WO2017024862A1 - 流体机械、换热设备和流体机械的运行方法 - Google Patents

流体机械、换热设备和流体机械的运行方法 Download PDF

Info

Publication number
WO2017024862A1
WO2017024862A1 PCT/CN2016/084318 CN2016084318W WO2017024862A1 WO 2017024862 A1 WO2017024862 A1 WO 2017024862A1 CN 2016084318 W CN2016084318 W CN 2016084318W WO 2017024862 A1 WO2017024862 A1 WO 2017024862A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
rotating shaft
fluid machine
cylinder
machine according
Prior art date
Application number
PCT/CN2016/084318
Other languages
English (en)
French (fr)
Inventor
胡余生
徐嘉
杜忠诚
任丽萍
杨森
孔令超
邓丽颖
张荣婷
张金圈
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to US15/751,038 priority Critical patent/US10941771B2/en
Priority to EP16834487.7A priority patent/EP3333427B1/en
Priority to KR1020187006686A priority patent/KR101990259B1/ko
Priority to JP2018506420A priority patent/JP6682616B2/ja
Publication of WO2017024862A1 publication Critical patent/WO2017024862A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B13/00Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
    • F01B13/02Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with one cylinder only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/18Control of, monitoring of, or safety arrangements for, machines or engines characterised by varying the volume of the working chamber
    • F01C20/22Control of, monitoring of, or safety arrangements for, machines or engines characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Definitions

  • the invention relates to the technical field of heat exchange systems, in particular to a fluid machine, a heat exchange device and a method for operating a fluid machine.
  • Fluid machinery in the prior art includes a compressor, an expander, and the like. Take the compressor as an example.
  • the position of the center of mass of the rotary shaft and the cylinder of the piston type compressor is varied during the movement.
  • the motor drives the crankshaft to output power, and the crankshaft drives the piston to reciprocate in the cylinder to compress the gas or the liquid to perform work for the purpose of compressing the gas or the liquid.
  • the traditional piston compressor has many defects: due to the presence of the suction valve piece and the exhaust valve piece, the suction and exhaust resistance are increased, and the suction and exhaust noise is increased; the cylinder of the compressor is subjected to the lateral force. Large, lateral force does useless work, reducing compressor efficiency; crankshaft drives the piston to reciprocate, the eccentric mass is large, resulting in large compressor vibration; the compressor drives one or more pistons through the crank linkage mechanism, the structure is complex; the crankshaft and The piston is subjected to a large lateral force, and the piston is easily worn, resulting in a decrease in piston sealing performance.
  • the existing compressor has a volumetric efficiency due to the existence of a clearance volume, a large leak, and the like, and it is difficult to further improve.
  • the main object of the present invention is to provide a fluid machine, a heat exchange device and a fluid machine operating method to solve the problem of unstable compressor operation caused by the eccentricity of the cylinder and the rotating shaft in the prior art.
  • a fluid machine comprising: a rotating shaft; a cylinder, an axis of the rotating shaft is eccentrically disposed with an axial center of the cylinder and an eccentric distance is fixed; and a piston assembly having a variable volume chamber
  • the piston assembly is pivotally disposed within the cylinder and the shaft is drivingly coupled to the piston assembly to vary the volume of the variable volume chamber.
  • the fluid machine further includes an upper flange and a lower flange, the cylinder is sandwiched between the upper flange and the lower flange;
  • the piston assembly includes: a piston sleeve, the piston sleeve is pivotally disposed in the cylinder; the piston and the piston The sliding sleeve is disposed in the piston sleeve to form a variable volume chamber, and the variable volume chamber is located in the sliding direction of the piston.
  • the piston has a sliding groove, and the rotating shaft slides in the sliding groove, and the piston rotates with the rotating shaft under the driving of the rotating shaft and simultaneously reciprocates in the piston sleeve in a direction perpendicular to the axis of the rotating shaft.
  • the piston has a sliding hole penetratingly disposed in the axial direction of the rotating shaft, and the rotating shaft passes through the sliding hole, and the piston rotates with the rotating shaft under the driving of the rotating shaft and simultaneously reciprocates in the piston sleeve in a direction perpendicular to the axis of the rotating shaft.
  • the fluid machine further comprises a piston sleeve shaft
  • the piston sleeve shaft is fixedly connected with the piston sleeve through the upper flange, the rotating shaft sequentially passes through the lower flange and the cylinder and the piston slide and cooperate, and under the driving action of the piston sleeve shaft, the piston sleeve Synchronous rotation with the piston sleeve shaft to drive the piston to slide within the piston sleeve to change the volume of the variable volume chamber, while the shaft rotates under the driving action of the piston.
  • the sliding hole is a long hole or a waist hole.
  • the piston has a sliding hole disposed through the axial direction of the rotating shaft, and the rotating shaft passes through the sliding hole, and the rotating shaft rotates with the piston sleeve and the piston under the driving of the piston, and the piston is in the piston sleeve along the axis perpendicular to the rotating shaft. Slide back and forth.
  • the piston sleeve has a guiding hole disposed in a radial direction of the piston sleeve, and the piston is slidably disposed in the guiding hole to reciprocate linearly.
  • the piston has a pair of arcuate surfaces symmetrically disposed along the median plane of the piston, the arcuate surface being adapted to fit the inner surface of the cylinder, and the radius of curvature of the arcuate surface of the arcuate surface is equal to twice the inner diameter of the cylinder.
  • the piston is cylindrical.
  • the orthographic projection of the guiding hole at the lower flange has a pair of parallel straight segments, and a pair of parallel straight segments are formed by projecting a pair of parallel inner wall faces of the piston sleeve, and the piston has a pair with the guiding holes.
  • the parallel inner wall faces are shaped to fit and slip fit to the outer profile.
  • the piston sleeve has a connecting shaft extending toward one side of the lower flange, and the connecting shaft is embedded in the connecting hole of the lower flange.
  • the upper flange and the rotating shaft are disposed concentrically, and the axial center of the upper flange is eccentrically disposed with the axial center of the cylinder, and the lower flange is disposed coaxially with the cylinder.
  • the fluid machine further includes a support plate disposed on an end surface of the lower flange away from the cylinder side, and the support plate is disposed coaxially with the lower flange, and the rotating shaft is supported by the through hole on the lower flange.
  • the support plate On the plate, the support plate has a second thrust surface for supporting the rotating shaft.
  • the fluid machine further includes a limiting plate, the limiting plate has a relief hole for avoiding the rotating shaft, and the limiting plate is sandwiched between the lower flange and the piston sleeve and disposed coaxially with the piston sleeve.
  • the piston sleeve has a connecting convex ring extending toward one side of the lower flange, and the connecting convex ring is embedded in the escape hole.
  • the upper flange and the lower flange are disposed concentrically with the rotating shaft, and the axial center of the upper flange and the axial center of the lower flange are eccentrically disposed with the axial center of the cylinder.
  • first thrust surface of the piston sleeve facing the lower flange side is in contact with the surface of the lower flange.
  • the piston has a fourth thrust surface for supporting the rotating shaft, and an end surface of the rotating shaft facing the lower flange side is supported at the fourth thrust surface.
  • the piston sleeve has a third thrust surface for supporting the rotating shaft, and an end surface of the rotating shaft facing the lower flange side is supported at the third thrust surface.
  • the rotating shaft comprises: a shaft body; a connecting head, the connecting head is disposed at the first end of the shaft body and connected to the piston assembly.
  • the connector is quadrangular in a plane perpendicular to the axis of the shaft.
  • the connector has two symmetrically disposed slip mating faces.
  • sliding mating surface is parallel to the axial plane of the rotating shaft, and the sliding mating surface and the inner wall surface of the sliding groove of the piston are slidably engaged in an axial direction perpendicular to the rotating shaft.
  • the rotating shaft comprises: a shaft body; a connecting head, the connecting head is disposed at the first end of the shaft body and connected to the piston assembly.
  • the connector is quadrangular in a plane perpendicular to the axis of the shaft.
  • the connector has two symmetrically disposed slip mating faces.
  • the sliding mating surface is parallel to the axial plane of the rotating shaft, and the sliding mating surface and the inner wall surface of the sliding hole of the piston are slidably engaged in an axial direction perpendicular to the rotating shaft.
  • the rotating shaft has a sliding section that is in sliding engagement with the piston assembly, the sliding section is located between the two ends of the rotating shaft, and the sliding section has a sliding mating surface.
  • slip fit surfaces are symmetrically disposed on both sides of the slip segment.
  • the sliding mating surface is parallel to the axial plane of the rotating shaft, and the sliding mating surface and the inner wall surface of the sliding hole of the piston are slidably engaged in an axial direction perpendicular to the rotating shaft.
  • the rotating shaft has a sliding section that is in sliding engagement with the piston assembly, the sliding section is located between the two ends of the rotating shaft, and the sliding section has a sliding mating surface.
  • the rotating shaft has a lubricating oil passage including an internal oil passage disposed inside the rotating shaft, an external oil passage disposed outside the rotating shaft, and an oil passage hole communicating the internal oil passage and the external oil passage.
  • the slip mating face has an outer oil passage extending in the axial direction of the rotating shaft.
  • the piston sleeve shaft has a first lubricating oil passage penetratingly disposed along an axial direction of the piston sleeve shaft
  • the rotating shaft has a second lubricating oil passage communicating with the first lubricating oil passage
  • at least a portion of the second lubricating oil passage is a rotating shaft
  • the second lubricating oil passage at the slip fitting surface is an external oil passage
  • the rotating shaft has an oil passage hole
  • the internal oil passage communicates with the external oil passage through the oil passage hole.
  • the cylinder wall of the cylinder has a compressed intake port and a first compressed exhaust port, and when the piston assembly is in the intake position, the compressed intake port is electrically connected to the variable volume chamber; when the piston assembly is in the exhaust position, the change is made.
  • the volume chamber is electrically connected to the first compressed exhaust port.
  • the inner wall surface of the cylinder wall has a compressed intake buffer groove, and the compressed intake buffer groove communicates with the compressed intake port.
  • the compressed intake buffer groove has an arc segment in a radial plane of the cylinder, and the compressed intake buffer groove extends from a side of the compression intake port to a side of the first compression exhaust port.
  • the cylinder wall of the cylinder has a second compressed exhaust port, and the second compressed exhaust port is located between the compressed intake port and the first compressed exhaust port, and during the rotation of the piston assembly, in the piston assembly Part of the gas is first discharged through the second compressed exhaust port and then discharged from the first compressed exhaust port.
  • the fluid machine further includes an exhaust valve assembly disposed at the second compressed exhaust port.
  • the outer wall of the cylinder wall is provided with a receiving groove, and the second compressed exhaust port penetrates the bottom of the receiving groove, and the exhaust valve assembly is disposed in the receiving groove.
  • the exhaust valve assembly includes: an exhaust valve piece disposed in the receiving groove and blocking the second compressed exhaust port; and a valve plate baffle, the valve plate baffle is stacked on the exhaust valve plate.
  • the fluid machine is a compressor.
  • the cylinder wall of the cylinder has an expansion exhaust port and a first expansion intake port, and when the piston assembly is in the intake position, the expansion exhaust port is electrically connected to the variable volume chamber; when the piston assembly is in the exhaust position, the change is made.
  • the volume chamber is electrically connected to the first inflation inlet.
  • the inner wall surface of the cylinder wall has an expanded exhaust buffer tank, and the expanded exhaust buffer tank communicates with the expanded exhaust port.
  • the expanded exhaust buffer tank has an arc segment in a radial plane of the cylinder, and the expanded exhaust buffer tank extends from the expansion exhaust port to a side of the first inflation inlet, and expands the exhaust buffer tank
  • the direction of extension is the same as the direction of rotation of the piston assembly.
  • the fluid machine is an expander.
  • the guiding holes are at least two, and the two guiding holes are arranged at an axial interval of the rotating shaft, and the pistons are at least two, and each of the guiding holes is correspondingly provided with a piston.
  • a heat exchange apparatus comprising a fluid machine, the fluid machine being the fluid machine described above.
  • a method of operating a fluid machine comprising: rotating a shaft about an axis O 1 of a rotating shaft; rotating the cylinder about an axis O 2 of the cylinder, and an axis of the rotating shaft and an axis of the cylinder
  • the eccentricity is set and the eccentric distance is fixed; the piston of the piston assembly rotates with the rotating shaft under the driving of the rotating shaft and simultaneously reciprocates in the piston sleeve of the piston assembly in the axial direction perpendicular to the rotating shaft.
  • the running method adopts the principle of the cross slider mechanism, wherein the piston acts as a slider, and the sliding mating surface of the rotating shaft serves as the first connecting rod l 1 and the guiding hole of the piston sleeve as the second connecting rod l 2 .
  • Figure 1 is a view showing the operation of the compressor of the present invention
  • Figure 2 is a schematic view showing the structure of the compressor in the first preferred embodiment
  • Figure 3 shows an exploded view of the pump body assembly of Figure 1;
  • Figure 4 is a schematic view showing the mounting relationship of the rotating shaft, the upper flange, the cylinder and the lower flange of Figure 2;
  • Figure 5 is a schematic view showing the internal structure of the components of Figure 4.
  • Figure 6 is a schematic view showing the installation relationship of the exhaust valve assembly and the cylinder of Figure 2;
  • Figure 7 is a schematic view showing the structure of the rotating shaft of Figure 2;
  • Figure 8 is a schematic view showing the internal structure of the rotating shaft of Figure 7;
  • Figure 9 is a schematic view showing the working state of the piston of Figure 2 when it is ready to start inhaling
  • Figure 10 is a schematic view showing the working state of the piston of Figure 2 in the process of inhalation
  • Figure 11 is a view showing the working state of the piston of Figure 2 when the suction is completed;
  • Figure 12 is a schematic view showing the working state of the piston of Figure 2 when it is under gas compression
  • Figure 13 is a schematic view showing the working state of the piston of Figure 2 in an exhausting process
  • Figure 14 is a schematic view showing the working state of the piston of Figure 2 when the exhaust gas is completed;
  • Figure 15 is a schematic view showing the installation relationship of the piston, the rotating shaft and the piston sleeve of Figure 2;
  • Figure 16 shows a top view of Figure 14
  • Figure 17 is a schematic view showing the structure of the piston sleeve of Figure 2;
  • Figure 18 is a schematic view showing the structure of the upper flange of Figure 2;
  • Figure 19 is a view showing the relationship between the axis of the rotating shaft of Figure 2 and the axis of the piston sleeve;
  • Figure 20 is a view showing the structure of a compressor in a second preferred embodiment
  • Figure 21 shows an exploded view of the pump body assembly of Figure 20
  • Figure 22 is a schematic view showing the mounting relationship of the rotating shaft, the upper flange, the cylinder and the lower flange of Figure 21;
  • Figure 23 is a view showing the internal structure of the components of Figure 22;
  • Figure 24 is a view showing the structure of the cylinder of Figure 21;
  • Figure 26 is a view showing the internal structure of the rotating shaft of Figure 25;
  • Figure 27 is a view showing the working state of the piston of Figure 21 when it is ready to start inhaling
  • Figure 28 is a view showing the working state of the piston of Figure 21 in the process of inhalation
  • Figure 29 is a view showing the working state of the piston of Figure 21 when the suction is completed;
  • Figure 30 is a view showing the working state of the piston of Figure 21 in the state of gas compression
  • Figure 31 is a view showing the working state of the piston of Figure 21 in the process of exhausting
  • Figure 32 is a view showing the working state of the piston of Figure 21 when the exhaust is completed;
  • Figure 33 is a view showing the connection relationship of the piston sleeve, the piston and the rotating shaft of Figure 21;
  • Figure 34 is a schematic view showing the movement relationship between the piston and the piston sleeve of Figure 20;
  • Figure 35 is a view showing the structure of the upper flange of Figure 21;
  • Figure 36 shows a cross-sectional view of the piston sleeve of Figure 21;
  • Figure 37 is a view showing the structure of the piston of Figure 21;
  • Figure 38 is a schematic view showing the structure of another angle of the piston of Figure 37;
  • Figure 40 shows an exploded view of the pump body assembly of Figure 39
  • Figure 41 is a schematic view showing the mounting relationship of the rotating shaft, the upper flange, the cylinder and the lower flange of Figure 40;
  • Figure 43 is a schematic view showing the installation relationship of the exhaust valve assembly and the cylinder of Figure 40;
  • Figure 44 is a view showing the structure of the rotating shaft of Figure 40;
  • Figure 45 is a view showing the internal structure of the rotating shaft of Figure 44;
  • Figure 46 is a view showing the working state of the piston of Figure 40 when it is ready to start inhaling
  • Figure 47 is a view showing the working state of the piston of Figure 40 in the process of inhalation
  • Figure 48 is a view showing the working state of the piston of Figure 40 when the suction is completed
  • Figure 49 is a view showing the working state of the piston of Figure 40 in the state of gas compression and exhaust;
  • Figure 50 is a view showing the working state of the piston of Figure 40 in an exhausting process
  • Figure 51 is a view showing the working state of the piston of Figure 40 when the exhaust gas is completed
  • Figure 52 is a schematic view showing the eccentric relationship between the piston sleeve and the rotating shaft of Figure 40;
  • Figure 54 is a view showing the structure of the piston of Figure 40;
  • Figure 55 is a view showing the structure of another angle of the piston of Figure 54;
  • Figure 56 shows a cross-sectional view of the piston sleeve of Figure 40
  • 57 is a schematic view showing the connection relationship between the limiting plate and the cylinder in FIG. 40;
  • Figure 58 is a view showing the connection relationship between the support plate and the lower flange of Figure 40;
  • Figure 59 is a view showing the connection relationship of the cylinder, the limiting plate, the lower flange and the supporting plate of Figure 40;
  • Figure 60 is a view showing the structure of a compressor in a fourth preferred embodiment
  • Figure 61 shows an exploded view of the pump body assembly of Figure 60
  • Figure 62 is a view showing the mounting relationship of the piston sleeve shaft, the upper flange, the cylinder and the lower flange of Figure 61;
  • Figure 63 is a view showing the internal structure of the components of Figure 62;
  • Figure 64 is a view showing the structure of the lower flange of Figure 60;
  • Figure 65 is a view showing the positional relationship between the axis of the rotating shaft and the axial center of the piston sleeve in the lower flange of Figure 64;
  • Figure 66 is a schematic view showing the mounting relationship of the rotating shaft, the piston, the piston sleeve and the piston sleeve shaft of Figure 60;
  • Figure 67 is a view showing the connection relationship between the piston sleeve and the piston sleeve shaft of Figure 60;
  • Figure 68 is a view showing the internal structure of Figure 67;
  • Figure 69 is a view showing the assembly relationship of the rotating shaft and the piston in Figure 60;
  • Figure 71 is a view showing the structure of the cylinder of Figure 60;
  • Figure 72 shows a plan view of Figure 71
  • Figure 73 is a view showing the structure of the upper flange of Figure 60;
  • Figure 74 is a view showing the movement relationship of the cylinder, the piston sleeve, the piston, and the rotating shaft in Figure 60;
  • Figure 75 is a view showing the working state of the piston of Figure 60 when it is ready to start inhaling
  • Figure 76 is a view showing the working state of the piston of Figure 60 in the process of inhalation
  • Figure 77 is a view showing the working state of the piston of Figure 60 in the state of gas compression
  • Figure 78 is a view showing the working state of the piston of Figure 60 before the start of exhausting
  • Figure 79 is a view showing the working state of the piston of Figure 60 in an exhausting process
  • Fig. 80 is a view showing the operating state of the piston of Fig. 60 at the end of the exhaust.
  • orientation words such as “left and right” are generally referred to as left and right as shown in the drawings, and the “inside and outside” are relative to the outline of each component, unless otherwise stated.
  • the present invention provides a fluid machine, a heat exchange device, and a fluid machine operation method, wherein the heat exchange device includes the lower The fluid machine described, and the fluid machine operates using the following operating method.
  • the fluid machine of the present invention comprises a rotating shaft 10, a cylinder 20 and a piston assembly 30, wherein the axial center of the rotating shaft 10 is eccentrically arranged with the axial center of the cylinder 20 and the eccentric distance is fixed, the piston assembly 30 has a variable volume chamber 31, and the piston assembly 30 can be
  • the cylinder 20 is pivotally disposed and the shaft 10 is drivingly coupled to the piston assembly 30 to vary the volume of the variable volume chamber 31.
  • the fluid machine operated by the above method constitutes a cross slider mechanism, which adopts the principle of a cross slider mechanism, wherein the piston 32 serves as a slider, and the sliding mating surface 111 of the rotating shaft 10 serves as a first connecting rod l 1 and a piston.
  • the guide hole 311 of the sleeve 33 serves as the second link l 2 (please refer to FIG. 1).
  • the axis O 1 of the rotating shaft 10 corresponds to the center of rotation of the first link 11
  • the axis O 2 of the cylinder 20 corresponds to the center of rotation of the second link 12
  • the slip fit surface 111 of the rotating shaft 10 corresponds to the first link l 1
  • the guide hole 311 of the piston sleeve 33 corresponds to the second link l 2
  • the piston 32 corresponds to the slider.
  • the guiding hole 311 and the sliding mating surface 111 are perpendicular to each other; the piston 32 can only reciprocate relative to the guiding hole 311, and the piston 32 can only reciprocate relative to the sliding mating surface 111.
  • the piston 32 can be simplified to find the centroid, which running track is a circular motion, the circular cylinder axis O is 20 and the axis O 2 of the shaft 10 of the wiring 1 is the diameter of the circle.
  • the slider When the second link 12 moves in a circular motion, the slider can reciprocate along the second link 12 ; at the same time, the slider can reciprocate along the first link 11 .
  • the first link and the second link l 1 l 2 remain vertically, so that the slider along the first link l 1 reciprocates along the direction perpendicular to the second slider link l 2 reciprocating direction.
  • the relative motion relationship between the first link l 1 and the second link l 2 and the piston 32 forms the principle of the cross slider mechanism.
  • the slider Under the motion method, the slider performs a circular motion whose angular velocity is equal to the rotational speed of the first link 11 and the second link 12 .
  • the slider runs in a circle.
  • the circle has a diameter centered on the center of rotation of the first link l 1 and the center of rotation of the second link l 2 .
  • the fluid machine includes an upper flange 50, a lower flange 60, a rotating shaft 10, a cylinder 20 and a piston assembly 30.
  • the cylinder 20 is interposed between the upper flange 50 and the lower flange 60.
  • the axis of the shaft 10 is eccentrically disposed with the axis of the cylinder 20 and the eccentric distance is fixed.
  • the shaft 10 passes through the upper flange 50 and the cylinder 20 in sequence.
  • the piston assembly 30 has a variable volume chamber 31, and the piston assembly 30 is pivotally disposed in the cylinder 20.
  • the shaft 10 is drivingly coupled to the piston assembly 30 to change the volume of the variable volume chamber 31.
  • the upper flange 50 is fixed to the cylinder 20 by the second fastener 70
  • the lower flange 60 is fixed to the cylinder 20 by the third fastener 80 (please refer to FIG. 3).
  • the second fastener 70 and/or the third fastener 80 are screws or bolts. It should be noted that the upper flange 50 and the rotating shaft 10 are disposed concentrically, and the axial center of the upper flange 50 and the axial center of the cylinder 20 are eccentric.
  • the lower flange 60 is disposed concentrically with the cylinder 20.
  • the cylinder 20 mounted in the above manner can ensure that the eccentricity of the cylinder 20 and the rotating shaft 10 or the upper flange 50 is fixed, so that the piston assembly 30 has the characteristics of good motion stability.
  • the rotating shaft 10 is slidably coupled to the piston assembly 30, and the volume of the variable volume chamber 31 varies with the rotation of the rotating shaft 10. Since the rotating shaft 10 of the present invention is slidably coupled with the piston assembly 30, the movement reliability of the piston assembly 30 is ensured, and the problem of the movement of the piston assembly 30 is effectively avoided, so that the volume change of the variable volume chamber 31 has a regular characteristic.
  • the piston assembly 30 includes a piston assembly 30 including a piston sleeve 33 and a piston 32.
  • the piston sleeve 33 is pivotally disposed in the cylinder 20, and the piston 32 is slidably disposed in the piston sleeve 33.
  • the variable volume chamber 31 is formed, and the variable volume chamber 31 is located in the sliding direction of the piston 32.
  • the piston assembly 30 is slidably engaged with the rotating shaft 10, and as the rotating shaft 10 rotates, the piston assembly 30 has a linear motion tendency with respect to the rotating shaft 10, thereby causing the rotation to become a local linear motion. Since the piston 32 is slidably coupled with the piston sleeve 33, the movement of the piston 32 is effectively prevented from being locked by the rotation of the rotating shaft 10, thereby ensuring the reliability of the movement of the piston 32, the rotating shaft 10 and the piston sleeve 33, thereby improving the operation of the fluid machine. stability.
  • the rotating shaft 10 of the present invention has no eccentric structure, which is advantageous for reducing the vibration of the fluid machine.
  • the piston 32 slides in the piston sleeve 33 in a direction perpendicular to the axis of the rotating shaft 10 (please refer to FIG. 19). Since the cross slide mechanism is formed between the piston assembly 30, the cylinder 20 and the rotating shaft 10, the movement of the piston assembly 30 and the cylinder 20 is stabilized and continuous, and the volume change of the variable volume chamber 31 is regular, thereby ensuring the fluid mechanical Operational stability, which in turn improves the operational reliability of the heat exchange equipment.
  • the piston 32 has a sliding groove 323, and the rotating shaft 10 slides in the sliding groove 323.
  • the piston 32 rotates with the rotating shaft 10 under the driving of the rotating shaft 10 while being perpendicular to the rotating shaft 10.
  • the axial direction reciprocates in the piston sleeve 33. Since the piston 32 is linearly moved relative to the rotating shaft 10 instead of rotating and reciprocating, the eccentricity is effectively reduced.
  • the mass reduces the lateral forces experienced by the shaft 10 and the piston 32, thereby reducing the wear of the piston 32 and improving the sealing performance of the piston 32.
  • the operational stability and reliability of the pump body assembly 93 are ensured, and the vibration risk of the fluid machine is reduced, and the structure of the fluid machine is simplified.
  • the piston 32 is cylindrical.
  • the piston 32 is cylindrical or non-cylindrical.
  • the piston 32 has a pair of arcuate surfaces symmetrically disposed along the median plane of the piston 32.
  • the curved surface is adaptively fitted to the inner surface of the cylinder 20, and the radius of curvature of the curved surface is two The multiple is equal to the inner diameter of the cylinder 20. In this way, a zero clearance volume can be achieved during the exhaust process.
  • the vertical plane of the piston 32 is the axial plane of the piston sleeve 33.
  • the piston sleeve 33 has a guide hole 311 which is provided in the radial direction of the piston sleeve 33.
  • the piston 32 is slidably disposed in the guide hole 311 to reciprocate linearly. Since the piston 32 is slidably disposed in the guiding hole 311, when the piston 32 moves left and right in the guiding hole 311, the volume of the variable volume chamber 31 can be continuously changed, thereby ensuring the suction and exhaust stability of the compressor.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of parallel straight segments, and a pair of parallel straight segments are a pair of parallel inner wall faces of the piston sleeve 33.
  • the projection is formed, and the piston 32 has an outer surface that is adapted to the shape of the pair of parallel inner wall faces of the guide hole 311 and that is slip-fitted.
  • the piston 32 and the piston sleeve 33 which are configured as described above, enable the piston 32 to smoothly slide in the piston sleeve 33 and maintain a sealing effect.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of arcuate segments joined to a pair of parallel straight segments to form an irregular cross-sectional shape.
  • the outer peripheral surface of the piston sleeve 33 is adapted to the shape of the inner wall surface of the cylinder 20. Therefore, the piston sleeve 33 and the cylinder 20, the pilot hole 311 and the piston 32 are sealed with a large face, and the whole machine seal is a large face seal, which is beneficial to reduce leakage.
  • the piston sleeve 33 has a connecting shaft 331 which projects toward the side of the lower flange 60, and the connecting shaft 331 is fitted in the connecting hole of the lower flange 60. Since the piston sleeve 33 is coaxially embedded with the lower flange 60 through the connecting shaft 331, the connection reliability of the two is ensured, thereby improving the stability of the movement of the piston sleeve 33.
  • the first thrust surface 332 of the piston sleeve 33 facing the side of the lower flange 60 is in contact with the surface of the lower flange 60. Thereby, the piston sleeve 33 and the lower flange 60 are reliably positioned.
  • the piston sleeve 33 of the present invention includes two cylinders of coaxial but different diameters, the outer diameter of the upper half is equal to the inner diameter of the cylinder 20, and the axis of the pilot hole 311 is perpendicular to the axis of the cylinder 20 and the piston 32.
  • the shape of the guiding hole 311 is consistent with the outer shape of the piston 32.
  • the end face fits to reduce the structural friction area;
  • the lower half is a hollow cylinder, that is, a short shaft, and the axis of the short shaft is coaxial with the axis of the lower flange 60, and rotates coaxially during the movement.
  • the piston 32 has a fourth thrust surface 336 for supporting the rotary shaft 10, and an end surface of the rotary shaft 10 facing the lower flange 60 side is supported at the fourth thrust surface 336. Thereby, the rotating shaft 10 is supported in the piston 32.
  • the rotating shaft 10 in the present invention includes a shaft body 16 and a joint head 17, and the joint head 17 is disposed at a first end of the shaft body 16 and connected to the piston assembly 30. Due to the provision of the connector 17, the assembly and movement reliability of the connector 17 and the piston 32 of the piston assembly 30 are ensured.
  • the axle body 16 has a certain roughness to improve the robustness of the connection to the motor assembly 92.
  • the connector 17 has two symmetrically disposed slip mating faces 111. Since the slip mating faces 111 are symmetrically disposed, the forces of the two slip mating faces 111 are more uniform, which ensures the reliability of the movement of the rotating shaft 10 and the piston 32.
  • the slip fitting surface 111 is parallel to the axial plane of the rotating shaft 10, and the sliding mating surface 111 and the inner wall surface of the sliding groove 323 of the piston 32 slide in the direction perpendicular to the axis of the rotating shaft 10. Cooperate.
  • the connector 17 is quadrangular in a plane perpendicular to the axis of the shaft body 16. Since the connecting head 17 has a quadrangular shape in a plane perpendicular to the axis of the shaft body 16, when the sliding groove 323 of the piston 32 is engaged, the problem that the rotating shaft 10 and the piston 32 are relatively rotated can be prevented, and the relative movement of the two can be ensured. Reliability.
  • the rotating shaft 10 has a lubricating oil passage 13 which penetrates the shaft body 16 and the joint head 17.
  • the lubricating oil passage 13 is an internal oil passage of the rotating shaft 10. Due to at least a part of the internal oil passage of the lubricating oil passage 13, the lubricating oil is effectively prevented from leaking out a large amount, and the flow reliability of the lubricating oil is improved.
  • the lubricating oil passage 13 at the joint head 17 is an outer oil passage.
  • the lubricating oil passage 13 at the joint head 17 is disposed as an external oil passage, so that the lubricating oil can be adhered to the surface of the sliding groove 323 of the piston 32, thereby ensuring the rotating shaft 10 Lubricity reliability with the piston 32.
  • the fluid machine shown in this embodiment is a compressor including a liquid separator part 90, a housing assembly 91, a motor assembly 92, a pump body assembly 93, an upper cover assembly 94, and a lower cover and mounting plate 95, wherein
  • the dispenser part 90 is disposed outside the housing assembly 91, the upper cover assembly 94 is assembled at the upper end of the housing assembly 91, and the lower cover and mounting plate 95 are assembled at the lower end of the housing assembly 91, the motor assembly 92 and the pump assembly 93 Both are located inside the housing assembly 91 and the motor assembly 92 is disposed above the pump body assembly 93.
  • the pump body assembly 93 of the compressor includes the upper flange 50, the lower flange 60, the cylinder 20, the rotating shaft 10, and the piston assembly 30 described above.
  • the above components are connected by welding, hot jacketing, or cold pressing.
  • the assembly process of the entire pump body assembly 93 is as follows: the piston 32 is mounted in the guide hole 311, the connecting shaft 331 is mounted on the lower flange 60, and the cylinder 20 is coaxially mounted with the piston sleeve 33, and the lower flange 60 is fixed to the cylinder 20.
  • the sliding mating surface 111 of the rotating shaft 10 is fitted with a pair of parallel surfaces of the sliding groove 323 of the piston 32.
  • the upper flange 50 fixes the upper half of the rotating shaft 10, and the upper flange 50 is fixed to the cylinder 20 by screws. .
  • the assembly of the pump body assembly 93 is completed, as shown in FIG.
  • the guiding holes 311 are at least two, the two guiding holes 311 are disposed along the axial direction of the rotating shaft 10, and the pistons 32 are at least two, and each of the guiding holes 311 is correspondingly provided with a piston 32.
  • the compressor is a single-cylinder multi-compression chamber compressor, and the torque fluctuation is relatively small compared with the same-displacement single-cylinder roller compressor.
  • the compressor of the present invention is not provided with an intake valve piece, so that the suction resistance can be effectively reduced, the suction noise can be reduced, and the compression efficiency of the compressor can be improved.
  • the cylinder wall of the cylinder 20 of the present invention has a compressed intake port 21 and a first compressed exhaust port 22, when the piston assembly 30 is in the intake position, The compressed air inlet 21 is electrically connected to the variable volume chamber 31; when the piston assembly 30 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first compressed exhaust port 22.
  • the inner wall surface of the cylinder wall has a compressed intake buffer groove 23, and the compressed intake buffer groove 23 communicates with the compressed intake port 21 (please refer to FIGS. 9 to 14). Since the compressed air intake buffer tank 23 is provided, a large amount of gas is stored therein, so that the variable volume chamber 31 can be fully inhaled, so that the compressor can sufficiently inhale, and when the air intake is insufficient, The storage gas can be supplied to the variable volume chamber 31 in time to ensure the compression efficiency of the compressor.
  • the compressed intake buffer groove 23 has an arc segment in the radial plane of the cylinder 20, and the compressed intake buffer groove 23 extends from the compressed intake port 21 toward the side of the first compression exhaust port 22, And the direction in which the compressed intake buffer groove 23 extends is opposite to the direction in which the piston assembly 30 rotates.
  • the compressor of the present invention is set using the principle of a cross slider mechanism.
  • the piston 32 acts as a slider in the cross slider mechanism
  • the sliding engagement surface 111 of the piston 32 and the rotating shaft 10 respectively serve as two connecting rods in the cross slider mechanism 1 , l 2 , this constitutes the main structure of the principle of the cross slider.
  • the axis O 1 of the rotating shaft 10 is eccentrically disposed with the axis O 2 of the cylinder 20, and the eccentricity of the two is fixed, and the two are respectively rotated about the respective axes.
  • the axial center 15 of the rotating shaft and the piston sleeve axial center 333 are separated by an eccentric distance e, and the piston centroid trajectory line 322 has a circular shape.
  • the motor assembly 92 drives the rotating shaft 10 to rotate, and the sliding mating surface 111 of the rotating shaft 10 drives the piston 32 to move, and the piston 32 drives the piston sleeve 33 to rotate.
  • the piston sleeve 33 only moves in a circular motion, and the piston 32 reciprocates on the one hand with respect to the rotating shaft 10 while reciprocating relative to the guiding hole 311 of the piston sleeve 33, and two reciprocating motions
  • the movements are perpendicular to each other and simultaneously, so that the reciprocating motion in both directions constitutes a motion of the cross slider mechanism.
  • the combined motion of the cross-type slider mechanism reciprocates the piston 32 relative to the piston sleeve 33, which reciprocates the cavity formed by the piston sleeve 33, the cylinder 20 and the piston 32 periodically.
  • the piston 32 is circumferentially moved relative to the cylinder 20, and the circular motion causes the variable displacement chamber 31 formed by the piston sleeve 33, the cylinder 20 and the piston 32 to periodically communicate with the compressed intake port 21 and the exhaust port.
  • the compressor can complete the process of inhaling, compressing and exhausting.
  • the compressor of the present invention also has the advantages of zero clearance volume and high volumetric efficiency.
  • the compressor exchanges the suction and exhaust ports and can be used as an expander. That is, the exhaust port of the compressor is used as an intake port of the expander, high-pressure gas is introduced, and other push mechanisms are rotated, and after being expanded, the gas is exhausted through the intake port of the compressor (expander port of the expander).
  • the inner wall surface of the cylinder wall has an expanded exhaust buffer tank that communicates with the expanded exhaust port.
  • the expanded exhaust buffer tank has an arc segment in a radial plane of the cylinder 20, and the expanded exhaust buffer tank extends from the expansion exhaust port to the side of the first inflation inlet, and the expanded exhaust buffer The slot extends in a direction opposite to the direction of rotation of the piston assembly 30.
  • the piston 32 with the slip groove 321 is substituted for the piston 32 with the slip groove 323.
  • the piston 32 has a sliding hole 321 which is provided through the axial direction of the rotating shaft 10, the rotating shaft 10 passes through the sliding hole 321, and the piston 32 rotates with the rotating shaft 10 under the driving of the rotating shaft 10. At the same time, it reciprocates in the piston sleeve 33 in the direction perpendicular to the axis of the rotary shaft 10.
  • the sliding hole 321 is a long hole or a waist hole.
  • the piston 32 is cylindrical.
  • the piston 32 is cylindrical or non-cylindrical.
  • the piston 32 has a pair of arcuate surfaces symmetrically disposed along the median plane of the piston 32, the arcuate surface being adapted to the inner surface of the cylinder 20, and the curved surface
  • the radius of curvature of the camber is equal to twice the radius of the cylinder 20 the inside diameter of. In this way, a zero clearance volume can be achieved during the exhaust process. It should be noted that when the piston 32 is placed in the piston sleeve 33, the vertical plane of the piston 32 is the axial plane of the piston sleeve 33.
  • the piston sleeve 33 has a guide hole 311 which is provided in the radial direction of the piston sleeve 33.
  • the piston 32 is slidably disposed in the guide hole 311 to reciprocate linearly. Since the piston 32 is slidably disposed in the guiding hole 311, when the piston 32 moves left and right in the guiding hole 311, the volume of the variable volume chamber 31 can be continuously changed, thereby ensuring the suction and exhaust stability of the compressor.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of parallel straight segments, and a pair of parallel straight segments are a pair of parallel inner wall faces of the piston sleeve 33.
  • the projection is formed, and the piston 32 has an outer surface that is adapted to the shape of the pair of parallel inner wall faces of the guide hole 311 and that is slip-fitted.
  • the piston 32 and the piston sleeve 33 which are configured as described above, enable the piston 32 to smoothly slide in the piston sleeve 33 and maintain a sealing effect.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of arcuate segments joined to a pair of parallel straight segments to form an irregular cross-sectional shape.
  • the outer peripheral surface of the piston sleeve 33 is adapted to the shape of the inner wall surface of the cylinder 20. Therefore, the piston sleeve 33 and the cylinder 20, the pilot hole 311 and the piston 32 are sealed with a large face, and the whole machine seal is a large face seal, which is beneficial to reduce leakage.
  • the piston sleeve 33 has a third thrust surface 335 for supporting the rotary shaft 10, and an end surface of the rotary shaft 10 facing the lower flange 60 side is supported at the third thrust surface 335. Thereby, the rotating shaft 10 is supported in the piston sleeve 33.
  • the rotating shaft 10 in this embodiment includes a shaft body 16 and a joint head 17, and the joint head 17 is disposed at a first end of the shaft body 16 and connected to the piston assembly 30. Due to the provision of the connector 17, the assembly and movement reliability of the connector 17 and the piston 32 of the piston assembly 30 are ensured.
  • the axle body 16 has a certain roughness to improve the robustness of the connection to the motor assembly 92.
  • the connector 17 has two symmetrically disposed slip fit faces 111. Since the slip mating faces 111 are symmetrically disposed, the forces of the two slip mating faces 111 are more uniform, which ensures the reliability of the movement of the rotating shaft 10 and the piston 32.
  • the slip fitting surface 111 is parallel to the axial plane of the rotating shaft 10, and the sliding mating surface 111 is slidably engaged with the inner wall surface of the sliding hole 321 of the piston 32 in the axial direction perpendicular to the rotating shaft 10.
  • the joint 17 quadrangular in a plane perpendicular to the axis of the shaft body 16. Since the connecting head 17 has a quadrangular shape in a plane perpendicular to the axis of the shaft body 16, when the sliding hole 321 of the piston 32 is engaged, the problem that the rotating shaft 10 and the piston 32 can be prevented from rotating relative to each other can be prevented, and the relative movement of the two can be ensured. Reliability.
  • the rotating shaft 10 has a lubricating oil passage 13 which penetrates the shaft body 16 and the joint head 17.
  • the lubricating oil passage 13 is an internal oil passage of the rotating shaft 10. Due to at least a part of the internal oil passage of the lubricating oil passage 13, the lubricating oil is effectively prevented from leaking out a large amount, and the flow reliability of the lubricating oil is improved.
  • the lubricating oil passage 13 at the joint head 17 is an external oil passage.
  • the lubricating oil passage 13 at the joint head 17 is set as an external oil passage, so that the lubricating oil can be adhered to the surface of the sliding hole 321 of the piston 32. Lubrication reliability of the shaft 10 and the piston 32 is ensured.
  • the outer oil passage and the inner oil passage are connected through the oil passage hole 14. Since the oil passage hole 14 is provided, the inner oil passage can be easily filled with oil through the oil passage hole 14, thereby ensuring lubrication and movement reliability between the rotary shaft 10 and the piston assembly 30.
  • the assembly process of the entire pump body assembly 93 is as follows: the piston 32 is mounted in the guide hole 311, the connecting shaft 331 is mounted on the lower flange 60, and the cylinder 20 is coaxially mounted with the piston sleeve 33, and the lower flange 60 is fixed to the cylinder 20.
  • the sliding mating surface 111 of the rotating shaft 10 is fitted with a pair of parallel surfaces of the sliding holes 321 of the piston 32.
  • the upper flange 50 fixes the upper half of the rotating shaft 10, and the upper flange 50 is fixed to the cylinder 20 by screws.
  • the shaft 10 is in contact with the third thrust surface 335.
  • the cylinder wall of the cylinder 20 of the present invention has a compression intake port 21 and a first compression exhaust port 22, and when the piston assembly 30 is in the intake position, the intake air is compressed.
  • the port 21 is electrically connected to the variable volume chamber 31; when the piston assembly 30 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first compressed exhaust port 22.
  • the inner wall surface of the cylinder wall has a compressed intake buffer groove 23, and the compressed intake buffer groove 23 communicates with the compressed intake port 21 (please refer to Figs. 27 to 32). Since the compressed air intake buffer tank 23 is provided, a large amount of gas is stored therein, so that the variable volume chamber 31 can be fully inhaled, so that the compressor can sufficiently inhale, and when the air intake is insufficient, The storage gas can be supplied to the variable volume chamber 31 in time to ensure the compression efficiency of the compressor.
  • the compressed intake buffer groove 23 has an arc segment in the radial plane of the cylinder 20, and the compressed intake buffer groove 23 extends from the compressed intake port 21 toward the side of the first compression exhaust port 22, And the direction in which the compressed intake buffer groove 23 extends is opposite to the direction in which the piston assembly 30 rotates.
  • the compressor of the present invention is set using the principle of a cross slider mechanism.
  • the piston 32 acts as a slider in the cross slider mechanism
  • the sliding engagement surface 111 of the piston 32 and the rotating shaft 10 respectively serve as two connecting rods in the cross slider mechanism 1 , l 2 , this constitutes the main structure of the principle of the cross slider.
  • the axis O 1 of the rotating shaft 10 is eccentrically disposed with the axis O 2 of the cylinder 20, and the eccentricity of the two is fixed, and the two are respectively rotated about the respective axes.
  • the axial center 15 of the rotating shaft and the piston sleeve axial center 333 are separated by an eccentric distance e, and the piston centroid trajectory line 322 has a circular shape.
  • the motor assembly 92 drives the rotating shaft 10 to rotate, and the sliding mating surface 111 of the rotating shaft 10 drives the piston 32 to move, and the piston 32 drives the piston sleeve 33 to rotate.
  • the piston sleeve 33 only moves in a circular motion, and the piston 32 reciprocates on the one hand with respect to the rotating shaft 10 while reciprocating relative to the guiding hole 311 of the piston sleeve 33, and the two reciprocating motions are perpendicular to each other and simultaneously
  • the reciprocating motion in both directions constitutes a motion of the cross slider mechanism.
  • the combined motion of the cross-type slider mechanism reciprocates the piston 32 relative to the piston sleeve 33, which reciprocates the cavity formed by the piston sleeve 33, the cylinder 20 and the piston 32 periodically.
  • the piston 32 is circumferentially moved relative to the cylinder 20, and the circular motion causes the variable displacement chamber 31 formed by the piston sleeve 33, the cylinder 20 and the piston 32 to periodically communicate with the compressed intake port 21 and the exhaust port.
  • the compressor can complete the process of inhaling, compressing and exhausting.
  • the compressor in this embodiment also has the advantages of zero clearance volume and high volumetric efficiency.
  • the compressor exchanges the suction and exhaust ports and can be used as an expander. That is, the exhaust port of the compressor is used as an intake port of the expander, high-pressure gas is introduced, and other push mechanisms are rotated, and after being expanded, the gas is exhausted through the intake port of the compressor (expander port of the expander).
  • the cylinder wall of the cylinder 20 has an expansion exhaust port and a first expansion intake port, and when the piston assembly 30 is in the intake position, the expansion exhaust port is electrically connected to the variable volume chamber 31; When the assembly 30 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first expanded intake port.
  • the high pressure gas enters the variable volume chamber 31 through the first expansion inlet, the high pressure gas pushes the piston assembly 30 to rotate, the piston sleeve 33 rotates to drive the piston 32 to rotate, and at the same time, the piston 32 linearly slides relative to the piston sleeve 33, thereby The piston 32 is caused to rotate the rotating shaft 10.
  • the rotating shaft 10 By connecting the rotating shaft 10 with other power consuming devices, the rotating shaft 10 can be outputted for work.
  • the inner wall surface of the cylinder wall has an expanded exhaust buffer tank that communicates with the expanded exhaust port.
  • the expanded exhaust buffer tank has an arc segment in a radial plane of the cylinder 20, and the expanded exhaust buffer tank extends from the expansion exhaust port to the side of the first inflation inlet, and the expanded exhaust buffer The slot extends in a direction opposite to the direction of rotation of the piston assembly 30.
  • the piston 32 with the slip groove 321 is substituted for the piston 32 with the slip groove 323.
  • components such as the exhaust valve assembly 40, the second compression exhaust port 24, the support plate 61, and the limit plate 26 are also added.
  • the fluid machine includes an upper flange 50, a lower flange 60, a cylinder 20, a rotating shaft 10, and a piston assembly 30.
  • the cylinder 20 is interposed between the upper flange 50 and the lower flange 60.
  • the axial center of 10 is eccentrically disposed with the axial center of the cylinder 20 and the eccentric distance is fixed.
  • the rotary shaft 10 sequentially passes through the upper flange 50, the cylinder 20 and the lower flange 60.
  • the piston assembly 30 has a variable volume chamber 31, and the piston assembly 30 is pivotable. Disposed within the cylinder 20, and the shaft 10 is drivingly coupled to the piston assembly 30 to vary the volume of the variable volume chamber 31.
  • the upper flange 50 is fixed to the cylinder 20 by the second fastener 70
  • the lower flange 60 is fixed to the cylinder 20 by the third fastener 80.
  • the second fastener 70 and/or the third fastener 80 are screws or bolts.
  • the axial center of the upper flange 50 and the axial center of the lower flange 60 are concentrically arranged with the axial center of the rotating shaft 10, and the axial center of the upper flange 50 and the axial center of the lower flange 60 and the shaft of the cylinder 20 Heart eccentricity setting.
  • the cylinder 20 mounted in the above manner can ensure that the eccentricity of the cylinder 20 and the rotating shaft 10 or the upper flange 50 is fixed, so that the piston assembly 30 has the characteristics of good motion stability.
  • the rotating shaft 10 in the present invention is slidably coupled to the piston assembly 30, and the volume of the variable volume chamber 31 varies with the rotation of the rotating shaft 10. Since the rotating shaft 10 of the present invention is slidably coupled with the piston assembly 30, the movement reliability of the piston assembly 30 is ensured, and the problem of the movement of the piston assembly 30 is effectively avoided, so that the volume change of the variable volume chamber 31 has a regular characteristic.
  • the piston assembly 30 includes a piston sleeve 33 and a piston 32.
  • the piston sleeve 33 is pivotally disposed in the cylinder 20, and the piston 32 is slidably disposed in the piston sleeve 33 to form a variable volume chamber. 31, and the variable volume chamber 31 is located in the sliding direction of the piston 32.
  • the piston assembly 30 is slidably engaged with the rotating shaft 10, and as the rotating shaft 10 rotates, the piston assembly 30 has a linear motion tendency with respect to the rotating shaft 10, thereby causing the rotation to become a local linear motion. Since the piston 32 is slidably coupled with the piston sleeve 33, the movement of the piston 32 is effectively prevented from being locked by the rotation of the rotating shaft 10, thereby ensuring the reliability of the movement of the piston 32, the rotating shaft 10 and the piston sleeve 33, thereby improving the operation of the fluid machine. stability.
  • the rotating shaft 10 of the present invention has no eccentric structure, which is advantageous for reducing the vibration of the fluid machine.
  • the piston 32 slides in the piston sleeve 33 in a direction perpendicular to the axis of the rotary shaft 10 (please refer to FIGS. 46 to 52). Since the cross slide mechanism is formed between the piston assembly 30, the cylinder 20 and the rotating shaft 10, the movement of the piston assembly 30 and the cylinder 20 is stabilized and continuous, and the volume change of the variable volume chamber 31 is regular, thereby ensuring the fluid mechanical Operational stability, which in turn improves the operational reliability of the heat exchange equipment.
  • the piston 32 of the present invention has a sliding hole 321 disposed through the axial direction of the rotating shaft 10, and the rotating shaft 10 passes through the sliding hole 321, and the piston 32 rotates with the rotating shaft 10 under the driving of the rotating shaft 10 while being perpendicular to the rotating shaft 10.
  • the axial direction reciprocates in the piston sleeve 33 (refer to Figs. 46 to 52). Since the piston 32 is linearly moved relative to the rotating shaft 10 instead of rotating and reciprocating, the eccentric mass is effectively reduced, and the lateral force received by the rotating shaft 10 and the piston 32 is reduced, thereby reducing the wear of the piston 32 and improving the piston 32. Sealing performance. At the same time, the operational stability and reliability of the pump body assembly 93 are ensured, and the vibration risk of the fluid machine is reduced, and the structure of the fluid machine is simplified.
  • the sliding hole 321 is a long hole or a waist hole.
  • the piston 32 in the present invention has a cylindrical shape.
  • the piston 32 is cylindrical or non-cylindrical.
  • the piston 32 has a pair of arcuate surfaces symmetrically disposed along the median plane of the piston 32.
  • the curved surface is adapted to the inner surface of the cylinder 20 and the curvature of the curved surface is curved. Two times the radius is equal to the inner diameter of the cylinder 20. In this way, a zero clearance volume can be achieved during the exhaust process.
  • the vertical plane of the piston 32 is the axial plane of the piston sleeve 33.
  • the piston sleeve 33 has a guide hole 311 which is provided in the radial direction of the piston sleeve 33.
  • the piston 32 is slidably disposed in the guide hole 311 to reciprocate linearly. Since the piston 32 is slidably disposed in the guiding hole 311, when the piston 32 moves left and right in the guiding hole 311, the volume of the variable volume chamber 31 can be continuously changed, thereby ensuring the suction and exhaust stability of the fluid machine.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of parallel straight segments, and a pair of parallel straight segments are a pair of parallel inner wall faces of the piston sleeve 33.
  • the projection is formed, and the piston 32 has an outer surface that is adapted to the shape of the pair of parallel inner wall faces of the guide hole 311 and that is slip-fitted.
  • the piston 32 and the piston sleeve 33 which are configured as described above, enable the piston 32 to smoothly slide in the piston sleeve 33 and maintain a sealing effect.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of arcuate segments joined to a pair of parallel straight segments to form an irregular cross-sectional shape.
  • the outer peripheral surface of the piston sleeve 33 is adapted to the shape of the inner wall surface of the cylinder 20. Therefore, the piston sleeve 33 and the cylinder 20, the pilot hole 311 and the piston 32 are sealed with a large face, and the whole machine seal is a large face seal, which is beneficial to reduce leakage.
  • the first thrust surface 332 of the piston sleeve 33 facing the lower flange 60 side is in contact with the surface of the lower flange 60. Thereby, the piston sleeve 33 and the lower flange 60 are reliably positioned.
  • the rotary shaft 10 has a slip section 11 that is slidably engaged with the piston assembly 30, the slip section 11 is located between both ends of the rotary shaft 10, and the slip section 11 has a slip fit surface 111. Since the rotating shaft 10 is slidably engaged with the piston 32 through the sliding mating surface 111, the motion reliability of the two is ensured, and the two are effectively prevented from being stuck.
  • the slip section 11 has two symmetrical arrangement of slip fit faces 111. Since the slip mating faces 111 are symmetrically disposed, the forces of the two slip mating faces 111 are more uniform, which ensures the reliability of the movement of the rotating shaft 10 and the piston 32.
  • the slip fitting surface 111 is parallel to the axial plane of the rotating shaft 10, and the sliding mating surface 111 and the inner wall surface of the sliding hole 321 of the piston 32 slide in the direction perpendicular to the axis of the rotating shaft 10. Cooperate.
  • the rotating shaft 10 in the present invention has a lubricating oil passage 13 including an internal oil passage provided inside the rotating shaft 10, an external oil passage provided outside the rotating shaft 10, and an oil passage hole 14 communicating the internal oil passage and the external oil passage. . Due to at least a part of the internal oil passage of the lubricating oil passage 13, the lubricating oil is effectively prevented from leaking out a large amount, and the flow reliability of the lubricating oil is improved. Since the oil passage hole 14 is provided, the inner and outer oil passages can be smoothly communicated, and oil can be injected into the lubricating oil passage 13 through the oil passage hole 14, thereby ensuring the oil filling convenience of the lubricating oil passage 13.
  • the slip fit surface 111 has an outer oil passage extending in the axial direction of the rotary shaft 10. Since the lubricating oil passage 13 at the slip fitting surface 111 is an external oil passage, the lubricating oil can be directly supplied to the sliding mating surface 111 and the piston 32, thereby effectively avoiding excessive friction and wear of the two, thereby improving the two. The smoothness of the movement.
  • the limit plate 26 is coupled to the cylinder 20 by a fifth fastener 82.
  • the fifth fastener 82 is a bolt or a screw.
  • the compressor of the present invention further includes a limiting plate 26 having a relief hole for escaping the rotating shaft 10, and the limiting plate 26 is interposed between the lower flange 60 and the piston sleeve 33. Between and coaxial with the piston sleeve 33. Since the limiting plate 26 is provided, the reliability of the limit of each component is ensured.
  • the stopper plate 26 is coupled to the cylinder 20 by a fourth fastener 81.
  • the fourth fastener 81 is a bolt or a screw.
  • the piston sleeve 33 has a connecting convex ring 334 that protrudes toward the side of the lower flange 60, and the connecting convex ring 334 is embedded in the escape hole. Since the piston sleeve 33 is engaged with the limiting plate 26, the reliability of the movement of the piston sleeve 33 is ensured.
  • the piston sleeve 33 of the present invention includes two cylinders of coaxial but different diameters, the outer diameter of the upper half is equal to the inner diameter of the cylinder 20, and the axis of the pilot hole 311 is perpendicular to the axis of the cylinder 20 and the piston 32.
  • the shape of the guiding hole 311 is consistent with the outer shape of the piston 32.
  • the end surface of the 60 is matched to reduce the frictional area of the structure;
  • the lower half is a hollow cylinder, that is, a short shaft, and the axis of the short shaft is coaxial with the axis of the lower flange 60, and rotates coaxially during the movement.
  • the illustrated fluid machine is a compressor including a liquid separator component 90, a housing assembly 91, a motor assembly 92, a pump body assembly 93, an upper cover assembly 94, and a lower cover and mounting plate 95.
  • the dispenser member 90 is disposed outside the housing assembly 91
  • the upper cover assembly 94 is assembled to the upper end of the housing assembly 91
  • the lower cover and mounting plate 95 are assembled at the lower end of the housing assembly 91
  • the body assemblies 93 are all located inside the housing assembly 91 and the motor assembly 92 is disposed above the pump body assembly 93.
  • the pump body assembly 93 of the compressor includes the upper flange 50, the lower flange 60, the cylinder 20, the rotating shaft 10, and the piston assembly 30 described above.
  • the assembly process of the entire pump body assembly 93 is as follows: the piston 32 is mounted in the guide hole 311, the connecting convex ring 334 is mounted on the limiting plate 26, and the limiting plate 26 is fixedly coupled to the lower flange 60, while the cylinder 20 and the piston sleeve 33 are attached.
  • the coaxial flange is mounted on the cylinder 20, and the sliding mating surface 111 of the rotating shaft 10 is fitted with a pair of parallel surfaces of the sliding hole 321 of the piston 32.
  • the upper flange 50 fixes the upper half of the rotating shaft 10.
  • the segment is simultaneously fixed to the cylinder 20 by screws. Thereby the assembly of the pump body assembly 93 is completed, as shown in FIG.
  • the guiding holes 311 are at least two, the two guiding holes 311 are disposed along the axial direction of the rotating shaft 10, and the pistons 32 are at least two, and each of the guiding holes 311 is correspondingly provided with a piston 32.
  • the compressor is a single-cylinder multi-compression chamber compressor, and the torque fluctuation is relatively small compared with the same-displacement single-cylinder roller compressor.
  • the compressor of the present invention is not provided with an intake valve piece, so that the suction resistance can be effectively reduced and the compression efficiency of the compressor can be improved.
  • the cylinder wall of the cylinder 20 of the present invention has a compression intake port 21 and a first compression exhaust port 22, and when the piston assembly 30 is in the intake position, the intake air is compressed.
  • the port 21 is electrically connected to the variable volume chamber 31; when the piston assembly 30 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first compressed exhaust port 22.
  • the inner wall surface of the cylinder wall has a compressed intake buffer groove 23, and the compressed intake buffer groove 23 communicates with the compressed intake port 21 (please refer to FIGS. 46 to 52). Since the compressed air intake buffer tank 23 is provided, a large amount of gas is stored therein, so that the variable volume chamber 31 can be fully inhaled, so that the compressor can sufficiently inhale, and when the air intake is insufficient, The storage gas can be supplied to the variable volume chamber 31 in time to ensure the compression efficiency of the compressor.
  • the compressed intake buffer groove 23 has an arc segment in the radial plane of the cylinder 20, and the compressed intake buffer groove 23 extends from the compressed intake port 21 toward the side of the first compression exhaust port 22, And the direction in which the compressed intake buffer groove 23 extends is in the same direction as the rotational direction of the piston assembly 30.
  • the cylinder wall of the cylinder 20 of the present invention has a second compressed exhaust port 24, and the second compressed exhaust port 24 is located between the compressed intake port 21 and the first compressed exhaust port 22, and the piston assembly 30 is rotated. In the middle, part of the gas in the piston assembly 30 is first discharged through the second compressed exhaust port 24 and then discharged from the first compressed exhaust port 22. Since only two exhaust passages are provided, one is exhausted through the first compressed exhaust port 22, and the other is exhausted through the second compressed exhaust port 24, thereby reducing gas leakage and increasing the sealing area of the cylinder 20. .
  • the compressor ie, the fluid machine
  • the compressor further includes an exhaust valve assembly 40 disposed at the second compression exhaust port 24. Since the exhaust valve assembly 40 is provided at the second compression exhaust port 24, a large amount of gas leakage in the variable volume chamber 31 is effectively prevented, and the compression efficiency of the variable volume chamber 31 is ensured.
  • the outer wall of the cylinder wall is provided with a receiving groove 25, and the second compressed exhaust port 24 penetrates the groove bottom of the receiving groove 25, and the exhaust valve assembly 40 is disposed in the receiving groove 25. Since the accommodating groove 25 for accommodating the vent valve assembly 40 is provided, the space occupied by the vent valve assembly 40 is reduced, and the components are properly disposed, thereby increasing the space utilization of the cylinder 20.
  • the exhaust valve flap 41 and the valve flapper 42 are connected by a first fastener 43.
  • the first fastener 43 is a screw.
  • the exhaust valve assembly 40 of the present invention can separate the variable volume chamber 31 from the external space of the pump body assembly 93, and is a back pressure exhaust gas: that is, when the variable volume chamber 31 and the second compressed exhaust port After 24 communication, when the pressure of the variable volume chamber 31 is greater than the external space pressure (exhaust pressure), the exhaust valve piece 41 is opened to start the exhaust; if the pressure of the variable volume chamber 31 is still lower than the exhaust pressure after the communication, At this time, the exhaust valve piece 41 does not operate. At this point, the compressor continues to run and compress until it becomes variable.
  • the chamber 31 communicates with the first compressed exhaust port 22 to press the gas in the variable volume chamber 31 into the external space to complete the exhaust process.
  • the exhaust mode of the first compression exhaust port 22 is a forced exhaust mode.
  • the compressor of the present invention is set using the principle of a cross slider mechanism.
  • the piston 32 acts as a slider in the cross slider mechanism
  • the sliding engagement surface 111 of the piston 32 and the rotating shaft 10 respectively serve as two connecting rods in the cross slider mechanism 1 , l 2 , this constitutes the main structure of the principle of the cross slider.
  • the axis O 1 of the rotating shaft 10 is eccentrically disposed with the axis O 2 of the cylinder 20, and the two are respectively rotated about the respective axes.
  • the center axis 15 of the rotating shaft and the piston sleeve axis 333 are separated by an eccentric distance e, and the piston centroid trajectory line is circular.
  • the motor assembly 92 drives the rotating shaft 10 to rotate, and the sliding mating surface 111 of the rotating shaft 10 drives the piston 32 to move, and the piston 32 drives the piston sleeve 33 to rotate.
  • the piston sleeve 33 only moves in a circular motion, and the piston 32 reciprocates on the one hand with respect to the rotating shaft 10 while reciprocating relative to the guiding hole 311 of the piston sleeve 33, and the two reciprocating motions are perpendicular to each other and simultaneously
  • the reciprocating motion in both directions constitutes a motion of the cross slider mechanism.
  • the combined motion of the cross-type slider mechanism reciprocates the piston 32 relative to the piston sleeve 33, which reciprocates the cavity formed by the piston sleeve 33, the cylinder 20 and the piston 32 periodically.
  • the piston 32 is circumferentially moved relative to the cylinder 20, and the circular motion causes the variable displacement chamber 31 formed by the piston sleeve 33, the cylinder 20 and the piston 32 to periodically communicate with the compressed intake port 21 and the exhaust port.
  • the compressor can complete the process of inhaling, compressing and exhausting.
  • the compressor of the present invention also has the advantages of zero clearance volume and high volumetric efficiency.
  • the compressor in the present invention is a variable pressure ratio compressor, and the discharge pressure of the compressor can be changed by adjusting the positions of the first compression exhaust port 22 and the second compression exhaust port 24 according to the operating conditions of the compressor.
  • the ratio is such that the exhaust performance of the compressor is optimized.
  • the exhaust pressure ratio of the compressor is smaller; when the position of the second compressed exhaust port 24 is closer to the compressed intake port 21 (counterclockwise approach), the compressor's exhaust pressure ratio is greater.
  • the compressor of the present invention also has the advantages of zero clearance volume and high volumetric efficiency.
  • the compressor exchanges the suction and exhaust ports and can be used as an expander. That is, the exhaust port of the compressor is used as an intake port of the expander, high-pressure gas is introduced, and other push mechanisms are rotated, and after being expanded, the gas is exhausted through the intake port of the compressor (expander port of the expander).
  • the cylinder wall of the cylinder 20 has an expansion exhaust port and a first expansion intake port, and when the piston assembly 30 is in the intake position, the expansion exhaust port is electrically connected to the variable volume chamber 31; When the assembly 30 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first expanded intake port.
  • the high pressure gas enters the variable volume chamber 31 through the first expansion inlet, the high pressure gas pushes the piston assembly 30 to rotate, and the piston sleeve 33 rotates to drive the piston 32 to rotate, and at the same time, the piston 32 is opposite.
  • the piston sleeve 33 slides linearly, so that the piston 32 drives the rotating shaft 10 to rotate. By connecting the rotating shaft 10 with other power consuming devices, the rotating shaft 10 can be outputted for work.
  • the inner wall surface of the cylinder wall has an expanded exhaust buffer tank that communicates with the expanded exhaust port.
  • the expanded exhaust buffer tank has an arc segment in a radial plane of the cylinder 20, and the expanded exhaust buffer tank extends from the expansion exhaust port to the side of the first inflation inlet, and the expanded exhaust buffer The slot extends in the same direction as the direction of rotation of the piston assembly 30.
  • the piston 32 with the slip groove 321 is substituted for the piston 32 with the slip groove 323.
  • components such as the exhaust valve assembly 40, the second compression exhaust port 24, the support plate 61, and the like are also added.
  • the fluid machine includes an upper flange 50, a lower flange 60, a cylinder 20, a rotating shaft 10, a piston sleeve 33, a piston sleeve shaft 34, and a piston 32, wherein the piston sleeve 33 is pivotally disposed In the cylinder 20, the piston sleeve shaft 34 is fixedly coupled to the piston sleeve 33 through the upper flange 50.
  • the piston 32 is slidably disposed in the piston sleeve 33 to form a variable volume chamber 31, and the variable volume chamber 31 is located in the sliding direction of the piston 32.
  • the shaft 10 the axis of the shaft 10 is eccentrically arranged with the axis of the cylinder 20 and the eccentric distance is fixed, and the shaft 10 is sequentially slidably engaged with the piston 32 through the lower flange 60 and the cylinder 20, under the driving action of the sleeve shaft 34,
  • the piston sleeve 33 rotates synchronously with the piston sleeve shaft 34 to drive the piston 32 to slide within the piston sleeve 33 to change the volume of the variable volume chamber 31 while the rotary shaft 10 is rotated by the driving of the piston 32.
  • the upper flange 50 is fixed to the cylinder 20 by the second fastener 70
  • the lower flange 60 is fixed to the cylinder 20 by the third fastener 80.
  • the second fastener 70 and/or the third fastener 80 are screws or bolts.
  • the rotating shaft 10 and the cylinder 20 are rotated about their respective axes during the movement, and the position of the center of mass is constant, thereby making the piston 32 and the piston sleeve 33 stable when moving in the cylinder 20.
  • Continuously rotating effectively alleviating the vibration of the fluid machine, ensuring that the volume change of the variable volume chamber is regular, reducing the clearance volume, thereby improving the operational stability of the fluid machine, thereby improving the reliability of the heat exchange equipment. Sex.
  • the fluid machine of the present invention drives the piston sleeve 33 to rotate by the piston sleeve shaft 34 and drives the piston 32 to rotate, so that the piston 32 slides within the piston sleeve 33 to change the volume of the variable volume chamber 31, while the shaft 10 is driven by the piston 32.
  • the lower rotation causes the piston sleeve 33 and the rotating shaft 10 to undergo bending deformation and torsional deformation, respectively, which reduces the overall deformation of the single part, reduces the structural strength requirement of the rotating shaft 10, and can effectively reduce the end face and the upper method of the piston sleeve 33. Leakage between the ends of the blue 50.
  • the upper flange 50 and the cylinder 20 are disposed concentrically, and the axial center of the lower flange 60 is eccentric from the axial center of the cylinder 20.
  • the cylinder 20 mounted in the above manner can ensure that the eccentricity of the cylinder 20 and the rotating shaft 10 or the upper flange 50 is fixed, so that the piston sleeve 33 has a characteristic of good motion stability.
  • the piston 32 is slidably engaged with the rotating shaft 10, and the piston 32 is driven by the piston sleeve 33 to rotate the rotating shaft 10, and the piston 32 has a linear motion with respect to the rotating shaft 10. . Due to live The plug 32 is slidably coupled to the piston sleeve 33, thereby effectively preventing the piston 32 from being jammed, thereby ensuring the reliability of the movement of the piston 32, the rotating shaft 10 and the piston sleeve 33, thereby improving the operational stability of the fluid machine.
  • the cross slider mechanism is formed between the piston 32, the piston sleeve 33, the cylinder 20 and the rotating shaft 10, the movement of the piston 32, the piston sleeve 33 and the cylinder 20 is stabilized and continuous, and the volume change of the variable volume chamber 31 is regular. Thereby ensuring the operational stability of the fluid machine, thereby improving the operational reliability of the heat exchange equipment.
  • the piston 32 of the present invention has a sliding hole 321 which is disposed through the axial direction of the rotating shaft 10, and the rotating shaft 10 passes through the sliding hole 321, and the rotating shaft 10 rotates with the piston sleeve 33 and the piston 32 under the driving of the piston 32, and the piston 32
  • the reciprocating sliding in the piston sleeve 33 in the direction perpendicular to the axis of the rotary shaft 10 (refer to Figs. 74 to 80). Since the piston 32 is linearly moved relative to the rotating shaft 10 instead of rotating and reciprocating, the eccentric mass is effectively reduced, and the lateral force received by the rotating shaft 10 and the piston 32 is reduced, thereby reducing the wear of the piston 32 and improving the piston 32. Sealing performance.
  • the operational stability and reliability of the pump body assembly 93 are ensured, and the vibration risk of the fluid machine is reduced, and the structure of the fluid machine is simplified.
  • the sliding hole 321 is a long hole or a waist hole.
  • the piston 32 in the present invention has a cylindrical shape.
  • the piston 32 is cylindrical or non-cylindrical.
  • the piston 32 has a pair of arcuate surfaces symmetrically disposed along the center plane of the piston 32.
  • the arcuate surface is adaptively fitted to the inner surface of the cylinder 20, and the curvature of the curved surface is curved. Two times the radius is equal to the inner diameter of the cylinder 20. In this way, a zero clearance volume can be achieved during the exhaust process.
  • the vertical plane of the piston 32 is the axial plane of the piston sleeve 33.
  • the piston sleeve 33 has a guide hole 311 which is provided in the radial direction of the piston sleeve 33, and the piston 32 is slidably disposed in the guide hole 311 to reciprocate linearly. Since the piston 32 is slidably disposed in the guiding hole 311, when the piston 32 moves left and right in the guiding hole 311, the volume of the variable volume chamber 31 can be continuously changed, thereby ensuring the suction and exhaust stability of the fluid machine.
  • the orthographic projection of the pilot hole 311 at the lower flange 60 has a pair of parallel straight segments, and a pair of parallel straight segments are a pair of parallel inner wall faces of the piston sleeve 33.
  • the projection is formed, and the piston 32 has an outer surface that is adapted to the shape of the pair of parallel inner wall faces of the guide hole 311 and that is slip-fitted.
  • the piston 32 and the piston sleeve 33 which are configured as described above, enable the piston 32 to smoothly slide in the piston sleeve 33 and maintain a sealing effect.
  • the outer peripheral surface of the piston sleeve 33 is adapted to the shape of the inner wall surface of the cylinder 20. Therefore, the piston sleeve 33 and the cylinder 20, the pilot hole 311 and the piston 32 are sealed with a large face, and the whole machine seal is a large face seal, which is beneficial to reduce leakage.
  • the first thrust surface 332 of the piston sleeve 33 facing the lower flange 60 side is in contact with the surface of the lower flange 60. Thereby, the piston sleeve 33 and the lower flange 60 are reliably positioned.
  • the rotating shaft 10 has a sliding section 11 that is slidably engaged with the piston 32.
  • the sliding section 11 is located at one end of the rotating shaft 10 away from the lower flange 60, and the sliding section 11 has a sliding mating surface 111. Since the rotating shaft 10 is slidably engaged with the piston 32 through the sliding mating surface 111, the motion reliability of the two is ensured, and the two are effectively prevented from being stuck.
  • the piston sleeve shaft 34 of the present invention has a first lubricating oil passage 341 penetratingly disposed in the axial direction of the piston sleeve shaft 34.
  • the rotating shaft 10 has a second lubricating oil passage 131 communicating with the first lubricating oil passage 341, and the second lubricating oil. At least a portion of the track 131 is the internal oil passage of the rotating shaft 10. Due to at least a portion of the internal oil passage of the second lubricating oil passage 131, a large amount of leakage of the lubricating oil is effectively prevented, and the flow reliability of the lubricating oil is improved.
  • the second lubricating oil passage 131 at the slip fitting surface 111 is an external oil passage. Since the second lubricating oil passage 131 at the sliding mating surface 111 is an external oil passage, the lubricating oil can be directly supplied to the sliding mating surface 111 and the piston 32, thereby effectively avoiding excessive friction and wear of the two, thereby improving the wear. The smoothness of both sports.
  • the rotating shaft 10 has an oil passage hole 14, and the internal oil passage communicates with the external oil passage through the oil passage hole 14. Since the oil passage hole 14 is provided, the inner and outer oil passages can be smoothly connected, and the second lubricating oil passage 131 can be injected through the oil passage hole 14, thereby ensuring the convenience of oil filling of the second lubricating oil passage 131.
  • the fluid machine of the present invention further includes a support plate 61 which is disposed on an end surface of the lower flange 60 which is away from the cylinder 20 side, and the support plate 61 is coaxial with the lower flange 60.
  • the core is disposed and supported for supporting the rotating shaft 10, and the rotating shaft 10 is supported on the supporting plate 61 through a through hole on the lower flange 60, and the supporting plate 61 has a second thrust surface 611 for supporting the rotating shaft 10. Since the support plate 61 is provided for supporting the rotary shaft 10, the connection reliability between the components is improved.
  • the support plate 61 is coupled to the lower flange 60 by a fifth fastener 82.
  • the fifth fastener 82 is a bolt or a screw.
  • the lower flange 60 is distributed with four pump body screw holes for the third fastener 80, and three support disk thread holes for the fifth fastener 82 to pass through, four
  • the circle formed by the center of the pump body screw hole is eccentric with the center of the bearing, and the amount of eccentricity is e. This amount determines the eccentric amount of the pump body assembly.
  • the gas volume V 2*2e*S, Where S is the cross-sectional area of the main structure of the piston 32; the center of the threaded hole of the support disk coincides with the axis of the lower flange 60, and the support plate 61 is fixedly engaged with the fifth fastener 82.
  • the support plate 61 has a cylindrical structure, and three screw holes for the fifth fastener 82 are evenly distributed.
  • the surface of the support plate 61 facing the shaft 10 has a certain roughness to the shaft 10 The bottom of the fit.
  • the illustrated fluid machine is a compressor including a liquid separator component 90, a housing assembly 91, a motor assembly 92, a pump body assembly 93, an upper cover assembly 94, and a lower cover and mounting plate 95.
  • the dispenser member 90 is disposed outside the housing assembly 91
  • the upper cover assembly 94 is assembled at the upper end of the housing assembly 91
  • the lower cover and mounting plate 95 are assembled to the housing assembly
  • the lower end of the member 91, the motor assembly 92 and the pump body assembly 93 are all located inside the housing assembly 91, and the motor assembly 92 is disposed above the pump body assembly 93.
  • the pump body assembly 93 of the compressor includes the above-described upper flange 50, lower flange 60, cylinder 20, rotating shaft 10, piston 32, piston sleeve 33, piston sleeve shaft 34, and the like.
  • the above components are connected by welding, hot jacketing, or cold pressing.
  • the assembly process of the entire pump body assembly 93 is as follows: the piston 32 is mounted in the pilot hole 311, the cylinder 20 is mounted coaxially with the piston sleeve 33, and the lower flange 60 is fixed to the cylinder 20, and the sliding mating surface 111 of the rotating shaft 10 and the piston 32 A pair of parallel surfaces of the sliding holes 321 are fitted together, and the upper flange 50 fixes the piston sleeve shaft 34 while the upper flange 50 is fixed to the cylinder 20 by screws. Thereby the assembly of the pump body assembly 93 is completed as shown in FIG.
  • the guiding holes 311 are at least two, the two guiding holes 311 are disposed along the axial direction of the rotating shaft 10, and the pistons 32 are at least two, and each of the guiding holes 311 is correspondingly provided with a piston 32.
  • the compressor is a single-cylinder multi-compression chamber compressor, and the torque fluctuation is relatively small compared with the same-displacement single-cylinder roller compressor.
  • the cylinder wall of the cylinder 20 of the present invention has a compression intake port 21 and a first compression exhaust port 22, and when the piston sleeve 33 is in the intake position, the intake air is compressed.
  • the port 21 is electrically connected to the variable volume chamber 31; when the piston sleeve 33 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first compressed exhaust port 22.
  • the inner wall surface of the cylinder wall has a compressed intake buffer groove 23, and the compressed intake buffer groove 23 communicates with the compressed intake port 21 (please refer to FIGS. 74 to 80). Since the compressed air intake buffer tank 23 is provided, a large amount of gas is stored therein, so that the variable volume chamber 31 can be fully inhaled, so that the compressor can sufficiently inhale, and when the air intake is insufficient, The storage gas can be supplied to the variable volume chamber 31 in time to ensure the compression efficiency of the compressor.
  • the arc length of the extended portion of the compressed intake buffer groove 23 in the same direction as the rotational direction of the piston sleeve 33 is larger than the arc length of the extension portion in the opposite direction.
  • the compressor of the present invention is set using the principle of a cross slider mechanism.
  • the shaft axis O 1 10 O 20 and the cylinder axis of the second eccentric is provided, and both fixed eccentricity, and both are rotated about their axes.
  • the piston 32 linearly slides relative to the rotating shaft 10 and the piston sleeve 33 to achieve gas compression, and the piston sleeve 33 rotates synchronously with the rotating shaft 10, and the piston 32 is in the range of the eccentric distance e with respect to the axial center of the cylinder 20.
  • the piston sleeve 33 is eccentrically mounted with the rotating shaft 10, and the piston sleeve shaft 34 is connected to the motor assembly 92.
  • the motor assembly 92 directly drives the piston sleeve 33 to rotate, which belongs to the piston sleeve driving structure.
  • the piston sleeve 33 rotates to drive the piston 32 to rotate, and the piston 32 drives the rotating shaft 10 to rotate through the rotating shaft supporting surface.
  • the piston 32, the piston sleeve 33 and the rotating shaft 10 cooperate with other pump parts to complete the suction, compression and exhaust during the rotation process. Process, one cycle is 2 ⁇ .
  • the shaft 10 rotates clockwise.
  • the piston forms two cavities in the guiding hole 311 of the piston sleeve 33 and the inner circular surface of the cylinder 20.
  • the piston sleeve 33 rotates once, and the two cavities respectively perform the processes of inhaling, compressing and exhausting, and the difference lies in the two cavities.
  • the suction and exhaust compression has a phase difference of 180°. Taking one of the cavities as an example to illustrate the process of inhaling, exhausting, and compressing the pump body assembly 93, as follows: when the cavity is in communication with the compressed air inlet 21, inhalation is started (refer to FIG. 75 and FIG.
  • the compressor of the present invention also has the advantages of zero clearance volume and high volumetric efficiency.
  • the compressor of the present invention uses the piston sleeve 33 to drive the piston 32 to rotate, and the piston 32 drives the rotating shaft 10 to rotate.
  • the piston sleeve 33 and the rotating shaft 10 respectively undergo bending deformation and torsional deformation, which can effectively reduce deformation wear; and can effectively reduce leakage between the end surface of the piston sleeve 33 and the end surface of the upper flange 50.
  • the focus of this case is that the piston sleeve shaft 34 and the piston sleeve 33 are integrally formed.
  • the upper and lower flanges are disposed off-axis to eccentrically rotate the shaft 10 and the sleeve shaft 34.
  • the compressor exchanges the suction and exhaust ports and can be used as an expander. That is, the exhaust port of the compressor is used as an intake port of the expander, high-pressure gas is introduced, and other push mechanisms are rotated, and after being expanded, the gas is exhausted through the intake port of the compressor (expander port of the expander).
  • the cylinder wall of the cylinder 20 has an expansion exhaust port and a first expansion intake port, and when the piston sleeve 33 is in the intake position, the expansion exhaust port is electrically connected to the variable volume chamber 31; When the sleeve 33 is in the exhaust position, the variable volume chamber 31 is electrically connected to the first inflation inlet.
  • the high pressure gas enters the variable volume chamber 31 through the first expansion air inlet, the high pressure gas pushes the piston sleeve 33 to rotate, the piston sleeve 33 rotates to drive the piston 32 to rotate, and at the same time, the piston 32 linearly slides relative to the piston sleeve 33, thereby The piston 32 is caused to rotate the rotating shaft 10.
  • the rotating shaft 10 By connecting the rotating shaft 10 with other power consuming devices, the rotating shaft 10 can be outputted for work.
  • the inner wall surface of the cylinder wall has an expanded exhaust buffer tank that communicates with the expanded exhaust port.
  • the expanded exhaust buffer tank has an arc-shaped section in the radial plane of the cylinder 20, and both ends of the expanded exhaust buffer tank extend from the expanded exhaust port to the position of the first expanded intake port.
  • the arc length of the extended exhaust buffer tank in the same direction as the direction of rotation of the piston sleeve 33 is smaller than the arc length of the extension in the opposite direction.

Abstract

一种流体机械、换热设备和流体机械的运行方法。该流体机械包括:转轴(10)、气缸(20)、活塞组件(30)。转轴(10)的轴心与气缸(20)的轴心偏心设置且偏心距离固定。活塞组件(30)具有变容积腔(31),其可枢转地设置在气缸(20)内。且转轴(10)与活塞组件(30)驱动连接以改变所述变容积腔(31)的容积。由于将转轴(10)与气缸(20)的偏心距离固定,转轴(10)和气缸(20)在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞组件(30)在气缸(20)内运动时,能够稳定且连续地转动。有效缓解了流体机械的振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,从而提高了流体机械的运行稳定性,提高了换热设备的工作可靠性。

Description

流体机械、换热设备和流体机械的运行方法 技术领域
本发明涉及换热系统技术领域,具体而言,涉及一种流体机械、换热设备和流体机械的运行方法。
背景技术
现有技术中的流体机械包括压缩机和膨胀机等。以压缩机为例。
现有技术中的活塞式压缩机的转轴与气缸在运动过程中,二者的质心的位置是变化的。电机驱动曲轴输出动力,由曲轴驱动活塞在气缸内往复运动来压缩气体或液体做功,以达到压缩气体或液体的目的。
传统的活塞式压缩机存在诸多缺陷:由于吸气阀片和排气阀片的存在,导致吸、排气阻力加大,同时增加了吸排气噪音;压缩机的气缸所受侧向力较大,侧向力做无用功,降低压缩机效率;曲轴带动活塞往复运动,偏心质量较大,导致压缩机振动大;压缩机通过曲柄连杆机构带动一个或多个活塞工作,结构复杂;曲轴及活塞受到的侧向力较大,活塞容易磨损,导致活塞密封性降低。且现有的压缩机由于存在余隙容积,泄漏大等原因,容积效率低,且很难有进一步提高。
不仅如此,活塞式压缩机中的偏心部的质心做圆周运动产生一个大小不变、方向改变的离心力,该离心力导致压缩机振动加剧。
发明内容
本发明的主要目的在于提供一种流体机械、换热设备和流体机械的运行方法,以解决现有技术中因气缸与转轴的偏心距不定而导致压缩机运行不稳定的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种流体机械,包括:转轴;气缸,转轴的轴心与气缸的轴心偏心设置且偏心距离固定;活塞组件,活塞组件具有变容积腔,活塞组件可枢转地设置在气缸内,且转轴与活塞组件驱动连接以改变变容积腔的容积。
进一步地,流体机械还包括上法兰、下法兰,气缸夹设在上法兰与下法兰之间;活塞组件包括:活塞套,活塞套可枢转地设置在气缸内;活塞,活塞滑动设置在活塞套内以形成变容积腔,且变容积腔位于活塞的滑动方向上。
进一步地,活塞具有滑移槽,转轴在滑移槽内滑动,活塞在转轴的驱动下随转轴旋转并同时沿垂直于转轴的轴线方向在活塞套内往复滑动。
进一步地,活塞具有沿转轴的轴向贯通设置的滑移孔,转轴穿过滑移孔,活塞在转轴的驱动下随转轴旋转并同时沿垂直于转轴的轴线方向在活塞套内往复滑动。
进一步地,流体机械还包括活塞套轴,活塞套轴穿过上法兰与活塞套固定连接,转轴依次穿过下法兰和气缸与活塞滑动配合,在活塞套轴的驱动作用下,活塞套随活塞套轴同步转动,以驱动活塞在活塞套内滑动以改变变容积腔的容积,同时转轴在活塞的驱动作用下转动。
进一步地,滑移孔为长孔或腰形孔。
进一步地,活塞具有沿转轴的轴向贯通设置的滑移孔,转轴穿过滑移孔,转轴在活塞的驱动下随活塞套和活塞旋转,同时活塞沿垂直于转轴的轴线方向在活塞套内往复滑动。
进一步地,活塞套中具有沿活塞套的径向贯通设置的导向孔,活塞滑动设置在导向孔内以往复直线运动。
进一步地,活塞具有沿活塞的中垂面对称设置的一对弧形表面,弧形表面与气缸的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸的内径。
进一步地,活塞呈柱形。
进一步地,导向孔在下法兰处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套的一对相平行的内壁面投影形成,活塞具有与导向孔的一对相平行的内壁面形状相适配且滑移配合的外型面。
进一步地,活塞套具有朝向下法兰一侧伸出的连接轴,连接轴嵌设在下法兰的连接孔内。
进一步地,上法兰与转轴同轴心设置,且上法兰的轴心与气缸的轴心偏心设置,且下法兰与气缸同轴心设置。
进一步地,流体机械还包括支撑板,支撑板设置在下法兰的远离气缸一侧的端面上,且支撑板与下法兰同轴心设置,转轴穿过下法兰上的通孔支撑在支撑板上,支撑板具有用于支撑转轴的第二止推面。
进一步地,流体机械还包括限位板,限位板具有用于避让转轴的避让孔,限位板夹设在下法兰与活塞套之间并与活塞套同轴设置。
进一步地,活塞套具有朝向下法兰一侧伸出的连接凸环,连接凸环嵌设在避让孔内。
进一步地,其特征在于,上法兰和下法兰与转轴同轴心设置,且上法兰的轴心和下法兰的轴心与气缸的轴心偏心设置。
进一步地,活塞套的朝向下法兰一侧的第一止推面与下法兰的表面接触。
进一步地,活塞具有用于支撑转轴的第四止推面,转轴的朝向下法兰一侧的端面支撑在第四止推面处。
进一步地,活塞套具有用于支撑转轴的第三止推面,转轴的朝向下法兰一侧的端面支撑在第三止推面处。
进一步地,转轴包括:轴体;连接头,连接头设置在轴体的第一端并与活塞组件连接。
进一步地,连接头在垂直于轴体的轴线的平面内呈四边形。
进一步地,连接头具有两个对称设置的滑移配合面。
进一步地,滑移配合面与转轴的轴向平面相平行,滑移配合面与活塞的滑移槽的内壁面在垂直于转轴的轴线方向上滑动配合。
进一步地,转轴包括:轴体;连接头,连接头设置在轴体的第一端并与活塞组件连接。
进一步地,连接头在垂直于轴体的轴线的平面内呈四边形。
进一步地,连接头具有两个对称设置的滑移配合面。
进一步地,滑移配合面与转轴的轴向平面相平行,滑移配合面与活塞的滑移孔的内壁面在垂直于转轴的轴线方向上滑动配合。
进一步地,转轴具有与活塞组件滑动配合的滑移段,滑移段位于转轴的两端之间,且滑移段具有滑移配合面。
进一步地,滑移配合面对称设置在滑移段的两侧。
进一步地,滑移配合面与转轴的轴向平面相平行,滑移配合面与活塞的滑移孔的内壁面在垂直于转轴的轴线方向上滑动配合。
进一步地,转轴具有与活塞组件滑动配合的滑移段,滑移段位于转轴的两端之间,且滑移段具有滑移配合面。
进一步地,转轴具有润滑油道,润滑油道包括设置在转轴内部的内部油道和设置在转轴外部的外部油道以及连通内部油道和外部油道的通油孔。
进一步地,滑移配合面处具有沿着转轴的轴向延伸的外部油道。
进一步地,活塞套轴具有沿活塞套轴的轴向贯通设置的第一润滑油道,转轴具有与第一润滑油道连通的第二润滑油道,第二润滑油道的至少一部分为转轴的内部油道,在滑移配合面处的第二润滑油道为外部油道,转轴具有通油孔,内部油道通过通油孔与外部油道连通。
进一步地,气缸的气缸壁具有压缩进气口和第一压缩排气口,当活塞组件处于进气位置时,压缩进气口与变容积腔导通;当活塞组件处于排气位置时,变容积腔与第一压缩排气口导通。
进一步地,气缸壁的内壁面具有压缩进气缓冲槽,压缩进气缓冲槽与压缩进气口连通。
进一步地,压缩进气缓冲槽在气缸的径向平面内呈弧形段,且压缩进气缓冲槽由压缩进气口处向第一压缩排气口所在一侧延伸。
进一步地,气缸的气缸壁具有第二压缩排气口,第二压缩排气口位于压缩进气口与第一压缩排气口之间,且在活塞组件转动的过程中,在活塞组件内的部分气体先经过第二压缩排气口的泄压后再由第一压缩排气口全部排出。
进一步地,流体机械还包括排气阀组件,排气阀组件设置在第二压缩排气口处。
进一步地,气缸壁的外壁上开设有容纳槽,第二压缩排气口贯通容纳槽的槽底,排气阀组件设置在容纳槽内。
进一步地,排气阀组件包括:排气阀片,排气阀片设置在容纳槽内并遮挡第二压缩排气口;阀片挡板,阀片挡板叠置在排气阀片上。
进一步地,流体机械是压缩机。
进一步地,气缸的气缸壁具有膨胀排气口和第一膨胀进气口,当活塞组件处于进气位置时,膨胀排气口与变容积腔导通;当活塞组件处于排气位置时,变容积腔与第一膨胀进气口导通。
进一步地,气缸壁的内壁面具有膨胀排气缓冲槽,膨胀排气缓冲槽与膨胀排气口连通。
进一步地,膨胀排气缓冲槽在气缸的径向平面内呈弧形段,且膨胀排气缓冲槽由膨胀排气口处向第一膨胀进气口所在一侧延伸,且膨胀排气缓冲槽的延伸方向与活塞组件的转动方向同向。
进一步地,流体机械是膨胀机。
进一步地,导向孔为至少两个,两个导向孔沿转轴的轴向间隔设置,活塞为至少两个,每个导向孔内对应设置有一个活塞。
根据本发明的另一方面,提供了一种换热设备,包括流体机械,流体机械是上述的流体机械。
根据本发明的另一方面,提供了一种流体机械的运行方法,包括:转轴绕转轴的轴心O1转动;气缸绕气缸的轴心O2转动,且转轴的轴心与气缸的轴心偏心设置且偏心距离固定;活塞组件的活塞在转轴的驱动下随转轴旋转并同时沿垂直于转轴的轴线方向在活塞组件的活塞套内往复滑动。
进一步地,运行方法采用十字滑块机构原理,其中,活塞作为滑块,转轴的滑移配合面作为第一连杆l1、活塞套的导向孔作为第二连杆l2
应用本发明的技术方案,转轴的轴心与气缸的轴心偏心设置且偏心距离固定,活塞组件具有变容积腔,活塞组件可枢转地设置在气缸内,且转轴与活塞组件驱动连接以改变变容积 腔的容积。由于将转轴与气缸的偏心距离固定,转轴和气缸在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞组件在气缸内运动时,能够稳定且连续地转动,有效缓解了流体机械的振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,从而提高了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明中的压缩机的工作原理图;
图2示出了第一个优选实施方式中的压缩机的结构示意图;
图3示出了图1中的泵体组件的爆炸图;
图4示出了图2中的转轴、上法兰、气缸和下法兰的安装关系示意图;
图5示出了图4中部件的内部结构示意图;
图6示出了图2中的排气阀组件与气缸的安装关系示意图;
图7示出了图2中的转轴的结构示意图;
图8示出了图7中的转轴的内部结构示意图;
图9示出了图2中的活塞处于准备开始吸气时的工作状态示意图;
图10示出了图2中的活塞处于吸气过程中的工作状态示意图;
图11示出了图2中的活塞处于吸气完成时的工作状态示意图;
图12示出了图2中的活塞处于气体压缩时的工作状态示意图;
图13示出了图2中的活塞处于排气过程中的工作状态示意图;
图14示出了图2中的活塞处于将要排气完成时的工作状态示意图;
图15示出了图2中的活塞、转轴和活塞套的安装关系示意图;
图16示出了图14的俯视图;
图17示出了图2中的活塞套的结构示意图;
图18示出了图2中的上法兰的结构示意图;
图19示出了图2中的转轴的轴心与活塞套轴心的关系示意图;
图20示出了第二个优选实施方式中的压缩机的结构示意图;
图21示出了图20中的泵体组件的爆炸图;
图22示出了图21中的转轴、上法兰、气缸和下法兰的安装关系示意图;
图23示出了图22中的部件的内部结构示意图;
图24示出了图21中的气缸的结构示意图;
图25示出了图21中的转轴的结构示意图;
图26示出了图25中的转轴的内部结构示意图;
图27示出了图21中的活塞处于准备开始吸气时的工作状态示意图;
图28示出了图21中的活塞处于吸气过程中的工作状态示意图;
图29示出了图21中的活塞处于吸气完成时的工作状态示意图;
图30示出了图21中的活塞处于气体压缩时的工作状态示意图;
图31示出了图21中的活塞处于排气过程中的工作状态示意图;
图32示出了图21中的活塞处于将要排气完成时的工作状态示意图;
图33示出了图21中的活塞套、活塞和转轴的连接关系示意图;
图34示出了图20中的活塞和活塞套的运动关系示意图;
图35示出了图21中的上法兰的结构示意图;
图36示出了图21中的活塞套的剖视图;
图37示出了图21中的活塞的结构示意图;
图38示出了图37中的活塞的另一个角度的结构示意图
图39示出了第三个优选实施方式中的压缩机的结构示意图;
图40示出了图39中的泵体组件的爆炸图;
图41示出了图40中的转轴、上法兰、气缸和下法兰的安装关系示意图;
图42示出了图41中的部件的内部结构示意图;
图43示出了图40中的排气阀组件与气缸的安装关系示意图;
图44示出了图40中的转轴的结构示意图;
图45示出了图44中的转轴的内部结构示意图;
图46示出了图40中的活塞处于准备开始吸气时的工作状态示意图;
图47示出了图40中的活塞处于吸气过程中的工作状态示意图;
图48示出了图40中的活塞处于吸气完成时的工作状态示意图;
图49示出了图40中的活塞处于气体压缩和排气时的工作状态示意图;
图50示出了图40中的活塞处于排气过程中的工作状态示意图;
图51示出了图40中的活塞处于将要排气完成时的工作状态示意图;
图52示出了图40中的活塞套与转轴的偏心关系示意图;
图53示出了图40中的上法兰的结构示意图;
图54示出了图40中的活塞的结构示意图;
图55示出了图54中的活塞的另一个角度的结构示意图;
图56示出了图40中的活塞套的剖视图;
图57示出了图40中的限位板与气缸的连接关系示意图;
图58示出了图40中的支撑板与下法兰的连接关系示意图;
图59示出了图40中的气缸、限位板、下法兰和支撑板的连接关系示意图;
图60示出了第四个优选实施方式中的压缩机的结构示意图;
图61示出了图60中的泵体组件的爆炸图;
图62示出了图61中的活塞套轴、上法兰、气缸和下法兰的安装关系示意图;
图63示出了图62中的部件的内部结构示意图;
图64示出了图60中的下法兰的结构示意图;
图65示出了在图64的下法兰处,本发明中的转轴的轴心与活塞套轴心的位置关系示意图;
图66示出了图60中的转轴、活塞、活塞套、活塞套轴的安装关系示意图;
图67示出了图60中的活塞套和活塞套轴的连接关系示意图;
图68示出了图67的内部结构示意图;
图69示出了图60中的转轴与活塞的装配关系示意图;
图70示出了图60中的活塞的结构示意图;
图71示出了图60中的气缸的结构示意图;
图72示出了图71的俯视图;
图73示出了图60中的上法兰的结构示意图;
图74示出了图60中的气缸、活塞套、活塞、转轴的运动关系示意图;
图75示出了图60中的活塞处于准备开始吸气时的工作状态示意图;
图76示出了图60中的活塞处于吸气过程中的工作状态示意图;
图77示出了图60中的活塞处于气体压缩时的工作状态示意图;
图78示出了图60中的活塞处于排气开始前的工作状态示意图;
图79示出了图60中的活塞处于排气过程中的工作状态示意图;
图80示出了图60中的活塞处于排气结束时的工作状态示意图。
其中,上述附图包括以下附图标记:
10、转轴;16、轴体;17、连接头;11、滑移段;111、滑移配合面;13、润滑油道;131、第二润滑油道;14、通油孔;15、转轴的轴心;20、气缸;21、压缩进气口;22、第一压缩排气口;23、压缩进气缓冲槽;24、第二压缩排气口;25、容纳槽;26、限位板;30、活塞组件;31、变容积腔;311、导向孔;32、活塞;321、滑移孔;322、活塞质心轨迹线;323、滑移槽;33、活塞套;331、连接轴;332、第一止推面;333、活塞套轴心;334、连接凸环;335、第三止推面;336、第四止推面;34、活塞套轴;341、第一润滑油道;40、排气阀组件;41、排气阀片;42、阀片挡板;43、第一紧固件;50、上法兰;60、下法兰;61、支撑板;611、第二止推面;70、第二紧固件;80、第三紧固件;81、第四紧固件;82、第五紧固件;90、分液器部件;91、壳体组件;92、电机组件;93、泵体组件;94、上盖组件;95、下盖及安装板。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中的流体机械存在运动不稳、振动大、存在余隙容积的问题,本发明提供了一种流体机械、换热设备和流体机械的运行方法,其中,换热设备包括下述的流体机械,而流体机械采用下述的运行方法运行。
本发明中的流体机械包括转轴10、气缸20和活塞组件30,其中,转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定,活塞组件30具有变容积腔31,活塞组件30可枢转地设置在气缸20内,且转轴10与活塞组件30驱动连接以改变变容积腔31的容积。
由于将转轴10与气缸20的偏心距离固定,转轴10和气缸20在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞组件30在气缸20内运动时,能够稳定且连续地转动,有效缓解了流体机械的振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,从而提高了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
如图1所示,当上述结构的流体机械运行时,转轴10绕转轴10的轴心O1转动;气缸20绕气缸20的轴心O2转动,且转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定;活塞组件30的活塞32在转轴10的驱动下随转轴10旋转并同时沿垂直于转轴10的轴线方向在活塞组件30的活塞套33内往复滑动。
如上述方法运行的流体机械,构成了十字滑块机构,该运行方法采用十字滑块机构原理,其中,活塞32作为滑块,转轴10的滑移配合面111作为第一连杆l1、活塞套33的导向孔311作为第二连杆l2(请参考图1)。
具体而言,转轴10的轴心O1相当于第一连杆l1的旋转中心,气缸20的轴心O2相当于第二连杆l2的旋转中心;转轴10的滑移配合面111相当于第一连杆l1,活塞套33的导向孔311相当于第二连杆l2;活塞32相当于滑块。导向孔311与滑移配合面111相互垂直;活塞32相对与导向孔311只能往复运动,活塞32相对于滑移配合面111只能往复运动。活塞32简化为质心后可以发现,其运行轨迹为圆周运动,该圆是以气缸20的轴心O2与转轴10的轴心O1的连线为直径的圆。
当第二连杆l2作圆周运动时,滑块可以沿第二连杆l2往复运动;同时,滑块可以沿第一连杆l1往复运动。第一连杆l1和第二连杆l2始终保持垂直,使得滑块沿第一连杆l1往复运动方向与滑块沿第二连杆l2往复运动方向相互垂直。第一连杆l1和第二连杆l2及活塞32的相对运动关系,形成十字滑块机构原理。
在该运动方法下,滑块作圆周运动,其角速度与第一连杆l1和第二连杆l2的转动速度相等。滑块运行轨迹为圆。该圆以第一连杆l1的旋转中心与第二连杆l2的旋转中心的中心距为直径。
下面将给出四个可选的实施方式,以对流体机械的结构进行详细的介绍,以便能够通过结构特征更好地阐述流体机械的运行方法。
第一个实施方式如下
如图2至图19所示,流体机械包括上法兰50、下法兰60、转轴10、气缸20和活塞组件30,气缸20夹设在上法兰50与下法兰60之间,转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定,转轴10依次穿过上法兰50和气缸20,活塞组件30具有变容积腔31,活塞组件30可枢转地设置在气缸20内,且转轴10与活塞组件30驱动连接以改变变容积腔31的容积。
其中,上法兰50通过第二紧固件70与气缸20固定,下法兰60通过第三紧固件80与气缸20固定(请参考图3)。
可选地,第二紧固件70和/或第三紧固件80为螺钉或螺栓。需要说明的是,上法兰50与转轴10同轴心设置,且上法兰50的轴心与气缸20的轴心偏心设置。
可选地,下法兰60与气缸20同轴心设置。以上述方式安装的气缸20,能够保证气缸20与转轴10或上法兰50的偏心距固定,从而使活塞组件30具有运动稳定性好的特点。
在该实施方式中,转轴10与活塞组件30滑动连接,且变容积腔31的容积随转轴10的转动而变化。由于本发明中的转轴10与活塞组件30滑动连接,因而保证了活塞组件30的运动可靠性,有效避免活塞组件30运动卡死的问题,从而使变容积腔31的容积变化具有规律的特点。
如图3、图9至图16所示,活塞组件30包括活塞组件30包括活塞套33和活塞32,活塞套33可枢转地设置在气缸20内,活塞32滑动设置在活塞套33内以形成变容积腔31,且变容积腔31位于活塞32的滑动方向上。
在该具体实施例中,活塞组件30与转轴10滑动配合,且随着转轴10的转动,活塞组件30相对于转轴10具有直线运动趋势,从而使转动变为局部的直线运动。由于活塞32与活塞套33滑动连接,因而在转轴10的驱动下,有效避免活塞32运动卡死,从而保证了活塞32、转轴10和活塞套33的运动可靠性,进而提高了流体机械的运行稳定性。
需要说明的是,本发明中的转轴10无偏心结构,有利于减小流体机械的振动。
具体而言,活塞32沿垂直于转轴10的轴线的方向在活塞套33内滑动(请参考图19)。由于活塞组件30、气缸20和转轴10之间形成十字滑块机构,因而使活塞组件30与气缸20的运动稳定且连续,并保证变容积腔31的容积变化具有规律,从而保证了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
如图3、图9至图16所示,活塞32具有滑移槽323,转轴10在滑移槽323内滑动,活塞32在转轴10的驱动下随转轴10旋转并同时沿垂直于转轴10的轴线方向在活塞套33内往复滑动。由于使活塞32相对于转轴10做直线运动而非旋转往复运动,因而有效降低了偏心 质量,降低了转轴10和活塞32受到的侧向力,从而降低了活塞32的磨损、提高了活塞32的密封性能。同时,保证了泵体组件93的运行稳定性和可靠性,并降低了流体机械的振动风险、简化了流体机械的结构。
该滑移槽323为直线式滑槽,且该滑移槽的延伸方向与转轴10的轴线垂直。
可选地,活塞32呈柱形。可选地,活塞32呈圆柱形或非圆柱形。
如图9所示,活塞32具有沿活塞32的中垂面对称设置的一对弧形表面,弧形表面与气缸20的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸20的内径。这样,可以使得排气过程中可实现零余隙容积。需要说明的是,当活塞32放置在活塞套33内时,活塞32的中垂面为活塞套33的轴向平面。
如图3所示,活塞套33中具有沿活塞套33的径向贯通设置的导向孔311,活塞32滑动设置在导向孔311内以往复直线运动。由于活塞32滑动设置在导向孔311内,因而当活塞32在导向孔311内左右运动时,可以使变容积腔31的容积不断变化,从而保证压缩机的吸气、排气稳定性。
为了防止活塞32在活塞套33内旋转,导向孔311在下法兰60处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套33的一对相平行的内壁面投影形成,活塞32具有与导向孔311的一对相平行的内壁面形状相适配且滑移配合的外型面。如上述结构配合的活塞32和活塞套33,能够使使活塞32在活塞套33内平稳滑动且保持密封效果。
可选地,导向孔311在下法兰60处的正投影具有一对弧形线段,该一对弧形线段与一对相平行的直线段相连接以形成不规则的截面形状。
活塞套33的外周面与气缸20的内壁面形状相适配。从而使得活塞套33与气缸20之间、导向孔311与活塞32之间为大面密封,且整机密封均为大面密封,有利于减小泄漏。
如图17所示,活塞套33具有朝向下法兰60一侧伸出的连接轴331,连接轴331嵌设在下法兰60的连接孔内。由于活塞套33通过连接轴331与下法兰60同轴嵌设,因而保证了二者的连接可靠性,从而提高了活塞套33的运动稳定性。
在图17所示的优选实施方式中,活塞套33的朝向下法兰60一侧的第一止推面332与下法兰60的表面接触。从而使活塞套33与下法兰60可靠定位。
具体而言,本发明中的活塞套33包括同轴但是直径不同的两段圆柱体,上半部分外径等于气缸20的内径,导向孔311的轴心与气缸20的轴垂直并与活塞32配合,其中导向孔311的外形与活塞32的外形保持一致,在往复运动过程中,实现气体压缩,上半部分的下端面有同心连接轴331,为第一止推面,与下法兰60的端面配合,减小结构摩擦面积;下半部分为空心柱体,也就是短轴,短轴的轴线与下法兰60的轴线共轴,运动过程中,同轴转动。
如图3所示,活塞32具有用于支撑转轴10的第四止推面336,转轴10的朝向下法兰60一侧的端面支撑在第四止推面336处。从而使转轴10支撑在活塞32内。
本发明中的转轴10包括轴体16和连接头17,连接头17设置在轴体16的第一端并与活塞组件30连接。由于设置有连接头17,因而保证了连接头17与活塞组件30的活塞32的装配和运动可靠性。
可选地,轴体16具有一定的粗糙度,提高与电机组件92连接的牢固性。
如图7所示,连接头17具有两个对称设置的滑移配合面111。由于滑移配合面111对称设置,因而使得两个滑移配合面111的受力更加均匀,保证了转轴10与活塞32的运动可靠性。
如图7和图8所示,滑移配合面111与转轴10的轴向平面相平行,滑移配合面111与活塞32的滑移槽323的内壁面在垂直于转轴10的轴线方向上滑动配合。
可选地,连接头17在垂直于轴体16的轴线的平面内呈四边形。由于连接头17在垂直于轴体16的轴线的平面内呈四边形,因而与活塞32的滑移槽323配合时,能够起到防止转轴10与活塞32相对转动的问题,保证了二者相对运动的可靠性。
为了保证转轴10和活塞组件30的润滑可靠性,转轴10具有润滑油道13,润滑油道13贯通轴体16与连接头17。
可选地,润滑油道13的至少一部分为转轴10的内部油道。由于润滑油道13的至少一部分内部油道,因而有效避免润滑油大量外泄,提高了润滑油的流动可靠性。
如图7和图8所示,在连接头17处的润滑油道13为外部油道。当然,为了使润滑油能够顺利到达活塞32处,将连接头17处的润滑油道13设置为外部油道,可以使润滑油粘附在活塞32的滑移槽323的表面,保证了转轴10与活塞32的润滑可靠性。
如图7和图8所示,连接头17上具有与润滑油道13连通的通油孔14。由于设置有通油孔14,因而通过通油孔14可以很方便地为内部油道注油,从而保证了转轴10与活塞组件30之间的润滑、运动可靠性。当然,通油孔14也可以设置在轴体16处。
该实施方式示出的流体机械是压缩机,该压缩机包括分液器部件90、壳体组件91、电机组件92、泵体组件93、上盖组件94和下盖及安装板95,其中,分液器部件90设置在壳体组件91的外部,上盖组件94装配在壳体组件91的上端,下盖及安装板95装配在壳体组件91的下端,电机组件92和泵体组件93均位于壳体组件91的内部,且电机组件92设置在泵体组件93的上方。压缩机的泵体组件93包括上述的上法兰50、下法兰60、气缸20、转轴10和活塞组件30。
可选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件93的装配过程如下:活塞32安装在导向孔311中,连接轴331安装在下法兰60上,同时气缸20与活塞套33同轴安装,下法兰60固定于气缸20上,转轴10的滑移配合面111与活塞32的滑移槽323的一对相平行的表面配合安装,上法兰50固定转轴10的上半段,同时上法兰50通过螺钉固定于气缸20上。从而完成泵体组件93的装配,如图5所示。
可选地,导向孔311为至少两个,两个导向孔311沿转轴10的轴向间隔设置,活塞32为至少两个,每个导向孔311内对应设置有一个活塞32。此时,该压缩机是单气缸多压缩腔压缩机,与同排量单缸滚子压缩机相比,力矩波动相对较小。
可选地,本发明中的压缩机不设置吸气阀片,从而能够有效减少吸气阻力,降低吸气噪音,提高压缩机的压缩效率。
需要说明的是,在该具体实施方式中,在活塞32完成一周的运动时,会吸气、排气两次,从而使压缩机具有压缩效率高的特点。与同排量的单缸滚子压缩机相比,由于将原来的一次压缩分为两次压缩,因而本发明中的压缩机的力矩波动相对较小,运行时,具有排气阻力小,有效消除了排气噪音。
具体而言,如图6、图9至图14所示,本发明中的气缸20的气缸壁具有压缩进气口21和第一压缩排气口22,当活塞组件30处于进气位置时,压缩进气口21与变容积腔31导通;当活塞组件30处于排气位置时,变容积腔31与第一压缩排气口22导通。
可选地,气缸壁的内壁面具有压缩进气缓冲槽23,压缩进气缓冲槽23与压缩进气口21连通(请参考图9至图14)。由于设置有压缩进气缓冲槽23,因而在该处会蓄存有大量的气体,以使变容积腔31能够饱满吸气,从而使压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔31,以保证压缩机的压缩效率。
具体而言,压缩进气缓冲槽23在气缸20的径向平面内呈弧形段,且压缩进气缓冲槽23由压缩进气口21处向第一压缩排气口22所在一侧延伸,且压缩进气缓冲槽23的延伸方向与活塞组件30的转动方向相反。
下面对压缩机的运行进行具体介绍:
如图1所示,本发明中的压缩机采用十字滑块机构原理设置。其中,活塞32充当十字滑块机构中的滑块,而活塞32与转轴10的滑移配合面111、活塞32与活塞套33的导向孔311分别充当十字滑块机构中的两根连杆l1、l2,这样就构成了十字滑块原理的主体结构。且转轴10的轴心O1与气缸20的轴心O2偏心设置,而二者的偏心距固定,且二者分别绕各自的轴心旋转。当转轴10转动时,活塞32相对转轴10和活塞套33直线滑动,以实现气体压缩,且活塞组件30整体随着转轴10同步转动,而活塞32相对于气缸20的轴心在偏心距离e的范围内运行。活塞32的行程为2e,活塞32的横截面积为S,压缩机排量(也就是最大吸气容积)为V=2*(2e*S)。
如图16、图18、图19所示,其中,转轴的轴心15与活塞套轴心333之间相差偏心距离e,活塞质心轨迹线322呈圆形。
具体而言,电机组件92带动转轴10转动,转轴10的滑移配合面111驱动活塞32运动,活塞32带动活塞套33转动。在整个运动部件中,活塞套33仅作圆周运动,而活塞32一方面相对于转轴10往复运动,同时又相对于活塞套33的导向孔311往复运动,而两个往复运动 相互垂直且同时进行,从而使两个方向的往复运动构成十字滑块机构运动方式。这种类十字滑块机构的复合运动使活塞32相对于活塞套33作往复运动,该往复运动使活塞套33、气缸20与活塞32形成的腔体周期性的变大、缩小。而活塞32相对于气缸20作圆周运动,该圆周运动使活塞套33、气缸20与活塞32形成的变容积腔31周期性地与压缩进气口21、排气口连通。在以上两个相对运动的共同作用下,使压缩机可以完成吸气、压缩、排气的过程。
此外,本发明中的压缩机还具有零余隙容积,高容积效率的优点。
其他使用场合:该压缩机将吸、排气口交换位置,可以作为膨胀机使用。即,将压缩机的排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩机吸气口(膨胀机排气口)排出气体。
当流体机械为膨胀机时,气缸20的气缸壁具有膨胀排气口和第一膨胀进气口,当活塞组件30处于进气位置时,膨胀排气口与变容积腔31导通;当活塞组件30处于排气位置时,变容积腔31与第一膨胀进气口导通。当高压气体通过第一膨胀进气口进入变容积腔31内后,高压气体推动活塞组件30旋转,活塞套33旋转以带动活塞32旋转,并同时使活塞32相对于活塞套33直线滑动,进而使活塞32带动转轴10旋转运动。通过将该转轴10与其他耗功设备连接,可以使转轴10输出做功。
可选地,气缸壁的内壁面具有膨胀排气缓冲槽,膨胀排气缓冲槽与膨胀排气口连通。
进一步地,膨胀排气缓冲槽在气缸20的径向平面内呈弧形段,且膨胀排气缓冲槽由膨胀排气口处向第一膨胀进气口所在一侧延伸,且膨胀排气缓冲槽的延伸方向与活塞组件30的转动方向相反。
第二个实施方式如下
与第一个实施方式相比,在该实施方式中,用带有滑移孔321的活塞32替代了带有滑移槽323的活塞32。
第二实施方式的附图为图20至图38。
如图21、图37、图38所示,活塞32具有沿转轴10的轴向贯通设置的滑移孔321,转轴10穿过滑移孔321,活塞32在转轴10的驱动下随转轴10旋转并同时沿垂直于转轴10的轴线方向在活塞套33内往复滑动。
可选地,滑移孔321为长孔或腰形孔。
可选地,活塞32呈柱形。
进一步可选地,活塞32呈圆柱形或非圆柱形。
如图21、图37、图38所示,活塞32具有沿活塞32的中垂面对称设置的一对弧形表面,弧形表面与气缸20的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸20的 内径。这样,可以使得排气过程中可实现零余隙容积。需要说明的是,当活塞32放置在活塞套33内时,活塞32的中垂面为活塞套33的轴向平面。
在图21、图33、图36所示的优选实施方式中,活塞套33中具有沿活塞套33的径向贯通设置的导向孔311,活塞32滑动设置在导向孔311内以往复直线运动。由于活塞32滑动设置在导向孔311内,因而当活塞32在导向孔311内左右运动时,可以使变容积腔31的容积不断变化,从而保证压缩机的吸气、排气稳定性。
为了防止活塞32在活塞套33内旋转,导向孔311在下法兰60处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套33的一对相平行的内壁面投影形成,活塞32具有与导向孔311的一对相平行的内壁面形状相适配且滑移配合的外型面。如上述结构配合的活塞32和活塞套33,能够使使活塞32在活塞套33内平稳滑动且保持密封效果。
可选地,导向孔311在下法兰60处的正投影具有一对弧形线段,该一对弧形线段与一对相平行的直线段相连接以形成不规则的截面形状。
活塞套33的外周面与气缸20的内壁面形状相适配。从而使得活塞套33与气缸20之间、导向孔311与活塞32之间为大面密封,且整机密封均为大面密封,有利于减小泄漏。
如图36所示,活塞套33具有用于支撑转轴10的第三止推面335,转轴10的朝向下法兰60一侧的端面支撑在第三止推面335处。从而使转轴10支撑在活塞套33内。
如图25所示,该实施方式中的转轴10包括轴体16和连接头17,连接头17设置在轴体16的第一端并与活塞组件30连接。由于设置有连接头17,因而保证了连接头17与活塞组件30的活塞32的装配和运动可靠性。
可选地,轴体16具有一定的粗糙度,提高与电机组件92连接的牢固性。
如图15所示,连接头17具有两个对称设置的滑移配合面111。由于滑移配合面111对称设置,因而使得两个滑移配合面111的受力更加均匀,保证了转轴10与活塞32的运动可靠性。
如图15所示,滑移配合面111与转轴10的轴向平面相平行,滑移配合面111与活塞32的滑移孔321的内壁面在垂直于转轴10的轴线方向上滑动配合。
当然,还可以使连接头17在垂直于轴体16的轴线的平面内呈四边形。由于连接头17在垂直于轴体16的轴线的平面内呈四边形,因而与活塞32的滑移孔321配合时,能够起到防止转轴10与活塞32相对转动的问题,保证了二者相对运动的可靠性。
为了保证转轴10和活塞组件30的润滑可靠性,转轴10具有润滑油道13,润滑油道13贯通轴体16与连接头17。
如图25和图26所示,润滑油道13的至少一部分为转轴10的内部油道。由于润滑油道13的至少一部分内部油道,因而有效避免润滑油大量外泄,提高了润滑油的流动可靠性。在连接头17处的润滑油道13为外部油道。当然,为了使润滑油能够顺利到达活塞32处,将连接头17处的润滑油道13设置为外部油道,可以使润滑油粘附在活塞32的滑移孔321的表面, 保证了转轴10与活塞32的润滑可靠性。且外部油道和内部油道通过通油孔14连通。由于设置有通油孔14,因而通过通油孔14可以很方便地为内部油道注油,从而保证了转轴10与活塞组件30之间的润滑、运动可靠性。
整个泵体组件93的装配过程如下:活塞32安装在导向孔311中,连接轴331安装在下法兰60上,同时气缸20与活塞套33同轴安装,下法兰60固定于气缸20上,转轴10的滑移配合面111与活塞32的滑移孔321的一对相平行的表面配合安装,上法兰50固定转轴10的上半段,同时上法兰50通过螺钉固定于气缸20上,转轴10与第三止推面335接触。从而完成泵体组件93的装配,如图23所示。
需要说明的是,在该具体实施方式中,在活塞32完成一周的运动时,会吸气、排气两次,从而使压缩机具有压缩效率高的特点。与同排量的单缸滚子压缩机相比,由于将原来的一次压缩分为两次压缩,因而本发明中的压缩机的力矩波动相对较小,运行时,具有排气阻力小,有效消除了排气噪音。
具体而言,如图27至图32所示,本发明中的气缸20的气缸壁具有压缩进气口21和第一压缩排气口22,当活塞组件30处于进气位置时,压缩进气口21与变容积腔31导通;当活塞组件30处于排气位置时,变容积腔31与第一压缩排气口22导通。
气缸壁的内壁面具有压缩进气缓冲槽23,压缩进气缓冲槽23与压缩进气口21连通(请参考图27至图32)。由于设置有压缩进气缓冲槽23,因而在该处会蓄存有大量的气体,以使变容积腔31能够饱满吸气,从而使压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔31,以保证压缩机的压缩效率。
具体而言,压缩进气缓冲槽23在气缸20的径向平面内呈弧形段,且压缩进气缓冲槽23由压缩进气口21处向第一压缩排气口22所在一侧延伸,且压缩进气缓冲槽23的延伸方向与活塞组件30的转动方向相反。
下面对压缩机的运行进行具体介绍:
如图1所示,本发明中的压缩机采用十字滑块机构原理设置。其中,活塞32充当十字滑块机构中的滑块,而活塞32与转轴10的滑移配合面111、活塞32与活塞套33的导向孔311分别充当十字滑块机构中的两根连杆l1、l2,这样就构成了十字滑块原理的主体结构。且转轴10的轴心O1与气缸20的轴心O2偏心设置,而二者的偏心距固定,且二者分别绕各自的轴心旋转。当转轴10转动时,活塞32相对转轴10和活塞套33直线滑动,以实现气体压缩,且活塞组件30整体随着转轴10同步转动,而活塞32相对于气缸20的轴心在偏心距离e的范围内运行。活塞32的行程为2e,活塞32的横截面积为S,压缩机排量(也就是最大吸气容积)为V=2*(2e*S)。
需要说明的是,由于转轴10由上法兰50和活塞套33支撑,因而组成悬臂支撑结构。
如图34和图35所示,其中,转轴的轴心15与活塞套轴心333之间相差偏心距离e,活塞质心轨迹线322呈圆形。
具体而言,电机组件92带动转轴10转动,转轴10的滑移配合面111驱动活塞32运动,活塞32带动活塞套33转动。在整个运动部件中,活塞套33仅作圆周运动,而活塞32一方面相对于转轴10往复运动,同时又相对于活塞套33的导向孔311往复运动,而两个往复运动相互垂直且同时进行,从而使两个方向的往复运动构成十字滑块机构运动方式。这种类十字滑块机构的复合运动使活塞32相对于活塞套33作往复运动,该往复运动使活塞套33、气缸20与活塞32形成的腔体周期性的变大、缩小。而活塞32相对于气缸20作圆周运动,该圆周运动使活塞套33、气缸20与活塞32形成的变容积腔31周期性地与压缩进气口21、排气口连通。在以上两个相对运动的共同作用下,使压缩机可以完成吸气、压缩、排气的过程。
此外,该实施方式中的压缩机还具有零余隙容积,高容积效率的优点。
其他使用场合:该压缩机将吸、排气口交换位置,可以作为膨胀机使用。即,将压缩机的排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩机吸气口(膨胀机排气口)排出气体。
当流体机械为膨胀机时,气缸20的气缸壁具有膨胀排气口和第一膨胀进气口,当活塞组件30处于进气位置时,膨胀排气口与变容积腔31导通;当活塞组件30处于排气位置时,变容积腔31与第一膨胀进气口导通。当高压气体通过第一膨胀进气口进入变容积腔31内后,高压气体推动活塞组件30旋转,活塞套33旋转以带动活塞32旋转,并同时使活塞32相对于活塞套33直线滑动,进而使活塞32带动转轴10旋转运动。通过将该转轴10与其他耗功设备连接,可以使转轴10输出做功。
可选地,气缸壁的内壁面具有膨胀排气缓冲槽,膨胀排气缓冲槽与膨胀排气口连通。
进一步地,膨胀排气缓冲槽在气缸20的径向平面内呈弧形段,且膨胀排气缓冲槽由膨胀排气口处向第一膨胀进气口所在一侧延伸,且膨胀排气缓冲槽的延伸方向与活塞组件30的转动方向相反。
第三个实施方式如下
与第一个实施方式相比,在该实施方式中,用带有滑移孔321的活塞32替代了带有滑移槽323的活塞32。此外,还增加了排气阀组件40、第二压缩排气口24、支撑板61和限位板26等部件。
如图39至图59所示,流体机械包括上法兰50、下法兰60、气缸20、转轴10和活塞组件30,气缸20夹设在上法兰50与下法兰60之间,转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定,转轴10依次穿过上法兰50、气缸20和下法兰60,活塞组件30具有变容积腔31,活塞组件30可枢转地设置在气缸20内,且转轴10与活塞组件30驱动连接以改变变容积腔31的容积。其中,上法兰50通过第二紧固件70与气缸20固定,下法兰60通过第三紧固件80与气缸20固定。
可选地,第二紧固件70和/或第三紧固件80为螺钉或螺栓。
需要说明的是,上法兰50的轴心和下法兰60的轴心与转轴10的轴心同心设置,且上法兰50的轴心和下法兰60的轴心与气缸20的轴心偏心设置。以上述方式安装的气缸20,能够保证气缸20与转轴10或上法兰50的偏心距固定,从而使活塞组件30具有运动稳定性好的特点。
本发明中的转轴10与活塞组件30滑动连接,且变容积腔31的容积随转轴10的转动而变化。由于本发明中的转轴10与活塞组件30滑动连接,因而保证了活塞组件30的运动可靠性,有效避免活塞组件30运动卡死的问题,从而使变容积腔31的容积变化具有规律的特点。
如图40、图46至图52所示,活塞组件30包括活塞套33和活塞32,活塞套33可枢转地设置在气缸20内,活塞32滑动设置在活塞套33内以形成变容积腔31,且变容积腔31位于活塞32的滑动方向上。
在该具体实施例中,活塞组件30与转轴10滑动配合,且随着转轴10的转动,活塞组件30相对于转轴10具有直线运动趋势,从而使转动变为局部的直线运动。由于活塞32与活塞套33滑动连接,因而在转轴10的驱动下,有效避免活塞32运动卡死,从而保证了活塞32、转轴10和活塞套33的运动可靠性,进而提高了流体机械的运行稳定性。
需要说明的是,本发明中的转轴10无偏心结构,有利于减小流体机械的振动。
具体而言,活塞32沿垂直于转轴10的轴线的方向在活塞套33内滑动(请参考图46至图52)。由于活塞组件30、气缸20和转轴10之间形成十字滑块机构,因而使活塞组件30与气缸20的运动稳定且连续,并保证变容积腔31的容积变化具有规律,从而保证了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
本发明中的活塞32具有沿转轴10的轴向贯通设置的滑移孔321,转轴10穿过滑移孔321,活塞32在转轴10的驱动下随转轴10旋转并同时沿垂直于转轴10的轴线方向在活塞套33内往复滑动(请参考图46至图52)。由于使活塞32相对于转轴10做直线运动而非旋转往复运动,因而有效降低了偏心质量,降低了转轴10和活塞32受到的侧向力,从而降低了活塞32的磨损、提高了活塞32的密封性能。同时,保证了泵体组件93的运行稳定性和可靠性,并降低了流体机械的振动风险、简化了流体机械的结构。
可选地,滑移孔321为长孔或腰形孔。
本发明中的活塞32呈柱形。可选地,活塞32呈圆柱形或非圆柱形。
如图54和图55所示,活塞32具有沿活塞32的中垂面对称设置的一对弧形表面,弧形表面与气缸20的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸20的内径。这样,可以使得排气过程中可实现零余隙容积。需要说明的是,当活塞32放置在活塞套33内时,活塞32的中垂面为活塞套33的轴向平面。
在图40和图56所示的优选实施方式中,活塞套33中具有沿活塞套33的径向贯通设置的导向孔311,活塞32滑动设置在导向孔311内以往复直线运动。由于活塞32滑动设置在导向孔311内,因而当活塞32在导向孔311内左右运动时,可以使变容积腔31的容积不断变化,从而保证流体机械的吸气、排气稳定性。
为了防止活塞32在活塞套33内旋转,导向孔311在下法兰60处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套33的一对相平行的内壁面投影形成,活塞32具有与导向孔311的一对相平行的内壁面形状相适配且滑移配合的外型面。如上述结构配合的活塞32和活塞套33,能够使使活塞32在活塞套33内平稳滑动且保持密封效果。
可选地,导向孔311在下法兰60处的正投影具有一对弧形线段,该一对弧形线段与一对相平行的直线段相连接以形成不规则的截面形状。
活塞套33的外周面与气缸20的内壁面形状相适配。从而使得活塞套33与气缸20之间、导向孔311与活塞32之间为大面密封,且整机密封均为大面密封,有利于减小泄漏。
如图56所示,活塞套33的朝向下法兰60一侧的第一止推面332与下法兰60的表面接触。从而使活塞套33与下法兰60可靠定位。
如图44所示,转轴10具有与活塞组件30滑动配合的滑移段11,滑移段11位于转轴10的两端之间,且滑移段11具有滑移配合面111。由于转轴10通过滑移配合面111与活塞32滑动配合,因而保证了二者的运动可靠性,有效避免二者卡死。
可选地,滑移段11具有两个对称设置的滑移配合面111。由于滑移配合面111对称设置,因而使得两个滑移配合面111的受力更加均匀,保证了转轴10与活塞32的运动可靠性。
如图46至图52所示,滑移配合面111与转轴10的轴向平面相平行,滑移配合面111与活塞32的滑移孔321的内壁面在垂直于转轴10的轴线方向上滑动配合。
本发明中的转轴10具有润滑油道13,润滑油道13包括设置在转轴10内部的内部油道和设置在转轴10外部的外部油道以及连通内部油道和外部油道的通油孔14。由于润滑油道13的至少一部分内部油道,因而有效避免润滑油大量外泄,提高了润滑油的流动可靠性。由于设置有通油孔14,因而使得内外油道可以顺利连通,且通过通油孔14处也可以向润滑油道13处注油,从而保证了润滑油道13的注油便捷性。
在图44所示的优选实施方式中,滑移配合面111处具有沿着转轴10的轴向延伸的外部油道。由于滑移配合面111处的润滑油道13为外部油道,因而使得润滑油可以直接供给给滑移配合面111和活塞32,有效避免二者摩擦力过大而磨损,从而提高了二者的运动平滑性。
本发明中的压缩机还包括支撑板61,支撑板61设置在下法兰60的远离气缸20一侧的端面上,且支撑板61与下法兰60同轴心设置,转轴10穿过下法兰60上的通孔支撑在支撑板61上,支撑板61具有用于支撑转轴10的第二止推面611。由于设置有支撑板61用于支撑转轴10,因而提高了各部件间的连接可靠性。
如图40和图41所示,限位板26通过第五紧固件82与气缸20连接。
可选地,第五紧固件82为螺栓或螺钉。
如图40和图41所示,本发明中的压缩机还包括限位板26,限位板26具有用于避让转轴10的避让孔,限位板26夹设在下法兰60与活塞套33之间并与活塞套33同轴设置。由于设置有限位板26,因而保证了各部件的限位可靠性。
如图40和图41所示,限位板26通过第四紧固件81与气缸20连接。
可选地,第四紧固件81为螺栓或螺钉。
具体而言,活塞套33具有朝向下法兰60一侧伸出的连接凸环334,连接凸环334嵌设在避让孔内。由于活塞套33与限位板26配合,因而保证了活塞套33的运动可靠性。
具体而言,本发明中的活塞套33包括同轴但是直径不同的两段圆柱体,上半部分外径等于气缸20的内径,导向孔311的轴心与气缸20的轴垂直并与活塞32配合,其中导向孔311的外形与活塞32的外形保持一致,在往复运动过程中,实现气体压缩,上半部分的下端面有同心连接凸环334,为第一止推面,与下法兰60的端面配合,减小结构摩擦面积;下半部分为空心柱体,也就是短轴,短轴的轴线与下法兰60的轴线共轴,运动过程中,同轴转动。
如图39所示,图示的流体机械为压缩机,该压缩机包括分液器部件90、壳体组件91、电机组件92、泵体组件93、上盖组件94和下盖及安装板95,其中,分液器部件90设置在壳体组件91的外部,上盖组件94装配在壳体组件91的上端,下盖及安装板95装配在壳体组件91的下端,电机组件92和泵体组件93均位于壳体组件91的内部,且电机组件92设置在泵体组件93的上方。压缩机的泵体组件93包括上述的上法兰50、下法兰60、气缸20、转轴10和活塞组件30。
可选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件93的装配过程如下:活塞32安装在导向孔311中,连接凸环334安装在限位板26上,限位板26固定与下法兰60连接,同时气缸20与活塞套33同轴安装,下法兰60固定于气缸20上,转轴10的滑移配合面111与活塞32的滑移孔321的一对相平行的表面配合安装,上法兰50固定转轴10的上半段,同时上法兰50通过螺钉固定于气缸20上。从而完成泵体组件93的装配,如图42所示。
可选地,导向孔311为至少两个,两个导向孔311沿转轴10的轴向间隔设置,活塞32为至少两个,每个导向孔311内对应设置有一个活塞32。此时,该压缩机是单气缸多压缩腔压缩机,与同排量单缸滚子压缩机相比,力矩波动相对较小。
可选地,本发明中的压缩机不设置吸气阀片,从而能够有效减少吸气阻力,提高压缩机的压缩效率。
需要说明的是,在该具体实施方式中,在活塞32完成一周的运动时,会吸气、排气两次,从而使压缩机具有压缩效率高的特点。与同排量的单缸滚子压缩机相比,由于将原来的一次 压缩分为两次压缩,因而本发明中的压缩机的力矩波动相对较小,运行时,具有排气阻力小,有效消除了排气噪音。
具体而言,如图46至图52所示,本发明中的气缸20的气缸壁具有压缩进气口21和第一压缩排气口22,当活塞组件30处于进气位置时,压缩进气口21与变容积腔31导通;当活塞组件30处于排气位置时,变容积腔31与第一压缩排气口22导通。
可选地,气缸壁的内壁面具有压缩进气缓冲槽23,压缩进气缓冲槽23与压缩进气口21连通(请参考图46至图52)。由于设置有压缩进气缓冲槽23,因而在该处会蓄存有大量的气体,以使变容积腔31能够饱满吸气,从而使压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔31,以保证压缩机的压缩效率。
具体而言,压缩进气缓冲槽23在气缸20的径向平面内呈弧形段,且压缩进气缓冲槽23由压缩进气口21处向第一压缩排气口22所在一侧延伸,且压缩进气缓冲槽23的延伸方向与活塞组件30的转动方向同向。
本发明中的气缸20的气缸壁具有第二压缩排气口24,第二压缩排气口24位于压缩进气口21与第一压缩排气口22之间,且在活塞组件30转动的过程中,在活塞组件30内的部分气体先经过第二压缩排气口24的泄压后再由第一压缩排气口22全部排出。由于仅设置有两条排气通路,一条是经第一压缩排气口22排气,另一条是经第二压缩排气口24排气,因而减少了气体泄漏,提高了气缸20的密封面积。
可选地,压缩机(也就是流体机械)还包括排气阀组件40,排气阀组件40设置在第二压缩排气口24处。由于在第二压缩排气口24处设置有排气阀组件40,因而有效避免变容积腔31内气体大量泄漏,保证了变容积腔31的压缩效率。
在图43所示的优选实施方式中,气缸壁的外壁上开设有容纳槽25,第二压缩排气口24贯通容纳槽25的槽底,排气阀组件40设置在容纳槽25内。由于设置有用于容纳排气阀组件40的容纳槽25,因而减少了排气阀组件40的占用空间,使部件合理设置,从而提高了气缸20的空间利用率。
具体而言,排气阀组件40包括排气阀片41和阀片挡板42,排气阀片41设置在容纳槽25内并遮挡第二压缩排气口24,阀片挡板42叠置在排气阀片41上。由于设置有阀片挡板42,因而有效避免排气阀片41过度开启,保证了气缸20的排气性能。
可选地,排气阀片41和阀片挡板42通过第一紧固件43连接。进一步地,第一紧固件43是螺钉。
需要说明的是,本发明中的排气阀组件40能够将变容积腔31与泵体组件93的外部空间隔开,为背压排气:即当变容积腔31与第二压缩排气口24连通时后,变容积腔31的压力大于外部空间压力(排气压力)时,排气阀片41打开,开始排气;若连通后变容积腔31的压力仍低于排气压力,则此时排气阀片41不工作。此时,压缩机继续运转、压缩,直至变容积 腔31与第一压缩排气口22连通,将变容积腔31内的气体压入外部空间,完成排气过程。第一压缩排气口22的排气方式为强制排气方式。
下面对压缩机的运行进行具体介绍:
如图1所示,本发明中的压缩机采用十字滑块机构原理设置。其中,活塞32充当十字滑块机构中的滑块,而活塞32与转轴10的滑移配合面111、活塞32与活塞套33的导向孔311分别充当十字滑块机构中的两根连杆l1、l2,这样就构成了十字滑块原理的主体结构。且转轴10的轴心O1与气缸20的轴心O2偏心设置,且二者分别绕各自的轴心旋转。当转轴10转动时,活塞32相对转轴10和活塞套33直线滑动,以实现气体压缩,且活塞组件30整体随着转轴10同步转动,而活塞32相对于气缸20的轴心在偏心距离e的范围内运行。活塞32的行程为2e,活塞32的横截面积为S,压缩机排量(也就是最大吸气容积)为V=2*(2e*S)。
如图52所示,其中,转轴的轴心15与活塞套轴心333之间相差偏心距离e,活塞质心轨迹线呈圆形。
具体而言,电机组件92带动转轴10转动,转轴10的滑移配合面111驱动活塞32运动,活塞32带动活塞套33转动。在整个运动部件中,活塞套33仅作圆周运动,而活塞32一方面相对于转轴10往复运动,同时又相对于活塞套33的导向孔311往复运动,而两个往复运动相互垂直且同时进行,从而使两个方向的往复运动构成十字滑块机构运动方式。这种类十字滑块机构的复合运动使活塞32相对于活塞套33作往复运动,该往复运动使活塞套33、气缸20与活塞32形成的腔体周期性的变大、缩小。而活塞32相对于气缸20作圆周运动,该圆周运动使活塞套33、气缸20与活塞32形成的变容积腔31周期性地与压缩进气口21、排气口连通。在以上两个相对运动的共同作用下,使压缩机可以完成吸气、压缩、排气的过程。
此外,本发明中的压缩机还具有零余隙容积,高容积效率的优点。
本发明中的压缩机为变压比压缩机,可根据压缩机的运行工况,通过调整第一压缩排气口22和第二压缩排气口24的位置,以改变压缩机的排气压比,从而使压缩机的排气性能最优。当第二压缩排气口24越靠近压缩进气口21时(顺时针靠近),压缩机的排气压比越小;当第二压缩排气口24的位置越靠近压缩进气口21时(逆时针靠近),压缩机的排气压比越大。
此外,本发明中的压缩机还具有零余隙容积,高容积效率的优点。
其他使用场合:该压缩机将吸、排气口交换位置,可以作为膨胀机使用。即,将压缩机的排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩机吸气口(膨胀机排气口)排出气体。
当流体机械为膨胀机时,气缸20的气缸壁具有膨胀排气口和第一膨胀进气口,当活塞组件30处于进气位置时,膨胀排气口与变容积腔31导通;当活塞组件30处于排气位置时,变容积腔31与第一膨胀进气口导通。当高压气体通过第一膨胀进气口进入变容积腔31内后,高压气体推动活塞组件30旋转,活塞套33旋转以带动活塞32旋转,并同时使活塞32相对 于活塞套33直线滑动,进而使活塞32带动转轴10旋转运动。通过将该转轴10与其他耗功设备连接,可以使转轴10输出做功。
可选地,气缸壁的内壁面具有膨胀排气缓冲槽,膨胀排气缓冲槽与膨胀排气口连通。
进一步地,膨胀排气缓冲槽在气缸20的径向平面内呈弧形段,且膨胀排气缓冲槽由膨胀排气口处向第一膨胀进气口所在一侧延伸,且膨胀排气缓冲槽的延伸方向与活塞组件30的转动方向同向。
第四个实施方式如下
与第一个实施方式相比,在该实施方式中,用带有滑移孔321的活塞32替代了带有滑移槽323的活塞32。此外,还增加了排气阀组件40、第二压缩排气口24、支撑板61等部件。
如图60至图80所示,流体机械包括上法兰50、下法兰60、气缸20、转轴10、活塞套33、活塞套轴34和活塞32,其中,活塞套33可枢转地设置在气缸20内,活塞套轴34穿过上法兰50与活塞套33固定连接,活塞32滑动设置在活塞套33内以形成变容积腔31,且变容积腔31位于活塞32的滑动方向上,转轴10,转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定,转轴10依次穿过下法兰60和气缸20与活塞32滑动配合,在活塞套轴34的驱动作用下,活塞套33随活塞套轴34同步转动,以驱动活塞32在活塞套33内滑动以改变变容积腔31的容积,同时转轴10在活塞32的驱动作用下转动。其中,上法兰50通过第二紧固件70与气缸20固定,下法兰60通过第三紧固件80与气缸20固定。
可选地,第二紧固件70和/或第三紧固件80为螺钉或螺栓。
通过将转轴10与气缸20的偏心距离固定,转轴10和气缸20在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞32和活塞套33在气缸20内运动时,能够稳定且连续地转动,有效缓解了流体机械的振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,从而提高了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
本发明中的流体机械通过活塞套轴34驱动活塞套33转动并带动活塞32转动,以使活塞32在活塞套33内滑动以改变变容积腔31的容积,同时转轴10在活塞32的驱动作用下转动,从而使活塞套33和转轴10分别承受弯曲变形和扭转变形,降低了单个零件的整体变形,降低了对转轴10的结构强度要求,并能够有效减小活塞套33的端面与上法兰50的端面之间的泄漏。
需要说明的是,上法兰50和气缸20同轴心设置,且下法兰60的轴心与气缸20的轴心偏心设置。以上述方式安装的气缸20,能够保证气缸20与转轴10或上法兰50的偏心距固定,从而使活塞套33具有运动稳定性好的特点。
在图74至图80所示的优选实施方式中,活塞32与转轴10滑动配合,且活塞32在活塞套33的驱动作用下,使转轴10的转动,活塞32相对于转轴10具有直线运动趋势。由于活 塞32与活塞套33滑动连接,因而有效避免活塞32运动卡死,从而保证了活塞32、转轴10和活塞套33的运动可靠性,进而提高了流体机械的运行稳定性。
由于活塞32、活塞套33、气缸20和转轴10之间形成十字滑块机构,因而使活塞32、活塞套33与气缸20的运动稳定且连续,并保证变容积腔31的容积变化具有规律,从而保证了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
本发明中的活塞32具有沿转轴10的轴向贯通设置的滑移孔321,转轴10穿过滑移孔321,转轴10在活塞32的驱动下随活塞套33和活塞32旋转,同时活塞32沿垂直于转轴10的轴线方向在活塞套33内往复滑动(请参考图74至图80)。由于使活塞32相对于转轴10做直线运动而非旋转往复运动,因而有效降低了偏心质量,降低了转轴10和活塞32受到的侧向力,从而降低了活塞32的磨损、提高了活塞32的密封性能。同时,保证了泵体组件93的运行稳定性和可靠性,并降低了流体机械的振动风险、简化了流体机械的结构。
可选地,滑移孔321为长孔或腰形孔。
本发明中的活塞32呈柱形。可选地,活塞32呈圆柱形或非圆柱形。
如图74至图80所示,活塞32具有沿活塞32的中垂面对称设置的一对弧形表面,弧形表面与气缸20的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸20的内径。这样,可以使得排气过程中可实现零余隙容积。需要说明的是,当活塞32放置在活塞套33内时,活塞32的中垂面为活塞套33的轴向平面。
如图67和图68所示,活塞套33中具有沿活塞套33的径向贯通设置的导向孔311,活塞32滑动设置在导向孔311内以往复直线运动。由于活塞32滑动设置在导向孔311内,因而当活塞32在导向孔311内左右运动时,可以使变容积腔31的容积不断变化,从而保证流体机械的吸气、排气稳定性。
为了防止活塞32在活塞套33内旋转,导向孔311在下法兰60处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套33的一对相平行的内壁面投影形成,活塞32具有与导向孔311的一对相平行的内壁面形状相适配且滑移配合的外型面。如上述结构配合的活塞32和活塞套33,能够使使活塞32在活塞套33内平稳滑动且保持密封效果。
可选地,导向孔311在下法兰60处的正投影具有一对弧形线段,该一对弧形线段与一对相平行的直线段相连接以形成不规则的截面形状。
活塞套33的外周面与气缸20的内壁面形状相适配。从而使得活塞套33与气缸20之间、导向孔311与活塞32之间为大面密封,且整机密封均为大面密封,有利于减小泄漏。
如图68所示,活塞套33的朝向下法兰60一侧的第一止推面332与下法兰60的表面接触。从而使活塞套33与下法兰60可靠定位。
如图61所示,转轴10具有与活塞32滑动配合的滑移段11,滑移段11位于转轴10的远离下法兰60的一端,且滑移段11具有滑移配合面111。由于转轴10通过滑移配合面111与活塞32滑动配合,因而保证了二者的运动可靠性,有效避免二者卡死。
可选地,滑移段11具有两个对称设置的滑移配合面111。由于滑移配合面111对称设置,因而使得两个滑移配合面111的受力更加均匀,保证了转轴10与活塞32的运动可靠性。
如图61所示,滑移配合面111与转轴10的轴向平面相平行,滑移配合面111与活塞32的滑移孔321的内壁面在垂直于转轴10的轴线方向上滑动配合。
本发明中的活塞套轴34具有沿活塞套轴34的轴向贯通设置的第一润滑油道341,转轴10具有与第一润滑油道341连通的第二润滑油道131,第二润滑油道131的至少一部分为转轴10的内部油道。由于第二润滑油道131的至少一部分内部油道,因而有效避免润滑油大量外泄,提高了润滑油的流动可靠性。
如图61和图63所示,在滑移配合面111处的第二润滑油道131为外部油道。由于滑移配合面111处的第二润滑油道131为外部油道,因而使得润滑油可以直接供给给滑移配合面111和活塞32,有效避免二者摩擦力过大而磨损,从而提高了二者的运动平滑性。
如图61和图63所示,转轴10具有通油孔14,内部油道通过通油孔14与外部油道连通。由于设置有通油孔14,因而使得内外油道可以顺利连通,且通过通油孔14处也可以向第二润滑油道131处注油,从而保证了第二润滑油道131的注油便捷性。
如图61至图63所示,本发明中的流体机械还包括支撑板61,支撑板61设置在下法兰60的远离气缸20一侧的端面上,且支撑板61与下法兰60同轴心设置并用于支撑转轴10,转轴10穿过下法兰60上的通孔支撑在支撑板61上,支撑板61具有用于支撑转轴10的第二止推面611。由于设置有支撑板61用于支撑转轴10,因而提高了各部件间的连接可靠性。
如图61所示,支撑板61通过第五紧固件82与下法兰60连接。
可选地,第五紧固件82为螺栓或螺钉。
如图61所示,下法兰60上分布有供第三紧固件80穿设的四个泵体螺钉孔、以及供第五紧固件82穿过的三个支撑盘螺纹孔,四个泵体螺钉孔中心所构成的圆与轴承中心存在偏心,其偏心量大小为e,此量决定泵体装配的偏心量,在活塞套33旋转一周后,气体容积V=2*2e*S,其中S为活塞32的主体结构横截面积;支撑盘螺纹孔中心与下法兰60的轴心重合,与第五紧固件82配合固定支撑板61。
如图61所示,支撑板61为圆柱体结构,均匀分布三个供第五紧固件82穿过的螺钉孔,支撑板61的朝向转轴10一侧表面具有一定的粗糙度以与转轴10的底面配合。
如图60所示,图示的流体机械为压缩机,该压缩机包括分液器部件90、壳体组件91、电机组件92、泵体组件93、上盖组件94和下盖及安装板95,其中,分液器部件90设置在壳体组件91的外部,上盖组件94装配在壳体组件91的上端,下盖及安装板95装配在壳体组 件91的下端,电机组件92和泵体组件93均位于壳体组件91的内部,且电机组件92设置在泵体组件93的上方。压缩机的泵体组件93包括上述的上法兰50、下法兰60、气缸20、转轴10、活塞32、活塞套33、活塞套轴34等。
可选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件93的装配过程如下:活塞32安装在导向孔311中,气缸20与活塞套33同轴安装,下法兰60固定于气缸20上,转轴10的滑移配合面111与活塞32的滑移孔321的一对相平行的表面配合安装,上法兰50固定活塞套轴34,同时上法兰50通过螺钉固定于气缸20上。从而完成泵体组件93的装配,如图63所示。
可选地,导向孔311为至少两个,两个导向孔311沿转轴10的轴向间隔设置,活塞32为至少两个,每个导向孔311内对应设置有一个活塞32。此时,该压缩机是单气缸多压缩腔压缩机,与同排量单缸滚子压缩机相比,力矩波动相对较小。
可选地,本发明中的压缩机不设置吸气阀片,从而能够有效减少吸气阻力,提高压缩机的压缩效率。
需要说明的是,在该具体实施方式中,在活塞32完成一周的运动时,会吸气、排气两次,从而使压缩机具有压缩效率高的特点。与同排量的单缸滚子压缩机相比,由于将原来的一次压缩分为两次压缩,因而本发明中的压缩机的力矩波动相对较小,运行时,具有排气阻力小,有效消除了排气噪音。
具体而言,如图74至图80所示,本发明中的气缸20的气缸壁具有压缩进气口21和第一压缩排气口22,当活塞套33处于进气位置时,压缩进气口21与变容积腔31导通;当活塞套33处于排气位置时,变容积腔31与第一压缩排气口22导通。
可选地,气缸壁的内壁面具有压缩进气缓冲槽23,压缩进气缓冲槽23与压缩进气口21连通(请参考图74至图80)。由于设置有压缩进气缓冲槽23,因而在该处会蓄存有大量的气体,以使变容积腔31能够饱满吸气,从而使压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔31,以保证压缩机的压缩效率。
具体而言,压缩进气缓冲槽23在气缸20的径向平面内呈弧形段,且压缩进气缓冲槽23的两端均由压缩进气口21处向第一压缩排气口22所在位置延伸。
可选地,相对于压缩进气口21,压缩进气缓冲槽23在与活塞套33的转动方向同向上的延伸段的弧长大于相反方向的延伸段弧长。
下面对压缩机的运行进行具体介绍:
如图1所示,本发明中的压缩机采用十字滑块机构原理设置。其中,转轴10的轴心O1与气缸20的轴心O2偏心设置,而二者的偏心距固定,且二者分别绕各自的轴心旋转。当转轴10转动时,活塞32相对转轴10和活塞套33直线滑动,以实现气体压缩,且活塞套33随着转轴10同步转动,而活塞32相对于气缸20的轴心在偏心距离e的范围内运行。活塞32的行 程为2e,活塞32的横截面积为S,压缩机排量(也就是最大吸气容积)为V=2*(2e*S)。活塞32相当于十字滑块机构中的滑块,活塞—导向孔311、活塞32—转轴10的滑移配合面111分别充当十字滑块的两根连杆l1、l2,这样就构成十字滑块原理的主体结构。
如图65和图74所示,其中,转轴的轴心15与活塞套轴心333之间相差偏心距离e,活塞质心轨迹线322呈圆形。
活塞套33与转轴10偏心安装,活塞套轴34与电机组件92连接,电机组件92直接驱动活塞套33转动,属于活塞套驱动结构。活塞套33转动从而带动活塞32旋转,活塞32通过转轴支撑面进而带动转轴10旋转,活塞32、活塞套33、转轴10在旋转进程中,与其他泵体零件配合完成吸气、压缩和排气过程,一个循环周期为2π。转轴10顺时针转动。
具体而言,电机组件92驱动活塞套轴34作旋转运动,导向孔311驱动活塞32做旋转运动,但是活塞32相对于活塞套33仅作往复运动;活塞32进一步带动转轴10作旋转运动,但是活塞32相对于转轴10同样仅作往复运动,此往复运动与活塞套33—活塞32的往复运动相互垂直。在往复运动过程中,整个泵体组件完成吸气、压缩、排气过程。在活塞运动过程中,活塞32-活塞套33、活塞32-转轴10这两个相互垂直的往复运动,使得活塞32的质心轨迹线为圆形,圆直径等于偏心量e,圆心在转轴10的中心与活塞套33的中心连线的中点上,旋转周期为π。
活塞在活塞套33的导向孔311及气缸20的内圆面形成两个空腔,活塞套33旋转一周,两个空腔分别完成吸气、压缩、排气过程,不同点在于两个空腔吸排气压缩有180°相位差。以其中一个空腔为例说明泵体组件93的吸气、排气、压缩过程,如下:当空腔与压缩进气口21连通时,开始吸气(请参考图75和图76);活塞套33继续带动活塞32、转轴10顺时针旋转,当变容积腔31脱离压缩进气口21,整个吸气结束,此时空腔完全密封,开始压缩(请参考图77);继续旋转,气体不断压缩,当变容积腔31与第一压缩排气口22连通时,开始排气(请参考图78);继续旋转,不断压缩的同时不断排气,直到变容积腔31完全脱离第一压缩排气口22,完成整个吸气、压缩、排气过程(请参考图79和80);随后变容积腔31旋转一定角度后再次连接压缩进气口21,进入下一个循环。
本发明中的泵体组件93为定压比泵体结构,两个变容积腔31为V=2*2e*S,S为活塞横截面积。
此外,本发明中的压缩机还具有零余隙容积,高容积效率的优点。
需要强调的是,相对于转轴依次穿过上法兰50、气缸20和下法兰60的方案而言,本发明中的压缩机采用活塞套33带动活塞32旋转,活塞32带动转轴10旋转,活塞套33和转轴10分别承受弯曲变形和扭转变形,可以有效减小变形磨损;可以有效减小活塞套33的端面和上法兰50的端面之间的泄漏。该案重点在于,活塞套轴34与活塞套33是一体成型的。且上、下法兰偏轴心设置,以使转轴10和活塞套轴34偏心。
其他使用场合:该压缩机将吸、排气口交换位置,可以作为膨胀机使用。即,将压缩机的排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩机吸气口(膨胀机排气口)排出气体。
当流体机械为膨胀机时,气缸20的气缸壁具有膨胀排气口和第一膨胀进气口,当活塞套33处于进气位置时,膨胀排气口与变容积腔31导通;当活塞套33处于排气位置时,变容积腔31与第一膨胀进气口导通。当高压气体通过第一膨胀进气口进入变容积腔31内后,高压气体推动活塞套33旋转,活塞套33旋转以带动活塞32旋转,并同时使活塞32相对于活塞套33直线滑动,进而使活塞32带动转轴10旋转运动。通过将该转轴10与其他耗功设备连接,可以使转轴10输出做功。
可选地,气缸壁的内壁面具有膨胀排气缓冲槽,膨胀排气缓冲槽与膨胀排气口连通。
进一步地,膨胀排气缓冲槽在气缸20的径向平面内呈弧形段,且膨胀排气缓冲槽的两端均由膨胀排气口处向第一膨胀进气口所在位置延伸。
可选地,膨胀排气缓冲槽在与活塞套33的转动方向同向上的延伸段的弧长小于相反方向的延伸段弧长。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (51)

  1. 一种流体机械,其特征在于,包括:
    转轴(10);
    气缸(20),所述转轴(10)的轴心与所述气缸(20)的轴心偏心设置且偏心距离固定;
    活塞组件(30),所述活塞组件(30)具有变容积腔(31),所述活塞组件(30)可枢转地设置在所述气缸(20)内,且所述转轴(10)与所述活塞组件(30)驱动连接以改变所述变容积腔(31)的容积。
  2. 根据权利要求1所述的流体机械,其特征在于,所述流体机械还包括上法兰(50)、下法兰(60),所述气缸(20)夹设在所述上法兰(50)与所述下法兰(60)之间;所述活塞组件(30)包括:
    活塞套(33),所述活塞套(33)可枢转地设置在所述气缸(20)内;
    活塞(32),所述活塞(32)滑动设置在所述活塞套(33)内以形成所述变容积腔(31),且所述变容积腔(31)位于所述活塞(32)的滑动方向上。
  3. 根据权利要求2所述的流体机械,其特征在于,所述活塞(32)具有滑移槽(323),所述转轴(10)在所述滑移槽(323)内滑动,所述活塞(32)在所述转轴(10)的驱动下随所述转轴(10)旋转并同时沿垂直于所述转轴(10)的轴线方向在所述活塞套(33)内往复滑动。
  4. 根据权利要求2所述的流体机械,其特征在于,所述活塞(32)具有沿所述转轴(10)的轴向贯通设置的滑移孔(321),所述转轴(10)穿过所述滑移孔(321),所述活塞(32)在所述转轴(10)的驱动下随所述转轴(10)旋转并同时沿垂直于所述转轴(10)的轴线方向在所述活塞套(33)内往复滑动。
  5. 根据权利要求2的流体机械,其特征在于,所述流体机械还包括活塞套轴(34),所述活塞套轴(34)穿过所述上法兰(50)与所述活塞套(33)固定连接,所述转轴(10)依次穿过所述下法兰(60)和所述气缸(20)与所述活塞(32)滑动配合,在所述活塞套轴(34)的驱动作用下,所述活塞套(33)随所述活塞套轴(34)同步转动,以驱动所述活塞(32)在所述活塞套(33)内滑动以改变所述变容积腔(31)的容积,同时所述转轴(10)在所述活塞(32)的驱动作用下转动。
  6. 根据权利要求4所述的流体机械,其特征在于,所述滑移孔(321)为长孔或腰形孔。
  7. 根据权利要求5所述的流体机械,其特征在于,所述活塞(32)具有沿所述转轴(10)的轴向贯通设置的滑移孔(321),所述转轴(10)穿过所述滑移孔(321),所述转轴(10)在所述活塞(32)的驱动下随所述活塞套(33)和所述活塞(32)旋转,同时所述活塞(32)沿垂直于所述转轴(10)的轴线方向在所述活塞套(33)内往复滑动。
  8. 根据权利要求2所述的流体机械,其特征在于,所述活塞套(33)中具有沿所述活塞套(33)的径向贯通设置的导向孔(311),所述活塞(32)滑动设置在所述导向孔(311)内以往复直线运动。
  9. 根据权利要求2所述的流体机械,其特征在于,所述活塞(32)具有沿所述活塞(32)的中垂面对称设置的一对弧形表面,所述弧形表面与所述气缸(20)的内表面适应性配合,且所述弧形表面的弧面曲率半径的二倍等于所述气缸(20)的内径。
  10. 根据权利要求2所述的流体机械,其特征在于,所述活塞(32)呈柱形。
  11. 根据权利要求8所述的流体机械,其特征在于,所述导向孔(311)在所述下法兰(60)处的正投影具有一对相平行的直线段,所述一对相平行的直线段为所述活塞套(33)的一对相平行的内壁面投影形成,所述活塞(32)具有与所述导向孔(311)的所述一对相平行的内壁面形状相适配且滑移配合的外型面。
  12. 根据权利要求2所述的流体机械,其特征在于,所述活塞套(33)具有朝向所述下法兰(60)一侧伸出的连接轴(331),所述连接轴(331)嵌设在所述下法兰(60)的连接孔内。
  13. 根据权利要求12所述的流体机械,其特征在于,所述上法兰(50)与所述转轴(10)同轴心设置,且所述上法兰(50)的轴心与所述气缸(20)的轴心偏心设置,且所述下法兰(60)与所述气缸(20)同轴心设置。
  14. 根据权利要求2所述的流体机械,其特征在于,所述流体机械还包括支撑板(61),所述支撑板(61)设置在所述下法兰(60)的远离所述气缸(20)一侧的端面上,且所述支撑板(61)与所述下法兰(60)同轴心设置,所述转轴(10)穿过所述下法兰(60)上的通孔支撑在所述支撑板(61)上,所述支撑板(61)具有用于支撑所述转轴(10)的第二止推面(611)。
  15. 根据权利要求2所述的流体机械,其特征在于,所述流体机械还包括限位板(26),所述限位板(26)具有用于避让所述转轴(10)的避让孔,所述限位板(26)夹设在所述下法兰(60)与所述活塞套(33)之间并与所述活塞套(33)同轴设置。
  16. 根据权利要求15所述的流体机械,其特征在于,所述活塞套(33)具有朝向所述下法兰(60)一侧伸出的连接凸环(334),所述连接凸环(334)嵌设在所述避让孔内。
  17. 根据权利要求14至16中任一项所述的流体机械,其特征在于,所述上法兰(50)和所述下法兰(60)与所述转轴(10)同轴心设置,且所述上法兰(50)的轴心和所述下法兰(60)的轴心与所述气缸(20)的轴心偏心设置。
  18. 根据权利要求2所述的流体机械,其特征在于,所述活塞套(33)的朝向所述下法兰(60)一侧的第一止推面(332)与所述下法兰(60)的表面接触。
  19. 根据权利要求3所述的流体机械,其特征在于,所述活塞(32)具有用于支撑所述转轴(10)的第四止推面(336),所述转轴(10)的朝向所述下法兰(60)一侧的端面支撑在所述第四止推面(336)处。
  20. 根据权利要求4所述的流体机械,其特征在于,所述活塞套(33)具有用于支撑所述转轴(10)的第三止推面(335),所述转轴(10)的朝向所述下法兰(60)一侧的端面支撑在所述第三止推面(335)处。
  21. 根据权利要求3所述的流体机械,其特征在于,所述转轴(10)包括:
    轴体(16);
    连接头(17),所述连接头(17)设置在所述轴体(16)的第一端并与所述活塞组件(30)连接。
  22. 根据权利要求21所述的流体机械,其特征在于,所述连接头(17)在垂直于所述轴体(16)的轴线的平面内呈四边形。
  23. 根据权利要求21所述的流体机械,其特征在于,所述连接头(17)具有两个对称设置的滑移配合面(111)。
  24. 根据权利要求23所述的流体机械,其特征在于,所述滑移配合面(111)与所述转轴(10)的轴向平面相平行,所述滑移配合面(111)与所述活塞(32)的所述滑移槽(323)的内壁面在垂直于所述转轴(10)的轴线方向上滑动配合。
  25. 根据权利要求4所述的流体机械,其特征在于,所述转轴(10)包括:
    轴体(16);
    连接头(17),所述连接头(17)设置在所述轴体(16)的第一端并与所述活塞组件(30)连接。
  26. 根据权利要求25所述的流体机械,其特征在于,所述连接头(17)在垂直于所述轴体(16)的轴线的平面内呈四边形。
  27. 根据权利要求25所述的流体机械,其特征在于,所述连接头(17)具有两个对称设置的滑移配合面(111)。
  28. 根据权利要求27所述的流体机械,其特征在于,所述滑移配合面(111)与所述转轴(10)的轴向平面相平行,所述滑移配合面(111)与所述活塞(32)的所述滑移孔(321)的内壁面在垂直于所述转轴(10)的轴线方向上滑动配合。
  29. 根据权利要求4所述的流体机械,其特征在于,所述转轴(10)具有与所述活塞组件(30)滑动配合的滑移段(11),所述滑移段(11)位于所述转轴(10)的两端之间,且所述滑移段(11)具有滑移配合面(111)。
  30. 根据权利要求29所述的流体机械,其特征在于,所述滑移配合面(111)对称设置在所述滑移段(11)的两侧。
  31. 根据权利要求29所述的流体机械,其特征在于,所述滑移配合面(111)与所述转轴(10)的轴向平面相平行,所述滑移配合面(111)与所述活塞(32)的所述滑移孔(321)的内壁面在垂直于所述转轴(10)的轴线方向上滑动配合。
  32. 根据权利要求5所述的流体机械,其特征在于,所述转轴(10)具有与所述活塞组件(30)滑动配合的滑移段(11),所述滑移段(11)位于所述转轴(10)的两端之间,且所述滑移段(11)具有滑移配合面(111)。
  33. 根据权利要求27或29所述的流体机械,其特征在于,所述转轴(10)具有润滑油道(13),所述润滑油道(13)包括设置在所述转轴(10)内部的内部油道和设置在所述转轴(10)外部的外部油道以及连通所述内部油道和所述外部油道的通油孔(14)。
  34. 根据权利要求33所述的流体机械,其特征在于,所述滑移配合面(111)处具有沿着所述转轴(10)的轴向延伸的所述外部油道。
  35. 根据权利要求32所述的流体机械,其特征在于,所述活塞套轴(34)具有沿所述活塞套轴(34)的轴向贯通设置的第一润滑油道(341),所述转轴(10)具有与所述第一润滑油道(341)连通的第二润滑油道(131),所述第二润滑油道(131)的至少一部分为所述转轴(10)的内部油道,在所述滑移配合面(111)处的所述第二润滑油道(131)为外部油道,所述转轴(10)具有通油孔(14),所述内部油道通过所述通油孔(14)与所述外部油道连通。
  36. 根据权利要求1所述的流体机械,其特征在于,所述气缸(20)的气缸壁具有压缩进气口(21)和第一压缩排气口(22),
    当所述活塞组件(30)处于进气位置时,所述压缩进气口(21)与所述变容积腔(31)导通;
    当所述活塞组件(30)处于排气位置时,所述变容积腔(31)与所述第一压缩排气口(22)导通。
  37. 根据权利要求36所述的流体机械,其特征在于,所述气缸壁的内壁面具有压缩进气缓冲槽(23),所述压缩进气缓冲槽(23)与所述压缩进气口(21)连通。
  38. 根据权利要求37所述的流体机械,其特征在于,所述压缩进气缓冲槽(23)在所述气缸(20)的径向平面内呈弧形段,且所述压缩进气缓冲槽(23)由所述压缩进气口(21)处向所述第一压缩排气口(22)所在一侧延伸。
  39. 根据权利要求38所述的流体机械,其特征在于,所述气缸(20)的气缸壁具有第二压缩排气口(24),所述第二压缩排气口(24)位于所述压缩进气口(21)与所述第一压缩排气口(22)之间,且在所述活塞组件(30)转动的过程中,在所述活塞组件(30)内的 部分气体先经过所述第二压缩排气口(24)的泄压后再由所述第一压缩排气口(22)全部排出。
  40. 根据权利要求39所述的流体机械,其特征在于,所述流体机械还包括排气阀组件(40),所述排气阀组件(40)设置在所述第二压缩排气口(24)处。
  41. 根据权利要求40所述的流体机械,其特征在于,所述气缸壁的外壁上开设有容纳槽(25),所述第二压缩排气口(24)贯通所述容纳槽(25)的槽底,所述排气阀组件(40)设置在所述容纳槽(25)内。
  42. 根据权利要求41所述的流体机械,其特征在于,所述排气阀组件(40)包括:
    排气阀片(41),所述排气阀片(41)设置在所述容纳槽(25)内并遮挡所述第二压缩排气口(24);
    阀片挡板(42),所述阀片挡板(42)叠置在所述排气阀片(41)上。
  43. 根据权利要求36至42中任一项所述的流体机械,其特征在于,所述流体机械是压缩机。
  44. 根据权利要求1所述的流体机械,其特征在于,所述气缸(20)的气缸壁具有膨胀排气口和第一膨胀进气口,
    当所述活塞组件(30)处于进气位置时,所述膨胀排气口与所述变容积腔(31)导通;
    当所述活塞组件(30)处于排气位置时,所述变容积腔(31)与所述第一膨胀进气口导通。
  45. 根据权利要求44所述的流体机械,其特征在于,所述气缸壁的内壁面具有膨胀排气缓冲槽,所述膨胀排气缓冲槽与所述膨胀排气口连通。
  46. 根据权利要求45所述的流体机械,其特征在于,所述膨胀排气缓冲槽在所述气缸(20)的径向平面内呈弧形段,且所述膨胀排气缓冲槽由所述膨胀排气口处向所述第一膨胀进气口所在一侧延伸,且所述膨胀排气缓冲槽的延伸方向与所述活塞组件(30)的转动方向同向。
  47. 根据权利要求44至46中任一项所述的流体机械,其特征在于,所述流体机械是膨胀机。
  48. 根据权利要求8所述的流体机械,其特征在于,所述导向孔(311)为至少两个,两个所述导向孔(311)沿所述转轴(10)的轴向间隔设置,所述活塞(32)为至少两个,每个所述导向孔(311)内对应设置有一个所述活塞(32)。
  49. 一种换热设备,包括流体机械,其特征在于,所述流体机械是权利要求1至48中任一项所述的流体机械。
  50. 一种流体机械的运行方法,其特征在于,包括:
    转轴(10)绕所述转轴(10)的轴心O1转动;
    气缸(20)绕所述气缸(20)的轴心O2转动,且所述转轴(10)的轴心与所述气缸(20)的轴心偏心设置且偏心距离固定;
    活塞组件(30)的活塞(32)在所述转轴(10)的驱动下随所述转轴(10)旋转并同时沿垂直于所述转轴(10)的轴线方向在所述活塞组件(30)的活塞套(33)内往复滑动。
  51. 根据权利要求50所述的运行方法,其特征在于,所述运行方法采用十字滑块机构原理,其中,所述活塞(32)作为滑块,所述转轴(10)的滑移配合面(111)作为第一连杆l1、所述活塞套(33)的导向孔(311)作为第二连杆l2
PCT/CN2016/084318 2015-08-07 2016-06-01 流体机械、换热设备和流体机械的运行方法 WO2017024862A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/751,038 US10941771B2 (en) 2015-08-07 2016-06-01 Fluid machinery, heat exchange equipment, and operating method for fluid machinery
EP16834487.7A EP3333427B1 (en) 2015-08-07 2016-06-01 Fluid machine, heat exchanger, and operating method of fluid machine
KR1020187006686A KR101990259B1 (ko) 2015-08-07 2016-06-01 유체 기계,열교환 장치 및 유체 기계의 작동방법
JP2018506420A JP6682616B2 (ja) 2015-08-07 2016-06-01 流体機械、熱交換装置及び流体機械の運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510482080.3A CN106640645B (zh) 2015-08-07 2015-08-07 流体机械、换热设备和流体机械的运行方法
CN201510482080.3 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017024862A1 true WO2017024862A1 (zh) 2017-02-16

Family

ID=57983208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084318 WO2017024862A1 (zh) 2015-08-07 2016-06-01 流体机械、换热设备和流体机械的运行方法

Country Status (6)

Country Link
US (1) US10941771B2 (zh)
EP (1) EP3333427B1 (zh)
JP (1) JP6682616B2 (zh)
KR (1) KR101990259B1 (zh)
CN (1) CN106640645B (zh)
WO (1) WO2017024862A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387410B (zh) * 2017-07-25 2020-03-10 珠海格力电器股份有限公司 压缩机的泄压结构及转缸活塞压缩机
CN108916045B (zh) * 2018-07-18 2024-04-02 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN112483394B (zh) * 2020-11-13 2021-11-23 珠海格力电器股份有限公司 一种膨胀机和空调器
CN115711213A (zh) * 2022-12-06 2023-02-24 郑州轻工业大学 基于内容积比可调节的回转活塞式补气压缩机及空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2198419Y (zh) * 1994-08-03 1995-05-24 肖茂如 双圆弧转子泵
CN201162677Y (zh) * 2008-03-18 2008-12-10 王建宇 矩形活塞变容积机构
JP2011085128A (ja) * 2009-10-16 2011-04-28 Naoya Togashi ロータリーポンプ
CN104454021A (zh) * 2014-11-15 2015-03-25 周觉明 具有转轮活塞同步回旋机构的流体动力机械
CN104819155A (zh) * 2015-05-08 2015-08-05 广东美芝制冷设备有限公司 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN205064265U (zh) * 2015-08-07 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411929A (en) * 1944-06-24 1946-12-03 Smith Corp A O Rotary compressor
FR1363724A (fr) 1963-07-18 1964-06-12 Reavell And Company Ltd Perfectionnements aux machines rotatives telles que des compresseurs rotatifs
US3279445A (en) * 1964-06-15 1966-10-18 Karol Robert Rotary piston engine
DE2604665A1 (de) * 1976-02-06 1977-08-11 Sullair Europ Corp Drehkolbenmaschine
FR2509368A1 (fr) * 1981-07-07 1983-01-14 Raynaud Bernard Machine rotative a fluide sous pression
JPS58220977A (ja) * 1982-06-16 1983-12-22 Asuyoshi Shibai ポンプ
KR970001962A (ko) 1995-06-16 1997-01-24 배순훈 압축기의 회전축에 형성된 윤활유 공급구조
KR19990073188A (ko) * 1998-08-19 1999-10-05 이영복 로터리피스톤펌프
DE19954728A1 (de) * 1999-11-12 2001-05-31 Michael Kresin Drehkolbenvorrichtung
JP4365729B2 (ja) * 2004-05-31 2009-11-18 三菱重工業株式会社 ロータリー圧縮機
CN201288669Y (zh) * 2008-11-19 2009-08-12 珠海格力电器股份有限公司 旋转压缩机的高压排气结构及具有该结构的旋转压缩机
CN201696298U (zh) * 2010-03-23 2011-01-05 珠海格力电器股份有限公司 下消声器支撑偏心曲轴的旋转压缩机
US9751384B2 (en) 2011-11-24 2017-09-05 Calsonic Kansei Corporation Gas compressor with discharge section and sub-discharge section
CN106704181B (zh) * 2015-08-07 2018-12-07 珠海格力电器股份有限公司 流体机械、换热设备和流体机械的运行方法
CN106704183B (zh) * 2015-08-07 2019-03-29 珠海格力电器股份有限公司 流体机械、换热设备和流体机械的运行方法
CN204877940U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN106704182B (zh) * 2015-08-07 2019-03-29 珠海格力电器股份有限公司 流体机械、换热设备和流体机械的运行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2198419Y (zh) * 1994-08-03 1995-05-24 肖茂如 双圆弧转子泵
CN201162677Y (zh) * 2008-03-18 2008-12-10 王建宇 矩形活塞变容积机构
JP2011085128A (ja) * 2009-10-16 2011-04-28 Naoya Togashi ロータリーポンプ
CN104454021A (zh) * 2014-11-15 2015-03-25 周觉明 具有转轮活塞同步回旋机构的流体动力机械
CN104819155A (zh) * 2015-05-08 2015-08-05 广东美芝制冷设备有限公司 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN205064265U (zh) * 2015-08-07 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333427A4 *

Also Published As

Publication number Publication date
US20180245591A1 (en) 2018-08-30
US10941771B2 (en) 2021-03-09
EP3333427A1 (en) 2018-06-13
KR101990259B1 (ko) 2019-06-17
JP2018529041A (ja) 2018-10-04
EP3333427B1 (en) 2021-09-08
JP6682616B2 (ja) 2020-04-15
CN106640645A (zh) 2017-05-10
EP3333427A4 (en) 2018-07-25
KR20180039676A (ko) 2018-04-18
CN106640645B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024864A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017140206A1 (zh) 一种压缩机泵体结构及压缩机
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
CN204877940U (zh) 流体机械和换热设备
CN204877939U (zh) 流体机械和换热设备
CN204877938U (zh) 流体机械和换热设备
WO2017140208A1 (zh) 流体机械和换热设备
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN205064265U (zh) 流体机械和换热设备
JP6573605B2 (ja) 遊星回転機構を有するスピン・ポンプ
GB2475158A (en) Toroidal oscillating-rotating piston engine with concentric cardan shafts
CN103591022B (zh) 一种滚动活塞类流体机械的滑块式径向柔性补偿机构
WO2020015284A1 (zh) 泵体组件、流体机械及换热设备
WO2023103876A1 (zh) 流体机械和换热设备
WO2023103871A1 (zh) 流体机械和换热设备
WO2023226413A1 (zh) 流体机械和换热设备
WO2023226414A1 (zh) 流体机械和换热设备
CN117145765A (zh) 流体机械和换热设备
CN117145770A (zh) 流体机械和换热设备
CN116241466A (zh) 流体机械、换热设备、流体机械的运行方法
CN116241465A (zh) 流体机械、换热设备和流体机械的运行方法
CN117145769A (zh) 流体机械和换热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018506420

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006686

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016834487

Country of ref document: EP