WO2017026428A1 - 絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート - Google Patents

絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート Download PDF

Info

Publication number
WO2017026428A1
WO2017026428A1 PCT/JP2016/073214 JP2016073214W WO2017026428A1 WO 2017026428 A1 WO2017026428 A1 WO 2017026428A1 JP 2016073214 W JP2016073214 W JP 2016073214W WO 2017026428 A1 WO2017026428 A1 WO 2017026428A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
insulation
coated carbon
coating
coated
Prior art date
Application number
PCT/JP2016/073214
Other languages
English (en)
French (fr)
Inventor
紘希 金谷
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016005513A external-priority patent/JP6246242B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201680043567.4A priority Critical patent/CN107849803B/zh
Priority to US15/749,899 priority patent/US20180230643A1/en
Priority to EP16835125.2A priority patent/EP3333308A4/en
Priority to KR1020177037233A priority patent/KR102117549B1/ko
Publication of WO2017026428A1 publication Critical patent/WO2017026428A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/36Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to carbon fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof

Definitions

  • the present invention relates to an insulation-coated carbon fiber, a method for producing an insulating carbon-coated fiber, a carbon fiber-containing composition, and a heat conductive sheet that have high heat conductivity and excellent insulation.
  • a heat conductive sheet is provided between the semiconductor element and the heat sink in order to efficiently release the heat of the semiconductor element.
  • a silicone resin in which a filler such as a heat conductive filler is dispersed and used is widely used, and carbon fiber is suitably employed as one of the heat conductive fillers ( Patent Document 1).
  • the above-described carbon fiber has a problem of high electrical conductivity while being excellent in thermal conductivity.
  • the thermally conductive sheet containing carbon fibers comes into contact with the circuit around the semiconductor element, or when the sheet is damaged and falls into the circuit, the carbon fiber exposed on the sheet causes a short circuit. There was a risk of causing electronic component failures.
  • Patent Document 2 discloses a technique for insulatingly coating carbon fibers with a resin.
  • Patent Documents 3 to 7 disclose techniques for insulatingly covering carbon fibers with an inorganic material.
  • Patent Document 2 since the technique of Patent Document 2 is produced by immersing the carbon fiber in a resin in which it is dissolved, the insulation-coated carbon fibers are agglomerated with each other, resulting in a decrease in thermal conductivity and sufficient insulation. There was also a problem that sex could not be realized. Further, the techniques of Patent Documents 3 to 7 have a problem that sufficient insulation cannot be ensured by insulating coating with an inorganic material.
  • This invention is made
  • Another object of the present invention is to provide a carbon fiber-containing composition and a heat conductive sheet that are excellent in thermal conductivity and insulation using such an insulation-coated carbon fiber.
  • the present inventors have conducted intensive research on insulation-coated carbon fibers. As a result, it has been found that by using a polymer made of a specific polymerizable compound as the insulation coating, the insulation can be greatly improved while maintaining high thermal conductivity. In addition, as a production condition of the insulation-coated carbon fiber, it is possible to form an insulation coating of a polymer composed of the polymerizable compound by mixing the polymerizable compound with a carbon fiber and a reaction initiator in a solvent and applying energy. I found it.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • At least a part of the carbon fiber is an insulation-coated carbon fiber formed by coating with an insulation coating, and the insulation coating is a polymer made of a polymerizable compound having one or more double bonds.
  • the insulation-coated carbon fiber according to [1], wherein the polymerizable compound having two or more polymerizable functional groups is divinylbenzene.
  • the present invention it is possible to provide a method for producing an insulation-coated carbon fiber and an insulation-coated carbon fiber having high thermal conductivity and excellent insulation. Moreover, it becomes possible to provide the carbon fiber containing composition and heat conductive sheet which were excellent in heat conductivity and insulation, using this insulation coating carbon fiber.
  • the present invention is an insulation-coated carbon fiber in which at least a part of the carbon fiber is coated with an insulation coating.
  • the insulation coating is a polymer composed of a polymerizable compound having one kind or two or more double bonds, and at least one of the polymerizable compounds is two. It has the above polymerizable functional groups.
  • a compound having a double bond and having two or more polymerizable functional groups as an insulating coating material, it is possible to form a coating that is superior to conventional coatings, resulting in high thermal conductivity. Insulating properties can be greatly improved while maintaining.
  • the carbon fiber constituting the insulation-coated carbon fiber of the present invention is not particularly limited and can be appropriately selected depending on the application.
  • the carbon fiber include organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, and polybenzazole-based carbon fibers, or vapor-grown carbon fibers.
  • PAN-based carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, and polybenzazole-based carbon fibers, or vapor-grown carbon fibers.
  • pitch-based carbon fibers or polybenzazole-based carbon fibers can be preferably used in view of high elastic modulus, good thermal conductivity, low thermal expansion, and the like.
  • the diameter and length of the carbon fiber are not particularly limited, and can be appropriately set according to the application.
  • the average length of the carbon fiber is about 30 to 300 ⁇ m and the average diameter is about 0.5 to 30 ⁇ m from the viewpoint of easy handling and thermal conductivity.
  • the carbon fiber may have a functional group on the surface of the carbon fiber, if necessary, in order to improve adhesion with the insulating coating.
  • Examples of carbon fibers having a large number of functional groups on the surface include carbon fibers heat-treated at 800 to 1500 ° C. and oxidized carbon fibers.
  • Examples of the method for oxidizing the carbon fiber include a dry method and a wet method.
  • An example of the dry method is a method in which heat treatment is performed at about 400 to 800 ° C. in air.
  • An example of the wet method is a method of immersing in fuming sulfuric acid.
  • the carbon fibers may be those obtained by pulverizing or pulverizing the obtained fibers, or those obtained by agglomerating the carbon fibers in a flake shape.
  • the insulating coating constituting the insulating coated carbon fiber of the present invention is formed so as to cover at least a part of the carbon fiber, and provides insulation to the carbon fiber.
  • the insulating coating is a polymer made of a polymerizable compound having one or more double bonds, and at least one of the polymerizable compounds has two or more polymerizable functional groups. Have Thereby, excellent insulation can be realized.
  • the polymerizable compound is a compound having a property of being polymerized and cured by application of energy such as heat or ultraviolet rays
  • the polymerizable functional group is a group used for crosslinking when cured.
  • Examples of the polymerizable compound having a double bond and having two or more polymerizable functional groups include specific vinyl compounds, allyl compounds, (meth) acrylic compounds, and the like. Among these, it is preferable to use divinylbenzene or a (meth) acrylate compound as the polymerizable compound. This is because more excellent insulation can be obtained.
  • the (meth) acrylate compound is a general term for acrylate (acrylic acid compound) and methacrylate (methacrylic acid compound).
  • the (meth) acrylate compound is not particularly limited as long as it has two or more polymerizable functional groups.
  • the polymer constituting the insulating coating needs to contain one or more structural units derived from the polymerizable compound, and may contain other compounds as necessary.
  • the polymer preferably contains 50% by mass or more, more preferably 90% by mass or more, of the structural unit derived from the polymerizable compound.
  • the film thickness of the insulating coating is not particularly limited, but is preferably 50 nm or more on average and more preferably 60 nm or more on average from the viewpoint of realizing high insulation. Furthermore, the upper limit of the film thickness of the insulating film is preferably about 1 ⁇ m on average from the viewpoint of compatibility with thermal conductivity.
  • the average film thickness of the insulation coating is measured from the sample of one insulation coating carbon fiber, the average film thickness is measured in a form including the maximum film thickness and the minimum film thickness portion of the insulation coating, It is assumed that the average film thickness of two samples is averaged.
  • the method for producing an insulation-coated carbon fiber of the present invention comprises mixing one or two or more polymerizable compounds having a double bond, carbon fiber, and a reaction initiator with a solvent ( 1 (a)), applying energy while stirring the mixture (FIG. 1 (d)), and forming a coating of the polymer composed of the polymerizable compound on at least a part of the carbon fiber.
  • an insulating film having a desired film thickness is formed on the carbon fiber without causing aggregation of the carbon fibers. be able to.
  • the obtained insulation coating carbon fiber can form the coating
  • the method for producing an insulation-coated carbon fiber according to the present invention mixes one or more polymerizable compounds having a double bond, carbon fiber, and a reaction initiator with a solvent. To obtain a mixture.
  • the carbon fiber and polymeric compound used for manufacture of the insulation coating carbon fiber of this invention it can set suitably according to a use, About those details, it is as above-mentioned.
  • the reaction initiator used for the production of the insulation-coated carbon fiber of the present invention is not particularly limited as long as it can dissolve in the solvent and start the polymerization reaction of the polymerizable compound. It can be used as appropriate.
  • the reaction initiator include thermal polymerization initiators such as azo compounds or organic peroxides, and ultraviolet polymerization initiators such as alkylphenone types and acylphosphine oxide types. Among them, azo compounds can be used. Or it is preferable to use an organic peroxide.
  • the solvent used in the production of the insulation-coated carbon fiber of the present invention is not particularly limited as long as it can dissolve the polymerizable compound and the reaction initiator, and one or more known solvents may be mixed. Can be used.
  • the solvent dissolves the polymerizable compound, but does not dissolve the polymer composed of the polymerizable compound, in that the solvent promotes the polymerization reaction and can improve the performance of the insulating coating obtained by the polymerization.
  • the solubility in the polymerizable compound as a monomer is higher than the solubility in the polymer.
  • the temperature at the time of judging whether the said solvent is a good solvent is a temperature at the time of superposition
  • the solvent examples include hexane, cyclohexane, diethyl ether, polyether (glyme), ⁇ -butyrolactone, N-methylpyrrolidone, acetonitrile, tetrahydrofuran, ethyl acetate, xylene, toluene, benzene, dimethyl sulfoxide, acetone. , Methyl ethyl ketone, ethanol, methanol, water, and the like, which are appropriately mixed and used.
  • divinylbenzene when divinylbenzene is used as the polymerizable compound, it is preferable to use ethanol or a mixture of ethanol and isopropyl alcohol, and when the (meth) acrylate compound is used as the polymerizable compound. It is preferable to use ethanol or a mixture of ethanol and toluene.
  • the manufacturing method of the insulation coating carbon fiber of this invention as shown in FIG.1 (b), after mixing the said polymeric compound, the said carbon fiber, and the said reaction initiator in a solvent, it is required. Deaeration may be performed accordingly. This is to promote the surface wettability of the carbon fiber.
  • the degassing method is not particularly limited, and examples thereof include a method performed using reduced pressure or ultrasonic waves.
  • Inert Moreover, in the manufacturing method of the insulation coating carbon fiber of this invention, as shown in FIG.1 (c), after mixing of the said material (FIG.1 (a)) or the said deaeration (FIG.1 (b)) Inertization may be performed before or after. This is to prevent the polymerization reaction described later from being inhibited.
  • the inerting method is not particularly limited, but can be performed by supplying an inert gas such as nitrogen by bubbling while stirring the mixture.
  • the method for producing an insulation-coated carbon fiber of the present invention applies energy while stirring the mixture, and a polymer comprising the polymerizable compound on at least a part of the carbon fiber. Form a coating.
  • the energy is not particularly limited, and for example, heat or ultraviolet light can be used.
  • heat or ultraviolet light can be used.
  • the temperature of the mixture at the time of polymerization is preferably 0 to 200 ° C., and more preferably 25 to 150 ° C. This is because the insulating coating can be reliably formed and a coating having high insulating properties can be obtained.
  • the temperature is lowered (removed) to room temperature as shown in FIG. 1 (e). This is because the temperature of the solvent is lowered and a polymer dissolved in a trace amount in the solvent is deposited as the insulating coating.
  • the method of removing the cooling is not particularly limited, and for example, as shown in FIG. 1 (e), a method of immersing the reaction vessel in the cooling bath while controlling the temperature can be mentioned.
  • the flow in which the carbon fiber is coated with the polymer composed of the polymerizable compound by the polymerization reaction will be considered below.
  • carbon fibers and a polymerizable compound (monomer) exist in a solvent in a state of being dispersed and dissolved under stirring.
  • the monomer is polymerized in a solution, polymerized to the precipitation critical chain length in the solvent, and then the carbon fiber is used as a trigger (nucleus) for the deposition of the polymer on the surface.
  • a trigger nocleus
  • the formed polymer as a whole is insoluble in the solvent or very little if dissolved.
  • polymerizable functional groups remain on the precipitated polymer, monomer reaction is expected, and further precipitation occurs, and physical and chemical lamination is expected.
  • the temperature of the reaction vessel is lowered and the solubility in the solvent is lowered.
  • FIG. It is possible to reduce the unification concerns by making the contribution moderate.
  • the polymerization method of this invention compared with the emulsion polymerization used as embedding by random phase separation, it becomes possible to form a uniform coating with high selectivity to the carbon fiber surface.
  • the formed insulation coating has high insulation compared with the conventional insulation coating.
  • the polymerization reaction is a reaction for precipitating an insulating coating made of a polymer on carbon fibers, and is a reaction close to precipitation polymerization.
  • it is different from ordinary precipitation polymerization in that it is not a mechanism mainly caused by electrostatic attraction / adsorption, absorption of monomers and initiator components, and bonding by surface functional groups.
  • the carbon fiber-containing composition of the present invention is characterized by including the above-described insulation-coated carbon fiber of the present invention.
  • the obtained carbon fiber-containing composition is excellent in insulation properties while having high thermal conductivity.
  • Components other than the carbon fibers constituting the carbon fiber-containing composition of the present invention are not particularly limited, and can be appropriately contained depending on applications.
  • binder resin consisting of silicone etc. can further be included.
  • the carbon fiber-containing composition of the present invention comprises the above-described carbon fiber-containing composition of the present invention (made of a heat conductive sheet).
  • the obtained heat conductive sheet is excellent also in insulation, having high heat conductivity.
  • the carbon fiber-containing composition constituting the heat conductive sheet of the present invention uses a binder resin and the insulating coating carbon fiber of the present invention, for example, the carbon fiber-containing composition is molded into a sheet shape, Obtained by curing.
  • the manufacturing method of the heat conductive sheet of this invention does not specifically limit about the manufacturing method of the heat conductive sheet of this invention, A well-known method can be used suitably.
  • the carbon fiber can be manufactured by the method for manufacturing a heat conductive sheet disclosed in JP-A-2015-29075.
  • Example 1 and Comparative Example 1 the coated carbon fiber was manufactured.
  • Example 1 Samples 1 to 7, 15 and 16 Production of coated carbon fiber coated with polymer of divinylbenzene Sample 1 coated carbon fiber was produced by the following procedure. Into a glass container, 210 g of pitch-based carbon fiber (trade name XN-100-10M: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 9 ⁇ m and an average fiber length of 100 ⁇ m is added, and mixed with a stirring blade. Thus, a slurry liquid was obtained. 52.5 g of divinylbenzene was added to the slurry while adding nitrogen to the slurry liquid at a flow rate of 160 mL / min to perform inerting.
  • pitch-based carbon fiber trade name XN-100-10M: manufactured by Nippon Graphite Fiber Co., Ltd.
  • Samples 2 to 7, 15 and 16 were also produced in the same procedure as Sample 1 described above. Detailed conditions (blending conditions and reaction conditions) are shown in Table 1.
  • Samples 8 to 11 Production of coated carbon fiber coated with polymer of (meth) acrylate compound
  • the coated carbon fiber of Sample 8 was produced by the following procedure. Into a glass container, 210 g of pitch-based carbon fiber (trade name XN-100-10M: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 9 ⁇ m and an average fiber length of 100 ⁇ m is added, and mixed with a stirring blade. Thus, a slurry liquid was obtained.
  • pitch-based carbon fiber trade name XN-100-10M: manufactured by Nippon Graphite Fiber Co., Ltd.
  • Samples 13 and 14 Production of Carbon Fiber Coated with Silica Compound Coated carbon fiber of Sample 13 was produced by the following procedure.
  • a polyethylene container is charged with 300 g of pitch-based carbon fiber (trade name XN-100-10M: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 9 ⁇ m and an average fiber length of 100 ⁇ m, tetraethoxysilane 600 g, and ethanol 2700 g. It mixed with the stirring blade. Thereafter, a reaction initiator (10% aqueous ammonia) was added over 5 minutes while heating to 50 ° C. Stirring was carried out for 3 hours with the time when the addition of the solvent was completed as 0 minutes.
  • pitch-based carbon fiber trade name XN-100-10M: manufactured by Nippon Graphite Fiber Co., Ltd.
  • Example 2 and Comparative Example 2 compositions were prepared using the samples obtained in Example 1 and Comparative Example 1.
  • Example 2 comparative example 2
  • 4 g of the coated carbon fiber of each sample and a two-component addition reaction type liquid silicone resin were blended in 2.7 g and 3.3 g (parts by mass shown in Table 1), respectively, and a planetary stirrer (Awatori Netaro, Inc.
  • the composition of Samples 1 to 16 was obtained.
  • the composition of each sample was applied to the PET film with a coater so as to have a thickness of 1 mm while sandwiching the composition of each sample.
  • the mixture was cured at 6 ° C. for 6 hours, and the composition of each sample was formed into a sheet.
  • recovery rate After measuring the mass of each coated carbon fiber sample, the recovery rate was calculated by dividing by the mass of the carbon fiber used. As for the calculated recovery rate, it can be seen that the larger the amount, the larger the amount of coating. In addition, about the sample 12, since there is no coating formation, the collection rate is not measured. Further, the recovery rate was not measured for sample 16 because the coating could not be formed by gelation, and for sample 15 the coating could not be formed by dissolution.
  • FIG. 3 shows an image of the coated carbon fiber of Sample 1 as an example.
  • FIG. 3 (a) is an observation of a cross section of the coated carbon fiber
  • FIG. 3 (b) is an observation of the coated carbon fiber from the side.
  • Two-part silicone resin A manufactured by Momentive * 9
  • Two-part silicone resin B manufactured by Momentive * 10 Ethylene glycol dimethacrylate, manufactured by Kyoeisha Chemical Co., Ltd.
  • each sample of the example had a higher resistance than the sample of the comparative example, and was able to form a coating excellent in insulating properties. Moreover, it turned out that each sample of an Example shows a favorable result also about other conditions (recovery rate, film thickness).
  • the present invention it is possible to provide a method for producing an insulation-coated carbon fiber and an insulation-coated carbon fiber having high thermal conductivity and excellent insulation. Moreover, it becomes possible to provide the carbon fiber containing composition and heat conductive sheet which were excellent in heat conductivity and insulation, using this insulation coating carbon fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

高い熱伝導性を有しつつ、絶縁性に優れた、絶縁被覆炭素繊維及び絶縁被炭素繊維の製造方法を提供することを目的とする。上記目的を達成するべく、本発明は、炭素繊維の少なくとも一部が、絶縁被覆によって被覆されてなる絶縁被覆炭素繊維であって、前記絶縁被覆は、一種又は二種以上の二重結合を有する重合性化合物からなる重合物であり、該重合性化合物のうちの少なくとも一種が、2つ以上の重合性官能基を有することを特徴とする。

Description

絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート
 本発明は、高い熱伝導性を有しつつ、絶縁性に優れた、絶縁被覆炭素繊維、絶縁被炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シートに関するものである。
 従来、パーソナルコンピュータ等の各種電気機器やその他の機器に搭載されている半導体素子においては、駆動により熱が発生し、発生した熱が蓄積されると半導体素子の駆動や周辺機器へ悪影響が生じることから、各種冷却手段が用いられている。半導体素子等の電子部品の冷却方法としては、当該機器にファンを取り付け、機器筐体内の空気を冷却する方式や、その冷却すべき半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法等が知られている。
 上述の半導体素子にヒートシンクを取り付けて冷却を行う場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に熱伝導シートが設けられている。この熱伝導シートとしては、シリコーン樹脂に熱伝導性フィラー等の充填剤を分散含有させたものが広く用いられており、熱伝導性フィラーの1つとして、炭素繊維が好適に採用されている(特許文献1参照)。
 ただし、上述した炭素繊維については、熱伝導性に優れる一方で、電気伝導性が高いという問題がある。これにより、炭素繊維を含んだ熱伝導性シートが半導体素子周辺の回路に接触した場合や、シートに欠損が生じて回路に落下した場合、シート表面に露出した炭素繊維によってショートが生じる等の理由で電子部品の故障を招くおそれがあった。
 そのため、炭素繊維の絶縁性を高めることを目的として、炭素繊維を絶縁被覆する技術が開発されている。
 例えば、特許文献2には、炭素繊維を樹脂によって絶縁被覆する技術が開示されている。また、特許文献3~7には、炭素繊維を無機材料によって絶縁被覆する技術が開示されている。
特開2012−001638号公報 特開2013−007124号公報 特許4973569号公報 特開2013−122003号公報 特開2004−218144号公報 特許5166689号公報 特許4920135号公報
 しかしながら、特許文献2の技術については、炭素繊維を溶解した樹脂中に浸漬させて製造することから、絶縁被覆された炭素繊維同士が凝集し、熱伝導性が低下するという問題や、十分な絶縁性を実現できないという問題もあった。
 また、特許文献3~7の技術については、無機材料による絶縁被覆では十分な絶縁性を確保できないという問題があった。
 本発明は、かかる事情に鑑みてなされたものであって、高い熱伝導性を有しつつ、絶縁性に優れた、絶縁被覆炭素繊維及び絶縁被炭素繊維の製造方法を提供することを目的とする。また、本発明の他の目的は、かかる絶縁被覆炭素繊維を用い、熱伝導性及び絶縁性に優れた炭素繊維含有組成物及び熱伝導性シートを提供することを目的とする。
 本発明者らは、上記の課題を解決するべく、絶縁被覆炭素繊維について鋭意研究を重ねた。その結果、絶縁被覆として、特定の重合性化合物からなる重合物を用いることにより、高い熱伝導性は維持しつつ、絶縁性を大きく向上できることを見出した。
 また、絶縁被覆炭素繊維の製造条件として、上記重合性化合物を炭素繊維及び反応開始剤とともに溶媒に混合し、エネルギーを付与することによって、上記重合性化合物からなる重合物の絶縁被覆を形成できることを見出した。
 本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。
[1]炭素繊維の少なくとも一部が、絶縁被覆によって被覆されてなる絶縁被覆炭素繊維であって、前記絶縁被覆は、一種又は二種以上の二重結合を有する重合性化合物からなる重合物であり、該重合性化合物のうちの少なくとも一種が、2つ以上の重合性官能基を有することを特徴とする、絶縁被覆炭素繊維。
 上記構成によって、高い熱伝導性を有しつつ、優れた絶縁性を実現できる。
[2]前記2つ以上の重合性官能基を有する重合性化合物が、ジビニルベンゼンであることを特徴とする、前記[1]に記載の絶縁被覆炭素繊維。
[3]前記2つ以上の重合性官能基を有する重合性化合物が、(メタ)アクリレート化合物であることを特徴とする、前記[1]に記載の絶縁被覆炭素繊維。
[4]前記絶縁被覆の膜厚が、平均50nm以上であることを特徴とする、前記[1]~[3]のいずれかに記載の絶縁被覆炭素繊維。
[5]二重結合を有する一種又は二種以上の重合性化合物、炭素繊維、及び、反応開始剤を、溶媒と混合した後、該混合物を撹拌しながらエネルギーを付与して、前記炭素繊維の少なくとも一部に、前記重合性化合物からなる重合物の被覆を形成することを特徴とする、絶縁被覆炭素繊維の製造方法。
[6]前記溶媒は、前記重合性化合物は溶解するが、前記重合性化合物からなる重合物は溶解しないものであることを特徴とする、前記[5]に記載の絶縁被覆炭素繊維の製造方法。
[7]加熱により前記エネルギーを付与し、加熱時の前記混合物の温度を0~200℃とすることを特徴とする、前記[5]又は[6]に記載の絶縁被覆炭素繊維の製造方法。
[8]前記[1]~[4]のいずれかに記載の絶縁被覆炭素繊維を含むことを特徴とする、炭素繊維含有組成物。
[9]前記[8]に記載の炭素繊維含有組成物を備えることを特徴とする、熱伝導性シート。
 本発明によれば、高い熱伝導性を有しつつ、絶縁性に優れた、絶縁被覆炭素繊維及び絶縁被炭素繊維の製造方法を提供することが可能となる。また、かかる絶縁被覆炭素繊維を用い、熱伝導性及び絶縁性に優れた炭素繊維含有組成物及び熱伝導性シートを提供することが可能となる。
本発明の絶縁被覆炭素繊維の製造方法の一実施形態について、工程の流れを説明した図である。 本発明の絶縁被覆炭素繊維が形成される流れを説明するための図である。 実施例1で得られた絶縁被覆炭素繊維の画像であり、(a)が絶縁被覆炭素繊維の断面状態のTEM画像、(b)が絶縁被覆炭素繊維を側方から見た状態のSIM(イオン顕微鏡)像、を示す。
 以下、本発明について具体的に説明する。
<絶縁被覆炭素繊維>
 まず、本発明の絶縁被覆炭素繊維について説明する。
 本発明は、炭素繊維の少なくとも一部が、絶縁被覆によって被覆されてなる絶縁被覆炭素繊維である。
 そして、本発明の絶縁被覆炭素繊維は、前記絶縁被覆が、一種又は二種以上の二重結合を有する重合性化合物からなる重合物であり、該重合性化合物のうちの少なくとも一種が、2つ以上の重合性官能基を有することを特徴とする。
 二重結合を有し、且つ2つ以上の重合性官能基を有する化合物を、絶縁被覆材料として用いることによって、従来の被覆に比べて絶縁性に優れた被覆を形成できる結果、高い熱伝導性は維持しつつ、絶縁性を大きく向上できる。
(炭素繊維)
 本発明の絶縁被覆炭素繊維を構成する炭素繊維については、特に限定はされず、用途に応じて適宜選択することができる。
 前記炭素繊維の種類としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、ポリベンザゾール系炭素繊維などの有機系カーボンファイバー、又は、気相法炭素繊維等が挙げられる。それらの中でも、高弾性率、良好な熱伝導性、低熱膨張性等を示す点からピッチ系炭素繊維あるいはポリベンザゾール系炭素繊維を好ましく使用することができる。
 また、前記炭素繊維の径や長さについても特に限定はされず、用途に応じて適宜設定することができる。例えば、取り扱いの容易さや、熱伝導性を確保する点からは、前記炭素繊維の平均長さを30~300μm、平均径を0.5~30μm程度にすることが好ましい。
 さらに、前記炭素繊維は、必要に応じて、前記絶縁被覆との密着性を高めるために、炭素繊維表面に官能基を有することもできる。表面に官能基が多く存在する炭素繊維として、例えば800~1500℃で熱処理した炭素繊維、及び酸化処理した炭素繊維が挙げられる。
 前記炭素繊維を酸化処理する方法としては、乾式法と湿式法が挙げられる。乾式法の一例としては、空気中で400~800℃程度の熱処理を施す方法が挙げられる。湿式法の一例としては、発煙硫酸中に浸漬させる方法が挙げられる。
 また、前記炭素繊維については、得られた繊維を粉砕又は解砕したものであってもよく、各炭素繊維がフレーク状に凝集したものであってもよい。
(絶縁被覆)
 本発明の絶縁被覆炭素繊維を構成する絶縁被覆は、炭素繊維の少なくとも一部を覆うように形成され、炭素繊維に絶縁性をもたらす。
 前記絶縁被覆は、上述したように、一種又は二種以上の二重結合を有する重合性化合物からなる重合物であり、該重合性化合物のうちの少なくとも一種が、2つ以上の重合性官能基を有する。これによって、優れた絶縁性を実現できる。
 前記重合性化合物とは、熱や紫外線等のエネルギーの付与により重合し、硬化する性質を有する化合物であり、重合性官能基とは、硬化する際に架橋に用いられる基のことをいう。
 前記二重結合を有し、且つ2つ以上の重合性官能基を有する重合性化合物としては、例えば、特定の、ビニル化合物、アリル化合物、(メタ)アクリル化合物等が挙げられる。その中でも、前記重合性化合物として、ジビニルベンゼン又は(メタ)アクリレート化合物を用いることが好ましい。より優れた絶縁性を得ることができるからである。
 なお、前記(メタ)アクリレート化合物とは、アクリレート(アクリル酸化合物)、及び、メタクリレート(メタクリル酸化合物)の総称である。該(メタ)アクリレート化合物は、2つ以上の重合性官能基を有するものであれば特に限定はされない。
 例えば、エチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)クリレート、(ポリ)エトキシ化ビスフェノールAジ(メタ)アクリレート等が挙げられる。
 また、前記絶縁被覆を構成する重合物は、前記重合性化合物由来の構成単位を一種又は二種以上含むことを要し、必要に応じて他の化合物も含むこともできる。ただし、優れた絶縁性を確保する点からは、前記重合物は、前記重合性化合物由来の構造単位を、50質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。
 前記絶縁被覆の膜厚については、特に限定はされないが、高い絶縁性を実現する点からは、平均50nm以上であることが好ましく、平均60nm以上であることがより好ましい。さらに、前記絶縁皮膜の膜厚の上限については、熱伝導性との両立の点から、平均1μm程度であることが好ましい。なお、前記絶縁被覆の平均膜厚は、1つの絶縁被覆炭素繊維のサンプルから、絶縁被覆の膜厚を最大膜厚及び最小膜厚部分を含んだ形で平均的な膜厚を測長し、2つのサンプルの平均膜厚の平均をとったものとする。
<絶縁被覆炭素繊維の製造方法>
 次に、絶縁被覆炭素繊維の製造方法について、必要に応じて図面を用いて説明する。
 本発明の絶縁被覆炭素繊維の製造方法は、図1に示すように、二重結合を有する一種又は二種以上の重合性化合物、炭素繊維、及び、反応開始剤を、溶媒と混合した後(図1(a))、該混合物を撹拌しながらエネルギーを付与して(図1(d))、前記炭素繊維の少なくとも一部に、前記重合性化合物からなる重合物の被覆を形成することを特徴とする。
 上述した重合性化合物を炭素繊維及び反応開始剤とともに溶媒に混合し、エネルギーを付与することによって、炭素繊維同士の凝集を招くことなく、所望の膜厚を有する絶縁被膜を炭素繊維上に形成することができる。そして、得られた絶縁被覆炭素繊維は、従来の被覆に比べて絶縁性に優れた被覆を形成できる結果、高い熱伝導性は維持しつつ、絶縁性が大きく向上したものとなる。
(材料の混合)
 本発明の絶縁被覆炭素繊維の製造方法は、図1(a)に示すように、二重結合を有する一種又は二種以上の重合性化合物、炭素繊維、及び、反応開始剤を、溶媒と混合し、混合物を得る。
 本発明の絶縁被覆炭素繊維の製造に用いられる炭素繊維及び重合性化合物については、用途に応じて適宜設定することができ、それらの詳細については、上述した通りである。
 また、本発明の絶縁被覆炭素繊維の製造に用いられる反応開始剤については、前記溶媒に溶解し、前記重合性化合物の重合反応を開始できるものであれば特に限定はされず、公知のものを適宜使用することができる。前記反応開始剤としては、例えば、アゾ化合物又は有機過酸化物等の熱重合開始剤、アルキルフェノン型、アシルフォスフィンオキサイド型等の紫外線重合開始剤等を用いることができ、その中でも、アゾ化合物又は有機過酸化物を用いることが好ましい。
 さらに、本発明の絶縁被覆炭素繊維の製造に用いられる溶媒については、前記重合性化合物及び前記反応開始剤を溶解できるものであれば特に限定はされず、公知の溶媒を一種または二種以上混合するなどして使用することができる。
 ただし、前記溶媒は、重合反応を促進するとともに、重合によって得られた絶縁被覆の性能を高めることができる点から、前記重合性化合物は溶解するが、前記重合性化合物からなる重合物は溶解しないもの、つまり、単量体である前記重合性化合物に対する溶解度が、その重合物に対する溶解度よりも上回ることが好ましい。
 前記重合性化合物に対して良溶媒であることで、重合反応が促進されるとともに、前記重合物に対して貧溶媒であることで、得られた絶縁被覆が再び溶解することがなく、良好な被覆を得ることが可能となる。
 なお、前記溶媒が良溶媒であるか否かを判断する際の温度は、重合時(加熱時や、光照射時)の温度である。
 ここで、前記溶媒の具体例としては、ヘキサン、シクロヘキサン、ジエチルエーテル、ポリエーテル(グライム)、γ−ブチロラクトン、N−メチルピロリドン、アセトニトリル、テトラヒドロフラン、酢酸エチル、キシレン、トルエン、ベンゼン、ジメチルスルホキシド、アセトン、メチルエチルケトン、エタノール、メタノール、水等が挙げられ、適宜混合調製して用いられる。その中でも、前記重合性化合物として、ジビニルベンゼンを用いた場合には、エタノール又はエタノールとイソプロピルアルコールとの混合物を用いることが好ましく、前記重合性化合物として、(メタ)アクリレート化合物を用いた場合には、エタノール又はエタノールとトルエンとの混合物を用いることが好ましい。
(脱気)
 なお、本発明の絶縁被覆炭素繊維の製造方法では、図1(b)に示すように、前記重合性化合物、前記炭素繊維、及び、前記反応開始剤を、溶媒に混合させた後、必要に応じて脱気を行ってもよい。前記炭素繊維の表面濡れ性を促進するためである。前記脱気の方法については、特に限定はされず、例えば減圧や超音波を用いて行う方法等が挙げられる。
(イナート化)
 また、本発明の絶縁被覆炭素繊維の製造方法では、図1(c)に示すように、前記材料の混合(図1(a))の後、又は、前記脱気(図1(b))の前又は後に、イナート化を行ってもよい。
 後述する重合反応が阻害されることを防ぐためである。前記イナート化の方法については特に限定はされないが、前記混合物を撹拌しながら、窒素等の不活性ガスをバブリングにより供給することで行うことができる。
(重合反応)
 本発明の絶縁被覆炭素繊維の製造方法は、図1(d)に示すように、混合物を撹拌しながらエネルギーを付与して、前記炭素繊維の少なくとも一部に、前記重合性化合物からなる重合物の被覆を形成する。
 前記エネルギーについては、特に限定はされず、例えば、熱や紫外線等を用いることができる。本発明では、その中でも、熱を用いて重合反応を行うことが好ましい。前記絶縁被覆の形成を容易且つ確実に行うことができるためである。
 また、前記エネルギーが熱の場合、重合時の前記混合物の温度は0~200℃であることが好ましく、25~150℃であることがより好ましい。前記絶縁被覆の形成を確実に行うことができ、高い絶縁性を有する被覆を得ることができるためである。
 本発明の絶縁被覆炭素繊維の製造方法では、前記重合反応(図1(d))の後、図1(e)に示すように、室温まで降温(除冷)する。
 溶媒の温度を下げて、溶媒中に微量に溶解した重合物を前記絶縁被覆として析出させるためである。除冷の方法については、特に限定はされず、例えば図1(e)に示すように、温度管理しながら反応容器を冷却槽に浸す方法が挙げられる。
 ここで、図2(a)~(c)を用い、重合反応によって、前記炭素繊維が前記重合性化合物からなる重合物により被覆される流れを以下に考察する。
 まず、重合反応前は、図2(a)に示すように、溶媒中に炭素繊維や重合性化合物(モノマー)が撹拌下、分散・溶解された状態で存在する。エネルギー付与後、図2(b)に示すように、モノマーは溶液中で重合し、溶媒中での析出臨界鎖長まで重合した後に炭素繊維を析出のきっかけ(核)として、その表面にポリマーが析出する。その際、形成されたポリマーは全体として捉えた場合、溶媒に不溶であるか、溶解したとしてもごく僅かである。この析出したポリマーに対し、重合性官能基が残る場合には、モノマーの反応が期待され、またさらに析出が起こり、物理的・化学的な積層が期待される。その後、除冷を行うことで、反応槽の温度が下がるとともに、溶媒に対する溶解度が低下する結果、図2(c)に示すように、溶媒中に微量に溶解したポリマーについても、ポリマー膜厚への寄与が想定され、寄与を緩やかとすることで合一の懸念を低下できる。そして、本発明の重合方法では、ランダムな相分離による包埋となるエマルジョン重合に比べ、炭素繊維表面への選択性が高く均一な被覆を形成することが可能となる。そして、形成された絶縁被覆は、従来の絶縁被覆に比べて高い絶縁性を有する。
 上記重合反応は、炭素繊維に重合物からなる絶縁被覆を析出させる反応であり、析出重合に近い反応である。ただし、静電的な引力・吸着や、モノマー、開始剤成分の吸収、表面官能基による結合に主因した機構でない点で、通常の析出重合とは異なるものである。
(沈降)
 また、本発明の絶縁被覆炭素繊維の製造方法では、図1(f)に示すように、前記除冷(図1(e))の後、得られた絶縁被覆炭素繊維を沈降させることができる。
 得られた絶縁被覆炭素繊維を沈降させることで、溶媒との分離を行うことが容易となる。なお、沈降は、除冷後、反応容器を一定時間静置することで行うことができる。
<炭素繊維含有組成物>
 次に、本発明の炭素繊維含有組成物について説明する。
 本発明の炭素繊維含有組成物は、上述した本発明の絶縁被覆炭素繊維を含むことを特徴とする。
 本発明の絶縁被覆炭素繊維を含むことによって、得られた炭素繊維含有組成物は、高い熱伝導性を有しつつ、絶縁性にも優れる。
 本発明の炭素繊維含有組成物を構成する炭素繊維以外の成分については、特に限定はされず、用途に応じて適宜含有させることができる。
 例えば、本発明の炭素繊維含有組成物を熱伝導シートに用いる場合には、前記炭素繊維に加えて、シリコーン等からなるバインダ樹脂をさらに含むことができる。
<熱伝導性シート>
 次に、本発明の熱伝導性シートについて説明する。
 本発明の炭素繊維含有組成物は、上述した本発明の炭素繊維含有組成物を備える(熱伝導性シートを用いてなる)ことを特徴とする。
 本発明の炭素繊維含有組成物を用いてなることによって、得られた熱伝導性シートは、高い熱伝導性を有しつつ、絶縁性にも優れる。
 本発明の熱伝導性シートを構成する炭素繊維含有組成物は、バインダ樹脂及び本発明の絶縁被覆炭素繊維を含んだものを用い、例えば、該炭素繊維含有組成物を、シート形状に成形し、硬化することで得られる。
 なお、本発明の熱伝導性シートの製造方法については特に限定はされず、公知の方法を適宜使用することができる。
 例えば、熱伝導性シートにおける前記炭素繊維の配向性を高めたい場合には、特開2015−29075号公報に開示された熱伝導シートの製造方法によって製造することができる。
 次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。
 実施例1及び比較例1では、被覆炭素繊維の製造を行った。
(実施例1)
サンプル1~7、15及び16:ジビニルベンゼンの重合物で被覆された被覆炭素繊維の作製
 サンプル1の被覆炭素繊維については、以下の手順で作製した。
 ガラス容器に、平均繊維径9μm、平均繊維長100μmのピッチ系炭素繊維(商品名XN−100−10M:日本グラファイトファイバー(株)製)を210g、エタノール1000gを投入し、撹拌翼にて混合してスラリー液を得た。流量160mL/minで窒素をスラリー液に加えてイナート化を行いながら、スラリーにジビニルベンゼン52.5gを加えた。
 ジビニルベンゼンを加えた10分後に、予め50gのエタノールに溶解させておいた1.05gの重合開反応開始剤(油溶性アゾ重合開始剤)をスラリー液に投入した。投入後、5分間撹拌した後に、窒素によるイナート化を停止させた。
 その後、撹拌しながら70℃で3時間保持した後、40℃まで降温した。降温後、15分間静置し、スラリー液中に分散している固形分を沈降させた。沈降後、デカンテーションにて上澄みを除去し、再度溶媒を750g加えて15分間撹拌して固形分を洗浄した。
 洗浄後、吸引濾過にて固形分を回収し、回収した固形分を、100℃にて6時間乾燥することで、サンプル1の被覆炭素繊維を得た。
 なお、サンプル2~7、15及び16についても、上述したサンプル1と同様の手順で作製を行った。詳細な条件(配合条件及び反応条件)については、表1に示す。
サンプル8~11:(メタ)アクリレート化合物の重合物で被覆された被覆炭素繊維の作製
 サンプル8の被覆炭素繊維について、次の手順で作製した。
 ガラス容器に、平均繊維径9μm、平均繊維長100μmのピッチ系炭素繊維(商品名XN−100−10M:日本グラファイトファイバー(株)製)を210g、エタノール1000gを投入し、撹拌翼にて混合してスラリー液を得た。流量160mL/minで窒素をスラリー液に加えてイナート化を行いながら、スラリーに(メタ)アクリレート化合物B(ジシクロペンタニルメタクリレート)及び(メタ)アクリレート化合物C(トリメチロールプロパントリメタクリレート)をそれぞれ26.25gずつ加えた。
 (メタ)アクリレート化合物B及びCを加えた10分後に、予め50gのエタノールに溶解させておいた1.05gの重合開反応開始剤(油溶性アゾ重合開始剤)をスラリー液に投入した。投入後、5分間撹拌した後に、窒素によるイナート化を停止させた。
 その後、撹拌しながら70℃で3時間保持した後、40℃まで降温した。降温後、15分間静置し、スラリー液中に分散している固形分を沈降させた。沈降後、デカンテーションにて上澄みを除去し、再度溶媒を750g加えて15分間撹拌して固形分を洗浄した。
 洗浄後、吸引濾過にて固形分を回収し、回収した固形分を、70℃にて12時間乾燥することで、サンプル8の被覆炭素繊維を得た。
 なお、サンプル9~11についても、上述したサンプル8と同様の手順で作製を行った。詳細な条件(配合条件及び反応条件)については、表1に示す。
(比較例1)
サンプル13及び14:シリカ化合物で被覆された炭素繊維の作製
 サンプル13の被覆炭素繊維について、次の手順で作製した。
 ポリエチレン製容器に、平均繊維径9μm、平均繊維長100μmのピッチ系炭素繊維(商品名XN−100−10M:日本グラファイトファイバー(株)製)を300g、テトラエトキシシラン600g、エタノール2700gを投入し、撹拌翼にて混合した。
 その後、50℃まで加温しながら、反応開始剤(10%アンモニア水)を5分かけて投入した。溶媒の投入が完了した時点を0分として、3時間撹拌を行った。
 撹拌終了後、降温させ、吸引濾過して固形分を回収し、固形分を水とエタノールを用いて洗浄し、再度吸引濾過を行い、固形分を回収した。
 回収した固形分を100℃にて2時間乾燥後、更に200℃で8時間焼成を行うことで、比較例となるサンプル13の被覆炭素繊維を得た。
 なお、サンプル14についても、上述したサンプル13と同様の手順で作製を行った。詳細な条件(配合条件及び反応条件)については、表1に示す。
 続いて、実施例2及び比較例2として、実施例1及び比較例1によって得られた各サンプルを用いた組成物の作製を行った。
(実施例2、比較例2)
 各サンプルの被覆炭素繊維4gと、2液性の付加反応型液状シリコーン樹脂をそれぞれ2.7g、3.3g(表1に示す質量部)で配合し、遊星攪拌機(あわとり練太郎、(株)シンキー製)にて撹拌し、サンプル1~16の組成物を得た。
 その後、剥離処理された125μmのPETフィルム上に、各サンプルの組成物をPETフィルムに各サンプルの組成物はさみながら、厚みが1mmとなるようにコーターで塗布した後、表1に示すように100℃で6時間加熱し、混合物を硬化させて、各サンプルの組成物をシート状に成形した。
(評価)
 得られた各サンプルについて、以下の評価を行った。評価結果を表1に示す。
(1)回収率
 被覆炭素繊維の各サンプルについて、その質量を測定した後、用いた炭素繊維の質量で除することで回収率の算出を行った。算出された回収率については、大きいほど被覆の量が大きなことがわかる。
 なお、サンプル12については、被覆の形成がないため、回収率を測定していない。また、サンプル16については、被覆がゲル化により形成できず、サンプル15については、被覆が溶解して形成できなかったため、回収率を測定していない。
(2)被覆の膜厚
 被覆炭素繊維の各サンプルについて、収束イオンビーム(FIB)を用いて切断した後、透過型電子顕微鏡(TEM)を用いて、断面を観察して、被覆の平均膜厚を測長した。
 ここで、図3は、一例としてサンプル1の被覆炭素繊維の画像を示したものである。図3(a)は被覆炭素繊維の断面を観察したものであり、図3(b)は被覆炭素繊維を側方から観察したものである。
(3)被覆炭素繊維の抵抗
 被覆炭素繊維の各サンプルを、充填密度が0.750g/cm3となるように筒状の容器(直径:9mm、長さ:15mm)へ投入した後、高抵抗測定装置を用いて、二端子法(ただし、サンプル12、サンプル15の印加電圧1Vについては、低抵抗測定装置を用いて四端子法)で、印加電圧を変化させた場合の抵抗の測定を行った。
 なお、前記筒状の容器へ充填できなかったサンプル(サンプル16)については、凝集しているものと判断した。
 また、抵抗値が極めて高く、測定範囲(表1を参照)を超えたサンプルについては、表1の中で、「Over Range」と示し、抵抗値が極めて低く、測定範囲(表1を参照)を下回ったサンプルについては、表1の中で、「Under Range」と示している。
(4)組成物の抵抗
 シート状に成形した各サンプルについて、抵抗測定器((株)三菱化学アナリテック製ハイレスタUX)を用いて、印加電圧を変化させた場合の体積抵抗値を測定した。
 また、抵抗値が極めて高く、測定範囲(表1を参照)を超えたサンプルについては、表1の中で、「Over Range」と示し、抵抗値が極めて低く、測定範囲(表1を参照)を下回ったサンプルについては、表1の中で、「Under Range」と示している。
 なお、前記体積抵抗の測定範囲は抵抗値の測定範囲に依拠するため、表1中の測定範囲の単位はΩである。
Figure JPOXMLDOC01-appb-T000001
*1  日本グラファイトファイバー株式会社製 「XN−100−10M」、平均繊維径:9μm、平均繊維長:100μm
*2  日本グラファイトファイバー株式会社製 「XN−100−05M」、平均繊維径:9μm、平均繊維長:50μm
*3  サンプル13の被覆炭素繊維を再利用したもの
*4  和光純薬工業(株)製
*5  93%ジビニルベンゼン、和光純薬工業(株)製
*6  和光純薬工業(株)製
*7  2,2’−アゾビス(2,4−ジメチルバレロニトリル)、和光純薬工業(株)製 「V−65」
*8  2液型シリコーン樹脂A、モメンティブ社製
*9  2液型シリコーン樹脂B、モメンティブ社製
*10 エチレングリコールジメタクリレート、共栄社化学(株)製 「ライトエステルEG」
*11 ジシクロペンタニルメタクリレート、日立化成(株)製 「FA513M」
*12 トリメチロールプロパントリメタクリレート、共栄社化学(株)製 「ライトエステルTMP」
*13 トリシクロデカンジメタノールジメタクリレート、新中村化学工業(株)製 「NKエステルDCP」
*14 ジシクロペンタニルアクリレート、日立化成(株)製 「FA513AS」
*15 ペンタエリスリトールトリアクリレート、新中村化学工業(株)製 「A−TMM−3LM−N」
 表1より、実施例の各サンプルは、比較例のサンプルに比べて、いずれも抵抗が高く、絶縁性に優れた被覆を形成できていることがわかった。また、実施例の各サンプルは、その他の条件(回収率、膜厚)についても良好な結果を示すことがわかった。
 本発明によれば、高い熱伝導性を有しつつ、絶縁性に優れた、絶縁被覆炭素繊維及び絶縁被炭素繊維の製造方法を提供することが可能となる。また、かかる絶縁被覆炭素繊維を用い、熱伝導性及び絶縁性に優れた炭素繊維含有組成物及び熱伝導性シートを提供することが可能となる。

Claims (9)

  1.  炭素繊維の少なくとも一部が、絶縁被覆によって被覆されてなる絶縁被覆炭素繊維であって、
     前記絶縁被覆は、一種又は二種以上の二重結合を有する重合性化合物からなる重合物であり、該重合性化合物のうちの少なくとも一種が、2つ以上の重合性官能基を有することを特徴とする、絶縁被覆炭素繊維。
  2.  前記2つ以上の重合性官能基を有する重合性化合物が、ジビニルベンゼンであることを特徴とする、請求項1に記載の絶縁被覆炭素繊維。
  3.  前記2つ以上の重合性官能基を有する重合性化合物が、(メタ)アクリレート化合物であることを特徴とする、請求項1に記載の絶縁被覆炭素繊維。
  4.  前記絶縁被覆の膜厚が、50nm以上であることを特徴とする、請求項1~3のいずれか1項に記載の絶縁被覆炭素繊維。
  5.  二重結合を有する一種又は二種以上の重合性化合物、炭素繊維、及び、反応開始剤を、溶媒と混合した後、
     該混合物を撹拌しながらエネルギーを付与して、前記炭素繊維の少なくとも一部に、前記重合性化合物からなる重合物の被覆を形成することを特徴とする、絶縁被覆炭素繊維の製造方法。
  6.  前記溶媒は、前記重合性化合物は溶解するが、前記重合性化合物からなる重合物は溶解しないものであることを特徴とする、請求項5に記載の絶縁被覆炭素繊維の製造方法。
  7.  加熱により前記エネルギーを付与し、加熱時の前記混合物の温度を0~200℃とすることを特徴とする、請求項5又は6に記載の絶縁被覆炭素繊維の製造方法。
  8.  請求項1~4のいずれか1項に記載の絶縁被覆炭素繊維を含むことを特徴とする、炭素繊維含有組成物。
  9.  請求項8に記載の炭素繊維含有組成物を備えることを特徴とする、熱伝導性シート。
PCT/JP2016/073214 2015-08-07 2016-08-01 絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート WO2017026428A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680043567.4A CN107849803B (zh) 2015-08-07 2016-08-01 绝缘被覆碳纤维、绝缘被覆碳纤维的制造方法、含有碳纤维的组合物和导热片
US15/749,899 US20180230643A1 (en) 2015-08-07 2016-08-01 Insulation coated carbon fiber, method of producing insulation coated carbon fiber, carbon fiber-containing composition, and thermally conductive sheet
EP16835125.2A EP3333308A4 (en) 2015-08-07 2016-08-01 ISOLATED COATED CARBON FIBER, METHOD FOR PRODUCING AN INSULATED COATED CARBON FIBER, CARBON FIBER COMPOSITION AND THERMAL FILM
KR1020177037233A KR102117549B1 (ko) 2015-08-07 2016-08-01 절연 피복 탄소섬유, 절연 피복 탄소섬유의 제조 방법, 탄소섬유 함유 조성물 및 열전도성 시트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-157335 2015-08-07
JP2015157335 2015-08-07
JP2016-005513 2016-01-14
JP2016005513A JP6246242B2 (ja) 2015-08-07 2016-01-14 絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート

Publications (1)

Publication Number Publication Date
WO2017026428A1 true WO2017026428A1 (ja) 2017-02-16

Family

ID=57984404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073214 WO2017026428A1 (ja) 2015-08-07 2016-08-01 絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート

Country Status (1)

Country Link
WO (1) WO2017026428A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122817A1 (ja) * 2016-01-14 2017-07-20 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
CN111979629A (zh) * 2020-07-13 2020-11-24 安徽宜民服饰股份有限公司 特种服装专用碳纤维面料的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868892A (ja) * 1971-12-24 1973-09-19
JPS5298063A (en) * 1976-02-12 1977-08-17 Toray Industries Modification of surface condition
JPS5691071A (en) * 1979-12-18 1981-07-23 Koushirou Hashimoto Surface modification of inorganic fiber
JP2005105465A (ja) * 2003-09-30 2005-04-21 Techno Network Shikoku Co Ltd 機能化繊維および機能化繊維の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868892A (ja) * 1971-12-24 1973-09-19
JPS5298063A (en) * 1976-02-12 1977-08-17 Toray Industries Modification of surface condition
JPS5691071A (en) * 1979-12-18 1981-07-23 Koushirou Hashimoto Surface modification of inorganic fiber
JP2005105465A (ja) * 2003-09-30 2005-04-21 Techno Network Shikoku Co Ltd 機能化繊維および機能化繊維の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333308A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122817A1 (ja) * 2016-01-14 2017-07-20 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
US11296007B2 (en) 2016-01-14 2022-04-05 Dexerials Corporation Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device
CN111979629A (zh) * 2020-07-13 2020-11-24 安徽宜民服饰股份有限公司 特种服装专用碳纤维面料的加工方法
CN111979629B (zh) * 2020-07-13 2023-08-25 安徽宜民服饰股份有限公司 特种服装专用碳纤维面料的加工方法

Similar Documents

Publication Publication Date Title
JP6813641B2 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
JP6246242B2 (ja) 絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート
KR101947333B1 (ko) 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
WO2017026428A1 (ja) 絶縁被覆炭素繊維、絶縁被覆炭素繊維の製造方法、炭素繊維含有組成物及び熱伝導性シート
JP2012175004A (ja) 接続構造体の製造方法
KR101433575B1 (ko) 그래핀이 담지된 투명성을 나타내는 미립자와 이를 이용한 열전도성 접착제 및 그의 제조방법
WO2017122817A1 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
WO2017130740A1 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
WO2023228964A1 (ja) 中空粒子、樹脂組成物、樹脂成形体、封止用樹脂組成物、硬化物、及び半導体装置
JP6893399B2 (ja) 絶縁被覆粒子、絶縁被覆粒子の製造方法、粒子含有組成物、及び異方性導電接着剤
JP6145004B2 (ja) 接続構造体の製造方法、bステージ化された異方性導電材料及び接続構造体
JP6145003B2 (ja) 接続構造体の製造方法、bステージ化された異方性導電材料及び接続構造体
JP2007001038A (ja) 熱伝導性を有する複層構造シート状物
JP2023086486A (ja) 中空粒子の製造方法、及び樹脂組成物の製造方法
JP2011168645A (ja) 多孔質体の製造方法並びに絶縁電線及びその製造方法
JP2011174040A (ja) 含水吸水性ポリマー分散紫外線硬化型樹脂組成物、及びこれを用いた、多孔質物、絶縁電線とその製造方法、及び絶縁被覆電線、同軸ケーブル
TW202003590A (zh) 使用低量界面活性劑製造多顆交聯型高分子微粒子之方法
JP2006241339A (ja) ポリアニリン含有組成物およびその製造方法
JP2012184386A (ja) 吸水性微粒子及び電線の製造方法
JP2011246576A (ja) 多孔質体の製造方法及びこの多孔質体を用いた絶縁電線並びに樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037233

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15749899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016835125

Country of ref document: EP