WO2017024894A1 - 一种锂电池负极材料的制备方法 - Google Patents

一种锂电池负极材料的制备方法 Download PDF

Info

Publication number
WO2017024894A1
WO2017024894A1 PCT/CN2016/086290 CN2016086290W WO2017024894A1 WO 2017024894 A1 WO2017024894 A1 WO 2017024894A1 CN 2016086290 W CN2016086290 W CN 2016086290W WO 2017024894 A1 WO2017024894 A1 WO 2017024894A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
negative electrode
electrode material
lithium
asphalt
Prior art date
Application number
PCT/CN2016/086290
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017024894A1 publication Critical patent/WO2017024894A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion batteries, in particular to a method for preparing a modified lithium titanate composite anode material doped with metal tin.
  • the inner layer of the anode material prepared by the method is lithium titanate and the outer layer is made of asphalt.
  • a composite negative electrode material having a core-shell structure composed of a composite coating layer formed by a resin and tin powder.
  • lithium-ion batteries have developed rapidly.
  • the commercial lithium ion battery anode material is made of graphite-based carbon material, has low lithium insertion/deintercalation potential, suitable reversible capacity, rich resources, and low price, and is an ideal anode material for lithium ion batteries.
  • its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • SEI solid electrolyte membrane
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
  • the second is that the electrolyte is easily embedded in the lithium ion intercalation process.
  • the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
  • the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation.
  • the stability is degraded.
  • the amorphous carbon formed by pyrolysis of the resin-based polymer has a low degree of order and a loose structure, and lithium ions can be relatively freely embedded and extracted therein without a large influence on the structure thereof.
  • lithium titanate Compared with carbon negative electrode materials, lithium titanate has many advantages. Among them, the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor. At the same time, the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is more than 160mAh/g, and it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
  • tin is one of the most promising anode materials for carbon materials because tin has a maximum capacity of up to 4200 mAh/g; and has a smooth discharge platform similar to graphite.
  • tin similar to other high-capacity metals, tin has very poor cycle performance and cannot perform normal charge and discharge cycles.
  • tin When tin is used as a negative electrode material, it will be accompanied by a huge volume change, resulting in collapse of the material structure and spalling of the electrode material, causing the electrode material to lose electrical contact, thereby causing a sharp drop in the cycle performance of the electrode, and finally causing electrode failure, thus in lithium It is difficult to practically use in an ion battery.
  • An object of the present invention is to provide a method for preparing a negative electrode material for a lithium battery, wherein the inner layer of the negative electrode material is lithium titanate, and the outer layer is a core-shell structure composed of a composite coating layer formed of asphalt and a resin and tin powder.
  • Composite anode material The composite material prepared by the method maintains the high specific capacity characteristic of tin, and simultaneously modifies the lithium titanate, increases the overall cycle stability of the material, and improves the energy density of the negative electrode material of the lithium ion battery, so that the negative electrode
  • the material has a higher specific capacity than the carbon negative electrode materials commonly used in commercial lithium ion batteries, and meets the increasing energy density requirements of various portable electric devices for batteries.
  • the present invention is implemented by the following technical solutions.
  • a method for preparing a lithium battery anode material comprising the steps of:
  • lithium titanate according to the total weight of resin and asphalt: lithium titanate in a ratio of 1:4 to 20, and add it to a mixing device with stirring and heating function, and the stirring speed is 60-180 rpm. , the heating temperature is 40 ° C ⁇ 140 ° C, the temperature is slightly lower than the temperature of the resin softening point;
  • step 5 Pass the uniformly mixed liquid in step 2 through an atomizing device, and add to the mixing device of step 4 in which lithium titanate and tin powder are mixed. After mixing for 2 to 5 hours, the heating is stopped and the temperature is lowered to a normal temperature at a rate of 5 to 20 ° C / min, at which time the resin has been cured;
  • step 5 The powder obtained in step 5 is heated to 700-900 ° C at a rate of 1 to 5 ° C / min under the protection of an inert gas, and then kept for 1 to 5 hours, naturally cooled, and sieved after cooling.
  • the tin-carbon composite anode material obtained by the invention is heated to 700-900 ° C at a rate of 1 to 5 ° C / min under the protection of an inert gas, and then kept for 1 to 5 hours, naturally cooled, and sieved after cooling.
  • the asphalt described in the step 1 includes one or more mixtures of coal tar pitch, petroleum pitch, modified pitch, mesophase pitch, and condensed polycyclic polynuclear aromatic hydrocarbon obtained by upgrading the pitch.
  • the softening point is above 100 °C.
  • the resin described in the step 1 is a thermoplastic resin, and one or a mixture of one or more of a furan resin, a urea resin, a pyrimidine resin, a phenol resin, an epoxy resin, and a polyoxymethylene acrylate resin.
  • the stirring time described in the step 1 is 80 to 130 minutes, and the final temperature of the heating is 30 to 40 ° C higher than the highest softening point of the pitch and the resin in the component.
  • the curing agent described in the step 2 is hexamethylenetetramine, diethylaminopropylamine, trimethylhexamethylenediamine, dihexyltriamine, and a thermosetting resin having a curing action.
  • a thermosetting resin having a curing action.
  • the tin powder described in the step 4 has an average particle diameter of ⁇ 100 nm.
  • the dispersion solvent described in the step 4 is one of ethanol, isopropanol, carbon disulfide, toluene, xylene or distilled water with a dispersion medium.
  • the atomization in the step 5 is one of the atomization devices operating by the principle of ultrasonic atomization, centrifugal atomization, and high pressure atomization.
  • the inert gas is a mixture of one or both of nitrogen, argon and helium.
  • the composite coating material of the present invention through the performance of asphalt and resin can not only uniformly bind lithium titanate and tin as a binder, but also functions as a surface coating after carbonization. This method greatly improves the cycle performance of tin.
  • the most prominent innovation of the present invention is that after the composite material of the cladding material is composited, the tin powder and the lithium titanate are coated; the uniformity of the mixing of the precursors of the plurality of coating materials is ensured, and no solvent is required.
  • Environmentally friendly in addition, the process is simple, the cost is low, and it is easy to industrialize production;
  • the invention adds a certain amount of resin curing agent to the composite coating material, and after curing, the resin can play a skeleton supporting role to prevent the asphalt from melting during the carbonization process and causing the powder to form a sticky joint block after the carbonization, and the need The phenomenon of crushing the material to cause the coating of the material to be broken;
  • the amorphous carbon formed by the high-temperature carbonization of the resin has strong corrosion resistance to the electrolyte.
  • the interlayer spacing of the amorphous carbon is large, and the lithium ions can enter and exit quickly, satisfying the high-rate charge and discharge of the lithium ion battery.
  • Requirement, followed by resin carbonization The pores and voids formed later can buffer the volume effect of the tin powder during charging and discharging, and ensure the overall stability of the material;
  • the invention has obvious superiority as the coating material of the resin-based hard carbon precursor or the asphalt-based soft carbon precursor, and the asphalt carbon and the resin carbon are pinned together, and the complementation is insufficient. Effectively increase the strength of the coating to ensure the cycle stability of the material.
  • the mesophase pitch (softening point 250 ° C) and the phenolic resin (softening point 110 ° C) were added together in a ratio of 1:3 (3.5 Kg and 10.5 Kg) to a 20 L kneading kettle, and the temperature was raised and heated to 300 ° C.
  • the mixed liquid of the uniformly mixed asphalt, resin and curing agent is sprayed into the lithium titanate stirring device through the ultrasonic atomizing device until the mixed liquid is completely sprayed, and after mixing for another 3 hours, the heating is stopped and followed. 10
  • the rate of /min is lowered to the normal temperature state, at which time the resin has been solidified; finally, the uniformly mixed powder is heated to 900 ° C at a rate of 5 ° C / min, kept for 1 hour, then cooled to room temperature, and sieved to obtain the present
  • the invention discloses a tin-carbon composite anode material.
  • the initial discharge capacity of the electrode material reached 401 mAh/g, and the capacity after 100 cycles was still 384 mAh/g, and the retention rate was 95.7%.
  • Coal tar pitch (softening point 120 ° C) and phenolic resin (softening point 110 ° C) were added together in a ratio of 1:3 (3 Kg and 12 Kg) to a 20 L kneading kettle, and the heating was started to be heated to 150 ° C in asphalt and resin.
  • the mixed liquid of the uniformly mixed asphalt, resin and curing agent is sprayed to the titanic acid through an ultrasonic atomizing device.
  • the heating is stopped and the temperature is lowered to a normal temperature state at a rate of 15 ° C / min, at which time the resin has been solidified; finally, the uniform powder is mixed to 3
  • the rate of ° C / min was raised to 850 ° C, held for 2 hours, and then cooled to room temperature, and sieved to obtain the tin-carbon composite anode material of the present invention.
  • the electrode material test conditions were as described in Example 1, charged and discharged at a current density of 50 mA/g.
  • the initial discharge capacity of the electrode material reached 392 mAh/g, and the capacity after 100 cycles was still 373 mAh/g, and the retention rate was 95.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种锂电池负极材料的制备方法,该负极材料内层为钛酸锂,外层是由沥青和树脂、锡粉共同形成的复合包覆层组成的具有核壳结构的复合负极材料。本方法制备的复合材料保持了锡的高比容量特性,同时对钛酸锂起到了改性作用,增加了材料整体的循环稳定性,提高了锂离子电池的负极材料的能量密度,使该负极材料比目前商业上锂离子电池中常用的碳负极材料具有更高的比容量,满足各类便携式用电设备对电池日益提高的能量密度要求。

Description

一种锂电池负极材料的制备方法 技术领域
本发明涉及锂离子电池领域,具体为一种用于掺杂有金属锡的改性钛酸锂复合负极材料的制备方法,该方法制备的负极材料内层为钛酸锂,外层是由沥青和树脂、锡粉共同形成的复合包覆层组成的具有核壳结构的复合负极材料。
背景技术
自从1990年日本索尼公司率先研制成功锂离子电池并将其商品化以来,锂离子电池得到了迅猛发展。如今锂离子电池已经广泛地应用于民用及军用的各个领域。随着科技的不断进步,人们对电池的性能提出了更多更高的要求:电子设备的小型化和个性化发展,需要电池具有更小的体积和更高的比能量输出;航空航天能源要求电池具有循环寿命,更好的低温充放电性能和更高的安全性能;电动汽车需要大容量、低成本、高稳定性和安全性能的电池。
目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。同时,石墨作为负极材料时,在首次充放电过程中在其表面形成一层固体电解质膜(SEI)。固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其二是在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致石墨片层剥落,尤其在含有PC的电解液中,石墨片层脱落将形成新界面,导致进一步SEI形成,不可逆容量增加,同时循环稳定性下降。而树脂类聚合物热解后形成的无定形碳的有序度低,结构比较松散,锂离子能相对自由地在其中嵌入和脱出而不会对其结构产生大的影响。
与碳负电极材料相比,钛酸锂有很多的优势,其中,锂离子在钛酸锂中的脱嵌是可逆的,而且锂离子在嵌入或脱出钛酸锂的过程中,其晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,能够避免充放电循环中由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,具有比碳负极更优良的循环性能;但是,由于钛酸锂是一种绝缘材料,其电导率低,从而导致在锂电中的应用存在倍率性能较差的问题,同时钛酸锂材料理论比容量为175mAh/g,实际比容量大于160mAh/g,具有克容量较低等缺点,因此,对于钛酸锂进行改性是十分必要的。
另外,锡是一种最有希望取代碳材料的负极材料,这是因为锡具有高达4200mAh/g的最高容量;并且具有类似于石墨的平稳的放电平台。但与其它高容量金属相似,锡的循环性能非常差,不能进行正常的充放电循环。锡作为负极材料使用时,会伴随着巨大的体积变化,导致材料结构的崩塌和电极材料的剥落而使电极材料失去电接触,从而造成电极的循环性能急剧下降,最后导致电极失效,因此在锂离子蓄电池中很难实际应用。研究表明,小粒径的锡或其合金无论在容量上还是在循环性能上都有很大的提高,当合金材料的颗粒达到纳米级时,充放电过程中的体积膨胀会大大减轻,性能也会有所提高,但是纳米材料具有较大的表面能,容易发生团聚,反而会使充放电效率降低并加快容量的衰减,从而抵消了纳米颗粒的优点;采用各种沉积方法制备的锡膜能够在一定程度上延长材料的循环寿命,却不能消除其较高的首次不可逆容量,从而制约了这种材料的实用化。另外一种改善锡负极性能的研究趋势就是制备锡与其它材料的复合材料或合金。
发明内容
本发明的目的是提供一种锂电池负极材料的制备方法,该负极材料内层为钛酸锂,外层是由沥青和树脂、锡粉共同形成的复合包覆层组成的具有核壳结构的复合负极材料。本方法制备的复合材料保持了锡的高比容量特性,同时对钛酸锂起到了改性作用,增加了材料整体的循环稳定性,提高了锂离子电池的负极材料的能量密度,使该负极材料比目前商业上锂离子电池中常用的碳负极材料具有更高的比容量,满足各类便携式用电设备对电池日益提高的能量密度要求。
为实现上述目的,本发明所采用以下的技术方案来实现。
一种锂电池负极材料的制备方法,包括以下步骤:
1、将软化点在100℃~300℃之间的沥青和软化点在50℃~150℃之间的树脂按1:1.5~4的重量比加入到具有加热和搅拌装置的捏合釜中,以10~40℃/min的速率加热升温至沥青和树脂均熔化成液体;
2、然后加入占树脂量2%~5%的固化剂,在惰性气体保护下,不断搅拌至各种组分混合均匀;
3、按照树脂和沥青总重量:钛酸锂的重量为1:4~20的比例称取钛酸锂,加入到带有搅拌和加热功能的混合装置中,搅拌速度为60~180转/分钟,加热温度为40℃~140℃,该温度略低于树脂软化点的温度;
4、按照钛酸锂:锡粉:分散溶剂=10:0.5~2:1.5~6的比例称取锡粉和分散溶剂,将锡粉加入到分散溶剂中,并超声分散均匀后加入到步骤3中的钛酸锂混合装置中,搅拌混合均匀;
5、将步骤2中混合均匀的液体通过雾化装置,加入到步骤4混合有钛酸锂和锡粉的混合装置 中,在混合2~5小时后,停止加热并按照5~20℃/min的速率降温至常温状态下,此时树脂已完成固化;
6、将步骤5中所得的粉体,在惰性气体的保护下,以1~5℃/min的速度升温至700~900℃,再保温1~5h,自然降温,冷却后过筛即得到采用本发明所制得的锡碳复合负极材料。
本发明中,步骤1中所述的沥青包括煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的一种或一种以上的混合物,软化点在100℃以上。
本发明中,步骤1中所述的树脂为热塑性树脂,包括呋喃树脂、脲醛树脂、嘧胺树脂、酚醛树脂、环氧树脂和聚甲醛丙烯酸甲酯树脂中的一种或一种以上的混合物。
本发明中,步骤1中所述的搅拌的时间为80~130min,加热的最终温度比组分中沥青和树脂的最高软化点高30~40℃。
本发明中,步骤2中所述的固化剂为六次甲基四胺、二乙胺基丙胺、三甲基六亚甲基二胺、二已基三胺、具有固化作用的热固性树脂中的一种或一种以上的混合物。
本发明中,步骤4中所述的锡粉的平均粒径≤100nm。
本发明中,步骤4中所述的分散溶剂为乙醇、异丙醇、二硫化碳、甲苯、二甲苯或者带有分散介质的蒸馏水中的一种。
本发明中,步骤5中雾化采用的是利用超声雾化、离心雾化、高压雾化原理工作的雾化装置中的一种。
在上述的制备方法中,所述的惰性气体为氮气、氩气、氦气中的一种或两种的混合气。
锡粉作为负极活性材料时,充放电过程中颗粒的体积变化很大,导致锡颗粒粉化,电极循环性非常差。本发明通过沥青和树脂性能的复合包覆材料不但可以作为粘结剂均匀结合钛酸锂和锡,而且碳化后还起到表面涂层的作用。此方法很大程度上改善锡的循环性能。
与现有技术,本发明的有益效果是:
1、本发明最突出的创新点是将包覆材料前驱体复合处理后,再包覆锡粉和钛酸锂;保证了多种包覆材料前驱体混合的均匀性,同时不需要任何溶剂,对环境友好;另外,工艺简单,成本低,易工业化生产;
2、本发明通过对复合包覆材料添加一定量的树脂固化剂,树脂经过固化后,可以起到骨架支撑作用,防止碳化过程中沥青发生融并导致碳化后粉体出现粘连结块,而需要对其进行破碎处理致使材料包覆层破坏的现象;
3、树脂经过高温碳化后形成的无定形碳,对电解液具有较强的抗腐蚀性能力,同时,无定形炭的层间距较大,锂离子能快速进出,满足锂离子电池高倍率充放电的要求,其次树脂碳化 后形成的孔洞和空隙能够缓冲锡粉在充放电时产生的体积效应,保证材料的整体稳定性能;
4、本发明与单独包覆树脂类硬炭前躯体或者沥青类软炭前躯体的作为包覆材料相比,具有明显的优越性,沥青炭和树脂炭相互钉扎在一起,互补不足,能有效提高包覆层的强度,保证材料的循环稳定性。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面进一步阐述本发明。
将中间相沥青(软化点250℃)和酚醛树脂(软化点110℃)按照1:3(3.5Kg和10.5Kg)的比例一起加入到在20L的捏合釜中,开始升温加热到300℃,在沥青和树脂均熔化成液体后,然后按照树脂重量3%的比例添加0.315Kg的固化剂—六次甲基四胺,不断搅拌至各组分混合均匀;按照沥青和树脂总重量:钛酸锂重量=1:9的比例称取126Kg的钛酸锂,加入带有搅拌和加热功能的混合装置中,搅拌并升温至100℃;按照钛酸锂:锡粉:分散溶剂=10:2:3的比例称取18.9Kg平均粒径为50nm的锡粉和37.8公斤的酒精溶液,将锡粉加入到酒精溶液后,通过超声波装置进行分散,分散均有后,加入上述混合钛酸锂的装置中后搅拌120min,然后将已混合均匀的沥青、树脂、固化剂的混合液体通过超声雾化装置喷洒到钛酸锂搅拌装置中,直至混合液体全部喷洒完,再混合3小时后,停止加热并按照10℃/min的速率降温至常温状态下,此时树脂已完成固化;最后将混合均匀的粉体以5℃/min的速率升温至900℃,保温1小时,然后冷却至室温,经筛分得到本发明的锡碳复合负极材料。
将该电极材料作为工作电极,锂片为对电极,1M LiPF6/DMC:EC:DEC=1:1:1,溶液为电解液,聚丙烯微孔膜为隔膜,组装成模拟电池,以50mA/g的电流密度充放电。该电极材料的的首次放电容量达401mAh/g,100次循环后的容量仍有384mAh/g,保持率为95.7%。
实施例2
将煤沥青(软化点120℃)和酚醛树脂(软化点110℃)按照1:3(3Kg和12Kg)的比例一起加入到在20L的捏合釜中,开始升温加热到150℃,在沥青和树脂均熔化成液体后,然后按照树脂重量4.5%的比例添加0.675Kg的固化剂—三甲基六亚甲基二胺,不断搅拌至各组分混合均匀;按照沥青和树脂总重量:钛酸锂重量=1:10的比例称取150Kg的钛酸锂,加入带有搅拌和加热功能的混合装置中,搅拌并升温至105℃,按照钛酸锂:锡粉:分散溶剂=10:1.5:4的比例称取30Kg平均粒径为50nm的锡粉和60公斤的异丙醇溶液,将锡粉加入到异丙醇溶液后,通过超声波装置进行分散,分散均有后,加入上述混合钛酸锂的装置中后搅拌150min,然后将已混合均匀的沥青、树脂、固化剂的混合液体通过超声雾化装置喷洒到钛酸 锂搅拌装置中,直至混合液体全部喷洒完,再混合2小时后,停止加热并按照15℃/min的速率降温至常温状态下,此时树脂已完成固化;最后将混合均匀的粉体以3℃/min的速率升温至850℃,保温2小时,然后冷却至室温,经筛分得到本发明的锡碳复合负极材料。
该电极材料测试条件如实施例1中所述,以50mA/g的电流密度充放电。该电极材料的首次放电容量达392mAh/g,100次循环后的容量仍有373mAh/g,保持率为95.1%。
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

  1. 一种锂电池负极材料的制备方法,包括以下步骤:
    (1)将软化点在100℃~300℃之间的沥青和软化点在50℃~150℃之间的树脂按1:1.5~4的重量比加入到具有加热和搅拌装置的捏合釜中,以10~40℃/min的速率加热升温至沥青和树脂均熔化成液体;
    (2)然后加入占树脂量2%~5%的固化剂,在惰性气体保护下,不断搅拌至各种组分混合均匀;
    (3)按照树脂和沥青总重量:钛酸锂的重量为1:4~20的比例称取钛酸锂,加入到带有搅拌和加热功能的混合装置中,搅拌速度为60~180转/分钟,加热温度为40℃~140℃,该温度略低于树脂软化点的温度;
    (4)按照钛酸锂:锡粉:分散溶剂=10:0.5~2:1.5~6的比例称取锡粉和分散溶剂,将锡粉加入到分散溶剂中,并超声分散均匀后加入到步骤3中的钛酸锂混合装置中,搅拌混合均匀;
    (5)将步骤2中混合均匀的液体通过雾化装置,加入到步骤4混合有钛酸锂和锡粉的混合装置中,在混合2~5小时后,停止加热并按照5~20℃/min的速率降温至常温状态下,此时树脂已完成固化;
    (6)将步骤5中所得的粉体,在惰性气体的保护下,以1~5℃/min的速度升温至700~1900℃,再保温1~5h,自然降温,冷却后过筛即得到采用本发明所制得的改性钛酸锂负极材料。
  2. 一种锂电池负极材料的制备方法,其特征是:步骤(1)中所述的沥青包括煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的一种或一种以上的混合物,软化点在100℃以上。
  3. 一种锂电池负极材料的制备方法,其特征是:步骤(1)中所述的树脂为热塑性树脂,包括呋喃树脂、脲醛树脂、嘧胺树脂、酚醛树脂、环氧树脂和聚甲醛丙烯酸甲酯树脂中的一种或一种以上的混合物。
  4. 一种锂电池负极材料的制备方法,其特征是:步骤(1)中所述的搅拌的时间为80~130min,加热的最终温度比组分中沥青和树脂的最高软化点高30~40℃。
  5. 一种锂电池负极材料的制备方法,其特征是:步骤(2)中所述的固化剂为六次甲基四胺、二乙胺基丙胺、三甲基六亚甲基二胺、二已基三胺、具有固化作用的热固性树脂中的一种或一种以上的混合物。
  6. 一种锂电池负极材料的制备方法,其特征是:步骤(4)中所述的锡粉的平均粒径≤100nm。
  7. 一种锂电池负极材料的制备方法,其特征是:步骤(4)中所述的分散溶剂为乙醇、异丙醇、二硫化碳、甲苯、二甲苯或者带有分散介质的蒸馏水中的一种。
  8. 一种锂电池负极材料的制备方法,其特征是:步骤(5)中雾化采用的是利用超声雾化、离心雾化、高压雾化原理工作的雾化装置中的一种。
PCT/CN2016/086290 2015-08-07 2016-06-17 一种锂电池负极材料的制备方法 WO2017024894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510480853.4 2015-08-07
CN201510480853.4A CN105140479A (zh) 2015-08-07 2015-08-07 一种锂电池负极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017024894A1 true WO2017024894A1 (zh) 2017-02-16

Family

ID=54725754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086290 WO2017024894A1 (zh) 2015-08-07 2016-06-17 一种锂电池负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN105140479A (zh)
WO (1) WO2017024894A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487595A (zh) * 2023-06-16 2023-07-25 国网浙江省电力有限公司宁波供电公司 一种钠离子储能电池用高容量复合电极材料的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140479A (zh) * 2015-08-07 2015-12-09 田东 一种锂电池负极材料的制备方法
CN106328898B (zh) * 2016-10-10 2019-05-14 广东凯金新能源科技股份有限公司 模板法制备锂离子电池阳极复合材料的方法
CN111871561A (zh) * 2020-08-04 2020-11-03 苏州兴业材料科技南通有限公司 一种防止低软化点酚醛树脂结块的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618073A (zh) * 2012-12-14 2014-03-05 深圳市斯诺实业发展有限公司永丰县分公司 一种硅碳复合负极材料的制备方法
CN104253267A (zh) * 2013-06-27 2014-12-31 上海电气集团股份有限公司 碳包覆尖晶石钛酸锂材料及其生产方法和应用
CN105140479A (zh) * 2015-08-07 2015-12-09 田东 一种锂电池负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618073A (zh) * 2012-12-14 2014-03-05 深圳市斯诺实业发展有限公司永丰县分公司 一种硅碳复合负极材料的制备方法
CN104253267A (zh) * 2013-06-27 2014-12-31 上海电气集团股份有限公司 碳包覆尖晶石钛酸锂材料及其生产方法和应用
CN105140479A (zh) * 2015-08-07 2015-12-09 田东 一种锂电池负极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487595A (zh) * 2023-06-16 2023-07-25 国网浙江省电力有限公司宁波供电公司 一种钠离子储能电池用高容量复合电极材料的制备方法
CN116487595B (zh) * 2023-06-16 2023-09-08 国网浙江省电力有限公司宁波供电公司 一种钠离子储能电池用高容量复合电极材料的制备方法

Also Published As

Publication number Publication date
CN105140479A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017024903A1 (zh) 一种锡碳复合负极材料的制备方法
US20190051894A1 (en) Silicon Negative Material, Silicon Negative Material Preparation Method, Negative Electrode Plate, And Lithium-Ion Battery
CN103094533B (zh) 一种多核型核壳结构硅碳复合负极材料及制备方法
WO2017206544A1 (zh) 一种锂离子电池人造石墨负极材料的制备方法
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
CN103594691A (zh) 一种高容量硅碳负极材料的制备方法
CN104779372A (zh) 一种石墨细粉作为锂离子电池负极材料的循环利用方法
WO2017024897A1 (zh) 一种改性锂电池负极材料的制备方法
CN103078090A (zh) 一种锂离子动力电池复合负极材料及其制备方法
CN107946568B (zh) 一种高性能氧化亚硅/硬碳/石墨复合材料及其制备方法与应用
CN103259005B (zh) 一种高容量高倍率锂离子电池负极材料的制备方法
CN105720258B (zh) 锂离子电池负极材料及其制备方法和应用、锂离子电池
CN102231434A (zh) 一种锂离子电池改性天然石墨负极材料及其制备方法
CN103311514A (zh) 一种改性锂离子电池石墨负极材料的制备方法
WO2016169150A1 (zh) 一种石墨细粉掺杂处理用作负极材料的方法
WO2017206299A1 (zh) 一种锂离子电池改性石墨负极材料的制备方法
WO2017024719A1 (zh) 一种高容量锂电池负极材料的制备方法
CN102522561A (zh) 一种锂离子电池负极材料及其制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
WO2017024894A1 (zh) 一种锂电池负极材料的制备方法
WO2017024775A1 (zh) 一种改性钛酸锂负极材料的制备方法
CN103296257A (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
WO2017024891A1 (zh) 一种锂离子动力电池负极材料的制备方法
CN104766954A (zh) 人造石墨细粉循环利用作为负极材料的方法
WO2016201982A1 (zh) 一种锂离子电池石墨负极浆料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16834518

Country of ref document: EP

Kind code of ref document: A1