 네트워크의 제4 실시예를 도시한 개념도이다.
도 5는 무선 통신 네트워크를 구성하는 통신 노드의 일 실시예를 도시한 블록도이다.
도 6은 타입 1 프레임의 일 실시예를 도시한 개념도이다.
도 7은 타입 2 프레임의 일 실시예를 도시한 개념도이다.
도 8은 서브프레임에 포함된 슬롯의 자원 그리드(grid)의 일 실시예를 도시한 개념도이다.
도 9는 한 개의 안테나 포트(즉, 안테나 포트 0)에 기초한 CRS의 일 실시예를 도시한 개념도이다.
도 10은 두 개의 안테나 포트(즉, 안테나 포트 0 및 1)들에 기초한 CRS의 일 실시예를 도시한 개념도이다.
도 11은 네 개의 안테나 포트(즉, 안테나 포트 0, 1, 2 및 3)들에 기초한 CRS의 일 실시예를 도시한 개념도이다.
도 12는 CSI-RS 구성 0에 기초한 CSI-RS의 일 실시예를 도시한 개념도이다.
도 13은 FDD 방식에 기초한 네트워크에서 정규 CP가 사용되는 경우에 PSS 및 SSS 구성에 대한 일 실시예를 도시한 개념도이다.
도 14는 TDD 방식에 기초한 네트워크에서 정규 CP가 사용되는 경우에 PSS 및 SSS 구성에 대한 일 실시예를 도시한 개념도이다.
도 15는 FDD 방식에 기초한 네트워크에서 DRS 구성에 대한 일 실시예를 도시한 개념도이다.
도 16은 TDD 방식에 기초한 네트워크에서 DRS 구성에 대한 일 실시예를 도시한 개념도이다.
도 17은 안테나 포트 0 및 1에 대응하는 신호에 기초한 DRS 구성의 일 실시예를 도시한 개념도이다.
도 18은 안테나 포트 0 내지 3에 대응하는 신호에 기초한 DRS 구성의 일 실시예를 도시한 개념도이다.
도 19는 안테나 포트 0 내지 3에 대응하는 신호에 기초한 DRS 구성의 다른 실시예를 도시한 개념도이다.
도 20은 TDD 방식에 기초한 네트워크에서 DRS 구성에 대한 다른 실시예를 도시한 개념도이다.
도 21은 PSS 및 SSS 구성의 일 실시예를 도시한 개념도이다.
도 22는 PSS 및 SSS 구성의 다른 실시예를 도시한 개념도이다.
도 23은 시간 영역에서 반복되는 PSS 및 SSS 구성에 대한 일 실시예를 도시한 개념도이다.
도 24는 DRS 구성에 대한 제1 실시예를 도시한 개념도이다.
도 25는 DRS 구성에 대한 제2 실시예를 도시한 개념도이다.
도 26은 DRS 구성에 대한 제3 실시예를 도시한 개념도이다.
도 27은 DRS 구성에 대한 제4 실시예를 도시한 개념도이다.
도 28은 DRS 구성에 대한 제5 실시예를 도시한 개념도이다.
도 29는 DRS 구성에 대한 제6 실시예를 도시한 개념도이다.
도 30은 DRS 구성에 대한 제7 실시예를 도시한 개념도이다.
도 31은 DRS 구성에 대한 제8 실시예를 도시한 개념도이다.
도 32는 DRS 구성에 대한 제9 실시예를 도시한 개념도이다.
도 33은 DRS 구성에 대한 제10 실시예를 도시한 개념도이다.
도 34는 DRS 구성에 대한 제11 실시예를 도시한 개념도이다.
도 35는 DRS 구성에 대한 제12 실시예를 도시한 개념도이다.
도 36은 DRS의 송수신 방법에 대한 일 실시예를 도시한 순서도이다.
도 37은 DMTC 관련 정보에 의해 지시되는 DRS 송수신 타이밍을 도시한 타이밍도이다.
도 38은 DRS 지연 전송의 실시예를 도시한 타이밍도이다.
도 39는 DRS의 지연 구간에 대한 일 실시예를 도시한 타이밍도이다.
도 40은 DRS의 지연 구간에 대한 다른 실시예를 도시한 타이밍도이다.
도 41은 버스트 시간 동기 및 DRS 시간 동기 각각에 기초한 서브프레임 번호를 도시한 개념도이다.
도 42는 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제1 실시예를 도시한 개념도이다.
도 43은 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제2 실시예를 도시한 개념도이다.
도 44는 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제3 실시예를 도시한 개념도이다.
도 45는 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제4 실시예를 도시한 개념도이다.
도 46은 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제5 실시예를 도시한 개념도이다.
도 47은 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제6 실시예를 도시한 개념도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
아래에서, 본 발명에 따른 실시예들이 적용되는 무선 통신 네트워크(wireless communication network)가 설명될 것이다. 본 발명에 따른 실시예들이 적용되는 무선 통신 네트워크는 아래 설명된 내용에 한정되지 않으며, 본 발명에 따른 실시예들은 다양한 무선 통신 네트워크들에 적용될 수 있다.
도 1은 무선 통신 네트워크의 제1 실시예를 도시한 개념도이다.
도 1을 참조하면, 제1 기지국(110)은 셀룰러(cellular) 통신(예를 들어, 3GPP(3rd generation partnership project) 표준에서 규정된 LTE(long term evolution), LTE-A(advanced), LAA(licensed assisted access) 등)를 지원할 수 있다. 제1 기지국(110)은 MIMO(multiple input multiple output)(예를 들어, SU(single user)-MIMO, MU(multi user)-MIMO, 대규모(massive) MIMO 등), CoMP(coordinated multipoint), 캐리어 애그리게이션(carrier aggregation; CA) 등을 지원할 수 있다. 제1 기지국은 면허 대역(licensed band)(F1)에서 동작할 수 있으며, 매크로 셀(macro cell)을 형성할 수 있다. 제1 기지국(110)은 아이디얼 백홀(ideal backhaul) 또는 논(non)-아이디얼 백홀을 통해 다른 기지국(예를 들어, 제2 기지국(120), 제3 기지국(130) 등)과 연결될 수 있다.
제2 기지국(120)은 제1 기지국(110)의 커버리지(coverage) 내에 위치할 수 있다. 제2 기지국(120)은 비면허 대역(unlicensed band)(F3)에서 동작할 수 있으며, 스몰 셀(small cell)을 형성할 수 있다. 제3 기지국(130)은 제1 기지국(110)의 커버리지 내에 위치할 수 있다. 제3 기지국(130)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제2 기지국(120) 및 제3 기지국(130) 각각은 IEEE(institute of electrical and electronics engineers) 802.11 표준에서 규정된 WLAN(wireless local area network)을 지원할 수 있다. 제1 기지국(110) 및 제1 기지국(110)에 접속된 UE(user equipment)(미도시) 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
도 2는 무선 통신 네트워크의 제2 실시예를 도시한 개념도이다.
도 2를 참조하면, 제1 기지국(210) 및 제2 기지국(220) 각각은 셀룰러 통신(예를 들어, 3GPP 표준에서 규정된 LTE, LTE-A, LAA 등)을 지원할 수 있다. 제1 기지국(210) 및 제2 기지국(220) 각각은 MIMO(예를 들어, SU-MIMO, MU-MIMO, 대규모 MIMO 등), CoMP, 캐리어 애그리게이션(CA) 등을 지원할 수 있다. 제1 기지국(210) 및 제2 기지국(220) 각각은 면허 대역(F1)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제1 기지국(210) 및 제2 기지국(220) 각각은 매크로 셀을 형성하는 기지국의 커버리지 내에 위치할 수 있다. 제1 기지국(210)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제3 기지국(230)과 연결될 수 있다. 제2 기지국(220)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제4 기지국(240)과 연결될 수 있다.
제3 기지국(230)은 제1 기지국(210)의 커버리지 내에 위치할 수 있다. 제3 기지국(230)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제4 기지국(240)은 제2 기지국(220)의 커버리지 내에 위치할 수 있다. 제4 기지국(240)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(230) 및 제4 기지국(240) 각각은 IEEE 802.11 표준에서 규정된 WLAN을 지원할 수 있다. 제1 기지국(210), 제1 기지국(210)에 접속된 UE, 제2 기지국(220) 및 제2 기지국(220)에 접속된 UE 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
도 3은 무선 통신 네트워크의 제3 실시예를 도시한 개념도이다.
도 3을 참조하면, 제1 기지국(310), 제2 기지국(320) 및 제3 기지국(330) 각각은 셀룰러 통신(예를 들어, 3GPP 표준에서 규정된 LTE, LTE-A, LAA 등)을 지원할 수 있다. 제1 기지국(310), 제2 기지국(320) 및 제3 기지국(330) 각각은 MIMO(예를 들어, SU-MIMO, MU-MIMO, 대규모 MIMO 등), CoMP, 캐리어 애그리게이션(CA) 등을 지원할 수 있다. 제1 기지국(310)은 면허 대역(F1)에서 동작할 수 있으며, 매크로 셀을 형성할 수 있다. 제1 기지국(310)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 다른 기지국(예를 들어, 제2 기지국(320), 제3 기지국(330) 등)과 연결될 수 있다. 제2 기지국(320)은 제1 기지국(310)의 커버리지 내에 위치할 수 있다. 제2 기지국(320)은 면허 대역(F1)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(330)은 제1 기지국(310)의 커버리지 내에 위치할 수 있다. 제3 기지국(330)은 면허 대역(F1)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다.
제2 기지국(320)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제4 기지국(340)과 연결될 수 있다. 제4 기지국(340)은 제2 기지국(320)의 커버리지 내에 위치할 수 있다. 제4 기지국(340)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(330)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제5 기지국(350)과 연결될 수 있다. 제5 기지국(350)은 제3 기지국(330)의 커버리지 내에 위치할 수 있다. 제5 기지국(350)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제4 기지국(340) 및 제5 기지국(350) 각각은 IEEE 802.11 표준에서 규정된 WLAN을 지원할 수 있다.
제1 기지국(310), 제1 기지국(310)에 접속된 UE(미도시), 제2 기지국(320), 제2 기지국(320)에 접속된 UE(미도시), 제3 기지국(330) 및 제3 기지국(330)에 접속된 UE(미도시) 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
도 4는 무선 통신 네트워크의 제4 실시예를 도시한 개념도이다.
도 4를 참조하면, 제1 기지국(410), 제2 기지국(420) 및 제3 기지국(430) 각각은 셀룰러 통신(예를 들어, 3GPP 표준에서 규정된 LTE, LTE-A, LAA 등)을 지원할 수 있다. 제1 기지국(410), 제2 기지국(420) 및 제3 기지국(430) 각각은 MIMO(예를 들어, SU-MIMO, MU-MIMO, 대규모 MIMO 등), CoMP, 캐리어 애그리게이션(CA) 등을 지원할 수 있다. 제1 기지국(410)은 면허 대역(F1)에서 동작할 수 있으며, 매크로 셀을 형성할 수 있다. 제1 기지국(410)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 다른 기지국(예를 들어, 제2 기지국(420), 제3 기지국(430) 등)과 연결될 수 있다. 제2 기지국(420)은 제1 기지국(410)의 커버리지 내에 위치할 수 있다. 제2 기지국(420)은 면허 대역(F2)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(430)은 제1 기지국(410)의 커버리지 내에 위치할 수 있다. 제3 기지국(430)은 면허 대역(F2)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제2 기지국(420) 및 제3 기지국(430) 각각은 제1 기지국(410)이 동작하는 면허 대역(F1)과 다른 면허 대역(F2)에서 동작할 수 있다.
제2 기지국(420)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제4 기지국(440)과 연결될 수 있다. 제4 기지국(440)은 제2 기지국(420)의 커버리지 내에 위치할 수 있다. 제4 기지국(440)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(430)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제5 기지국(450)과 연결될 수 있다. 제5 기지국(450)은 제3 기지국(430)의 커버리지 내에 위치할 수 있다. 제5 기지국(450)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제4 기지국(440) 및 제5 기지국(450) 각각은 IEEE 802.11 표준에서 규정된 WLAN을 지원할 수 있다.
제1 기지국(410) 및 제1 기지국(410)에 접속된 UE(미도시) 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다. 제2 기지국(420), 제2 기지국(420)에 접속된 UE(미도시), 제3 기지국(430) 및 제3 기지국(430)에 접속된 UE(미도시) 각각은 면허 대역(F2)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
앞서 설명된 무선 통신 네트워크를 구성하는 통신 노드(즉, 기지국, UE 등)는 비면허 대역에서 LBT(listen before talk) 절차에 기초하여 신호를 전송할 수 있다. 즉, 통신 노드는 에너지 검출(energy detection) 동작을 수행함으로써 비면허 대역의 점유 상태를 판단할 수 있다. 통신 노드는 비면허 대역이 아이들(idle) 상태로 판단된 경우 신호를 전송할 수 있다. 이때, 통신 노드는 랜덤 백오프(random backoff) 동작에 따른 경쟁 윈도우(contention window) 동안 비면허 대역이 아이들 상태인 경우 신호를 전송할 수 있다. 반면, 통신 노드는 비면허 대역이 비지(busy) 상태로 판단된 경우 신호를 전송하지 않을 수 있다.
또는, 통신 노드는 CSAT(carrier sensing adaptive transmission) 동작에 기초하여 신호를 전송할 수 있다. 즉, 통신 노드는 미리 설정된 듀티 사이클(duty cycle)에 기초하여 신호를 전송할 수 있다. 통신 노드는 현재 듀티 사이클이 셀룰러 통신을 지원하는 통신 노드를 위해 할당된 듀티 사이클인 경우 신호를 전송할 수 있다. 반면, 통신 노드는 현재 듀티 사이클이 셀룰러 통신 외의 통신(예를 들어, WLAN 등)을 지원하는 통신 노드를 위해 할당된 듀티 사이클인 경우 신호를 전송하지 않을 수 있다. 듀티 사이클은 비면허 대역에 존재하는 WLAN을 지원하는 통신 노드의 수, 비면허 대역의 사용 상태 등에 기초하여 적응적으로 결정될 수 있다.
통신 노드는 비면허 대역에서 비연속 전송(discontinuous transmission)을 수행할 수 있다. 예를 들어, 비면허 대역에서 최대 전송 기간(maximum transmission duration) 또는 최대 채널 점유 시간(maximum channel occupancy time; max COT)이 설정되어 있는 경우, 통신 노드는 최대 전송 기간(또는, 최대 채널 점유 시간) 내에 신호를 전송할 수 있다. 통신 노드는 현재 최대 전송 기간(또는, 최대 채널 점유 시간) 내에 신호를 모두 전송하지 못한 경우 다음 최대 전송 기간(또는, 최대 채널 점유 시간)에서 나머지 신호를 전송할 수 있다. 또한, 통신 노드는 비면허 대역에서 상대적으로 작은 간섭을 가지는 캐리어를 선택할 수 있고, 선택된 캐리어에서 동작할 수 있다. 또한, 통신 노드는 비면허 대역에서 신호를 전송하는 경우 다른 통신 노드로의 간섭을 줄이기 위해 전송 파워를 조절할 수 있다.
한편, 통신 노드는 CDMA(code division multiple access) 기반의 통신 프로토콜, WCDMA(wideband CDMA) 기반의 통신 프로토콜, TDMA(time division multiple access) 기반의 통신 프로토콜, FDMA(frequency division multiple access) 기반의 통신 프로토콜, SC(single carrier)-FDMA 기반의 통신 프로토콜, OFDM(orthogonal frequency division multiplexing) 기반의 통신 프로토콜, OFDMA(orthogonal frequency division multiple access) 기반의 통신 프로토콜 등을 지원할 수 있다.
통신 노드 중에서 기지국은 노드B(NodeB; NB), 고도화 노드B(evolved NodeB; eNB), BTS(base transceiver station), 무선 기지국(radio base station), 무선 트랜시버(radio transceiver), 액세스 포인트(access point; AP), 액세스 노드 등으로 지칭될 수 있다. 통신 노드 중에서 UE는 터미널(terminal), 액세스 터미널(access terminal), 모바일 터미널(mobile terminal), 스테이션(station), 가입자 스테이션(subscriber station), 휴대 가입자 스테이션(portable subscriber station), 모바일 스테이션(mobile station), 노드(node), 다바이스(device) 등으로 지칭될 수 있다. 통신 노드는 다음과 같은 구조를 가질 수 있다.
도 5는 무선 통신 네트워크를 구성하는 통신 노드의 일 실시예를 도시한 블록도이다.
도 5를 참조하면, 통신 노드(500)는 적어도 하나의 프로세서(510), 메모리(520) 및 네트워크와 연결되어 통신을 수행하는 송수신 장치(530)를 포함할 수 있다. 또한, 통신 노드(500)는 입력 인터페이스 장치(540), 출력 인터페이스 장치(550), 저장 장치(560) 등을 더 포함할 수 있다. 통신 노드(500)에 포함된 각각의 구성 요소들은 버스(bus)(570)에 의해 연결되어 서로 통신을 수행할 수 있다.
프로세서(510)는 메모리(520) 및 저장 장치(560) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(510)는 중앙 처리 장치(central processing unit; CPU), 그래픽 처리 장치(graphics processing unit; GPU), 또는 본 발명의 실시예들에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 메모리(520) 및 저장 장치(560) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(520)는 읽기 전용 메모리(read only memory; ROM) 및 랜덤 액세스 메모리(random access memory; RAM) 중에서 적어도 하나로 구성될 수 있다.
다음으로, 무선 통신 네트워크에서 통신 노드의 동작 방법들이 설명될 것이다. 통신 노드들 중에서 제1 통신 노드에서 수행되는 방법(예를 들어, 신호의 전송 또는 수신)이 설명되는 경우에도 이에 대응하는 제2 통신 노드는 제1 통신 노드에서 수행되는 방법과 상응하는 방법(예를 들어, 신호의 수신 또는 전송)을 수행할 수 있다. 즉, UE의 동작이 설명된 경우에 이에 대응하는 기지국은 UE의 동작과 상응하는 동작을 수행할 수 있다. 반대로, 기지국의 동작이 설명된 경우에 이에 대응하는 UE는 기지국의 동작과 상응하는 동작을 수행할 수 있다.
한편, 비면허 대역의 셀과 면허 대역의 셀 간에 캐리어 애그리게이션(CA)이 적용될 수 있다. 비면허 대역의 셀의 구성(configuration), 추가(add), 수정(modify) 또는 해제(release)는 RRC(radio resource control) 시그널링(signaling)(예를 들어, RRCConnectionReconfiguration 메시지(이하, "RRC 메시지"라 함)의 송수신 절차)을 통해 수행될 수 있다. RRC 메시지는 면허 대역의 셀로부터 UE에 전송될 수 있다. RRC 메시지는 비면허 대역의 셀의 운용 및 동작에 필요한 정보를 포함할 수 있다.
면허 대역의 셀과 다르게, 비면허 대역의 셀에서 신호를 연속적으로 전송할 수 있는 구간은 최대 전송 구간 내로 제한될 수 있다. 또한, LBT에 기초하여 신호가 전송되는 경우, 다른 통신 노드의 전송이 완료된 경우에 신호가 전송될 수 있다. 비면허 대역을 통해 LTE(또는, LTE-A 등) 서비스가 제공되는 경우, LTE(또는, LTE-A 등)를 지원하는 통신 노드의 전송은 비주기적, 비연속적, 기회주의적 특징을 가질 수 있다. 이러한 특징에 기초하면, 비면허 대역에서 일정 시간 동안 LTE(또는, LTE-A 등)를 지원하는 통신 노드에 의해 연속적으로 전송되는 신호는 "비면허 대역 버스트(burst)"로 지칭될 수 있다.
또한, 면허 대역에서 정의된 채널(예를 들어, PCFICH(physical control format indicator channel), PHICH(physical hybrid-ARQ(automatic repeat request) indicator channel), PDCCH(physical downlink control channel), PDSCH(physical downlink shared channel), PMCH(physical multicast channel), PUCCH(physical uplink control channel), PUSCH(physical uplink shared channel) 등) 및 신호(예를 들어, 동기 신호(synchronization signal), 참조 신호(reference signal) 등) 중에서 하나 이상의 조합으로 구성되는 서브프레임들의 연속된 집합은 비면허 대역을 통해 전송될 수 있다. 이 경우, 서브프레임들의 전송은 "비면허 대역 전송"으로 지칭될 수 있다.
비면허 대역에서 전송을 위해 사용되는 프레임은 하향링크 비면허 대역 버스트 프레임, 상향링크 비면허 대역 버스트 프레임, 하향/상향 비면허 대역 버스트 프레임 등으로 분류될 수 있다. 하향링크 비면허 대역 버스트 프레임은 "비면허 대역 전송"이 적용되는 서브프레임을 포함할 수 있고, "비면허 대역 신호"를 더 포함할 수 있다. 하향링크 비면허 대역 버스트 프레임 내에서, "비면허 대역 신호"는 "비면허 대역 전송"이 적용되는 서브프레임 전에 위치할 수 있다. "비면허 대역 신호"는 "비면허 대역 전송"이 적용되는 서브프레임의 타이밍(timing)(또는, OFDM 심볼(symbol) 타이밍)과 면허 대역에서 서브프레임의 타이밍(또는, OFDM 심볼 타이밍)을 일치시키기 위해 구성될 수 있다. 또한, "비면허 대역 신호"는 "비면허 대역 전송"에 기초한 데이터의 수신을 위해 요구되는 AGC(automatic gain control), 동기 획득, 채널 추정 등을 위해 사용될 수 있다.
한편, 셀룰러 통신 네트워크(예를 들어, LTE 네트워크)는 FDD(frequency division duplex) 방식, TDD(time division duplex) 방식 등을 지원할 수 있다. FDD 방식에 기초한 프레임은 "타입(type) 1 프레임"으로 정의될 수 있고, TDD 방식에 기초한 프레임은 "타입 2 프레임"으로 정의될 수 있다.
도 6은 타입 1 프레임의 일 실시예를 도시한 개념도이다.
도 6을 참조하면, 라디오(radio) 프레임(600)은 10개의 서브프레임들을 포함할 수 있고, 서브프레임은 2개의 슬롯(slot)들을 포함할 수 있다. 따라서, 라디오 프레임(600)은 20개의 슬롯들(예를 들어, 슬롯 #0, 슬롯 #1, 슬롯 #2, 슬롯 #3, …, 슬롯 #18, 슬롯 #19)을 포함할 수 있다. 라디오 프레임(600) 길이(Tf)는 10ms일 수 있다. 서브프레임 길이는 1ms일 수 있다. 슬롯 길이(Tslot)는 0.5ms일 수 있다. 여기서, Ts는 1/30,720,000s일 수 있다.
슬롯은 시간 영역에서 복수의 OFDM 심볼들로 구성될 수 있고, 주파수 영역에서 복수의 자원 블록(resource block; RB)들로 구성될 수 있다. 자원 블록은 주파수 영역에서 복수의 서브캐리어(subcarrier)들로 구성될 수 있다. 슬롯을 구성하는 OFDM 심볼의 개수는 CP(cyclic prefix)의 구성에 따라 달라질 수 있다. CP는 정규(normal) CP 및 확장된(extended) CP로 분류될 수 있다. 정규 CP가 사용되면 슬롯은 7개의 OFDM 심볼들로 구성될 수 있고, 이 경우에 서브프레임은 14개의 OFDM 심볼들로 구성될 수 있다. 확장된 CP가 사용되면 슬롯은 6개의 OFDM 심볼들로 구성될 수 있고, 이 경우에 서브프레임은 12개의 OFDM 심볼들로 구성될 수 있다.
도 7은 타입 2 프레임의 일 실시예를 도시한 개념도이다.
도 7을 참조하면, 라디오 프레임(700)은 2개의 하프(half) 프레임을 포함할 수 있고, 하프 프레임은 5개의 서브프레임들을 포함할 수 있다. 따라서, 라디오 프레임(700)은 10개의 서브프레임들을 포함할 수 있다. 라디오 프레임(700) 길이(Tf)는 10ms일 수 있다. 하프 프레임의 길이는 5ms일 수 있다. 서브프레임 길이는 1ms일 수 있다. 여기서, Ts는 1/30,720,000s일 수 있다.
라디오 프레임(700)은 하향링크 서브프레임, 상향링크 서브프레임 및 특별(special) 서브프레임을 포함할 수 있다. 하향링크 서브프레임 및 상향링크 서브프레임 각각은 2개의 슬롯들을 포함할 수 있다. 슬롯 길이(Tslot)는 0.5ms일 수 있다. 라디오 프레임(700)에 포함된 서브프레임들 중에서 서브프레임 #1 및 서브프레임 #6 각각은 특별 서브프레임일 수 있다. 특별 서브프레임은 하향링크 파일럿 시간 슬롯(downlink pilot time slot; DwPTS), 보호 구간(guard period; GP) 및 상향링크 파일럿 시간 슬롯(uplink pilot time slot; UpPTS)을 포함할 수 있다.
하향링크 파일럿 시간 슬롯은 하향링크 구간으로 간주될 수 있으며, UE의 셀 탐색, 시간 및 주파수 동기 획득 등을 위해 사용될 수 있다. 보호 구간은 하향링크 데이터 수신 지연에 의해 발생하는 상향링크 데이터 전송의 간섭 문제의 해결을 위해 사용될 수 있다. 또한, 보호 구간은 하향링크 데이터 수신 동작에서 상향링크 데이터 전송 동작으로 전환을 위해 필요한 시간을 포함할 수 있다. 상향링크 파일럿 시간 슬롯은 상향링크 채널 추정, 시간 및 주파수 동기 획득 등을 위해 사용될 수 있다.
특별 서브프레임에 포함되는 하향링크 파일럿 시간 슬롯, 보호 구간 및 상향링크 파일럿 시간 슬롯 각각의 길이는 필요에 따라 가변적으로 조절될 수 있다. 또한, 라디오 프레임(700)에 포함되는 하향링크 서브프레임, 상향링크 서브프레임 및 특별 서브프레임 각각의 개수 및 위치는 필요에 따라 변경될 수 있다.
도 8은 서브프레임에 포함된 슬롯의 자원 그리드(grid)의 일 실시예를 도시한 개념도이다.
도 8을 참조하면, 하향링크 서브프레임 또는 상향링크 서브프레임에 포함된 슬롯의 자원 블록은 정규 CP가 사용되는 경우에 시간 영역에서 7개의 OFDM 심볼들로 구성될 수 있고, 주파수 영역에서 12개의 서브캐리어들로 구성될 수 있다. 이 경우, 시간 영역에서 하나의 OFDM 심볼과 주파수 영역에서 하나의 서브캐리어로 구성되는 자원은 "자원 엘리먼트(resource element; RE)"로 지칭될 수 있다.
셀룰러 통신 네트워크(예를 들어, LTE 네트워크)의 하향링크 전송에서, 하나의 UE에 대한 자원 할당은 자원 블록 단위로 수행될 수 있고, 참조 신호, 동기 신호 등에 대한 매핑(mapping)은 자원 엘리먼트 단위로 수행될 수 있다.
한편, 참조 신호는 데이터 복조를 위한 채널 추정, 채널 품질 측정 등을 위해 사용될 수 있다. 참조 신호는 시퀀스(sequence)에 기초하여 생성될 수 있다. 예를 들어, 참조 신호의 생성을 위해 사용되는 시퀀스는 CAZAC(constant amplitude zero auto-correlation) 시퀀스, PN(psedo-random) 시퀀스, 순환 쉬프트 시퀀스(cyclically shifted sequence) 등일 수 있다. CAZAC 시퀀스는 ZC(zadoff-chu) 기반 시퀀스(ZC-based sequence) 등을 포함할 수 있다. PN 시퀀스는 m-시퀀스, 골드(gold) 시퀀스, 카사미(kasami) 시퀀스 등을 포함할 수 있다.
참조 신호는 셀 특정 참조 신호(cell-specific reference signal; CRS), UE 특정 참조 신호(UE-specific reference signal), 채널 상태 정보 참조 신호(channel state information-reference signal; CSI-RS), 위치 참조 신호(positioning reference signal; PRS) 등으로 분류될 수 있다. CRS는 셀에 속하는 모든 UE들에 전송될 수 있고, 채널 추정을 위해 사용될 수 있다. UE 특정 참조 신호는 셀에 속하는 특정 UE 또는 특정 그룹에 전송될 수 있고, 특정 UE 또는 특정 그룹에서 데이터 복조를 위해 사용될 수 있다. 여기서, 특정 그룹은 적어도 하나의 UE를 포함할 수 있다. CSI-RS는 채널 품질의 측정을 위해 사용될 수 있다. CRS는 안테나 포트(port)별로 설정될 수 있다. 안테나 포트별 CRS는 다음과 같을 수 있다.
도 9는 한 개의 안테나 포트(즉, 안테나 포트 0)에 기초한 CRS의 일 실시예를 도시한 개념도이고, 도 10은 두 개의 안테나 포트(즉, 안테나 포트 0 및 1)들에 기초한 CRS의 일 실시예를 도시한 개념도이고, 도 11은 네 개의 안테나 포트(즉, 안테나 포트 0, 1, 2 및 3)들에 기초한 CRS의 일 실시예를 도시한 개념도이다.
도 9 내지 도 11을 참조하면, 기지국은 복수의 안테나들을 사용할 수 있으며, 복수의 안테나들 각각을 위한 자원 그리드가 설정될 수 있다. l은 OFDM 심볼 번호(또는, OFDM 심볼 인덱스(index), OFDM 심볼 위치)를 지시할 수 있다. 슬롯이 시간 영역에서 7개의 OFDM 심볼들로 구성되는 경우(즉, 정규 CP가 사용되는 경우), l은 OFDM 심볼 #0, OFDM 심볼 #1, OFDM 심볼 #2, OFDM 심볼 #3, OFDM 심볼 #4, OFDM 심볼 #5, OFDM 심볼 #6을 지시할 수 있다.
k는 서브캐리어 번호(또는, 서브캐리어 인덱스, 서브캐리어 위치)를 지시할 수 있다. 자원 블록이 주파수 영역에서 12개의 서브캐리어들로 구성되는 경우, k는 서브캐리어 #0, 서브캐리어 #1, 서브캐리어 #2, 서브캐리어 #3, 서브캐리어 #4, 서브캐리어 #5, 서브캐리어 #6, 서브캐리어 #7, 서브캐리어 #8, 서브캐리어 #9, 서브캐리어 #10, 서브캐리어 #11을 지시할 수 있다.
안테나 포트 0에서 R0은 복수의 안테나들 중에서 제1 안테나에 대한 CRS를 지시할 수 있다. 안테나 포트 1에서 R1은 복수의 안테나들 중에서 제2 안테나에 대한 CRS를 지시할 수 있다. 안테나 포트 2에서 R2는 복수의 안테나들 중에서 제3 안테나에 대한 CRS를 지시할 수 있다. 안테나 포트 3에서 R3은 복수의 안테나들 중에서 제4 안테나에 대한 CRS를 지시할 수 있다.
서브프레임 내에서 R0, R1, R2 및 R3 각각의 위치는 서로 중복되지 않을 수 있다. 안테나들 간의 간섭을 제거하기 위해, 하나의 안테나의 CRS를 위해 사용된 자원 엘리먼트는 다른 안테나의 CRS를 위해 사용되지 않을 수 있다. 동일한 OFDM 심볼 내에서 CRS는 6개의 서브캐리어들마다 구성될 수 있다. 즉, 동일한 OFDM 심볼 내에서 CRS들 사이에 5개의 서브캐리어들이 존재할 수 있다.
한편, 서브프레임의 주파수 영역 및 시간 영역에서 CRS의 위치는 UE에 관계없이 설정될 수 있다. 즉, CRS의 생성을 위해 사용되는 시퀀스(이하, "CRS 시퀀스"라 함)는 UE에 관계없이 구성될 수 있다. 따라서, 셀 내에 위치한 모든 UE들은 CRS를 수신할 수 있다. 다만, CRS의 위치 및 CRS 시퀀스는 셀 ID(identity) 등에 기초하여 설정될 수 있다. 예를 들어, 시간 영역에서 CRS의 위치는 안테나 번호, 자원 블록 내의 OFDM 심볼의 개수 등에 기초하여 설정될 수 있다. 주파수 영역에서 CRS의 위치는 안테나 번호, 자원 블록 내의 OFDM 심볼의 개수, 셀 ID, OFDM 심볼 번호, 슬롯 번호 등에 기초하여 설정될 수 있다.
CRS 시퀀스는 서브프레임에서 OFDM 심볼 단위로 적용될 수 있다. CRS 시퀀스는 셀 ID, 슬롯 번호, OFDM 심볼 번호, CP의 종류 등에 따라 달라질 수 있다. 하나의 OFDM 심볼에서 안테나 포트별 참조 신호(예를 들어, CRS)가 구성되는 서브캐리어의 개수는 2일 수 있다. 서브프레임이 주파수 영역에서 NRB개의 자원 블록을 포함하는 경우, 하나의 OFDM 심볼에서 안테나 포트별 참조 신호(예를 들어, CRS)가 구성되는 서브캐리어의 개수는 "2×NRB"일 수 있다. 이 경우, CRS 시퀀스의 길이는 "2×NRB"일 수 있다. CRS 시퀀스는 아래 수학식 1과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000001
Figure PCTKR2016008658-appb-I000001
는 CRS 시퀀스를 지시할 수 있다. l은 OFDM 심볼 번호를 지시할 수 있다. ns는 슬롯 번호를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000002
는 하향링크에서 자원 블록의 최대 개수를 지시할 수 있다. m은 자원 블록의 인덱스를 지시할 수 있다. 수학식 1의 함수 c(*)은 아래 수학식 2와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000002
Nc는 1600일 수 있다. 수학식 2의 함수 x1(*)의 초기값은 아래 수학식 3과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000003
수학식 2의 함수 x2(*)의 초기값 cinit은 경우에 따라 다르게 설정될 수 있다. 예를 들어, 함수 x2(*)은 OFDM 심볼마다 셀 ID, 슬롯 번호, OFDM 심볼 번호, CP의 종류 등에 따라 초기화될 수 있다. 수학식 2의 함수 x2(*)의 초기값 cinit은 아래 수학식 4와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000004
NCP는 정규 CP가 사용되는 경우에 1로 설정될 수 있고, 확장된 CP가 사용되는 경우에 0으로 설정될 수 있다.
Figure PCTKR2016008658-appb-I000003
는 셀 ID를 지시할 수 있다. l은 OFDM 심볼 번호를 지시할 수 있다. ns는 슬롯 번호를 지시할 수 있다.
한편, 안테나 포트 p의 자원 블록에서 k번째 서브캐리어의 l번째 OFDM 심볼을 통해 전송되는 참조 신호
Figure PCTKR2016008658-appb-I000004
는 아래 수학식 5와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000005
서브캐리어 번호(k)와 OFDM 심볼 번호(l)는 아래 수학식 6과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000006
Figure PCTKR2016008658-appb-I000005
은 하향링크에서 하나의 슬롯 내의 OFDM 심볼의 개수를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000006
은 하향링크에서 자원 블록의 개수를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000007
은 하향링크에서 자원 블록의 최대 개수를 지시할 수 있다. 서브캐리어 번호를 결정하기 위해 사용되는 v는 아래 수학식 7과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000007
p는 안테나 포트의 번호를 지시할 수 있다. ns는 슬롯 번호를 지시할 수 있다. 셀에 따른 주파수 쉬프트(shift) 값인 vshift는 "
Figure PCTKR2016008658-appb-I000008
mod 6"으로 설정될 수 있다. 여기서, "x mod y"는 x를 y로 나누었을 때의 나머지 값을 지시하는 연산일 수 있다.
CSI-RS는 LTE 네트워크에서 채널 상태 정보(channel state information; CSI)의 추정을 위해 사용될 수 있다. UE는 기지국으로부터 전송되는 CSI-RS에 기초하여 CSI를 추정할 수 있고, 추정된 CSI를 기지국에 보고할 수 있다. CSI는 채널 품질 지시자(channel quality indicator; CQI), 프리코딩 행렬 지시자(precoding matrix indicator; PMI), 랭크 지시자(rank indicator; RI) 등을 포함할 수 있다.
다중 셀 환경에서 셀 간 간섭을 줄이기 위해, CSI-RS는 최대 32개의 서로 다른 구성(configuration)들을 가질 수 있다. CSI-RS 구성은 셀에서 사용되는 안테나 포트의 개수에 따라 서로 다를 수 있다. 인접한 셀들 간에 사용되는 CSI-RS 구성은 서로 다를 수 있다. CSI-RS의 전송을 위해 사용되는 안테나 포트는 "CSI-RS 포트"로 지칭될 수 있다. CSI-RS 포트의 자원 그리드에서 CSI-RS가 할당된 자원 엘리먼트는 "CSI-RS 패턴" 또는 "CSI-RS 자원 구성"으로 지칭될 수 있다. CSI-RS는 최대 8개의 안테나 포트들(예를 들어, "p=15", "p=15,16", "p=15,16,17,18", …, "p=15, …,22")을 통해 전송될 수 있다. 8개의 안테나 포트들 중에서 "p=15, …,22"를 제외한 7개의 안테나 포트들 각각은 CSI-RS 포트 0, CSI-RS 포트 1, CSI-RS 포트 2, CSI-RS 포트 3, CSI-RS 포트 4, CSI-RS 포트 5 및 CSI-RS 포트 6에 대응할 수 있다.
아래 표 1은 정규 CP가 사용되는 경우에 타입 1 프레임(즉, FDD 방식에 기초한 프레임)과 타입 2 프레임(즉, TDD 방식에 기초한 프레임)에서 사용될 수 있는 CSI-RS 구성의 실시예를 지시할 수 있다.
Figure PCTKR2016008658-appb-T000001
아래 표 2는 정규 CP가 사용되는 경우에 타입 2 프레임에서 사용될 수 있는 CSI-RS 구성의 실시예를 지시할 수 있다. 즉, 아래 표 2는 타입 2 프레임만을 위한 CSI-RS 구성의 실시예를 지시할 수 있다.
Figure PCTKR2016008658-appb-T000002
표 1 및 표 2의 (k',l')가 아래 수학식 8에 적용되는 경우, CSI-RS 포트에서 해당 CSI-RS가 할당되는 자원 엘리먼트가 결정될 수 있다. k'는 서브캐리어 번호를 지시할 수 있다. l'은 OFDM 심볼 번호를 지시할 수 있다. ns는 슬롯 번호를 지시할 수 있다. ns에서 CSI-RS 시퀀스(
Figure PCTKR2016008658-appb-I000009
)는 CSI-RS 포트의 참조 심볼로서 사용되는
Figure PCTKR2016008658-appb-I000010
에 따라 매핑(mapping)될 수 있다.
Figure PCTKR2016008658-appb-M000008
수학식 8의 변수들은 아래 수학식 9와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000009
CSI-RS 시퀀스는 아래 수학식 10과 같이 정의될 수 있다. 아래 수학식 10의 함수 c(*)은 수학식 2의 함수 c(*)과 동일할 수 있다.
Figure PCTKR2016008658-appb-M000010
CSI-RS의 초기값(cinit)은 아래 수학식 11과 같이 정의될 수 있다. 아래 수학식 11에서
Figure PCTKR2016008658-appb-I000011
는 셀 ID와 동일할 수 있다.
Figure PCTKR2016008658-appb-M000011
도 12는 CSI-RS 구성 0에 기초한 CSI-RS의 일 실시예를 도시한 개념도이다.
도 12를 참조하면, R15, R16, R17, R18, R19, R20, R21 및 R22는 CSI-RS를 지시할 수 있다. R15 및 R16 각각은 서브프레임의 첫 번째 슬롯 내의 서브캐리어 #9에서 OFDM 심볼 #5 및 #6에 할당될 수 있다. R17 및 R18 각각은 서브프레임의 첫 번째 슬롯 내의 서브캐리어 #3에서 OFDM 심볼 #5 및 #6에 할당될 수 있다. R19 및 R20 각각은 서브프레임의 첫 번째 슬롯 내의 서브캐리어 #8에서 OFDM 심볼 #5 및 #6에 할당될 수 있다. R21 및 R22 각각은 서브프레임의 첫 번째 슬롯 내의 서브캐리어 #2에서 OFDM 심볼 #5 및 #6에 할당될 수 있다.
한편, 아래 표 3과 같이 CSI-RS 서브프레임 구성(ICSI - RS)에 기초하여 CSI-RS 주기(TCSI-RS) 및 CSI-RS 서브프레임 오프셋(△CSI-RS)이 결정될 수 있다.
Figure PCTKR2016008658-appb-T000003
CSI-RS는 아래 수학식 12를 만족하는 라디오 프레임 및 슬롯에서 전송될 수 있다. nf는 라디오 프레임 번호를 지시할 수 있고, ns는 슬롯 번호를 지시할 수 있다.
Figure PCTKR2016008658-appb-M000012
한편, 동기 신호는 기지국으로부터 전송될 수 있다. UE는 동기 신호에 기초하여 자신과 기지국 간의 시간 및 주파수 동기를 맞출 수 있고, 셀 ID를 식별할 수 있다. 동기 신호는 프라이머리 동기 신호(primary synchronization signal; PSS) 및 세컨더리 동기 신호(secondary synchronization signal)로 분류될 수 있다. PSS는 OFDM 심볼 동기, 슬롯 동기 등과 같이 시간 및 주파수 영역 동기를 획득하기 위해 사용될 수 있다. SSS는 프레임 동기를 획득하기 위해 사용될 수 있고, 셀 그룹 ID, CP 종류(즉, 정규 CP, 확장된 CP)의 식별을 위해 사용될 수 있다.
도 13은 FDD 방식에 기초한 네트워크에서 정규 CP가 사용되는 경우에 PSS 및 SSS 구성에 대한 일 실시예를 도시한 개념도이다.
도 13을 참조하면, PSS는 서브프레임 #0의 첫 번째 슬롯 내의 OFDM 심볼 #6 및 서브프레임 #5의 첫 번째 슬롯 내의 OFDM 심볼 #6에 구성될 수 있다. SSS는 서브프레임 #0의 첫 번째 슬롯 내의 OFDM 심볼 #5 및 서브프레임 #5의 첫 번째 슬롯 내의 OFDM 심볼 #5에 구성될 수 있다.
도 14는 TDD 방식에 기초한 네트워크에서 정규 CP가 사용되는 경우에 PSS 및 SSS 구성에 대한 일 실시예를 도시한 개념도이다.
도 14를 참조하면, PSS는 서브프레임 #1의 첫 번째 슬롯 내의 OFDM 심볼 #2 및 서브프레임 #6의 첫 번째 슬롯 내의 OFDM 심볼 #2에 구성될 수 있다. SSS는 서브프레임 #0의 두 번째 슬롯 내의 OFDM 심볼 #6 및 서브프레임 #5의 두 번째 슬롯 내의 OFDM 심볼 #6에 구성될 수 있다.
한편, 동기 신호는 시퀀스에 기초하여 생성될 수 있다. 동기 신호는 서로 다른 시퀀스를 사용함으로써 셀 ID 구분 등의 용도로 활용될 수 있다. PSS를 위한 3개의 시퀀스들이 존재할 수 있다. SSS를 위한 168개의 시퀀스들이 존재할 수 있다. PSS를 위한 3개의 시퀀스들과 SSS를 위한 168개의 시퀀스들의 조합을 사용함으로써 504개의 셀 ID들이 식별될 수 있다. SSS에 의해 168개의 셀 그룹들이 구분될 수 있고, 각 셀 그룹 내에서 고유 ID는 PSS에 의해 구분될 수 있다.
아래 수학식 13과 같이, 셀 ID(
Figure PCTKR2016008658-appb-I000012
)는
Figure PCTKR2016008658-appb-I000013
Figure PCTKR2016008658-appb-I000014
를 기초로 생성될 수 있다.
Figure PCTKR2016008658-appb-I000015
는 SSS에 의해 구분될 수 있으며, {0,1,2,…,167} 중에서 하나를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000016
는 PSS에 의해 구분될 수 있으며, {0,1,2} 중에서 하나를 지시할 수 있다.
Figure PCTKR2016008658-appb-M000013
PSS는 아래 수학식 14의 Zadoff-chu 시퀀스(
Figure PCTKR2016008658-appb-I000017
)에 기초하여 생성될 수 있다.
Figure PCTKR2016008658-appb-M000014
Zadoff-chu 시퀀스(
Figure PCTKR2016008658-appb-I000018
)에서 루트(root) 인덱스(u)는 아래 표 4와 같이
Figure PCTKR2016008658-appb-I000019
에 따라 설정될 수 있다.
Figure PCTKR2016008658-appb-T000004
시간 및 주파수 영역에서 PSS의 전송 위치(
Figure PCTKR2016008658-appb-I000020
)는 아래 수학식 15와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000015
k는 서브캐리어 번호를 지시할 수 있다. l은 OFDM 심볼 번호를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000021
는 하향링크에서 자원 블록의 총 개수를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000022
는 하나의 자원 블록을 구성하는 서브캐리어의 개수를 지시할 수 있다. d(n)은 수학식 14의 Zadoff-chu 시퀀스(
Figure PCTKR2016008658-appb-I000023
)일 수 있다. 수학식 15에 의해 지시되는 자원 엘리먼트에 PSS가 구성될 수 있다. 또한, 시간 영역에서 PSS는 도 13 및 도 14에 도시된 OFDM 심볼에 구성될 수 있다. 한편, 아래 수학식 16에 의해 지시되는 서브캐리어는 가드(guard) 서브캐리어의 용도로 사용될 수 있다. 즉, 아래 수학식 16에 의해 지시되는 서브캐리어에서 PSS가 전송되지 않을 수 있다.
Figure PCTKR2016008658-appb-M000016
SSS는 31의 길이를 가지는 2개의 m-시퀀스들이 인터리빙된 연결(interleaved concatenation) 형태에 기초하여 생성될 수 있다. m-시퀀스(d(2n), d(2n+1))는 아래 수학식 17과 같이 SSS가 전송되는 서브프레임 번호(예를 들어, 서브프레임 #0, 서브프레임 #5)에 기초하여 설정될 수 있다.
Figure PCTKR2016008658-appb-M000017
n은 0부터 30까지의 값을 가질 수 있다. m0 및 m1은 아래 표 5 및 표 6과 같이
Figure PCTKR2016008658-appb-I000024
에 기초하여 설정될 수 있다.
Figure PCTKR2016008658-appb-T000005
Figure PCTKR2016008658-appb-T000006
표 5 및 표 6에 기재된 값은 아래 수학식 18을 통해 계산될 수 있다.
Figure PCTKR2016008658-appb-M000018
수학식 17에서 함수 s(*)는 아래 수학식 19와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000019
여기서, "
Figure PCTKR2016008658-appb-I000025
"일 수 있으며, 함수 x(*)는 아래 수학식 20과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000020
수학식 20에서 초기화 조건은 "x(0)=0, x(1)=0, x(2)=0, x(3)=0, x(4)=1"일 수 있다. 수학식 17에서 함수 c(*)는 아래 수학식 21과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000021
Figure PCTKR2016008658-appb-I000026
는 PSS의 생성을 위해 사용되는 셀 그룹 내의 고유 ID(또는, 식별 ID)일 수 있으며, {0,1,2} 중에서 하나의 값을 가질 수 있다. 여기서, "
Figure PCTKR2016008658-appb-I000027
"일 수 있으며, 함수 x(*)는 아래 수학식 22와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000022
수학식 22에서 초기화 조건은 "x(0)=0, x(1)=0, x(2)=0, x(3)=0, x(4)=1"일 수 있다. 수학식 17에서 함수 z(*)는 아래 수학식 23과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000023
m0 및 m1은 표 5 및 표 6에 기재된 값일 수 있다. "
Figure PCTKR2016008658-appb-I000028
"가 정의될 수 있으며, 함수 x(*)는 아래 수학식 24와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000024
수학식 24에서 초기화 조건은 "x(0)=0, x(1)=0, x(2)=0, x(3)=0, x(4)=1"일 수 있다.
SSS의 전송 위치(
Figure PCTKR2016008658-appb-I000029
)는 아래 수학식 25와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000025
k는 서브캐리어 번호를 지시할 수 있다. l은 OFDM 심볼 번호를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000030
는 하향링크에서 자원 블록의 총 개수를 지시할 수 있다.
Figure PCTKR2016008658-appb-I000031
는 하나의 자원 블록을 구성하는 서브캐리어의 개수를 지시할 수 있다. 수학식 25에 의해 지시되는 위치에서 SSS가 전송될 수 있다. 또한, 시간 영역에서 SSS는 도 13 및 도 14에 도시된 OFDM 심볼에 할당될 수 있다. 한편, 아래 수학식 26에 의해 지시되는 서브프레임은 가드(guard) 서브캐리어의 용도로 사용될 수 있다. 즉, 아래 수학식 26에 의해 지시되는 서브캐리어에서 SSS가 전송되지 않을 수 있다.
Figure PCTKR2016008658-appb-M000026
한편, 비면허 대역에서 기지국은 무선 자원 측정(radio resource management; RRM), 시간 및 주파수 동기의 검출 등을 위해 DRS(discovery signal 또는 discovery reference signal)를 전송할 수 있다. FDD 방식에 기초한 네트워크에서, DRS는 1개 내지 5개의 서브프레임들 내에 구성될 수 있다. TDD 방식에 기초한 네트워크에서, DRS는 2개 내지 5개의 서브프레임들 내에 구성될 수 있다. DRS는 안테나 포트 0에 대응하는 참조 신호(예를 들어, CRS, CSI-RS(예를 들어, non-zero-power CSI-RS) 등), 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다.
FDD 방식에 기초한 네트워크에서 DRS가 2개 이상의 서브프레임들 내에 구성되는 경우, PSS 및 SSS는 첫 번째 서브프레임을 통해 전송될 수 있다. TDD 방식에 기초한 네트워크에서 DRS가 2개 이상의 서브프레임들 내에 구성되는 경우, SSS는 첫 번째 서브프레임을 통해 전송될 수 있고, PSS는 두 번째 서브프레임을 통해 전송될 수 있다.
도 15는 FDD 방식에 기초한 네트워크에서 DRS 구성에 대한 일 실시예를 도시한 개념도이다.
도 15를 참조하면, DRS는 안테나 포트 0에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. CSI-RS는 DRS에 포함되지 않을 수 있으며, 이 경우에 DRS는 CRS, PSS 및 SSS로 구성될 수 있다. 서브프레임 #0에서 슬롯 #0의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #1 내지 #3에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #0의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #5에 SSS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #6에 PSS가 구성될 수 있다. 서브프레임 #0에서 슬롯 #0의 OFDM 심볼 #5 및 #6에 SSS 및 PSS 대신에 CSI-RS가 구성될 수 있다.
또한, 서브프레임 #0에서 슬롯 #1의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #1에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #1의 OFDM 심볼 #2 및 #3에 CSI-RS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다.
서브프레임 #1 내지 #4에서 CRS 및 CSI-RS 구성은 서브프레임 #0에서 CRS 및 CSI-RS의 구성과 동일할 수 있다. 서브프레임 #1 내지 #4에서 PSS 및 SSS는 구성되지 않을 수 있다. 서브프레임 #1 내지 #4에 포함된 OFDM 심볼들 중에서 서브프레임 #0의 PSS 및 SSS가 구성된 OFDM 심볼 번호에 대응하는 OFDM 심볼에 CSI-RS가 구성될 수 있다. 따라서, 서브프레임 #1 내지 #4에서 PSS 및 SSS 대신에 CSI-RS가 구성될 수 있다. 이 경우, CSI-RS가 점유하는 서브캐리어의 개수는 PSS 및 SSS가 점유하는 서브캐리어의 개수와 다르게 구성될 수 있다.
도 16은 TDD 방식에 기초한 네트워크에서 DRS 구성에 대한 일 실시예를 도시한 개념도이다.
도 16을 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 서브프레임 #0에서 슬롯 #0의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #1 내지 #3에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #0의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다.
또한, 서브프레임 #0에서 슬롯 #1의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #1 내지 #3에 CSI-RS가 구성될 수 있다. 또는, 서브프레임 #0에서 슬롯 #1의 OFDM 심볼 #1에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #1의 OFDM 심볼 #2 내지 #3에 CSI-RS가 구성될 수 있다. 서브프레임 #0에서 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #5에 CSI-RS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #6에 SSS가 구성될 수 있다. 또는, 서브프레임 #0에서 슬롯 #1의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다. 즉, 슬롯 #1의 OFDM 심볼 #6에 SSS 대신에 CSI-RS가 구성될 수 있다.
서브프레임 #1에서 슬롯 #2의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #2의 OFDM 심볼 #1에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #2의 OFDM 심볼 #2에 PSS가 구성될 수 있고, 슬롯 #2의 OFDM 심볼 #3에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있다. 또는, 서브프레임 #1에서 슬롯 #2의 OFDM 심볼 #2에 PSS 대신에 CSI-RS가 구성될 수 있고, 슬롯 #2의 OFDM 심볼 #3에 CSI-RS가 구성될 수 있다. 서브프레임 #1에서 슬롯 #2의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #2의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다.
또한, 서브프레임 #1에서 슬롯 #3의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #3의 OFDM 심볼 #1 내지 #3에 CSI-RS가 구성될 수 있다. 또는, 서브프레임 #1에서 슬롯 #3의 OFDM 심볼 #1에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #3의 OFDM 심볼 #2 및 #3에 CSI-RS가 구성될 수 있다. 서브프레임 #1에서 슬롯 #3의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #3의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다.
서브프레임 #2 내지 #4에서 CRS, PSS, SSS, 및 CSI-RS 구성은 서브프레임 #0 및 #1에서 CRS, PSS, SSS 및 CSI-RS 구성과 동일할 수 있다. 또는, 서브프레임 #2 내지 #4에서 PSS 및 SSS는 구성되지 않을 수 있으며, 이 경우에 서브프레임 #2 내지 #4에서 CRS 및 CSI-RS 구성은 서브프레임 #0 및 #1에서 CRS 및 CSI-RS 구성과 동일할 수 있다.
서브프레임 #0 내지 #4에서 PSS 및 SSS가 동일하게 구성되는 경우, 서브프레임 #2 및 #4에 SSS가 구성될 수 있고, 서브프레임 #3에 PSS가 구성될 수 있다. 또는, 서브프레임 #2 및 #4에 PSS가 구성될 수 있고, 서브프레임 #3에 SSS가 구성될 수 있다. 서브프레임 #2 내지 #4에서 PSS 및 SSS가 구성되지 않는 경우, 서브프레임 #2 내지 #4에 포함된 OFDM 심볼들 중에서 서브프레임 #0의 SSS 및 서브프레임 #1의 PSS 각각이 구성된 OFDM 심볼 번호에 대응하는 OFDM 심볼에 CSI-RS가 구성될 수 있다. 이 경우, CSI-RS가 점유하는 서브캐리어의 개수는 PSS 및 SSS가 점유하는 서브캐리어의 개수와 다르게 구성될 수 있다.
앞서 살펴본 도 15 및 도 16은 DRS가 5개의 서브프레임들(예를 들어, 서브프레임 #0 내지 #4) 내에 구성되는 경우에 DRS 구성의 일 실시예를 도시한다. DRS가 5개 미만의 서브프레임들 내에 구성되는 경우, DRS는 상대적으로 작은 번호를 가지는 서브프레임에 우선적으로 구성될 수 있다. 예를 들어, DRS가 3개의 서브프레임들 내에 구성되는 경우, DRS는 서브프레임 #0 내지 #2에 구성될 수 있으며, 서브프레임 #0 내지 #2에서 DRS 구성은 도 15 및 도 16에 도시된 서브프레임 #0 내지 #2에서 DRS 구성과 동일할 수 있다.
한편, DRS 구성은 필요에 따라 변경될 수 있다. 예를 들어, DRS는 안테나 포트 0 및 1에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)에 기초하여 구성될 수 있다. 또는, DRS는 안테나 포트 0 내지 3에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)에 기초하여 구성될 수 있다.
도 17은 안테나 포트 0 및 1에 대응하는 신호에 기초한 DRS 구성의 일 실시예를 도시한 개념도이다.
도 17을 참조하면, DRS는 안테나 포트 0 및 1에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 슬롯 #0의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #1 내지 #3에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #0의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #5에 SSS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #6에 PSS가 구성될 수 있다. 또한, 슬롯 #1의 OFDM 심볼 #0에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #1에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #1의 OFDM 심볼 #2 및 #3에 CSI-RS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다.
여기서, 서브프레임 #0에서 DRS 구성만이 설명되었으나, DRS는 최대 5개의 서브프레임들 내에서 구성될 수 있다. 이 경우, 서브프레임들 #1 내지 #4에서 DRS 구성은 앞서 설명된 서브프레임 #0에서 DRS 구성과 동일 또는 유사할 수 있다. 안테나 포트가 추가로 사용(예를 들어, 복수의 안테나 포트들이 사용)되는 경우, 수학식 6에 의해 지시되는 서브캐리어를 통해 추가적인 신호(예를 들어, CRS)가 전송될 수 있다. 또한, 도 17에 도시된 DRS는 FDD 방식에 기초한 네트워크 및 TDD 방식에 기초한 네트워크에 적용될 수 있다.
도 18은 안테나 포트 0 내지 3에 대응하는 신호에 기초한 DRS 구성의 일 실시예를 도시한 개념도이다.
도 18을 참조하면, DRS는 안테나 포트 0 내지 3에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 슬롯 #0의 OFDM 심볼 #0 및 #1에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #2 및 #3에 신호(예를 들어, 참조 신호 또는 동기 신호)가 구성되지 않을 수 있고, 슬롯 #0의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #5에 SSS가 구성될 수 있고, 슬롯 #0의 OFDM 심볼 #6에 PSS가 구성될 수 있다. 또한, 슬롯 #1의 OFDM 심볼 #0 및 #1에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #2 및 #3에 CSI-RS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성될 수 있고, 슬롯 #1의 OFDM 심볼 #5 및 #6에 CSI-RS가 구성될 수 있다.
도 18에 도시된 DRS는 도 17에 도시된 DRS에 비해 안테나 포트 2 및 3에 기초한 신호를 더 포함하며, 이에 따라 슬롯 #0의 OFDM 심볼 #1 및 슬롯 #1의 OFDM 심볼 #1에 CRS가 추가로 구성될 수 있다.
여기서, 서브프레임 #0에서 DRS 구성만이 설명되었으나, DRS는 최대 5개의 서브프레임들 내에서 구성될 수 있다. 이 경우, 서브프레임들 #1 내지 #4에서 DRS 구성은 앞서 설명된 서브프레임 #0에서 DRS 구성과 동일 또는 유사할 수 있다. 안테나 포트가 추가로 사용(예를 들어, 복수의 안테나 포트들이 사용)되는 경우, 수학식 6에 의해 지시되는 서브캐리어를 통해 추가적인 신호(예를 들어, CRS)가 전송될 수 있다. 또한, 도 18에 도시된 DRS는 FDD 방식에 기초한 네트워크 및 TDD 방식에 기초한 네트워크에 적용될 수 있다.
도 19는 안테나 포트 0 내지 3에 대응하는 신호에 기초한 DRS 구성의 다른 실시예를 도시한 개념도이다.
도 19를 참조하면, DRS는 안테나 포트 0 내지 3에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 18에 도시된 DRS에 비해 슬롯 #0의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS를 더 포함할 수 있다. 슬롯 #0의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS는 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS와 동일하게 주파수 영역에서 전체 서브캐리어들(예를 들어, 서브캐리어 #0 내지 #11)을 통해 전송될 수 있다. 또는, 슬롯 #0의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS는 슬롯 #1의 OFDM 심볼 #5 및 #6에 구성된 CSI-RS와 동일하게 주파수 영역에서 특정 서브캐리어들(예를 들어, 서브캐리어 #2, #3, #8 및 #9)을 통해 전송될 수 있다.
추가적인 참조 신호(예를 들어, CRS, CSI-RS 등)는 해당 OFDM 심볼에서 적어도 하나의 서브캐리어를 통해 전송될 수 있다. 예를 들어, 도 17에서 슬롯 #0의 OFDM 심볼 #1 내지 #3을 통해 신호(예를 들어, 참조 신호 또는 동기 신호)가 전송되지 않으므로, CSI-RS는 슬롯 #0의 OFDM 심볼 #1 내지 #3에 추가적으로 구성될 수 있다. 또한, 도 19에 도시된 DRS는 FDD 방식에 기초한 네트워크 및 TDD 방식에 기초한 네트워크에 적용될 수 있다.
한편, TDD 방식에 기초한 네트워크에서 앞서 설명된 방법과 동일 또는 유사하게 참조 신호(예를 들어, CRS, CSI-RS 등)가 추가적으로 구성될 수 있다. 예를 들어, 도 16을 다시 참조하면, 서브프레임 #0에서 슬롯 #0의 OFDM 심볼 #1 내지 #3, 서브프레임 #1에서 슬롯 #2의 OFMA 심볼 #1 및 #3에 참조 신호(예를 들어, CRS, CSI-RS 등)가 추가적으로 구성될 수 있다.
도 20은 TDD 방식에 기초한 네트워크에서 DRS 구성에 대한 다른 실시예를 도시한 개념도이다.
도 20을 참조하면, DRS는 안테나 포트 0 내지 3에 대응하는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 서브프레임 #0에서 슬롯 #0의 OFDM 심볼 #2 및 #3에 CSI-RS가 추가로 구성될 수 있다. 서브프레임 #1에서 슬롯 #2의 OFDM 심볼 #1 및 #3에 CSI-RS가 추가로 구성될 수 있다. 서브프레임 #1에서 슬롯 #2의 OFDM 심볼 #1에 CRS와 CSI-RS가 함께 구성될 수 있다. 또는, 서브프레임 #1에서 슬롯 #2의 OFDM 심볼 #1에 CRS 또는 CSI-RS만이 구성될 수도 있다.
서브프레임 #0 내지 #4에서 PSS 및 SSS가 동일하게 구성되거나, 동일하게 구성되지 않을 수 있다. 서브프레임 #0 내지 #4에서 PSS 및 SSS가 동일하게 구성되는 경우, 서브프레임 #2 및 #4의 DRS 구성은 서브프레임 #0의 DRS 구성과 동일할 수 있고, 서브프레임 #3의 DRS 구성은 서브프레임 #1의 DRS 구성과 동일할 수 있다.
서브프레임 #0 내지 #4에서 PSS 및 SSS가 동일하게 구성되지 않는 경우(예를 들어, 서브프레임 #2 내지 #4에서 PSS 및 SSS가 구성되지 않는 경우), 서브프레임 #2 내지 #4에서 CRS 및 CSI-RS 구성만 서브프레임 #0 및 #1에서 CRS 및 CSI-RS 구성과 동일할 수 있다. 또한, 서브프레임 #2 내지 #4를 구성하는 OFDM 심볼들 중에서 서브프레임 #0의 SSS 및 서브프레임 #1의 PSS 각각이 구성된 OFDM 심볼 번호에 대응하는 OFDM 심볼에 CSI-RS가 구성될 수 있다. 이 경우, CSI-RS가 점유하는 서브캐리어의 개수는 PSS 및 SSS가 점유하는 서브캐리어의 개수와 다르게 구성될 수 있다. 예를 들어, 하나의 자원 블록 내에서 CSI-RS가 점유하는 서브캐리어의 개수는 12개 미만일 수 있다.
한편, DRS는 비연속적으로 전송될 수 있으며, 이에 따라 서브프레임에서 CSI-RS는 별도로 구성될 수 있다. CSI-RS 주기는 DRS 구간의 길이에 기초하여 설정될 수 있다. 예를 들어, CSI-RS는 아래 수학식 27에 기초하여 구성될 수 있다. △CSI-RS는 CSI-RS 주기를 지시할 수 있다. TDRS는 DRS 구간의 길이를 지시할 수 있다.
Figure PCTKR2016008658-appb-M000027
PSS 및 SSS는 DRS에 의해 점유되는 서브캐리어들 중에서 전체 서브캐리어 또는 일부 서브캐리어를 통해 전송될 수 있다. 예를 들어, PSS 및 SSS는 6개의 자원 블록들에 대응하는 서브캐리어들을 통해 전송될 수 있다.
도 21은 PSS 및 SSS 구성의 일 실시예를 도시한 개념도이다.
도 21을 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. PSS 및 SSS는 시스템 대역폭 중에서 1개의 자원 블록에 대응하는 대역폭을 통해 전송될 수 있다. 또한, PSS 및 SSS는 수학식 25와 같이 시스템 대역폭 중에서 일부 대역폭을 통해 전송될 수 있다. PSS 및 SSS가 일부 대역폭을 통해 전송되는 경우, 시스템 대역폭 중에서 PSS 및 SSS가 전송되지 않는 대역폭을 통해 CSI-RS가 전송될 수 있다. PSS 및 SSS가 전송되는 대역폭의 크기는 앞서 설명된 내용에 한정되지 않으며, PSS 및 SSS는 다양한 크기의 대역폭을 통해 전송될 수 있다.
한편, DRS에 기초한 시간 및 주파수 동기 획득 성능을 향상시키기 위해, PSS 및 SSS는 시간 및 주파수 영역에서 반복적으로 전송될 수 있다.
도 22는 PSS 및 SSS 구성의 다른 실시예를 도시한 개념도이다.
도 22를 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. PSS 및 SSS는 주파수 영역에서 반복적으로 전송될 수 있다. PSS 및 SSS 구성은 FDD 방식에 기초한 네트워크 또는 TDD 방식에 기초한 네트워크에 적용될 수 있다. 예를 들어, TDD 방식에 기초한 네트워크에서 PSS 및 SSS는 시스템 대역폭 또는 시스템 대역폭 중에서 일부 대역폭을 통해 전송될 수 있다.
한편, PSS 및 SSS가 시스템 대역폭 전체를 통해 전송되는 경우, 시스템 대역폭 중에서 가운데 위치한 6개의 자원 블록들을 통해 전송되는 PSS 및 SSS는 각각 "기본 PSS" 및 "기본 SSS"로 지칭될 수 있다. 또한, 시스템 대역폭 중에서 가운데 위치한 6개의 자원 블록들 이외의 자원 블록들을 통해 전송되는 PSS 및 SSS는 각각 "확장 PSS" 및 "확장 SSS"로 지칭될 수 있다. 기본 PSS 및 확장 PSS가 결합됨으로써 시스템 대역폭 전체를 점유하는 PSS가 구성될 수 있으며, 시스템 대역폭 전체를 점유하는 PSS는 "전대역 PSS"로 지칭될 수 있다. 기본 SSS 및 확장 SSS가 결합됨으로써 시스템 대역폭 전체를 점유하는 SSS가 구성될 수 있으며, 시스템 대역폭 전체를 점유하는 SSS는 "전대역 SSS"로 지칭될 수 있다.
확장 PSS 및 확장 SSS는 수학식 14 내지 수학식 26에 기초하여 생성될 수 있다. 즉, 기본 PSS 및 확장 PSS로 구성되는 전대역 PSS는 기본 PSS가 주파수 영역에서 반복 전송되는 형태일 수 있다. 시간 및 주파수 영역에서 전대역 PSS의 전송 위치는 아래 수학식 28과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000028
β는 아래 수학식 29와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000029
한편, 주파수 영역에서 반복되는 기본 PSS로 구성되는 전대역 PSS에 있어서, 기본 PSS를 위한 가드 서브캐리어는 기본 PSS와 동일하게 주파수 영역에서 반복될 수 있다. 전대역 PSS의 가드 서브캐리어는 아래 수학식 30과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000030
전대역 PSS와 유사하게 시간 및 주파수 영역에서 전대역 SSS의 전송 위치는 아래 수학식 31과 같이 정의될 수 있다. 아래 수학식 31에서 β는 수학식 29와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000031
한편, 주파수 영역에서 반복되는 기본 SSS로 구성된 전대역 SSS에 있어서, 기본 SSS를 위한 가드 서브캐리어는 기본 SSS와 동일하게 주파수 영역에서 반복될 수 있다. 전대역 SSS의 가드 서브캐리어는 아래 수학식 32와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000032
한편, DRS는 시간 영역에서 반복적으로 구성된 PSS 및 SSS를 포함할 수 있다. 이 경우, 기존 DRS(즉, 하나의 OFDM 심볼에 구성된 PSS 및 하나의 OFDM 심볼에 구성된 SSS를 포함하는 DRS)에 포함된 PSS 및 SSS는 각각 "기본 PSS" 및 "기본 SSS"로 지칭될 수 있다. 또한, 기본 PSS 및 기본 SSS 이외에 DRS 내에 추가적으로 구성되는 PSS 및 SSS는 "추가 PSS" 및 "추가 SSS"로 지칭될 수 있다. 기본 PSS는 추가 PSS와 동일하거나 다를 수 있다. 기본 SSS는 추가 SSS와 동일하거나 다를 수 있다. 즉, DRS의 시간 영역에서 복수의 PSS 및 복수의 SSS가 존재할 수 있으며, 복수의 PSS 각각은 서로 다른 시퀀스에 기초하여 생성될 수 있고, 복수의 SSS 각각은 서로 다른 시퀀스에 기초하여 생성될 수 있다.
기본 PSS 및 기본 SSS는 동기 신호의 원래 기능인 셀 ID 검출, 시간 및 주파수 동기 획득 등을 위해 사용될 수 있다. 추가 PSS 및 추가 SSS는 부가적인 기능(예를 들어, 시간 및 주파수 동기의 안정화, 추가 셀 ID 생성 및 검출 등)을 위해 사용될 수 있다. 수학식 13에서 정의된 셀 ID에 대하여 추가적인 셀 ID의 구분이 필요한 경우, 추가 PSS 및 추가 SSS 중에서 적어도 하나를 사용하여 추가 셀 ID가 생성될 수 있고, 추가 셀 ID는 추가 PSS 및 추가 SSS 중에서 적어도 하나에 기초하여 검출될 수 있다. 추가 PSS 및 추가 SSS에 기초한 추가 셀 ID(
Figure PCTKR2016008658-appb-I000032
)는 아래 수학식 33과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000033
Figure PCTKR2016008658-appb-I000033
는 추가 SSS에 의해 구별되는 추가 셀 그룹 ID일 수 있다.
Figure PCTKR2016008658-appb-I000034
는 추가 셀 그룹 내에서 추가 PSS에 의해 구별되는 추가 고유 ID일 수 있다. 추가 셀 ID는 추가 PSS 또는 추가 SSS에 기초하여 생성되므로, 추가 PSS 또는 추가 SSS를 사용하여 검출될 수 있다. 한편, 기존의 셀 ID와 추가 셀 ID가 함께 사용됨으로써, 가용한 셀 ID의 개수가 증가될 수 있다. 확장된 셀 ID는 기존 셀 ID와 추가 셀 ID의 조합으로 구성될 수 있다. 확장된 셀 ID(
Figure PCTKR2016008658-appb-I000035
)는 아래 수학식 34와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000034
또한, 추가 PSS에 기초한 추가 셀 ID는 아래 수학식 35와 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000035
또한, 추가 SSS에 기초한 추가 셀 ID는 아래 수학식 36과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000036
추가 PSS는 추가 셀 ID 관련 기능, 확장된 셀 ID 관련 기능 이외에 추가적인 정보 전송을 위해 사용될 수 있다. 예를 들어, 추가 PSS는 DRS 관련 정보(예를 들어, DRS 길이, DRS에 포함된 CRS에 대응하는 안테나 포트의 개수 등) 전송을 위해 사용될 수 있다. 이 경우, UE는 추가 PSS를 검출함으로써 DRS 관련 정보를 확인할 수 있다. DRS 관련 정보는 서로 다른 시퀀스를 기초로 생성된 추가 PSS를 통해 전송될 수 있다. 추가 PSS의 시퀀스에 따라 추가 SSS의 기능(예를 들어, 추가적인 동기 획득의 기능, 추가 셀 ID 검출의 기능, 확장된 셀 ID 검출의 기능 등)이 지시될 수 있다. 또한, 추가 PSS의 시퀀스에 따라 현재 서브프레임에서 DRS와 PDSCH의 다중화(multiplexing) 여부가 지시될 수 있다.
도 23은 시간 영역에서 반복되는 PSS 및 SSS 구성에 대한 일 실시예를 도시한 개념도이다.
도 23을 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 슬롯 #0의 OFDM 심볼 #2 및 #5에 SSS가 구성될 수 있다. 슬롯 #0의 OFDM 심볼 #3 및 #6에 PSS가 구성될 수 있다. 서브프레임에서 CRS, 기본 PSS 및 기본 SSS의 전송 위치를 제외한 OFDM 심볼을 통해 추가 PSS 및 추가 SSS가 전송될 수 있다. 추가 PSS 및 추가 SSS가 전송되는 위치는 앞서 설명된 내용에 한정되지 않으며, 추가 PSS 및 추가 SSS는 서브프레임 내의 다양한 위치에서 전송될 수 있다. 예를 들어, 추가 PSS 및 추가 SSS는 슬롯 #1의 OFDM 심볼 #2 및 #3을 통해 전송될 수 있고, 또는 슬롯 #1의 OFDM 심볼 #5 및 #6을 통해 전송될 수 있다. 따라서, 하나의 서브프레임에서 PSS 및 SSS는 2번 이상 반복 전송될 수 있다. 즉, 하나의 DRS 내에 2번 이상 반복되는 PSS 및 2번 이상 반복되는 SSS가 구성될 수 있다.
한편, DRS 내에 PSS만 반복적으로 구성될 수 있고, 또는 SSS만 반복적으로 구성될 수 있다. 이 경우, PSS 또는 SSS는 서브프레임에서 CRS가 구성되는 OFDM 심볼을 제외한 OFDM 심볼에 구성될 수 있다. 또한, 추가 PSS 및 추가 SSS의 시퀀스는 DRS에 포함된 기본 PSS 및 기본 SSS의 시퀀스와 동일할 수 있다. DRS 내에 동일한 PSS 및 SSS가 반복적으로 구성되는 경우, 추가 PSS 및 추가 SSS가 구성되는 OFDM 심볼 번호(또는, 기본 PSS 및 기본 SSS가 구성된 OFDM 심볼 대비 추가 PSS 및 추가 SSS가 구성되는 OFDM 심볼의 상대적인 위치)는 미리 설정될 수 있다. 이 경우, DRS의 수신 측면에서 UE는 큰 문제없이 시간 동기를 획득할 수 있다.
한편, 기존 DRS보다 짧은 길이를 가지는 짧은 DRS가 구성될 수 있다. 짧은 DRS는 CRS, PSS 및 SSS를 포함할 수 있으며, CRS, PSS 및 SSS 각각은 적어도 하나의 OFDM 심볼에 구성될 수 있다. 짧은 DRS는 CSI-RS를 더 포함할 수 있다. 또한, 짧은 DRS는 CRS 및 CSI-RS 중에서 적어도 하나를 포함하지 않을 수 있다.
도 24는 DRS 구성에 대한 제1 실시예를 도시한 개념도이다.
도 24를 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS 및 슬롯 #1의 OFDM 심볼 #0에 구성된 CRS를 포함할 수 있다. 따라서, DRS는 4개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다.
도 25는 DRS 구성에 대한 제2 실시예를 도시한 개념도이다.
도 25를 참조하면, DRS는 4개의 안테나 포트들에 대응하는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS 및 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS를 포함할 수 있다. 따라서, DRS는 5개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. 도 25에 도시된 DRS는 도 24에 도시된 DRS에 비해 향상된 채널 추정 성능 및 RRM 성능을 제공할 수 있다.
도 26은 DRS 구성에 대한 제3 실시예를 도시한 개념도이다.
도 26을 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 25에 도시된 DRS에 비해 CSI-RS, CRS를 더 포함할 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS, 및 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS를 포함할 수 있다. 또는, 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성되지 않을 수 있다.
DRS는 8개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. DRS는 CSI-RS를 더 포함하므로, CSI-RS에 기초한 채널 추정을 위해 사용될 수 있다. 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS는 CRS들 간의 채널 추정 정보를 보간하기 위해 사용될 수 있다.
도 27은 DRS 구성에 대한 제4 실시예를 도시한 개념도이다.
도 27을 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 26에 도시된 DRS에 비해 CSI-RS를 더 포함할 수 있으며, 이에 따라 향상된 채널 추정 성능이 제공될 수 있다.
DRS는 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS, 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS 및 슬롯 #1의 OFDM 심볼 #5 및 #6에 구성된 CSI-RS를 포함할 수 있다. DRS는 10개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다.
도 28은 DRS 구성에 대한 제5 실시예를 도시한 개념도이다.
도 28을 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS, 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS 및 슬롯 #1의 OFDM 심볼 #5 및 #6에 구성된 CSI-RS를 포함할 수 있다. 또는, 슬롯 #1에 CRS 및 CSI-RS가 구성되지 않을 수 있다. DRS는 9개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. DRS의 시작 부분은 동기 신호로 구성되므로, UE는 기지국으로부터 DRS 내의 동기 신호를 먼저 검출할 수 있고, 그 후에 DRS 내의 다른 신호들을 검출할 수 있다.
도 29는 DRS 구성에 대한 제6 실시예를 도시한 개념도이다.
도 29를 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #2에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #3에 구성된 PSS, 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS 및 슬롯 #1의 OFDM 심볼 #0에 구성된 CRS를 포함할 수 있다. DRS 내에서 동기 신호는 반복적으로 구성될 수 있다. 예를 들어, SSS는 슬롯 #0의 OFDM 심볼 #2 및 #5를 통해 반복 전송될 수 있고, PSS는 슬롯 #0의 OFDM 심볼 #3 및 #6을 통해 반복 전송될 수 있다.
DRS는 6개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. 슬롯 #0의 OFDM 심볼 #2에 구성된 SSS 및 슬롯 #0의 OFDM 심볼 #3에 구성된 PSS는 DRS의 시작을 알리는 초기 신호로 사용될 수 있고, 시간 및 주파수 동기 획득, 채널 추정 등을 위해 사용될 수 있다. 슬롯 #0의 OFDM 심볼 #2에 구성된 SSS는 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS와 동일하거나 다를 수 있다. 슬롯 #0의 OFDM 심볼 #3에 구성된 PSS는 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS와 동일하거나 다를 수 있다. 슬롯 #0의 OFDM 심볼 #2 및 #3을 통해 전송되는 동기 신호는 DRS가 전송되는 서브프레임 번호와 무관하게 구성될 수 있으며, 이 경우 모든 서브프레임들 각각에서 슬롯 #0의 OFDM 심볼 #2 및 #3을 통해 동일한 신호가 전송될 수 있다.
도 30은 DRS 구성에 대한 제7 실시예를 도시한 개념도이다.
도 30을 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 29에 도시된 DRS에 비해 CRS를 더 포함할 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #2에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #3에 구성된 PSS, 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS 및 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS를 포함할 수 있다.
DRS는 9개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. DRS에서 슬롯 #0의 OFDM 심볼 #0 및 #1에 구성된 CRS는 4개의 안테나 포트들에 대응하는 CRS일 수 있다. 또한, 안테나 포트가 추가됨으로써 슬롯 #1의 OFDM 심볼 #1에 구성된 CRS 이외에 다른 CRS가 DRS 내에 추가로 구성될 수 있다. 따라서, DRS 내에 CRS가 추가로 구성됨으로써, 채널 추정 성능, RRM 성능 등이 향상될 수 있다.
도 31은 DRS 구성에 대한 제8 실시예를 도시한 개념도이다.
도 31을 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 30에 도시된 DRS에 비해 CRS, CSI-RS를 더 포함할 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #2에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #3에 구성된 PSS, 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS, 및 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS를 포함할 수 있다. 또는, 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성되지 않을 수 있다. DRS는 12개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. DRS에 포함된 CSI-RS에 의해 추가적인 채널 추정이 가능할 수 있다.
도 32는 DRS 구성에 대한 제9 실시예를 도시한 개념도이다.
도 32를 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 25에 도시된 DRS에 비해 CRS, PSS 및 SSS를 더 포함할 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2에 구성된 SSS, 슬롯 #1의 OFDM 심볼 #3에 구성된 PSS 및 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS를 포함할 수 있다. 또는, 슬롯 #1의 OFDM 심볼 #4에 CRS가 구성되지 않을 수 있다.
DRS는 8개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. DRS에서 슬롯 #1의 OFDM 심볼 #2 및 #3을 통해 동기 신호(예를 들어, 추가 PSS, 추가 SSS)가 반복 전송될 수 있다. 슬롯 #1의 OFDM 심볼 #2에 구성된 SSS는 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS와 동일하거나 다를 수 있다. 슬롯 #1의 OFDM 심볼 #3에 구성된 PSS는 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS와 동일하거 다를 수 있다.
도 33은 DRS 구성에 대한 제10 실시예를 도시한 개념도이다.
도 33을 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 30에 도시된 DRS에 포함된 신호들 중에서 일부 신호로 구성될 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #2에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #3에 구성된 PSS, 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS 및 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS를 포함할 수 있다. DRS는 7개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. 여기서, 참조 신호 및 동기 신호는 슬롯 #1에 구성되지 않을 수 있다.
도 34는 DRS 구성에 대한 제11 실시예를 도시한 개념도이다.
도 34를 참조하면, DRS는 참조 신호(예를 들어, CRS, CSI-RS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 24에 도시된 DRS에 비해 CRS, PSS, SSS 및 CSI-RS를 더 포함할 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS, 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #5에 구성된 SSS 및 슬롯 #1의 OFDM 심볼 #6에 구성된 PSS를 포함할 수 있다.
DRS는 10개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. 슬롯 #1의 OFDM 심볼 #5 및 #6을 통해 추가 SSS 및 추가 PSS가 전송될 수 있다. 슬롯 #1의 OFDM 심볼 #5에 구성된 SSS는 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS와 동일하거나 다를 수 있다. 슬롯 #1의 OFDM 심볼 #6에 구성된 PSS는 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS와 동일하거나 다를 수 있다.
도 35는 DRS 구성에 대한 제12 실시예를 도시한 개념도이다.
도 35를 참조하면, DRS는 참조 신호(예를 들어, CRS 등) 및 동기 신호(예를 들어, PSS, SSS)를 포함할 수 있다. 여기서, 슬롯 #0은 임의의 서브프레임을 구성하는 첫 번째 슬롯일 수 있고, 슬롯 #1은 임의의 서브프레임을 구성하는 두 번째 슬롯일 수 있다. 여기서, DRS는 도 34에 도시된 DRS에 포함된 신호들 중에서 일부 신호로 구성될 수 있다. DRS는 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS, 슬롯 #1의 OFDM 심볼 #0 및 #1에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #2 및 #3에 구성된 CSI-RS, 슬롯 #1의 OFDM 심볼 #4에 구성된 CRS, 슬롯 #1의 OFDM 심볼 #5에 구성된 SSS 및 슬롯 #1의 OFDM 심볼 #6에 구성된 PSS를 포함할 수 있다.
DRS는 9개의 OFDM 심볼들에 대응하는 길이를 가질 수 있으며, 최소한의 필수 신호로 구성된 짧은 DRS일 수 있다. 슬롯 #0의 OFDM 심볼 #4에 CRS가 구성되지 않을 수 있으며, 이 경우 DRS의 시작 부분에 동기 신호가 위치할 수 있다. 슬롯 #0의 OFDM 심볼 #5 및 #6에 구성된 동기 신호는 DRS의 검출, DRS의 시작 알림 등을 위해 사용될 수 있다. 이 경우, 실질적인 DRS는 슬롯 #1에 구성된 신호들로 구성될 수 있다. 이때, 슬롯 #0의 OFDM 심볼 #5에 구성된 SSS는 슬롯 #1의 OFDM 심볼 #5에 구성된 SSS와 동일할 수 있고, 슬롯 #0의 OFDM 심볼 #6에 구성된 PSS는 슬롯 #1의 OFDM 심볼 #6에 구성된 PSS와 동일할 수 있다.
다음으로, 앞서 설명된 DRS의 송수신 방법이 설명될 것이다.
도 36은 DRS의 송수신 방법에 대한 일 실시예를 도시한 순서도이다.
도 36을 참조하면, 기지국 및 UE는 면허 대역(예를 들어, PCell(primary cell)) 및 비면허 대역(예를 들어, SCell(secondary cell))을 지원할 수 있다. 비면허 대역에서 라디오 프레임 및 서브프레임의 타이밍은 면허 대역에서 라디오 프레임 및 서브프레임의 타이밍과 동일하거나 다를 수 있다. 예를 들어, 캐리어 애그리케이션(CA)이 사용되는 경우, 비면허 대역에서 라디오 프레임 및 서브프레임의 타이밍은 면허 대역에서 라디오 프레임 및 서브프레임의 타이밍과 동일할 수 있다. 기지국 및 UE는 도 1 내지 도 4를 참조하여 설명된 무선 통신 네트워크를 구성할 수 있다. 기지국 및 UE는 도 5를 참조하여 설명된 통신 노드(500)와 동일 또는 유사하게 구성될 수 있다.
기지국은 DMTC(discovery signal measurement timing configuration) 관련 정보를 UE에 전송할 수 있다(S3600). DMTC 관련 정보는 면허 대역 또는 비면허 대역을 통해 전송될 수 있다. 예를 들어, DMTC 관련 정보는 면허 대역에서 RRC 시그널링을 통해 UE에 전송될 수 있다. 또는, DMTC 관련 정보는 면허 대역 또는 비면허 대역에서 제어 채널(예를 들어, PDCCH, EPDCCH 등)을 통해 UE에 전송될 수 있다. DMTC 관련 정보는 DMTC 주기, DMTC 구간, DMTC 오프셋(예를 들어, DMTC 구간의 시작 시점), DRS 전송 주기, DRS 구간 등을 포함할 수 있다. 예를 들어, DMTC 관련 정보는 DMTC 주기 및 DMTC 오프셋만을 포함할 수 있다. DMTC 관련 정보에 포함되는 정보는 앞서 설명된 내용에 한정되지 않으며, DMTC 관련 정보는 DRS 송수신을 위해 필요한 다양한 정보를 포함할 수 있다. DMTC 관련 정보에 의해 지시되는 DMTC 주기, DMTC 구간, DMTC 오프셋, DRS 전송 주기 및 DRS 구간은 다음과 같이 정의될 수 있다.
도 37은 DMTC 관련 정보에 의해 지시되는 DRS 송수신 타이밍을 도시한 타이밍도이다.
도 37을 참조하면, DMTC 구간의 시작 시점은 DMTC 주기와 DMTC 오프셋에 기초하여 설정될 수 있다. DMTC 구간은 복수의 서브프레임들로 구성될 수 있다. 예를 들어, DMTC 구간의 길이는 6ms일 수 있으며, 이 경우 DMTC 구간은 6개의 서브프레임들로 구성될 수 있다. DMTC 구간에 포함된 복수의 서브프레임들 중에서 임의의 서브프레임을 통해 DRS가 전송될 수 있다. DMTC 구간 내에서 DRS가 전송되는 구간은 "DRS 구간"으로 지칭될 수 있다. DMTC 주기는 40ms, 80ms, 160ms 등일 수 있다. DMTC 주기는 앞서 설명된 내용에 한정되지 않으며, 다양하게 설정될 수 있다. 예를 들어, DMTC 주기는 40ms 미만으로 설정될 수 있고, 또는 160ms을 초과하도록 설정될 수 있다. DMTC 오프셋 설정에 관련하여, 변수 T는 아래 수학식 37과 같이 정의될 수 있다.
Figure PCTKR2016008658-appb-M000037
변수 T 및 아래 수학식 38에 의해 지시되는 라디오 프레임 중에서 아래 수학식 39에 의해 지시되는 서브프레임에서 DMTC 구간이 시작될 수 있다. 아래 수학식 38에서 FLOOR(X)는 X보다 큰 최소의 정수 값을 지시할 수 있다.
Figure PCTKR2016008658-appb-M000038
Figure PCTKR2016008658-appb-M000039
DMTC 구간 내에 DRS 구간이 설정될 수 있다. DRS 구간은 복수의 서브프레임들로 구성될 수 있다. 예를 들어, DRS 구간은 5개의 서브프레임들로 구성될 수 있다. DRS 구간은 DRS 전송 주기에 기초하여 설정될 수 있다. DRS 구간을 통해 DRS가 전송될 수 있다. DRS의 전송 시점은 DRS가 전송되는 셀의 타이밍에 기초하여 결정될 수 있다.
다시 도 36을 참조하면, UE는 기지국으로부터 DMTC 관련 정보를 수신할 수 있고, DMTC 관련 정보를 기초로 DRS의 전송 시점을 확인할 수 있다(S3610). 예를 들어, UE는 DMTC 관련 정보에 DMTC 주기 및 DMTC 오프셋이 포함된 경우에 DMTC 주기 및 DMTC 오프셋에 기초하여 DMTC 구간을 확인할 수 있고, DMTC 구간에 포함된 복수의 서브프레임들 중에서 임의의 서브프레임을 통해 DRS가 전송되는 것으로 판단할 수 있다. 또는, UE는 DMTC 관련 정보에 DRS 구간 및 DRS 전송 주기가 포함된 경우에 DRS 구간을 통해 DRS가 전송되는 것으로 판단할 수 있다. 이때, UE는 DRS 전송 주기에 기초하여 DRS가 전송되는 것으로 판단할 수 있다.
기지국은 DMTC 관련 정보에 의해 지시되는 DMTC 구간을 구성하는 복수의 서브프레임들 중에서 임의의 서브프레임을 통해 DRS를 UE에 전송할 수 있다(S3620). 또는, 기지국은 DRS 구간을 통해 DRS를 UE에 전송할 수 있다. 여기서, DRS는 도 15 내지 도 35를 참조하여 설명된 DRS 중에서 적어도 하나일 수 있으며, 비면허 대역을 통해 전송될 수 있다.
기지국은 기본적으로 DRS 전송 주기에 따라 DRS를 전송할 수 있다. 그러나 비면허 대역의 특성상 DRS 전송 주기에 따라 DRS를 전송할 수 없는 경우(예를 들어, 다른 통신 노드가 비면허 대역에서 DRS 구간에 대응하는 자원을 점유하고 있는 경우 등)가 발생될 수 있다. 이 경우, 기지국은 DMTC 구간 내에서 DRS 구간 이전에 위치한 서브프레임을 통해 DRS를 전송할 수 있고, 또는 DMTC 구간 내에서 DRS 구간 이후에 위치한 서브프레임을 통해 DRS를 전송(즉, DRS 지연 전송)할 수 있다. DRS 지연 전송은 다음과 같이 수행될 수 있다.
도 38은 DRS 지연 전송의 실시예를 도시한 타이밍도이다.
도 38을 참조하면, DRS의 첫 번째 전송 시점이 t0이고 DRS 전송 주기가 P인 경우에 DRS의 두 번째 전송 시점은 "t0+P"이나, "t0+P"에서 DRS의 전송이 불가능한 경우에 DRS는 a만큼 지연된 "t0+P+a"에서 전송될 수 있다. 여기서, a는 슬롯 길이(예를 들어, 0.5ms)의 배수 또는 서브프레임 길이(예를 들어, 1ms)의 배수일 수 있다. DRS의 세 번째 전송 시점은 두 번째 전송 시점과 무관하게 첫 번째 전송 시점과 DRS 전송 주기를 기초로 결정될 수 있다. 예를 들어, DRS는 세 번째 전송 시점인 "t0+2P"에서 전송될 수 있다. 한편, DRS의 지연 전송이 허용되는 경우에도 미리 설정된 최대 지연 구간 내에서 DRS가 전송되는 것이 바람직하다. 최대 지연 구간은 다음과 같이 설정될 수 있다.
도 39는 DRS의 지연 구간에 대한 일 실시예를 도시한 타이밍도이다.
도 39를 참조하면, DRS는 첫 번째 전송 시점인 t0에서 전송될 수 있다. 두 번째 전송 시점인 "t0+P"에서 DRS의 전송이 불가능한 경우, DRS 전송은 DMTC 구간 내에서 DRS 구간이 종료될 수 있는 시점까지 지연될 수 있다. 예를 들어, DMTC 구간이 ts부터 "ts+D"까지이고 DRS 구간의 길이가 r인 경우, 최대 지연 구간은 "(ts+D)-(t0+P)-r"일 수 있다. 따라서, DRS 전송은 "(ts+D)-(t0+P)-r" 내에서 시작되어야 한다. 또는, DRS 전송은 DMTC 구간의 종료 시점보다 Xms 이전에 DRS 구간이 종료될 수 있는 시점까지 지연될 수 있다. 이 경우, 최대 지연 구간은 "(ts+D)-(t0+P)-r-Xms"일 수 있다. 여기서, Xms는 0.5ms, 1ms 등일 수 있다. 따라서, DRS 전송은 "(ts+D)-(t0+P)-r-Xms" 내에서 시작되어야 한다. DRS의 세 번째 전송 시점은 두 번째 전송 시점과 무관하게 첫 번째 전송 시점과 DRS 전송 주기를 기초로 결정될 수 있다. 예를 들어, DRS는 세 번째 전송 시점인 "t0+2P"에서 전송될 수 있다.
도 40은 DRS의 지연 구간에 대한 다른 실시예를 도시한 타이밍도이다.
도 40을 참조하면, DRS는 첫 번째 전송 시점인 t0에서 전송될 수 있다. 두 번째 전송 시점인 "t0+P"에서 DRS의 전송이 불가능한 경우, DRS 전송은 DMTC 구간의 종료 시점까지 지연될 수 있다. 예를 들어, DMTC 구간이 ts부터 "ts+D"까지이고 DRS 구간의 길이가 r인 경우, 최대 지연 구간은 "(ts+D)-(t0+P)"일 수 있다. 따라서, DRS 전송은 "(ts+D)-(t0+P)" 내에서 시작되어야 한다. 또는, DRS 전송은 DMTC 구간의 종료 시점보다 Xms 이전까지 지연될 수 있다. 이 경우, 최대 지연 구간은 "(ts+D)-(t0+P)-Xms"일 수 있다. 여기서, Xms는 0.5ms, 1ms 등일 수 있다. 따라서, DRS 전송은 "(ts+D)-(t0+P)-Xms" 내에서 시작되어야 한다. DRS의 세 번째 전송 시점은 두 번째 전송 시점과 무관하게 첫 번째 전송 시점과 DRS 전송 주기를 기초로 결정될 수 있다. 예를 들어, DRS는 세 번째 전송 시점인 "t0+2P"에서 전송될 수 있다.
또는, DMTC 구간 밖에서 DRS가 전송될 수 있다. 이 경우에도, DRS는 최대 지연 구간 내에서 전송될 수 있다. 여기서, 최대 지연 구간은 DMTC 구간의 배수, DRS 전송 주기의 1/2 등으로 설정될 수 있다. 앞서 설명된 최대 지연 구간 내에서 DRS의 전송이 불가능한 경우, 해당 DRS는 전송되지 않을 수 있다.
다음으로, DRS가 지연 전송되는 경우, DRS에 포함된 SSS의 생성을 위해 사용되는 시퀀스(이하, "SSS 시퀀스"라 함), CRS 시퀀스 등이 설명될 것이다. DRS가 지연 전송되는 경우, DRS는 서브프레임 #0 및 #5 이외의 서브프레임을 통해 전송될 수 있다. 지연 전송되는 DRS(이하, "지연 DRS"라 함)를 위한 SSS 시퀀스는 지연 전송되지 않는 DRS(예를 들어, 서브프레임 #0 또는 #5을 통해 전송되는 DRS)를 위한 SSS 시퀀스와 동일할 수 있다.
예를 들어, DRS가 서브프레임 #1 내지 #4 중에서 적어도 하나의 서브프레임을 통해 전송되는 경우(즉, DRS가 지연 전송되는 경우), 지연 DRS를 위한 SSS 시퀀스는 아래 수학식 40과 같이 서브프레임 #0을 통해 전송되는 DRS를 위한 SSS 시퀀스와 동일할 수 있다. 또한, DRS가 서브프레임 #6 내지 #9 중에서 적어도 하나의 서브프레임을 통해 전송되는 경우(즉, DRS가 지연 전송되는 경우), 지연 DRS를 위한 SSS 시퀀스는 아래 수학식 40과 같이 서브프레임 #5를 통해 전송되는 DRS를 위한 SSS의 시퀀스와 동일할 수 있다. 아래 수학식 40은 수학식 17에 기초하여 생성될 수 있다.
Figure PCTKR2016008658-appb-M000040
DRS가 전송되는 서브프레임 번호에 관계없이 DRS를 위한 SSS 시퀀스가 생성될 수 있다. 이 경우, DRS를 위한 SSS의 시퀀스는 수학식 17에서 서브프레임 #0에 해당하는 시퀀스에 기초하여 생성될 수 있고, 또는 수학식 17에서 서브프레임 #5에 해당하는 시퀀스에 기초하여 생성될 수 있다.
한편, 지연 DRS를 위한 CRS 시퀀스는 다음과 같이 구성될 수 있다. 수학식 1을 참조하면, CRS 시퀀스는 셀 ID, 슬롯 번호, OFDM 심볼 번호 등에 기초하여 생성될 수 있다. 여기서, 슬롯 번호는 서브프레임의 번호와 관련되며, 슬롯 번호 및 서브프레임 번호는 DRS에 포함된 SSS의 검출을 통해 유추될 수 있다.
비면허 대역에서 전송된 신호(예를 들어, 비면허 대역 버스트)를 통해 획득된 시간 동기 또는 면허 대역에서 전송된 신호를 통해 획득된 시간 동기는 "버스트 시간 동기"로 지칭될 수 있다. DRS에 포함된 SSS를 통해 획득된 시간 동기는 "DRS 시간 동기"로 지칭될 수 있다. DRS가 서브프레임 #0 및 #5 이외의 서브프레임을 통해 전송된 경우(즉, DRS가 지연 전송되는 경우), 버스트 시간 동기는 DRS 시간 동기와 다를 수 있다.
도 41은 버스트 시간 동기 및 DRS 시간 동기 각각에 기초한 서브프레임 번호를 도시한 개념도이다.
도 41을 참조하면, 버스트 시간 동기에 기초한 서브프레임 #0에 구성된 SSS를 기초로 구성된 DRS는 버스트 시간 동기에 기초한 서브프레임 #1을 통해 전송될 수 있다. 수신 측면에서, UE는 DRS를 수신할 수 있고, DRS가 전송된 서브프레임 번호를 서브프레임 #0(즉, DRS 시간 동기에 기초한 서브프레임 #0)으로 인식할 수 있다. 이 경우, UE는 DRS 시간 동기에 기초한 서브프레임 #0, 해당 서브프레임 #0을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 DRS에 포함된 CRS를 검출할 수 있다.
또는, UE는 DRS 시간 동기에 관계없이 버스트 시간 동기에 기초하여 DRS가 전송된 서브프레임 번호를 서브프레임 #1(즉, 버스트 시간 동기에 기초한 서브프레임 #1)로 인식할 수 있다. 이 경우, UE는 버스트 시간 동기에 기초한 서브프레임 #1, 해당 서브프레임 #1을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 DRS에 포함된 CRS를 검출할 수 있다.
한편, 전송 측면에서, 기지국은 버스트 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초하여 DRS에 포함된 CRS를 생성할 수 있다. 이 경우, CRS 시퀀스는 수학식 1 내지 수학식 4에 기초하여 생성될 수 있다. 또는, 기지국은 DRS 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초하여 DRS에 포함된 CRS를 생성할 수 있다. 이 경우, DRS에 포함된 CRS의 생성을 위해 사용되는 서브프레임 번호는 다음과 같을 수 있다.
도 42는 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제1 실시예를 도시한 개념도이다.
도 42를 참조하면, DRS가 서브프레임 #0 내지 #4 중에서 적어도 하나의 서브프레임 통해 전송되는 경우, SSS 시퀀스는 서브프레임 #0 등에 기초하여 생성될 수 있다. DRS가 서브프레임 #5 내지 #9 중에서 적어도 하나의 서브프레임 통해 전송되는 경우, SSS 시퀀스는 서브프레임 #5 등에 기초하여 생성될 수 있다. CRS 시퀀스 생성을 위해 사용되는 서브프레임 번호는 버스트 시간 동기에 따른 서브프레임 번호와 동일할 수 있다. 이 경우, 기지국은 버스트 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 CRS를 생성할 수 있다. UE는 버스트 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 CRS를 검출할 수 있다.
도 43은 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제2 실시예를 도시한 개념도이다.
도 43을 참조하면, DRS가 서브프레임 #0 내지 #4 중에서 적어도 하나의 서브프레임 통해 전송되는 경우, SSS 시퀀스는 서브프레임 #0 등에 기초하여 생성될 수 있다. DRS가 서브프레임 #5 내지 #9 중에서 적어도 하나의 서브프레임 통해 전송되는 경우, SSS 시퀀스는 서브프레임 #5 등에 기초하여 생성될 수 있다. CRS 시퀀스의 생성을 위해 사용되는 서브프레임 번호는 SSS 시퀀스의 생성을 위해 사용되는 서브프레임 번호와 동일할 수 있다. 이 경우, CRS 시퀀스는 수학식 1, 수학식 2, 수학식 3 및 아래 수학식 41에 기초하여 생성될 수 있다.
Figure PCTKR2016008658-appb-M000041
Figure PCTKR2016008658-appb-I000036
는 SSS 시퀀스의 생성을 위해 사용되는 서브프레임을 구성하는 슬롯 번호를 지시할 수 있다. 예를 들어, 수학식 40에 기초하여 SSS 시퀀스가 생성되는 경우, 서브프레임 #0 내지 #4 중에서 적어도 하나의 서브프레임을 통해 전송되는 DRS를 위한 CRS 시퀀스는 서브프레임 #0을 구성하는 슬롯 #0 및 #1에 기초하여 생성될 수 있다. 또한, 서브프레임 #5 내지 #9 중에서 적어도 하나의 서브프레임을 통해 전송되는 DRS를 위한 CRS 시퀀스는 서브프레임 #5를 구성하는 슬롯 #10 및 #11에 기초하여 생성될 수 있다.
따라서, 기지국은 SSS 시퀀스의 생성을 위해 사용된 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 CRS를 생성할 수 있다. UE는 DRS에 포함된 SSS를 검출함으로써 DRS 시간 동기를 획득할 수 있고, DRS 시간 동기에 기초하여 DRS에 포함된 CRS를 검출할 수 있다.
한편, SSS 시퀀스의 생성을 위해 사용된 서브프레임 번호에 기초하여 CRS 시퀀스가 생성되는 경우, DRS와 다른 정보의 전송을 위해 사용되는 채널(예를 들어, PDCCH, EPDCCH, PDSCH 등)이 다중화되면 다음과 같이 예외적인 상황이 발생될 수 있다.
도 44는 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제3 실시예를 도시한 개념도이다.
도 44를 참조하면, DRS가 전송되는 서브프레임 이전 또는 이후의 서브프레임을 통해 PDSCH(또는, PDCCH, EPDCCH 등)가 전송되는 경우, DRS를 위한 CRS 시퀀스는 SSS 시퀀스 생성을 위해 사용되는 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초하여 생성될 수 있다. 또한, PDSCH가 구성된 서브프레임을 위한 CRS 시퀀스는 버스트 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초하여 생성될 수 있다. 이 경우, UE는 DRS에 포함된 SSS를 검출함으로써 DRS 시간 동기를 획득할 수 있고, DRS 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등을 사용하여 DRS에 포함된 CRS를 검출할 수 있다. 또한, UE는 버스트 시간 동기에 대응하는 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 PDSCH가 구성된 서브프레임으로부터 CRS를 검출할 수 있다.
도 45는 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제4 실시예를 도시한 개념도이다.
도 45를 참조하면, DRS가 전송되는 서브프레임 이전 또는 이후의 서브프레임을 통해 PDSCH(또는, PDCCH, EPDCCH 등)가 전송되는 경우, DRS를 위한 CRS 시퀀스 및 PDSCH가 구성된 서브프레임을 위한 CRS 시퀀스는 버스트 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등을 사용하여 생성될 수 있다. 이 경우, UE는 버스트 시간 동기에 대응하는 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초한 CRS 시퀀스를 사용하여 DRS 및 PDSCH가 구성된 서브프레임으로부터 CRS를 검출할 수 있다.
도 46은 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제5 실시예를 도시한 개념도이다.
도 46을 참조하면, DRS가 전송되는 서브프레임 이전 또는 이후의 서브프레임을 통해 PDSCH(또는, PDCCH, EPDCCH 등)가 전송되는 경우, DRS를 위한 CRS 시퀀스 및 PDSCH가 구성된 서브프레임을 위한 CRS 시퀀스는 SSS 시퀀스의 생성을 위해 사용되는 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초하여 생성될 수 있다. 이 경우, UE는 DRS에 포함된 SSS를 검출함으로써 DRS 시간 동기를 획득할 수 있고, DRS 시간 동기에 기초한 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등을 사용하여 DRS 및 PDSCH가 구성된 서브프레임으로부터 CRS를 검출할 수 있다.
도 47은 DRS에 포함된 CRS의 생성 및 검출을 위해 사용되는 서브프레임 번호에 대한 제6 실시예를 도시한 개념도이다.
도 47을 참조하면, DRS가 전송되는 서브프레임 이전 또는 이후의 서브프레임을 통해 PDSCH(또는, PDCCH, EPDCCH 등)가 전송되는 경우, DRS를 위한 CRS 시퀀스는 SSS의 시퀀스 생성을 위해 사용되는 서브프레임 번호, 해당 서브프레임을 구성하는 슬롯 번호 등에 기초하여 생성될 수 있다. DRS 시간 동기에 기초하면, DRS는 서브프레임 #0을 통해 전송되는 것으로 판단될 수 있다. DRS가 전송된 서브프레임 #0 이전에 위치한 서브프레임 번호는 1씩 감소될 수 있다. 예를 들어, DRS가 전송된 서브프레임 #0 이전에 위치한 서브프레임 번호는 순차적으로 #9, #8, #7, #6, #5, #4, #3, #2, #1 등으로 설정될 수 있다. 또한, DRS가 전송된 서브프레임 #0 이후에 위치한 서브프레임 번호는 1씩 증가될 수 있다. 예를 들어, DRS가 전송된 서브프레임 #0 이후에 위치한 서브프레임 번호는 순차적으로 #1, #2, #3, #4, #5, #6, #7, #8, #9 등으로 설정될 수 있다.
이와 같이 설정된 서브프레임 번호에 기초하여 PDSCH가 구성된 서브프레임을 위한 CRS 시퀀스가 생성될 수 있다. PDSCH가 구성된 서브프레임들 중에서 DRS가 전송된 서브프레임 #0 이전에 위치한 서브프레임을 위한 CRS 시퀀스는 서브프레임 #9, 서브프레임 #9를 구성하는 슬롯 #18 및 #19 등에 기초하여 생성될 수 있다. PDSCH가 구성된 서브프레임들 중에서 DRS가 전송된 서브프레임 #0 이후에 위치한 서브프레임들을 위한 CRS 시퀀스들은 서브프레임 #1 및 #2, 서브프레임 #1 및 #2를 구성하는 슬롯 #2 내지 #5 등에 기초하여 생성될 수 있다. 이 경우, UE는 서브프레임 #0, 서브프레임 #0을 구성하는 슬롯 #0 및 #1 등에 기초한 CRS 시퀀스를 사용하여 DRS에 포함된 CRS를 검출할 수 있고, 서브프레임 #9, #1 및 #2, 서브프레임 #9, #1 및 #2를 구성하는 슬롯 #18, #19, #2 내지 #5 등에 기초한 CRS 시퀀스를 사용하여 PDSCH가 구성된 서브프레임들로부터 CRS를 검출할 수 있다.
다시 도 36을 참조하면, UE는 기지국으로부터 DRS를 수신할 수 있다. DRS는 DMTC 구간을 구성하는 서브프레임들 중에서 임의의 서브프레임을 통해 수신될 수 있다. UE는 앞서 설명된 시퀀스를 사용하여 DRS로부터 동기 신호 및 참조 신호를 검출할 수 있다. UE는 검출된 동기 신호를 사용하여 시간 및 주파수 동기를 획득할 수 있고, 검출된 참조 신호를 사용하여 RRM, 채널 추정, 채널 품질 측정 등을 수행할 수 있다(S3630).
본 발명에 따른 방법들은 다양한 컴퓨터 수단을 통해 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능 매체에 기록되는 프로그램 명령은 본 발명을 위해 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
컴퓨터 판독 가능 매체의 예에는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함한다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 적어도 하나의 소프트웨어 모듈로 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (22)

  1. 비면허 대역을 지원하는 UE(user equipment)의 동작 방법으로서,
    기지국으로부터 DMTC(discovery signal measurement timing configuration) 주기 및 DMTC 오프셋(offset)을 포함하는 DMTC 관련 정보를 수신하는 단계;
    상기 DMTC 관련 정보에 기초하여 DRS(discovery reference signal)가 전송되는 DMTC(discovery signal measurement timing configuration) 구간을 확인하는 단계; 및
    상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이외의 서브프레임을 통해 상기 DRS를 상기 기지국으로부터 수신하는 단계를 포함하는, UE의 동작 방법.
  2. 청구항 1에 있어서,
    상기 DRS는 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이후의 서브프레임을 통해 전송되는, UE의 동작 방법.
  3. 청구항 1에 있어서,
    상기 DRS는 CRS(cell-specific reference signal), PSS(primary synchronization signal), SSS(secondary synchronization signal) 및 CSI-RS(channel state information-reference signal)를 포함하는, UE의 동작 방법.
  4. 청구항 3에 있어서,
    상기 CRS는 안테나 포트(antenna port) 0에서 CRS인, UE의 동작 방법.
  5. 청구항 3에 있어서,
    상기 비면허 대역에서 라디오(radio) 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 PSS는 서브프레임 #0 또는 서브프레임 #5에 설정되는, UE의 동작 방법.
  6. 청구항 3에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 SSS는 서브프레임 #0 또는 서브프레임 #5에 설정되는, UE의 동작 방법.
  7. 청구항 3에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 SSS가 서브프레임 #1 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #0에 설정되는 SSS를 위한 시퀀스(sequence)를 사용하는, UE의 동작 방법.
  8. 청구항 3에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 SSS가 서브프레임 #6 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #5에 설정되는 SSS를 위한 시퀀스를 사용하는, UE의 동작 방법.
  9. 청구항 3에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되고, 서브프레임들 각각은 2개의 슬롯들로 구성되며, 상기 CRS의 시퀀스는 상기 SSS가 설정된 슬롯의 번호에 기초하여 생성되는, UE의 동작 방법.
  10. 청구항 9에 있어서,
    상기 SSS가 서브프레임 #0 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 0 및 1에 기초하여 생성되는, UE의 동작 방법.
  11. 청구항 9에 있어서,
    상기 SSS가 서브프레임 #5 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 10 및 11에 기초하여 생성되는, UE의 동작 방법.
  12. 통신 네트워크에서 기지국의 동작 방법으로서,
    DMTC(discovery signal measurement timing configuration) 구간을 지시하는 설정 정보를 전송하는 단계;
    DRS(discovery reference signal)를 생성하는 단계; 및
    비면허 대역의 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이외의 서브프레임을 통해 상기 DRS를 전송하는 단계를 포함하는, 기지국의 동작 방법.
  13. 청구항 12에 있어서,
    상기 DRS는 상기 DMTC 구간 내에서 DRS 주기에 대응하는 서브프레임 이후의 서브프레임을 통해 전송되는, 기지국의 동작 방법.
  14. 청구항 12에 있어서,
    상기 DRS는 CRS(cell-specific reference signal), PSS(primary synchronization signal), SSS(secondary synchronization signal) 및 CSI-RS(channel state information-reference signal)를 포함하는, 기지국의 동작 방법.
  15. 청구항 14에 있어서,
    상기 CRS는 안테나 포트(antenna port) 0에서 CRS인, 기지국의 동작 방법.
  16. 청구항 14에 있어서,
    상기 비면허 대역에서 라디오(radio) 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 PSS는 서브프레임 #0 또는 서브프레임 #5에 설정되는, 기지국의 동작 방법.
  17. 청구항 14에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 SSS는 서브프레임 #0 또는 서브프레임 #5에 설정되는, 기지국의 동작 방법.
  18. 청구항 14에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 SSS가 서브프레임 #1 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #0에 설정되는 SSS를 위한 시퀀스(sequence)를 사용하는, 기지국의 동작 방법.
  19. 청구항 14에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되며, 상기 SSS가 서브프레임 #6 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 SSS는 서브프레임 #5에 설정되는 SSS를 위한 시퀀스를 사용하는, 기지국의 동작 방법.
  20. 청구항 14에 있어서,
    상기 비면허 대역에서 라디오 프레임은 서브프레임 #0 내지 서브프레임 #9로 구성되고, 서브프레임들 각각은 2개의 슬롯들로 구성되며, 상기 CRS의 시퀀스는 상기 SSS가 설정된 슬롯의 번호에 기초하여 생성되는, 기지국의 동작 방법.
  21. 청구항 20에 있어서,
    상기 SSS가 서브프레임 #0 내지 서브프레임 #4 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 0 및 1에 기초하여 생성되는, 기지국의 동작 방법.
  22. 청구항 20에 있어서,
    상기 SSS가 서브프레임 #5 내지 서브프레임 #9 중에서 적어도 하나의 서브프레임에 설정된 경우, 상기 CRS의 시퀀스는 슬롯 번호 10 및 11에 기초하여 생성되는, 기지국의 동작 방법.
PCT/KR2016/008658 2015-08-12 2016-08-05 통신 네트워크에서 신호의 송수신 방법 및 장치 WO2017026754A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680027635.8A CN107637003B (zh) 2015-08-12 2016-08-05 用于在通信网络中传送和接收信号的方法和设备
US15/549,413 US10630440B2 (en) 2015-08-12 2016-08-05 Method and apparatus for transmitting and receiving signal in communication network
EP16835394.4A EP3352393B1 (en) 2015-08-12 2016-08-05 Method and apparatus for transmitting and receiving signal in communication network
HRP20230723TT HRP20230723T1 (hr) 2015-08-12 2016-08-08 Metoda i uređaj za odašiljanje i primanje signala u komunikacijskoj mreži

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0114089 2015-08-12
KR20150114089 2015-08-12
KR20150135749 2015-09-24
KR10-2015-0135749 2015-09-24
KR10-2015-0149005 2015-10-26
KR20150149005 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017026754A1 true WO2017026754A1 (ko) 2017-02-16

Family

ID=57984488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008658 WO2017026754A1 (ko) 2015-08-12 2016-08-05 통신 네트워크에서 신호의 송수신 방법 및 장치

Country Status (6)

Country Link
US (1) US10630440B2 (ko)
EP (1) EP3352393B1 (ko)
KR (2) KR102616300B1 (ko)
CN (1) CN107637003B (ko)
HR (1) HRP20230723T1 (ko)
WO (1) WO2017026754A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936558A (zh) * 2017-04-19 2017-07-07 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
WO2018195495A1 (en) * 2017-04-21 2018-10-25 Apple Inc. Hybrid multi-sync signal for wideband nr carrier

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925494B (zh) 2015-07-10 2019-11-29 Lg 电子株式会社 在支持未授权带的无线接入系统中发送发现参考信号的方法和设备
US10433291B2 (en) 2016-02-26 2019-10-01 Qualcomm Incorporated Discovery reference signal transmission window detection and discovery reference signal measurement configuration
CN108282316B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种数据传输的方法和装置
EP3664542B1 (en) * 2017-08-31 2021-06-30 Huawei Technologies Co., Ltd. Wireless communication method and network side device and apparatus
WO2019119276A1 (zh) * 2017-12-19 2019-06-27 Oppo广东移动通信有限公司 用于测量的方法、网络设备和终端设备
CN110166212B (zh) * 2018-02-13 2021-04-13 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、存储介质及系统
WO2019169638A1 (zh) * 2018-03-09 2019-09-12 Oppo广东移动通信有限公司 测量定时配置方法、终端设备及网络设备
WO2019225901A1 (ko) * 2018-05-21 2019-11-28 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 이를 지원하는 장치
SG10201901838SA (en) * 2019-02-28 2020-09-29 Panasonic Ip Corp America Communication apparatus and communication method for initial access
US11451968B2 (en) 2019-05-21 2022-09-20 Electronics And Telecommunications Research Institute Method for transmitting and receiving discovery burst in shared band
KR102505297B1 (ko) * 2019-11-13 2023-03-06 한국전자통신연구원 무선 통신 시스템에서의 타이밍 제어 방법 및 장치
WO2021110088A1 (en) * 2019-12-03 2021-06-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. A method of uplink transmission in base station shared channel occupancy time

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083914A1 (ko) * 2013-12-08 2015-06-11 엘지전자 주식회사 비면허 대역에서 데이터를 전송하는 방법 및 장치
WO2015108308A1 (ko) * 2014-01-15 2015-07-23 엘지전자 주식회사 무선 통신 시스템에서 탐색 신호를 기초로 한 셀 탐색 과정의 수행 방법 및 탐색 과정을 수행하는 사용자 장치
WO2015111961A1 (ko) * 2014-01-23 2015-07-30 (주)휴맥스 홀딩스 Lte 스몰셀의 셀 기준 신호 송수신 장치
KR20150088716A (ko) * 2014-01-24 2015-08-03 한국전자통신연구원 Rrm 측정 방법 및 장치, 그리고 rrm 측정을 위한 신호를 시그널링하는 방법 및 장치
US20150223149A1 (en) * 2014-01-31 2015-08-06 Futurewei Technologies, Inc. Device, Network, and Method for Network Adaptation and Utilizing a Downlink Discovery Reference Signal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153739A1 (zh) 2013-03-27 2014-10-02 华为技术有限公司 一种测量无线资源管理信息的方法、装置和设备
CN105580297B (zh) 2013-09-27 2018-10-23 三星电子株式会社 用于先进lte的发现信号的方法和装置
US20150163008A1 (en) 2013-12-06 2015-06-11 Electronics And Telecommunications Research Institute Method and apparatus for cell discovery
WO2015105310A1 (ko) 2014-01-09 2015-07-16 주식회사 케이티 스몰 셀 디스커버리를 위한 참조신호 수신 방법 및 그 장치
US20150208333A1 (en) * 2014-01-23 2015-07-23 Humax Holdings Co., Ltd. Apparatus for on-off information transmission on lte small cell
US10135586B2 (en) 2014-03-20 2018-11-20 Intel IP Corporation Reference signal enhancement for shared cell
US9942016B2 (en) 2014-03-21 2018-04-10 Futurewei Technologies, Inc. Device, network, and method for network adaptation and discovery
US9532230B2 (en) 2014-06-05 2016-12-27 Texas Instruments Incorporated Method and apparatus for transmitting LTE waveforms in shared spectrum by carrier sensing
EP3180945A1 (en) 2014-08-15 2017-06-21 Telefonaktiebolaget LM Ericsson (publ) Configuring discovery signals
US10959197B2 (en) * 2014-09-08 2021-03-23 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
US10581547B2 (en) 2014-09-26 2020-03-03 Google Technology Holdings LLC Methods and apparatus for synchronization to, and measurements on, unlicensed frequency carriers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083914A1 (ko) * 2013-12-08 2015-06-11 엘지전자 주식회사 비면허 대역에서 데이터를 전송하는 방법 및 장치
WO2015108308A1 (ko) * 2014-01-15 2015-07-23 엘지전자 주식회사 무선 통신 시스템에서 탐색 신호를 기초로 한 셀 탐색 과정의 수행 방법 및 탐색 과정을 수행하는 사용자 장치
WO2015111961A1 (ko) * 2014-01-23 2015-07-30 (주)휴맥스 홀딩스 Lte 스몰셀의 셀 기준 신호 송수신 장치
KR20150088716A (ko) * 2014-01-24 2015-08-03 한국전자통신연구원 Rrm 측정 방법 및 장치, 그리고 rrm 측정을 위한 신호를 시그널링하는 방법 및 장치
US20150223149A1 (en) * 2014-01-31 2015-08-06 Futurewei Technologies, Inc. Device, Network, and Method for Network Adaptation and Utilizing a Downlink Discovery Reference Signal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936558A (zh) * 2017-04-19 2017-07-07 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
WO2018192409A1 (zh) * 2017-04-19 2018-10-25 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
CN106936558B (zh) * 2017-04-19 2021-03-30 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
WO2018195495A1 (en) * 2017-04-21 2018-10-25 Apple Inc. Hybrid multi-sync signal for wideband nr carrier
KR20190129123A (ko) * 2017-04-21 2019-11-19 애플 인크. 광대역 nr 캐리어에 대한 하이브리드 멀티 싱크 신호
US10966189B2 (en) 2017-04-21 2021-03-30 Apple Inc. Hybrid multi-sync-signal for wideband NR carrier
KR102236785B1 (ko) 2017-04-21 2021-04-05 애플 인크. 광대역 nr 캐리어에 대한 하이브리드 멀티 싱크 신호
EP4221054A1 (en) * 2017-04-21 2023-08-02 Apple Inc. Hybrid multi-sync signal for wideband nr carrier

Also Published As

Publication number Publication date
CN107637003A (zh) 2018-01-26
CN107637003B (zh) 2021-07-06
KR20240011653A (ko) 2024-01-26
EP3352393B1 (en) 2023-06-14
KR20170020233A (ko) 2017-02-22
KR102616300B1 (ko) 2023-12-20
US20180062806A1 (en) 2018-03-01
KR102665297B1 (ko) 2024-05-10
EP3352393A1 (en) 2018-07-25
US10630440B2 (en) 2020-04-21
EP3352393A4 (en) 2019-05-22
HRP20230723T1 (hr) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2017026754A1 (ko) 통신 네트워크에서 신호의 송수신 방법 및 장치
WO2020167019A1 (en) Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
WO2017135674A1 (ko) 면허 및 비면허 대역을 지원하는 네트워크에서 통신 방법
WO2018203726A1 (en) Method and apparatus for communicating reference signal for broadcast channel
WO2018225927A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019139298A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018174665A1 (en) Method and apparatus for transmitting and receiving demodulation reference signal
WO2019112374A1 (en) Method of transmitting uplink phase tracking reference signal by user euqipment in wireless communication system and apparatus supporting same
WO2018174546A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018143537A1 (ko) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
WO2018203592A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2017200315A1 (ko) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
WO2018084661A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2017213433A1 (en) A communication method using nr for 5g
WO2018203682A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2019074267A1 (ko) Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2017213326A1 (ko) 무선 통신 시스템에서 위상 잡음 보상 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2014051356A1 (ko) 무선 통신 시스템에서 다중점 협력 전송을 위한 제어 정보 시그널링 방법
WO2014010956A1 (ko) 단말 간 직접 통신을 위한 디스커버리 방법
WO2018016921A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2011145886A2 (ko) 다중 분산 노드 시스템에서 채널 측정을 수행하기 위한 방법 및 장치
WO2015182970A1 (ko) 탐색 신호 측정 수행 방법 및 사용자 장치
WO2018182150A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019182401A1 (ko) 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549413

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016835394

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE