WO2017023080A1 - 차량용 무선전력 송신모듈 - Google Patents

차량용 무선전력 송신모듈 Download PDF

Info

Publication number
WO2017023080A1
WO2017023080A1 PCT/KR2016/008492 KR2016008492W WO2017023080A1 WO 2017023080 A1 WO2017023080 A1 WO 2017023080A1 KR 2016008492 W KR2016008492 W KR 2016008492W WO 2017023080 A1 WO2017023080 A1 WO 2017023080A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
wireless power
power transmission
antenna
disposed
Prior art date
Application number
PCT/KR2016/008492
Other languages
English (en)
French (fr)
Inventor
진병수
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150110204A external-priority patent/KR101697304B1/ko
Priority claimed from KR1020150110189A external-priority patent/KR101693538B1/ko
Priority claimed from KR1020150110200A external-priority patent/KR101697303B1/ko
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201680046031.8A priority Critical patent/CN107912075B/zh
Priority to US15/747,582 priority patent/US10566824B2/en
Publication of WO2017023080A1 publication Critical patent/WO2017023080A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H04B5/24
    • H04B5/79
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present invention relates to a wireless power transmission module for a vehicle, and more particularly to a wireless power transmission module for a vehicle capable of wireless charging of both the magnetic induction method and the magnetic resonance method.
  • mobile devices such as mobile phones, smart phones, tablet PCs, notebook computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), and navigation devices, which are used to charge batteries with external power, are used.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • navigation devices which are used to charge batteries with external power.
  • the use is increasing, and the surrounding environment associated with the use of mobile terminals is spreading to dynamic spaces such as vehicles.
  • a contactless charging system using a wireless power transmission method has been proposed to easily charge a battery of a terminal even in a vehicle.
  • the contactless charging system is a wireless transmission method for supplying electrical energy supplied from a vehicle power source, a wireless power transmission module embedded in a vehicle, and wireless power reception of a terminal side receiving electrical energy from a wireless power transmission module.
  • Such a contactless wireless charging may be classified into a magnetic induction method and a magnetic resonance method, and may be classified into a PMA method and a Qi method according to a method of detecting an access of the wireless power reception module to the wireless power transmission module.
  • the above-described magnetic induction method or magnetic resonance method uses a magnetic field, which is identical in that an electromagnetic field is created using a coil, and power is transmitted through the magnetic field.
  • the magnetic induction method uses an electromagnetic induction phenomenon between coils
  • the magnetic resonance method differs in that it uses magnetic resonance between coils, and operating frequencies are different from each other.
  • the magnetic induction method has an operating frequency of 100 ⁇ 350kHz band
  • the magnetic resonance method is a band of 6.765MHz ⁇ 6.795MHz operating frequency.
  • the magnetic induction method and the magnetic resonance method are incompatible with each other because the operating frequencies are different.
  • the present invention has been made in view of the above, by deploying two wireless power transmission antennas with different charging methods at the same time, wireless power for a vehicle that can perform wireless charging using both magnetic induction and magnetic resonance method.
  • the purpose is to provide a transmission module.
  • the present invention is configured to include both the Qi method and the PMA method of the antenna operating in the magnetic induction method, the wireless power transmission module for a vehicle that can use both the Qi method, PMA method and magnetic resonance method through one module There is another purpose to provide.
  • the present invention is to ensure that the distance between the contact surface and the wireless antenna for transmitting the wireless power contacting the portable device to be charged to maintain a proper distance structurally, the wireless power for the vehicle can increase the charging efficiency of both the magnetic induction method and the magnetic resonance method
  • Another object is to provide a transmission module.
  • another object of the present invention is to provide a wireless power transmission module for a vehicle that can perform other functions other than wireless charging through one module by including an NFC antenna for short range communication in addition to the wireless power transmission antenna.
  • the present invention includes a housing having an inner space and a top plate on which a portable device to be charged is placed;
  • An antenna unit comprising a first wireless power transmission antenna operating in a magnetic induction method and a second wireless power transmission antenna operating in a magnetic resonance method;
  • a shielding unit including a first sheet disposed in an area corresponding to the first wireless power transmission antenna and a second sheet disposed in an area corresponding to the second wireless power transmission antenna.
  • the unit may be configured such that the first separation distance from the first wireless power transmission antenna to the outer surface of the upper plate is shorter than the second separation distance from the second wireless power transmission antenna to the outer surface of the upper plate. It provides a wireless power transmission module for a vehicle disposed in.
  • the first separation distance may be set such that a coupling coefficient k between the reception coil included in the portable device and the first wireless power transmission antenna has a value of 0.7 or more, and the second separation distance is included in the mobile device.
  • the coupling coefficient k between the reception coil and the second wireless power transmission antenna may be set to have a value of less than 0.2.
  • the first separation distance may be 2mm ⁇ 5mm
  • the second separation distance may be 10mm ⁇ 50mm.
  • the first wireless power transmission antenna may include a first antenna that operates in a Qi scheme and a second antenna that operates in a PMA scheme.
  • the first sheet may have a stepped surface having a height difference with respect to one surface of the second sheet on which the first wireless power transmission antenna is disposed.
  • one surface of the first sheet on which the first wireless power transmission antenna is disposed may protrude a predetermined height with respect to one surface of the second sheet on which the second wireless power transmission antenna is disposed.
  • first sheet is provided to have a relatively narrow area than the second sheet may be laminated on one surface of the second sheet.
  • first sheet may be disposed inside the second sheet, and the second sheet may include a receiving portion for accommodating a part or the entire thickness of the first sheet.
  • the first wireless power transmission antenna is disposed in a first region formed on one side of the straight line with a virtual straight line boundary
  • the second wireless power transmission antenna is a second region formed on the other side of the straight line. Can be placed in.
  • the housing includes a seating surface on which the first sheet and the second sheet are seated, and the seating surface includes a first portion on which the first sheet is disposed and a second portion on which the second sheet is disposed.
  • one surface of the second portion may be a step surface having a height difference with respect to one surface of the first portion.
  • first sheet may be disposed in the first area
  • second sheet may be disposed in the second area
  • first sheet may be provided to have a relatively thicker thickness than the second sheet
  • the top plate may include a first top plate disposed in an upper region of the first wireless power transmission antenna and a second top plate disposed in an upper region of the second wireless power transmission antenna, and the outside of the first top plate.
  • the surface may be a step surface having a height difference with respect to the outer surface of the second top plate.
  • the antenna unit may further include an NFC antenna for short-range data communication, and the NFC antenna may be disposed in an area corresponding to the second sheet.
  • the first sheet is provided to have a relatively higher permeability than the second sheet in the frequency band of the operating frequency of 100kHz ⁇ 350kHz, or when the permeability of the first sheet is the same as the permeability loss of the first sheet is It may be provided to have a value relatively smaller than the investment loss rate of the second sheet.
  • the second sheet is provided to have a relatively higher permeability than the first sheet in the frequency band of 6.765 MHz to 6.795 MHz and the frequency of 13.56 MHz, or when the second sheet has the same permeability as the first sheet.
  • the investment loss rate of the two sheets may be provided to have a relatively smaller value than the investment loss rate of the first sheet.
  • Ni-Zn ferrite with ⁇ "/ ⁇ ') of 0.05 or less, or a metal polymer with a permeability of 30-70 and a Tan ⁇ ( ⁇ " / ⁇ ') of 0.05 or less in the frequency band of 6.765 MHz to 6.795 MHz. .
  • first sheet and the second sheet may include any one of a ribbon sheet, a ferrite sheet, and a metal polymer sheet including at least one or more of an amorphous alloy and a nanocrystalline alloy.
  • At least one of the first sheet and the second sheet may be separated into a plurality of fine pieces.
  • both magnetic induction method and magnetic resonance method specifically Qi method, PMA method and magnetic resonance method can be used, thereby improving compatibility and increasing convenience. Can increase.
  • the present invention by separating the two wireless power transmission antennas having different charging methods in different areas can be positioned correctly in the appropriate location and the charging method of the portable device can increase the charging efficiency.
  • the present invention includes the NFC antenna for the short-range communication in the antenna unit can be implemented as a multi-function because it is possible to transmit and receive data as well as wireless charging through a single module.
  • the present invention can increase the charging efficiency of both the magnetic induction method and the magnetic resonance method by arranging the separation distance between the contact surface contacted by the mobile device to be charged and the corresponding wireless power transmission antenna differently and structurally maintaining the proper distance. .
  • FIG. 1 is a schematic diagram showing a wireless power transmission module for a vehicle according to an embodiment of the present invention
  • FIG. 2 is a bottom view of FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG.
  • FIG. 4A and 4B are views illustrating a case in which the accommodating part is formed in the second sheet in the vehicular wireless power transmission module according to an embodiment of the present invention.
  • FIG. 4A is a case in which the accommodating part is formed as a through hole. Figure showing the case formed by the additional receiving groove,
  • FIG. 5 is a schematic diagram illustrating a case in which three antennas for first wireless power transmission are provided in a wireless power transmission module for a vehicle according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a wireless power transmission module for a vehicle according to another embodiment of the present invention.
  • FIG. 7 is a bottom view of the shield unit in FIG. 6,
  • FIG. 8 is a cross-sectional view taken along line A-A of FIG.
  • FIGS. 9A to 9C are views illustrating various forms for satisfying a relationship in which an NFC antenna is disposed in a second area and a first separation distance ⁇ a second separation distance in a wireless power transmission module for a vehicle according to another embodiment of the present invention
  • 9A illustrates a case in which the bottom surface of the housing is formed in a stepped structure
  • FIG. 9B illustrates a case in which the first sheet is stacked on an upper portion of the second sheet
  • FIG. 9C illustrates a top plate of the housing formed in a stepped structure.
  • FIGS. 10A to 10C are diagrams illustrating yet another form for satisfying a relationship where an NFC antenna is disposed in a first area and a first separation distance ⁇ a second separation distance in a wireless power transmission module for a vehicle according to another embodiment of the present invention
  • 10A is a schematic view showing an arrangement relationship between a plurality of antennas
  • FIG. 10B is a diagram illustrating a case in which a first sheet is stacked on top of a second sheet
  • FIG. 10C is a bottom surface of a housing having a stepped structure. Drawing showing the case,
  • FIG. 11 is a schematic diagram illustrating a case in which three first wireless power transmission antennas are provided in a wireless power transmission module for a vehicle according to an embodiment of the present invention
  • FIG. 12 is a view illustrating a shielding sheet in which a ribbon sheet of a plurality of amorphous alloys or nanocrystalline alloys is stacked in a wireless power transmission module for a vehicle according to an embodiment of the present invention.
  • Vehicle wireless power transmission module (100,200) is to transmit a wireless power signal to the portable device is installed in the vehicle needs charging, as shown in Figure 1 and 6, the housing 130 , An antenna unit 110 and a shielding unit 120.
  • the housing 130 may be provided in an enclosure having an internal space for accommodating the antenna unit 110 and the shielding unit 120.
  • the housing 130 may include a top plate 132 on which a portable device to be charged is placed, and a seating surface 134 in which the shielding unit 120 is disposed may be provided in the inner space.
  • the seating surface 134 may be a bottom surface of the inner space, or may be one surface of a separate support member disposed in the middle of the height of the inner space.
  • the outer surface of the top plate 132 may be a contact surface that the mobile device contacts.
  • the portable device when the portable device is placed on the outer surface of the upper plate 132, wireless power is transmitted from the antenna unit 110 disposed in the inner space to the portable device, thereby charging the battery of the portable device.
  • the portable device has a wireless power receiving module for receiving the wireless power transmitted from the antenna unit 110 in a magnetic induction method or a magnetic resonance method.
  • the usual components for performing a function as a charger that is, the power circuit unit which is supplied with power from the vehicle power source, and the power supplied through the power circuit unit It may include an antenna driving circuit unit for transmitting to the antenna unit 110 to transmit to the portable device to be charged, and a control circuit unit for controlling the overall operation, including the drive control and power transmission control of the antenna drive circuit.
  • the portable device may be a mobile phone, a PDA, a PMP, a tablet, a multimedia device, or the like.
  • the antenna unit 110 includes at least two wireless power transmission antennas 111 and 112 that operate in different ways using different frequency bands. Accordingly, the wireless power transmitting antennas 111 and 112 may transmit the power required by the portable device in another manner.
  • the vehicle wireless power transmission module (100,200) may be a combo type in which the NFC antenna 113 is included in the antenna unit 110 to enable the transmission and reception of data in addition to the wireless charging function.
  • the wireless power transmission antennas 111 and 112 and the NFC antenna 113 is composed of a flat coil wound around the conductive member having a predetermined length in a clockwise or counterclockwise direction to the shielding unit 120 It may be provided in a form fixed to one side of the.
  • the conductive member may be a metal material having conductivity such as copper, and a plurality of strands having a predetermined wire diameter may be provided in a twisted shape along the length direction.
  • the lead wires 114a, 114b, 114c, and 114d for electrical connection with the respective antennas 111, 112, and 113 are shielded. It may be disposed on the bottom of the unit 120 (see FIGS. 2 and 7).
  • the wireless power transmission antennas 111 and 112 and the NFC antenna 113 may pattern a conductor such as copper foil on at least one surface of a circuit board made of a synthetic resin such as polyimide (PI) or PET, or use conductive ink in a loop form. It may be configured by forming a loop-shaped metal pattern.
  • a conductor such as copper foil on at least one surface of a circuit board made of a synthetic resin such as polyimide (PI) or PET, or use conductive ink in a loop form. It may be configured by forming a loop-shaped metal pattern.
  • the wireless power transmission antennas 111 and 112 and the NFC antenna 113 may be provided in a form in which a flat coil wound around a plurality of conductive members and an antenna pattern printed on one surface of a circuit board are combined with each other.
  • the wireless power transmission antennas 111 and 112 include a first wireless power transmission antenna 111 that operates in a magnetic induction method and a second wireless power transmission antenna 112 that operates in a magnetic resonance method.
  • the first wireless power transmission antenna 111 may be an antenna that operates in a self-induction manner using a frequency band of 100 to 350 kHz
  • the second wireless power transmission antenna 112 may be 6.765 to 6.795. It may be an A4WP antenna that operates in a magnetic resonance method using a frequency band of MHz.
  • the antenna unit 110 is provided with a first wireless power transmission antenna 111 that operates in a magnetic induction method and a second wireless power transmission antenna 112 that operates in a magnetic resonance method, respectively. Both modules can be used for wireless charging.
  • the first wireless power transmission antenna 111 operating in a magnetic induction method may be an antenna operating in a Qi method, an antenna operating in a PMA method, preferably a first operating in a Qi method.
  • the antenna 111a and the second antenna 111b operating in a PMA manner may be provided, respectively.
  • the first wireless power transmission antenna 111 may be provided in three, and any one antenna may be disposed to partially overlap with the other two antennas (see FIGS. 5 and 11).
  • the first wireless power transmission antenna 111 may use a combination of the Qi method and the PMA method through one coil.
  • the wireless power transmission module 100,200 for a vehicle according to the present invention may be installed in a vehicle to perform wireless charging using both the Qi method, the PMA method, and the A4WP method having different operating frequencies or operating methods. For this reason, even when a mobile device such as a mobile phone to be charged is wirelessly charged using any one of magnetic induction and magnetic resonance, wireless charging is performed by using a wireless charging method and an antenna for wireless power transmission of the portable device. Since it is possible to perform all the wireless charging without the need to replace the wireless power transmission module installed in the vehicle.
  • the first wireless power transmission antenna 111 may be disposed inside the second wireless power transmission antenna 112 (see FIGS. 1 and 5).
  • first wireless power transmission antenna 111 and the second wireless power transmission antenna 112 may be disposed on both sides of the straight line L with respect to the virtual straight line L (FIG. 6 and See FIG. 11). That is, the first wireless power transmission antenna 111 may be disposed in the first area S1 formed at one side of the straight line L with respect to the virtual straight line L, and the second wireless power.
  • the transmitting antenna 112 may be disposed in the second region S2 formed at the other side of the straight line L.
  • the first region S1 refers to the right side of the straight line L in the drawing
  • the second region S2 refers to the left side of the straight line L in the drawing.
  • the first wireless power transmission antenna 111 and the second wireless power transmission antenna 112 that operate in different ways are different from each other. May be placed in the area. In this way, the user may classify the mobile device into a corresponding position according to the charging method of the mobile device to be charged.
  • the antenna unit 110 may include an NFC (Near Field Communication) antenna 113 for short-range communication in addition to the first wireless power transmission antenna 111 and the second wireless power transmission antenna 112. have.
  • NFC Near Field Communication
  • the antenna unit 110 may serve as a hybrid antenna capable of performing short-range data communication as well as wireless charging of the magnetic induction method and wireless charging of the magnetic resonance method.
  • the data transmitted and received through the NFC antenna 113 may be a variety of information on the state of the vehicle, such as fuel flow rate, the wear state of the various vehicle consumables, whether the brake is operating normally, and the portable device such as a mobile phone and the like Data exchange can be made.
  • the NFC antenna 113 is the first wireless power transmission antenna 111 and the second when the first wireless power transmission antenna 111 is disposed inside the second wireless power transmission antenna 112. It may be disposed between the wireless power transmission antenna 112 (see Figs. 1 and 5).
  • the NFC antenna 113 is the first wireless when the first wireless power transmission antenna 111 and the second wireless power transmission antenna 112 are disposed on both sides of a virtual straight line (L) boundary It may be disposed in the first area (S1) where the power transmission antenna 111 is disposed (see FIGS. 10A and 10B), the second area (S2) on which the second wireless power transmission antenna 112 is disposed. May be arranged (see FIGS. 8-9C).
  • the NFC antenna 113 when the NFC antenna 113 is disposed in the first region S1, the NFC antenna 113 surrounds the first wireless power transmission antenna 111 so as to surround the first wireless power transmission antenna 111. It is preferable to arrange
  • the NFC antenna 113 even when the NFC antenna 113 is disposed in the second region S2, the NFC antenna 113 may surround a second wireless power transmission antenna 112 so as to surround the second wireless power transmission antenna ( It is preferable to arrange
  • the shielding unit 120 is disposed on one surface of the antenna unit 110 to shield the magnetic field generated by the antenna unit 110.
  • the shielding unit 120 shields a magnetic field generated when the antenna unit 110 transmits and receives a radio signal in a predetermined frequency band, thereby increasing the focusing speed of the magnetic field in a required direction, thereby It can improve the performance of the antenna that works in.
  • the shielding unit 120 may be made of a material having magnetic properties to shield the magnetic field generated by the antenna unit 110.
  • the shielding unit 120 may be made of a magnetic material and provided only with plate-shaped shielding sheets 121 and 122 having a predetermined area, and are attached to at least one surface of the shielding sheets 121 and 122 to protect the shielding sheets 121 and 122.
  • a protective film 125 may be included.
  • the shielding sheets 121 and 122 may include a ribbon sheet, a ferrite sheet, a polymer sheet, or the like including at least one of an amorphous alloy and a nano-crystalline alloy.
  • the ferrite sheet may be a sintered ferrite sheet, Ni-Zn ferrite or Mn-Zn ferrite may be used.
  • the amorphous alloy or nanocrystalline alloy may be used Fe-based or Co-based magnetic alloy.
  • the polymer sheet may be a Fe-Si-Al-based metal polymer or Fe-Si-Cr-based metal polymer.
  • the shielding sheets 121 and 122 may have a saturation magnetic flux density of 0.25 Tesla or more in a frequency band of 100 kHz to 350 kHz and 6.765 MHz to 6.795 MHz.
  • the saturation magnetic flux density may be 0.35 Tesla or more in the frequency band of 100 kHz to 350 kHz and 6.765 MHz to 6.795 MHz in which the wireless power transmission antennas 111 and 112 operate. This is because the higher the saturation magnetic flux density of the shielding sheet, the later the saturation caused by the magnetic field can be used, so that a thinner thickness can be used than the shielding sheet having the low saturation magnetic flux density.
  • the shielding sheets 121 and 122 may be formed by stacking a plurality of magnetic sheets in multiple layers, or may be separated into a plurality of fine pieces, and the neighboring fine pieces may be provided to be insulated or partially insulated from each other. Can be.
  • the plurality of fine pieces may be provided with a size of 1 ⁇ m ⁇ 3mm, each piece may be made irregularly random.
  • the shielding sheets 121 and 122 may have a form in which a plurality of ribbon sheets 123a, 123b, and 123c including at least one of a plurality of amorphous alloys and nanocrystalline alloys are stacked in multiple layers as shown in FIG. 12. have.
  • each ribbon sheet (123a, 123b, 123c) may be formed into a plurality of fine pieces to increase the overall resistance to suppress the generation of eddy current, so that the neighboring fine pieces are entirely insulated or partially insulated It may be provided.
  • the plurality of ribbon sheets 123a, 123b, and 123c may be stacked through the adhesive member 123d, and the adhesive member 123d may include a non-conductive component. Accordingly, the adhesive member 123d may serve to insulate neighboring fine pieces by penetrating toward a pair of ribbon sheets in which part or all of them are laminated to each other and moving to a gap of fine pieces.
  • the adhesive member 123d may be provided with an inorganic type adhesive made of a liquid or gel form, or may be provided with a substrate type coated with an adhesive on one or both sides of a film type substrate.
  • Such a shielding unit may include a plurality of sheets so as to respectively increase the performance of the corresponding antenna in response to the first wireless power transmission antenna 111 and the second wireless power transmission antenna 112 using different frequency bands ( 121, 122).
  • the shielding sheet improves the performance of the first wireless power transmission antenna 111 and the second wireless power transmission antenna 112 that operate in a magnetic induction method and a magnetic resonance method, respectively, using different frequency bands.
  • the first sheet 121 and the second sheet 122 having different characteristics in a predetermined frequency band may be included.
  • the NFC antenna 113 may be properly disposed on any one side of the first sheet 121 or the second sheet 122 as described above, but together with the second wireless power transmission antenna 112. It may be disposed on one surface of the second sheet 122. This is to improve the performance of both antennas whose operating frequencies are close to each other through one shielding sheet. That is, the NFC antenna 113 having an operating frequency of 13.56 MHz may be disposed on one surface of the second sheet 122 together with the second wireless power transmission antenna 112 having an operating frequency of 6.765 MHz to 6.795 MHz. .
  • the first sheet 121 is the first wireless power transmission antenna (in order to increase the performance of the first wireless power transmission antenna 111 operating by a magnetic induction method in a low frequency band ( 111 and the second sheet 122 may perform performance of the second wireless power transmission antenna 112 and the NFC antenna 113 operating by a magnetic resonance method in a high frequency band.
  • the second wireless power transmission antenna 112 and the NFC antenna 113 may be disposed in an area corresponding to each other so as to increase all of them.
  • the first sheet 121 may be provided to have an area including the first wireless power transmission antenna 111
  • the second sheet 122 is the second wireless power transmission antenna 112.
  • NFC antenna 113 may be provided to have an area including.
  • the first wireless power transmission antenna 111 is disposed inside the second wireless power transmission antenna 112
  • the first sheet 121 is disposed inside the second sheet 122. It may be in the form of.
  • the first sheet 121 may be provided to have a relatively narrow area than the second sheet 122 and may be stacked on one surface of the second sheet 122 (see FIG. 3).
  • the shielding unit 120 may be in a form of accommodating a part thickness of the first sheet 121 by having a receiving portion provided in the second sheet 122 (see FIGS. 4A and 4B).
  • the receiving portion may be provided in the form of a through hole 126a penetrating the second sheet 122 so that the first sheet 121 is inserted into the through hole 126a (see FIG. 4A).
  • the accommodating part may be provided in the form of an accommodating groove 126b recessed to a certain depth from one surface of the second sheet 122 such that the first sheet 121 is seated in the accommodating groove 126b. (See FIG. 4B).
  • the first sheet 121 is disposed. May be disposed in a first area S1 corresponding to the first wireless power transmission antenna 111, and the second sheet 122 may include the second wireless power transmission antenna 112 and an NFC antenna ( 113, respectively, may be disposed in regions corresponding to each other (see FIGS. 8, 9A, 9C, and 10C).
  • the first sheet 121 may be formed in the first region S1.
  • the second sheet 122 may be stacked on one surface of the second sheet 122 so as to be positioned at (see FIGS. 9B and 10B).
  • the NFC antenna 113 is disposed in the first area S1 together with the first wireless power transmission antenna 111, and the first sheet 121 and the second sheet 122 are formed in the first area ( In the case of separate arrangement of S1) and the second region S2, a separate third sheet 126 may be disposed in the first region S1 to improve characteristics of the NFC antenna 113 (FIG. 10C). Reference).
  • the third sheet 126 may be provided to have a relatively higher permeability than the first sheet at a frequency of 13.56 MHz, and the first sheet 121 and the third sheet 126 at a frequency of 13.56 MHz.
  • the same permeability of each other may be provided so that the investment loss rate of the third sheet 126 has a relatively smaller value than the investment loss rate of the first sheet 121.
  • the third sheet 126 has a frame shape surrounding the first sheet 121 at a position corresponding to the NFC antenna 113 on the outside of the first sheet 121 as shown in FIG. 10C. It can be arranged as.
  • the arrangement relationship between the third sheet 126 and the first sheet 121 is not limited thereto, and the third sheet 126 is provided to be stacked on the lower side of the first sheet 121.
  • the third sheet 126 may be provided to accommodate a part thickness of the first sheet 121. Note that it may be.
  • the first sheet 121 and the second sheet 122 applied to the present invention may be provided to have different permeability or different saturation magnetic field in a predetermined frequency band, the first sheet in a predetermined frequency band
  • the permeability of the permeability may be provided to have different values.
  • the first sheet 121 may be provided to have a relatively higher permeability than the second sheet in the low frequency band of 100 ⁇ 350kHz, the second sheet in the frequency band of 100 ⁇ 350kHz It may be provided to have a relatively large saturation magnetic field, when the first sheet 121 and the second sheet 122 have the same permeability in the frequency band of 100 ⁇ 350kHz investment of the first sheet 121
  • the loss rate may be provided to have a value that is relatively smaller than the investment loss rate of the second sheet 122.
  • the second sheet 122 may be provided to have a relatively high permeability than the first sheet in the high frequency band 6.765MHz ⁇ 6.795MHz and 13.56MHz, and in the frequency band of 6.765MHz ⁇ 6.795MHz and 13.56MHz
  • the permeability of the second sheet 122 is provided to have a relatively smaller value than the permeability of the first sheet 121. Can be.
  • the first sheet 121 has a relatively higher permeability than the second sheet 122 in the frequency band of 100 ⁇ 350 kHz, the first wireless power transmission antenna 111 during wireless charging by the magnetic induction method
  • the alternating magnetic field generated at) may be induced toward the first sheet 121 having a relatively high permeability.
  • the AC magnetic field induced toward the first sheet 121 is caused by the first sheet 121.
  • the second sheet 122 has a relatively higher permeability than the first sheet 121 at 6.765 MHz to 6.795 MHz, the second wireless power transmission antenna 112 during wireless charging by the magnetic resonance method.
  • the alternating magnetic field generated at) may be directed toward the second sheet 122 having a relatively high permeability.
  • the second sheet 122 is disposed in an area corresponding to the second wireless power transmission antenna 112, the AC magnetic field induced toward the second sheet 122 is caused by the second sheet 122.
  • the second sheet 122 since the second sheet 122 has a higher permeability than the first sheet 121 at a frequency of 13.56 MHz even during data communication through the NFC antenna 113, the magnetic field generated during data communication is also relatively relatively. It can be directed to the second sheet 122 side having a high permeability. In this case, since the second sheet 122 is disposed in an area corresponding to the NFC antenna 113, the magnetic field induced toward the second sheet 122 is shielded by the second sheet 122 in the required direction. By converging, the sensitivity of data transmission and reception can be improved.
  • the permeability loss rate of the first sheet 121 is the investment of the second sheet 122.
  • the loss rate is the loss of permeability due to the permeability loss during the wireless charging operation.
  • the AC magnetic field generated during the power transmission using a frequency of 100 to 350 kHz is induced toward the first sheet 121 having a relatively high permeability, so that the first radio is disposed in an area corresponding to the first sheet 121.
  • the power transmission antenna 111 can be induced to be transmitted to the wireless power receiving module with high efficiency.
  • the permeability loss ratio of the second sheet 122 is equal to that of the first sheet ( If it is provided to have a relatively small value than the investment loss rate of 121) as a result, the loss of permeability due to the investment loss rate during wireless charging or data communication can be reduced.
  • the magnetic field is induced toward the second sheet 122 having a relatively high permeability, thereby transmitting second wireless power arranged in an area corresponding to the second sheet 122.
  • the antenna 112 and the NFC antenna 113 it is possible to transmit the wireless power with high efficiency or to increase the transmission and reception sensitivity of the data.
  • the magnetic permeability is not limited thereto.
  • the materials of the first sheet 121 and the second sheet 122 may be changed in various ways as long as the saturation magnetic field and the loss ratio satisfy the relative conditions with respect to each other in the corresponding frequency band.
  • the first sheet 121 and the second sheet 122 may be made of the same material having different permeability at operating frequencies of 100 to 350 kHz, 6.765 MHz to 6.795 MHz, and 13.56 MHz, and the first sheet.
  • a ribbon sheet in which 121 includes at least one of an amorphous alloy and a nanocrystalline alloy may be used. This is because even if made of the same material can be manufactured to have different characteristics (permeability, saturation magnetic field, permeability loss, etc.) through a variety of conditions, such as the heat treatment temperature, the number of laminations.
  • the first sheet 121 and the second sheet 122 is a ribbon sheet containing at least one of an amorphous alloy and a nano-crystalline alloy
  • a single layer of ribbon sheet may be used, As shown in FIG. 12, the plurality of ribbon sheets may be formed of a first sheet 121 and / or a second sheet 122 in a multilayered form.
  • the vehicle wireless power transmission module 100,200 transmits the first separation distance d1 and the second wireless power from the first wireless power transmission antenna 111 to the outer surface of the upper plate 132.
  • the second separation distance d2 from the dragon antenna 112 to the outer surface of the upper plate 132 may be set to have different lengths.
  • the coupling coefficient k between the transmitting coil and the receiving coil is preferably less than 0.2 when performing the wireless charging by the magnetic resonance method, and the coupling coefficient between the transmitting coil and the receiving coil when performing the wireless charging by the magnetic induction method. It is preferable that (k) is 0.7 or more.
  • the coupling coil is kept at less than 0.2 by separating the receiving coil and the transmitting coil at an appropriate distance. There is a need.
  • the coupling coefficient value between the coils increases, the charging efficiency also increases proportionally, so the distance between the receiving coil and the transmitting coil needs to be kept close.
  • the second separation distance d2 with the portable device to be charged from the 112 is set different from each other so as to maintain the separation distance suitable for each method. Therefore, the first wireless power transmission antenna 111 is set so that the coupling coefficient with the receiving coil of the portable device is less than 0.2, and the second wireless power transmission antenna 112 and the receiving coil of the portable device during wireless charging. By setting the coupling coefficient of 0.7 or more, both methods can increase the charging efficiency.
  • the first wireless distance d1 from the first wireless power transmission antenna 111 to the upper plate 132 of the housing 130 is the second wireless power. It is disposed inside the housing 130 to have a length shorter than the second separation distance d2 from the transmitting antenna 112 to the upper plate 132 of the housing 130.
  • the housing 130 may be embedded in a dashboard or gearbox of the vehicle so that one surface of the top plate 132 is exposed to the outside, the exposed surface of the top plate 132 is a contact surface on which the portable device to be charged is placed. Or it may serve as a seating surface.
  • the first and second separation distances d1 and d2 are linear distances from the respective wireless power transmission antennas 111 and 112 to the outer surface of the upper plate on which the mobile device is placed, as shown in FIGS. 3 and 8.
  • the first separation distance d1 may be 2 mm to 5 mm
  • the second separation distance d2 may be 10 mm to 50 mm.
  • the mobile device when the user wants to charge the battery of the mobile device, when the user places the mobile device on the upper plate 132 of the housing, the mobile device is very close to the first wireless power transmission antenna 111, for example, 2 mm.
  • the separation distance of 5 mm may be maintained, and the charging efficiency may be improved by maintaining a distance that is relatively far from the second wireless power transmission antenna 112, for example, a distance of 10 mm to 50 mm.
  • FIGS. 3 to 4b and 8 to 10c Various ways to do this are illustrated in FIGS. 3 to 4b and 8 to 10c.
  • one surface of the first sheet 121 on which the first wireless power transmission antenna 111 is disposed is located on the second sheet 122 on which the second wireless power transmission antenna 112 is disposed. It may protrude a certain height with respect to one surface.
  • the stepped surface formed by one surface of the first sheet 121 and one surface of the second sheet 122 may have different thicknesses of the first sheet 121 and the second sheet 122 or the second surface.
  • the first sheet 121 may be stacked on one surface of the sheet 122, or the seating surface 134 on which the first sheet 121 and the second sheet 122 are seated may be formed as a stepped surface. .
  • the outer surface of the top plate 132 on which the portable device to be charged is placed as a step surface, it is possible to maintain a proper distance from the antenna used in the wireless charging method required for the portable device.
  • the first separation distance d1 from the first wireless power transmission antenna 111 disposed on the upper surface of the first sheet 121 to the outer surface of the upper plate 132 of the housing 130 is determined by the first distance. It may be set to have a shorter distance than the second separation distance d2 from the second wireless power transmission antenna 112 disposed on the upper surface of the second sheet 122 to the outer surface of the upper plate 132 of the housing 130. have.
  • the first sheet 121 is provided to have a relatively smaller area than the second sheet 122, the first sheet 121 is laminated on one surface of the second sheet 122, One surface of the first sheet 121 and the second sheet 122 may form a stepped surface (see FIGS. 3, 4B, 9B, and 10B).
  • the first sheet 121 is formed to have a thickness relatively thicker than the thickness of the second sheet 122, and one surface of the first sheet 121 and the second sheet 122 is seated
  • the upper surface of the first sheet 121 and the upper surface of the second sheet 122 may be formed so as to be in contact with the surface 134, respectively (see FIGS. 4A and 8).
  • a first portion 134a and a second portion 134b having different heights from the seating surface 134 of the housing 130 in which the first sheet 121 and the second sheet 122 are disposed. ) May be included (see FIGS. 9A and 10C).
  • the first sheet 121 may be disposed in the first portion 134a having a relatively high height
  • the second sheet 122 may be disposed in the second portion 134b having a relatively low height.
  • the seating surface 134 may be an inner bottom surface of the housing 130 or may be a separate supporting member spaced apart from the bottom surface by a predetermined height.
  • the first separation distance d1 may have a length shorter than the second separation distance d2 by forming the top plate 132 on which the mobile device is placed (see FIG. 9C). That is, the top plate 132 is formed in the upper region of the first top plate 132a and the second wireless power transmission antenna 112 disposed in the upper region of the first wireless power transmission antenna 111.
  • the second upper plate 132b may be formed, and the second upper plate 132b may have a stepped surface having a relatively lower height than the first upper plate 132a.
  • the thickness of the first sheet 121 and the second sheet 122 may be different, or the upper plate 132 may be formed to have a stepped surface, or the seating surface 134 may be formed to have a stepped surface. Note that the three approaches may be combined as appropriate.
  • the portable device when the portable device is a device that is charged by a magnetic induction method, the first wireless power transmission antenna 111 and the portable device are maintained to be in close contact with each other to maintain a coupling coefficient of 0.7 or more. Even when the device is charged by the magnetic resonance method, the second wireless power transmission antenna 112 and the portable device are set to maintain a coupling coefficient of less than 0.2 by maintaining a state separated by an appropriate distance, thereby splitting due to excessive coil coupling. It is possible to increase the charging efficiency because it is advantageous to prevent and obtain an even magnetic field distribution on the surface of the top plate 132 of the housing 130.

Abstract

차량용 무선전력 송신모듈이 제공된다. 본 발명의 일 실시예에 의한 차량용 무선전력 송신모듈은 충전방식이 상이한 자기유도방식과 자기공진방식을 모두 사용하여 무선충전을 수행할 수 있어 호환성을 높이고 사용편의성을 높일 수 있으며, 충전대상인 휴대기기가 놓여지는 접촉면과 해당 무선전력 전송용 안테나와의 이격거리가 적정거리로 유지됨으로써 무선충전방식에 상관없이 요구되는 충전효율을 만족할 수 있다.

Description

차량용 무선전력 송신모듈
본 발명은 차량용 무선전력 송신모듈에 관한 것으로, 보다 구체적으로는 자기유도 방식과 자기공진 방식의 무선충전이 모두 가능한 차량용 무선전력 송신모듈에 관한 것이다.
최근 들어 외부의 전력으로 배터리를 충전하여 사용하는 전기기기, 예컨대 휴대폰이나 스마트폰, 태블릿 PC, 노트북, 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 및 내비게이션 등과 같은 이동단말기의 사용이 증가하고 있으며, 이동단말기의 사용과 관련된 주변 환경이 차량과 같은 동적인 공간까지 확산되고 있다.
이에 따라, 차량 내에서도 간편하게 단말기의 배터리를 충전할 수 있도록 무선 전력 전송방식을 이용하는 무접점 방식의 충전시스템이 제시되고 있다.
상기 무접점 방식의 충전시스템은 차량 전원에서 공급되는 전기에너지를 무선 전송방식으로 공급하는 것으로, 차량 내에 매립되는 무선전력 송신모듈과, 무선전력 송신모듈에서 전기에너지를 전송받는 단말기 측의 무선전력 수신모듈을 포함한다.
이러한 무접점 방식의 무선 충전은 자기유도 방식과 자기공진 방식으로 분류되기도 하며, 무선전력 송신모듈에 대한 무선전력 수신모듈의 접근을 감지하는 방식에 따라 PMA 방식과 Qi 방식으로 분류되기도 한다.
상술한 자기유도방식이나 자기공진방식은 자기장을 이용하는 것으로, 코일을 이용해서 전자기장을 만들고, 이를 통해 전력을 전달한다는 점에서 동일하다. 그러나 자기유도방식은 코일간의 전자기유도현상을 이용하는 것이고, 자기공진방식은 코일간의 자기공진을 이용한다는 점에서 다르며, 사용하는 동작주파수가 서로 상이하다.
일례로, 상기 자기유도방식은 동작주파수가 100~350kHz 대역이며, 자기공진방식은 동작주파수가 6.765MHz ~ 6.795MHz의 대역이다.
이에 따라, 자기유도방식과 자기공진방식은 각각 작동하는 동작주파수가 다르기 때문에 서로 호환되지 못하는 문제점이 있다.
한편, 고주파 대역인 6.765MHz ~ 6.795MHz의 대역에서 작동하는 자기공진방식의 경우에는 코일간의 결합계수가 과도하게 높을 경우 스플릿이 발생하여 충전효율이 떨어지게 되며, 저주파대역인 100~350kHz에서 작동하는 자기유도방식의 경우에는 결합계수가 높을수록 충전효율이 높아지게 된다.
따라서, 자기유도방식과 자기공진방식을 동시에 적용하는 경우 자기유도방식으로 작동하는 안테나와 자기공진방식으로 작동하는 안테나의 충전효율을 모두 높일 수 있는 방안이 요구되고 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 충전방식이 상이한 두 개의 무선전력 전송용 안테나를 동시에 배치함으로써 자기유도방식과 자기공진방식을 모두 사용하여 무선충전을 수행할 수 있는 차량용 무선전력 송신모듈을 제공하는데 그 목적이 있다.
또한, 본 발명은 자기유도방식으로 작동하는 안테나가 Qi 방식과 PMA 방식의 안테나를 모두 포함하도록 구성됨으로써 하나의 모듈을 통하여 Qi 방식, PMA 방식 및 자기공진방식을 모두 사용할 수 있는 차량용 무선전력 송신모듈을 제공하는데 다른 목적이 있다.
한편, 본 발명은 충전대상인 휴대기기가 접촉하는 접촉면과 해당 무선전력 전송용 안테나와의 이격거리가 구조적으로 적정거리를 유지하도록 함으로써 자기유도방식과 자기공진방식 모두 충전효율을 높일 수 있는 차량용 무선전력 송신모듈을 제공하는데 또 다른 목적이 있다.
더불어, 본 발명은 무선전력 전송용 안테나 이외에 근거리 통신을 위한 NFC 안테나가 포함됨으로써 하나의 모듈을 통해 무선충전 이외의 다른 기능을 수행할 수 있는 차량용 무선전력 송신모듈을 제공하는데 또 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 내부공간을 갖추고 충전대상인 휴대기기가 놓여지는 상판을 포함하는 하우징; 자기유도 방식으로 작동하는 제1무선전력 전송용 안테나 및 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나를 포함하는 안테나유닛; 및 상기 제1무선전력 전송용 안테나와 대응되는 영역에 배치되는 제1시트 및 상기 제2무선전력 전송용 안테나와 대응되는 영역에 배치되는 제2시트를 포함하는 차폐유닛;을 포함하고, 상기 안테나유닛은 상기 제1무선전력 전송용 안테나로부터 상판의 외부면까지의 제1이격거리가 상기 제2무선전력 전송용 안테나로부터 상판의 외부면까지의 제2이격거리보다 짧은 길이를 갖도록 상기 하우징의 내부에 배치되는 차량용 무선전력 송신모듈을 제공한다.
또한, 상기 제1이격거리는 상기 휴대기기에 포함되는 수신코일과 상기 제1무선전력 전송용 안테나와의 결합계수(k)가 0.7 이상의 값을 갖도록 설정되고, 상기 제2이격거리는 상기 휴대기기에 포함되는 수신코일과 상기 제2무선전력 전송용 안테나와의 결합계수(k)가 0.2 미만의 값을 갖도록 설정될 수 있다. 이때, 상기 제1이격거리는 2mm ~ 5mm이고, 상기 제2이격거리는 10mm ~ 50mm일 수 있다.
또한, 상기 제1무선전력 전송용 안테나는 Qi 방식으로 작동하는 제1안테나와 PMA 방식으로 작동하는 제2안테나를 포함할 수 있다.
또한, 상기 제1시트는 상기 제1무선전력 전송용 안테나가 배치되는 일면이 상기 제2무선전력 전송용 안테나가 배치되는 제2시트의 일면에 대하여 높이차를 갖는 단차면일 수 있다.
또한, 상기 제1무선전력 전송용 안테나가 배치되는 제1시트의 일면은 상기 제2무선전력 전송용 안테나가 배치되는 제2시트의 일면에 대하여 일정높이 돌출될 수 있다.
또한, 상기 제1시트는 상기 제2시트보다 상대적으로 좁은 면적을 갖도록 구비되어 상기 제2시트의 일면에 적층될 수 있다.
또한, 상기 제1시트는 상기 제2시트의 내측에 배치되고, 상기 제2시트는 상기 제1시트의 일부 또는 전체두께를 수용하기 위한 수용부가 형성될 수 있다.
또한, 상기 제1무선전력 전송용 안테나는 가상의 직선을 경계로 상기 직선의 일측에 형성되는 제1영역에 배치되고, 상기 제2무선전력 전송용 안테나는 상기 직선의 타측에 형성되는 제2영역에 배치될 수 있다.
또한, 상기 하우징은 상기 제1시트 및 제2시트가 안착되는 안착면을 포함하고, 상기 안착면은 상기 제1시트가 배치되는 제1부분과, 상기 제2시트가 배치되는 제2부분을 포함하며, 상기 제2부분의 일면은 상기 제1부분의 일면에 대하여 높이차를 갖는 단차면일 수 잇다.
또한, 상기 제1시트는 상기 제1영역에 배치되고 상기 제2시트는 상기 제2영역에 배치되며, 상기 제1시트는 상기 제2시트보다 상대적으로 두꺼운 두께를 갖도록 구비될 수 있다.
또한, 상기 상판은 상기 제1무선전력 전송용 안테나의 상부영역에 배치되는 제1상판과 상기 제2무선전력 전송용 안테나의 상부영역에 배치되는 제2상판을 포함하고, 상기 제1상판의 외부면은 상기 제2상판의 외부면에 대하여 높이차를 갖는 단차면일 수 있다.
또한, 상기 안테나유닛은 근거리 데이터 통신을 위한 NFC 안테나를 더 포함할 수 있으며, 상기 NFC 안테나는 상기 제2시트와 대응되는 영역에 배치될 수 있다.
또한, 상기 제1시트는 동작주파수가 100kHz~350kHz인 주파수 대역에서 상기 제2시트보다 상대적으로 높은 투자율을 갖도록 구비되거나, 상기 제2시트와 동일한 투자율을 갖는 경우 상기 제1시트의 투자손실률이 상기 제2시트의 투자손실률보다 상대적으로 작은 값을 갖도록 구비될 수 있다.
또한, 상기 제2시트는 동작주파수가 6.765MHz ~ 6.795MHz인 주파수 대역 및 13.56MHz의 주파수에서 상기 제1시트보다 상대적으로 높은 투자율을 갖도록 구비되거나, 상기 제1시트와 동일한 투자율을 갖는 경우 상기 제2시트의 투자손실률이 상기 제1시트의 투자손실률보다 상대적으로 작은 값을 갖도록 구비될 수 있다.
또한, 상기 제1시트는 동작주파수가 100kHz~350kHz인 주파수 대역에서 300~3500의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하이며, 자속밀도가 0.25T 이상인 재질로 이루어지고, 상기 제2시트는 동작주파수가 6.765MHz ~ 6.795MHz인 주파수 대역 및 13.56MHz의 주파수에서 30~350의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하이며, 동작주파수가 6.765MHz ~ 6.795MHz인 주파수 대역에서 자속밀도가 0.25T 이상인 재질로 이루어질 수 있다(여기서, μ'은 투자율이고, μ"은 투자손실율임).
또한, 상기 제1시트는 100kHz~350kHz 주파수 대역에서 투자율이 2000~3500이고 Tanㅿ(=μ"/μ')가 0.05이하인 Mn-Zn 페라이트 또는 100kHz~350kHz 주파수 대역에서 투자율이 300~1500이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트 중 어느 하나이고, 상기 제2시트는 6.765MHz ~ 6.795MHz인 주파수 대역 및 13.56MHz의 주파수에서 투자율이 100~350이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트 또는 6.765MHz ~ 6.795MHz인 주파수 대역에서 투자율이 30~70이고 Tanㅿ(=μ"/μ')가 0.05이하인 메탈 폴리머 중 어느 하나일 수 있다.
또한, 상기 제1시트 및 제2시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트, 페라이트 시트 및 메탈 폴리머 시트 중 어느 하나를 포함할 수 있다.
또한, 상기 제1시트 및 제2시트 중 적어도 어느 하나는 복수 개의 미세 조각으로 분리형성될 수 있다.
본 발명에 의하면, 충전방식이 상이한 적어도 두 개의 무선전력 전송용 안테나를 동시에 배치함으로써 자기유도방식과 자기공진방식, 구체적으로 Qi방식, PMA 방식 및 자기공진방식을 모두 사용할 수 있어 호환성을 높여 사용편의성을 높일 수 있다.
또한, 본 발명은 충전방식이 상이한 두 개의 무선전력 전송용 안테나를 서로 다른 영역에 분리하여 배치함으로써 휴대기기의 충전방식과 적합한 위치에 사용자가 올바르게 위치시킬 수 있어 충전효율을 높일 수 있다.
더불어, 본 발명은 안테나유닛에 근거리 통신을 위한 NFC 안테나가 포함됨으로써 하나의 모듈을 통해 무선충전뿐만 아니라 데이터의 송,수신이 가능하므로 다기능화를 구현할 수 있다.
더욱이, 본 발명은 충전대상인 휴대기기가 접촉하는 접촉면과 해당 무선전력 전송용 안테나와의 이격거리를 서로 다르게 배치하고 구조적으로 적정거리를 유지함으로써 자기유도방식과 자기공진방식 모두 충전효율을 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 차량용 무선전력 송신모듈을 나타낸 개략도,
도 2는 도 1의 저면도,
도 3은 도 1의 A-A 단면도,
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 차량용 무선전력 송신모듈에서 제2시트에 수용부가 형성되는 경우를 나타낸 도면으로서, 도 4a는 수용부가 관통구로 형성되는 경우이고, 도 4b는 수용부가 수용홈으로 형성되는 경우를 나타낸 도면,
도 5는 본 발명의 일 실시예에 따른 차량용 무선전력 송신모듈에서 제1무선전력 전송용 안테나가 3개로 구비되는 경우를 나타낸 개략도,
도 6은 본 발명의 다른 실시예에 따른 차량용 무선전력 송신모듈을 나타낸 개략도,
도 7는 도 6에서 차폐유닛의 저면도,
도 8은 도 6의 A-A 단면도,
도 9a 내지 도 9c는 본 발명의 다른 실시예에 따른 차량용 무선전력 송신모듈에서 NFC 안테나가 제2영역에 배치되고 제1이격거리 < 제2이격거리인 관계를 만족하기 위한 다양한 형태를 나타낸 도면으로서, 도 9a는 하우징의 바닥면이 단차구조로 형성되는 경우이고, 도 9b는 제1시트가 제2시트의 상부에 적층되는 경우를 나타낸 도면이며, 도 9c는 하우징의 상판이 단차구조로 형성되는 경우를 나타낸 도면,
도 10a 내지 도 10c는 본 발명의 다른 실시예에 따른 차량용 무선전력 송신모듈에서 NFC 안테나가 제1영역에 배치되고 제1이격거리 < 제2이격거리인 관계를 만족하기 위한 또 다른 형태를 나타낸 도면으로서, 도 10a는 복수 개의 안테나들 간의 배치관계를 나타낸 개략도이고, 도 10b는 제1시트가 제2시트의 상부에 적층되는 경우를 나타낸 도면이고, 도 10c는 하우징의 바닥면이 단차구조로 형성되는 경우를 나타낸 도면,
도 11은 본 발명의 일 실시예에 따른 차량용 무선전력 송신모듈에서 제1무선전력 전송용 안테나가 3개로 구비되는 경우를 나타낸 개략도, 그리고,
도 12는 본 발명의 일 실시예에 따른 차량용 무선전력 송신모듈에서 차폐시트가 복수 개의 비정질 합금 또는 나노 결정립 합금의 리본시트가 적층된 형태를 나타낸 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 차량용 무선전력 송신모듈(100,200)은 차량 내에 설치되어 충전이 필요한 휴대기기 측으로 무선 전력 신호를 송출하기 위한 것으로, 도 1 및 도 6에 도시된 바와 같이 하우징(130), 안테나유닛(110) 및 차폐유닛(120)을 포함한다.
상기 하우징(130)은 상기 안테나유닛(110) 및 차폐유닛(120)을 수납하기 위한 내부공간을 갖는 함체형상으로 구비될 수 있다. 이와 같은 하우징(130)은 충전대상인 휴대기기가 놓여지는 상판(132)을 포함하며, 상기 내부공간에는 상기 차폐유닛(120)이 배치되는 안착면(134)이 구비될 수 있다.
여기서, 상기 안착면(134)은 상기 내부공간의 바닥면일 수도 있고, 상기 내부공간의 높이중간에 배치되는 별도의 지지부재의 일면일 수도 있다. 더불어 상기 상판(132)의 외부면은 상기 휴대기기가 접촉하는 접촉면일 수 있다.
이에 따라, 상기 휴대기기를 상기 상판(132)의 외부면에 올려놓으면 상기 내부공간에 배치된 안테나유닛(110)으로부터 상기 휴대기기 측으로 무선전력이 송출됨으로써 휴대기기의 배터리가 충전될 수 있다. 여기서, 상기 휴대기기 측에는 상기 안테나유닛(110)으로부터 송출되는 무선전력을 자기유도 방식 또는 자기공진 방식으로 수신하기 위한 무선전력 수신모듈이 내장된다.
본 발명에서, 상기 하우징(130)의 내부에는 도시하지는 않았지만 기본적으로 충전기로서의 기능을 수행하기 위한 통상의 구성요소들, 즉 차량 전원으로부터 전력을 공급받는 전원회로부와, 상기 전원회로부를 통해 공급받은 전력을 안테나유닛(110)에 전달하여 충전대상인 휴대기기 측으로 송출하는 안테나구동회로부와, 상기 안테나구동회로부의 구동제어 및 전력 전송제어를 포함하여 제반 작동을 제어하는 제어 회로부 등을 포함할 수 있다. 또한, 상기 휴대기기는 휴대폰, PDA, PMP, 테블릿, 멀티미디어 기기 등일 수 있다.
상기 안테나유닛(110)은 서로 다른 주파수 대역을 이용하여 상이한 방식으로 작동하는 적어도 두 개의 무선전력 전송용 안테나(111,112)를 포함한다. 이에 따라, 상기 무선전력 전송용 안테나(111,112)는 휴대기기가 필요로 하는 전력을 전달을 다른 방식으로 송출할 수 있다.
이때, 본 발명에 따른 차량용 무선전력 송신모듈(100,200)은 무선충전기능에 더하여 데이터의 송,수신이 가능하도록 상기 안테나유닛(110)에 NFC 안테나(113)가 포함되는 콤보형일 수 있다.
본 발명에서, 상기 무선전력 전송용 안테나(111,112) 및 NFC 안테나(113)는 일정길이를 갖는 도전성부재가 시계방향 또는 반시계 방향으로 복수 회 권선되는 평판형 코일로 구성되어 상기 차폐유닛(120)의 일면에 고정되는 형태로 구비될 수 있다. 이때, 상기 도전성부재는 구리와 같은 도전성을 갖는 금속재질일 수 있으며, 소정의 선경을 갖는 복수 개의 가닥이 길이방향을 따라 꼬인 형태로 구비될 수도 있다. 더불어, 상기 무선전력 전송용 안테나(111,112) 및 NFC 안테나(113)가 평판형 코일로 구성되는 경우 각각의 안테나(111,112,113)와의 전기적인 연결을 위한 리드선(114a,114b,114c,114d)이 상기 차폐유닛(120)의 저면에 배치될 수 있다(도 2 및 도 7 참조).
또한, 상기 무선전력 전송용 안테나(111,112) 및 NFC 안테나(113)는 폴리이미드(PI)나 PET 등과 같은 합성수지로 이루어진 회로기판의 적어도 일면에 동박 등과 같은 전도체를 루프 형태로 패터닝하거나 전도성 잉크를 사용하여 루프 형상의 금속 패턴을 형성하여 구성될 수도 있다.
더불어, 상기 무선전력 전송용 안테나(111,112) 및 NFC 안테나(113)는 도전성부재가 복수 회 권선된 평판형코일과 회로기판의 일면에 인쇄된 안테나 패턴이 상호 조합된 형태로 구비될 수도 있다.
이때, 상기 무선전력 전송용 안테나(111,112)는 자기유도 방식으로 작동하는 제1무선전력 전송용 안테나(111)와 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나(112)를 포함한다.
일례로, 상기 제1무선전력 전송용 안테나(111)는 100~350kHz인 주파수 대역을 이용하여 자기유도 방식으로 작동하는 안테나일 수 있고, 상기 제2무선전력 전송용 안테나(112)는 6.765~6.795MHz인 주파수 대역을 이용하여 자기공진 방식으로 작동하는 A4WP 방식의 안테나일 수 있다.
즉, 본 발명에서는 상기 안테나유닛(110)이 자기유도방식으로 작동하는 제1무선전력 전송용 안테나(111)와 자기공진방식으로 작동하는 제2무선전력 전송용 안테나(112)가 각각 구비됨으로써 하나의 모듈을 통하여 두 가지 방식의 무선충전을 모두 수행할 수 있다.
여기서, 자기유도방식으로 작동하는 상기 제1무선전력 전송용 안테나(111)는 Qi 방식으로 작동하는 안테나일 수도 있고, PMA 방식으로 작동하는 안테나일 수도 있으며, 바람직하게는 Qi 방식으로 작동하는 제1안테나(111a)와 PMA 방식으로 작동하는 제2안테나(111b)가 각각 구비될 수 있다. 또한, 상기 제1무선전력 전송용 안테나(111)는 3개로 구비되고 어느 하나의 안테나가 다른 두 개의 안테나와 일부 중첩되도록 배치될 수도 있다(도 5 및 도 11 참조). 더불어, 상기 제1무선전력 전송용 안테나(111)는 하나의 코일을 통하여 Qi 방식 및 PMA 방식을 통합하여 사용할 수도 있음을 밝혀둔다.
이에 따라, 본 발명에 따른 차량용 무선전력 송신모듈(100,200)은 차량 내에 설치되어 동작주파수 또는 작동방식이 상이한 Qi 방식, PMA 방식 및 A4WP 방식을 모두 이용하여 무선충전을 수행할 수 있다. 이로 인해, 충전대상인 휴대폰과 같은 휴대기기가 자기유도 및 자기공진 중 선택된 어느 하나의 방식을 이용하여 무선충전이 이루어진다 하더라도 휴대기기의 무선충전방식과 적합한 무선전력 전송용 안테나를 이용하여 무선충전을 수행할 수 있게 되므로 차량 내에 설치된 무선전력 송신모듈을 교체할 필요없이 모든 방식의 무선충전을 수행할 수 있다.
이때, 상기 제1무선전력 전송용 안테나(111)는 상기 제2무선전력 전송용 안테나(112)의 내측에 배치될 수 있다(도 1 및 도 5 참조).
또한, 상기 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)는 가상의 직선(L)을 경계로 상기 직선(L)의 양측에 배치될 수도 있다(도 6 및 도 11 참조). 즉, 상기 제1무선전력 전송용 안테나(111)는 가상의 직선(L)을 경계로 상기 직선(L)의 일측에 형성되는 제1영역(S1)에 배치될 수 있으며, 상기 제2무선전력 전송용 안테나(112)는 상기 직선(L)의 타측에 형성되는 제2영역(S2)에 배치될 수 있다. 여기서, 상기 제1영역(S1)은 도면상에서 상기 직선(L)의 우측을 의미하며 상기 제2영역(S2)은 도면상에서 상기 직선(L)의 좌측을 의미한다. 이와 같이 본 발명의 일 형태에 따른 차량용 무선전력 송신모듈(200,200')은 서로 상이한 방식으로 작동하는 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)가 각각 서로 다른 영역에 배치될 수 있다. 이를 통해, 사용자는 충전하고자 하는 휴대기기의 충전방식에 따라 휴대기기를 해당 위치에 구분하여 놓을 수 있다.
한편, 상기 안테나유닛(110)은 상기 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112) 이외에 근거리 통신을 위한 NFC(Near Field Communication) 안테나(113)를 포함할 수 있다.
이에 따라, 본 발명에 따른 안테나유닛(110)은 자기유도방식의 무선충전과 자기공진방식의 무선충전뿐만 아니라, 근거리 데이터 통신도 수행할 수 있는 복합 안테나의 역할을 수행할 수 있다.
여기서, 상기 NFC 안테나(113)를 통해 송,수신되는 데이터는 주유량, 각종 차량 소모품의 마모 상태, 브레이크의 정상작동 여부 등 차량의 상태에 대한 각종 정보일 수 있으며, 상술한 휴대폰 등과 같은 휴대기기와 데이터 교환이 이루어질 수 있다.
이와 같은 NFC 안테나(113)는 상기 제1무선전력 전송용 안테나(111)가 제2무선전력 전송용 안테나(112)의 내측에 배치되는 경우 상기 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)의 사이에 배치될 수 있다(도 1 및 도 5 참조).
또한, 상기 NFC 안테나(113)는 상기 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)가 가상의 직선(L)을 경계로 양측에 배치되는 경우 상기 제1무선전력 전송용 안테나(111)가 배치되는 제1영역(S1)에 배치될 수도 있고(도 10a 및 도 10b 참조), 상기 제2무선전력 전송용 안테나(112)가 배치되는 제2영역(S2)에 배치될 수도 있다(도 8 내지 도 9c 참조).
여기서, 상기 NFC 안테나(113)가 제1영역(S1)에 배치되는 경우 상기 NFC 안테나(113)는 상기 제1무선전력 전송용 안테나(111)를 둘러싸도록 제1무선전력 전송용 안테나(111)의 외측에 배치되는 것이 바람직하다. 또한, 상기 NFC 안테나(113)가 상기 제2영역(S2)에 배치되는 경우에도 상기 NFC 안테나(113)는 상기 제2무선전력 전송용 안테나(112)를 둘러싸도록 제2무선전력 전송용 안테나(112)의 외측에 배치되는 것이 바람직하다. 이는, 전력 전송의 역할을 수행하는 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)의 사이에 데이터 송,수신 역할을 수행하는 NFC 안테나(113)가 배치되어 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)가 너무 가깝게 위치하는 것을 방지함으로써 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)가 상호 간섭에 의해 발생할 수 있는 특성저하를 줄이기 위함이다.
상기 차폐유닛(120)은 상기 안테나유닛(110)의 일면에 배치되어 상기 안테나유닛(110)에서 발생하는 자기장을 차폐하기 위한 것이다.
즉, 상기 차폐유닛(120)은 상기 안테나유닛(110)이 소정의 주파수 대역에서 무선 신호를 송,수신할 때 발생되는 자기장을 차폐하여 소요의 방향으로 자기장의 집속도를 높여줌으로써 소정의 주파수 대역에서 작동하는 해당 안테나의 성능을 높여줄 수 있다.
이를 위해, 상기 차폐유닛(120)은 상기 안테나유닛(110)에서 발생되는 자기장을 차폐할 수 있도록 자성을 갖는 재질로 이루어질 수 있다. 여기서, 상기 차폐유닛(120)은 자성체로 이루어지고 일정 면적을 갖는 판상의 차폐시트(121,122)만으로 구비될 수도 있고, 상기 차폐시트(121,122)의 적어도 일면에 부착되어 상기 차폐시트(121,122)를 보호하는 보호필름(125)을 포함할 수도 있다.
일례로, 상기 차폐시트(121,122)는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트, 페라이트 시트 또는 폴리머 시트 등이 사용될 수 있다. 여기서, 상기 페라이트 시트는 소결 페라이트 시트일 수 있으며, Ni-Zn 페라이트 또는 Mn-Zn 페라이트가 사용될 수 있다. 더불어, 상기 비정질 합금 또는 나노결정립 합금은 Fe계 또는 Co계 자성 합금이 사용될 수 있다. 더불어, 상기 폴리머 시트는 Fe-Si-Al계 메탈 폴리머 또는 Fe-Si-Cr계 메탈 폴리머일 수 있다.
이때, 상기 차폐시트(121,122)는 100kHz ~ 350kHz 및 6.765MHz ~ 6.795MHz의 주파수 대역에서 포화자속밀도가 0.25테슬러 이상일 수 있다.
바람직하게는 무선전력 전송용 안테나(111,112)가 작동하는 100kHz ~ 350kHz 및 6.765MHz ~ 6.795MHz의 주파수 대역에서 포화자속밀도가 0.35테슬러 이상일 수 있다. 이는, 차폐시트의 포화자속밀도가 높을수록 자기장에 의한 포화가 늦게 발생되므로 포화자속밀도가 낮은 차폐시트에 비하여 얇은 두께를 사용할 수 있기 때문이다.
또한, 상기 차폐시트(121,122)는 각각의 안테나(111,112,113)가 작동하는 100kHz ~ 350kHz, 6.765MHz ~ 6.795MHz 및 13.56MHz의 주파수 대역에서 Tanㅿ(=μ"/μ')가 0.05이하인 재질로 이루어질 수 있다(μ'은 투자율이고, μ"은 투자손실율임).
한편, 상기 차폐시트(121,122)는 복수 개의 자성시트가 다층으로 적층된 형태일 수도 있고, 복수 개의 미세조각으로 분리된 형태일 수도 있으며, 서로 이웃하는 미세 조각들은 전체적으로 절연되거나 부분적으로 절연되도록 구비될 수 있다. 여기서, 상기 복수 개의 미세 조각은 1㎛ ~ 3mm의 크기로 구비될 수 있으며, 각각의 조각들은 비정형으로 랜덤하게 이루어질 수 있다.
일례로, 상기 차폐시트(121,122)는 도 12에 도시된 바와 같이 복수 개의 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트(123a,123b,123c)가 다층으로 적층된 형태일 수 있다. 이때, 각각의 리본시트(123a,123b,123c)는 전체적인 저항을 높여 와전류의 발생을 억제할 수 있도록 복수 개의 미세 조각으로 분리 형성될 수 있으며, 서로 이웃하는 미세 조각들은 전체적으로 절연되거나 부분적으로 절연되도록 구비될 수 있다.
이때, 상기 복수 개의 리본시트(123a,123b,123c)는 접착부재(123d)를 매개로 적층될 수 있으며, 상기 접착부재(123d)는 비전도성 성분을 포함할 수 있다. 이에 따라, 상기 접착부재(123d)는 일부 또는 전부가 서로 적층되는 한 쌍의 리본시트 측으로 스며들어 미세조각들의 틈새로 이동함으로써 서로 이웃하는 미세 조각을 절연하는 역할을 수행할 수 있다. 여기서, 상기 접착부재(123d)은 액상 또는 겔상으로 이루어진 무기재 타입의 접착제로 구비될 수도 있으며 필름 형태의 기재의 일면 또는 양면에 접착제가 도포된 기재 타입으로 구비될 수도 있다.
이와 같은 차폐유닛은 서로 다른 주파수 대역을 이용하는 상기 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)에 대응하여 해당 안테나의 성능을 각각 높여줄 수 있도록 복수 개의 시트(121,122)로 구성될 수 있다.
일례로, 상기 차폐시트는 서로 다른 주파수 대역을 이용하여 자기유도방식과 자기공진방식으로 각각 작동하는 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)의 성능을 향상시킬 수 있도록 소정의 주파수 대역에서 서로 다른 특성을 갖는 제1시트(121) 및 제2시트(122)를 포함할 수 있다.
이때, 상기 NFC 안테나(113)는 상술한 바와 같이 제1시트(121) 또는 제2시트(122) 중 어느 일측에 적절하게 배치될 수 있지만, 상기 제2무선전력 전송용 안테나(112)와 함께 제2시트(122)의 일면에 배치될 수 있다. 이는, 하나의 차폐시트를 통하여 동작주파수가 서로 근접한 두 개의 안테나의 성능을 모두 향상시킬 수 있도록 하기 위함이다. 즉, 동작주파수가 13.56MHz인 NFC 안테나(113)는 동작주파수가 6.765MHz ~ 6.795MHz인 상기 제2무선전력 전송용 안테나(112)와 함께 상기 제2시트(122)의 일면에 배치될 수 있다.
구체적으로 설명하면, 상기 제1시트(121)는 저주파 대역에서 자기유도방식에 의해 작동하는 상기 제1무선전력 전송용 안테나(111)의 성능을 높여줄 수 있도록 상기 제1무선전력 전송용 안테나(111)와 대응되는 영역에 배치될 수 있으며, 상기 제2시트(122)는 고주파 대역에서 자기공진방식에 의해 작동하는 상기 제2무선전력 전송용 안테나(112) 및 NFC 안테나(113)의 성능을 모두 높여줄 수 있도록 상기 제2무선전력 전송용 안테나(112) 및 NFC 안테나(113)와 대응되는 영역에 배치될 수 있다.
여기서, 상기 제1시트(121)는 상기 제1무선전력 전송용 안테나(111)를 포함하는 면적을 갖도록 구비될 수 있으며, 상기 제2시트(122)는 상기 제2무선전력 전송용 안테나(112) 및 NFC 안테나(113)를 포함하는 면적을 갖도록 구비될 수 있다.
일례로, 상기 제1무선전력 전송용 안테나(111)가 제2무선전력 전송용 안테나(112)의 내측에 배치되는 경우 상기 제1시트(121)는 상기 제2시트(122)의 내측에 배치되는 형태일 수 있다.
이때, 상기 제1시트(121)는 상기 제2시트(122)보다 상대적으로 좁은 면적을 갖도록 구비되어 상기 제2시트(122)의 일면에 적층되는 형태일 수 있다(도 3 참조).
또한, 상기 차폐유닛(120)은 상기 제2시트(122)의 내부에 수용부가 구비됨으로써 상기 제1시트(121)의 일부 두께를 수용하는 형태일 수 있다(도 4a 및 도 4b 참조). 여기서, 상기 수용부는 상기 제2시트(122)를 관통하는 관통구(126a)의 형태로 구비되어 상기 제1시트(121)가 상기 관통구(126a)에 삽입되는 형태일 수 있고(도 4a 참조), 상기 수용부가 제2시트(122)의 일면으로부터 일정깊이 함몰형성되는 수용홈(126b)의 형태로 구비되어 상기 제1시트(121)가 상기 수용홈(126b)에 안착되는 형태일 수 있다(도 4b 참조).
다른 예로써, 상기 제1무선전력 전송용 안테나(111) 및 제2무선전력 전송용 안테나(112)가 가상의 직선(L)을 경계로 양측에 분리배치되는 경우, 상기 제1시트(121)는 상기 제1무선전력 전송용 안테나(111)와 대응되는 제1영역(S1)에 배치될 수 있으며, 상기 제2시트(122)는 상기 제2무선전력 전송용 안테나(112) 및 NFC 안테나(113)와 대응되는 영역에 각각 배치될 수 있다(도 8, 도 9a, 도 9c, 도 10c 참조).
또한, 상기 제2시트(122)가 상기 제1영역(S1) 및 제2영역(S2)을 모두 커버하는 넓은 면적으로 형성되는 경우, 상기 제1시트(121)는 상기 제1영역(S1)에 위치하도록 상기 제2시트(122)의 일면에 적층되는 형태일 수도 있다(도 9b 및 도 10b 참조).
한편, 상기 NFC 안테나(113)가 상기 제1무선전력 전송용 안테나(111)와 함께 제1영역(S1)에 배치되고 상기 제1시트(121) 및 제2시트(122)가 제1영역(S1) 및 제2영역(S2)에 분리배치되는 경우, 상기 제1영역(S1)에는 NFC 안테나(113)의 특성을 향상시키기 위한 별도의 제3시트(126)가 배치될 수 있다(도 10c 참조).
이때, 상기 제3시트(126)는 13.56MHz의 주파수에서 상기 제1시트보다 상대적으로 높은 투자율을 갖도록 구비될 수 있고, 13.56MHz의 주파수에서 상기 제1시트(121) 및 제3시트(126)가 서로 동일한 투자율을 갖는 경우 상기 제3시트(126)의 투자손실률이 상기 제1시트(121)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비될 수 있다. 더불어, 상기 제3시트(126)는 13.56MHz의 동작주파수에서 100~250의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하인 재질로 이루어질 수 있다. 일례로, 상기 제3시트(126)는 13.56MHz에서 투자율이 100~250이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트가 사용될 수 있고, 13.56MHz에서 투자율이 30~70이고 Tanㅿ(=μ"/μ')가 0.05이하인 메탈 폴리머가 사용될 수 있다.
이때, 상기 제3시트(126)는 도 10c에 도시된 바와 같이 상기 제1시트(121)의 외측에 상기 NFC 안테나(113)와 대응되는 위치에 상기 제1시트(121)를 둘러싸는 액자형태로 배치될 수 있다. 그러나, 상기 제3시트(126) 및 제1시트(121)의 배치관계를 이에 한정하는 것은 아니며, 상기 제3시트(126)는 상기 제1시트(121)의 하부측에 적층되는 형태로 구비될 수도 있고, 상기 제1시트(121)가 제3시트(126)의 상부측에 적층되는 경우 상기 제3시트(126)가 상기 제1시트(121)의 일부두께를 수용하는 형태로 구비될 수도 있음을 밝혀둔다.
한편, 본 발명에 적용되는 제1시트(121) 및 제2시트(122)는 소정의 주파수 대역에서 서로 다른 투자율이나 서로 다른 포화자기장을 갖도록 구비될 수 있으며, 소정의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)의 투자율이 동일한 경우 투자손실률이 서로 다른 값을 갖도록 구비될 수도 있다.
구체적으로 설명하면, 상기 제1시트(121)는 저주파 대역인 100~350kHz의 주파수 대역에서 상기 제2시트보다 상대적으로 높은 투자율을 갖도록 구비될 수 있고, 100~350kHz의 주파수 대역에서 상기 제2시트보다 상대적으로 큰 포화자기장을 갖도록 구비될 수 있으며, 100~350kHz의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖는 경우 상기 제1시트(121)의 투자손실률이 상기 제2시트(122)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비될 수 있다.
여기서, 상기 제1시트(121)는 저주파 대역인 100~350kHz의 주파수 대역에서 300~3500의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하이며, 포화자속밀도가 0.25T 이상인 재질로 이루어질 수 있다.
일례로, 상기 제1시트(121)는 100kHz~350kHz 주파수대역에서 투자율이 2000~3500이고 Tanㅿ(=μ"/μ')가 0.05이하인 Mn-Zn 페라이트가 사용될 수 있고, 100kHz~350kHz 주파수대역에서 투자율이 300~1500이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트가 사용될 수 있다.
더불어, 상기 제2시트(122)는 고주파대역인 6.765MHz ~ 6.795MHz 및 13.56MHz에서 상기 제1시트보다 상대적으로 높은 투자율을 갖도록 구비될 수 있고, 6.765MHz ~ 6.795MHz 및 13.56MHz의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖는 경우 상기 제2시트(122)의 투자손실률이 상기 제1시트(121)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비될 수 있다.
여기서, 상기 제2시트(122)는 동작주파수가 6.765MHz ~ 6.795MHz 및 13.56MHz에서 30~350의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하이며, 동작주파수가 6.765MHz ~ 6.795MHz 대역에서 포화자속밀도가 0.25T 이상인 재질로 이루어질 수 있다.
일례로, 상기 제2시트(122)는 6.765MHz ~ 6.795MHz 및 13.56MHz에서 투자율이 100~350이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트가 사용될 수 있고, 6.765MHz ~ 6.795MHz 및 13.56MHz에서 투자율이 30~70이고 Tanㅿ(=μ"/μ')가 0.05이하인 메탈 폴리머가 사용될 수 있다.
이는, 상기 제1시트(121)가 100~350kHz의 주파수 대역에서 상기 제2시트(122)보다 상대적으로 높은 투자율을 갖기 때문에 자기유도방식에 의한 무선 충전시 상기 제1무선전력 전송용 안테나(111)에서 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제1시트(121)측으로 유도될 수 있다. 이때, 상기 제1시트(121)가 제1무선전력 전송용 안테나(111)와 대응되는 영역에 배치되어 있으므로 상기 제1시트(121) 측으로 유도된 교류 자기장은 상기 제1시트(121)에 의해 차폐되어 소요의 방향으로 집속됨으로써 무선전력 수신모듈 측으로 효율적으로 송출할 수 있다.
또한, 상기 제2시트(122)의 경우 6.765MHz ~ 6.795MHz에서 상기 제1시트(121)보다 상대적으로 높은 투자율을 갖기 때문에 자기공진방식에 의한 무선 충전시 상기 제2무선전력 전송용 안테나(112)에서 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제2시트(122)측으로 유도될 수 있다. 이때, 상기 제2시트(122)가 제2무선전력 전송용 안테나(112)와 대응되는 영역에 배치되어 있으므로 상기 제2시트(122) 측으로 유도된 교류 자기장은 상기 제2시트(122)에 의해 차폐되어 소요의 방향으로 집속됨으로써 무선전력 수신모듈 측으로 효율적으로 송출할 수 있다.
더하여, 상기 NFC 안테나(113)를 통한 데이터 통신시에도 13.56MHz의 주파수에서 상기 제2시트(122)가 제1시트(121)보다 상대적으로 높은 투자율을 갖기 때문에 데이터 통신시 발생되는 자기장 역시 상대적으로 높은 투자율을 갖는 제2시트(122)측으로 유도될 수 있다. 이때, 상기 제2시트(122)가 NFC 안테나(113)와 대응되는 영역에 배치되어 있으므로 상기 제2시트(122) 측으로 유도된 자기장은 상기 제2시트(122)에 의해 차폐되어 소요의 방향으로 집속됨으로써 데이터의 송,수신 감도를 높일 수 있다.
더불어, 100~350kHz의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖더라도 상기 제1시트(121)의 투자손실률이 상기 제2시트(122)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비되면 결과적으로 무선 충전 작동시 투자손실률에 의한 투자율의 손실이 줄어들 수 있다.
이에 따라, 100~350kHz의 주파수를 이용한 전력 전송시 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제1시트(121)측으로 유도됨으로써 상기 제1시트(121)와 대응되는 영역에 배치된 제1무선전력 전송용 안테나(111)를 통해 무선전력 수신모듈 측으로 높은 효율로 송출될 수 있도록 유도할 수 있다.
마찬가지로, 6.765MHz ~ 6.795MHz 및 13.56MHz의 주파수에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖더라도 상기 제2시트(122)의 투자손실률이 상기 제1시트(121)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비되면 결과적으로 무선 충전 또는 데이터 통신시 투자손실률에 의한 투자율의 손실이 줄어들 수 있다.
이에 따라, 6.765MHz ~ 6.795MHz 및 13.56MHz의 주파수에서 자기장이 상대적으로 높은 투자율을 갖는 제2시트(122)측으로 유도됨으로써 상기 제2시트(122)와 대응되는 영역에 배치된 제2무선전력 전송용 안테나(112) 및 NFC 안테나(113)를 통해 무선 전력을 높은 효율로 송신하거나 데이터의 송,수신 감도를 높일 수 있다.
여기서, 상기 제1시트(121)로서 Mn-Zn 페라이트 또는 Ni-Zn 페라이트가 사용되고, 상기 제2시트(122)로서 Ni-Zn 페라이트 또는 메탈 폴리머가 사용되는 것으로 설명하였지만 이에 한정하는 것은 아니며, 투자율, 포화자기장 및 투자손실률이 해당 주파수 대역에서 서로의 시트에 대하여 상대적인 조건을 만족하기만 하면 상기 제1시트(121) 및 제2시트(122)의 재질은 다양하게 변경될 수 있음을 밝혀둔다.
일례로, 상기 제1시트(121) 및 제2시트(122)는 100~350kHz, 6.765MHz ~ 6.795MHz 및 13.56MHz의 동작주파수에서 서로 다른 투자율을 갖는 동일한 재질로 이루어질 수도 있으며, 상기 제1시트(121)가 비정질 합금 및 나노 결정립 합금 중 1종 이상을 포함하는 리본시트가 사용될 수도 있다. 이는, 동일한 재질로 이루어지더라도 열처리 온도, 적층 수 등과 같은 여러가지 조건의 변화를 통해 서로 다른 특성(투자율, 포화자기장, 투자손실률 등)을 갖도록 제조될 수 있기 때문이다.
더불어, 상기 제1시트(121) 및 제2시트(122) 중 적어도 어느 하나가 비정질 합금 및 나노 결정립 합금 중 1종 이상을 포함하는 리본시트가 사용되는 경우, 단층의 리본시트가 사용될 수도 있지만, 도 12에 도시된 바와 같이 복수 개의 리본시트가 다층으로 적층된 형태로 제1시트(121) 및/또는 제2시트(122)로 구성될 수도 있다.
한편, 본 발명에 따른 차량용 무선전력 송신모듈(100,200)은 상기 제1무선전력 전송용 안테나(111)로부터 상판(132)의 외부면까지의 제1이격거리(d1)와 상기 제2무선전력 전송용 안테나(112)로부터 상판(132)의 외부면까지의 제2이격거리(d2)가 서로 다른 길이를 갖도록 설정될 수 있다.
이는, 무선충전을 위하여 상기 상판(132)의 외부면에 충전대상인 휴대기기가 놓여지는 경우 자기유도 방식으로 작동하는 제1무선전력 전송용 안테나(111)로부터 상기 휴대기기와의 제1이격거리(d1)와 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나(112)로부터 상기 휴대기기와의 제2이격거리(d2)를 서로 다르게 하기 위함이다.
통상적으로, 무선 충전시 무선전력 송신모듈에 구비되는 송신코일(Tx coil)과 무선전력 수신모듈에 구비되는 수신코일(Rx coil) 간의 거리가 가까울수록 송신코일과 수신코일간에 발생되는 결합계수의 값은 커지며, 송신코일(Tx coil)과 수신코일(Rx coil) 간의 거리가 멀수록 송신코일과 수신코일 간에 발생되는 결합계수의 값은 작아진다. 이때, 자기공진방식으로 무선충전을 수행하는 경우에는 송신코일과 수신코일 간의 결합계수(k)가 0.2 미만인 것이 바람직하며, 자기유도방식으로 무선충전을 수행하는 경우에는 송신코일과 수신코일 간의 결합계수(k)가 0.7 이상인 것이 바람직하다.
이는, 자기공진방식의 경우 코일간의 결합계수가 0.2 이상이면 스플릿(split)에 의한 효율저하가 발생되어 오히려 충전효율이 떨어지게 되므로 수신코일과 송신코일을 적정거리로 이격시켜 결합계수를 0.2미만으로 유지할 필요가 있다. 그러나, 자기유도방식의 경우 자기공진방식과는 달리 코일간의 결합계수 값이 클수록 충전 효율도 비례하여 올라가기 때문에 수신코일과 송신코일의 이격거리를 가깝게 유지할 필요가 있다.
이에 따라, 본 발명에서는 자기유도방식으로 작동하는 제1무선전력 전송용 안테나(111)로부터 충전대상인 휴대기기와의 제1이격거리(d1)와 자기공진방식으로 작동하는 제2무선전력 전송용 안테나(112)로부터 충전대상인 휴대기기와의 제2이격거리(d2)를 서로 다르게 설정하여 각기의 방식에 적합한 이격거리를 유지할 수 있도록 한다. 이로 인해, 무선충전시 제1무선전력 전송용 안테나(111)는 휴대기기의 수신코일과의 결합계수가 0.2 미만이 되도록 설정되며 제2무선전력 전송용 안테나(112)는 휴대기기의 수신코일과의 결합계수가 0.7 이상이 되도록 설정됨으로써 두 방식 모두 충전효율을 높일 수 있다.
이를 위해, 본 발명에 따른 안테나유닛(110)은 상기 제1무선전력 전송용 안테나(111)로부터 상기 하우징(130)의 상판(132)과의 제1이격거리(d1)가 상기 제2무선전력 전송용 안테나(112)로부터 상기 하우징(130)의 상판(132)과의 제2이격거리(d2)보다 짧은 길이를 갖도록 상기 하우징(130)의 내부에 배치된다.
여기서, 상기 하우징(130)은 상판(132)의 일면이 외부로 노출되도록 차량의 데시보드 또는 기어박스 등에 매립설치될 수 있으며, 상기 상판(132)의 노출면은 충전대상인 휴대기기가 놓여지는 접촉면 또는 안착면의 역할을 수행할 수 있다.
이때, 상기 제1,2이격거리(d1,d2)는 도 3 및 도 8에 도시된 바와 같이 각각의 무선전력 전송용 안테나(111,112)로부터 상기 휴대기기가 놓여지는 상판의 외부면과의 직선거리를 의미하며, 상기 제1이격거리(d1)는 2mm ~ 5mm일 수 있고, 상기 제2이격거리(d2)는 10mm ~ 50mm일 수 있다.
이에 따라, 사용자가 휴대기기의 배터리를 충전하고자 하는 경우 휴대기기를 상기 하우징의 상판(132)에 올려놓게 되면, 휴대기기는 제1무선전력 전송용 안테나(111)와 매우 가까운 거리, 일례로 2mm ~ 5mm의 이격거리를 유지하게 되며, 제2무선전력 전송용 안테나(112)와는 상대적으로 먼 적정거리, 일례로 10mm ~ 50mm의 거리를 유지함으로써 충전효율을 높일 수 있다.
이를 위한 다양한 방식이 도 3 내지 도 4b, 도 8 내지 도 10c에 도시되어 있다.
구체적으로 설명하면, 상기 제1무선전력 전송용 안테나(111)가 배치되는 제1시트(121)의 일면과 상기 제2무선전력 전송용 안테나(112)가 배치되는 제2시트(122)의 일면이 단차면을 형성함으로써 상기 제1무선전력 전송용 안테나(111)가 배치되는 제1시트(121)의 일면이 상기 제2무선전력 전송용 안테나(112)가 배치되는 제2시트(122)의 일면에 대하여 일정높이 돌출될 수 있다. 여기서, 상기 제1시트(121)의 일면과 제2시트(122)의 일면에 의해 형성된 단차면은 상기 제1시트(121)와 제2시트(122)의 두께를 서로 다르게 하거나, 상기 제2시트(122)의 일면에 상기 제1시트(121)를 적층하거나, 상기 제1시트(121) 및 제2시트(122)가 안착되는 안착면(134)이 단차면으로 형성됨으로써 구현될 수 있다.
또한, 충전대상인 휴대기기가 놓여지는 상판(132)의 외부면을 단차면으로 형성함으로써 상기 휴대기기가 요구되는 무선충전방식에 이용되는 해당 안테나와 적정거리를 유지할 수도 있다.
이에 따라, 상기 제1시트(121)의 상부면에 배치되는 제1무선전력 전송용 안테나(111)로부터 하우징(130)의 상판(132) 외부면까지의 제1이격거리(d1)는 상기 제2시트(122)의 상부면에 배치되는 제2무선전력 전송용 안테나(112)로부터 하우징(130)의 상판(132) 외부면까지의 제2이격거리(d2)보다 짧은 거리를 갖도록 설정될 수 있다.
구체적인 일례로써, 상기 제1시트(121)는 상기 제2시트(122)보다 상대적으로 작은 면적을 갖도록 구비되고, 상기 제1시트(121)가 상기 제2시트(122)의 일면에 적층됨으로써 제1시트(121)와 제2시트(122)의 일면이 단차면을 형성할 수 있다(도 3, 도 4b, 도 9b 및 도 10b 참조).
다른 일례로써, 상기 제1시트(121)는 상기 제2시트(122)의 두께보다 상대적으로 두꺼운 두께를 갖도록 형성하고, 상기 제1시트(121) 및 제2시트(122)의 일면이 상기 안착면(134)에 각각 접하도록 배치함으로써 상기 제1시트(121)의 상부면과 제2시트(122)의 상부면이 단차를 형성하도록 구성할 수도 있다(도 4a 및 도 8 참조).
또 다른 일례로써, 상기 제1시트(121) 및 제2시트(122)가 배치되는 하우징(130)의 안착면(134)이 서로 다른 높이를 갖는 제1부분(134a)과 제2부분(134b)을 포함하도록 형성할 수 있다(도 9a 및 도 10c 참조). 이때, 상기 제1시트(121)는 상대적으로 높은 높이를 갖는 제1부분(134a)에 배치될 수 있으며 제2시트(122)는 상대적으로 낮은 높이를 갖는 제2부분(134b)에 배치될 수 있다. 여기서, 상기 안착면(134)은 상기 하우징(130)의 내부 바닥면일 수도 있고 상기 바닥면으로부터 일정높이 이격배치되는 별도의 지지부재일 수도 있다.
대안으로, 상기 휴대기기가 놓여지는 상판(132)을 단차지게 형성함으로써 제1이격거리(d1)가 제2이격거리(d2)보다 짧은 길이를 갖도록 구현할 수도 있다(도 9c 참조). 즉, 상기 상판(132)은 상기 제1무선전력 전송용 안테나(111)의 상부영역에 배치되는 제1상판(132a)과 상기 제2무선전력 전송용 안테나(112)의 상부영역에 배치되는 제2상판(132b)을 포함하고, 상기 제2상판(132b)이 상기 제1상판(132a)보다 상대적으로 낮은 높이를 갖는 단차면으로 형성될 수 있다.
더불어, 도면에는 도시하지 않았지만 제1시트(121) 및 제2시트(122)의 두께를 다르게 하거나, 상판(132)이 단차면을 갖도록 형성하거나 상기 안착면(134)이 단차면을 갖도록 형성하는 3가지 방식이 적절하게 조합될 수도 있음을 밝혀둔다.
이에 따라, 본 발명에 따른 차량용 무선전력 송신모듈(100,200)을 이용하여 휴대기기를 충전하고자 하는 경우 상기 휴대기기를 상판(132)에 올려놓기만 하면 상술한 단차구조를 통하여 별다른 조작을 수행할 필요없이 구조적으로 충전대상인 휴대기기가 해당 무선전력 전송용 안테나(111,112)와 충전효율을 높일 수 있는 적정거리를 유지할 수 있다.
즉, 상기 휴대기기가 자기유도방식으로 충전되는 기기일 경우에는 제1무선전력 전송용 안테나(111)와 휴대기기가 최대한 밀착된 거리를 유지하여 0.7 이상의 결합계수를 유지하도록 설정되며, 상기 휴대기기가 자기공진방식으로 충전되는 기기일 경우에도 제2무선전력 전송용 안테나(112)와 휴대기기가 적정거리 이격된 상태를 유지하여 0.2 미만의 결합계수를 유지하도록 설정됨으로써 과도한 코일결합에 의한 스플릿을 막고 하우징(130)의 상판(132) 표면에서의 고른 자기장 분포를 얻는데 유리하므로 충전효율을 높일 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (20)

  1. 내부공간을 갖추고 충전대상인 휴대기기가 놓여지는 상판을 포함하는 하우징;
    자기유도 방식으로 작동하는 제1무선전력 전송용 안테나 및 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나를 포함하는 안테나유닛; 및
    상기 제1무선전력 전송용 안테나와 대응되는 영역에 배치되는 제1시트 및 상기 제2무선전력 전송용 안테나와 대응되는 영역에 배치되는 제2시트를 포함하는 차폐유닛;을 포함하고,
    상기 안테나유닛은 상기 제1무선전력 전송용 안테나로부터 상판의 외부면까지의 제1이격거리가 상기 제2무선전력 전송용 안테나로부터 상판의 외부면까지의 제2이격거리보다 짧은 길이를 갖도록 상기 하우징의 내부에 배치되는 차량용 무선전력 송신모듈.
  2. 제 1항에 있어서,
    상기 제1이격거리는 상기 휴대기기에 포함되는 수신코일과 상기 제1무선전력 전송용 안테나와의 결합계수(k)가 0.7 이상의 값을 갖도록 설정되고, 상기 제2이격거리는 상기 휴대기기에 포함되는 수신코일과 상기 제2무선전력 전송용 안테나와의 결합계수(k)가 0.2 미만의 값을 갖도록 설정되는 차량용 무선전력 송신모듈.
  3. 제 2항에 있어서,
    상기 제1이격거리는 2mm ~ 5mm이고, 상기 제2이격거리는 10mm ~ 50mm인 차량용 무선전력 송신모듈.
  4. 제 1항에 있어서,
    상기 제1무선전력 전송용 안테나는 Qi 방식으로 작동하는 제1안테나와 PMA 방식으로 작동하는 제2안테나를 포함하는 차량용 무선전력 송신모듈.
  5. 제 1항에 있어서,
    상기 제1시트는 상기 제1무선전력 전송용 안테나가 배치되는 일면이 상기 제2무선전력 전송용 안테나가 배치되는 제2시트의 일면에 대하여 높이차를 갖는 단차면인 차량용 무선전력 송신모듈.
  6. 제 5항에 있어서,
    상기 제1무선전력 전송용 안테나가 배치되는 제1시트의 일면은 상기 제2무선전력 전송용 안테나가 배치되는 제2시트의 일면에 대하여 일정높이 돌출되는 차량용 무선전력 송신모듈.
  7. 제 5항에 있어서,
    상기 제1시트는 상기 제2시트보다 상대적으로 좁은 면적을 갖도록 구비되어 상기 제2시트의 일면에 적층되는 차량용 무선전력 송신모듈.
  8. 제 5항에 있어서,
    상기 제1시트는 상기 제2시트의 내측에 배치되고, 상기 제2시트는 상기 제1시트의 일부 또는 전체두께를 수용하기 위한 수용부가 형성되는 차량용 무선전력 송신모듈.
  9. 제 1항에 있어서,
    상기 제1무선전력 전송용 안테나는 가상의 직선을 경계로 상기 직선의 일측에 형성되는 제1영역에 배치되고, 상기 제2무선전력 전송용 안테나는 상기 직선의 타측에 형성되는 제2영역에 배치되는 차량용 무선전력 송신모듈.
  10. 제 9항에 있어서,
    상기 하우징은 상기 제1시트 및 제2시트가 안착되는 안착면을 포함하고,
    상기 안착면은 상기 제1시트가 배치되는 제1부분과, 상기 제2시트가 배치되는 제2부분을 포함하며,
    상기 제2부분의 일면은 상기 제1부분의 일면에 대하여 높이차를 갖는 단차면인 차량용 무선전력 송신모듈.
  11. 제 9항에 있어서,
    상기 제1시트는 상기 제1영역에 배치되고 상기 제2시트는 상기 제2영역에 배치되며, 상기 제1시트는 상기 제2시트보다 상대적으로 두꺼운 두께를 갖도록 구비되는 차량용 무선전력 송신모듈.
  12. 제 1항에 있어서,
    상기 상판은 상기 제1무선전력 전송용 안테나의 상부영역에 배치되는 제1상판과 상기 제2무선전력 전송용 안테나의 상부영역에 배치되는 제2상판을 포함하고,
    상기 제1상판의 외부면은 상기 제2상판의 외부면에 대하여 높이차를 갖는 단차면인 차량용 무선전력 송신모듈.
  13. 제 1항에 있어서,
    상기 안테나유닛은 근거리 데이터 통신을 위한 NFC 안테나를 더 포함하는 차량용 무선전력 송신모듈.
  14. 제 9항에 있어서,
    상기 NFC 안테나는 상기 제2시트와 대응되는 영역에 배치되는 차량용 무선전력 송신모듈.
  15. 제 1항에 있어서,
    상기 제1시트는 동작주파수가 100kHz~350kHz인 주파수 대역에서 상기 제2시트보다 상대적으로 높은 투자율을 갖도록 구비되거나, 상기 제2시트와 동일한 투자율을 갖는 경우 상기 제1시트의 투자손실률이 상기 제2시트의 투자손실률보다 상대적으로 작은 값을 갖도록 구비되는 차량용 무선전력 송신모듈.
  16. 제 1항에 있어서,
    상기 제2시트는 동작주파수가 6.765MHz ~ 6.795MHz인 주파수 대역 및 13.56MHz의 주파수에서 상기 제1시트보다 상대적으로 높은 투자율을 갖도록 구비되거나, 상기 제1시트와 동일한 투자율을 갖는 경우 상기 제2시트의 투자손실률이 상기 제1시트의 투자손실률보다 상대적으로 작은 값을 갖도록 구비되는 차량용 무선전력 송신모듈.
  17. 제 1항에 있어서,
    상기 제1시트는 동작주파수가 100kHz~350kHz인 주파수 대역에서 300~3500의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하이며, 자속밀도가 0.25T 이상인 재질로 이루어지고,
    상기 제2시트는 동작주파수가 6.765MHz ~ 6.795MHz인 주파수 대역 및 13.56MHz의 주파수에서 30~350의 투자율을 갖고, Tanㅿ(=μ"/μ')가 0.05이하이며,
    동작주파수가 6.765MHz ~ 6.795MHz인 주파수 대역에서 자속밀도가 0.25T 이상인 재질로 이루어지는 차량용 무선전력 송신모듈(여기서, μ'은 투자율이고, μ"은 투자손실율임).
  18. 제 17항에 있어서,
    상기 제1시트는 100kHz~350kHz 주파수 대역에서 투자율이 2000~3500이고 Tanㅿ(=μ"/μ')가 0.05이하인 Mn-Zn 페라이트 또는 100kHz~350kHz 주파수 대역에서 투자율이 300~1500이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트 중 어느 하나이고,
    상기 제2시트는 6.765MHz ~ 6.795MHz인 주파수 대역 및 13.56MHz의 주파수에서 투자율이 100~350이고 Tanㅿ(=μ"/μ')가 0.05이하인 Ni-Zn 페라이트 또는 6.765MHz ~ 6.795MHz인 주파수 대역에서 투자율이 30~70이고 Tanㅿ(=μ"/μ')가 0.05이하인 메탈 폴리머 중 어느 하나인 차량용 무선전력 송신모듈.
  19. 제 1항에 있어서,
    상기 제1시트 및 제2시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트, 페라이트 시트 및 메탈 폴리머 시트 중 어느 하나를 포함하는 차량용 무선전력 송신모듈.
  20. 제 1항에 있어서,
    상기 제1시트 및 제2시트 중 적어도 어느 하나는 복수 개의 미세 조각으로 분리형성되는 차량용 무선전력 송신모듈.
PCT/KR2016/008492 2015-08-04 2016-08-02 차량용 무선전력 송신모듈 WO2017023080A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680046031.8A CN107912075B (zh) 2015-08-04 2016-08-02 车辆用无线电力传输模块
US15/747,582 US10566824B2 (en) 2015-08-04 2016-08-02 Wireless power transfer module for vehicles

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0110204 2015-08-04
KR10-2015-0110189 2015-08-04
KR1020150110204A KR101697304B1 (ko) 2015-08-04 2015-08-04 차량용 무선충전 송신모듈
KR1020150110189A KR101693538B1 (ko) 2015-08-04 2015-08-04 차량용 무선충전 송신모듈
KR10-2015-0110200 2015-08-04
KR1020150110200A KR101697303B1 (ko) 2015-08-04 2015-08-04 차량용 무선충전 송신모듈

Publications (1)

Publication Number Publication Date
WO2017023080A1 true WO2017023080A1 (ko) 2017-02-09

Family

ID=57943507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008492 WO2017023080A1 (ko) 2015-08-04 2016-08-02 차량용 무선전력 송신모듈

Country Status (3)

Country Link
US (1) US10566824B2 (ko)
CN (1) CN107912075B (ko)
WO (1) WO2017023080A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095449A (zh) * 2017-09-18 2020-05-01 阿莫先恩电子电器有限公司 磁场屏蔽片及包括其的无线电力传输模块
EP3641144A4 (en) * 2017-06-16 2021-03-03 Amosense Co.,Ltd WIRELESS VEHICLE ENERGY EMISSION DEVICE
CN112863151A (zh) * 2021-01-28 2021-05-28 大陆汽车电子(长春)有限公司 防止智能钥匙被车载的无线充电器损伤的方法和系统
WO2022055126A1 (ko) * 2020-09-10 2022-03-17 에스케이씨 주식회사 무선 충전 장치 및 이를 포함하는 이동 수단

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10530177B2 (en) * 2017-03-09 2020-01-07 Cochlear Limited Multi-loop implant charger
JP7239274B2 (ja) * 2018-04-27 2023-03-14 矢崎総業株式会社 電力伝送通信ユニット
US11355281B2 (en) * 2018-06-28 2022-06-07 Lg Electronics Inc. Wireless power reception apparatus and method therefor
US20220285991A1 (en) * 2018-06-28 2022-09-08 Lg Electronics Inc. Wireless power transmitter
KR20200010002A (ko) * 2018-07-20 2020-01-30 주식회사 아모센스 무선 전력 전송 모듈을 구비한 컵 홀더
EP3611820A1 (en) 2018-08-15 2020-02-19 Koninklijke Philips N.V. Device and method for wireless power transfer
JP2020053522A (ja) * 2018-09-26 2020-04-02 矢崎総業株式会社 電力伝送ユニット
CN109066936A (zh) * 2018-09-27 2018-12-21 北京乐界乐科技有限公司 一种新型双向非对称无线充电装置
JP7180267B2 (ja) * 2018-10-12 2022-11-30 トヨタ自動車株式会社 コイルユニット
WO2020218912A1 (ko) * 2019-04-26 2020-10-29 주식회사 아모센스 안테나 모듈 및 이를 구비한 휴대 단말 커버
KR20200136664A (ko) * 2019-05-28 2020-12-08 현대자동차주식회사 차량용 무선전력 송신장치
CN110138104B (zh) * 2019-06-14 2023-11-17 青岛大学 一种用于无线电能传输磁耦合器的复合屏蔽层
WO2021081801A1 (zh) * 2019-10-30 2021-05-06 广东高普达集团股份有限公司 无线充电装置
EP3875305A1 (en) * 2020-03-05 2021-09-08 Delta Electronics (Thailand) Public Co., Ltd. Wireless power transfer arrangement
US11689038B2 (en) * 2020-08-31 2023-06-27 Xentris Wireless, Llc Dual electronic device wireless charger
CN115188103B (zh) * 2022-06-24 2023-11-14 华人运通(江苏)技术有限公司 一种车载nfc钥匙控制方法以及车载无线充电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130072181A (ko) * 2011-12-21 2013-07-01 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
JP2014011852A (ja) * 2012-06-28 2014-01-20 Panasonic Corp 携帯端末
KR20140044022A (ko) * 2012-10-04 2014-04-14 엘지이노텍 주식회사 무선충전용 전자기 부스터 및 그 제조방법
KR20140142163A (ko) * 2013-06-03 2014-12-11 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20150047085A (ko) * 2013-10-23 2015-05-04 엘지전자 주식회사 무선 전력 전송장치 및 무선 충전 시스템
JP2015104218A (ja) * 2013-11-25 2015-06-04 小島プレス工業株式会社 車両用非接触充電ユニット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101267076B1 (ko) * 2011-03-24 2013-05-24 주식회사 한림포스텍 무선 전력 전송 어셈블리에서의 전력 제어 방법 및 무선 전력 전송 어셈블리
US9413175B2 (en) 2013-06-03 2016-08-09 Lg Electronics Inc. Wireless charging system for transferring power to receivers having different standards using coils of differing shapes
WO2015060570A1 (en) 2013-10-23 2015-04-30 Lg Electronics Inc. Wireless power transfer method, apparatus and system
US9672976B2 (en) * 2013-10-28 2017-06-06 Nokia Corporation Multi-mode wireless charging
US10003217B2 (en) * 2014-03-04 2018-06-19 Qualcomm Incorporated System and method for reducing emissions for polarized coil systems for wireless inductive power transfer
US20150326058A1 (en) 2014-05-07 2015-11-12 Htc Corporation Electronic Device for Handling Sharing of Communication Hardware in Wireless Charging System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130072181A (ko) * 2011-12-21 2013-07-01 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
JP2014011852A (ja) * 2012-06-28 2014-01-20 Panasonic Corp 携帯端末
KR20140044022A (ko) * 2012-10-04 2014-04-14 엘지이노텍 주식회사 무선충전용 전자기 부스터 및 그 제조방법
KR20140142163A (ko) * 2013-06-03 2014-12-11 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20150047085A (ko) * 2013-10-23 2015-05-04 엘지전자 주식회사 무선 전력 전송장치 및 무선 충전 시스템
JP2015104218A (ja) * 2013-11-25 2015-06-04 小島プレス工業株式会社 車両用非接触充電ユニット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641144A4 (en) * 2017-06-16 2021-03-03 Amosense Co.,Ltd WIRELESS VEHICLE ENERGY EMISSION DEVICE
US11271435B2 (en) 2017-06-16 2022-03-08 Amosense Co., Ltd Wireless power transmission device for vehicle
CN111095449A (zh) * 2017-09-18 2020-05-01 阿莫先恩电子电器有限公司 磁场屏蔽片及包括其的无线电力传输模块
WO2022055126A1 (ko) * 2020-09-10 2022-03-17 에스케이씨 주식회사 무선 충전 장치 및 이를 포함하는 이동 수단
CN112863151A (zh) * 2021-01-28 2021-05-28 大陆汽车电子(长春)有限公司 防止智能钥匙被车载的无线充电器损伤的方法和系统
CN112863151B (zh) * 2021-01-28 2023-06-16 大陆汽车电子(长春)有限公司 防止智能钥匙被车载的无线充电器损伤的方法和系统

Also Published As

Publication number Publication date
US10566824B2 (en) 2020-02-18
US20180219400A1 (en) 2018-08-02
CN107912075B (zh) 2022-05-10
CN107912075A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2017135687A1 (ko) 무선전력 전송모듈용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2017014430A1 (ko) 무선전력 송신모듈
WO2016190649A1 (ko) 무선전력 수신모듈
WO2016072779A1 (ko) 무선충전기용 송신장치
WO2016186443A1 (ko) 콤보 안테나유닛 및 이를 포함하는 무선전력 수신모듈
WO2016159551A1 (ko) 무선 충전용 방열유닛 및 이를 포함하는 무선전력 충전모듈
WO2016114528A1 (ko) 방열유닛 및 이를 구비한 무선전력 송수신장치
WO2017078481A1 (ko) 콤보형 안테나 모듈
WO2017030289A1 (ko) 안테나유닛 및 이를 포함하는 무선전력 전송모듈
WO2017074104A1 (ko) 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
WO2019054747A2 (ko) 무선전력 송신장치
WO2013180367A1 (ko) 전자파흡수시트를 포함하는 무선인식 및 무선충전 겸용 무선안테나, 그것의 제조방법
WO2014204153A2 (ko) 수신 안테나 및 이를 포함하는 무선 전력 수신 장치
WO2016186444A1 (ko) 무선충전용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2019172595A1 (ko) 무선전력 송신장치
WO2018048281A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2019151693A1 (ko) 안테나 성능을 개선시키는 무선 충전 수신기
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2017078285A1 (ko) 무선 전력 송신기
WO2017014464A1 (ko) 콤보 안테나모듈 및 이를 포함하는 휴대용 전자장치
KR20190070011A (ko) 무선전력 송신장치
KR20190069365A (ko) 무선전력 전송모듈용 차폐유닛 및 이를 구비한 무선전력 전송모듈
EP3675323B1 (en) Wireless charging device using multi-coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747582

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833316

Country of ref document: EP

Kind code of ref document: A1