CN117145771A - 流体机械和换热设备 - Google Patents

流体机械和换热设备 Download PDF

Info

Publication number
CN117145771A
CN117145771A CN202210565499.5A CN202210565499A CN117145771A CN 117145771 A CN117145771 A CN 117145771A CN 202210565499 A CN202210565499 A CN 202210565499A CN 117145771 A CN117145771 A CN 117145771A
Authority
CN
China
Prior art keywords
exhaust
fluid machine
communication
air suction
communicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210565499.5A
Other languages
English (en)
Inventor
杜忠诚
任丽萍
张荣婷
丁宁
马聪聪
丁少鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Priority to CN202210565499.5A priority Critical patent/CN117145771A/zh
Priority to PCT/CN2022/140975 priority patent/WO2023226411A1/zh
Publication of CN117145771A publication Critical patent/CN117145771A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Abstract

本发明提供了一种流体机械和换热设备,流体机械包括曲轴、缸套、交叉槽结构、滑块和两个法兰,曲轴具有两个偏心部;曲轴与缸套偏心设置且偏心距离固定;交叉槽结构可转动地设置在缸套内,交叉槽结构的两个限位通道沿曲轴的轴向顺次设置,限位通道的延伸方向垂直于曲轴的轴向;两个偏心部对应伸入两个滑块的两个通孔内,两个滑块对应滑动设置在两个限位通道内并形成变容积腔;两个法兰中的至少一个具有进气通道,进气通道包括顺次连通的径向吸气孔和轴向吸气孔,径向吸气孔的孔截面的截面积S与流体机械的排量V的比值S/V的范围为0.006~0.01。本发明解决了现有技术中的压缩机的能效较低、噪音较大,以及如何解决压缩机吸气不足的问题。

Description

流体机械和换热设备
技术领域
本发明涉及换热系统技术领域,具体而言,涉及一种流体机械和换热设备。
背景技术
现有技术中的流体机械包括压缩机和膨胀机等。以压缩机为例。
根据国家节能环保政策及消费者对空调舒适性要求,空调行业一直在追求高效和低噪。压缩机作为空调的心脏,对空调的能效和噪音水平有直接影响。滚动转子式压缩机作为主流的家用空调压缩机,经过近百年发展,已相对成熟,受结构原理限制,优化空间有限。因此,急需提出一种具备能效高、噪音小等特点的压缩机。
此外,现有的压缩机存在吸气不足的现象,因吸气不足而导致吸气损失增加。
发明内容
本发明的主要目的在于提供一种流体机械和换热设备,以解决现有技术中的压缩机的能效较低、噪音较大,以及如何解决压缩机吸气不足的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种流体机械,包括曲轴、缸套、交叉槽结构、滑块和两个法兰,曲轴沿其轴向设置有两个偏心部;曲轴与缸套偏心设置且偏心距离固定;交叉槽结构可转动地设置在缸套内,交叉槽结构具有两个限位通道,两个限位通道沿曲轴的轴向顺次设置,限位通道的延伸方向垂直于曲轴的轴向;滑块具有通孔,滑块为两个,两个偏心部对应伸入两个滑块的两个通孔内,两个滑块对应滑动设置在两个限位通道内并形成变容积腔,变容积腔位于滑块的滑动方向上,曲轴转动以带动滑块在限位通道内往复滑动的同时与交叉槽结构相互作用,使得交叉槽结构、滑块在缸套内转动;两个法兰分别设置在缸套的轴向两端,两个法兰中的至少一个具有进气通道,进气通道用于与变容积腔连通,进气通道包括顺次连通的径向吸气孔和轴向吸气孔,其中,径向吸气孔的孔截面的截面积S与流体机械的排量V的比值S/V的范围为0.006~0.01。
进一步地,缸套的内壁面具有吸气腔,进气通道通过吸气腔与变容积腔连通。
进一步地,吸气腔绕缸套的内壁面的周向延伸第一预设距离,以构成弧形吸气腔。
进一步地,吸气腔为两个,两个吸气腔沿缸套的轴向间隔设置,当两个法兰中的一个具有进气通道时,缸套还具有吸气连通腔,两个吸气腔均与吸气连通腔连通,进气通道通过吸气连通腔与吸气腔连通。
进一步地,吸气连通腔沿缸套的轴向延伸第二预设距离,吸气连通腔朝向具有进气通道的法兰的一端贯通缸套的轴向端面。
进一步地,吸气腔为两个,两个吸气腔沿缸套的轴向间隔设置,当两个法兰均具有进气通道时,缸套还具有两个吸气连通腔,两个吸气腔分别与两个吸气连通腔连通,两个进气通道分别通过对应侧的吸气连通腔与对应侧的吸气腔连通。
进一步地,吸气连通腔沿缸套的轴向延伸第三预设距离,吸气连通腔朝向对应侧的法兰的一端贯通缸套的轴向端面。
进一步地,吸气腔为两个,两个吸气腔沿缸套的轴向间隔设置,当两个法兰均具有进气通道时,缸套还具有吸气连通腔,两个吸气腔均与吸气连通腔连通,进气通道通过吸气连通腔与吸气腔连通。
进一步地,吸气连通腔沿缸套的轴向延伸第四预设距离,吸气连通腔的两端分别贯通缸套的两个轴向端面。
进一步地,两个法兰的端面上均开设有排气通道,两个排气通道分别与对应侧的变容积腔连通。
进一步地,进气通道的末端为压缩进气口,排气通道的初始端为压缩排气口,当任一滑块处于进气位置时,压缩进气口与对应侧的变容积腔导通;当任一滑块处于排气位置时,对应侧的变容积腔与压缩排气口导通。
进一步地,流体机械为压缩机。
进一步地,进气通道的末端为膨胀排气口,排气通道的初始端为膨胀进气口,当任一滑块处于进气位置时,膨胀排气口与对应侧的变容积腔导通;当任一滑块处于排气位置时,对应侧的变容积腔与膨胀进气口导通。
进一步地,流体机械为膨胀机。
进一步地,缸套的外壁上开设有排气腔,缸套还具有排气口,排气口由缸套的内壁连通至排气腔处,流体机械还包括排气阀组件,排气阀组件设置在排气腔内并对应排气口设置。
进一步地,排气口为两个,两个排气口沿缸套的轴向间隔设置,排气阀组件为两组,两组排气阀组件分别对应两个排气口设置。
进一步地,排气腔为一个,缸套的至少一个轴向端面上还设置有连通孔,连通孔与排气腔连通,两个法兰中与连通孔相对的法兰上开设有排气通道,连通孔与排气通道连通。
进一步地,排气口为两个,两个排气口沿缸套的轴向间隔设置,排气腔为两个,两个排气腔与两个排气口一一对应地设置,排气阀组件为两组,两组排气阀组件分别对应两个排气口设置。
进一步地,两个排气腔通过排气连通口连通,缸套的至少一个轴向端面上还设置有连通孔,连通孔与排气腔连通,两个法兰中与连通孔相对的法兰上开设有排气通道,连通孔与排气通道连通。
进一步地,两个排气腔不连通,缸套的两个轴向端面上均设置有连通孔,两个连通孔分别与两个排气腔连通,两个法兰与连通孔相对的位置处均开设有排气通道,连通孔与排气通道连通。
进一步地,排气口为一个,且排气口与对应侧的变容积腔连通,缸套的至少一个轴向端面上还设置有连通孔,连通孔与排气腔连通,两个法兰中与连通孔相对的法兰上开设有第一排气通道,连通孔与第一排气通道连通;两个法兰中远离排气口一侧的法兰具有第二排气通道,第二排气通道与对应侧的变容积腔连通。
进一步地,排气腔贯通至缸套的外壁面,流体机械还包括排气盖板,排气盖板与缸套连接并密封排气腔。
进一步地,进气通道的末端为压缩进气口,缸套上的排气口为压缩排气口,当任一滑块处于进气位置时,压缩进气口与对应侧的变容积腔导通;当任一滑块处于排气位置时,对应侧的变容积腔与压缩排气口导通。
进一步地,流体机械为压缩机。
进一步地,进气通道的末端为膨胀排气口,缸套上的排气口为膨胀进气口,当任一滑块处于进气位置时,膨胀排气口与对应侧的变容积腔导通;当任一滑块处于排气位置时,对应侧的变容积腔与膨胀进气口导通。
进一步地,流体机械为膨胀机。
进一步地,两个偏心部之间具有第一夹角A的相位差,两个偏心部的偏心量相等,且两个限位通道的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍。
根据本发明的另一方面,提供了一种换热设备,包括流体机械,流体机械为上述的流体机械。
应用本发明的技术方案,通过将法兰上的进气通道设置成包括顺次连通的径向吸气孔和轴向吸气孔的结构形式,同时,合理优化径向吸气孔的孔截面的截面积S与流体机械的排量V的比值S/V的范围在0.006~0.01内,这样,避免流体机械因吸气不足而导致吸气损失,从而确保流体机械的容积效率在此范围能够达到最优。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的实施例一的压缩机的内部结构示意图;
图2示出了图1中的压缩机的泵体组件的分解结构示意图;
图3示出了图2中的曲轴、交叉槽结构、滑块的装配结构示意图;
图4示出了图3中的曲轴、交叉槽结构、滑块的剖视结构示意图;
图5示出了图2中的曲轴的轴体部分和两个偏心部的偏心量的结构示意图;
图6示出了图2中的曲轴和缸套的装配偏心量的剖视结构示意图;
图7示出了图2中的缸套和下法兰之间的偏心量的结构示意图;
图8示出了图2中的滑块在通孔轴向上的结构示意图;
图9示出了图1中的压缩机的泵体组件的上法兰吸气的结构示意图;
图10示出了图9中的泵体组件的上法兰吸气的吸气路径的结构示意图;
图11示出了图9中的C-C视角的剖视结构示意图;
图12示出了图9中的D-D视角的剖视结构示意图;
图13示出了根据本发明的一种可选实施例的缸套的结构示意图;
图14示出了图13中的缸套的另一个视角的结构示意图;
图15示出了图14中的F-F视角的剖视结构示意图;
图16示出了根据本发明的一种可选实施例的上法兰的结构示意图;
图17示出了图16中的上法兰的底部视角的结构示意图;
图18示出了根据本发明的实施例二的压缩机的内部结构示意图;
图19示出了图18中的压缩机的泵体组件的下法兰吸气的结构示意图;
图20示出了根据本发明的一种可选实施例的缸套的结构示意图;
图21示出了图20中的缸套的底部视角的结构示意图;
图22示出了图21中的缸套的另一个视角的结构示意图;
图23示出了图22中的G-G视角的结构示意图;
图24示出了根据本发明的一种可选实施例的下法兰的结构示意图;
图25示出了图24中的下法兰的底部视角的结构示意图;
图26示出了根据本发明的实施例三的压缩机的内部结构示意图;
图27示出了图26中的压缩机的泵体组件的上法兰和下法兰吸气的结构示意图;
图28示出了根据本发明的一种可选实施例的缸套的结构示意图;
图29示出了图28中的缸套的底部视角的结构示意图;
图30示出了图28中的缸套的另一个视角的结构示意图;
图31示出了图30中的H-H视角的剖视结构示意图;
图32示出了根据本发明的一种可选实施例的泵体组件的排气的结构示意图;
图33示出了图32中的泵体组件的上法兰和下法兰的结构示意图;
图34示出了图32中的泵体组件的缸套的结构示意图;
图35示出了根据本发明的另一种可选实施例的泵体组件的排气的结构示意图;
图36示出了图35中的泵体组件的上法兰的结构示意图;
图37示出了图35中的缸套的结构示意图;
图38示出了根据本发明的一种可选实施例的压缩机运行的机构原理示意图;
图39示出了图38中的压缩机运行的机构原理示意图;
图40示出了现有技术中的压缩机运行的机构原理示意图;
图41示出了现有技术中改进后的压缩机运行的机构原理示意图;
图42示出了图41中的压缩机运行的机构原理示意图,该图中,示出了驱动轴驱动滑块旋转的力臂;
图43示出了图41中的压缩机运行的机构原理示意图,该图中,限位槽结构的中心和偏心部的中心重合;
图44示出了径向吸气孔的孔截面的截面积S与流体机械的排量V的比值对压缩机的容积效率的影响。
其中,上述附图包括以下附图标记:
10、曲轴;11、偏心部;12、轴体部分;
20、缸套;22、排气口;23、吸气腔;24、吸气连通腔;25、排气腔;26、连通孔;27、斜切口;28、排气连通口;
30、交叉槽结构;31、限位通道;311、变容积腔;32、中心孔;
40、滑块;41、通孔;42、挤压面;
50、法兰;51、排气通道;511、第一排气通道;512、第二排气通道;52、上法兰;53、下法兰;54、进气通道;541、径向吸气孔;542、轴向吸气孔;
70、排气盖板;
80、分液器部件;81、壳体组件;82、电机组件;83、泵体组件;84、上盖组件;85、下盖组件;
90、紧固件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中,如图40所示,基于十字滑块机构提出了一种压缩机运行机构原理,即,以点O1作为气缸中心、点O2作为驱动轴中心、点O3作为滑块中心,气缸与驱动轴偏心设置,其中,滑块中心O3在直径为O1O2的圆上作圆周运动。
上述的运行机构原理中,气缸中心O1和驱动轴中心O2作为运动机构的两个旋转中心,同时,线段O1O2的中点O0作为滑块中心O3的虚拟中心,使得滑块相对于气缸作往复运动的同时,滑块还相对于驱动轴作往复运动。
由于线段O1O2的中点O0为虚拟中心,无法设置平衡系统,导致压缩机高频振动特性恶化的问题,在上述运行机构原理的基础上,如图41所示,提出了一种以O0作为驱动轴中心的运动机构,即,气缸中心O1和驱动轴中心O0作为运动机构的两个旋转中心,驱动轴具有偏心部,滑块与偏心部同轴设置,驱动轴与气缸的装配偏心量等于偏心部的偏心量,使得滑块中心O3以驱动轴中心O0为圆心并以O1O0为半径做圆周运动。
对应的提出了一套运行机构,包括气缸、限位槽结构、滑块和驱动轴,其中,限位槽结构可转动地设置在气缸内,且气缸与限位槽结构同轴设置,即,气缸中心O1也是限位槽结构的中心,滑块相对于限位槽结构往复运动,滑块与驱动轴的偏心部同轴装配,滑块绕驱动轴的轴体部分做圆周运动,具体地运动过程为:驱动轴转动,带动滑块绕驱动轴的轴体部分的中心公转,滑块同时相对于偏心部自转,且滑块在限位槽结构的限位槽内往复运动,并推动限位槽结构旋转。
但是,如图42所示,驱动轴驱动滑块旋转的力臂L的长度为L=2e×cosθ×cosθ,其中,e为偏心部的偏心量,θ为O1O0连线与滑块在限位槽内滑动方向之间的夹角。
如图43所示,当气缸中心O1(即,限位槽结构的中心)和偏心部的中心重合时,驱动轴的驱动力的合力经过限位槽结构的中心,即,施加在限位槽结构上的转矩为零,限位槽结构无法转动,此时的运动机构处于死点位置,无法驱动滑块旋转。
基于此,本申请提出了一种全新的具备两个限位通道的交叉槽结构和双滑块的机构原理,并基于该原理构建了一种全新的压缩机,该压缩机具备能效高、噪音小的特点,下面以压缩机为例,具体介绍基于具备两个限位通道的交叉槽结构和双滑块的压缩机。
为了解决现有技术中的压缩机的能效较低、噪音较大的问题,本发明提供了一种流体机械和换热设备,其中,换热设备包括上述和下述的流体机械。
本发明中的流体机械包括曲轴10、缸套20、交叉槽结构30和滑块40,其中,曲轴10沿其轴向设置有两个偏心部11,两个偏心部11之间具有第一夹角A的相位差,两个偏心部11的偏心量相等;曲轴10与缸套20偏心设置且偏心距离固定;交叉槽结构30可转动地设置在缸套20内,交叉槽结构30具有两个限位通道31,两个限位通道31沿曲轴10的轴向顺次设置,限位通道31的延伸方向垂直于曲轴10的轴向,且两个限位通道31的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍;滑块40具有通孔41,滑块40为两个,两个偏心部11对应伸入两个滑块40的两个通孔41内,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,变容积腔311位于滑块40的滑动方向上,曲轴10转动以带动滑块40在限位通道31内往复滑动的同时与交叉槽结构30相互作用,使得交叉槽结构30、滑块40在缸套20内转动。
通过将交叉槽结构30设置成具有两个限位通道31的结构形式,并对应设置两个滑块40,曲轴的两个偏心部11对应伸入两个滑块40的两个通孔41内,同时,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,由于两个偏心部11之间的第一夹角A为两个限位通道31的延伸方向之间的第二夹角B的二倍,这样,当两个滑块40中的一个处于死点位置时,即,与处于死点位置处的滑块40对应的偏心部11的驱动转矩为0,处于死点位置处的滑块40无法继续旋转,而此时两个偏心部11中的另一个偏心部11驱动对应的滑块40的驱动转矩为最大值,确保具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
此外,由于本申请提供的流体机械能够稳定运行,即,确保了压缩机的能效较高、噪音较小,从而确保换热设备的工作可靠性。
需要说明的是,在本申请中,第一夹角A和第二夹角B均不为零。
如图38和图39所示,当上述的流体机械运行时,曲轴10绕曲轴10的轴心O0自转;交叉槽结构30绕曲轴10的轴心O0公转,曲轴10的轴心O0与交叉槽结构30的轴心O1偏心设置且偏心距离固定;第一个滑块40以曲轴10的轴心O0为圆心做圆周运动,且第一个滑块40的中心O3与曲轴10的轴心O0之间的距离等于曲轴10对应的第一个偏心部11的偏心量,且偏心量等于曲轴10的轴心O0与交叉槽结构30的轴心O1之间的偏心距离,曲轴10转动以带动第一个滑块40做圆周运动,且第一个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动;第二个滑块40以曲轴10的轴心O0为圆心做圆周运动,且第二个滑块40的中心O4与曲轴10的轴心O0之间的距离等于曲轴10对应的第二个偏心部11的偏心量,且偏心量等于曲轴10的轴心O0与交叉槽结构30的轴心O1之间的偏心距离,曲轴10转动以带动第二个滑块40做圆周运动,且第二个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动。
如上述方法运行的流体机械,构成了十字滑块机构,该运行方法采用十字滑块机构原理,其中,曲轴10的两个偏心部11分别作为第一连杆L1和第二连杆L2,交叉槽结构30的两个限位通道31分别作为第三连杆L3和第四连杆L4,且第一连杆L1和第二连杆L2的长度相等(请参考图38)。
如图38所示,第一连杆L1和第二连杆L2之间具有第一夹角A,第三连杆L3和第四连杆L4之间具有第二夹角B,其中,第一夹角A为第二夹角B的二倍。
如图39所示,曲轴10的轴心O0与交叉槽结构30的轴心O1之间的连线为连线O0 O1,第一连杆L1与连线O0 O1之间具有第三夹角C,对应的第三连杆L3与连线O0 O1之间具有第四夹角D,其中,第三夹角C为第四夹角D的二倍;第二连杆L2与连线O0 O1之间具有第五夹角E,对应的第四连杆L4与连线O0 O1之间具有第六夹角F,其中,第五夹角E为第六夹角F的二倍;第三夹角C与第五夹角E之和是第一夹角A,第四夹角D和第六夹角F之和是第二夹角B。
进一步地,运行方法还包括滑块40相对于偏心部11的自转角速度与滑块40绕曲轴10的轴心O0的公转角速度相同;交叉槽结构30绕曲轴10的轴心O0的公转角速度与滑块40相对于偏心部11的自转角速度相同。
具体而言,曲轴10的轴心O0相当于第一连杆L1和第二连杆L2的旋转中心,交叉槽结构30的轴心O1相当于第三连杆L3和第四连杆L4的旋转中心;曲轴10的两个偏心部11分别作为第一连杆L1和第二连杆L2,交叉槽结构30的两个限位通道31分别作为第三连杆L3和第四连杆L4,且第一连杆L1和第二连杆L2的长度相等,这样,曲轴10转动的同时,曲轴10上的偏心部11带动对应的滑块40绕曲轴10的轴心O0公转,同时滑块40相对于偏心部11能够自转,且二者的相对转动速度相同,由于第一个滑块40和第二个滑块40分别在两个对应的限位通道31内往复运动,并带动交叉槽结构30做圆周运动,受交叉槽结构30的两个限位通道31的限位,两个滑块40的运动方向始终具有第二夹角B的相位差,当两个滑块40中的一个处于死点位置时,用于驱动两个滑块40中的另一个的偏心部11具有最大的驱动转矩,具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
需要说明的是,在本申请中,偏心部11的驱动转矩的最大力臂为2e。
在该运动方法下,滑块40的运行轨迹为圆,且该圆以曲轴10的轴心O0为圆心以连线O0O1为半径。
需要说明的是,在本申请中,在曲轴10转动的过程中,曲轴10转动2圈,完成4次吸排气过程。
为了解决现有技术中的压缩机的能效较低、噪音较大的问题,本发明提供了一种流体机械。
如图1至图37所示,流体机械还包括法兰50,法兰50设置在缸套20的轴向的端部,曲轴10与法兰50同心设置,交叉槽结构30与缸套20同轴设置,曲轴10与交叉槽结构30的装配偏心量由法兰50和缸套20相对位置关系确定,其中,法兰50通过紧固件90固定在缸套20上,法兰50的轴心与缸套20内圈的轴心的相对位置通过法兰50调心控制,法兰50的轴心与缸套20内圈的轴心的相对位置决定了曲轴10的轴心和交叉槽结构30的轴心的相对位置,通过法兰50调心的本质就是使得偏心部11的偏心量等于曲轴10与缸套20的装配偏心量。
具体地,如图5所示,两个偏心部11的偏心量均等于e,如图6所示,曲轴10和缸套20之间的装配偏心量为e(由于交叉槽结构30与缸套20同轴设置,曲轴10和交叉槽结构30之间的装配偏心量即曲轴10和缸套20之间的装配偏心量),法兰50包括上法兰52和下法兰53,如图7所示,缸套20的内圈轴心与下法兰53的内圈轴心之间的距离为e,即,等于偏心部11的偏心量。
可选地,曲轴10与法兰50之间具有第一装配间隙,第一装配间隙的范围为0.005mm~0.05mm。
优选地,第一装配间隙的范围为0.01~0.03mm。
可选地,两个滑块40分别与两个偏心部11同心设置,滑块40绕曲轴10的轴心做圆周运动,通孔41的孔壁与偏心部11之间具有第一转动间隙,第一转动间隙的范围为0.005mm~0.05mm。
可选地,交叉槽结构30的外周面与缸套20的内壁面之间具有第二转动间隙,第二转动间隙的尺寸为0.005mm~0.1mm。
如图1至图6所示,曲轴10的轴体部分12一体成型,且轴体部分12仅具有一个轴心。这样,便于轴体部分12的一次成型,从而降低了轴体部分12的加工制造难度。
需要说明的是,在本申请一个未图示的实施例中,曲轴10的轴体部分12包括沿其轴向连接的第一段和第二段,第一段与第二段同轴设置,两个偏心部11分别设置在第一段和第二段上。
可选地,第一段与第二段可拆卸地连接。这样,确保曲轴10的装配和拆卸的便捷性。
如图1至图6所示,曲轴10的轴体部分12与偏心部11一体成型。这样,便于曲轴10的一次成型,从而降低了曲轴10的加工制造难度。
需要说明的是,在本申请一个未图示的实施例中,曲轴10的轴体部分12与偏心部11可拆卸地连接。这样,便于偏心部11的安装和拆卸。
如图2和图3所示,限位通道31的两端贯通至交叉槽结构30的外周面。这样,有利于降低交叉槽结构30的加工制造难度。
需要说明的是,在本申请中,第一夹角A为160度-200度;第二夹角B为80度-100度。这样,只要满足第一夹角A是第二夹角B的二倍的关系即可。
优选地,第一夹角A为160度,第二夹角B为80度。
优选地,第一夹角A为165度,第二夹角B为82.5度。
优选地,第一夹角A为170度,第二夹角B为85度。
优选地,第一夹角A为175度,第二夹角B为87.5度。
优选地,第一夹角A为180度,第二夹角B为90度。
优选地,第一夹角A为185度,第二夹角B为92.5度。
优选地,第一夹角A为190度,第二夹角B为95度。
优选地,第一夹角A为195度,第二夹角B为97.5度。
需要说明的是,在本申请中,偏心部11具有圆弧面,圆弧面的圆心角大于等于180度。这样,确保偏心部11的圆弧面能够对滑块40施加有效驱动力的作用,从而确保滑块40的运动可靠性。
如图1至图6所示,偏心部11为圆柱形。
可选地,偏心部11的近端与曲轴10的轴体部分12的外圆平齐。
可选地,偏心部11的近端突出于曲轴10的轴体部分12的外圆。
可选地,偏心部11的近端位于曲轴10的轴体部分12的外圆的内侧。
需要说明的是,在本申请一个未图示的实施例中,滑块40包括多个子结构,多个子结构拼接后围成通孔41。
如图1至图6所示,两个偏心部11在曲轴10的轴向上间隔设置。这样,在装配曲轴10、缸套20和两个滑块40的过程中,确保两个偏心部11之间的间隔距离能够为缸套20提供装配空间,以确保装配便捷性。
如图2所示,交叉槽结构30具有中心孔32,两个限位通道31通过中心孔32连通,中心孔32的孔径大于曲轴10的轴体部分12的直径。这样,确保曲轴10能够顺利地穿过中心孔32。
可选地,中心孔32的孔径大于偏心部11的直径。这样,确保曲轴10的偏心部11能够顺利地穿过中心孔32。
如图8所示,滑块40在通孔41的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段。限位通道31具有与滑块40滑动接触的一组相对设置的第一滑移面,滑块40具有与第一滑移面配合的第二滑移面,滑块40具有朝向限位通道31的端部的挤压面42,挤压面42作为滑块40的头部,两个第二滑移面通过挤压面42连接,挤压面42朝向变容积腔311。这样,滑块40的第二滑移面在其通孔41的轴向的投影为直线段,同时,滑块40的挤压面42在其通孔41的轴向的投影为弧线段。
具体地,挤压面42为弧面,弧面的弧心与通孔41的中心之间的距离等于偏心部11的偏心量。图8中,滑块40的通孔41中心为O滑块,两个弧面的弧心与通孔41的中心之间的距离均为e,即,偏心部11的偏心量,图8中的X虚线表示两个弧面的弧心所在的圆。
可选地,弧面的曲率半径与缸套20的内圆的半径相等。
可选地,弧面的曲率半径与缸套20的内圆的半径具有差值,差值的范围为-0.05mm~0.025mm。
优选地,差值的范围为-0.02~0.02mm。
需要说明的是,在本申请中,挤压面42在滑块40滑动方向上的投影面积S滑块与缸套20的压缩排气口22的面积S之间满足:S滑块/S的值为8~25。
优选地,S滑块/S的值为12~18。
需要说明的是,本实施例示出的流体机械为压缩机,如图1所示,压缩机包括分液器部件80、壳体组件81、电机组件82、泵体组件83、上盖组件84和下盖组件85,其中,分液器部件80设置在壳体组件81的外部,上盖组件84装配在壳体组件81的上端,下盖组件85装配在壳体组件81的下端,电机组件82和泵体组件83均位于壳体组件81的内部,其中,电机组件82位于泵体组件83的上方,或者,电机组件82位于泵体组件83的下方。压缩机的泵体组件83包括上述的曲轴10、缸套20、交叉槽结构30、滑块40、上法兰52和下法兰53。
可选地,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件83的装配过程如下:下法兰53固定在缸套20上,两个滑块40分别置于对应的两个限位通道31内,曲轴10的两个偏心部11分别伸入对应的两个滑块40的两个通孔41内,再将组装好的曲轴10、交叉槽结构30和两个滑块40置于缸套20内,曲轴10的一端安装在下法兰53上,曲轴10的另一端穿过上法兰52设置,具体可参见图2和图3。
需要说明的是,在本实施例中,滑块40、限位通道31、缸套20和上法兰52(或下法兰53)围成的封闭空间即为变容积腔311,泵体组件83共具有4个变容积腔311,在曲轴10转动的过程中,曲轴10转动2圈,单个变容积腔311完成1次吸排气过程,对压缩机而言,曲轴10转动2圈,共计完成4次吸排气过程。
进一步地,滑块40的头部的挤压面42、限位通道31的两个侧壁面和通道底面、缸套20的部分内壁面、上法兰52的朝向缸套20一侧的部分表面(或下法兰53朝向缸套20一侧的部分表面)围成的封闭空间即为变容积腔311。
下面对压缩机的运行进行具体介绍:
如图1所示,电机组件82带动曲轴10转动,曲轴10的两个偏心部11分别驱动对应的两个滑块40运动,滑块40绕曲轴10的轴心做公转的同时,滑块40相对于偏心部11自转,且滑块40沿限位通道31往复运动,并带动交叉槽结构30在缸套20内转动,滑块40公转的同时沿限位通道31进行往复运动而构成十字滑块机构运动方式。
针对如何解决压缩机吸气不足的问题,本发明在上述流体机械的基础上补充了以下内容,具体如下:
实施例一
如图9至图17、图44所示,流体机械还包括两个法兰50,两个法兰50分别设置在缸套20的轴向两端,两个法兰50中的至少一个具有进气通道54,进气通道54用于与变容积腔311连通,进气通道54包括顺次连通的径向吸气孔541和轴向吸气孔542,其中,径向吸气孔541的孔截面的截面积S与流体机械的排量V的比值S/V的范围为0.006~0.01。
通过将法兰50上的进气通道54设置成包括顺次连通的径向吸气孔541和轴向吸气孔542的结构形式,同时,合理优化径向吸气孔541的孔截面的截面积S与流体机械的排量V的比值S/V的范围在0.006~0.01内,这样,避免压缩机因吸气不足而导致吸气损失,从而确保压缩机的容积效率在此范围能够达到最优。
如图9至图17所示,缸套20的内壁面具有吸气腔23,进气通道54通过吸气腔23与变容积腔311连通。这样,确保吸气腔23能够蓄存有大量的气体,以使的变容积腔311能够饱满吸气,从而使得压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔311,以保证压缩机的压缩效率。
可选地,吸气腔23为在缸套20的内壁面沿径向挖空形成的腔体,吸气腔23可以是1个,也可以是上下2个。
具体而言,吸气腔23绕缸套20的内壁面的周向延伸第一预设距离,以构成弧形吸气腔23。这样,确保吸气腔23的容积足够大,以蓄存大量的气体。
如图9至图17所示,吸气腔23为两个,两个吸气腔23沿缸套20的轴向间隔设置,当两个法兰50中的一个具有进气通道54时,缸套20还具有吸气连通腔24,两个吸气腔23均与吸气连通腔24连通,进气通道54通过吸气连通腔24与吸气腔23连通。这样,有利于增大吸气腔23的容积,从而减小吸气压力脉动。
如图9至图17所示,吸气连通腔24沿缸套20的轴向延伸第二预设距离,吸气连通腔24朝向具有进气通道54的法兰50的一端贯通缸套20的轴向端面。这样,便于从缸套20的端面上开设吸气连通腔24,确保吸气连通腔24的加工便捷性。
需要说明的是,在本实施例中,两个法兰50中位于上方的上法兰52上具有进气通道54。
实施例二
需要说明的是,本实施例与实施例一的区别在于,如图18至图25所示,两个法兰50中位于下方的下法兰53上具有进气通道54。
实施例三
如图26至图31所示,吸气腔23为两个,两个吸气腔23沿缸套20的轴向间隔设置,当两个法兰50均具有进气通道54时,缸套20还具有两个吸气连通腔24,两个吸气腔23分别与两个吸气连通腔24连通,两个进气通道54分别通过对应侧的吸气连通腔24与对应侧的吸气腔23连通。这样,实现了上法兰52和下法兰53相互独立吸气的目的。
进一步地,吸气连通腔24沿缸套20的轴向延伸第三预设距离,吸气连通腔24朝向对应侧的法兰50的一端贯通缸套20的轴向端面。这样,便于从缸套20的端面上开设吸气连通腔24,确保吸气连通腔24的加工便捷性。
需要说明的是,在本申请的一个未图示的实施例中,吸气腔23为两个,两个吸气腔23沿缸套20的轴向间隔设置,当两个法兰50均具有进气通道54时,缸套20还具有吸气连通腔24,两个吸气腔23均与吸气连通腔24连通,进气通道54通过吸气连通腔24与吸气腔23连通。
进一步地,吸气连通腔24沿缸套20的轴向延伸第四预设距离,吸气连通腔24的两端分别贯通缸套20的两个轴向端面。这样,便于从缸套20的端面上开设吸气连通腔24,确保吸气连通腔24的加工便捷性。
排气实施例一,上法兰52和下法兰53分别进行排气,具体如下:
需要说明的是,在本申请的一个未图示的实施例中,两个法兰50的端面上均开设有排气通道51,两个排气通道51分别与对应侧的变容积腔311连通。这样,通过法兰50的上下排气代替了现有的缸套侧排气,由于缸套20的侧壁面为弧面,避免排气通道51开设在呈弧面的缸套20上,而使得两个排气通道51分别开设在上法兰52和下法兰53的平面上,降低了排气通道51的加工制造难度。
具体而言,进气通道54的末端为压缩进气口,排气通道51的初始端为压缩排气口,当任一滑块40处于进气位置时,压缩进气口与对应侧的变容积腔311导通;当任一滑块40处于排气位置时,对应侧的变容积腔311与压缩排气口导通。这样,当高压气体通过压缩进气口进入变容积腔311内后,高压气体推动交叉槽结构30旋转,交叉槽结构30旋转以带动滑块40旋转,并同时使滑块40相对于交叉槽结构30直线滑动,进而使得滑块40带动偏心部11旋转,即,带动曲轴10转动。通过将该曲轴10与其他耗功设备连接,可以使曲轴10输出做功。
其他使用场合:该压缩机将压缩进气口、压缩排气口交换位置,可以作为膨胀机使用。即,将压缩排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩进气口(膨胀机排气口)排出气体。
具体而言,进气通道54的末端为膨胀排气口,排气通道51的初始端为膨胀进气口,当任一滑块40处于进气位置时,膨胀排气口与对应侧的变容积腔311导通;当任一滑块40处于排气位置时,对应侧的变容积腔311与膨胀进气口导通。这样,当高压气体通过膨胀进气口进入变容积腔311内后,高压气体推动交叉槽结构30旋转,交叉槽结构30旋转以带动滑块40旋转,并同时使滑块40相对于交叉槽结构30直线滑动,进而使得滑块40带动偏心部11旋转,即,带动曲轴10转动。通过将该曲轴10与其他耗功设备连接,可以使曲轴10输出做功。
排气实施例二,缸套侧排气,具体如下:
如图32至图34所示,缸套20的外壁上开设有排气腔25,缸套20还具有排气口22,排气口22由缸套20的内壁连通至排气腔25处,流体机械还包括排气阀组件,排气阀组件设置在排气腔25内并对应排气口22设置。这样,排气腔25用于容纳排气阀组件,有效减少了排气阀组件的占用空间,使得部件合理布置,提高了缸套20的空间利用率。
如图32至图34所示,排气口22为两个,两个排气口22沿缸套20的轴向间隔设置,排气阀组件为两组,两组排气阀组件分别对应两个排气口22设置。这样,由于两个压缩排气口22分别设置有两组排气阀组件,有效避免变容积腔311内的气体大量泄漏,保证了变容积腔311的压缩效率。
进一步地,排气阀组件通过紧固件与缸套20连接,排气阀组件包括排气阀片和阀片挡板,排气阀片设置在排气腔25内并遮挡对应的压缩排气口22,阀片挡板重叠设置在排气阀片上。这样,阀片挡板的设置,有效避免了排气阀片过渡开启,从而保证了缸套20的排气性能。
可选地,紧固件为螺钉。
在本申请的一个未图示的实施例中,排气腔25为一个,缸套20的至少一个轴向端面上还设置有连通孔26,连通孔26与排气腔25连通,两个法兰50中与连通孔26相对的法兰50上开设有排气通道51,连通孔26与排气通道51连通。这样,确保缸套20的排气可靠性。
如图32至图34所示,排气口22为两个,两个排气口22沿缸套20的轴向间隔设置,排气腔25为两个,两个排气腔25与两个排气口22一一对应地设置,排气阀组件为两组,两组排气阀组件分别对应两个排气口22设置。
如图32至图34所示,两个排气腔25通过排气连通口28连通,缸套20的至少一个轴向端面上还设置有连通孔26,连通孔26与排气腔25连通,两个法兰50中与连通孔26相对的法兰50上开设有排气通道51,连通孔26与排气通道51连通。这样,缸套20侧排气后再转为上法兰52的排气通道51进行排气。
在本申请的另一个未图示的实施例中,两个排气腔25不连通,缸套20的两个轴向端面上均设置有连通孔26,两个连通孔26分别与两个排气腔25连通,两个法兰50与连通孔26相对的位置处均开设有排气通道51,连通孔26与排气通道51连通。这样,缸套20的上下部分分别进行侧排气,再分别转为上法兰52的上排气,以及转为下法兰53的下排气。
排气实施例三,缸套侧排气和法兰的端面排气,具体如下:
如图35至图37所示,排气口22为一个,且排气口22与对应侧的变容积腔311连通,缸套20的至少一个轴向端面上还设置有连通孔26,连通孔26与排气腔25连通,两个法兰50中与连通孔26相对的法兰50上开设有第一排气通道511,连通孔26与第一排气通道511连通;两个法兰50中远离排气口22一侧的法兰50具有第二排气通道512,第二排气通道512与对应侧的变容积腔311连通。这样,实现缸套20的侧排气并结合了法兰50的端部排气。
如图35至图37所示,排气腔25贯通至缸套20的外壁面,流体机械还包括排气盖板70,排气盖板70与缸套20连接并密封排气腔25。这样,排气盖板70起到将变容积腔311与泵体组件83的外部空间隔开的作用。
如图37所示,缸套20远离排气口22一侧的端部内圆处开设有斜切口27,且斜切口27与第二排气通道512连通。
具体而言,进气通道54的末端为压缩进气口,缸套20上的排气口22为压缩排气口,当任一滑块40处于进气位置时,压缩进气口与对应侧的变容积腔311导通;当任一滑块40处于排气位置时,对应侧的变容积腔311与压缩排气口导通。这样,当高压气体通过压缩进气口进入变容积腔311内后,高压气体推动交叉槽结构30旋转,交叉槽结构30旋转以带动滑块40旋转,并同时使滑块40相对于交叉槽结构30直线滑动,进而使得滑块40带动偏心部11旋转,即,带动曲轴10转动。通过将该曲轴10与其他耗功设备连接,可以使曲轴10输出做功。
其他使用场合:该压缩机将吸、排气口交换位置,可以作为膨胀机使用。即,将压缩机的压缩排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩进气口(膨胀机排气口)排出气体。
具体而言,进气通道54的末端为膨胀排气口22,缸套20上的排气口22为膨胀进气口,当任一滑块40处于进气位置时,膨胀排气口22与对应侧的变容积腔311导通;当任一滑块40处于排气位置时,对应侧的变容积腔311与膨胀进气口导通。这样,当高压气体通过膨胀进气口进入变容积腔311内后,高压气体推动交叉槽结构30旋转,交叉槽结构30旋转以带动滑块40旋转,并同时使滑块40相对于交叉槽结构30直线滑动,进而使得滑块40带动偏心部11旋转,即,带动曲轴10转动。通过将该曲轴10与其他耗功设备连接,可以使曲轴10输出做功。
可选地,缸套20的内壁面具有膨胀排气腔,膨胀排气腔与膨胀排气口连通。
进一步地,膨胀排气腔绕缸套20的内壁面的周向延伸第一预设距离,以构成弧形膨胀排气腔,且膨胀排气腔由膨胀排气口处向膨胀进气口所在一侧延伸,膨胀排气腔的延伸方向与交叉槽结构30的转动方向同向。
进一步地,膨胀排气腔为两个,两个膨胀排气腔沿缸套20的轴向间隔设置,缸套20还具有膨胀排气连通腔,两个膨胀排气腔均与膨胀排气连通腔连通,且膨胀排气口通过膨胀排气连通腔与膨胀排气腔连通。
进一步地,膨胀排气连通腔沿缸套20的轴向延伸第二预设距离,膨胀排气连通腔的至少一端贯通缸套20的轴向端面。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (28)

1.一种流体机械,其特征在于,包括:
曲轴(10),所述曲轴(10)沿其轴向设置有两个偏心部(11);
缸套(20),所述曲轴(10)与所述缸套(20)偏心设置且偏心距离固定;
交叉槽结构(30),所述交叉槽结构(30)可转动地设置在所述缸套(20)内,所述交叉槽结构(30)具有两个限位通道(31),两个所述限位通道(31)沿所述曲轴(10)的轴向顺次设置,所述限位通道(31)的延伸方向垂直于所述曲轴(10)的轴向;
滑块(40),所述滑块(40)具有通孔(41),所述滑块(40)为两个,两个所述偏心部(11)对应伸入两个所述滑块(40)的两个所述通孔(41)内,两个所述滑块(40)对应滑动设置在两个所述限位通道(31)内并形成变容积腔(311),所述变容积腔(311)位于滑块(40)的滑动方向上,所述曲轴(10)转动以带动所述滑块(40)在所述限位通道(31)内往复滑动的同时与所述交叉槽结构(30)相互作用,使得所述交叉槽结构(30)、所述滑块(40)在所述缸套(20)内转动;
两个法兰(50),两个所述法兰(50)分别设置在所述缸套(20)的轴向两端,两个所述法兰(50)中的至少一个具有进气通道(54),所述进气通道(54)用于与所述变容积腔(311)连通,所述进气通道(54)包括顺次连通的径向吸气孔(541)和轴向吸气孔(542),其中,所述径向吸气孔(541)的孔截面的截面积S与所述流体机械的排量V的比值S/V的范围为0.006~0.01。
2.根据权利要求1所述的流体机械,其特征在于,所述缸套(20)的内壁面具有吸气腔(23),所述进气通道(54)通过所述吸气腔(23)与所述变容积腔(311)连通。
3.根据权利要求2所述的流体机械,其特征在于,所述吸气腔(23)绕所述缸套(20)的内壁面的周向延伸第一预设距离,以构成弧形吸气腔(23)。
4.根据权利要求2所述的流体机械,其特征在于,所述吸气腔(23)为两个,两个所述吸气腔(23)沿所述缸套(20)的轴向间隔设置,当两个所述法兰(50)中的一个具有所述进气通道(54)时,所述缸套(20)还具有吸气连通腔(24),两个所述吸气腔(23)均与所述吸气连通腔(24)连通,所述进气通道(54)通过所述吸气连通腔(24)与所述吸气腔(23)连通。
5.根据权利要求4所述的流体机械,其特征在于,所述吸气连通腔(24)沿所述缸套(20)的轴向延伸第二预设距离,所述吸气连通腔(24)朝向具有所述进气通道(54)的所述法兰(50)的一端贯通所述缸套(20)的轴向端面。
6.根据权利要求2所述的流体机械,其特征在于,所述吸气腔(23)为两个,两个所述吸气腔(23)沿所述缸套(20)的轴向间隔设置,当两个所述法兰(50)均具有所述进气通道(54)时,所述缸套(20)还具有两个吸气连通腔(24),两个所述吸气腔(23)分别与两个所述吸气连通腔(24)连通,两个所述进气通道(54)分别通过对应侧的所述吸气连通腔(24)与对应侧的所述吸气腔(23)连通。
7.根据权利要求6所述的流体机械,其特征在于,所述吸气连通腔(24)沿所述缸套(20)的轴向延伸第三预设距离,所述吸气连通腔(24)朝向对应侧的所述法兰(50)的一端贯通所述缸套(20)的轴向端面。
8.根据权利要求2所述的流体机械,其特征在于,所述吸气腔(23)为两个,两个所述吸气腔(23)沿所述缸套(20)的轴向间隔设置,当两个所述法兰(50)均具有所述进气通道(54)时,所述缸套(20)还具有吸气连通腔(24),两个所述吸气腔(23)均与所述吸气连通腔(24)连通,所述进气通道(54)通过所述吸气连通腔(24)与所述吸气腔(23)连通。
9.根据权利要求8所述的流体机械,其特征在于,所述吸气连通腔(24)沿所述缸套(20)的轴向延伸第四预设距离,所述吸气连通腔(24)的两端分别贯通所述缸套(20)的两个轴向端面。
10.根据权利要求1所述的流体机械,其特征在于,两个所述法兰(50)的端面上均开设有排气通道(51),两个所述排气通道(51)分别与对应侧的所述变容积腔(311)连通。
11.根据权利要求10所述的流体机械,其特征在于,所述进气通道(54)的末端为压缩进气口,所述排气通道(51)的初始端为压缩排气口,
当任一所述滑块(40)处于进气位置时,所述压缩进气口与对应侧的所述变容积腔(311)导通;
当任一所述滑块(40)处于排气位置时,对应侧的所述变容积腔(311)与所述压缩排气口导通。
12.根据权利要求11所述的流体机械,其特征在于,所述流体机械为压缩机。
13.根据权利要求10所述的流体机械,其特征在于,所述进气通道(54)的末端为膨胀排气口,所述排气通道(51)的初始端为膨胀进气口,
当任一所述滑块(40)处于进气位置时,所述膨胀排气口与对应侧的所述变容积腔(311)导通;
当任一所述滑块(40)处于排气位置时,对应侧的所述变容积腔(311)与所述膨胀进气口导通。
14.根据权利要求13所述的流体机械,其特征在于,所述流体机械为膨胀机。
15.根据权利要求1所述的流体机械,其特征在于,所述缸套(20)的外壁上开设有排气腔(25),所述缸套(20)还具有排气口(22),所述排气口(22)由所述缸套(20)的内壁连通至所述排气腔(25)处,所述流体机械还包括排气阀组件,所述排气阀组件设置在所述排气腔(25)内并对应所述排气口(22)设置。
16.根据权利要求15所述的流体机械,其特征在于,所述排气口(22)为两个,两个所述排气口(22)沿所述缸套(20)的轴向间隔设置,所述排气阀组件为两组,两组所述排气阀组件分别对应两个所述排气口(22)设置。
17.根据权利要求16所述的流体机械,其特征在于,所述排气腔(25)为一个,所述缸套(20)的至少一个轴向端面上还设置有连通孔(26),所述连通孔(26)与所述排气腔(25)连通,两个所述法兰(50)中与所述连通孔(26)相对的所述法兰(50)上开设有排气通道(51),所述连通孔(26)与所述排气通道(51)连通。
18.根据权利要求15所述的流体机械,其特征在于,所述排气口(22)为两个,两个所述排气口(22)沿所述缸套(20)的轴向间隔设置,所述排气腔(25)为两个,两个所述排气腔(25)与两个所述排气口(22)一一对应地设置,所述排气阀组件为两组,两组所述排气阀组件分别对应两个所述排气口(22)设置。
19.根据权利要求18所述的流体机械,其特征在于,两个所述排气腔(25)通过排气连通口(28)连通,所述缸套(20)的至少一个轴向端面上还设置有连通孔(26),所述连通孔(26)与所述排气腔(25)连通,两个所述法兰(50)中与所述连通孔(26)相对的所述法兰(50)上开设有排气通道(51),所述连通孔(26)与所述排气通道(51)连通。
20.根据权利要求18所述的流体机械,其特征在于,两个所述排气腔(25)不连通,所述缸套(20)的两个轴向端面上均设置有连通孔(26),两个所述连通孔(26)分别与两个所述排气腔(25)连通,两个所述法兰(50)与所述连通孔(26)相对的位置处均开设有排气通道(51),所述连通孔(26)与所述排气通道(51)连通。
21.根据权利要求15所述的流体机械,其特征在于,所述排气口(22)为一个,且所述排气口(22)与对应侧的所述变容积腔(311)连通,所述缸套(20)的至少一个轴向端面上还设置有连通孔(26),所述连通孔(26)与所述排气腔(25)连通,两个所述法兰(50)中与所述连通孔(26)相对的所述法兰(50)上开设有第一排气通道(511),所述连通孔(26)与所述第一排气通道(511)连通;两个所述法兰(50)中远离所述排气口(22)一侧的所述法兰(50)具有第二排气通道(512),所述第二排气通道(512)与对应侧的所述变容积腔(311)连通。
22.根据权利要求15所述的流体机械,其特征在于,所述排气腔(25)贯通至所述缸套(20)的外壁面,所述流体机械还包括排气盖板(70),所述排气盖板(70)与所述缸套(20)连接并密封所述排气腔(25)。
23.根据权利要求15至22中任一项所述的流体机械,其特征在于,所述进气通道(54)的末端为压缩进气口,所述缸套(20)上的所述排气口(22)为压缩排气口,
当任一所述滑块(40)处于进气位置时,所述压缩进气口与对应侧的所述变容积腔(311)导通;
当任一所述滑块(40)处于排气位置时,对应侧的所述变容积腔(311)与所述压缩排气口导通。
24.根据权利要求23所述的流体机械,其特征在于,所述流体机械为压缩机。
25.根据权利要求15至22中任一项所述的流体机械,其特征在于,所述进气通道(54)的末端为膨胀排气口(22),所述缸套(20)上的排气口(22)为膨胀进气口,
当任一所述滑块(40)处于进气位置时,所述膨胀排气口(22)与对应侧的所述变容积腔(311)导通;
当任一所述滑块(40)处于排气位置时,对应侧的所述变容积腔(311)与所述膨胀进气口导通。
26.根据权利要求25所述的流体机械,其特征在于,所述流体机械为膨胀机。
27.根据权利要求1所述的流体机械,其特征在于,两个所述偏心部(11)之间具有第一夹角A的相位差,两个所述偏心部(11)的偏心量相等,且两个所述限位通道(31)的延伸方向之间具有第二夹角B的相位差,其中,所述第一夹角A为所述第二夹角B的二倍。
28.一种换热设备,包括流体机械,其特征在于,所述流体机械为权利要求1至27中任一项所述的流体机械。
CN202210565499.5A 2022-05-23 2022-05-23 流体机械和换热设备 Pending CN117145771A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210565499.5A CN117145771A (zh) 2022-05-23 2022-05-23 流体机械和换热设备
PCT/CN2022/140975 WO2023226411A1 (zh) 2022-05-23 2022-12-22 流体机械和换热设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210565499.5A CN117145771A (zh) 2022-05-23 2022-05-23 流体机械和换热设备

Publications (1)

Publication Number Publication Date
CN117145771A true CN117145771A (zh) 2023-12-01

Family

ID=88897364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210565499.5A Pending CN117145771A (zh) 2022-05-23 2022-05-23 流体机械和换热设备

Country Status (2)

Country Link
CN (1) CN117145771A (zh)
WO (1) WO2023226411A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155580A (ja) * 1983-02-25 1984-09-04 Hitachi Ltd 容量制御型圧縮機
CN103080548B (zh) * 2010-08-02 2014-07-02 日邦产业株式会社 流体旋转机械
JP2015010514A (ja) * 2013-06-27 2015-01-19 日邦産業株式会社 流体回転機
JP6338170B2 (ja) * 2013-10-29 2018-06-06 日邦産業株式会社 流体回転機
CN105275497B (zh) * 2014-07-07 2018-02-13 珠海格力节能环保制冷技术研究中心有限公司 膨胀机
CN106704181B (zh) * 2015-08-07 2018-12-07 珠海格力电器股份有限公司 流体机械、换热设备和流体机械的运行方法
CN111963435B (zh) * 2020-07-24 2022-08-05 珠海格力电器股份有限公司 一种压缩机和空调器

Also Published As

Publication number Publication date
WO2023226411A1 (zh) 2023-11-30

Similar Documents

Publication Publication Date Title
EP3333428B1 (en) Fluid machinery, heat exchange equipment, and operating method for fluid machinery
US6231319B1 (en) Hermetic compressor
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
JP6682616B2 (ja) 流体機械、熱交換装置及び流体機械の運転方法
CN110905809B (zh) 泵体组件、换热设备、流体机械及其运转方法
KR20000059857A (ko) 압축기 피스톤 가공방법
CN117145771A (zh) 流体机械和换热设备
CN117145767A (zh) 流体机械和换热设备
CN117145772A (zh) 流体机械和换热设备
CN117145765A (zh) 流体机械和换热设备
CN114320822A (zh) 一种回转活塞压缩机
CN116241465A (zh) 流体机械、换热设备和流体机械的运行方法
CN117145766A (zh) 流体机械和换热设备
CN116241466A (zh) 流体机械、换热设备、流体机械的运行方法
CN102392809A (zh) 基于马耳他十字机芯机构的容积式真空泵
CN117145769A (zh) 流体机械和换热设备
CN117145773A (zh) 流体机械和换热设备
CN117145768A (zh) 流体机械和换热设备
CN116241468A (zh) 具有轴承的流体机械和换热设备
CN116241467A (zh) 具有轴承的流体机械和换热设备
CN117145770A (zh) 流体机械和换热设备
CN116241472A (zh) 流体机械和换热设备
WO2023103876A1 (zh) 流体机械和换热设备
CN116241469A (zh) 具有轴承的流体机械和换热设备
CN116292303A (zh) 具有轴承的流体机械和换热设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication