WO2019169638A1 - 测量定时配置方法、终端设备及网络设备 - Google Patents

测量定时配置方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2019169638A1
WO2019169638A1 PCT/CN2018/078634 CN2018078634W WO2019169638A1 WO 2019169638 A1 WO2019169638 A1 WO 2019169638A1 CN 2018078634 W CN2018078634 W CN 2018078634W WO 2019169638 A1 WO2019169638 A1 WO 2019169638A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
measurement
period
burst set
parameter
Prior art date
Application number
PCT/CN2018/078634
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880037110.1A priority Critical patent/CN110710251B/zh
Priority to PCT/CN2018/078634 priority patent/WO2019169638A1/zh
Publication of WO2019169638A1 publication Critical patent/WO2019169638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of information processing technologies, and in particular, to a measurement timing configuration method, a terminal device, a network device, and a computer storage medium.
  • the LTE-based Authorized Auxiliary Access (LAA-LTE) system is based on carrier aggregation, and the carrier on the licensed spectrum is used as the primary carrier to prevent the carrier on the licensed spectrum from serving as the secondary carrier to the terminal device.
  • the network device needs to send the DRS signal on the unlicensed carrier, so that the terminal device of the local cell can complete the synchronization with the cell on the unlicensed carrier, and the terminal device of the neighboring cell can complete the cell to the local cell.
  • RRM measurement of signals RSRP, RSRQ, etc.
  • the DRS (Discovery Signal) in the LTE system includes a PSS (Primary Synchronization Signal), an SSS (Secondary Synchronization Signal), and a CRS (Cell Common Reference Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS Cell Common Reference Signal
  • the 3GPP stipulates that the DAS (Discovery Reference Signal, DRS) for RRM measurement of the LAA can be sent as follows: multiple DMTC (DRS Measurement Timing Configuration) can be configured in a periodic manner. Send location.
  • DRS Discovery Reference Signal
  • the common channels and signals in the NR system need to cover the entire cell by means of multi-beam scanning, which facilitates UE reception in the cell.
  • the multi-beam transmission of the synchronization signal (SS) is implemented by defining an SS/PBCH burst set.
  • SS synchronization signal
  • the measurement of the period configurable SSB in the NR system cannot be satisfied.
  • an embodiment of the present invention provides a measurement timing configuration method, a terminal device, a network device, and a computer storage medium.
  • the embodiment of the invention provides a measurement timing configuration method, which is applied to a terminal device, and the method includes:
  • the SSB is received for measurement based on at least one parameter of the measurement timing.
  • the embodiment of the invention provides a measurement timing configuration method, which is applied to a network device, and the method includes:
  • the embodiment of the invention provides a terminal device, where the terminal device includes:
  • the first processing unit determines at least one parameter of the measurement timing according to the configuration information of the synchronization signal block SSB;
  • the first communication unit receives the SSB for measurement based on at least one parameter of the measurement timing.
  • the embodiment of the invention provides a network device, where the network device includes:
  • the second communication unit transmits at least one parameter of the measurement timing to the terminal device; wherein at least one parameter of the measurement timing is determined by configuration information of the SSB.
  • a terminal device provided by an embodiment of the present invention includes: a processor and a memory for storing a computer program capable of running on a processor,
  • processor is configured to perform the steps of the foregoing method when the computer program is run.
  • a network device provided by an embodiment of the present invention includes: a processor and a memory for storing a computer program capable of running on a processor,
  • processor is configured to perform the steps of the foregoing method when the computer program is run.
  • a computer storage medium is provided by the embodiment of the present invention.
  • the computer storage medium stores computer executable instructions, and the foregoing method steps are implemented when the computer executable instructions are executed.
  • the technical solution of the embodiment of the present invention enables the terminal device to acquire at least one parameter of the measurement timing, and performs measurement based on at least one parameter of the measurement timing; thereby ensuring reasonable configuration of parameters in the configuration of the measurement timing, and facilitating the terminal Perform accurate measurements of DRS.
  • FIG. 1 is a schematic flowchart of a measurement timing configuration method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a hardware architecture according to an embodiment of the present invention.
  • the embodiment of the invention provides a measurement timing configuration method, which is applied to a terminal device. As shown in FIG. 1 , the method includes:
  • Step 101 Determine at least one parameter of the measurement timing according to the configuration information of the synchronization signal block SSB.
  • Step 102 Receive an SSB to perform measurement based on at least one parameter of the measurement timing.
  • the at least one parameter of the measurement timing includes at least one of: a period of the measurement window, an offset of the measurement window, and a duration of the measurement window.
  • the configuration information of the SSB includes at least one of the following:
  • the SSB period The SSB period, the field position information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the number of SSBs included in the SSB burst set.
  • the measurement timing in this embodiment may be: discovery signal measurement time configuration (DMTC), or may be SMTC (SS/PBCH blocks Measurement Timing Configuration, synchronization signal block/physical broadcast channel block measurement timing configuration) ).
  • DMTC discovery signal measurement time configuration
  • SMTC SS/PBCH blocks Measurement Timing Configuration, synchronization signal block/physical broadcast channel block measurement timing configuration
  • the first type determines the period of the measurement window as an integer multiple of the SSB period.
  • the DMTC period or the SMTC period is an integer multiple of the SSB period.
  • the integer multiple may be set according to actual conditions, for example, may be 2 times or may be a multiple multiple. It is not exhaustive here.
  • the second method determines the offset of the measurement window according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the DMTC offset or the SMTC offset may be determined according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the SSB occupation can occupy a maximum of 5 ms, that is, 5 subframes.
  • the DMTC offset may determine the starting subframe of the DMTC opportunity.
  • the offset of the DMTC may be based on the subframe occupied by the SSB in the SSB burst set.
  • the number information (or the number of SSBs in the SSB burst set) determines the step size of the measurement timing (DMTC or SMTC) offset.
  • the SSB occupies 5 subframes
  • the DMTC has an offset step size of 5 subframes, such as DMTC.
  • the offset is 0, 5, 10, 15... sub-frames.
  • the number of SSBs is five, and the offset of that DMTC may be five subframes.
  • the foregoing is merely an example, and there may be other corresponding manners, which are not exhaustive here.
  • a third one according to the SSB period in the configuration information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and at least one parameter in the SSB number information included in the SSB burst set. , determine the duration of the measurement window.
  • Determining the DMTC timing according to at least one of the SSB period in the configuration information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the SSB number information included in the SSB burst set. Or the duration of the SMTC timing.
  • the period of the SSB is configured to the terminal through the high-level parameter, and the terminal uses the period as the duration of the DMTC timing, and combines the DMTC period and the DMTC offset in the DMTC configuration information to obtain the duration of the DMTC timing, and the duration of the timing is continued.
  • the duration is measured on the DRS.
  • the determining the duration of the measurement window includes:
  • the X subframes or time slots are predefined or indicated by configuration information; X is an integer greater than or equal to 1.
  • the SSB period is added with X subframes or time slots as the duration of the DMTC opportunity or the SMTC opportunity; wherein the X subframes or time slots are predefined, or indicated by DMTC (or SMTC) configuration information.
  • X is an integer greater than or equal to 1.
  • the X subframes or slots may be predefined or indicated in the DMTC configuration information; X may be the number of subframes occupied by the SSB or the number of SSBs included in the SSB burst set. At least one of the information is determined. For example, X is equal to the number of subframes occupied by the SSB.
  • the duration of the DMTC is illustrated by the high-level parameter to the terminal.
  • the terminal adds X subframes or slots as the duration of the DMTC opportunity based on the period.
  • the purpose of setting the actual duration of the DMTC is to enable the DRS of the neighboring area to fall within the measurement timing (DMTC or SMTC) of the DMTC, so that the terminal can measure the DRS of the cell and the neighboring area within the window.
  • X can also be indicated to the terminal through the DMTC configuration information. Combining the DMTC period and the DMTC offset in the DMTC configuration information, the position of the duration of the timing is obtained, and the DRS is measured at the duration of the timing.
  • the terminal device can acquire at least one parameter of the measurement timing, and perform measurement based on at least one parameter of the measurement timing; thereby ensuring reasonable configuration of parameters in the configuration of the measurement timing, and facilitating the terminal to perform Accurate measurement of DRS.
  • the embodiment of the invention provides a measurement timing configuration method, which is applied to a network device, and the method includes:
  • the at least one parameter of the measurement timing includes at least one of: a period of the measurement window, an offset of the measurement window, and a duration of the measurement window.
  • the measurement timing may configure the DMTC or the SMTC for the discovery signal measurement time.
  • the configuration information of the SSB includes at least one of the following:
  • the SSB period The SSB period, the field position information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the number of SSBs included in the SSB burst set.
  • the method for determining at least one parameter of the measurement timing based on the configuration information of the SSB is described in the following, which may include:
  • the first type determining the period of the measurement window, is an integer multiple of the SSB period.
  • the DMTC period (or SMTC period) is an integer multiple of the SSB period.
  • the integer multiple may be set according to actual conditions, for example, may be 2 times or may be a multiple multiple. It is not exhaustive here.
  • the DMTC offset is determined according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the DMTC offset can be replaced by the SMTC offset, and is not described here.
  • the SSB occupation can occupy a maximum of 5 ms, that is, 5 subframes.
  • the DMTC offset may determine the starting subframe of the DMTC opportunity.
  • the offset of the DMTC may be based on the number of subframes occupied by the SSB in the SSB burst set (or according to The number of SSBs in the SSB burst set) determines the step size of the offset.
  • the offset step size of the DMTC is 5 subframes, and the offset of the DMTC is 0, 5, 10, 15... ...subframes.
  • the number of SSBs is five, and the offset of that DMTC may be five subframes.
  • the foregoing is merely an example, and there may be other corresponding manners, which are not exhaustive here.
  • the third type determines the duration of the measurement window according to at least one of the SSB period, the number of subframes occupied by the SSB in the SSB burst set, and the SSB number information included in the SSB burst set.
  • the period of the SSB is configured to the terminal through the high-level parameter, and the terminal uses the period as the duration of the DMTC timing, and combines the DMTC period and the DMTC offset in the DMTC configuration information to obtain the location of the DMTC, and the DRS is performed in the timing. measuring.
  • the SSB period is added with X subframes or time slots as the duration of the measurement window;
  • the X subframes or time slots are predefined or indicated by configuration information; and X is an integer greater than or equal to 1.
  • the SSB period may be added with X subframes or time slots as the duration of the DMTC opportunity (or the duration of the SMTC opportunity); wherein the X subframes or time slots are predefined or configured through DMTC.
  • Information indication; X is an integer greater than or equal to 1.
  • the X subframes or slots may be predefined or indicated by configuration information; X may be at least one of a number of subframes occupied by the SSB or SSB number information included in an SSB burst set. Information to determine. For example, X is equal to the number of subframes occupied by the SSB.
  • the duration of the DMTC is illustrated by the high-level parameter to the terminal.
  • the terminal adds X subframes or slots as the duration of the DMTC opportunity based on the period.
  • the purpose of setting the actual duration of the DMTC is such that the DRS of the neighboring cell can also fall within the duration of the opportunity, so that the terminal can measure the DRS of the cell and the neighboring cell within the window.
  • X can also be indicated to the terminal through the DMTC configuration information. Combining the DMTC period and the DMTC offset in the DMTC configuration information, the position of the duration of the timing is obtained, and the DRS is measured at the duration of the timing.
  • the terminal device can acquire at least one parameter of the measurement timing, and perform measurement based on at least one parameter of the measurement timing; thereby ensuring reasonable configuration of parameters in the configuration of the measurement timing, and facilitating the terminal to perform Accurate measurement of DRS.
  • An embodiment of the present invention provides a terminal device, as shown in FIG. 2, including:
  • the first processing unit 21 determines at least one parameter of the measurement timing according to the configuration information of the synchronization signal block SSB;
  • the first communication unit 22 receives the SSB for measurement based on at least one parameter of the measurement timing.
  • the at least one parameter of the measurement timing includes at least one of: a period of the measurement window, an offset of the measurement window, and a duration of the measurement window.
  • the configuration information of the SSB includes at least one of the following:
  • the SSB period The SSB period, the field position information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the number of SSBs included in the SSB burst set.
  • the measurement timing in this embodiment may be: discovery signal measurement time configuration (DMTC), or may be SMTC (SS/PBCH blocks Measurement Timing Configuration, synchronization signal block/physical broadcast channel block measurement timing configuration) ).
  • DMTC discovery signal measurement time configuration
  • SMTC SS/PBCH blocks Measurement Timing Configuration, synchronization signal block/physical broadcast channel block measurement timing configuration
  • the first type determines that the period of the measurement window is an integer multiple of the SSB period.
  • the DMTC period or the SMTC period is an integer multiple of the SSB period.
  • the integer multiple may be set according to actual conditions, for example, may be 2 times or may be a multiple multiple. It is not exhaustive here.
  • the second processing unit 21 determines the offset of the measurement window according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the DMTC offset or the SMTC offset may be determined according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the SSB occupation can occupy a maximum of 5 ms, that is, 5 subframes.
  • the DMTC offset may determine the starting subframe of the DMTC opportunity.
  • the offset of the DMTC may be based on the subframe occupied by the SSB in the SSB burst set.
  • the number information (or the number of SSBs in the SSB burst set) determines the step size of the measurement timing (DMTC or SMTC) offset.
  • the SSB occupies 5 subframes
  • the DMTC has an offset step size of 5 subframes, such as DMTC.
  • the offset is 0, 5, 10, 15... sub-frames.
  • the number of SSBs is five, and the offset of that DMTC may be five subframes.
  • the foregoing is merely an example, and there may be other corresponding manners, which are not exhaustive here.
  • a third, first processing unit 21 according to the SSB period in the configuration information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the number of SSBs included in the SSB burst set. At least one parameter in the information determines the duration of the measurement window.
  • Determining the DMTC timing according to at least one of the SSB period in the configuration information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the SSB number information included in the SSB burst set. Or the duration of the SMTC timing.
  • the period of the SSB is configured to the terminal through the high-level parameter, and the terminal uses the period as the duration of the DMTC timing, and combines the DMTC period and the DMTC offset in the DMTC configuration information to obtain the duration of the DMTC timing, and the duration of the timing is continued.
  • the duration is measured on the DRS.
  • the determining the duration of the measurement window includes:
  • the X subframes or time slots are predefined or indicated by configuration information; X is an integer greater than or equal to 1.
  • the SSB period is added with X subframes or time slots as the duration of the DMTC opportunity or the SMTC opportunity; wherein the X subframes or time slots are predefined, or indicated by DMTC (or SMTC) configuration information.
  • X is an integer greater than or equal to 1.
  • the X subframes or slots may be predefined or indicated in the DMTC configuration information; X may be the number of subframes occupied by the SSB or the number of SSBs included in the SSB burst set. At least one of the information is determined. For example, X is equal to the number of subframes occupied by the SSB.
  • the duration of the DMTC is illustrated by the high-level parameter to the terminal.
  • the terminal adds X subframes or slots as the duration of the DMTC opportunity based on the period.
  • the purpose of setting the actual duration of the DMTC is to enable the DRS of the neighboring area to fall within the measurement timing (DMTC or SMTC) of the DMTC, so that the terminal can measure the DRS of the cell and the neighboring area within the window.
  • X can also be indicated to the terminal through the DMTC configuration information. Combining the DMTC period and the DMTC offset in the DMTC configuration information, the position of the duration of the timing is obtained, and the DRS is measured at the duration of the timing.
  • the terminal device can acquire at least one parameter of the measurement timing, and perform measurement based on at least one parameter of the measurement timing; thereby ensuring reasonable configuration of parameters in the configuration of the measurement timing, and facilitating the terminal to perform Accurate measurement of DRS.
  • An embodiment of the present invention provides a network device, as shown in FIG. 3, including:
  • the second communication unit 31 transmits at least one parameter of the measurement timing to the terminal device; wherein at least one parameter of the measurement timing is determined by configuration information of the SSB.
  • the at least one parameter of the measurement timing includes at least one of: a period of the measurement window, an offset of the measurement window, and a duration of the measurement window.
  • the measurement timing may configure the DMTC or the SMTC for the discovery signal measurement time.
  • the configuration information of the SSB includes at least one of the following:
  • the SSB period The SSB period, the field position information of the SSB, the number of subframes occupied by the SSB in the SSB burst set, and the number of SSBs included in the SSB burst set.
  • the method for determining the at least one parameter of the DMTC based on the configuration information of the SSB before the at least one parameter of the DMTC is sent to the terminal device is described in the following, which may include:
  • the first type of the network device further includes:
  • the second processing unit 32 determines the period of the measurement window as an integer multiple of the SSB period.
  • the DMTC period (or SMTC period) is an integer multiple of the SSB period.
  • the integer multiple may be set according to actual conditions, for example, may be 2 times or may be a multiple multiple. It is not exhaustive here.
  • the second, second processing unit 32 determines the offset of the measurement window according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the DMTC offset is determined according to the number of subframes occupied by the SSB in the SSB burst set or the number of SSBs included in the SSB burst set.
  • the DMTC offset can be replaced by the SMTC offset, and is not described here.
  • the SSB occupation can occupy a maximum of 5 ms, that is, 5 subframes.
  • the DMTC offset may determine the starting subframe of the DMTC opportunity.
  • the offset of the DMTC may be based on the number of subframes occupied by the SSB in the SSB burst set (or according to The number of SSBs in the SSB burst set) determines the step size of the offset.
  • the offset step size of the DMTC is 5 subframes, and the offset of the DMTC is 0, 5, 10, 15... ...subframes.
  • the number of SSBs is five, and the offset of that DMTC may be five subframes.
  • the foregoing is merely an example, and there may be other corresponding manners, which are not exhaustive here.
  • the third and second processing unit 32 determines the measurement window according to at least one of the SSB period, the number of subframes occupied by the SSB in the SSB burst set, and the SSB number information included in the SSB burst set. The duration of the game.
  • the period of the SSB is configured to the terminal through the high-level parameter, and the terminal uses the period as the duration of the DMTC timing, and combines the DMTC period and the DMTC offset in the DMTC configuration information to obtain the location of the DMTC, and the DRS is performed in the timing. measuring.
  • the SSB period is added with X subframes or time slots as the duration of the measurement window;
  • the X subframes or time slots are predefined or indicated by configuration information; X is an integer greater than or equal to 1.
  • the SSB period may be added with X subframes or time slots as the duration of the DMTC opportunity (or the duration of the SMTC opportunity); wherein the X subframes or time slots are predefined or configured through DMTC.
  • Information indication; X is an integer greater than or equal to 1.
  • the X subframes or slots may be predefined or indicated by configuration information; X may be at least one of a number of subframes occupied by the SSB or SSB number information included in an SSB burst set. Information to determine. For example, X is equal to the number of subframes occupied by the SSB.
  • the duration of the DMTC is illustrated by the high-level parameter to the terminal.
  • the terminal adds X subframes or slots as the duration of the DMTC opportunity based on the period.
  • the purpose of setting the actual duration of the DMTC is such that the DRS of the neighboring cell can also fall within the duration of the opportunity, so that the terminal can measure the DRS of the cell and the neighboring cell within the window.
  • X can also be indicated to the terminal through the DMTC configuration information. Combining the DMTC period and the DMTC offset in the DMTC configuration information, the position of the duration of the timing is obtained, and the DRS is measured at the duration of the timing.
  • the terminal device can acquire at least one parameter of the measurement timing, and perform measurement based on at least one parameter of the measurement timing; thereby ensuring reasonable configuration of parameters in the configuration of the measurement timing, and facilitating the terminal to perform Accurate measurement of DRS.
  • the embodiment of the present invention further provides a hardware component architecture of a network device or a terminal device.
  • the system includes at least one processor 41, a memory 42, and at least one network interface 43.
  • the various components are coupled together by a bus system 44.
  • bus system 44 is used to implement connection communication between these components.
  • the bus system 44 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 44 in FIG.
  • the memory 42 in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • memory 42 stores elements, executable modules or data structures, or a subset thereof, or their extension set:
  • the processor 41 is configured to be able to process the method steps of the first embodiment or the second embodiment, and details are not described herein.
  • a computer storage medium is provided by the embodiment of the present invention.
  • the computer storage medium stores computer executable instructions. When the computer executable instructions are executed, the method steps of the first embodiment or the second embodiment are implemented.
  • Embodiments of the Invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the invention are not limited to any specific combination of hardware and software.

Abstract

本发明公开了一种测量定时配置方法、终端设备、网络设备及计算机存储介质,其中,所述方法包括:根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;基于所述测量定时的至少一个参数,接收SSB进行测量。

Description

测量定时配置方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种测量定时配置方法、终端设备、网络设备及计算机存储介质。
背景技术
基于LTE系统的授权辅助接入(LAA-LTE)系统以载波聚合为基础,以授权频谱上的载波为主载波,以免授权频谱上的载波为辅载波向终端设备提供服务。在LAA-LTE系统中,网络设备需要在免授权载波上发送DRS信号,从而使本小区的终端设备能完成和免授权载波上的小区的同步,也能使邻小区的终端设备能完成对本小区信号的RRM测量(RSRP、RSRQ等)。其中,LTE系统中的DRS(Discovery Signal,发现参考信号)包括PSS(主同步信号)、SSS(辅同步信号)、CRS(小区公共参考信号)。目前3GPP规定,LAA的用于RRM测量的DRS(Discovery Reference Signal,发现参考信号,简称DRS)可以如下发送:在周期性出现的DMTC(DRS Measurement Timing Configuration,DRS测量时间配置)中配置多个可发送位置。
在NR系统中的公共信道和信号,如同步信号和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的UE接收。同步信号(SS,synchronization signal)的多波束发送时通过定义SS/PBCH burst set实现的。在NR-unlicensed系统中,同样需要定义DRS用于免授权频谱上的小区的测量。但是,由于现有LAA系统中为固定的6ms,multefire系统中为1-10个子帧,无法满足NR系统中对周期可配置的SSB的测量。
发明内容
为解决上述技术问题,本发明实施例提供了一种测量定时配置方法、终端设备、网络设备及计算机存储介质。
本发明实施例提供一种测量定时配置方法,应用于终端设备,所述方法包括:
根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;
基于所述测量定时的至少一个参数,接收SSB进行测量。
本发明实施例提供一种测量定时配置方法,应用于网络设备,所述方法包括:
向终端设备发送测量定时的至少一个参数;其中,所述测量定时的至少一个参数由SSB的配置信息确定。
本发明实施例提供一种终端设备,所述终端设备包括:
第一处理单元,根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;
第一通信单元,基于所述测量定时的至少一个参数,接收SSB进行测量。
本发明实施例提供一种网络设备,所述网络设备包括:
第二通信单元,向终端设备发送测量定时的至少一个参数;其中,所述测量定时的至少一个参数由SSB的配置信息确定。
本发明实施例提供的一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器用于运行所述计算机程序时,执行前述方法的步骤。
本发明实施例提供的一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器用于运行所述计算机程序时,执行前述方法的步骤。
本发明实施例提供的一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被执行时实现前述方法步骤。
本发明实施例的技术方案,就能够使得终端设备获取测量定时的至少一个参数,并基于测量定时的至少一个参数进行测量;从而保证了能够对测量定时的配置中的参数的合理配置,便于终端进行DRS的准确测量。
附图说明
图1为本发明实施例提供的一种测量定时配置方法流程示意图;
图2为本发明实施例终端设备组成结构示意图;
图3为本发明实施例网络设备组成结构示意图;
图4为本发明实施例的一种硬件架构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一、
本发明实施例提供了一种测量定时配置方法,应用于终端设备,如图1所示,所述方法包括:
步骤101:根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;
步骤102:基于所述测量定时的至少一个参数,接收SSB进行测量。
具体来说,所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
所述SSB的配置信息,包括以下至少之一:
SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的 子帧个数、SSB突发集合中包含的SSB个数信息。
进一步需要说明的是,本实施例中所述测量定时可以为:发现信号测量时间配置(DMTC)、或者可以为SMTC(SS/PBCH blocks Measurement Timing Configuration,同步信号块/物理广播信道块测量定时配置)。
下面基于几种场景说明如何基于SSB的配置信息确定测量定时的至少一个参数:
第一种、确定测量窗口的周期为所述SSB周期的整数倍。
具体的,可以为确定所述DMTC周期或者SMTC周期,为所述SSB周期的整数倍。
其中,整数倍可以为根据实际情况进行设置,比如,可以为2倍或者可以为更大的倍数。这里不进行穷举。
第二种、根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
具体来说,可以为根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述DMTC偏移、或者SMTC偏移。
例如,根据SSB的定时配置和SSB的子载波间隔,SSB占据最大可以占据5ms,即5个子帧。DMTC偏移可以决定DMTC时机的起始子帧,为了使DMTC的测量定时(DMTC或者SMTC)与SSB的发送位置相匹配,DMTC的偏移可以根据SSB突发集合中的SSB占据的子帧个数信息(或者根据SSB突发集合中的SSB个数)确定测量定时(DMTC或者SMTC)偏移的步长,例如SSB占据5个子帧,则DMTC的偏移步长为5个子帧,如DMTC的偏移取0,5,10,15……个子帧。或者,例如SSB为5个,那个DMTC的偏移可以为5个子帧。当然,前述仅为示例,还可以存在其他的对应方式,这里不进行穷举。
第三种、根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定DMTC时机或者SMTC时机的持续时长。
例如,SSB的周期通过高层参数配置给终端,终端将该周期作为DMTC时机的持续时间,结合DMTC配置信息中的DMTC周期、DMTC偏移,获得DMTC时机的持续时长的位置,在该时机的持续时长对DRS进行测量。
进一步地,所述确定测量窗口的持续时长,包括:
将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
也就是说,将SSB周期加上X个子帧或者时隙,作为DMTC时机或者SMTC时机的持续时长;其中,所述X个子帧或者时隙为预定义、或通过DMTC(或SMTC)配置信息指示;X为大于等于1的整数。
举例说明,所述X个子帧或者slot可以为预定义或者通过DMTC配置信息中指示;X可以通过所述SSB占据的子帧个数或者SSB burst set(突发集合)中包含的SSB个数信息中的至少一个信息来确定。例如,X等于SSB占据的子帧个数。
以DMTC时机的持续时长举例说明,例如,SSB的周期通过高层参数配置给终端,终端在该周期的基础上增加X个子帧或者slot作为DMTC时机的持续时间,X可以为预定义的,例如X=5这样设置DMTC实际的持续时间的目的是令邻区的DRS也能够落在DMTC的测量定时(DMTC或者SMTC)范围内,使得终端可以在该窗口内对本小区和邻区的DRS都进行 测量。同时,X还可以通过DMTC配置信息中指示给终端。结合DMTC配置信息中的DMTC周期、DMTC偏移,获得时机的持续时长的位置,在该时机的持续时长对DRS进行测量。
可见,通过采用上述方案,就能够使得终端设备获取测量定时的至少一个参数,并基于测量定时的至少一个参数进行测量;从而保证了能够对测量定时的配置中的参数的合理配置,便于终端进行DRS的准确测量。
实施例二、
本发明实施例提供了一种测量定时配置方法,应用于网络设备,所述方法包括:
向终端设备发送测量定时的至少一个参数;其中,所述测量定时的至少一个参数由SSB的配置信息确定。
所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
本实施例中,所述测量定时可以为发现信号测量时间配置DMTC或SMTC。
其中,所述SSB的配置信息,包括以下至少之一:
SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
下面基于几种场景说明基于SSB的配置信息确定测量定时的至少一个参数的方式,具体可以包括:
第一种、确定测量窗口的周期,为所述SSB周期的整数倍。
具体的,可以为确定所述DMTC周期(或者SMTC周期),为所述SSB周期的整数倍。
其中,整数倍可以为根据实际情况进行设置,比如,可以为2倍或者可以为更大的倍数。这里不进行穷举。
第二种、根据SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
比如,根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述DMTC偏移。其中,DMTC偏移可以替换为SMTC偏移,不再赘述。
以DMTC偏移举例说明,例如,根据SSB的定时配置和SSB的子载波间隔,SSB占据最大可以占据5ms,即5个子帧。DMTC偏移可以决定DMTC时机的起始子帧,为了使DMTC的测量定时与SSB的发送位置相匹配,DMTC的偏移可以根据SSB突发集合中的SSB占据的子帧个数信息(或者根据SSB突发集合中的SSB个数)确定偏移的步长,例如SSB占据5个子帧,则DMTC的偏移步长为5个子帧,如DMTC的偏移取0,5,10,15……个子帧。或者,例如SSB为5个,那个DMTC的偏移可以为5个子帧。当然,前述仅为示例,还可以存在其他的对应方式,这里不进行穷举。
第三种、根据SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
比如,根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定DMTC时机或者SMTC时机的持续时长。
例如,SSB的周期通过高层参数配置给终端,终端将该周期作为DMTC时机的持续时间,结合DMTC配置信息中的DMTC周期、DMTC偏移,获得DMTC的时机的位置,在该时机内对DRS进行测量。
进一步地,将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为 大于等于1的整数。
具体来说,可以将SSB周期加上X个子帧或者时隙,作为DMTC时机的持续时长(或者SMTC时机的持续时长);其中,所述X个子帧或者时隙为预定义、或通过DMTC配置信息指示;X为大于等于1的整数。
所述X个子帧或者slot可以为预定义或者通过配置信息中指示;X可以通过所述SSB占据的子帧个数或者SSB burst set(突发集合)中包含的SSB个数信息中的至少一个信息来确定。例如,X等于SSB占据的子帧个数。
以DMTC时机的持续时长举例说明,例如,SSB的周期通过高层参数配置给终端,终端在该周期的基础上增加X个子帧或者slot作为DMTC时机的持续时间,X可以为预定义的,例如X=5这样设置DMTC实际的持续时间的目的是令邻区的DRS也能够落在时机的持续时长范围内,使得终端可以在该窗口内对本小区和邻区的DRS都进行测量。同时,X还可以通过DMTC配置信息中指示给终端。结合DMTC配置信息中的DMTC周期、DMTC偏移,获得时机的持续时长的位置,在该时机的持续时长对DRS进行测量。
可见,通过采用上述方案,就能够使得终端设备获取测量定时的至少一个参数,并基于测量定时的至少一个参数进行测量;从而保证了能够对测量定时的配置中的参数的合理配置,便于终端进行DRS的准确测量。
实施例三、
本发明实施例提供了一种终端设备,如图2所示,包括:
第一处理单元21,根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;
第一通信单元22,基于所述测量定时的至少一个参数,接收SSB进行测量。
具体来说,所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
所述SSB的配置信息,包括以下至少之一:
SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
进一步需要说明的是,本实施例中所述测量定时可以为:发现信号测量时间配置(DMTC)、或者可以为SMTC(SS/PBCH blocks Measurement Timing Configuration,同步信号块/物理广播信道块测量定时配置)。
下面基于几种场景说明如何基于SSB的配置信息确定测量定时的至少一个参数:
第一种、第一处理单元21,确定测量窗口的周期为所述SSB周期的整数倍。
具体的,可以为确定所述DMTC周期或者SMTC周期,为所述SSB周期的整数倍。
其中,整数倍可以为根据实际情况进行设置,比如,可以为2倍或者可以为更大的倍数。这里不进行穷举。
第二种、第一处理单元21,根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
具体来说,可以为根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述DMTC偏移、或者SMTC偏移。
例如,根据SSB的定时配置和SSB的子载波间隔,SSB占据最大可以占据5ms,即5个子帧。DMTC偏移可以决定DMTC时机的起始子帧,为了使DMTC的测量定时(DMTC或者SMTC)与SSB的发送位置相匹配, DMTC的偏移可以根据SSB突发集合中的SSB占据的子帧个数信息(或者根据SSB突发集合中的SSB个数)确定测量定时(DMTC或者SMTC)偏移的步长,例如SSB占据5个子帧,则DMTC的偏移步长为5个子帧,如DMTC的偏移取0,5,10,15……个子帧。或者,例如SSB为5个,那个DMTC的偏移可以为5个子帧。当然,前述仅为示例,还可以存在其他的对应方式,这里不进行穷举。
第三种、第一处理单元21,根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定DMTC时机或者SMTC时机的持续时长。
例如,SSB的周期通过高层参数配置给终端,终端将该周期作为DMTC时机的持续时间,结合DMTC配置信息中的DMTC周期、DMTC偏移,获得DMTC时机的持续时长的位置,在该时机的持续时长对DRS进行测量。
进一步地,所述确定测量窗口的持续时长,包括:
将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
也就是说,将SSB周期加上X个子帧或者时隙,作为DMTC时机或者SMTC时机的持续时长;其中,所述X个子帧或者时隙为预定义、或通过DMTC(或SMTC)配置信息指示;X为大于等于1的整数。
举例说明,所述X个子帧或者slot可以为预定义或者通过DMTC配置信息中指示;X可以通过所述SSB占据的子帧个数或者SSB burst set(突发集合)中包含的SSB个数信息中的至少一个信息来确定。例如,X等于SSB 占据的子帧个数。
以DMTC时机的持续时长举例说明,例如,SSB的周期通过高层参数配置给终端,终端在该周期的基础上增加X个子帧或者slot作为DMTC时机的持续时间,X可以为预定义的,例如X=5这样设置DMTC实际的持续时间的目的是令邻区的DRS也能够落在DMTC的测量定时(DMTC或者SMTC)范围内,使得终端可以在该窗口内对本小区和邻区的DRS都进行测量。同时,X还可以通过DMTC配置信息中指示给终端。结合DMTC配置信息中的DMTC周期、DMTC偏移,获得时机的持续时长的位置,在该时机的持续时长对DRS进行测量。
可见,通过采用上述方案,就能够使得终端设备获取测量定时的至少一个参数,并基于测量定时的至少一个参数进行测量;从而保证了能够对测量定时的配置中的参数的合理配置,便于终端进行DRS的准确测量。
实施例四、
本发明实施例提供了一种网络设备,如图3所示,包括:
第二通信单元31,向终端设备发送测量定时的至少一个参数;其中,所述测量定时的至少一个参数由SSB的配置信息确定。
所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
本实施例中,所述测量定时可以为发现信号测量时间配置DMTC或SMTC。
其中,所述SSB的配置信息,包括以下至少之一:
SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
下面基于几种场景说明如何所述向终端设备发送DMTC的至少一个参数之前,基于SSB的配置信息确定DMTC的至少一个参数的方式,具体可 以包括:
第一种、所述网络设备还包括:
第二处理单元32,确定测量窗口的周期,为所述SSB周期的整数倍。
具体的,可以为确定所述DMTC周期(或者SMTC周期),为所述SSB周期的整数倍。
其中,整数倍可以为根据实际情况进行设置,比如,可以为2倍或者可以为更大的倍数。这里不进行穷举。
第二种、第二处理单元32,根据SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
比如,根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述DMTC偏移。其中,DMTC偏移可以替换为SMTC偏移,不再赘述。
以DMTC偏移举例说明,例如,根据SSB的定时配置和SSB的子载波间隔,SSB占据最大可以占据5ms,即5个子帧。DMTC偏移可以决定DMTC时机的起始子帧,为了使DMTC的测量定时与SSB的发送位置相匹配,DMTC的偏移可以根据SSB突发集合中的SSB占据的子帧个数信息(或者根据SSB突发集合中的SSB个数)确定偏移的步长,例如SSB占据5个子帧,则DMTC的偏移步长为5个子帧,如DMTC的偏移取0,5,10,15……个子帧。或者,例如SSB为5个,那个DMTC的偏移可以为5个子帧。当然,前述仅为示例,还可以存在其他的对应方式,这里不进行穷举。
第三种、第二处理单元32,根据SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
比如,根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的 至少一个参数,确定DMTC时机或者SMTC时机的持续时长。
例如,SSB的周期通过高层参数配置给终端,终端将该周期作为DMTC时机的持续时间,结合DMTC配置信息中的DMTC周期、DMTC偏移,获得DMTC的时机的位置,在该时机内对DRS进行测量。
进一步地,将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
具体来说,可以将SSB周期加上X个子帧或者时隙,作为DMTC时机的持续时长(或者SMTC时机的持续时长);其中,所述X个子帧或者时隙为预定义、或通过DMTC配置信息指示;X为大于等于1的整数。
所述X个子帧或者slot可以为预定义或者通过配置信息中指示;X可以通过所述SSB占据的子帧个数或者SSB burst set(突发集合)中包含的SSB个数信息中的至少一个信息来确定。例如,X等于SSB占据的子帧个数。
以DMTC时机的持续时长举例说明,例如,SSB的周期通过高层参数配置给终端,终端在该周期的基础上增加X个子帧或者slot作为DMTC时机的持续时间,X可以为预定义的,例如X=5这样设置DMTC实际的持续时间的目的是令邻区的DRS也能够落在时机的持续时长范围内,使得终端可以在该窗口内对本小区和邻区的DRS都进行测量。同时,X还可以通过DMTC配置信息中指示给终端。结合DMTC配置信息中的DMTC周期、DMTC偏移,获得时机的持续时长的位置,在该时机的持续时长对DRS进行测量。
可见,通过采用上述方案,就能够使得终端设备获取测量定时的至少一个参数,并基于测量定时的至少一个参数进行测量;从而保证了能够对 测量定时的配置中的参数的合理配置,便于终端进行DRS的准确测量。
本发明实施例还提供了一种网络设备或终端设备的硬件组成架构,如图4所示,包括:至少一个处理器41、存储器42、至少一个网络接口43。各个组件通过总线系统44耦合在一起。可理解,总线系统44用于实现这些组件之间的连接通信。总线系统44除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图4中将各种总线都标为总线系统44。
可以理解,本发明实施例中的存储器42可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
在一些实施方式中,存储器42存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
操作系统421和应用程序422。
其中,所述处理器41配置为:能够处理前述实施例一或二的方法步骤,这里不再进行赘述。
本发明实施例提供的一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被执行时实施前述实施例一或二的方法步骤。
本发明实施例上述装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明 实施例不限制于任何特定的硬件和软件结合。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (35)

  1. 一种测量定时配置方法,应用于终端设备,所述方法包括:
    根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;
    基于所述测量定时的至少一个参数,接收SSB进行测量。
  2. 根据权利要求1所述的方法,其中,所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
  3. 根据权利要求1所述的方法,其中,所述SSB的配置信息,包括以下至少之一:
    SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
  4. 根据权利要求1所述的方法,其中,所述测量定时为发现信号测量时间配置DMTC或SMTC。
  5. 根据权利要求1-3任一项所述的方法,其中,所述根据同步信号块SSB的配置信息,确定测量定时的至少一个参数,包括:
    确定测量窗口的周期为所述SSB周期的整数倍。
  6. 根据权利要求1-3任一项所述的方法,其中,所述根据同步信号块SSB的配置信息,确定测量定时的至少一个参数,包括:
    根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
  7. 根据权利要求1-3任一项所述的方法,其中,所述根据同步信号块SSB的配置信息,确定测量定时的至少一个参数,包括:
    根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
  8. 根据权利要求7所述的方法,其中,所述确定测量窗口的持续时长,包括:
    将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
    其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
  9. 一种测量定时配置方法,应用于网络设备,所述方法包括:
    向终端设备发送测量定时的至少一个参数;其中,所述测量定时的至少一个参数由SSB的配置信息确定。
  10. 根据权利要求9所述的方法,其中,所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
  11. 根据权利要求9所述的方法,其中,所述SSB的配置信息,包括以下至少之一:
    SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
  12. 根据权利要求9所述的方法,其中,所述测量定时为发现信号测量时间配置DMTC或SMTC。
  13. 根据权利要求9-12任一项所述的方法,其中,所述向终端设备发送测量定时的至少一个参数之前,所述方法还包括:
    确定测量窗口的周期,为所述SSB周期的整数倍。
  14. 根据权利要求9-12任一项所述的方法,其中,所述向终端设备发送测量定时的至少一个参数之前,所述方法还包括:
    根据SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
  15. 根据权利要求9-12任一项所述的方法,其中,所述向终端设备发 送测量定时的至少一个参数之前,所述方法还包括:
    根据SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
    其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
  17. 一种终端设备,所述终端设备包括:
    第一处理单元,根据同步信号块SSB的配置信息,确定测量定时的至少一个参数;
    第一通信单元,基于所述测量定时的至少一个参数,接收SSB进行测量。
  18. 根据权利要求17所述的终端设备,其中,所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
  19. 根据权利要求17所述的终端设备,其中,所述SSB的配置信息,包括以下至少之一:
    SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
  20. 根据权利要求17所述的终端设备,其中,所述测量定时为发现信号测量时间配置DMTC或SMTC。
  21. 根据权利要求17-20任一项所述的终端设备,其中,所述第一处理单元,确定测量窗口的周期为所述SSB周期的整数倍。
  22. 根据权利要求17-20任一项所述的终端设备,其中,所述第一处理 单元,根据所述SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
  23. 根据权利要求17-20任一项所述的终端设备,其中,所述第一处理单元,根据所述SSB的配置信息中的所述SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
  24. 根据权利要求23所述的终端设备,其中,所述第一处理单元,将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
    其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
  25. 一种网络设备,所述网络设备包括:
    第二通信单元,向终端设备发送测量定时的至少一个参数;其中,所述测量定时的至少一个参数由SSB的配置信息确定。
  26. 根据权利要求25所述的网络设备,其中,所述测量定时的至少一个参数包括以下至少之一:测量窗口的周期、测量窗口的偏移、测量窗口的持续时长。
  27. 根据权利要求25所述的网络设备,其中,所述SSB的配置信息,包括以下至少之一:
    SSB周期、SSB所在的半帧位置信息、SSB突发集合中的SSB占据的子帧个数、SSB突发集合中包含的SSB个数信息。
  28. 根据权利要求25所述的网络设备,其中,所述测量定时为发现信号测量时间配置DMTC或SMTC。
  29. 根据权利要求25-28任一项所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,确定测量窗口的周期,为所述SSB周期的整数倍。
  30. 根据权利要求25-28任一项所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,根据SSB突发集合中的SSB占据的子帧个数或者SSB突发集合中包含的SSB个数信息,确定所述测量窗口的偏移。
  31. 根据权利要求25-28任一项所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,根据SSB周期、所述SSB突发集合中的SSB占据的子帧个数以及SSB突发集合中包含的SSB个数信息中的至少一个参数,确定测量窗口的持续时长。
  32. 根据权利要求31任一项所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,将SSB周期加上X个子帧或者时隙,作为测量窗口的持续时长;
    其中,所述X个子帧或者时隙为预定义、或通过配置信息指示;X为大于等于1的整数。
  33. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器用于运行所述计算机程序时,执行权利要求1-8任一项所述方法的步骤。
  34. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器用于运行所述计算机程序时,执行权利要求9-16任一项所述方法的步骤。
  35. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被执行时实现权利要求1-16任一项所述的方 法步骤。
PCT/CN2018/078634 2018-03-09 2018-03-09 测量定时配置方法、终端设备及网络设备 WO2019169638A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880037110.1A CN110710251B (zh) 2018-03-09 2018-03-09 测量定时配置方法、终端设备及网络设备
PCT/CN2018/078634 WO2019169638A1 (zh) 2018-03-09 2018-03-09 测量定时配置方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078634 WO2019169638A1 (zh) 2018-03-09 2018-03-09 测量定时配置方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2019169638A1 true WO2019169638A1 (zh) 2019-09-12

Family

ID=67845809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078634 WO2019169638A1 (zh) 2018-03-09 2018-03-09 测量定时配置方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN110710251B (zh)
WO (1) WO2019169638A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021083029A1 (zh) * 2019-10-29 2021-05-06 中兴通讯股份有限公司 信息发送、测量配置方法、网管系统、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233656A (zh) * 2014-04-24 2016-12-14 高通股份有限公司 在无线通信中的非连续传送(dtx)循环之外传送数据
CN106465173A (zh) * 2014-05-27 2017-02-22 Lg电子株式会社 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备
US20170257785A1 (en) * 2014-08-08 2017-09-07 Nokia Solutions And Networks Oy Determining Measurement Gap Patterns
CN107637003A (zh) * 2015-08-12 2018-01-26 韩国电子通信研究院 用于在通信网络中传送和接收信号的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024211B (zh) * 2017-06-22 2019-10-29 北京航空航天大学 一种深空探测器测角/差分测速/差分测距组合导航方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233656A (zh) * 2014-04-24 2016-12-14 高通股份有限公司 在无线通信中的非连续传送(dtx)循环之外传送数据
CN106465173A (zh) * 2014-05-27 2017-02-22 Lg电子株式会社 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备
US20170257785A1 (en) * 2014-08-08 2017-09-07 Nokia Solutions And Networks Oy Determining Measurement Gap Patterns
CN107637003A (zh) * 2015-08-12 2018-01-26 韩国电子通信研究院 用于在通信网络中传送和接收信号的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021083029A1 (zh) * 2019-10-29 2021-05-06 中兴通讯股份有限公司 信息发送、测量配置方法、网管系统、基站及存储介质

Also Published As

Publication number Publication date
CN110710251B (zh) 2021-02-19
CN110710251A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
US20200305015A1 (en) Method for configuring neighboring cell, network device and user equipment
CN110808820B (zh) 一种定位参考信号传输方法及装置
US20200305005A1 (en) Method and devices for signaling transmission in unlicensed band
US10045378B2 (en) Channel monitoring method and device
KR20170010836A (ko) 전송 방법 및 통신 장치
RU2598466C1 (ru) Мобильная станция
EP3149989B1 (en) Methods and apparatuses for enabling use of un-licensed frequency band
RU2660463C1 (ru) Система беспроводной связи, базовая станция, терминал и способ обработки
KR20170094208A (ko) 프랙셔널 채널 예비 신호들의 오검출
JP2018528712A (ja) コンテンションウィンドウサイズの特定方法、無線基地局及び移動局
US8514740B2 (en) Mobile communication system
EP3944684A1 (en) Information transmission method and device, node, and server
CN106341900B (zh) 辅助通信装置和方法、无线接入点及其方法
CN115032608A (zh) 测距传感器数据优化方法及其应用
WO2013166657A1 (zh) 参考信号的测量方法、基站及用户设备
WO2019169638A1 (zh) 测量定时配置方法、终端设备及网络设备
US11553444B2 (en) Method, network apparatus, and terminal apparatus for indicating position of synchronization signal block
KR20210003171A (ko) 신호 전송 방법 및 통신 기기
KR20210123417A (ko) 통신 장치, 제어 방법, 및 프로그램
WO2019140628A1 (zh) 一种获取相邻小区信息的方法、网络设备及用户设备
US20220132586A1 (en) Method and apparatus for performing enhanced random access procedure
US11523397B2 (en) Information transmission method, network device, and terminal device
RU2573602C2 (ru) Способ мобильной связи, базовая радиостанция и мобильная станция
US20210185626A1 (en) Method for indicating position of synchronization signal block, method for acquiring position of synchronization signal block, base station, terminal and medium
WO2022147672A1 (en) Measurement enhancement for l1-rsrp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909044

Country of ref document: EP

Kind code of ref document: A1