CN116241465A - 流体机械、换热设备和流体机械的运行方法 - Google Patents

流体机械、换热设备和流体机械的运行方法 Download PDF

Info

Publication number
CN116241465A
CN116241465A CN202111487159.7A CN202111487159A CN116241465A CN 116241465 A CN116241465 A CN 116241465A CN 202111487159 A CN202111487159 A CN 202111487159A CN 116241465 A CN116241465 A CN 116241465A
Authority
CN
China
Prior art keywords
fluid machine
sliding
section
eccentric
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111487159.7A
Other languages
English (en)
Inventor
杜忠诚
任丽萍
张培林
李直
宋雪威
于瑞波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Priority to CN202111487159.7A priority Critical patent/CN116241465A/zh
Priority to PCT/CN2022/135779 priority patent/WO2023103863A1/zh
Publication of CN116241465A publication Critical patent/CN116241465A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本发明提供了一种流体机械、换热设备和流体机械的运行方法,流体机械包括曲轴、缸套、交叉槽结构和滑块,曲轴的两个偏心部之间具有第一夹角A,两个偏心部的偏心量不相等;曲轴与缸套偏心设置且偏心距离固定;交叉槽结构可转动地设置在缸套内,交叉槽结构的两个限位通道沿曲轴的轴向顺次设置,限位通道的延伸方向垂直于曲轴的轴向,且两个限位通道的延伸方向之间具有第二夹角B,第一夹角A为第二夹角B的二倍;两个偏心部对应伸入两个滑块的两个通孔内,两个滑块对应滑动设置在两个限位通道内并形成变容积腔。本发明解决了现有技术中的压缩机的能效较低、噪音较大的问题。

Description

流体机械、换热设备和流体机械的运行方法
技术领域
本发明涉及换热系统技术领域,具体而言,涉及一种流体机械、换热设备和流体机械的运行方法。
背景技术
现有技术中的流体机械包括压缩机和膨胀机等。以压缩机为例。
根据国家节能环保政策及消费者对空调舒适性要求,空调行业一直在追求高效和低噪。压缩机作为空调的心脏,对空调的能效和噪音水平有直接影响。滚动转子式压缩机作为主流的家用空调压缩机,经过近百年发展,已相对成熟,受结构原理限制,优化空间有限。若要取得重大突破,需从结构原理进行创新。
因此,急需提出一种具备能效高、噪音小等特点的压缩机。
发明内容
本发明的主要目的在于提供一种流体机械、换热设备和流体机械的运行方法,以解决现有技术中的压缩机的能效较低、噪音较大的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种流体机械包括曲轴、缸套、交叉槽结构和滑块,其中,曲轴沿其轴向设置有两个偏心部,两个偏心部之间具有第一夹角A的相位差,两个偏心部的偏心量不相等;曲轴与缸套偏心设置且偏心距离固定;交叉槽结构可转动地设置在缸套内,交叉槽结构具有两个限位通道,两个限位通道沿曲轴的轴向顺次设置,限位通道的延伸方向垂直于曲轴的轴向,且两个限位通道的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍;滑块具有通孔,滑块为两个,两个偏心部对应伸入两个滑块的两个通孔内,两个滑块对应滑动设置在两个限位通道内并形成变容积腔,变容积腔位于滑块的滑动方向上,曲轴转动以带动滑块在限位通道内往复滑动的同时与交叉槽结构相互作用,使得交叉槽结构、滑块在缸套内转动。
进一步地,曲轴的轴体部分包括沿其轴向连接的第一段和第二段,第一段与第二段不同轴设置并活动连接,两个偏心部分别设置在第一段和第二段上。
进一步地,曲轴还包括滑动连接件,第一段通过滑动连接件与第二段活动连接,第一段转动的同时滑动连接件相对于第一段滑动,第二段转动的同时滑动连接件相对于第二段滑动。
进一步地,滑动连接件具有两个限位滑槽,两个限位滑槽的延伸方向均垂直于曲轴的轴向,且两个限位滑槽的延伸方向相垂直;第一段朝向滑动连接件一侧的端部具有第一凸起结构,第二段朝向滑动连接件一侧的端部具有第二凸起结构,第一凸起结构和第二凸起结构分别滑动设置在两个限位滑槽内;第一段转动以使第一凸起结构在对应的限位滑槽内往复滑动的同时与滑动连接件相互作用,滑动连接件转动并带动第二凸起结构在对应的限位滑槽内往复滑动的同时驱动第二段转动;或,第二段转动以使第二凸起结构在对应的限位滑槽内往复滑动的同时与滑动连接件相互作用,滑动连接件转动并带动第一凸起结构在对应的限位滑槽内往复滑动的同时驱动第一段转动。
进一步地,滑动连接件具有朝向第一段和第二段分别伸出的两个限位凸起;第一段朝向滑动连接件一侧的端部具有第一滑槽结构,第二段朝向滑动连接件一侧的端部具有第二滑槽结构,两个限位凸起分别滑动设置在第一滑槽结构和第二滑槽结构内,且第一滑槽结构的延伸方向与第二滑槽结构的延伸方向相垂直;第一段转动以使对应的限位凸起在第一滑槽结构内往复滑动的同时,第一滑槽结构与滑动连接件相互作用,滑动连接件转动并带动限位凸起在第二滑槽结构内往复滑动的同时驱动第二段转动;或,第二段转动以使对应的限位凸起在第二滑槽结构内往复滑动的同时,第二滑槽结构与滑动连接件相互作用,滑动连接件转动并带动限位凸起在第一滑槽结构内往复滑动的同时驱动第一段转动。
进一步地,第一段与缸套的装配偏心量等于设置在第一段上的偏心部的偏心量,第二段与缸套的装配偏心量等于设置在第二段上的偏心部的偏心量。
进一步地,限位通道的两端贯通至交叉槽结构的外周面。
进一步地,两个滑块分别与两个偏心部同心设置,滑块绕曲轴的轴心做圆周运动,通孔的孔壁与偏心部之间具有第一转动间隙,第一转动间隙的范围为0.005mm~0.05mm。
进一步地,交叉槽结构与缸套同轴设置,交叉槽结构的外周面与缸套的内壁面之间具有第二转动间隙,第二转动间隙的尺寸为0.005mm~0.1mm。
进一步地,第一夹角A为160度-200度;第二夹角B为80度-100度。
进一步地,流体机械还包括法兰,法兰设置在缸套的轴向的端部,曲轴与法兰同心设置。
进一步地,曲轴与法兰之间具有第一装配间隙,第一装配间隙的范围为0.005mm~0.05mm。
进一步地,第一装配间隙的范围为0.01~0.03mm。
进一步地,偏心部具有圆弧面,圆弧面的圆心角大于等于180度。
进一步地,偏心部为圆柱形。
进一步地,偏心部的近端与曲轴的轴体部分的外圆平齐;或,偏心部的近端突出于曲轴的轴体部分的外圆;或,偏心部的近端位于曲轴的轴体部分的外圆的内侧。
进一步地,滑块包括多个子结构,多个子结构拼接后围成通孔。
进一步地,两个偏心部在曲轴的轴向上间隔设置。
进一步地,交叉槽结构具有中心孔,两个限位通道通过中心孔连通,中心孔的孔径大于曲轴的轴体部分的直径。
进一步地,中心孔的孔径大于偏心部的直径。
进一步地,滑块在通孔的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段。
进一步地,限位通道具有与滑块滑动接触的一组相对设置的第一滑移面,滑块具有与第一滑移面配合的第二滑移面,滑块具有朝向限位通道的端部的挤压面,挤压面作为滑块的头部,两个第二滑移面通过挤压面连接,挤压面朝向变容积腔。
进一步地,挤压面为弧面,弧面的弧心与通孔的中心之间的距离等于偏心部的偏心量。
进一步地,弧面的曲率半径与缸套的内圆的半径相等;或,弧面的曲率半径与缸套的内圆的半径具有差值,差值的范围为-0.05mm~0.025mm。
进一步地,差值的范围为-0.02~0.02mm。
进一步地,挤压面在滑块滑动方向上的投影面积S滑块与缸套的压缩排气口的面积为S之间满足:S滑块/S的值为8~25。
进一步地,S滑块/S的值为12~18。
进一步地,缸套具有压缩进气口和压缩排气口,当任一滑块处于进气位置时,压缩进气口与对应的变容积腔导通;当任一滑块处于排气位置时,对应的变容积腔与压缩排气口导通。
进一步地,缸套的内壁面具有吸气腔,吸气腔与压缩进气口连通。
进一步地,吸气腔绕缸套的内壁面的周向延伸第一预设距离,以构成弧形吸气腔。
进一步地,吸气腔为两个,两个吸气腔沿缸套的轴向间隔设置,缸套还具有吸气连通腔,两个吸气腔均与吸气连通腔连通,且压缩进气口通过吸气连通腔与吸气腔连通。
进一步地,吸气连通腔沿缸套的轴向延伸第二预设距离,吸气连通腔的至少一端贯通缸套的轴向端面。
进一步地,缸套的外壁上开设有排气腔,压缩排气口由缸套的内壁连通至排气腔处,流体机械还包括排气阀组件,排气阀组件设置在排气腔内并对应压缩排气口设置。
进一步地,压缩排气口为两个,两个压缩排气口沿缸套的轴向间隔设置,排气阀组件为两组,两组排气阀组件分别对应两个压缩排气口设置。
进一步地,缸套的轴向端面上还设置有连通孔,连通孔与排气腔连通,流体机械还包括法兰,法兰上设置有排气通道,连通孔与排气通道连通。
进一步地,排气腔贯通至缸套的外壁面,流体机械还包括排气盖板,排气盖板与缸套连接并密封排气腔。
进一步地,流体机械是压缩机。
进一步地,缸套具有膨胀排气口和膨胀进气口,当任一滑块处于进气位置时,膨胀排气口与对应的变容积腔导通;当任一滑块处于排气位置时,对应的变容积腔与膨胀进气口导通。
进一步地,缸套的内壁面具有膨胀排气腔,膨胀排气腔与膨胀排气口连通。
进一步地,膨胀排气腔绕缸套的内壁面的周向延伸第一预设距离,以构成弧形膨胀排气腔,且膨胀排气腔由膨胀排气口处向膨胀进气口所在一侧延伸,膨胀排气腔的延伸方向与交叉槽结构的转动方向同向。
进一步地,膨胀排气腔为两个,两个膨胀排气腔沿缸套的轴向间隔设置,缸套还具有膨胀排气连通腔,两个膨胀排气腔均与膨胀排气连通腔连通,且膨胀排气口通过膨胀排气连通腔与膨胀排气腔连通。
进一步地,膨胀排气连通腔沿缸套的轴向延伸第二预设距离,膨胀排气连通腔的至少一端贯通缸套的轴向端面。
进一步地,流体机械是膨胀机。
根据本发明的另一方面,提供了一种换热设备,包括流体机械,流体机械为上述的流体机械。
根据本发明的另一方面,提供了一种流体机械的运行方法,包括曲轴的第一段绕第一段的轴心O0自转,曲轴的第二段绕第二段的轴心O0’自转,其中,O0与O0’不重合;第一段的轴心O0与交叉槽结构的轴心O1偏心设置且偏心距离固定,第二段的轴心O0’与交叉槽结构的轴心O1偏心设置且偏心距离固定;第一个滑块以第一段的轴心O0为圆心做圆周运动,且第一个滑块的中心O3与第一段的轴心O0之间的距离等于第一段上的偏心部的偏心量,且第一段上的偏心量等于曲轴的轴心O0与交叉槽结构的轴心O1之间的偏心距离,曲轴转动以带动第一个滑块做圆周运动,且第一个滑块与交叉槽结构相互作用并在交叉槽结构的限位通道内往复滑动;第二个滑块以第二段的轴心O0’为圆心做圆周运动,且第二个滑块的中心O4与第二段的轴心O0’之间的距离等于第二段上的偏心部的偏心量,且第二段上的偏心量等于第二段的轴心O0’与交叉槽结构的轴心O1之间的偏心距离,曲轴转动以带动第二个滑块做圆周运动,且第二个滑块与交叉槽结构相互作用并在交叉槽结构的限位通道内往复滑动。
进一步地,运行方法采用十字滑块机构原理,其中,第一段上的偏心部作为第一连杆L1,第二段上的偏心部作为第二连杆L2,交叉槽结构的两个限位通道分别作为第三连杆L3和第四连杆L4,其中,第一连杆L1和第二连杆L2的长度不相等。
进一步地,第一连杆L1和第二连杆L2之间具有第一夹角A,第三连杆L3和第四连杆L4之间具有第二夹角B,其中,第一夹角A为第二夹角B的二倍。
进一步地,第一段的轴心O0、第二段的轴心O0’、交叉槽结构的轴心O1三者之间的连线为连线O0 O0’O1,第一连杆L1与连线O0 O0’O1之间具有第三夹角C,对应的第三连杆L3与连线O0 O0’O1之间具有第四夹角D,其中,第三夹角C为第四夹角D的二倍;第二连杆L2与连线O0O0’O1之间具有第五夹角E,对应的第四连杆L4与连线O0 O0’O1之间具有第六夹角F,其中,第五夹角E为第六夹角F的二倍;第三夹角C与第五夹角E之和是第一夹角A,第四夹角D和第六夹角F之和是第二夹角B。
进一步地,运行方法还包括滑块的自转角速度与滑块的公转角速度相同;交叉槽结构的公转角速度与滑块的自转角速度相同。
进一步地,在曲轴转动的过程中,曲轴转动2圈,完成4次吸排气过程。
应用本发明的技术方案,通过将交叉槽结构设置成具有两个限位通道的结构形式,并对应设置两个滑块,曲轴的两个偏心部对应伸入两个滑块的两个通孔内,同时,两个滑块对应滑动设置在两个限位通道内并形成变容积腔,由于两个偏心部之间的第一夹角A为两个限位通道的延伸方向之间的第二夹角B的二倍,这样,当两个滑块中的一个处于死点位置时,即,与处于死点位置处的滑块对应的偏心部的驱动转矩为0,处于死点位置处的滑块无法继续旋转,而此时两个偏心部中的另一个偏心部驱动对应的滑块的驱动转矩为最大值,确保具有最大驱动转矩的偏心部能够正常驱动对应的滑块旋转,从而通过该滑块来带动交叉槽结构转动,进而通过交叉槽结构带动处于死点位置处的滑块继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性。
此外,由于本申请提供的流体机械能够稳定运行,即,确保了压缩机的能效较高、噪音较小,从而确保换热设备的工作可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种可选实施例的压缩机运行的机构原理示意图;
图2示出了图1中的压缩机运行的机构原理示意图;
图3示出了根据本发明的实施例一的压缩机的内部结构示意图;
图4示出了图3中的压缩机的泵体组件的结构示意图;
图5示出了图4中的泵体组件的分解结构示意图;
图6示出了图5中的曲轴、交叉槽结构、滑块的装配结构示意图;
图7示出了图6中的曲轴、交叉槽结构、滑块的剖视结构示意图;
图8示出了图5中的曲轴的第一段的结构示意图;
图9示出了图8中的第一段和位于第一段上的偏心部的偏心量的结构示意图;
图10示出了图5中的曲轴的第二段的结构示意图;
图11示出了图10中的第二段和位于第二段上的偏心部的偏心量的结构示意图;
图12示出了图4中的曲轴和缸套之间的偏心量的结构示意图;
图13示出了图5中的缸套和下法兰处于分解状态时的结构示意图;
图14示出了图13中的缸套和下法兰之间的偏心量的结构示意图;
图15示出了图5中的滑块在通孔轴向上的结构示意图;
图16示出了图13中的缸套的结构示意图;
图17示出了图16中的缸套的另一视角的结构示意图;
图18示出了图16中的缸套剖视结构示意图;
图19示出了图16中的缸套的另一视角的剖视结构示意图;
图20示出了图19中的Y向视角的结构示意图;
图21示出了图4中的上法兰和缸套的剖视结构示意图,该图中,示出了泵体组件的排气路径;
图22示出了图5中的缸套和排气盖板处于分解状态时的结构示意图;
图23示出了图3中的压缩机处于吸气开始时的状态结构示意图;
图24示出了图3中的压缩机处于吸气过程中的状态结构示意图;
图25示出了图3中的压缩机处于吸气结束时的状态结构示意图;
图26示出了图3中的压缩机处于压缩气体时的状态结构示意图;
图27示出了图3中的压缩机处于排气过程中的状态结构示意图;
图28示出了图3中的压缩机处于排气结束时的状态结构示意图;
图29示出了根据本发明的实施例二的压缩机的泵体组件的分解结构示意图;
图30示出了图29中的曲轴、交叉槽结构、滑块的装配结构示意图;
图31示出了根据本发明的实施例三的压缩机的内部结构示意图;
图32示出了图31中的压缩机的泵体组件的结构示意图;
图33示出了图32中的曲轴、交叉槽结构、滑块的装配结构示意图;
图34示出了图33中的曲轴、交叉槽结构、滑块的剖视结构示意图;
图35示出了图33中的曲轴的结构示意图;
图36示出了图35中的曲轴的分解结构示意图;
图37示出了图36中的第一段和位于第一段上的偏心部的偏心量的结构示意图;
图38示出了图36中的第二段和位于第二段上的偏心部的偏心量的结构示意图;
图39示出了现有技术中的压缩机运行的机构原理示意图;
图40示出了现有技术中改进后的压缩机运行的机构原理示意图;
图41示出了图40中的压缩机运行的机构原理示意图,该图中,示出了驱动轴驱动滑块旋转的力臂;
图42示出了图40中的压缩机运行的机构原理示意图,该图中,限位槽结构的中心和偏心部的中心重合。
其中,上述附图包括以下附图标记:
10、曲轴;11、偏心部;12、轴体部分;121、第一段;1211、第一凸起结构;122、第二段;1221、第二凸起结构;13、滑动连接件;131、限位滑槽;
20、缸套;21、压缩进气口;22、压缩排气口;23、吸气腔;24、吸气连通腔;25、排气腔;26、连通孔;
30、交叉槽结构;31、限位通道;311、变容积腔;32、中心孔;
40、滑块;41、通孔;42、挤压面;
50、法兰;51、排气通道;52、上法兰;53、下法兰;
60、排气阀组件;61、排气阀片;62、阀片挡板;
70、排气盖板;
80、分液器部件;81、壳体组件;82、电机组件;83、泵体组件;84、上盖组件;85、下盖组件;
90、紧固件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中,如图39所示,基于十字滑块机构提出了一种压缩机运行机构原理,即,以点O1作为气缸中心、点O2作为驱动轴中心、点O3作为滑块中心,气缸与驱动轴偏心设置,其中,滑块中心O3在直径为O1O2的圆上作圆周运动。
上述的运行机构原理中,气缸中心O1和驱动轴中心O2作为运动机构的两个旋转中心,同时,线段O1O2的中点O0作为滑块中心O3的虚拟中心,使得滑块相对于气缸作往复运动的同时,滑块还相对于驱动轴作往复运动。
由于线段O1O2的中点O0为虚拟中心,无法设置平衡系统,导致压缩机高频振动特性恶化的问题,在上述运行机构原理的基础上,如图40所示,提出了一种以O0作为驱动轴中心的运动机构,即,气缸中心O1和驱动轴中心O0作为运动机构的两个旋转中心,驱动轴具有偏心部,滑块与偏心部同轴设置,驱动轴与气缸的装配偏心量等于偏心部的偏心量,使得滑块中心O3以驱动轴中心O0为圆心并以O1O0为半径做圆周运动。
对应的提出了一套运行机构,包括气缸、限位槽结构、滑块和驱动轴,其中,限位槽结构可转动地设置在气缸内,且气缸与限位槽结构同轴设置,即,气缸中心O1也是限位槽结构的中心,滑块相对于限位槽结构往复运动,滑块与驱动轴的偏心部同轴装配,滑块绕驱动轴的轴体部分做圆周运动,具体地运动过程为:驱动轴转动,带动滑块绕驱动轴的轴体部分的中心公转,滑块同时相对于偏心部自转,且滑块在限位槽结构的限位槽内往复运动,并推动限位槽结构旋转。
但是,如图41所示,驱动轴驱动滑块旋转的力臂L的长度为L=2e×cosθ×cosθ,其中,e为偏心部的偏心量,θ为O1O0连线与滑块在限位槽内滑动方向之间的夹角。
如图42所示,当气缸中心O1(即,限位槽结构的中心)和偏心部的中心重合时,驱动轴的驱动力的合力经过限位槽结构的中心,即,施加在限位槽结构上的转矩为零,限位槽结构无法转动,此时的运动机构处于死点位置,无法驱动滑块旋转。
基于此,本申请提出了一种全新的具备两个限位通道的交叉槽结构和双滑块的机构原理,并基于该原理构建了一种全新的压缩机,该压缩机具备能效高、噪音小的特点,下面以压缩机为例,具体介绍基于具备两个限位通道的交叉槽结构和双滑块的压缩机。
为了解决现有技术中的压缩机的能效较低、噪音较大的问题,本发明提供了一种流体机械、换热设备和流体机械的运行方法,其中,换热设备包括下述的流体机械,而流体机械采用下述的运行方法运行。
本发明的流体机械包括曲轴10、缸套20、交叉槽结构30和滑块40,其中,曲轴10沿其轴向设置有两个偏心部11,两个偏心部11之间具有第一夹角A的相位差,两个偏心部11的偏心量不相等;曲轴10与缸套20偏心设置且偏心距离固定;交叉槽结构30可转动地设置在缸套20内,交叉槽结构30具有两个限位通道31,两个限位通道31沿曲轴10的轴向顺次设置,限位通道31的延伸方向垂直于曲轴10的轴向,且两个限位通道31的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍;滑块40具有通孔41,滑块40为两个,两个偏心部11对应伸入两个滑块40的两个通孔41内,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,变容积腔311位于滑块40的滑动方向上,曲轴10转动以带动滑块40在限位通道31内往复滑动的同时与交叉槽结构30相互作用,使得交叉槽结构30、滑块40在缸套20内转动。
通过将交叉槽结构30设置成具有两个限位通道31的结构形式,并对应设置两个滑块40,曲轴的两个偏心部11对应伸入两个滑块40的两个通孔41内,同时,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,由于两个偏心部11之间的第一夹角A为两个限位通道31的延伸方向之间的第二夹角B的二倍,这样,当两个滑块40中的一个处于死点位置时,即,与处于死点位置处的滑块40对应的偏心部11的驱动转矩为0,处于死点位置处的滑块40无法继续旋转,而此时两个偏心部11中的另一个偏心部11驱动对应的滑块40的驱动转矩为最大值,确保具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
此外,由于本申请提供的流体机械能够稳定运行,即,确保了压缩机的能效较高、噪音较小,从而确保换热设备的工作可靠性。
需要说明的是,在本申请中,第一夹角A和第二夹角B均不为零。
如图1和图2所示,当上述的流体机械运行时,流体机械的运行方法包括曲轴10的第一段121绕第一段121的轴心O0自转,曲轴10的第二段122绕第二段122的轴心O0’自转,其中,O0与O0’不重合;第一段121的轴心O0与交叉槽结构30的轴心O1偏心设置且偏心距离固定,第二段122的轴心O0’与交叉槽结构30的轴心O1偏心设置且偏心距离固定;第一个滑块40以第一段121的轴心O0为圆心做圆周运动,且第一个滑块40的中心O3与第一段121的轴心O0之间的距离等于第一段121上的偏心部11的偏心量,且第一段121上的偏心量等于曲轴10的轴心O0与交叉槽结构30的轴心O1之间的偏心距离,曲轴10转动以带动第一个滑块40做圆周运动,且第一个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动;第二个滑块40以第二段122的轴心O0’为圆心做圆周运动,且第二个滑块40的中心O4与第二段122的轴心O0’之间的距离等于第二段122上的偏心部11的偏心量,且第二段122上的偏心量等于第二段122的轴心O0’与交叉槽结构30的轴心O1之间的偏心距离,曲轴10转动以带动第二个滑块40做圆周运动,且第二个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动。
如上述方法运行的流体机械,构成了十字滑块机构,该运行方法采用十字滑块40机构原理,其中,第一段121上的偏心部11作为第一连杆L1,第二段122上的偏心部11作为第二连杆L2,交叉槽结构30的两个限位通道31分别作为第三连杆L3和第四连杆L4,其中,第一连杆L1和第二连杆L2的长度不相等。
如图1所示,第一连杆L1和第二连杆L2之间具有第一夹角A,第三连杆L3和第四连杆L4之间具有第二夹角B,其中,第一夹角A为第二夹角B的二倍。
如图2所示,第一段121的轴心O0、第二段122的轴心O0’、交叉槽结构30的轴心O1三者之间的连线为连线O0 O0’O1,第一连杆L1与连线O0 O0’O1之间具有第三夹角C,对应的第三连杆L3与连线O0 O0’O1之间具有第四夹角D,其中,第三夹角C为第四夹角D的二倍;第二连杆L2与连线O0 O0’O1之间具有第五夹角E,对应的第四连杆L4与连线O0 O0’O1之间具有第六夹角F,其中,第五夹角E为第六夹角F的二倍;第三夹角C与第五夹角E之和是第一夹角A,第四夹角D和第六夹角F之和是第二夹角B。
进一步地,运行方法还包括滑块40的自转角速度与滑块40的公转角速度相同;交叉槽结构30的公转角速度与滑块40的自转角速度相同。
具体而言,第一段121的轴心O0相当于第一连杆L1的旋转中心,第二段122的轴心O0’相当于第二连杆L2的旋转中心,交叉槽结构30的轴心O1相当于第三连杆L3和第四连杆L4的旋转中心;曲轴10的两个偏心部11分别作为第一连杆L1和第二连杆L2,交叉槽结构30的两个限位通道31分别作为第三连杆L3和第四连杆L4,且第一连杆L1和第二连杆L2的长度不相等,这样,第一段121转动的同时,第一段121上的偏心部11带动对应的滑块40绕第一段121的轴心O0公转,同时该滑块40相对于该偏心部11能够自转,且二者的相对转动速度相同,由于第一个滑块40和第二个滑块40分别在两个对应的限位通道31内往复运动,并带动交叉槽结构30做圆周运动,受交叉槽结构30的两个限位通道31的限位,两个滑块40的运动方向始终具有第二夹角B的相位差,当第一段121上的偏心部11处于死点位置时,第二段122上的偏心部11具有最大的驱动转矩,具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性;或者,当第二段122上的偏心部11处于死点位置时,第一段121上的偏心部11具有最大的驱动转矩,具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
需要说明的是,在本申请中,偏心部11的驱动转矩的最大力臂为2e。
在该运动方法下,各滑块40的运行轨迹均为圆,其中一个圆以第一段121的轴心O0为圆心以连线O0 O1为半径,另一个圆以第二段122的轴心O0’为圆心以连线O0’O1为半径。
需要说明的是,在本申请中,在曲轴10转动的过程中,曲轴10转动2圈,完成4次吸排气过程。
下面将给出三个可选的实施方式,以对流体机械的结构进行详细的介绍,以便能够通过结构特征更好地阐述流体机械的运行方法。
实施例一
如图3至图28所示,曲轴10的轴体部分12包括沿其轴向连接的第一段121和第二段122,第一段121与第二段122不同轴设置并活动连接,两个偏心部11分别设置在第一段121和第二段122上。这样,通过将曲轴10的轴体部分12设置成沿其轴向连接的第一段121和第二段122,同时,第一段121与第二段122不同轴设置并活动连接,确保第一段121上的偏心部11和第二段122上的偏心部11的偏心量不相等的同时,还能够确保第一段121与第二段122的转动可靠性。
如图5所示,曲轴10还包括滑动连接件13,第一段121通过滑动连接件13与第二段122活动连接,第一段121转动的同时滑动连接件13相对于第一段121滑动,第二段122转动的同时滑动连接件13相对于第二段122滑动。这样,通过滑动连接件13来确保第一段121与第二段122不同轴的同时,还能够确保第一段121与第二段122之间的转动可靠性。
如图5所示,滑动连接件13具有两个限位滑槽131,两个限位滑槽131的延伸方向均垂直于曲轴10的轴向,且两个限位滑槽131的延伸方向相垂直;第一段121朝向滑动连接件13一侧的端部具有第一凸起结构1211,第二段122朝向滑动连接件13一侧的端部具有第二凸起结构1221,第一凸起结构1211和第二凸起结构1221分别滑动设置在两个限位滑槽131内;第一段121转动以使第一凸起结构1211在对应的限位滑槽131内往复滑动的同时与滑动连接件13相互作用,滑动连接件13转动并带动第二凸起结构1221在对应的限位滑槽131内往复滑动的同时驱动第二段122转动;或,第二段122转动以使第二凸起结构1221在对应的限位滑槽131内往复滑动的同时与滑动连接件13相互作用,滑动连接件13转动并带动第一凸起结构1211在对应的限位滑槽131内往复滑动的同时驱动第一段121转动。这样,确保第一段121与第二段122的连接可靠性的同时,还能够确保两者之间的转动平稳性。
如图9、图11、图12和图14所示,第一段121与缸套20的装配偏心量等于设置在第一段121上的偏心部11的偏心量,第二段122与缸套20的装配偏心量等于设置在第二段122上的偏心部11的偏心量。这样,图9中,第一段121上的偏心部11的偏心量为e1,图14中第一段121与缸套20的装配偏心量也为e1,同时,图11中的第二段122上的偏心部11的偏心量为e2,图14中第二段122与缸套20的装配偏心量也为e2,确保图1和图2中构建的运动机构的运动可靠性。
如图12所示,标号H1表示第一段121的轴线,标号H1表示第二段122的轴线,标号I表示缸套20的内圈的轴线。
如图5所示,限位通道31的两端贯通至交叉槽结构30的外周面。这样,有利于降低交叉槽结构30的加工制造难度。
可选地,两个滑块40分别与两个偏心部11同心设置,滑块40绕曲轴10的轴心做圆周运动,通孔41的孔壁与偏心部11之间具有第一转动间隙,第一转动间隙的范围为0.005mm~0.05mm。
可选地,交叉槽结构30与缸套20同轴设置,交叉槽结构30的外周面与缸套20的内壁面之间具有第二转动间隙,第二转动间隙的尺寸为0.005mm~0.1mm。
需要说明的是,在本申请中,第一夹角A为160度-200度;第二夹角B为80度-100度。这样,只要满足第一夹角A是第二夹角B的二倍的关系即可。
优选地,第一夹角A为160度,第二夹角B为80度。
优选地,第一夹角A为165度,第二夹角B为82.5度。
优选地,第一夹角A为170度,第二夹角B为85度。
优选地,第一夹角A为175度,第二夹角B为87.5度。
优选地,第一夹角A为180度,第二夹角B为90度。
优选地,第一夹角A为185度,第二夹角B为92.5度。
优选地,第一夹角A为190度,第二夹角B为95度。
优选地,第一夹角A为195度,第二夹角B为97.5度。
如图4、图5和图12所示,流体机械还包括法兰50,法兰50设置在缸套20的轴向的端部,曲轴10与法兰50同心设置,交叉槽结构30与缸套20同轴设置,曲轴10与交叉槽结构30的装配偏心量由法兰50和缸套20相对位置关系确定,其中,法兰50通过紧固件90固定在缸套20上,法兰50的轴心与缸套20内圈的轴心的相对位置通过法兰50调心控制,法兰50的轴心与缸套20内圈的轴心的相对位置决定了曲轴10的轴心和交叉槽结构30的轴心的相对位置,通过法兰50调心的本质就是使得偏心部11的偏心量等于曲轴10与缸套20的装配偏心量。
可选地,曲轴10与法兰50之间具有第一装配间隙,第一装配间隙的范围为0.005mm~0.05mm。
优选地,第一装配间隙的范围为0.01~0.03mm。
需要说明的是,在本申请中,偏心部11具有圆弧面,圆弧面的圆心角大于等于180度。这样,确保偏心部11的圆弧面能够对滑块40施加有效驱动力的作用,从而确保滑块40的运动可靠性。
如图4至图12所示,偏心部11为圆柱形。
可选地,偏心部11的近端与曲轴10的轴体部分12的外圆平齐。
可选地,偏心部11的近端突出于曲轴10的轴体部分12的外圆。
可选地,偏心部11的近端位于曲轴10的轴体部分12的外圆的内侧。
需要说明的是,在本申请一个未图示的实施例中,滑块40包括多个子结构,多个子结构拼接后围成通孔41。
如图4至图12所示,两个偏心部11在曲轴10的轴向上间隔设置。这样,在装配曲轴10、缸套20和两个滑块40的过程中,确保两个偏心部11之间的间隔距离能够为缸套20提供装配空间,以确保装配便捷性。
如图5所示,交叉槽结构30具有中心孔32,两个限位通道31通过中心孔32连通,中心孔32的孔径大于曲轴10的轴体部分12的直径。这样,确保曲轴10能够顺利地穿过中心孔32。
可选地,中心孔32的孔径大于偏心部11的直径。这样,确保曲轴10的偏心部11能够顺利地穿过中心孔32。
如图15所示,滑块40在通孔41的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段。限位通道31具有与滑块40滑动接触的一组相对设置的第一滑移面,滑块40具有与第一滑移面配合的第二滑移面,滑块40具有朝向限位通道31的端部的挤压面42,挤压面42作为滑块40的头部,两个第二滑移面通过挤压面42连接,挤压面42朝向变容积腔311。这样,滑块40的第二滑移面在其通孔41的轴向的投影为直线段,同时,滑块40的挤压面42在其通孔41的轴向的投影为弧线段。
具体地,挤压面42为弧面,弧面的弧心与通孔41的中心之间的距离等于偏心部11的偏心量。图15中,滑块40的通孔41中心为O滑块,两个弧面的弧心与通孔41的中心之间的距离均为e,即,偏心部11的偏心量,图15中的X虚线表示两个弧面的弧心所在的圆。
可选地,弧面的曲率半径与缸套20的内圆的半径相等;或,弧面的曲率半径与缸套20的内圆的半径具有差值,差值的范围为-0.05mm~0.025mm。
优选地,差值的范围为-0.02~0.02mm。
可选地,挤压面42在滑块40滑动方向上的投影面积S滑块与缸套20的压缩排气口的面积为S之间满足:S滑块/S的值为8~25。
优选地,S滑块/S的值为12~18。
需要说明的是,本实施例示出的流体机械为压缩机,如图3所示,压缩机包括分液器部件80、壳体组件81、电机组件82、泵体组件83、上盖组件84和下盖组件85,其中,分液器部件80设置在壳体组件81的外部,上盖组件84装配在壳体组件81的上端,下盖组件85装配在壳体组件81的下端,电机组件82和泵体组件83均位于壳体组件81的内部,其中,电机组件82位于泵体组件83的上方,或者,电机组件82位于泵体组件83的下方。压缩机的泵体组件83包括上述的曲轴10、缸套20、交叉槽结构30、滑块40、上法兰52和下法兰53。
可选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件83的装配过程如下:下法兰53固定在缸套20上,两个滑块40分别置于对应的两个限位通道31内,将第一段121、第二段122和滑动连接件13组装成曲轴10后,曲轴10的两个偏心部11分别伸入对应的两个滑块40的两个通孔41内,再将组装好的曲轴10、交叉槽结构30和两个滑块40置于缸套20内,曲轴10的一端安装在下法兰53上,曲轴10的另一端穿过上法兰52设置,具体可参见图4和图5。
需要说明的是,在本实施例中,滑块40、限位通道31、缸套20和上法兰52(或下法兰53)围成的封闭空间即为变容积腔311,泵体组件83共具有4个变容积腔311,在曲轴10转动的过程中,曲轴10转动2圈,单个变容积腔311完成1次吸排气过程,对压缩机而言,曲轴10转动2圈,共计完成4次吸排气过程。
如图23至图28所示,滑块40在限位通道31内往复运动的过程中,同时相对于缸套20旋转,图23至图25中,滑块40顺时针从0度向180度转动的过程中,变容积腔311增大,在变容积腔311增大的过程中,变容积腔311与缸套20的吸气腔23连通,滑块40转动至180度时,变容积腔311的容积达到最大值,此时的变容积腔311与吸气腔23脱离,由此完成吸气作业,图26至图28中,滑块40继续沿顺时针方向从180度向360度转动的过程中,变容积腔311减小,滑块40对变容积腔311内的气体进行压缩,当滑块40转动至该变容积腔311与压缩排气口22连通,且当变容积腔311内的气体达到排气压力时,排气阀组件60的排气阀片61开启,开始排气作业,直至压缩结束后进入下一个周期。
如图23至图28所示,以M标记的点作为滑块40与曲轴10相对运动的参考点,图25表示滑块40顺时针从0度向180度转动的过程,滑块40转动的角度为θ1,对应的曲轴10转动的角度为2θ1,图26中表示滑块40继续沿顺时针方向从180度向360度转动的过程,滑块40转动的角度为180°+θ2,对应的曲轴10转动的角度为360°+2θ2,图27中表示滑块40继续沿顺时针方向从180度向360度转动的过程,且变容积腔311与压缩排气口22连通,滑块40转动的角度为180°+θ3,对应的曲轴10转动的角度为360°+2θ3,即,滑块40转1圈,对应的曲轴10转2圈,其中,θ1<θ2<θ3。
具体而言,如图13、图16至图28所示,缸套20具有压缩进气口21和压缩排气口22,当任一滑块40处于进气位置时,压缩进气口21与对应的变容积腔311导通;当任一滑块40处于排气位置时,对应的变容积腔311与压缩排气口22导通。
如图13、图16至图28所示,缸套20的内壁面具有吸气腔23,吸气腔23与压缩进气口21连通。这样,确保吸气腔23能够蓄存有大量的气体,以使的变容积腔311能够饱满吸气,从而使得压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔311,以保证压缩机的压缩效率。
可选地,吸气腔23为在缸套20的内壁面沿径向挖空形成的腔体,吸气腔23可以是1个,也可以是上下2个。
具体而言,吸气腔23绕缸套20的内壁面的周向延伸第一预设距离,以构成弧形吸气腔23。这样,确保吸气腔23的容积足够大,以蓄存大量的气体。
如图13、图16和图18所示,吸气腔23为两个,两个吸气腔23沿缸套20的轴向间隔设置,缸套20还具有吸气连通腔24,两个吸气腔23均与吸气连通腔24连通,且压缩进气口21通过吸气连通腔24与吸气腔23连通。这样,有利于增大吸气腔23的容积,从而减小吸气压力脉动。
可选地,吸气连通腔24沿缸套20的轴向延伸第二预设距离,吸气连通腔24的至少一端贯通缸套20的轴向端面。这样,便于从缸套20的端面上开设吸气连通腔24,确保吸气连通腔24的加工便捷性。
如图13、图16和图18所示,缸套20的外壁上开设有排气腔25,压缩排气口22由缸套20的内壁连通至排气腔25处,流体机械还包括排气阀组件60,排气阀组件60设置在排气腔25内并对应压缩排气口22设置。这样,排气腔25用于容纳排气阀组件60,有效减少了排气阀组件60的占用空间,使得部件合理布置,提高了缸套20的空间利用率。
如图18至图21所示,压缩排气口22为两个,两个压缩排气口22沿缸套20的轴向间隔设置,排气阀组件60为两组,两组排气阀组件60分别对应两个压缩排气口22设置。这样,由于两个压缩排气口22分别设置有两组排气阀组件60,有效避免变容积腔311内的气体大量泄漏,保证了变容积腔311的压缩效率。
如图19所示,排气阀组件60通过紧固件90与缸套20连接,排气阀组件60包括排气阀片61和阀片挡板62,排气阀片61设置在排气腔25内并遮挡对应的压缩排气口22,阀片挡板62重叠设置在排气阀片61上。这样,阀片挡板62的设置,有效避免了排气阀片61过渡开启,从而保证了缸套20的排气性能。
可选地,紧固件90为螺钉。
如图13、图16和图21所示,缸套20的轴向端面上还设置有连通孔26,连通孔26与排气腔25连通,流体机械还包括法兰50,法兰50上设置有排气通道51,连通孔26与排气通道51连通。这样,确保缸套20的排气可靠性。
如图22所示,排气腔25贯通至缸套20的外壁面,流体机械还包括排气盖板70,排气盖板70与缸套20连接并密封排气腔25。这样,排气盖板70起到将变容积腔311与泵体组件83的外部空间隔开的作用。
需要说明的是,在本申请中,当变容积腔311与压缩排气口22连通后,变容积腔311的压力达到排气压力时,排气阀片61打开,压缩的气体经过压缩排气口22进入排气腔25内,并经过缸套20上的连通孔26,再经排气通道51排出并进入泵体组件83的外部空间(即压缩机的腔体),由此完成排气过程。
可选地,排气盖板70通过紧固件90固定在缸套20上。
可选地,紧固件90为螺钉。
可选地,排气盖板70的外轮廓与排气腔25的外轮廓相适配。
下面对压缩机的运行进行具体介绍:
如图3所示,电机组件82带动曲轴10转动,曲轴10的两个偏心部11分别驱动对应的两个滑块40运动,滑块40绕曲轴10的轴心做公转的同时,滑块40相对于偏心部11自转,且滑块40沿限位通道31往复运动,并带动交叉槽结构30在缸套20内转动,滑块40公转的同时沿限位通道31进行往复运动而构成十字滑块机构运动方式。
其他使用场合:该压缩机将吸、排气口交换位置,可以作为膨胀机使用。即,将压缩机的排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩机吸气口(膨胀机排气口)排出气体。
当流体机械为膨胀机时,缸套20具有膨胀排气口和膨胀进气口,当任一滑块40处于进气位置时,膨胀排气口与对应的变容积腔311导通;当任一滑块40处于排气位置时,对应的变容积腔311与膨胀进气口导通。
可选地,缸套20的内壁面具有膨胀排气腔25,膨胀排气腔25与膨胀排气口连通。
进一步地,膨胀排气腔25绕缸套20的内壁面的周向延伸第一预设距离,以构成弧形膨胀排气腔25,且膨胀排气腔25由膨胀排气口处向膨胀进气口所在一侧延伸,膨胀排气腔25的延伸方向与交叉槽结构30的转动方向同向。
进一步地,膨胀排气腔25为两个,两个膨胀排气腔25沿缸套20的轴向间隔设置,缸套20还具有膨胀排气连通腔,两个膨胀排气腔25均与膨胀排气连通腔连通,且膨胀排气口通过膨胀排气连通腔与膨胀排气腔25连通。
进一步地,膨胀排气连通腔沿缸套20的轴向延伸第二预设距离,膨胀排气连通腔的至少一端贯通缸套20的轴向端面。
实施例二
如图29和图30所示,本实施例与实施例一的区别在于,交叉槽结构30的限位通道31的截面为方形的实施例,对应的滑块40在其滑动方向上的截面为与限位通道相适配的方形。
需要说明的是,实施例一的吸排气方式同样适用于本实施例,此处不再赘述。
实施例三
如图31至图38所示,本实施例与实施例一的区别在于,滑动连接件13具有朝向第一段121和第二段122分别伸出的两个限位凸起;第一段121朝向滑动连接件13一侧的端部具有第一滑槽结构,第二段122朝向滑动连接件13一侧的端部具有第二滑槽结构,两个限位凸起分别滑动设置在第一滑槽结构和第二滑槽结构内,且第一滑槽结构的延伸方向与第二滑槽结构的延伸方向相垂直;第一段121转动以使对应的限位凸起在第一滑槽结构内往复滑动的同时,第一滑槽结构与滑动连接件13相互作用,滑动连接件13转动并带动限位凸起在第二滑槽结构内往复滑动的同时驱动第二段122转动;或,第二段122转动以使对应的限位凸起在第二滑槽结构内往复滑动的同时,第二滑槽结构与滑动连接件13相互作用,滑动连接件13转动并带动限位凸起在第一滑槽结构内往复滑动的同时驱动第一段121转动。这样,确保第一段121与第二段122的连接可靠性的同时,还能够确保两者之间的转动平稳性。
需要说明的是,实施例一的吸排气方式同样适用于本实施例,此处不再赘述。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (50)

1.一种流体机械,其特征在于,包括:
曲轴(10),所述曲轴(10)沿其轴向设置有两个偏心部(11),两个所述偏心部(11)之间具有第一夹角A的相位差,两个所述偏心部(11)的偏心量不相等;
缸套(20),所述曲轴(10)与所述缸套(20)偏心设置且偏心距离固定;
交叉槽结构(30),所述交叉槽结构(30)可转动地设置在所述缸套(20)内,所述交叉槽结构(30)具有两个限位通道(31),两个所述限位通道(31)沿所述曲轴(10)的轴向顺次设置,所述限位通道(31)的延伸方向垂直于所述曲轴(10)的轴向,且两个所述限位通道(31)的延伸方向之间具有第二夹角B的相位差,其中,所述第一夹角A为所述第二夹角B的二倍;
滑块(40),所述滑块(40)具有通孔(41),所述滑块(40)为两个,两个所述偏心部(11)对应伸入两个所述滑块(40)的两个所述通孔(41)内,两个所述滑块(40)对应滑动设置在两个所述限位通道(31)内并形成变容积腔(311),所述变容积腔(311)位于所述滑块(40)的滑动方向上,所述曲轴(10)转动以带动所述滑块(40)在所述限位通道(31)内往复滑动的同时与所述交叉槽结构(30)相互作用,使得所述交叉槽结构(30)、所述滑块(40)在所述缸套(20)内转动。
2.根据权利要求1所述的流体机械,其特征在于,所述曲轴(10)的轴体部分(12)包括沿其轴向连接的第一段(121)和第二段(122),所述第一段(121)与所述第二段(122)不同轴设置并活动连接,两个所述偏心部(11)分别设置在所述第一段(121)和所述第二段(122)上。
3.根据权利要求2所述的流体机械,其特征在于,所述曲轴(10)还包括滑动连接件(13),所述第一段(121)通过所述滑动连接件(13)与所述第二段(122)活动连接,所述第一段(121)转动的同时所述滑动连接件(13)相对于所述第一段(121)滑动,所述第二段(122)转动的同时所述滑动连接件(13)相对于所述第二段(122)滑动。
4.根据权利要求3所述的流体机械,其特征在于,
所述滑动连接件(13)具有两个限位滑槽(131),两个所述限位滑槽(131)的延伸方向均垂直于所述曲轴(10)的轴向,且两个所述限位滑槽(131)的延伸方向相垂直;
所述第一段(121)朝向所述滑动连接件(13)一侧的端部具有第一凸起结构(1211),所述第二段(122)朝向所述滑动连接件(13)一侧的端部具有第二凸起结构(1221),所述第一凸起结构(1211)和所述第二凸起结构(1221)分别滑动设置在两个限位滑槽(131)内;
所述第一段(121)转动以使所述第一凸起结构(1211)在对应的所述限位滑槽(131)内往复滑动的同时与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述第二凸起结构(1221)在对应的所述限位滑槽(131)内往复滑动的同时驱动所述第二段(122)转动;或,
所述第二段(122)转动以使所述第二凸起结构(1221)在对应的所述限位滑槽(131)内往复滑动的同时与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述第一凸起结构(1211)在对应的所述限位滑槽(131)内往复滑动的同时驱动所述第一段(121)转动。
5.根据权利要求3所述的流体机械,其特征在于,
所述滑动连接件(13)具有朝向所述第一段(121)和所述第二段(122)分别伸出的两个限位凸起;
所述第一段(121)朝向所述滑动连接件(13)一侧的端部具有第一滑槽结构,所述第二段(122)朝向所述滑动连接件(13)一侧的端部具有第二滑槽结构,两个所述限位凸起分别滑动设置在所述第一滑槽结构和所述第二滑槽结构内,且所述第一滑槽结构的延伸方向与所述第二滑槽结构的延伸方向相垂直;
所述第一段(121)转动以使对应的所述限位凸起在所述第一滑槽结构内往复滑动的同时,所述第一滑槽结构与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述限位凸起在所述第二滑槽结构内往复滑动的同时驱动所述第二段(122)转动;或,
所述第二段(122)转动以使对应的所述限位凸起在所述第二滑槽结构内往复滑动的同时,所述第二滑槽结构与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述限位凸起在所述第一滑槽结构内往复滑动的同时驱动所述第一段(121)转动。
6.根据权利要求2所述的流体机械,其特征在于,所述第一段(121)与所述缸套(20)的装配偏心量等于设置在所述第一段(121)上的偏心部(11)的偏心量,所述第二段(122)与所述缸套(20)的装配偏心量等于设置在所述第二段(122)上的偏心部(11)的偏心量。
7.根据权利要求1所述的流体机械,其特征在于,所述限位通道(31)的两端贯通至所述交叉槽结构(30)的外周面。
8.根据权利要求1所述的流体机械,其特征在于,两个所述滑块(40)分别与两个所述偏心部(11)同心设置,所述滑块(40)绕所述曲轴(10)的轴心做圆周运动,所述通孔(41)的孔壁与所述偏心部(11)之间具有第一转动间隙,所述第一转动间隙的范围为0.005mm~0.05mm。
9.根据权利要求1所述的流体机械,其特征在于,所述交叉槽结构(30)与所述缸套(20)同轴设置,所述交叉槽结构(30)的外周面与所述缸套(20)的内壁面之间具有第二转动间隙,所述第二转动间隙的尺寸为0.005mm~0.1mm。
10.根据权利要求1所述的流体机械,其特征在于,所述第一夹角A为160度-200度;所述第二夹角B为80度-100度。
11.根据权利要求1所述的流体机械,其特征在于,所述流体机械还包括法兰(50),所述法兰(50)设置在所述缸套(20)的轴向的端部,所述曲轴(10)与所述法兰(50)同心设置。
12.根据权利要求11所述的流体机械,其特征在于,所述曲轴(10)与所述法兰(50)之间具有第一装配间隙,所述第一装配间隙的范围为0.005mm~0.05mm。
13.根据权利要求12所述的流体机械,其特征在于,所述第一装配间隙的范围为0.01~0.03mm。
14.根据权利要求1所述的流体机械,其特征在于,所述偏心部(11)具有圆弧面,所述圆弧面的圆心角大于等于180度。
15.根据权利要求1所述的流体机械,其特征在于,所述偏心部(11)为圆柱形。
16.根据权利要求15所述的流体机械,其特征在于,
所述偏心部(11)的近端与所述曲轴(10)的轴体部分(12)的外圆平齐;或者
所述偏心部(11)的近端突出于所述曲轴(10)的轴体部分(12)的外圆;或者
所述偏心部(11)的近端位于所述曲轴(10)的轴体部分(12)的外圆的内侧。
17.根据权利要求1所述的流体机械,其特征在于,所述滑块(40)包括多个子结构,多个所述子结构拼接后围成所述通孔(41)。
18.根据权利要求1所述的流体机械,其特征在于,两个所述偏心部(11)在所述曲轴(10)的轴向上间隔设置。
19.根据权利要求1所述的流体机械,其特征在于,所述交叉槽结构(30)具有中心孔(32),两个所述限位通道(31)通过所述中心孔(32)连通,所述中心孔(32)的孔径大于所述曲轴(10)的轴体部分(12)的直径。
20.根据权利要求19所述的流体机械,其特征在于,所述中心孔(32)的孔径大于所述偏心部(11)的直径。
21.根据权利要求1所述的流体机械,其特征在于,所述滑块(40)在所述通孔(41)的轴向的投影具有两条相对平行的直线段以及连接两条所述直线段的端部的弧线段。
22.根据权利要求1所述的流体机械,其特征在于,所述限位通道(31)具有与所述滑块(40)滑动接触的一组相对设置的第一滑移面,所述滑块(40)具有与所述第一滑移面配合的第二滑移面,所述滑块(40)具有朝向所述限位通道(31)的端部的挤压面(42),所述挤压面(42)作为所述滑块(40)的头部,两个所述第二滑移面通过所述挤压面(42)连接,所述挤压面(42)朝向所述变容积腔(311)。
23.根据权利要求22所述的流体机械,其特征在于,所述挤压面(42)为弧面,所述弧面的弧心与所述通孔(41)的中心之间的距离等于所述偏心部(11)的偏心量。
24.根据权利要求23所述的流体机械,其特征在于,
所述弧面的曲率半径与所述缸套(20)的内圆的半径相等;或,
所述弧面的曲率半径与所述缸套(20)的内圆的半径具有差值,所述差值的范围为-0.05mm~0.025mm。
25.根据权利要求24所述的流体机械,其特征在于,所述差值的范围为-0.02~0.02mm。
26.根据权利要求22所述的流体机械,其特征在于,所述挤压面(42)在所述滑块(40)滑动方向上的投影面积S滑块与所述缸套(20)的压缩排气口的面积为S之间满足:S滑块/S的值为8~25。
27.根据权利要求26所述的流体机械,其特征在于,S滑块/S的值为12~18。
28.根据权利要求1所述的流体机械,其特征在于,所述缸套(20)具有压缩进气口(21)和压缩排气口(22),
当任一所述滑块(40)处于进气位置时,所述压缩进气口(21)与对应的所述变容积腔(311)导通;
当任一所述滑块(40)处于排气位置时,对应的所述变容积腔(311)与所述压缩排气口(22)导通。
29.根据权利要求28所述的流体机械,其特征在于,所述缸套(20)的内壁面具有吸气腔(23),所述吸气腔(23)与所述压缩进气口(21)连通。
30.根据权利要求29所述的流体机械,其特征在于,所述吸气腔(23)绕所述缸套(20)的内壁面的周向延伸第一预设距离,以构成弧形吸气腔(23)。
31.根据权利要求29所述的流体机械,其特征在于,所述吸气腔(23)为两个,两个所述吸气腔(23)沿所述缸套(20)的轴向间隔设置,所述缸套(20)还具有吸气连通腔(24),两个所述吸气腔(23)均与所述吸气连通腔(24)连通,且所述压缩进气口(21)通过所述吸气连通腔(24)与所述吸气腔(23)连通。
32.根据权利要求31所述的流体机械,其特征在于,所述吸气连通腔(24)沿所述缸套(20)的轴向延伸第二预设距离,所述吸气连通腔(24)的至少一端贯通所述缸套(20)的轴向端面。
33.根据权利要求28所述的流体机械,其特征在于,所述缸套(20)的外壁上开设有排气腔(25),所述压缩排气口(22)由所述缸套(20)的内壁连通至所述排气腔(25)处,所述流体机械还包括排气阀组件(60),所述排气阀组件(60)设置在所述排气腔(25)内并对应所述压缩排气口(22)设置。
34.根据权利要求33所述的流体机械,其特征在于,所述压缩排气口(22)为两个,两个所述压缩排气口(22)沿所述缸套(20)的轴向间隔设置,所述排气阀组件(60)为两组,两组所述排气阀组件(60)分别对应两个所述压缩排气口(22)设置。
35.根据权利要求34所述的流体机械,其特征在于,所述缸套(20)的轴向端面上还设置有连通孔(26),所述连通孔(26)与所述排气腔(25)连通,所述流体机械还包括法兰(50),所述法兰(50)上设置有排气通道(51),所述连通孔(26)与所述排气通道(51)连通。
36.根据权利要求33所述的流体机械,其特征在于,所述排气腔(25)贯通至所述缸套(20)的外壁面,所述流体机械还包括排气盖板(70),所述排气盖板(70)与所述缸套(20)连接并密封所述排气腔(25)。
37.根据权利要求28至36中任一项所述的流体机械,其特征在于,所述流体机械是压缩机。
38.根据权利要求1所述的流体机械,其特征在于,所述缸套(20)具有膨胀排气口和膨胀进气口,
当任一所述滑块(40)处于进气位置时,所述膨胀排气口与对应的所述变容积腔(311)导通;
当任一所述滑块(40)处于排气位置时,对应的所述变容积腔(311)与所述膨胀进气口导通。
39.根据权利要求38所述的流体机械,其特征在于,所述缸套(20)的内壁面具有膨胀排气腔,所述膨胀排气腔与所述膨胀排气口连通。
40.根据权利要求39所述的流体机械,其特征在于,所述膨胀排气腔绕所述缸套(20)的内壁面的周向延伸第一预设距离,以构成弧形膨胀排气腔,且所述膨胀排气腔由所述膨胀排气口处向所述膨胀进气口所在一侧延伸,所述膨胀排气腔的延伸方向与所述交叉槽结构(30)的转动方向同向。
41.根据权利要求40所述的流体机械,其特征在于,所述膨胀排气腔为两个,两个所述膨胀排气腔沿所述缸套(20)的轴向间隔设置,所述缸套(20)还具有膨胀排气连通腔,两个所述膨胀排气腔均与所述膨胀排气连通腔连通,且所述膨胀排气口通过所述膨胀排气连通腔与所述膨胀排气腔连通。
42.根据权利要求41所述的流体机械,其特征在于,所述膨胀排气连通腔沿所述缸套(20)的轴向延伸第二预设距离,所述膨胀排气连通腔的至少一端贯通所述缸套(20)的轴向端面。
43.根据权利要求38至42中任一项所述的流体机械,其特征在于,所述流体机械是膨胀机。
44.一种换热设备,包括流体机械,其特征在于,所述流体机械为权利要求1至43中任一项所述的流体机械。
45.一种流体机械的运行方法,其特征在于,包括:
曲轴(10)的第一段(121)绕所述第一段(121)的轴心O0自转,所述曲轴(10)的第二段(122)绕所述第二段(122)的轴心O0’自转,其中,O0与O0’不重合;
所述第一段(121)的轴心O0与交叉槽结构(30)的轴心O1偏心设置且偏心距离固定,所述第二段(122)的轴心O0’与所述交叉槽结构(30)的轴心O1偏心设置且偏心距离固定;
第一个滑块(40)以所述第一段(121)的轴心O0为圆心做圆周运动,且第一个所述滑块(40)的中心O3与所述第一段(121)的轴心O0之间的距离等于所述第一段(121)上的偏心部(11)的偏心量,且所述第一段(121)上的偏心量等于所述曲轴(10)的轴心O0与所述交叉槽结构(30)的轴心O1之间的偏心距离,所述曲轴(10)转动以带动第一个所述滑块(40)做圆周运动,且第一个所述滑块(40)与所述交叉槽结构(30)相互作用并在所述交叉槽结构(30)的限位通道(31)内往复滑动;
第二个滑块(40)以所述第二段(122)的轴心O0’为圆心做圆周运动,且第二个所述滑块(40)的中心O4与所述第二段(122)的轴心O0’之间的距离等于所述第二段(122)上的偏心部(11)的偏心量,且所述第二段(122)上的偏心量等于所述第二段(122)的轴心O0’与所述交叉槽结构(30)的轴心O1之间的偏心距离,所述曲轴(10)转动以带动第二个所述滑块(40)做圆周运动,且第二个所述滑块(40)与所述交叉槽结构(30)相互作用并在所述交叉槽结构(30)的限位通道(31)内往复滑动。
46.根据权利要求45所述的运行方法,其特征在于,所述运行方法采用十字滑块(40)机构原理,其中,所述第一段(121)上的偏心部(11)作为第一连杆L1,所述第二段(122)上的偏心部(11)作为第二连杆L2,所述交叉槽结构(30)的两个限位通道(31)分别作为第三连杆L3和第四连杆L4,其中,所述第一连杆L1和所述第二连杆L2的长度不相等。
47.根据权利要求46所述的运行方法,其特征在于,所述第一连杆L1和所述第二连杆L2之间具有第一夹角A,所述第三连杆L3和所述第四连杆L4之间具有第二夹角B,其中,所述第一夹角A为所述第二夹角B的二倍。
48.根据权利要求47所述的运行方法,其特征在于,所述第一段(121)的轴心O0、所述第二段(122)的轴心O0’、所述交叉槽结构(30)的轴心O1三者之间的连线为连线O0 O0’O1
所述第一连杆L1与所述连线O0 O0’O1之间具有第三夹角C,对应的所述第三连杆L3与所述连线O0 O0’O1之间具有第四夹角D,其中,所述第三夹角C为所述第四夹角D的二倍;
所述第二连杆L2与所述连线O0 O0’O1之间具有第五夹角E,对应的所述第四连杆L4与所述连线O0 O0’O1之间具有第六夹角F,其中,所述第五夹角E为所述第六夹角F的二倍;
所述第三夹角C与所述第五夹角E之和是所述第一夹角A,所述第四夹角D和所述第六夹角F之和是所述第二夹角B。
49.根据权利要求45所述的运行方法,其特征在于,所述运行方法还包括:
所述滑块(40)的自转角速度与所述滑块(40)的公转角速度相同;
所述交叉槽结构(30)的公转角速度与所述滑块(40)的自转角速度相同。
50.根据权利要求45所述的运行方法,其特征在于,在所述曲轴(10)转动的过程中,所述曲轴(10)转动2圈,完成4次吸排气过程。
CN202111487159.7A 2021-12-07 2021-12-07 流体机械、换热设备和流体机械的运行方法 Pending CN116241465A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111487159.7A CN116241465A (zh) 2021-12-07 2021-12-07 流体机械、换热设备和流体机械的运行方法
PCT/CN2022/135779 WO2023103863A1 (zh) 2021-12-07 2022-12-01 流体机械、换热设备和流体机械的运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111487159.7A CN116241465A (zh) 2021-12-07 2021-12-07 流体机械、换热设备和流体机械的运行方法

Publications (1)

Publication Number Publication Date
CN116241465A true CN116241465A (zh) 2023-06-09

Family

ID=86624660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111487159.7A Pending CN116241465A (zh) 2021-12-07 2021-12-07 流体机械、换热设备和流体机械的运行方法

Country Status (2)

Country Link
CN (1) CN116241465A (zh)
WO (1) WO2023103863A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109747A (zh) * 1973-02-21 1974-10-18
JP2930046B2 (ja) * 1997-03-07 1999-08-03 三菱電機株式会社 スクロール圧縮機
JP4444629B2 (ja) * 2003-11-05 2010-03-31 株式会社日立製作所 スクロール式流体機械
CN101644325B (zh) * 2009-08-26 2012-09-26 北京中清能发动机技术有限公司 圆滑块(组)、曲柄圆滑块机构、机械设备、制造方法
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN208816337U (zh) * 2018-09-18 2019-05-03 珠海凌达压缩机有限公司 一种曲轴滚子结构、压缩机及空调器
CN113202761B (zh) * 2021-05-06 2022-11-01 珠海格力电器股份有限公司 一种膨胀机的吸气结构、膨胀机和空调器

Also Published As

Publication number Publication date
WO2023103863A1 (zh) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024864A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
KR100568076B1 (ko) 압축기 피스톤 가공방법
CN116241465A (zh) 流体机械、换热设备和流体机械的运行方法
CN116241466A (zh) 流体机械、换热设备、流体机械的运行方法
WO2023103876A1 (zh) 流体机械和换热设备
CN116241472A (zh) 流体机械和换热设备
CN117145765A (zh) 流体机械和换热设备
CN117145769A (zh) 流体机械和换热设备
CN116241467A (zh) 具有轴承的流体机械和换热设备
CN117145773A (zh) 流体机械和换热设备
CN117145771A (zh) 流体机械和换热设备
CN117145772A (zh) 流体机械和换热设备
CN117145768A (zh) 流体机械和换热设备
CN117145767A (zh) 流体机械和换热设备
CN117145766A (zh) 流体机械和换热设备
CN116241468A (zh) 具有轴承的流体机械和换热设备
CN114320822A (zh) 一种回转活塞压缩机
CN117145770A (zh) 流体机械和换热设备
WO2023103872A1 (zh) 流体机械、换热设备和流体机械的运行方法
US10774834B2 (en) Spherical compressor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication