WO2017024709A1 - 不可见激光器系统及其光路可视化方法 - Google Patents

不可见激光器系统及其光路可视化方法 Download PDF

Info

Publication number
WO2017024709A1
WO2017024709A1 PCT/CN2015/097233 CN2015097233W WO2017024709A1 WO 2017024709 A1 WO2017024709 A1 WO 2017024709A1 CN 2015097233 W CN2015097233 W CN 2015097233W WO 2017024709 A1 WO2017024709 A1 WO 2017024709A1
Authority
WO
WIPO (PCT)
Prior art keywords
invisible laser
optical path
visible light
visualization component
incident
Prior art date
Application number
PCT/CN2015/097233
Other languages
English (en)
French (fr)
Inventor
王海平
郭栋
钱红
闫旭
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/108,272 priority Critical patent/US10449630B2/en
Priority to EP15868681.6A priority patent/EP3335825A4/en
Publication of WO2017024709A1 publication Critical patent/WO2017024709A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • Embodiments of the present disclosure relate to the field of laser technology, and in particular, to an invisible laser system and an optical path visualization method thereof.
  • Invisible lasers are widely used in the field of device processing.
  • invisible lasers such as Nd:YAG lasers (wavelength 1.064 ⁇ m) and CO 2 lasers (wavelength 10.6 ⁇ m) are often used to cut glass substrates, repair display panels, cut lines, And making a polysilicon active layer.
  • Engineers are required to debug the laser during laser installation and when machining is poor.
  • the laser emitted by such a laser is invisible, this poses inconvenience and radiation risk to the engineer when debugging the laser.
  • FIG. 1 shows a schematic diagram of an invisible laser system 100.
  • the invisible laser light 111 emitted by the invisible laser generator 110 passes through the laser adjusting member 120 and then reaches the surface of the object to be processed 130.
  • the laser adjusting member 120 is used to adjust a traveling direction, a divergence angle, a beam spot shape, and the like of the laser light, and may include a deflection unit, a beam expanding telescope (BET), a condensing lens, and a beam spot shape control unit. , focusing lens, etc.
  • the invisible laser 111 is typically required to be perpendicular to the horizontal plane of each lens in its optical path.
  • IR-Viewer infrared observer
  • the present disclosure proposes an invisible laser system and its optical path visualization method to mitigate or solve one or more of the problems mentioned above.
  • the invisible laser system and its optical path visualization method according to the present disclosure can completely eliminate the radiation risk of the invisible laser during debugging.
  • the present disclosure provides an invisible laser system comprising: an invisible laser generator that produces an invisible laser; and a visible light generator that produces visible light.
  • the invisible laser system further includes: an optical path visualization component, wherein the optical path visualization component includes at least a first incident end, a second incident end, and a first exit end, wherein the invisible laser is incident at the first incident end
  • the visible light is incident at the second incident end, and all of the invisible laser light and at least a portion of the visible light are emitted in parallel with each other at the first exit end.
  • all invisible laser light is present only in a direction parallel to the optical path of visible light, while no invisible laser light is present in other directions, thereby completely eliminating the risk of radiation.
  • the optical path of the invisible laser is always visualized, so that the engineer can always easily and intuitively debug the optical path of the invisible laser, thereby avoiding the blindness of the invisible laser without reference object debugging during the debugging process. Increases the efficiency of invisible laser debugging.
  • the introduction of the optical path visualization component does not affect the intensity of the invisible laser, ie, the device processing performance of the invisible laser system is not subject to any negative influences.
  • frequency doubling crystals are used to introduce visible light into the invisible path of an invisible laser for marking the invisible light path.
  • the visible light source and the beam splitter are introduced into the invisible light path, and the visible light source visible light is reflected by the beam splitter into the invisible light path of the laser.
  • both methods have drawbacks.
  • the frequency doubling crystal is positioned in the invisible light path of the invisible laser only when the optical path is debugged. When the frequency doubling crystal is removed from the invisible light path, the optical path of the laser is still invisible, potentially causing a radiation hazard.
  • the beam splitter splits the invisible light path of the invisible laser into two, and visible light is only introduced into one of the two invisible light paths, while the other invisible light path will potentially Causes radiation risks. In other words, there are radiation risks in both cases.
  • the optical path visualization component may include a total reflection prism (TRP) having a first side surface, a second side surface perpendicular to the first side surface, and a sloped surface, and the first side surface forming portion The first incident end, the slope forms the second incident end, and the second side forms the first exit end.
  • TRP total reflection prism
  • a total reflection prism is used to implement the optical path visualization component.
  • the invisible laser is turned parallel to visible light by total internal reflection of light inside the total reflection prism, thereby achieving the object of the present disclosure.
  • the invisible laser light may be perpendicularly incident on the first side of the total reflection prism, totally reflected on the sloped surface, and vertically exited on the second side; and the The visible light may be incident on the slope of the total reflection prism and exit perpendicularly on the second side.
  • the invisible laser is incident perpendicularly on the first side of the total reflection prism, totally internally reflected on the slope, and exits perpendicularly on the second side such that all of the invisible laser light is directed to the surface of the object to be processed.
  • visible light is incident on the slope of the total reflection prism, and the incident angle is tuned such that the angle of refraction of the visible light on the slope is 45 degrees, thereby exiting perpendicularly on the second side.
  • all of the invisible laser light and at least part of the visible light are emitted perpendicularly on the second side, and are guided in parallel to the surface of the object to be processed, thereby achieving the object of the present disclosure.
  • the optical path visualization component may include a polarized beam splitter (PBS, also known as a polarization beam splitting prism).
  • the polarization beam splitter may be formed by laminating a first right angle prism and a second right angle prism.
  • the first right angle prism has a first side surface, a second side surface perpendicular to the first side surface, and a sloped surface.
  • the second right angle prism has a third side surface, a fourth side surface perpendicular to the third side surface, and a sloped surface.
  • the inclined surface of the first right-angle prism and the inclined surface of the second right-angle prism are in contact with each other, the first side is opposite to the third side, and the second side is opposite to the fourth side.
  • the first side forms the first incident end
  • the fourth side forms the second incident end
  • the second side forms the first exit end.
  • a polarization beam splitter is used to implement the optical path visualization component.
  • the polarization beam splitter splits the incident light into two polarized lights that are perpendicular to each other.
  • all of the incident laser light can be deflected parallel to the exiting visible light, thereby achieving the objectives of the present disclosure.
  • the invisible laser may be vertically incident on a first side of the first right-angle prism, totally reflected at an interface of a slope of the first right-angle prism and a slope of the second right-angle prism, and on the second side Vertically exiting; and the visible light may be incident perpendicularly on the fourth side and exit at least partially perpendicularly on the second side.
  • the entire angle is invisible by adjusting the angle between the polarization direction of the invisible laser light and the optical axis of the first right-angle prism.
  • the laser is totally reflected at the interface between the inclined surface of the first right-angle prism and the inclined surface of the second right-angle prism, and is vertically emitted in the form of S-polarized light on the second side of the first right-angle prism.
  • visible light is incident perpendicularly on the fourth side of the second right-angle prism, thereby exiting at least partially perpendicularly on the second side, thereby achieving the present disclosure the goal of.
  • the optical path visualization component can also include a phase retarder disposed upstream of the first incident end of the optical path visualization component.
  • the phase retarder when the invisible laser light is circularly polarized light or elliptically polarized light, the phase retarder may be disposed upstream of the first incident end of the optical path visualization component to introduce a phase difference between the two polarization components of the invisible laser light,
  • the invisible laser light is converted into linearly polarized light before it is incident on the first right-angle prism, so that all of the invisible laser light is reflected from the interface of the two inclined surfaces and exits through the second side of the first right-angle prism.
  • the expression "phase retarder disposed upstream of the first incident end of the optical path visualization component” herein means that the phase retarder is disposed upstream of the first incident end of the optical path visualization component in the optical path of the invisible laser.
  • the invisible laser light is incident on the optical path visualization component after passing through the phase retarder.
  • the phase retarder can be placed next to the optical path visualization component without other optical components being placed between them.
  • other optical components may also be present between the phase retarder and the optical path visualization component.
  • the phase retarder can be a quarter wave plate.
  • the phase retarder can be a quarter wave plate. After the circularly polarized light or the elliptically polarized light passes through the quarter-wave plate, an additional phase difference of ⁇ /2 is generated between the two polarization components, and the circularly polarized light or the elliptically polarized light is converted into linearly polarized light.
  • the optical path visualization component can also include a polarizer disposed upstream of the second incident end of the optical path visualization component.
  • a polarizer can be disposed upstream of the second incident end of the optical path visualization component to convert visible light into polarized light such that most or all of the visible light can exit through the second side of the first right angle prism.
  • the polarizer may be, for example, a polaroid, a Nicol prism.
  • All of the invisible laser light and at least a portion of the visible light may be coaxially exited at the first exit end of the optical path visualization component.
  • the optical path visualization component can also include a tunable slit disposed downstream of the first exit end of the optical path visualization component.
  • the tunable slit may be disposed downstream of the first exit end of the optical path visualization component.
  • the beam shape and size of the invisible laser light and visible light that are emitted can be adjusted as needed.
  • the beam size of visible light can be adjusted to be the same as the beam size of the invisible laser.
  • the expression "tunable slit disposed downstream of the first exit end of the optical path visualization component" herein means that the tunable slit is disposed downstream of the first exit end of the optical path visualization component in the optical path of the invisible laser. That is, the invisible laser and visible light pass through the tunable slit after exiting the optical path visualization component.
  • the tunable slits can be placed next to the optical path visualization component without other optical components being placed between them. Of course, other optical components may also be present between the optical path visualization component and the tunable slit.
  • One or both of the visible light generator and the optical path visualization component may be integrated in the invisible laser generator.
  • the visible light generator and/or the optical path visualization component can be integrated in an invisible laser generator. This facilitates a compact and miniaturized invisible laser system.
  • the invisible laser generator itself has the function of optical path visualization.
  • the visible light may be visible laser light or visible natural light.
  • the visible light generator generates visible light, which may be laser light or natural light, and the natural light may be a single wavelength, a discrete multiple wavelength, or a continuous wavelength.
  • the present disclosure provides an optical path visualization method for an invisible laser system.
  • the invisible laser system includes: an invisible laser generator that generates an invisible laser; a visible light generator that generates visible light; and an optical path visualization component, wherein the optical path visualization component is disposed at an optical path of the invisible laser and the visible light In the light path.
  • the method includes the steps of: adjusting the invisible laser generator, the visible light generator, and the optical path visualization component such that all of the invisible laser light and at least a portion of the visible light are directed to output beams that are parallel to each other .
  • the optical path visualization component can include a total reflection prism, and the steps can include:
  • the visible light is adjusted to be incident on a slope of the total reflection prism and to exit perpendicularly on the second side.
  • the optical path visualization component may include a first right angle prism and a second right angle prism Forming a polarization beam splitter, and the steps may include:
  • the visible light is adjusted to be incident perpendicularly on a side of the second right-angle prism opposite the second side of the first right-angle prism and at least partially perpendicularly on a second side of the first right-angle prism.
  • the steps may include adjusting the invisible laser generator, the visible light generator, and the optical path visualization component such that all of the invisible laser light and at least a portion of the visible light are directed to be coaxially exited.
  • optical path visualization method according to the present disclosure has the same or similar benefits as the invisible laser system described above, and will not be described again here.
  • the present disclosure introduces a visible light generator and an optical path visualization component in a known non-optical laser system in which all of the invisible laser light and at least a portion of the visible light exit parallel to each other at the first exit end of the optical path visualization component. Since all invisible lasers are only present in a direction parallel to the optical path of visible light, and there are no invisible lasers in other directions, the risk of radiation is completely eliminated.
  • the optical path of the invisible laser is always visualized, so that the engineer can always conveniently and intuitively debug the optical path of the invisible laser, thereby avoiding the blindness of the invisible laser without reference object debugging during the debugging process. Improved the efficiency of invisible laser debugging. Moreover, since all of the invisible laser light is directed to the surface of the object to be processed, the introduction of the optical path visualization component does not affect the intensity of the invisible laser, ie, the device processing performance of the invisible laser system is not subject to any negative influences.
  • FIG. 1 is a schematic illustration of a known invisible laser system
  • FIG. 2 is a schematic diagram of an invisible laser system in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an optical path visualization component in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical path visualization component in accordance with an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical path visualization component in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a flow chart of an optical path visualization method in accordance with an embodiment of the present disclosure.
  • the invisible laser light 211 emitted from the invisible laser generator 210 passes through the laser adjusting member 220 and then reaches the surface of the object to be processed 230.
  • the invisible laser system 200 also includes generating a visible light generator 240.
  • the visible light generator 240 produces visible light 241.
  • the visible light 241 may be a visible laser or a visible natural light.
  • the visible natural light can be a single wavelength, a discrete multiple wavelength, or a continuous wavelength.
  • the invisible laser system 200 also includes an optical path visualization component 250.
  • the optical path visualization component 250 is disposed in the optical path of the invisible laser 211 and the optical path of the visible light 241.
  • the optical path visualization component 250 includes at least a first incident end, a second incident end, and a first exit end.
  • the invisible laser light 211 is incident at the first incident end
  • the visible light 241 is incident at the second incident end
  • all of the invisible laser light 211 and at least a portion of the visible light 241 are emitted in parallel with each other at the first exit end.
  • the visible light 241 can be used as the reference guiding light so that the engineer can easily locate the optical path of the invisible laser 211, that is, the optical path of the invisible laser 211 is "visualized”. .
  • the optical path visualization component 250 is schematically illustrated as being disposed downstream of the laser conditioning component 220 in the optical path of the invisible laser 211.
  • the optical path visualization component 250 may also be disposed upstream of the laser adjustment component 220 in the optical path of the invisible laser 211 or between the respective optical components included in the laser adjustment component 220.
  • One or both of the visible light generator 240 and the optical path visualization component 250 can be disposed in the invisible laser generator 210. This facilitates the implementation of a compact and miniaturized invisible laser system 200.
  • optical path visualization component 250 An exemplary embodiment of the optical path visualization component 250 is described in detail below in conjunction with FIGS. 3, 4, and 5.
  • FIG. 3 schematically shows the optical path of the optical path visualization component 300.
  • the optical path visualization component 300 includes a total reflection prism 310.
  • the total reflection prism 310 has a first side surface, a second side surface that is perpendicular to the first side surface, and a sloped surface.
  • the first side forms a first incident end of the optical path visualization component 300
  • the beveled surface forms a second incident end
  • the second side forms a first exit end.
  • the invisible laser 211 is vertically incident on the first side of the total reflection prism 310, is totally reflected on the slope, and is vertically emitted on the second side.
  • the visible light 241 is incident on the slope of the total reflection prism.
  • the incident angle ⁇ 1 of the visible light 241 at the slope of the total reflection prism 310 is adjusted, thereby adjusting the refraction angle ⁇ 2 of the visible light 241 such that the visible light 241 is perpendicularly emitted on the second side.
  • the invisible laser light 212 and the visible light 242 emitted from the second side surface of the total reflection prism 310 are parallel to each other.
  • FIG. 4 schematically shows the optical path of the optical path visualization component 400.
  • the optical path visualization component 400 includes a total reflection prism 410.
  • the invisible laser 211 is vertically incident on the first side of the total reflection prism 410, is totally reflected on the slope, and is vertically emitted on the second side.
  • the visible light 241 is incident on the slope of the total reflection prism. Adjusting the incident angle ⁇ 1 of the visible light 241 at the slope of the total reflection prism 410, thereby adjusting the refraction angle ⁇ 2 of the visible light 241, making it visible Light 241 exits perpendicularly on the second side.
  • the difference from the embodiment of Fig. 3 is that in the embodiment shown in Fig. 4, all of the invisible laser light 211 and at least a portion of the visible light 241 are coaxially emitted at the first exit end of the optical path visualization component. Specifically, by adjusting the incident position of the invisible laser light 211 on the first side surface and the incident position of the visible light 241 on the inclined surface, the in-out position of the invisible laser light 211 and the visible light 241 on the second side surface can be overlapped. As shown in FIG. 4, the invisible laser light 212 and the visible light 242 emerging from the second side surface of the total reflection prism 410 coincide with each other.
  • the optical path of the invisible laser 212 and the visible light 242 emitted from the first exit end is coaxial, which provides a more direct and intuitive visualization effect for the engineer, which can further save the debugging time of the engineering personnel and further reduce the radiation risk.
  • the optical path visualization component 400 can also include a tunable slit 420.
  • the tunable slit 420 may be disposed downstream of the second side of the total reflection prism 410 in the optical path of the invisible laser 211.
  • the beam shape and size of the exiting invisible laser 212 and visible light 242 can be adjusted as needed.
  • the beam size of the visible light 242 can be adjusted to be the same as the beam size of the invisible laser 212.
  • FIG. 5 schematically shows the optical path of the optical path visualization component 500.
  • the optical path visualization component 500 includes a polarization beam splitter 510.
  • Fig. 5 shows the polarization beam splitter 510 in a sectional view.
  • the total reflection prism 510 is typically formed by a first right angle prism and a second right angle prism.
  • the first right angle prism has a first side, a second side perpendicular to the first side, and a slope.
  • the second right angle prism has a third side, a fourth side of the vertical third side, and a slope.
  • the inclined surface of the first right angle prism and the inclined surface of the second right angle prism are in contact with each other, the first side is opposite to the third side, and the second side is opposite to the fourth side.
  • the first side forms a first incident end
  • the fourth side forms a second incident end
  • the second side forms a first exit end.
  • the invisible laser 211 is vertically incident on the first side of the first right-angle prism, is totally reflected at the interface of the slope of the first right-angle prism and the slope of the second right-angle prism, and is on the second side Exit vertically.
  • the visible light 241 is incident perpendicularly on the fourth side and exits at least partially perpendicularly on the second side. As shown in FIG. 5, the invisible laser light 212 and the visible light 242 emitted from the second side surface of the polarization beam splitter 510 coincide with each other.
  • all of the invisible laser light 211 is at the slope of the first right-angle prism and the second right-angle prism.
  • the interface of the bevel is totally reflected, for example, in the form of S-polarized light, exiting perpendicularly on the second side of the first right-angle prism.
  • the visible light 241 is perpendicularly incident on the fourth side of the second right-angle prism, so that it is at least partially perpendicularly emitted on the second side, and is guided parallel or coaxially to the surface of the object to be processed, thereby completely eliminating the risk of radiation. .
  • the optical path visualization component 500 can also include a tunable slit 520.
  • the tunable slit 520 may be disposed downstream of the second side of the first right angle prism in the polarization beam splitter 510. With the tunable slit 520, the beam shape and size of the exiting invisible laser 212 and visible light 242 can be adjusted as needed, and the beam size of the visible light 242 can be adjusted to be the same as the beam size of the invisible laser 212.
  • the optical path visualization component 500 can also include a phase retarder 530.
  • the phase retarder 530 is disposed upstream of the first side of the first right-angle prism in the polarization beam splitter 510 in the optical path of the invisible laser 211.
  • the phase retarder 530 can introduce a phase difference between the two polarization components of the invisible laser light 211.
  • the invisible laser light 211 is converted into linearly polarized light before being incident on the polarization beam splitter 510, so that all of the invisible laser light 211 is reflected from the interface of the two inclined surfaces of the polarization beam splitter 510, and then exits through the second side surface of the first right angle prism.
  • the phase retarder 530 can be a quarter wave plate. After the circularly polarized light or the elliptically polarized light passes through the quarter-wave plate, an additional phase difference of ⁇ /2 is generated between the two polarization components, so that the circularly polarized light or the elliptically polarized light is converted into linearly polarized light.
  • the optical path visualization component can also include a polarizer 540.
  • the polarizer 540 is disposed upstream of the second incident end of the optical path visualization component 510 to convert the visible light 241 into polarized light such that most or all of the visible light can exit through the second side of the first right-angle prism in the polarization beam splitter 510.
  • the present disclosure also provides an optical path visualization method for an invisible laser system.
  • the invisible laser system includes: an invisible laser generator that generates an invisible laser; a visible light generator that generates visible light; and an optical path visualization component, wherein the optical path visualization component Arranged in the optical path of the invisible laser light and the optical path of the visible light.
  • the method includes the steps of: adjusting the invisible laser generator and the optical path visualization component such that all of the invisible laser light is directed to a surface of the object to be processed;
  • the visible light generator is such that at least a portion of the visible light is directed parallel to the invisible laser.
  • the steps of adjusting the invisible laser generator and the optical path visualization component and the steps of adjusting the visible light generator are not limited to those described above.
  • the visible light generator can be adjusted such that visible light is directed along a particular optical path to the surface of the object to be processed, and then the invisible laser generator and the optical path visualization component are adjusted such that all of the invisible laser is parallel to visible light. The direction is directed to the surface of the object to be processed.
  • adjusting the invisible laser generator and the optical path visualization component refer to adjusting the relative spatial orientation of the invisible laser generator and the optical path visualization component. That is, only one of the invisible laser generator and the optical path visualization component can be adjusted, or the invisible laser generator and the optical path visualization component can be adjusted as needed.
  • the optical path visualization component can include a total reflection prism, and the optical path visualization component includes a total reflection prism.
  • the step of adjusting the invisible laser generator and the optical path visualization component comprises: adjusting the invisible laser light to be normally incident on a first side of the total reflection prism, totally reflecting on a slope, and Exit vertically on the second side.
  • the step of adjusting the visible light generator includes adjusting the visible light to be incident on a slope of the total reflection prism and perpendicularly exiting on the second side.
  • the optical path visualization component includes a polarization beam splitter formed by a first right angle prism and a second right angle prism.
  • the step of adjusting the invisible laser generator and the optical path visualization component comprises: adjusting the invisible laser light to be vertically incident on a first side of the first right angle prism, at the first An interface of the slope of the right-angle prism and the slope of the second right-angle prism is totally reflected, and is perpendicularly emitted at a second side of the first right-angle prism.
  • the step of adjusting the visible light generator includes: adjusting the visible light to be perpendicularly incident on a side of the second right-angle prism opposite to a second side of the first right-angle prism, and at least partially at the first The second side of the right angle prism exits vertically.
  • the step of adjusting the visible light generator includes adjusting the visible light generator such that at least a portion of the visible light is directed to be coaxial with the invisible laser.
  • optical path visualization component Any optical element or combination of elements capable of directing all of the invisible laser light and at least a portion of the visible light into mutually parallel or coincident output beams can be used to implement the optical path visualization component in accordance with the present disclosure.
  • the optical path visualization component can also be implemented by other prism combinations. The scope of the disclosure is therefore intended to be defined by the appended claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种不可见激光器系统(200)及其光路可视化方法,属于激光技术领域。该不可见激光器系统(200)包括:产生不可见激光(211)的不可见激光发生器(210);产生可见光(241)的可见光发生器(240);以及光路可视化部件(250、300、400、500),其布置在不可见激光(211)和可见光(241)的光路中,至少包括第一入射端、第二入射端和第一出射端,不可见激光(211)在第一入射端入射,可见光(241)在第二入射端入射,并且全部的不可见激光(211)和至少部分的可见光(241)在第一出射端相互平行地出射。由此,所有不可见激光(211)只存在于与可见光(241)的光路平行的方向上,而其它方向上不存在不可见激光(211),消除了辐射风险。

Description

不可见激光器系统及其光路可视化方法 技术领域
本公开的实施例涉及激光技术领域,具体地涉及一种不可见激光器系统及其光路可视化方法。
背景技术
不可见激光器广泛应用于器件加工等领域。例如,在液晶显示器(LCD)制作工艺中,诸如Nd:YAG激光器(波长1.064μm)、CO2激光器(波长10.6μm)的不可见激光器经常被用于切割玻璃基板,修复显示面板,切断线路,以及制作多晶硅有源层。在激光器安装时以及出现加工不良时,需要工程人员调试激光器。然而,由于这种激光器发出的激光是不可见的,这给工程人员在调试激光器时带来不便和辐射风险。
图1示出一种不可见激光器系统100的示意图。不可见激光发生器110发出的不可见激光111经过激光调节部件120,然后到达待加工物件130的表面。激光调节部件120被用于调节激光的行进方向、发散角、束斑形状等,并且可以包括偏转单元、扩束望远镜(beam expanding telescope,BET)、会聚透镜(condensing lens)、束斑形状控制单元、聚焦透镜(focusing lens)等。通常要求不可见激光111垂直其光路中各透镜的水平面。为此,工程人员一般使用红外观测仪(IR-Viewer)观测和调试不可见激光111的光路。然而这种红外观测仪只能观测光路的某一个点而无法看见和调试整个光路,调试过程非常耗时,并且辐射危险性较大。
因此,本领域中存在对一种改进的不可见激光器系统的需求。
发明内容
本公开提出了一种不可见激光器系统及其光路可视化方法,从而减轻或解决前文所提到的问题的一个或多个。具体而言,根据本公开的不可见激光器系统及其光路可视化方法可以彻底消除不可见激光在调试过程中的辐射风险。
在第一方面,本公开提供了一种不可见激光器系统,包括:产生不可见激光的不可见激光发生器;以及产生可见光的可见光发生器。 所述不可见激光器系统还包括:光路可视化部件,其中所述光路可视化部件至少包括第一入射端、第二入射端和第一出射端,其中所述不可见激光在所述第一入射端入射,所述可见光在所述第二入射端入射,并且全部的所述不可见激光和至少部分的所述可见光在所述第一出射端相互平行地出射。
根据本公开,所有不可见激光只存在于与可见光的光路平行的方向上,而其它方向上不存在不可见激光,由此彻底消除了辐射风险。在所述不可见激光器系统中,不可见激光的光路始终被可视化,使得工程人员始终能够方便、直观地调试不可见激光的光路,避免了在调试过程中不可见激光无参照物调试的盲目性,提升了不可见激光调试的效率。再者,由于全部的不可见激光被引导至待加工物件的表面,使得该光路可视化部件的引入并不影响不可见激光的强度,即,所述不可见激光器系统的器件加工性能不受任何负面影响。
例如,倍频晶体被用于在不可见激光器的不可见光路中引入可见光,以用于标示不可见光路。又例如,可见光源和分光镜被引入不可见光路中,可见光源的可见光被分光镜反射到激光器的不可见光路中。然而这两种方法都存在缺陷。在采用倍频晶体的情况下,只有在光路调试时,倍频晶体才定位在不可见激光器的不可见光路中。当倍频晶体被移出不可见光路时,激光器的光路仍是不可见的,从而潜在地导致辐射危险。在采用可见光源和分光镜的情况下,分光镜将不可见激光器的不可见光路一分为二,可见光仅仅被引入到两个不可见光路的其中之一,而另一个不可见光路将潜在地导致辐射危险。也就是说,这两种情况都存在辐射危险。
所述光路可视化部件可以包括全反射棱镜(total reflection prism,TRP),所述全反射棱镜具有第一侧面、垂直所述第一侧面的第二侧面和斜面,以及,所述第一侧面形成所述第一入射端,所述斜面形成所述第二入射端,并且所述第二侧面形成所述第一出射端。
根据本公开,全反射棱镜被用于实施该光路可视化部件。利用光在全反射棱镜内部的全内反射,将不可见激光转向为平行于可见光,由此达成本公开的目的。
所述不可见激光可以在所述全反射棱镜的所述第一侧面垂直入射,在所述斜面全反射,并且在所述第二侧面垂直出射;以及所述可 见光可以在所述全反射棱镜的所述斜面入射并且在所述第二侧面垂直出射。
根据本公开,不可见激光在全反射棱镜的第一侧面垂直入射,在斜面全内反射,并且在第二侧面垂直出射,使得全部的不可见激光被引导至待加工物件的表面。同时,可见光在全反射棱镜的斜面入射,入射角被调谐为使得可见光在斜面的折射角为45度,从而在第二侧面垂直出射。藉此,全部的不可见激光和至少部分的可见光在第二侧面垂直出射,平行地被引导至待加工物件的表面,由此达成本公开的目的。
所述光路可视化部件可以包括偏振分光镜(polarized beam splitter,PBS,又称偏振分光棱镜)。所述偏振分光镜可以由第一直角棱镜和第二直角棱镜贴合形成。所述第一直角棱镜具有第一侧面、垂直所述第一侧面的第二侧面和斜面。所述第二直角棱镜具有第三侧面、垂直所述第三侧面的第四侧面和斜面。所述第一直角棱镜的斜面和第二直角棱镜的斜面相互贴合,所述第一侧面与所述第三侧面相对,以及所述第二侧面与所述第四侧面相对。所述第一侧面形成所述第一入射端,所述第四侧面形成所述第二入射端,以及所述第二侧面形成所述第一出射端。
根据本公开,偏振分光镜被用于实施该光路可视化部件。入射激光为偏振光时,偏振分光镜将入射光分成相互垂直的两束偏振光。通过适当调整入射光和偏振分光镜的相对取向,可以将全部的入射激光偏转以平行于出射可见光,由此达到本公开的目的。
所述不可见激光可以在所述第一直角棱镜的第一侧面垂直入射,在所述第一直角棱镜的斜面和所述第二直角棱镜的斜面的界面全反射,并且在所述第二侧面垂直出射;以及所述可见光可以在所述第四侧面垂直入射,并且至少部分在所述第二侧面垂直出射。
根据本公开,不可见激光为线偏振光并且在第一直角棱镜的第一侧面垂直入射时,通过调整不可见激光的偏振方向与第一直角棱镜的光轴之间的角度,全部的不可见激光在第一直角棱镜的斜面和第二直角棱镜的斜面的界面出被全反射,以S偏振光的形式在第一直角棱镜的第二侧面出垂直出射。同时,可见光在第二直角棱镜的第四侧面垂直入射,从而至少部分地在所述第二侧面垂直出射,由此达成本公开 的目的。
所述光路可视化部件还可以包括相位延迟器,所述相位延迟器布置在所述光路可视化部件的所述第一入射端的上游。
根据本公开,当不可见激光为圆偏振光或者椭圆偏振光时,相位延迟器可以布置在光路可视化部件的第一入射端的上游,在不可见激光的两个偏振分量之间引入相位差,在不可见激光入射第一直角棱镜之前将其转换为线偏振光,以便将全部的不可见激光从两个斜面的界面反射后,经由第一直角棱镜的第二侧面出射。应指出,此处的表述″相位延迟器布置在光路可视化部件的第一入射端的上游″是指相位延迟器在不可见激光的光路中布置在光路可视化部件的第一入射端的上游。即,不可见激光在经过相位延迟器之后入射到光路可视化部件。相位延迟器可以挨着光路可视化部件布置,二者之间不设置其它光学元件。当然,相位延迟器和光路可视化部件之间也可以存在其它光学元件。
所述相位延迟器可以为四分之一波片(quarter wave plate)。
根据本公开,该相位延迟器可以为四分之一波片。圆偏振光或椭圆偏振光通过四分之一波片后,两个偏振分量之间产生π/2的附加相位差,该圆偏振光或椭圆偏振光转变为线偏振光。
所述光路可视化部件还可以包括起偏器(polarizer),所述起偏器布置在所述光路可视化部件的所述第二入射端的上游。
根据本公开,起偏器可以布置在光路可视化部件的第二入射端的上游,将可见光转换为偏振光,使得大部分或者全部的可见光可以经由第一直角棱镜的第二侧面出射。所述起偏器可以为诸如偏振片(polaroid)、尼科尔棱镜(Nicol prism)。
全部的所述不可见激光和至少部分的所述可见光可以在所述光路可视化部件的所述第一出射端同轴出射。
根据本公开,通过调整不可见激光在第一入射端的入射位置以及可见光在第二入射端的入射位置,可以使不可见激光和可见光在第一出射端的出射位置重合。藉此,从第一出射端出射的不可见激光和可见光的光路同轴,为工程人员提供更直接和直观的可视化效果。
所述光路可视化部件还可以包括可调谐狭缝,所述可调谐狭缝布置在所述光路可视化部件的所述第一出射端的下游。
根据本公开,可调谐狭缝可以布置在光路可视化部件的第一出射端的下游。藉此,可以根据需要调整出射的不可见激光和可见光的光束形状和尺寸。此外,可以将可见光的光束尺寸调整为与不可见激光的光束尺寸相同。应指出,此处的表述″可调谐狭缝布置在光路可视化部件的第一出射端的下游″是指可调谐狭缝在不可见激光的光路中布置在光路可视化部件的第一出射端的下游。即,不可见激光和可见光在从光路可视化部件出射之后经过可调谐狭缝。可调谐狭缝可以挨着光路可视化部件布置,二者之间不设置其它光学元件。当然,光路可视化部件和可调谐狭缝之间也可以存在其它光学元件。
所述可见光发生器和所述光路可视化部件其中之一或二者可以集成在所述不可见激光发生器中。
根据本公开,可见光发生器和/或光路可视化部件可以集成在不可见激光发生器中。这有利于实现紧凑和微型化的不可见激光器系统。当可见光发生器和光路可视化部件均集成在不可见激光发生器中时,不可见激光发生器本身具有光路可视化的功能。
所述可见光可以为可见激光或者可见自然光。
根据本公开,可见光发生器产生可见光即可,该可见光可以是激光或者自然光,并且该自然光可以是单波长、离散多波长或连续波长。
在第二方面,本公开提供了一种不可见激光器系统的光路可视化方法。所述不可见激光器系统包括:产生不可见激光的不可见激光发生器;产生可见光的可见光发生器;以及光路可视化部件,其中所述光路可视化部件布置在所述不可见激光的光路和所述可见光的光路中。所述方法包括步骤:调整所述不可见激光发生器、所述可见光发生器和所述光路可视化部件,使得全部的所述不可见激光和至少部分的所述可见光被导向为相互平行的输出光束。
所述光路可视化部件可以包括全反射棱镜,并且所述步骤可以包括:
调整所述不可见激光以在所述全反射棱镜的第一侧面垂直入射,在斜面全反射,并且在第二侧面垂直出射;以及
调整所述可见光以在所述全反射棱镜的斜面入射并且在第二侧面垂直出射。
所述光路可视化部件可以包括由第一直角棱镜和第二直角棱镜贴 合形成的偏振分光镜,并且所述步骤可以包括:
调整所述不可见激光以在所述第一直角棱镜的第一侧面垂直入射,在所述第一直角棱镜的斜面和所述第二直角棱镜的斜面的界面全反射,并且在所述第一直角棱镜的第二侧面垂直出射;以及
调整所述可见光以在与所述第一直角棱镜的第二侧面相对的所述第二直角棱镜的侧面垂直入射,并且至少部分在所述第一直角棱镜的第二侧面垂直出射。
所述步骤可以包括:调整所述不可见激光发生器、所述可见光发生器和所述光路可视化部件,使得全部的所述不可见激光和至少部分的所述可见光被导向为同轴出射。
根据本公开的光路可视化方法具有与前文所述的不可见激光器系统相同或相似的益处,此处不再赘述。
本公开是在已知的不可光激光器系统中引入可见光发生器和光路可视化部件,全部的不可见激光和至少部分的可见光在光路可视化部件的第一出射端相互平行地出射。由于所有不可见激光只存在于与可见光的光路平行的方向上,而其它方向上不存在不可见激光,由此彻底消除了辐射风险。
在该不可见激光器系统中,不可见激光的光路始终被可视化,使得工程人员始终能够方便、直观地调试不可见激光的光路,避免了在调试过程中不可见激光无参照物调试的盲目性,提升了不可见激光调试的效率。再者,由于全部的不可见激光被引导至待加工物件的表面,使得该光路可视化部件的引入并不影响不可见激光的强度,即,所述不可见激光器系统的器件加工性能不受任何负面影响。
附图说明
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对各实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。图1为已知的不可见激光器系统的示意图;
图2为根据本公开一实施例的不可见激光器系统的示意图;
图3为根据本公开一实施例的光路可视化部件的示意图;
图4为根据本公开一实施例的光路可视化部件的示意图;
图5为根据本公开一实施例的光路可视化部件的示意图;以及
图6为根据本公开一实施例的光路可视化方法的流程图。
附图标记:
100、200 不可见激光器系统;
110、210 不可见激光发生器;
111、211、212 不可见激光;
120、220 激光调节部件;
130、230 待加工物件;
240 可见光发生器;
241、242 可见光;
250、300、400、500 光路可视化部件;
310、410 全反射棱镜;
420、520 可调谐狭缝;
510 偏振分光镜;
530 相位延迟器;
540 起偏器;
θ1 可见光的入射角;
θ2 可见光的折射角。
具体实施方式
下面结合附图,对本公开的不可见激光器系统及其光路可视化方法的具体实施方式进行详细地说明。本公开的各附图示意性地绘示出与发明点有关的结构、部分和/或步骤,而没有绘示或者仅仅部分地绘示与发明点无关的结构、部分和/或步骤。
图2示出本公开一实施例的不可见激光器系统200的示意图。不可见激光发生器210发出的不可见激光211经过激光调节部件220,然后到达待加工物件230的表面。
不可见激光器系统200还包括产生可见光发生器240。可见光发生器240产生可见光241。可见光241可以为可见激光,也可以是可见自然光。该可见自然光可以为单波长、离散多波长或者连续波长。
不可见激光器系统200还包括光路可视化部件250。光路可视化部件250布置在不可见激光211的光路和可见光241的光路中。光路可视化部件250至少包括第一入射端、第二入射端和第一出射端。不可见激光211在第一入射端入射,可见光241在第二入射端入射,并且全部的不可见激光211和至少部分的可见光241在第一出射端相互平行地出射。由于不可见激光211的光路平行于可见光241的光路,可见光241可以被用作参照引导光,使得工程人员可以容易地定位不可见激光211的光路,即,不可见激光211的光路被″可视化″。
在图2中,光路可视化部件250被示意性示为在不可见激光211的光路中布置在激光调节部件220的下游。当然,光路可视化部件250还可以在不可见激光211的光路中布置在激光调节部件220的上游,或者布置在激光调节部件220所包含的各个光学元件之间。
可见光发生器240和光路可视化部件250其中之一或二者可以设置不可见激光发生器210中。这有利于实现紧凑和微型化的不可见激光器系统200。
以下结合图3、图4、图5详细描述光路可视化部件250的示例性实施例。
图3示意性示出光路可视化部件300的光路。在本实施例中,光路可视化部件300包括全反射棱镜310。全反射棱镜310具有第一侧面、垂直第一侧面的第二侧面和斜面。第一侧面形成光路可视化部件300的第一入射端,斜面形成第二入射端,并且第二侧面形成第一出射端。
不可见激光211在全反射棱镜310的第一侧面垂直入射,在斜面全反射,并且在第二侧面垂直出射。可见光241在全反射棱镜的斜面入射。调整可见光241在全反射棱镜310的斜面的入射角θ1,从而调整可见光241的折射角θ2,使得可见光241在第二侧面垂直出射。如图3所示,从全反射棱镜310的第二侧面出射的不可见激光212和可见光242相互平行。
图4示意性示出光路可视化部件400的光路。在本实施例中,光路可视化部件400包括全反射棱镜410。不可见激光211在全反射棱镜410的第一侧面垂直入射,在斜面全反射,并且在第二侧面垂直出射。可见光241在全反射棱镜的斜面入射。调整可见光241在全反射棱镜410的斜面的入射角θ1,从而调整可见光241的折射角θ2,使得可见 光241在第二侧面垂直出射。
与图3的实施例不同在于,在图4所示实施例中,全部的不可见激光211和至少部分的可见光241在所述光路可视化部件的所述第一出射端同轴出射。具体而言,通过调整不可见激光211在第一侧面的入射位置以及可见光241在斜面的入射位置,可以使不可见激光211和可见光241在第二侧面的出射位置重合。如图4所示,从全反射棱镜410的第二侧面出射的不可见激光212和可见光242相互重合。藉此,从第一出射端出射的不可见激光212和可见光242的光路同轴,为工程人员提供更直接和直观的可视化效果,可以进一步节约工程人员的调试时间并且进一步降低辐射风险。
如图4所示,光路可视化部件400还可以包括可调谐狭缝420。可调谐狭缝420可以在不可见激光211的光路中布置在全反射棱镜410的第二侧面的下游。利用该可调谐狭缝420,可以根据需要调整出射的不可见激光212和可见光242的光束形状和尺寸。此外,可以将可见光242的光束尺寸调整为与不可见激光212的光束尺寸相同。
在图3、4所示的实施例中,全部的不可见激光211在全反射棱镜310、410的斜面全内反射并且在第二侧面垂直出射,使得全部的不可见激光211被引导至待加工物件230的表面。同时,可见光241在全反射棱镜310、410的第二侧面垂直出射。藉此,全部的不可见激光211和至少部分的可见光241在第二侧面垂直出射,平行地被引导至待加工物件的表面,由此消除了辐射风险。
图5示意性示出光路可视化部件500的光路。在本实施例中,光路可视化部件500包括偏振分光镜510。图5以剖面图表示偏振分光镜510。如本领域所知晓,全反射棱镜510通常由第一直角棱镜和第二直角棱镜贴合形成。第一直角棱镜具有第一侧面、垂直第一侧面的第二侧面和斜面。第二直角棱镜具有第三侧面、垂直第三侧面的第四侧面和斜面。第一直角棱镜的斜面和第二直角棱镜的斜面相互贴合,第一侧面与第三侧面相对,以及第二侧面与第四侧面相对。第一侧面形成第一入射端,第四侧面形成第二入射端,以及第二侧面形成第一出射端。
不可见激光211在第一直角棱镜的第一侧面垂直入射,在第一直角棱镜的斜面和第二直角棱镜的斜面的界面全反射,并且在第二侧面 垂直出射。可见光241在第四侧面垂直入射,并且至少部分在第二侧面垂直出射。如图5所示,从偏振分光镜510的第二侧面出射的不可见激光212和可见光242相互重合。
在图5所示的实施例中,通过调整不可见激光211的偏振方向与第一直角棱镜的光轴之间的角度,全部的不可见激光211在第一直角棱镜的斜面和第二直角棱镜的斜面的界面出被全反射,以例如S偏振光的形式在第一直角棱镜的第二侧面出垂直出射。同时,可见光241在第二直角棱镜的第四侧面垂直入射,从而至少部分地在所述第二侧面垂直出射,平行或同轴地被引导至待加工物件的表面,由此彻底消除了辐射风险。
与图4所示实施例相似,光路可视化部件500还可以包括可调谐狭缝520。可调谐狭缝520可以布置在偏振分光镜510中第一直角棱镜的第二侧面的下游。利用该可调谐狭缝520,可以根据需要调整出射的不可见激光212和可见光242的光束形状和尺寸,并且可以将可见光242的光束尺寸调整为与不可见激光212的光束尺寸相同。
如图5所示,光路可视化部件500还可以包括相位延迟器530。相位延迟器530在不可见激光211的光路中布置在偏振分光镜510中第一直角棱镜的第一侧面的上游。当不可见激光211为圆偏振光或者椭圆偏振光时,相位延迟器530可以在不可见激光211的两个偏振分量之间引入相位差。不可见激光211入射到偏振分光镜510之前被转换为线偏振光,使得全部的不可见激光211从偏振分光镜510的两个斜面的界面反射后,经由第一直角棱镜的第二侧面出射。
在示例性实施例中,该相位延迟器530可以为四分之一波片。圆偏振光或椭圆偏振光通过四分之一波片后,两个偏振分量之间产生π/2的附加相位差,使得圆偏振光或椭圆偏振光被转变为线偏振光。
如图5所示,光路可视化部件还可以包括起偏器540。起偏器540布置在光路可视化部件510的第二入射端的上游,将可见光241转换为偏振光,使得大部分或者全部的可见光可以经由偏振分光镜510中第一直角棱镜的第二侧面出射。
本公开还提供一种不可见激光器系统的光路可视化方法。该不可见激光器系统包括:产生不可见激光的不可见激光发生器;产生可见光的可见光发生器;以及光路可视化部件,其中所述光路可视化部件 布置在所述不可见激光的光路和所述可见光的光路中。如图6的流程图所示,所述方法包括步骤:调整所述不可见激光发生器和所述光路可视化部件,使得全部的所述不可见激光被导向到待加工物件的表面;以及调整所述可见光发生器,使得至少部分的所述可见光被导向为平行于所述不可见激光。
应指出,调整所述不可见激光发生器和所述光路可视化部件的步骤和调整所述可见光发生器的步骤的顺序不限于上文所述。例如,可以调整所述可见光发生器使得可见光沿特定光路被导向到待加工物件的表面,然后调整所述不可见激光发生器和所述光路可视化部件,使得全部的不可见激光沿着平行于可见光的方向被导向到待加工物件的表面。
还应指出,诸如″调整所述不可见激光发生器和所述光路可视化部件″的描述是指调整所述不可见激光发生器和所述光路可视化部件的相对空间取向。也就是说,可以仅调整所述不可见激光发生器和所述光路可视化部件的其中之一,或者在需要时调整所述不可见激光发生器和所述光路可视化部件。
在示例性实施例中中,所述光路可视化部件可以包括全反射棱镜,所述光路可视化部件包括全反射棱镜。在此实施例中,调整所述不可见激光发生器和所述光路可视化部件的步骤包括:调整所述不可见激光以在所述全反射棱镜的第一侧面垂直入射,在斜面全反射,并且在第二侧面垂直出射。同时,调整所述可见光发生器的步骤包括:调整所述可见光以在所述全反射棱镜的斜面入射并且在第二侧面垂直出射。
在示例性实施例中,所述光路可视化部件包括由第一直角棱镜和第二直角棱镜贴合形成的偏振分光镜。在此实施例中,调整所述不可见激光发生器和所述光路可视化部件的步骤包括:调整所述不可见激光以在所述第一直角棱镜的第一侧面垂直入射,在所述第一直角棱镜的斜面和所述第二直角棱镜的斜面的界面全反射,并且在所述第一直角棱镜的第二侧面垂直出射。同时,调整所述可见光发生器的步骤包括:调整所述可见光以在与所述第一直角棱镜的第二侧面相对的所述第二直角棱镜的侧面垂直入射,并且至少部分在所述第一直角棱镜的第二侧面垂直出射。
在示例性实施例中,调整所述可见光发生器的步骤包括:调整所述可见光发生器,使得至少部分的所述可见光被导向为与所述不可见激光同轴。
仅仅是出于图示和说明的目的而给出对本公开实施例的前述描述。它们不是旨在穷举或者限制本公开内容。因此,本领域技术人员将容易想到许多调整和变型。例如,在上文描述中,以全反射棱镜和偏振分光镜作为光路可视化部件的例子,详细描述了本公开的不可见激光器系统及其光路可视化方法。然而,本领域技术人员应理解,本公开的光路可视化部件并不限于上述全反射棱镜和偏振分光镜。任何能够将全部的不可见激光和至少部分的可见光导向为相互平行或重合的输出光束的光学元件或者元件组合都可以被用于实施根据本公开的光路可视化部件。例如,该光路可视化部件也可以由其它棱镜组合来实现。因此本公开的范围将由所附权利要求定义。

Claims (16)

  1. 一种不可见激光器系统,包括:产生不可见激光的不可见激光发生器;以及产生可见光的可见光发生器,并且所述不可见激光器系统还包括:
    光路可视化部件,其中所述光路可视化部件至少包括第一入射端、第二入射端和第一出射端,其中所述不可见激光在所述第一入射端入射,所述可见光在所述第二入射端入射,并且全部的所述不可见激光和至少部分的所述可见光在所述第一出射端相互平行地出射。
  2. 如权利要求1所述的不可见激光器系统,其中,
    所述光路可视化部件包括全反射棱镜,
    所述全反射棱镜具有第一侧面、垂直所述第一侧面的第二侧面和斜面,以及,
    所述第一侧面形成所述第一入射端,所述斜面形成所述第二入射端,并且所述第二侧面形成所述第一出射端。
  3. 如权利要求2所述的不可见激光器系统,其中,
    所述不可见激光在所述全反射棱镜的所述第一侧面垂直入射,在所述斜面全反射,并且在所述第二侧面垂直出射;以及
    所述可见光在所述全反射棱镜的所述斜面入射并且在所述第二侧面垂直出射。
  4. 如权利要求1所述的不可见激光器系统,其中,
    所述光路可视化部件包括偏振分光镜,
    所述偏振分光镜由第一直角棱镜和第二直角棱镜贴合形成,
    所述第一直角棱镜具有第一侧面、垂直所述第一侧面的第二侧面和斜面,
    所述第二直角棱镜具有第三侧面、垂直所述第三侧面的第四侧面和斜面,
    所述第一直角棱镜的斜面和第二直角棱镜的斜面相互贴合,所述第一侧面与所述第三侧面相对,以及所述第二侧面与所述第四侧面相对,以及
    所述第一侧面形成所述第一入射端,所述第四侧面形成所述第二入射端,以及所述第二侧面形成所述第一出射端。
  5. 如权利要求4所述的不可见激光器系统,其中,
    所述不可见激光在所述第一直角棱镜的第一侧面垂直入射,在所述第一直角棱镜的斜面和所述第二直角棱镜的斜面的界面全反射,并且在所述第二侧面垂直出射;以及
    所述可见光在所述第四侧面垂直入射,并且至少部分在所述第二侧面垂直出射。
  6. 如权利要求4所述的不可见激光器系统,其中,
    所述光路可视化部件还包括相位延迟器,所述相位延迟器在所述不可见激光的光路中布置在所述光路可视化部件的所述第一入射端的上游。
  7. 如权利要求6所述的不可见激光器系统,其中,
    所述相位延迟器为四分之一波片。
  8. 如权利要求4所述的不可见激光器系统,其中,
    所述光路可视化部件还包括起偏器,所述起偏器在所述可见光的光路中布置在所述光路可视化部件的所述第二入射端的上游。
  9. 如权利要求1所述的不可见激光器系统,其中,
    全部的所述不可见激光和至少部分的所述可见光在所述光路可视化部件的所述第一出射端同轴出射。
  10. 如权利要求9所述的不可见激光器系统,其中,
    所述光路可视化部件还包括可调谐狭缝,所述可调谐狭缝在所述不可见激光的光路中布置在所述光路可视化部件的所述第一出射端的下游。
  11. 如权利要求1所述的不可见激光器系统,其中,
    所述可见光发生器和所述光路可视化部件其中之一或二者集成在所述不可见激光发生器中。
  12. 如权利要求1所述的不可见激光器系统,其中,
    所述可见光为可见激光或者可见自然光。
  13. 一种不可见激光器系统的光路可视化方法,所述不可见激光器系统包括:产生不可见激光的不可见激光发生器;产生可见光的可见光发生器;以及光路可视化部件,其中所述光路可视化部件布置在所述不可见激光的光路和所述可见光的光路中,其中所述方法包括步骤:
    调整所述不可见激光发生器和所述光路可视化部件,使得全部的 所述不可见激光被导向到待加工物件的表面;以及
    调整所述可见光发生器,使得至少部分的所述可见光被导向为平行于所述不可见激光。
  14. 如权利要求13所述的方法,其中,
    所述光路可视化部件包括全反射棱镜;
    调整所述不可见激光发生器和所述光路可视化部件的步骤包括:调整所述不可见激光以在所述全反射棱镜的第一侧面垂直入射,在斜面全反射,并且在第二侧面垂直出射;以及
    调整所述可见光发生器的步骤包括:调整所述可见光以在所述全反射棱镜的斜面入射并且在第二侧面垂直出射。
  15. 如权利要求13所述的方法,其中,
    所述光路可视化部件包括由第一直角棱镜和第二直角棱镜贴合形成的偏振分光镜;
    调整所述不可见激光发生器和所述光路可视化部件的步骤包括:调整所述不可见激光以在所述第一直角棱镜的第一侧面垂直入射,在所述第一直角棱镜的斜面和所述第二直角棱镜的斜面的界面全反射,并且在所述第一直角棱镜的第二侧面垂直出射;以及
    调整所述可见光发生器的步骤包括:调整所述可见光以在与所述第一直角棱镜的第二侧面相对的所述第二直角棱镜的侧面垂直入射,并且至少部分在所述第一直角棱镜的第二侧面垂直出射。
  16. 如权利要求13所述的方法,其中,
    调整所述可见光发生器的步骤包括:调整所述可见光发生器,使得至少部分的所述可见光被导向为与所述不可见激光同轴。
PCT/CN2015/097233 2015-08-11 2015-12-14 不可见激光器系统及其光路可视化方法 WO2017024709A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/108,272 US10449630B2 (en) 2015-08-11 2015-12-14 Invisible laser system and optical path visualization method thereof
EP15868681.6A EP3335825A4 (en) 2015-08-11 2015-12-14 INVISIBLE LASER SYSTEM AND LIGHT PATH VISIBLE PROCESS FOR THIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510488336.1A CN104993357B (zh) 2015-08-11 2015-08-11 不可见激光器系统及其光路可视化方法
CN201510488336.1 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017024709A1 true WO2017024709A1 (zh) 2017-02-16

Family

ID=54305132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097233 WO2017024709A1 (zh) 2015-08-11 2015-12-14 不可见激光器系统及其光路可视化方法

Country Status (4)

Country Link
US (1) US10449630B2 (zh)
EP (1) EP3335825A4 (zh)
CN (1) CN104993357B (zh)
WO (1) WO2017024709A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993357B (zh) * 2015-08-11 2018-09-18 京东方科技集团股份有限公司 不可见激光器系统及其光路可视化方法
CN109061896B (zh) * 2018-08-23 2020-11-10 武汉高科恒大光电有限公司 激光发生器光路调节装置
CN112260043A (zh) * 2020-10-16 2021-01-22 北京卓镭激光技术有限公司 一种激光光路调试装置和激光光路调试方法
CN113414501B (zh) * 2021-07-27 2023-08-08 长沙中拓创新科技有限公司 一种基于光纤激光器的激光雕刻设备及雕刻方法
CN116879240B (zh) * 2023-09-07 2023-12-05 深圳市启扬光学科技有限公司 一种光学晶体的检测系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391519A (en) * 1979-09-12 1983-07-05 Hitachi, Ltd. Axis-monitoring apparatus for a laser beam
EP0131768A2 (en) * 1983-06-17 1985-01-23 Coherent, Inc. A method and an apparatus for focusing an invisible beam of electromagnetic radiation
EP0624422A2 (en) * 1993-05-13 1994-11-17 Plc Medical Systems, Inc. Status indicator system for a laser beam
CN101004483A (zh) * 2006-01-18 2007-07-25 台达电子工业股份有限公司 用于光学设备的光线耦合装置
CN201131794Y (zh) * 2007-11-28 2008-10-15 北京光电技术研究所 激光双色指示光装置
CN202554108U (zh) * 2012-05-02 2012-11-28 上海瑞柯恩激光技术有限公司 激光器指示光耦合装置
CN103682952A (zh) * 2012-09-13 2014-03-26 福州高意通讯有限公司 具有输出光路标示的不可见光激光器及其标示方法
CN103792673A (zh) * 2014-01-16 2014-05-14 中国科学院合肥物质科学研究院 一种多波长激光束偏振合束装置
US20140187879A1 (en) * 2012-12-05 2014-07-03 Fred Wood System and Method for Laser Imaging and Ablation of Cancer Cells Using Fluorescence
CN204165890U (zh) * 2014-07-28 2015-02-18 北京航星网讯技术股份有限公司 一种激光检测光束标志装置
CN104993357A (zh) * 2015-08-11 2015-10-21 京东方科技集团股份有限公司 不可见激光器系统及其光路可视化方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222812B1 (en) * 1996-08-29 2001-04-24 Samsung Electronics Co., Ltd. Optical pickup using an optical phase plate
JPH10173258A (ja) * 1996-12-06 1998-06-26 Isao Nishi レーザー光線同軸器
US6550917B1 (en) * 2000-02-11 2003-04-22 Wavefront Sciences, Inc. Dynamic range extension techniques for a wavefront sensor including use in ophthalmic measurement
US6392801B1 (en) * 2000-09-27 2002-05-21 Rockwell Technologies, Llc Wide-angle rugate polarizing beamsplitter
US6867753B2 (en) * 2002-10-28 2005-03-15 University Of Washington Virtual image registration in augmented display field
US20090041062A1 (en) * 2007-04-11 2009-02-12 Jian Liu Fiber-based tunable laser
JP5390371B2 (ja) * 2009-12-25 2014-01-15 株式会社トプコン 光画像計測装置及び光アッテネータ
CN102353465B (zh) * 2011-09-30 2012-12-19 湖南大学 超短脉冲不同空间位置的时间脉宽测量系统及其测量方法
CN103713797B (zh) * 2012-09-29 2018-11-02 腾讯科技(深圳)有限公司 激光发射装置及人机交互系统
CN103323957A (zh) * 2013-06-07 2013-09-25 中国科学院半导体研究所 偏振耦合装置
CN203275699U (zh) * 2013-06-08 2013-11-06 北京品傲光电科技有限公司 一种带宽可控的光纤光栅刻写装置
US10684477B2 (en) * 2014-09-30 2020-06-16 Omnivision Technologies, Inc. Near-eye display device and methods with coaxial eye imaging

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391519A (en) * 1979-09-12 1983-07-05 Hitachi, Ltd. Axis-monitoring apparatus for a laser beam
EP0131768A2 (en) * 1983-06-17 1985-01-23 Coherent, Inc. A method and an apparatus for focusing an invisible beam of electromagnetic radiation
EP0624422A2 (en) * 1993-05-13 1994-11-17 Plc Medical Systems, Inc. Status indicator system for a laser beam
CN101004483A (zh) * 2006-01-18 2007-07-25 台达电子工业股份有限公司 用于光学设备的光线耦合装置
CN201131794Y (zh) * 2007-11-28 2008-10-15 北京光电技术研究所 激光双色指示光装置
CN202554108U (zh) * 2012-05-02 2012-11-28 上海瑞柯恩激光技术有限公司 激光器指示光耦合装置
CN103682952A (zh) * 2012-09-13 2014-03-26 福州高意通讯有限公司 具有输出光路标示的不可见光激光器及其标示方法
US20140187879A1 (en) * 2012-12-05 2014-07-03 Fred Wood System and Method for Laser Imaging and Ablation of Cancer Cells Using Fluorescence
CN103792673A (zh) * 2014-01-16 2014-05-14 中国科学院合肥物质科学研究院 一种多波长激光束偏振合束装置
CN204165890U (zh) * 2014-07-28 2015-02-18 北京航星网讯技术股份有限公司 一种激光检测光束标志装置
CN104993357A (zh) * 2015-08-11 2015-10-21 京东方科技集团股份有限公司 不可见激光器系统及其光路可视化方法

Also Published As

Publication number Publication date
EP3335825A4 (en) 2019-04-24
EP3335825A1 (en) 2018-06-20
CN104993357B (zh) 2018-09-18
CN104993357A (zh) 2015-10-21
US10449630B2 (en) 2019-10-22
US20170225267A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2017024709A1 (zh) 不可见激光器系统及其光路可视化方法
US20220032398A1 (en) Processing optical unit, laser processing apparatus and method for laser processing
US7375819B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
US20190126395A1 (en) Laser machining head and laser machining apparatus
JP2018513556A5 (zh)
US7372576B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
TWI555063B (zh) Laser annealing device
JP6293385B1 (ja) レーザ発振装置
JP2017513071A5 (zh)
CN105182674B (zh) 激光投影机专用激光光源
TWI648524B (zh) 多層材料加工裝置及其方法
JP2008102352A (ja) 光学遅延器械及び光学遅延器械を備える光学測定装置
TWI738675B (zh) 偏振器配置、極紫外線輻射產生裝置及用於雷射光束之線性偏振之方法
US10247952B2 (en) Polarization-controlled laser line-projector
US11714244B2 (en) Optical assembly and manufacturing method thereof
US11304286B2 (en) Polarizer
US20240142785A1 (en) Device for the beam shaping of an incident laser beam
KR101735213B1 (ko) 레이저 빔 결합 장치
TWM450443U (zh) 可微調雷射加工間距之調整機構
US11402648B2 (en) Method and device for coupling out a partial beam having a very small beam percentage from an optical beam
US20040252376A1 (en) Beam converter for enhancing brightness of polarized light sources
CN108963747B (zh) 一种晶体及其制作方法
JP2015025961A (ja) 偏光変換装置
CN117008350A (zh) 一种正交偏振光调控装置、干涉仪和光栅位移测量系统
KR20200063997A (ko) 레이저 가공 장치

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015868681

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015868681

Country of ref document: EP