WO2016190649A1 - 무선전력 수신모듈 - Google Patents

무선전력 수신모듈 Download PDF

Info

Publication number
WO2016190649A1
WO2016190649A1 PCT/KR2016/005483 KR2016005483W WO2016190649A1 WO 2016190649 A1 WO2016190649 A1 WO 2016190649A1 KR 2016005483 W KR2016005483 W KR 2016005483W WO 2016190649 A1 WO2016190649 A1 WO 2016190649A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
sheet
antenna
receiving module
power receiving
Prior art date
Application number
PCT/KR2016/005483
Other languages
English (en)
French (fr)
Inventor
장길재
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201680030459.3A priority Critical patent/CN107980166B/zh
Priority to US15/575,566 priority patent/US10475571B2/en
Publication of WO2016190649A1 publication Critical patent/WO2016190649A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0247Orientating, locating, transporting arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H04B5/79
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas

Definitions

  • the present invention relates to a wireless power receiving module, and more particularly, to a wireless power receiving module that can minimize the influence of the permanent magnet when the wireless power transmission module includes a permanent magnet.
  • the portable terminal has a wireless charging function for wirelessly charging the built-in battery.
  • the wireless charging includes a wireless power receiving module embedded in the portable terminal and a wireless power transmitting module supplying power to the wireless power receiving module. Is made by.
  • the wireless charging may be classified into a magnetic induction method and a magnetic resonance method, and may be classified into a PMA method and a Qi method according to a method of sensing the approach of the wireless power receiver module to the wireless power transmission module.
  • the PMA wireless charging method controls the operation of the wireless power transmission module by detecting an approach of the wireless power reception module using a permanent magnet and a hall sensor provided in the wireless power transmission module.
  • a wireless power transmission antenna 16 for transmitting wireless power is disposed on one surface of the shielding sheet 11 and the wireless power transmission antenna 16.
  • the permanent magnet 14 is disposed in the center of the.
  • the wireless power receiving module 20 recognizes that the wireless power transmission module 10 operates to perform wireless charging.
  • the thickness of the wireless power receiving module 20 embedded in the portable terminal has also become thinner.
  • the thickness of the wireless power receiving module 20 has to be designed to be 0.3 mm or less. Faced. As such, when the thickness of the wireless power receiving module is designed to be 0.3 mm or less, the thickness of the shielding sheet should be thin and the antenna for wireless power receiving should be able to operate smoothly.
  • the shield sheet was formed to a thickness of about 160 ⁇ m, and the total thickness of the wireless power receiver module was 0.3mm.
  • the shield sheet was thinned as described above, it was caused by the direct current magnetic field generated from the permanent magnet. There was a problem that the antenna for wireless power reception does not work smoothly.
  • the permanent magnet is installed in the wireless power transmission module, and the magnetic material is attached to the central portion of the shield sheet.
  • the wireless power receiving module is brought closer to the wireless power transmitting module, the permanent magnet and the magnetic body are aligned with each other through the DC magnetic field generated by the permanent magnet, thereby aligning the wireless power transmitting module and the wireless power receiving module.
  • the performance as the shielding sheet may be inferior or fail to function as the shielding sheet.
  • the present inventors have found that when the permanent magnet is included in the wireless power transmission module, the size of the permanent magnet is related to the size of the wireless power receiving antenna provided in the wireless power receiving module.
  • the present invention has been found to have a great influence on the operation of.
  • the size of the center portion of the wireless power reception antenna without the pattern portion is formed larger than the size of the permanent magnet, the influence of the permanent magnet can be minimized and the wireless power reception antenna can operate smoothly. It was acquired through experiment.
  • the present invention has been made in view of the above, by minimizing the influence of permanent magnets, the wireless power reception antenna can operate smoothly, reducing the overall thickness of the shielding unit to achieve a thinner wireless power reception
  • the purpose is to provide a module.
  • the present invention is to interact with a wireless power transmission module including at least one wireless power transmission antenna and a permanent magnet, a wireless portion having a predetermined area in the center of the pattern portion is formed
  • An antenna unit including a power receiving antenna;
  • a shielding unit disposed on one surface of the antenna unit to shield a magnetic field, wherein the shortest length between the inner side facing each other of the pattern portion is equal to or longer than the diameter of the permanent magnet.
  • the shortest length between the inner sides facing each other among the pattern portions constituting the wireless power reception antenna is the shortest length between the inner sides facing each other among the pattern portions constituting the wireless power transmission antenna. It may be provided to have the same or shorter length than.
  • the pattern portion may be wound a plurality of times in a circular, elliptical, polygonal, and a combination thereof.
  • the shortest length may be a straight line passing through the center point of the hollow portion.
  • the wireless power reception antenna may be a flat coil in which a conductive member is wound a plurality of times, or may be formed in a printed pattern on one surface of a circuit board.
  • the wireless power receiving module includes a magnetic material for changing a path of the magnetic flux by inducing a part of the magnetic force lines generated in the permanent magnet when approaching the wireless power transmission module side, the magnetic material may be disposed in the hollow portion.
  • the total thickness of the shielding unit may be 0.10 to 0.16mm.
  • the antenna unit may be a combo type further comprising at least one other antenna using a different frequency band than the antenna for receiving wireless power.
  • the other antenna may include one or more of an antenna for MST and an antenna for NFC.
  • the shielding unit may include a first sheet and a second sheet having different characteristics in a predetermined frequency band.
  • first sheet may be disposed in an area corresponding to the antenna for receiving wireless power
  • second sheet may be disposed in an area corresponding to the other antenna
  • the first sheet may have a relatively higher permeability than the second sheet in the frequency band of 100 ⁇ 300kHz.
  • the permeability loss of the first sheet may have a relatively smaller value than the permeability loss of the second sheet.
  • the second sheet may have a relatively higher permeability than the first sheet at a frequency of 13.56 MHz.
  • the permeability of the second sheet may have a value that is relatively smaller than the permeability of the first sheet.
  • the first sheet may be a ribbon sheet including at least one of an amorphous alloy and a nano grain alloy
  • the second sheet may be a ferrite sheet.
  • the shielding unit may include any one of a ribbon sheet, a ferrite sheet or a polymer sheet including at least one or more of an amorphous alloy and a nano-crystalline alloy.
  • the shielding unit may be provided with a plurality of ribbon sheets including at least one or more of an amorphous alloy and a nano-crystalline alloy may be laminated in multiple layers.
  • the influence of the permanent magnets can be minimized and the wireless power reception antenna can operate smoothly, thereby stably realizing the conditions and characteristics required for wireless charging.
  • the overall thickness of the shielding unit may have a thickness of 0.16 mm or less, even 0.13 mm or less, so that the total thickness of the wireless power receiver module may be 0.3 mm or less, thereby providing stable and efficient application to a light and small sized portable terminal. This has a possible advantage.
  • 1 is a view for explaining a concept of detecting the approach of the wireless power receiving module for the wireless power transmission module when the permanent magnet is included in the wireless power transmission module
  • FIG. 2 is a view schematically showing a wireless power transmission module in FIG.
  • FIG. 3A and 3B are schematic views showing a wireless power receiving module according to an embodiment of the present invention.
  • FIG. 3A is a view showing a case in which a pattern portion of a wireless power receiving antenna is wound in a circular shape
  • FIG. 3B is a wireless power number.
  • FIG. 4 is a view schematically showing the relationship between the size of the wireless power reception antenna, permanent magnet and wireless power transmission antenna in a wireless power charging system to which the wireless power receiving module according to an embodiment of the present invention
  • FIG. 5a and 5b is a view showing a case in which the shielding unit applied to the wireless power receiving module according to an embodiment of the present invention includes a first sheet and a second sheet
  • Figure 5a is a first sheet is a second sheet
  • 5B is a view showing a form in which the first sheet is inserted into the second sheet
  • FIG. 6 is a detailed cross-sectional view showing a case in which a shielding unit applied to a wireless power receiving module according to an embodiment of the present invention is laminated with a plurality of ribbon sheets in multiple layers;
  • FIGS. 7A to 7C are diagrams illustrating a case in which an antenna unit applied to a wireless power receiving module according to an embodiment includes a plurality of antennas, and FIG. 7A illustrates a case in which a pattern portion of an antenna is wound in a circular shape.
  • FIG. 7B illustrates a case in which the pattern portion of the antenna is wound in a rectangle, and
  • FIG. 7C illustrates a case in which the pattern portion of the antenna is wound in a square.
  • FIG 8 is an exemplary view showing a state in which the wireless power receiving module according to an embodiment of the present invention is applied to a mobile phone.
  • the wireless power charging system 1 includes a wireless power transmission module 10 and a wireless power receiving module 100, 200.
  • the wireless power receiving module (100,200) may be built in a portable terminal such as a smart phone and electrically connected to the battery (see FIG. 8), and the wireless power transmitting module 10 is embedded in a separate case (not shown) Can be furnished with.
  • the portable terminal may be a portable electronic device such as a mobile phone, a PDA, a PMP, a tablet, a multimedia device, or the like.
  • the wireless power transmission module 10 operates when the wireless power reception modules 100 and 200 approach, and supplies wireless power to the wireless power reception module 100 and 200 through the wireless power transmission antenna 14.
  • the wireless power receiving module 100 or 200 may charge a battery included in an electronic device such as a portable terminal using the wireless power supplied as described above.
  • the wireless power transmission module 10 may include a permanent magnet 16 and a wireless power transmission antenna 16, as shown in Figure 4, the wireless power transmission module 10 in a PMA method In operation, the Hall sensor 12 may be further included.
  • the permanent magnet 16 included in the wireless power transmission module 10 may be used for the operation of the hall sensor 12 in the PMA method, or may be used for alignment with the wireless power receiving module. Note that it may be.
  • Wireless power receiving module (100,200) is applied to the above-described wireless power charging system 1, it may include an antenna unit (110, 210) and a shielding unit (120).
  • the antenna units 110 and 210 may include at least one antenna using a predetermined frequency band, and to perform a predetermined function by using the frequency band.
  • the antenna units 110 and 210 may include a plurality of antennas that perform different roles, and may be fixed to one surface of the shielding unit 120 through an adhesive layer.
  • the antenna is provided with a circular, elliptical or square flat coil wound around the conductive member having a predetermined length in a clockwise or counterclockwise direction to be fixed to one surface of the shielding unit 120.
  • the antenna may be formed in a loop-shaped pattern using a conductive ink such as copper foil on at least one surface of a circuit board 112 made of synthetic resin such as polyimide (PI) or PET, or a conductive ink. have.
  • the antenna unit includes a plurality of antennas
  • the plurality of antennas may be configured by combining a planar coil and an antenna pattern formed on a circuit board.
  • the antenna unit (110, 210) applied to the present invention receives a wireless power signal transmitted from the wireless power transmission module 10 to receive the power (Rx coil) (second coil) to produce the power required by the portable electronic device
  • the part serving as) and other parts described below may be configured together.
  • the antenna units 110 and 210 include at least one wireless power reception antenna 114 for receiving wireless power (see FIGS. 3A and 3B), and the wireless power reception antenna 114 in addition to the wireless power reception antenna 114. At least one other antenna 115 and 116 using a different frequency band than the power reception antenna 114 may be further included (see FIGS. 7A to 7C).
  • the other antennas 115 and 116 may be an antenna for magnetic secure transmission (MST) 115 or an antenna 116 for near field communication (NFC), and the antenna unit 210 may be an antenna for MST 115. And at least one of the NFC antenna 116.
  • MST magnetic secure transmission
  • NFC near field communication
  • the NFC antenna 116 may be provided to have a fine line width because the frequency band used than the wireless power reception antenna 114 is higher, the wireless power reception antenna 114 is required to transmit power and NFC Since the lower frequency band is used, the line width may be wider than that of the NFC antenna 116.
  • an MST antenna 115 and a wireless power reception antenna 114 may be disposed inside the NFC antenna 116.
  • the positions of the NFC antenna 116, the MST antenna 115, and the wireless power reception antenna 114 are not limited thereto, and the arrangement relationship may be appropriately changed according to design conditions. .
  • the wireless power reception antenna 114 applied to the present invention may include a hollow portion 114a having a predetermined area in the center of the pattern portion 114b. That is, the pattern part 114b may be wound in a loop shape so as to surround the hollow part 114a, and the pattern part 114b is a wireless power signal transmitted from the wireless power transmission module 10. It may serve as a receiving coil (Rx coil) for receiving the.
  • Rx coil receiving coil
  • the pattern portion 114b may be provided in a circular or oval shape, may be provided in the form of a polygon including a square and a rectangle, or may be provided in a form in which they are combined with each other.
  • the area of the hollow portion 114a of the wireless power reception antenna 114 is equal to or smaller than the central area of the wireless power transmission antenna 16 provided in the wireless power transmission module 10. It may have a larger area or the same as the cross-sectional area of the permanent magnet 14 disposed in the central portion of the wireless power transmission antenna 16.
  • the pattern portion 114b may have a length that is the same as or shorter than the diameter R of the permanent magnet 14 provided in the wireless power transmission module 10 with the shortest length L between the inner sides facing each other.
  • the pattern portion 114b has a shortest length L between the inner side facing each other between the inner side facing each other among the pattern portions of the antenna 16 for wireless power transmission included in the wireless power transmission module 10. It may have a length equal to or shorter than the shortest length l.
  • the shortest length (L) between the inner side facing each other of the pattern portion 114b may be the inner diameter of the hollow portion 114a when the pattern portion 114b is provided in a circular shape, the pattern portion 114b ) Is provided in the form of a rectangle may be a length of a relatively short side of the two sides of the hollow portion (114a).
  • the shortest length L between the inner side of the pattern portion 114b may be a straight line passing through the center point of the hollow portion 114a.
  • the hollow part (not shown) is formed in the pattern part 114b.
  • 114a) may have the same or relatively larger area than the cross-sectional area of the permanent magnet 14 provided in the wireless power transmission module 10, the wireless power transmission provided in the wireless power transmission module 10 It may have an area that is the same as or relatively narrow to the center area of the credit antenna 16.
  • the center point of the permanent magnet 14 and the center point of the hollow part 114a are aligned to coincide with each other.
  • the permanent magnet 14 may always be disposed inside the hollow part 114a.
  • the permanent magnet 14 provided in the wireless power transmission module 10 is always hollowed out of the wireless power reception antenna 114. Since it is located on the side 114a, the pattern portion 114b of the antenna for wireless power reception may not be disposed on the upper or lower portion corresponding to the cross-sectional area of the permanent magnet 14.
  • the magnetic field generated by the pattern unit 114b during wireless charging is minimized by the DC magnetic field generated by the permanent magnet 14, thereby providing an antenna for wireless power reception provided in the wireless power receiving module 100,200.
  • Operation of the 114 can be made smoothly. Therefore, even if the total thickness of the shield unit 120 is 0.16mm or less, even 0.13mm thickness can be used to satisfy the characteristics required during wireless charging.
  • the shortest length L between the inner sides of the pattern part 114b is used.
  • the shield unit 120 has a thickness of 0.16 mm or less, even 0.13 mm, the antenna for wireless power reception operates smoothly so that the overall thickness is 0.3 mm. 100,200) can be implemented.
  • the wireless power receiving module (100,200) can have a variety of thicknesses and very thin thickness depending on the design conditions.
  • the magnetic body 130 may be disposed on the hollow portion 114a side of the wireless power reception antenna 114.
  • the magnetic body 130 changes the path of the magnetic flux by inducing a part of the magnetic force lines generated by the wireless power transmission module 10 when the wireless power receiving module 100,200 approaches the wireless power transmission module 10. It may be an attractor that induces a change in the voltage value of the Hall sensor 12 that satisfies the operation start condition of the wireless power transmission module 10.
  • the magnetic body 130 may be a magnetic plate of a thin plate, the same size as the size of the hollow portion (114a) to obtain a high efficiency by ensuring the maximum area in the size of the wireless power receiving module (100,200) allowed It can be formed as.
  • the magnetic body 130 may be attached to one surface of the shielding unit 120 to be integrated with the shielding unit 120, or attached to one surface of the antenna units 110 and 210 to be integrated with the antenna units 110 and 210. It may be provided in the form.
  • the magnetic body 130 may be a ribbon sheet of a thin sheet containing at least one or more of an amorphous alloy and a nanocrystalline alloy.
  • the magnetic body 130 may be composed of a single layer of ribbon sheet, a plurality of ribbon sheets may be formed in a multilayered form of three or more layers.
  • the amorphous alloy or nano-crystalline alloy may include a three-element alloy and a five-element alloy, for example, the three-element alloy may include Fe, Si and B, the five-element alloy is Fe, Si, B, Cu, and Nb.
  • the magnetic body 130 may be formed to be separated into a plurality of fine pieces to suppress the generation of eddy current, the plurality of fine pieces may be provided to be entirely insulated or partially insulated between neighboring fine pieces. Each of the pieces may be randomly made atypical.
  • the magnetic body 130 receives the wireless power through interaction with the permanent magnet 14 provided in the wireless power transmission module 10 in the proximity of the wireless power receiving module 100,200 and the wireless power transmission module 10.
  • the permanent magnet 14 may serve as an alignment means for the alignment of the module 100, 200 and the wireless power transmission module 10, it may be provided as a permanent magnet.
  • the shielding unit 120 is formed of a plate-like member having a predetermined area, the antenna unit 110, 210 may be fixed to one surface.
  • the shielding unit 120 may increase the performance of the antenna 114, 115, 116 operating in a predetermined frequency band by shielding the magnetic field generated by the antenna unit (110, 210) to increase the magnetic field collecting speed.
  • the shielding unit 120 may be made of a material having magnetic properties to shield the magnetic field generated by the antenna unit (110, 210).
  • the shielding unit 120 may be a ribbon sheet or polymer sheet including at least one or more of a ferrite sheet, an amorphous alloy and a nano-crystalline alloy.
  • the shielding unit 120 is not limited to the above-mentioned type, and it is understood that all materials may be used as long as they have magnetic properties.
  • the ferrite sheet may be a sintered ferrite sheet, and may include one or more of Ni-Zn ferrite and Mn-Zn ferrite.
  • the amorphous alloy or nanocrystalline alloy may include a three-element alloy or a five-element alloy, the three-element alloy may include Fe, Si and B, the five-element alloy is Fe, Si, B, Cu and Nb.
  • the shielding unit 120 ′′ is formed by laminating a ribbon sheet 123a of a thin plate including at least one of a plurality of amorphous alloys and nanocrystalline alloys through an adhesive layer 123b. It may be configured in the form.
  • the shielding unit 120 may be formed to be separated into a plurality of fine pieces to suppress the generation of eddy currents, the plurality of fine pieces may be provided to be insulated entirely or partially insulated between the neighboring fine pieces. Each piece may be randomly made atypical.
  • the adhesive layer 123b disposed between the sheets includes a non-conductive component.
  • the adhesive layer 123b may be provided as an adhesive, and the adhesive layer may be provided as an adhesive, and the adhesive may be formed on one or both sides of the substrate in the form of a film. It may be provided in a coated form.
  • the shielding unit (120, 120 ', 120 ") may be provided with a separate protective film 124 on at least one surface of the upper and lower surfaces.
  • the shielding unit 120 ' may be composed of a plurality of sheets having different characteristics to improve the performance of the corresponding antenna using different frequency bands.
  • the antenna unit 210 may have different characteristics to improve the performance of the corresponding antenna using different frequency bands. It may be composed of one sheet 121 and the second sheet 122.
  • the first sheet 121 may be disposed in an area corresponding to the wireless power reception antenna 114 to improve the performance of the wireless power reception antenna 114, and the second sheet.
  • the 122 may be disposed in areas corresponding to the NFC antenna 116 so as to improve the performance of the NFC antenna 116.
  • the first sheet 121 may be provided to have a size including the wireless power reception antenna 114, the second sheet 122 has an area including the NFC antenna 116. It may be provided to have.
  • the MST antenna 115 is disposed outside the wireless power reception antenna 114, the first sheet 121 may or may not include an upper region of the MST antenna 115. Note that it may not.
  • the shielding unit 120 ′ may be provided in such a manner that the first sheet 121 is stacked on one surface of the second sheet 122 (see FIG. 5A), and the first sheet 121 is formed of a first sheet 121. It may be provided in the form of a frame inserted into the two sheets 122 (see FIG. 5B).
  • the shielding unit 120 ′ when the shielding unit 120 ′ is composed of a plurality of sheets having different characteristics, the first sheet 121 and the second sheet 122 may have different characteristics.
  • the first sheet 121 and the second sheet 122 may be provided to have different permeability in a predetermined frequency band, may be provided to have a different saturation magnetic field, the first sheet 121 And when the permeability of the second sheet 122 is the same may be provided to have a different investment loss rate.
  • the first sheet 121 may have a relatively higher permeability than the second sheet in the low frequency band of 100 to 300 kHz, and is relatively higher than the second sheet in the frequency band of 100 to 300 kHz.
  • the permeability loss of the first sheet 121 is the second It may have a value relatively smaller than the loss ratio of the two sheets 122.
  • the first sheet 121 may be a ribbon sheet 123a including at least one of amorphous alloys and nanocrystalline alloys having a permeability of 600 to 700 in a low frequency band of 100 to 300 kHz.
  • the second sheet 122 may be a ferrite sheet having a magnetic permeability of 600 or less in a frequency band of 100 to 300 kHz.
  • the first sheet 121 has a relatively higher permeability than the second sheet 122 in the low frequency band of 100 to 300 kHz, 100 to 300 kHz transmitted from the wireless power transmission module 10 during wireless charging.
  • the wireless power signal is transmitted to the wireless power receiving antenna 114 disposed on the first sheet 121. It can be induced to be received with high efficiency.
  • the first sheet 121 is required to shield all the DC magnetic field by the permanent magnet provided in the wireless power transmission module.
  • the shield unit 120 since the direct current magnetic field is larger than the influence on the shield unit 120 'by the alternating current magnetic field, the shield unit is self-saturated to degrade the performance as the shield unit or rapidly reduce the power transmission efficiency.
  • the ribbon sheet including at least one of the amorphous alloy and the nanocrystalline alloy has a saturation magnetic field that is relatively larger than the ferrite sheet in the frequency band of 100 to 300 kHz, the upper side of the antenna for wireless power reception 114 The first sheet 121 is disposed can be smoothly charged by preventing the magnetization by the permanent magnet in the frequency band of 100 ⁇ 300kHz the wireless charging is made.
  • the permeability loss rate of the first sheet 121 is the investment of the second sheet 122
  • the loss of permeability due to the permeability loss during the wireless charging operation is reduced.
  • the AC magnetic field generated by the power transmission of the 100 ⁇ 300kHz frequency transmitted from the wireless power transmission module is guided to the first sheet 121 having a relatively high permeability and thus disposed on the first sheet 121 side.
  • the wireless power signal can be induced to the wireless power reception antenna 114 so that the wireless power signal can be received with high efficiency.
  • the second sheet 122 may be provided to have a relatively high permeability than the first sheet at a high frequency of 13.56 MHz, and the first sheet 121 and the second sheet 122 in a frequency band of 13.56 MHz.
  • Have the same permeability may be provided so that the permeability of the second sheet 122 has a relatively smaller value than the permeability of the first sheet 121.
  • the first sheet 121 may be a ribbon sheet including at least one or more of an amorphous alloy and a nano-crystalline alloy, a ferrite sheet may be used as the second sheet 122.
  • the first sheet 121 may be provided to have a lower permeability than the permeability of the second sheet 122 at 13.56MHz.
  • the second sheet 122 has a relatively higher permeability than the first sheet 121 in the frequency band of 13.56 MHz, when near field communication (NFC) is performed, 13.56 generated from an antenna installed in the RF reader.
  • the AC magnetic field generated by the MHz high frequency signal is induced to the second sheet 122 side having a relatively high permeability, so that the high frequency signal is received with high efficiency toward the NFC antenna 116 disposed on the second sheet 122 side. It can be induced to be.
  • the permeability loss ratio of the second sheet 122 is greater than the permeability loss ratio of the first sheet 121.
  • NFC near field communication
  • the ribbon sheet including at least one or more of an amorphous alloy and a nanocrystalline alloy is used as the first sheet 121
  • a ferrite sheet is used as the second sheet 122, but is not limited thereto.
  • the magnetic permeability, the saturation magnetic field and the magnetic permeability loss of the first sheet 121 and the second sheet 122 can be changed in various ways as long as the relative conditions for the respective sheets in the corresponding frequency band are satisfied. Put it.
  • the first sheet 121 and the second sheet 122 may be made of the same material having different permeability in the frequency band of 100 ⁇ 300kHz and / or frequency of 13.56MHz, the first sheet 121 ) And a ferrite sheet may be used as the second sheet 122, a ribbon sheet containing at least one or more of an amorphous alloy and a nano-crystalline alloy may be used. This is because even if made of the same material can be manufactured to have different characteristics (permeability, saturation magnetic field, permeability loss, etc.) through a variety of conditions, such as the heat treatment temperature, the number of laminations.
  • the wireless power receiving module (100,200) may be applied to the Qi method, it may be applied to the wireless charging of the PMA method.
  • the antenna unit (110, 210) is a wireless power reception antenna 114 that operates in a magnetic induction method and the A4WP type antenna operating in a magnetic resonance method may be included in other antennas.
  • the wireless power receiving module (100,200) it is noted that may be provided in the form attached to the back cover or the rear case 92 of the main body 90 of a portable electronic device such as a portable terminal.

Abstract

무선전력 수신모듈이 제공된다. 본 발명의 일 실시예에 의한 무선전력 수신모듈은 적어도 하나의 무선전력 송신용 안테나 및 영구자석을 포함하는 무선전력 송신모듈과 상호작용하는 것으로서, 패턴부의 중앙부에 소정의 면적을 갖는 중공부가 형성되는 무선전력 수신용 안테나를 포함하는 안테나유닛; 및 상기 안테나유닛의 일면에 배치되어 자기장을 차폐하는 차폐유닛;을 포함하고, 상기 패턴부 중 서로 마주하는 내측 사이의 최단길이는 상기 영구자석의 직경과 동일하거나 더 긴 길이를 갖도록 구비될 수 있다.

Description

무선전력 수신모듈
본 발명은 무선전력 수신모듈에 관한 것으로, 보다 구체적으로는 무선전력 송신모듈이 영구자석을 포함하는 경우 영구자석에 의한 영향을 최소화할 수 있는 무선전력 수신모듈에 관한 것이다.
최근 휴대 단말기에는 내장된 배터리를 무선으로 충전하기 위한 무선 충전 기능이 구비되고 있는데, 이러한 무선 충전은 휴대 단말기에 내장되는 무선 전력 수신 모듈과, 상기 무선 전력 수신 모듈에 전력을 공급하는 무선 전력 송신 모듈에 의해 이루어진다.
이러한 무선 충전은 자기 유도 방식과 자기 공진 방식으로 분류되기도 하며, 무선 전력 송신 모듈에 대한 무선 전력 수신 모듈의 접근을 감지하는 방식에 따라 PMA 방식과 Qi 방식으로 분류되기도 한다.
상기 PMA 무선 충전 방식은 무선전력 송신모듈에 구비되는 영구자석과 홀 센서를 이용하여 무선전력 수신모듈의 접근을 감지함으로써 무선전력 송신모듈의 동작을 제어한다.
즉, 도 1에 나타난 바와 같이 무선전력 송신모듈(10)에는 무선전력을 송출하기 위한 무선전력 송신용 안테나(16)가 차폐시트(11)의 일면에 배치되며, 상기 무선전력 송신용 안테나(16)의 중앙부에 영구자석(14)이 배치된다.
무선전력 송신모듈(10)에 무선전력 수신모듈(20)이 접근하게 되면, 상기 영구자석(14)으로부터 자기력선이 발생하며 이들 자기력선의 일부가 무선전력 수신모듈(20)에 구비되는 소위, 어트랙터(22)에 의해 그 경로가 바뀌면서 홀센서(12)에서의 전압값에 차이가 발생된다.
이때, 상기 홀센서(12)에서의 전압값의 차이가 일정 이상이 되면 무선전력 수신모듈(20)이 접근한 것으로 인지하여 무선전력 송신모듈(10)이 동작함으로써 무선 충전이 이루어지게 된다.
한편, 최근 휴대 단말기가 경박단소형화됨에 따라 휴대 단말기에 내장되는 무선전력 수신모듈(20)의 두께도 얇아지고 있으며, 예컨대 무선전력 수신모듈(20)의 두께를 0.3mm 이하로 설계해야 하는 문제에 직면했다. 이와 같이 무선전력 수신모듈의 두께를 0.3mm 이하로 설계하는 경우, 차폐시트의 두께를 얇게 하면서도 무선전력 수신용 안테나가 원활하게 작동할 수 있어야 한다.
이러한 설계조건에 만족하기 위해서는 차폐시트의 두께를 얇게 하거나 무선전력 수신용 안테나의 두께를 얇게 하는 방법이 있다. 이중, 무선전력 수신용 안테나의 경우 최소한의 작동을 위해서는 요구되는 두께가 존재하므로 이를 줄이는 데는 한계가 있다. 이에 따라, 차폐시트의 두께를 얇게 함으로써 요구되는 설계조건을 만족시킬 필요가 있다.
이러한 노력의 일환으로 차폐시트를 160㎛ 정도의 두께로 구성하여 무선전력 수신모듈의 전체두께를 0.3mm로 구현하려 하였으나, 위와 같이 차폐시트의 두께를 얇게 하게 되면 영구자석에서 발생하는 직류 자기장에 의한 영향으로 무선전력 수신용 안테나가 원활하게 작동되지 않는 문제가 있었다.
이는, 영구자석에서 발생하는 직류 자기장의 값이 무선전력 수신용 안테나에서 발생하는 교류 자기장에 비하여 상대적으로 큰 값을 갖기 때문이다. 이에 따라, 상기 차폐시트의 두께를 얇게 하면서도 무선전력 수신용 안테나가 원활하게 작동할 수 있는 방안이 요구되고 있다.
한편, Qi 방식 중 무선전력 송신모듈과 무선전력 수신모듈의 정렬을 위하여 무선전력 송신모듈에 영구자석을 채용하는 방식이 있다. 즉, 무선전력 송신모듈에 영구자석을 설치하고 무선전력 수신모듈에는 차폐시트의 대략 중앙부에 자성체가 부착된다. 이를 통해, 무선전력 송신모듈 측에 무선전력 수신모듈을 근접시키게 되면 상기 영구자석에서 발생되는 직류자기장을 통하여 영구자석과 자성체가 서로 정렬됨으로써 무선전력 송신모듈과 무선전력 수신모듈을 정렬하게 된다.
이러한 방식에서도 상술한 PMA 방식과 마찬가지로 영구자석에서 발생되는 직류자기장에 의한 영향으로 차폐시트의 두께를 얇게 하는 경우 차폐시트로서의 성능이 떨어지거나 차폐시트로서의 기능을 수행하지 못하는 문제가 있다.
본 발명자들은 예의 연구 및 실험을 반복한 결과, 무선전력 송신모듈에 영구자석이 포함되는 경우 영구자석의 사이즈가 무선전력 수신모듈에 구비되는 무선전력 수신용 안테나의 사이즈와 관계되어 무선전력 수신용 안테나의 작동에 큰 영향을 끼친다는 것을 발견하여 본 발명을 완성하기에 이르렀다.
즉, 패턴부가 형성되지 않는 무선전력 수신용 안테나의 중앙부 크기를 영구자석의 사이즈 이상으로 형성하게 되면 영구자석에 의한 영향을 최소화하여 무선전력 수신용 안테나가 원활하게 작동할 수 있다는 것을 반복적인 연구 및 실험을 통하여 지득하였다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 영구자석에 의한 영향을 최소화하여 무선전력 수신용 안테나가 원활하게 작동할 수 있음으로써 차폐유닛의 전체두께를 줄여 박형화를 구현할 수 있는 무선전력 수신모듈을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 적어도 하나의 무선전력 송신용 안테나 및 영구자석을 포함하는 무선전력 송신모듈과 상호작용하는 것으로서, 패턴부의 중앙부에 소정의 면적을 갖는 중공부가 형성되는 무선전력 수신용 안테나를 포함하는 안테나유닛; 및 상기 안테나유닛의 일면에 배치되어 자기장을 차폐하는 차폐유닛;을 포함하고, 상기 패턴부 중 서로 마주하는 내측 사이의 최단길이는 상기 영구자석의 직경과 동일하거나 더 긴 길이를 갖도록 구비되는 무선전력 수신모듈을 제공한다.
본 발명의 바람직한 실시예에 의하면, 상기 무선전력 수신용 안테나를 구성하는 패턴부 중 서로 마주하는 내측 사이의 최단길이는 상기 무선전력 송신용 안테나를 구성하는 패턴부 중 서로 마주하는 내측 사이의 최단길이와 동일하거나 더 짧은 길이를 갖도록 구비될 수 있다.
또한, 상기 패턴부는 원형, 타원형, 다각형 및 이들이 조합된 형태로 복수 회 권선될 수 있다.
또한, 상기 최단길이는 상기 중공부의 중심점을 지나는 직선일 수 있다.
또한, 상기 무선전력 수신용 안테나는 도전성부재가 복수 회 권선된 평판형 코일이거나, 회로기판의 일면에 인쇄 패턴으로 형성될 수 있다.
또한, 상기 무선전력 수신모듈이 무선전력 송신모듈 측으로의 접근시 상기 영구자석에서 발생하는 자기력선의 일부를 유도하여 자속의 경로를 변경시키는 자성체를 포함하고, 상기 자성체는 상기 중공부에 배치될 수 있다.
또한, 상기 영구자석의 직경이 15.5mm인 경우 상기 차폐유닛의 총두께는 0.10 내지 0.16mm일 수 있다.
또한, 상기 안테나유닛은 상기 무선전력 수신용 안테나와 다른 주파수 대역을 사용하는 적어도 하나의 다른 안테나를 더 포함하는 콤보형 일 수 있다.
또한, 상기 다른 안테나는 MST용 안테나 및 NFC용 안테나 중 하나 이상을 포함할 수 있다.
또한, 상기 차폐유닛은 소정의 주파수 대역에서 서로 다른 특성을 갖는 제1시트 및 제2시트를 포함할 수 있다.
또한, 상기 제1시트는 상기 무선전력 수신용 안테나와 대응되는 영역에 배치되고, 상기 제2시트는 상기 다른 안테나와 대응되는 영역에 배치될 수 있다.
또한, 상기 제1시트는 100~300kHz의 주파수 대역에서 상기 제2시트보다 상대적으로 높은 투자율을 가질 수 있다.
또한, 상기 제1시트는 100~300kHz의 주파수 대역에서 상기 제2시트와 동일한 투자율을 갖는 경우 상기 제1시트의 투자손실률이 상기 제2시트의 투자손실률보다 상대적으로 작은 값을 가질 수 있다.
또한, 상기 제2시트는 13.56MHz의 주파수에서 상기 제1시트보다 상대적으로 높은 투자율을 가질 수 있다.
또한, 상기 제2시트는 13.56MHz의 주파수에서 상기 제1시트와 동일한 투자율을 갖는 경우 상기 제2시트의 투자손실률이 상기 제1시트의 투자손실률보다 상대적으로 작은 값을 가질 수 있다.
또한, 상기 제1시트는 비정질 합금 및 나노 결정립 합금 중 1종 이상을 포함하는 리본시트이고, 상기 제2시트는 페라이트 시트일 수 있다.
또한, 상기 차폐유닛은 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트, 페라이트 시트 또는 폴리머 시트 중 어느 하나를 포함할 수 있다.
또한, 상기 차폐유닛은 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 복수 개로 구비되어 다층으로 적층될 수 있다.
본 발명에 의하면, 영구자석에 의한 영향을 최소화하여 무선전력 수신용 안테나가 원활하게 작동할 수 있음으로써 무선 충전에서 요구되는 조건 및 특성을 안정적으로 구현할 수 있다.
더불어, 차폐유닛의 전체두께가 0.16mm 이하, 심지어 0.13mm 이하의 두께로 설계되더라도 무선전력 수신모듈에서 요구되는 모든 조건 및 특성을 만족할 수 있다. 이에 따라, 차폐유닛의 전체두께가 0.16mm 이하, 심지어 0.13mm 이하의 두께를 가질 수 있어 무선전력 수신모듈의 전체두께를 0.3mm 이하로 구현할 수 있음으로써 경박단소형화 된 휴대 단말기에 안정적이면서도 효율적인 적용이 가능한 장점이 있다.
도 1은 무선전력 송신모듈에 영구자석이 포함된 경우 무선전력 송신모듈에 대한 무선전력 수신모듈의 접근 감지 개념을 설명하기 위한 도면,
도 2는 도 1에서 무선전력 송신모듈을 개략적으로 나타낸 도면,
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 무선전력 수신모듈을 나타낸 개략도로서, 도 3a는 무선전력 수신용 안테나의 패턴부가 원형으로 권선된 경우를 나타낸 도면이고, 도 3b는 무선전력 수신용 안테나의 패턴부가 직사각형으로 권선된 경우를 나타낸 도면,
도 4는 본 발명의 일 실시예에 따른 무선전력 수신모듈이 적용된 무선전력 충전 시스템에서 무선전력 수신용 안테나, 영구자석 및 무선전력 송신용 안테나의 사이즈 관계를 개략적으로 나타낸 도면,
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 무선전력 수신모듈에 적용되는 차폐유닛이 제1시트 및 제2시트를 포함하는 경우를 나타낸 도면으로서, 도 5a는 제1시트가 제2시트의 일면에 적층되는 경우이고, 도 5b는 제1시트가 제2시트에 삽입된 형태를 나타낸 도면,
도 6는 본 발명의 일 실시예에 따른 무선전력 수신모듈에 적용되는 차폐유닛이 복수 개의 리본시트가 다층으로 적층되는 경우를 나타낸 세부단면도,
도 7a 내지 도 7c는 본 발명의 일 실시예에 따른 무선전력 수신모듈에 적용되는 안테나유닛이 복수 개의 안테나를 포함하는 경우를 나타낸 도면으로서, 도 7a는 안테나의 패턴부가 원형으로 권선된 경우이고, 도 7b는 안테나의 패턴부가 직사각형으로 권선된 경우이며, 도 7c는 안테나의 패턴부가 정사각형으로 권선된 경우를 나타낸 도면, 그리고,
도 8은 본 발명의 일 실시예에 따른 무선전력 수신모듈이 휴대폰에 적용된 상태를 나타낸 예시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
먼저, 도 4를 참조하면, 무선전력 충전시스템(1)은 무선전력 송신모듈(10) 및 무선전력 수신모듈(100,200) 등을 포함한다. 상기 무선전력 수신모듈(100,200)은 스마트폰 등과 같은 휴대 단말기에 내장되어 배터리와 전기적으로 연결될 수 있으며(도 8 참조), 상기 무선전력 송신모듈(10)은 도시되지 않은 별도의 케이스 등에 내장된 상태로 비치될 수 있다.
여기서, 상기 휴대 단말기는 휴대폰, PDA, PMP, 테블릿, 멀티미디어 기기 등과 같은 휴대용 전자기기일 수 있다.
상기 무선전력 송신모듈(10)은 상기 무선전력 수신모듈(100,200)이 접근하면 동작하여 무선전력 송신용 안테나(14)를 통해 무선전력을 상기 무선전력 수신모듈(100,200) 측으로 공급한다. 무선전력 수신모듈(100,200)은 상기와 같이 공급되는 무선전력을 이용하여 휴대 단말기와 같은 전자기기에 포함된 배터리를 충전할 수 있게 된다.
이때, 상기 무선전력 송신모듈(10)은 도 4에 도시된 바와 같이 영구자석(16) 및 무선전력 송신용 안테나(16)를 포함할 수 있으며, 상기 무선전력 송신모듈(10)이 PMA 방식으로 작동하는 경우 홀센서(12)를 더 포함할 수 있다.
여기서, 상기 무선전력 송신모듈(10)에 포함되는 영구자석(16)은 PMA 방식에서 홀센서(12)의 작동을 위한 용도로 사용될 수도 있고, 무선전력 수신모듈과의 정렬을 위한 정렬용으로 사용될 수도 있음을 밝혀둔다.
본 발명의 일 실시예에 따른 무선전력 수신모듈(100,200)은 상술한 무선전력 충전 시스템(1)에 적용되는 것으로, 안테나유닛(110,210) 및 차폐유닛(120)을 포함할 수 있다.
상기 안테나유닛(110,210)은 소정의 주파수 대역을 사용하는 적어도 하나 이상의 안테나를 포함할 수 있으며, 상기 주파수 대역을 이용하여 소정의 기능을 수행토록 하기 위한 것이다.
이러한 안테나유닛(110,210)은 서로 다른 역할을 수행하는 복수 개의 안테나를 포함할 수 있으며, 상기 차폐유닛(120)의 일면에 접착층을 매개로 고정될 수 있다.
여기서, 상기 안테나는 일정길이를 갖는 도전성부재가 시계방향 또는 반시계방향으로 복수 회 권선되는 원형, 타원형 또는 사각형상의 평판형 코일로 구비되어 상기 차폐유닛(120)의 일면에 고정되는 형태로 구비될 수 있으며, 상기 안테나는 폴리이미드(PI)나 PET 등과 같은 합성수지로 이루어진 회로기판(112)의 적어도 일면에 동박 등과 같은 전도체를 루프 형태로 패터닝하거나 전도성 잉크를 사용하여 루프 형상의 패턴으로 형성될 수도 있다. 또한, 상기 안테나유닛이 복수 개의 안테나를 포함하는 경우 상기 복수 개의 안테나는 평판형 코일과 회로기판에 패턴형성된 안테나 패턴이 상호 조합된 형태로 구성될 수도 있다.
이때, 본 발명에 적용되는 안테나유닛(110,210)은 무선전력 송신모듈(10)로부터 송출되는 무선전력 신호를 수신하여 휴대용 전자기기가 필요로 하는 전력을 생산하는 수신 코일(Rx coil)(2차 코일)의 역할을 수행하는 부분과 이하에서 설명하는 다른 부분이 같이 구성될 수 있다.
즉, 상기 안테나유닛(110,210)은 무선 전력을 수신하기 위한 적어도 하나의 무선전력 수신용 안테나(114)를 포함하며(도 3a 및 도 3b 참조), 상기 무선전력 수신용 안테나(114) 이외에 상기 무선전력 수신용 안테나(114)와 다른 주파수 대역을 사용하는 적어도 하나의 다른 안테나(115,116)를 더 포함할 수 있다(도 7a 내지 도 7c 참조).
일례로, 상기 다른 안테나(115,116)는 MST(Magnetic Secure Transmission)용 안테나(115) 또는 NFC(Near Field Communicatino)용 안테나(116)일 수 있으며, 상기 안테나유닛(210)은 MST용 안테나(115) 및 NFC 안테나(116) 중 적어도 하나 이상을 더 포함할 수 있다.
여기서, 상기 NFC용 안테나(116)는 무선전력 수신용 안테나(114)보다 사용하는 주파수 대역이 높기 때문에 미세한 선폭을 갖도록 구비될 수 있고, 무선전력 수신용 안테나(114)는 전력 전송이 요구되며 NFC보다 낮은 주파수 대역을 사용하므로 NFC용 안테나(116)의 선폭보다 넓은 선폭을 갖도록 구비될 수 있다. 더불어, 상기 NFC용 안테나(116)의 내측에 MST용 안테나(115) 및 무선전력 수신용 안테나(114)가 배치될 수 있다.
그러나, 상기 NFC용 안테나(116), MST용 안테나(115) 및 무선전력 수신용 안테나(114)의 위치를 이에 한정하는 것은 아니며, 설계조건에 따라 배치관계는 적절하게 변경될 수 있음을 밝혀둔다.
한편, 본 발명에 적용되는 무선전력 수신용 안테나(114)는 패턴부(114b)의 중앙부에 소정의 면적을 갖는 중공부(114a)를 포함할 수 있다. 즉, 상기 패턴부(114b)는 상기 중공부(114a)를 둘러싸도록 루프 형상으로 복수 회 감긴 형태일 수 있으며, 상기 패턴부(114b)는 상기 무선전력 송신모듈(10)로부터 송출되는 무선 전력 신호를 수신하는 수신코일(Rx coil)의 역할을 수행할 수 있다.
여기서, 상기 패턴부(114b)는 원형이나 타원형으로 구비될 수도 있고, 정사각형 및 직사각형을 포함하는 다각형의 형태로 구비될 수도 있으며, 이들이 상호 조합된 형태로 구비될 수도 있다..
이때, 상기 무선전력 수신용 안테나(114)의 중공부(114a)의 면적은 상기 무선전력 송신모듈(10)에 구비되는 무선전력 송신용 안테나(16)의 중앙부 면적과 동일하거나 상대적으로 좁은 면적을 가질 수 있으며, 상기 무선전력 송신용 안테나(16)의 중앙부에 배치되는 영구자석(14)의 단면적과 동일하거나 상대적으로 더 넓은 면적을 가질 수 있다.
일례로, 상기 패턴부(114b)는 서로 마주하는 내측 사이의 최단길이(L)가 상기 무선전력 송신모듈(10)에 구비되는 영구자석(14)의 직경(R)과 동일하거나 더 긴 길이를 가질 수 있다. 더불어, 상기 패턴부(114b)는 서로 마주하는 내측 사이의 최단길이(L)가 상기 무선전력 송신모듈(10)에 포함되는 무선전력 송신용 안테나(16)의 패턴부 중 서로 마주하는 내측 사이의 최단길이(ℓ)와 동일하거나 더 짧은 길이를 가질 수 있다.
여기서, 상기 패턴부(114b) 중 서로 마주하는 내측 사이의 최단길이(L)는 상기 패턴부(114b)가 원형으로 구비되는 경우 상기 중공부(114a)의 내경일 수 있으며, 상기 패턴부(114b)가 직사각형의 형태로 구비되는 경우 중공부(114a)의 두 변 중 상대적으로 짧은 변의 길이일 수 있다. 더불어, 상기 패턴부(114b)의 내측 사이의 최단길이(L)는 상기 중공부(114a)의 중심점을 지나는 직선일 수 있다.
이에 따라, 본 발명에 따른 무선전력 수신용 안테나(114)는 무선전력 송신용 안테나(16)의 중앙부에 영구자석(14)이 배치되는 경우 상기 패턴부(114b)의 내부에 형성되는 중공부(114a)의 면적이 상기 무선전력 송신모듈(10)에 구비되는 영구자석(14)의 단면적과 동일하거나 상대적으로 더 넓은 면적을 가질 수 있으며, 상기 무선전력 송신모듈(10)에 구비되는 무선전력 송신용 안테나(16)의 중앙부 면적과 동일하거나 상대적으로 좁은 면적을 가질 수 있다.
이로 인해, 상기 무선전력 송신모듈(10)과 본 발명에 따른 무선전력 수신모듈(100,200)이 근접하여 상기 영구자석(14)의 중심점과 상기 중공부(114a)의 중심점이 서로 일치하도록 정렬되면 상기 영구자석(14)은 항상 중공부(114a)의 내측에 배치될 수 있다.
즉, 무선전력 송신모듈(10)과 무선전력 수신모듈(100,200)이 상호 정렬되는 경우 상기 무선전력 송신모듈(10)에 구비되는 영구자석(14)이 항상 무선전력 수신용 안테나(114)의 중공부(114a) 측에 위치하게 되므로 상기 영구자석(14)의 단면적과 대응되는 직상부 또는 직하부에는 상기 무선전력 수신용 안테나의 패턴부(114b)가 배치되지 않을 수 있다.
이에 따라, 무선 충전시 상기 패턴부(114b)에서 발생하는 자기장은 상기 영구자석(14)에서 발생되는 직류자기장에 의한 영향이 최소화됨으로써 상기 무선전력 수신모듈(100,200)에 구비되는 무선전력 수신용 안테나(114)의 작동이 원활하게 이루어질 수 있다. 이로 인해, 상기 차폐유닛(120)의 전체 두께가 0.16mm 이하, 심지어 0.13mm의 두께를 사용하더라도 무선 충전시 요구되는 특성을 만족할 수 있다.
이는, 결국 상기 무선전력 수신모듈(100,200)의 전체두께를 0.3mm 이하로 줄일 수 있게 됨으로써 박형화의 요구를 만족할 수 있게 된다.
일례로, 상기 무선전력 송신용 안테나(16)의 중앙부에 영구자석(14)이 배치되고 상기 영구자석의 직경(R)이 15.5mm인 경우 상기 패턴부(114b)의 내측 사이의 최단길이(L)를 15.7mm로 형성하게 되면 상기 차폐유닛(120)의 두께를 0.16mm 이하, 심지어 0.13mm의 두께로 구현하더라도 무선전력 수신용 안테나가 원활하게 작동됨으로써 전체두께가 0.3mm인 무선전력 수신모듈(100,200)을 구현할 수 있게 된다.
그러나, 본 발명에 따른 무선전력 수신모듈(100,200)의 전체두께를 이에 한정하는 것은 아니며, 설계 조건에 따라 다양한 두께를 가질 수 있으며 매우 얇은 두께를 가질 수 있다는 것으로 이해되어야 할 것임을 밝혀둔다.
한편, 상기 무선전력 수신용 안테나(114)의 중공부(114a) 측에는 자성체(130)가 배치될 수도 있다.
일례로, 상기 자성체(130)는 무선전력 수신모듈(100,200)이 무선전력 송신모듈(10)에 접근할 때 상기 무선전력 송신모듈(10)에서 발생하는 자기력선의 일부를 유도하여 자속의 경로를 변경시켜줌으로써 상기 무선전력 송신모듈(10)의 동작 개시 조건을 만족하는 홀센서(12)의 전압값 변화를 유도하는 어트랙터일 수 있다.
이때, 상기 자성체(130)는 박판의 자성편일 수 있으며, 허용되는 무선전력 수신모듈(100,200)의 사이즈에서 최대한의 면적을 확보하여 높은 효율을 얻을 수 있도록 상기 중공부(114a)의 크기와 동일한 크기로 형성될 수 있다.
여기서, 상기 자성체(130)는 상기 차폐유닛(120)의 일면에 부착되어 상기 차폐유닛(120)과 일체화될 수도 있고, 상기 안테나유닛(110,210)의 일면에 부착되어 상기 안테나유닛(110,210)과 일체화되는 형태로 구비될 수도 있다.
더불어, 상기 자성체(130)는 비정질 합금 및 나노결정립 합금 중 적어도 1종 이상을 포함하는 박판의 리본시트가 사용될 수 있다. 더불어, 상기 자성체(130)는 단층의 리본시트로 구성될 수도 있지만, 복수 개의 리본시트가 3층 이상의 다층으로 적층된 형태로 구성될 수도 있다.
여기서, 상기 비정질 합금 또는 나노 결정립 합금은 3원소 합금 및 5원소 합금을 포함할 수 있고, 예를 들어, 상기 3원소 합금은 Fe, Si 및 B를 포함할 수 있으며, 상기 5원소 합금은 Fe, Si, B, Cu 및 Nb를 포함할 수 있다.
더불어, 상기 자성체(130)는 와전류의 발생을 억제할 수 있도록 복수 개의 미세 조각으로 분리 형성될 수 있고, 복수 개의 미세 조각들은 서로 이웃하는 미세 조각들 간에 전체적으로 절연되거나 부분적으로 절연되도록 구비될 수 있으며, 각각의 조각들은 비정형으로 랜덤하게 이루어질 수 있다.
한편, 상기 자성체(130)는 무선전력 수신모듈(100,200) 및 무선전력 송신모듈(10)의 근접시 무선전력 송신모듈(10)에 구비되는 영구자석(14)과의 상호 작용을 통하여 무선전력 수신모듈(100,200) 및 무선전력 송신모듈(10)의 정렬을 위한 정렬수단으로서의 역할을 수행할 수도 있으며, 영구자석으로 구비될 수도 있음을 밝혀둔다.
상기 차폐유닛(120)은 일정면적을 갖는 판상의 부재로 이루어지며, 일면에 상기 안테나유닛(110,210)이 고정될 수 있다. 이와 같은 차폐유닛(120)은 상기 안테나유닛(110,210)에서 발생되는 자기장을 차폐하여 자기장의 집속도를 높여줌으로써 소정의 주파수 대역에서 작동하는 안테나(114,115,116)의 성능을 높여줄 수 있다.
이를 위해, 상기 차폐유닛(120)은 상기 안테나유닛(110,210)에서 발생되는 자기장을 차폐할 수 있도록 자성을 갖는 재질로 이루어질 수 있다.
일례로, 상기 차폐유닛(120)은 페라이트 시트, 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트 또는 폴리머 시트 등이 사용될 수 있다. 그러나, 상기 차폐유닛(120)을 위에 언급한 종류로 한정하는 것은 아니며 자성의 성질을 갖는 재질이면 모두 사용될 수 있음을 밝혀둔다.
여기서, 상기 페라이트 시트는 소결 페라이트 시트일 수 있으며, Ni-Zn 페라이트 및 Mn-Zn 페라이트 중 1종 이상을 포함할 수 있다. 더불어, 상기 비정질 합금 또는 나노결정립 합금은 3원소 합금 또는 5원소 합금을 포함할 수 있으며, 상기 3원소 합금은 Fe, Si 및 B를 포함할 수 있고, 상기 5원소 합금은 Fe, Si, B, Cu 및 Nb를 포함할 수 있다.
또한, 상기 차폐유닛(120")은 도 6에 도시된 바와 같이 복수 개의 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 박판의 리본시트(123a)가 접착층(123b)을 매개로 적층된 형태로 구성될 수도 있음을 밝혀둔다.
더불어, 상기 차폐유닛(120)은 와전류의 발생을 억제할 수 있도록 복수 개의 미세 조각으로 분리 형성될 수 있고, 복수 개의 미세 조각들은 서로 이웃하는 미세 조각들 간에 전체적으로 절연되거나 부분적으로 절연되도록 구비될 수 있으며, 각각의 조각들은 비정형으로 랜덤하게 이루어질 수 있다.
그리고, 상기 차폐유닛(120")이 미세조각으로 분리형성된 복수 개의 시트(123a)가 적층되어 구성되는 경우 각각의 시트 사이에 배치되는 접착층(123b)이 비전도성 성분을 포함함으로써 서로 적층되는 한 쌍의 시트를 구성하는 미세조각 사이로 스며들어 서로 이웃하는 미세 조각들을 절연하는 역할을 수행할 수도 있다. 여기서, 상기 접착층(123b)은 접착제로 구비될 수도 있으며 필름 형태의 기재의 일면 또는 양면에 접착제가 도포된 형태로 구비될 수도 있다.
또한, 상기 차폐유닛(120,120',120")은 상부면과 하부면 중 적어도 일면에 별도의 보호필름(124)이 구비될 수 있다.
한편, 상기 차폐유닛(120')은 서로 다른 주파수 대역을 사용하는 해당 안테나의 성능을 향상시킬 수 있도록 서로 다른 특성을 갖는 복수 개의 시트로 구성될 수 도 있다. 특히, 상기 안테나유닛(210)이 무선전력 수신용 안테나(114) 및 NFC용 안테나(116)를 포함하는 경우 서로 다른 주파수 대역을 사용하는 해당 안테나의 성능 각각 향상시킬 수 있도록 서로 다른 특성을 갖는 제1시트(121) 및 제2시트(122)로 구성될 수 있다.
일례로, 상기 제1시트(121)는 상기 무선전력 수신용 안테나(114)의 성능을 향상시킬 수 있도록 상기 무선전력 수신용 안테나(114)와 대응되는 영역에 배치될 수 있으며, 상기 제2시트(122)는 상기 NFC용 안테나(116)의 성능을 향상시킬 수 있도록 상기 NFC용 안테나(116)와 대응되는 영역에 각각 배치될 수 있다.
여기서, 상기 제1시트(121)는 상기 무선전력 수신용 안테나(114)를 포함하는 크기를 갖도록 구비될 수 있으며, 상기 제2시트(122)는 상기 NFC용 안테나(116)를 포함하는 면적을 갖도록 구비될 수 있다. 더불어, 상기 제1시트(121)는 상기 무선전력 수신용 안테나(114)의 외측에 MST용 안테나(115)가 배치되는 경우 상기 MST용 안테나(115)의 직상부 영역을 포함할 수도 있고 포함하지 않을 수도 있음을 밝혀둔다.
이때, 상기 차폐유닛(120')은 상기 제1시트(121)가 제2시트(122)의 일면에 적층되는 형태로 구비될 수도 있고(도 5a 참조), 상기 제1시트(121)가 제2시트(122) 내에 삽입된 액자 형태로 구비될 수도 있다(도 5b 참조).
더불어, 상기 차폐유닛(120')이 서로 다른 특성을 갖는 복수 개의 시트로 구성되는 경우, 상기 제1시트(121) 및 제2시트(122)는 서로 다른 특성을 가질 수 있다.
일례로, 상기 제1시트(121) 및 제2시트(122)는 소정의 주파수 대역에서 서로 다른 투자율을 갖도록 구비될 수도 있고, 서로 다른 포화자기장을 갖도록 구비될 수도 있으며, 제1시트(121) 및 제2시트(122)의 투자율이 동일한 경우 투자손실률이 서로 다른 값을 갖도록 구비될 수도 있다.
구체적으로 설명하면, 상기 제1시트(121)는 저주파 대역인 100~300kHz의 주파수 대역에서 상기 제2시트보다 상대적으로 높은 투자율을 가질 수 있고, 100~300kHz의 주파수 대역에서 상기 제2시트보다 상대적으로 큰 포화자기장을 가질 수 있으며, 100~300kHz의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖는 경우 상기 제1시트(121)의 투자손실률이 상기 제2시트(122)의 투자손실률보다 상대적으로 작은 값을 가질 수 있다.
일례로, 상기 제1시트(121)는 저주파 대역인 100~300kHz의 주파수 대역에서 600~700범위의 투자율을 갖는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트(123a)가 사용될 수 있으며, 상기 제2시트(122)는 100~300kHz의 주파수 대역에서 600 이하의 투자율을 갖는 페라이트 시트가 사용될 수 있다.
이에 따라, 저주파 대역인 100~300kHz의 주파수 대역에서 제1시트(121)가 제2시트(122)보다 상대적으로 높은 투자율을 갖기 때문에 무선 충전시 무선전력 송신모듈(10)로부터 전송되는 100~300kHz 주파수의 전력 전송에 따라 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제1시트(121) 측으로 유도됨으로써 상기 제1시트(121) 측에 배치된 무선전력 수신용 안테나(114) 측으로 무선 전력신호가 높은 효율로 수신될 수 있도록 유도할 수 있다.
한편, 상기 제1시트(121)는 무선전력 송신모듈에 구비되는 영구자석에 의한 직류 자기장도 모두 차폐하는 것이 요구된다. 그런데 상기 직류 자기장은 교류 자기장에 의해 차폐유닛(120')에 미치는 영향보다 더 크기 때문에 차폐유닛을 자기 포화시켜 차폐유닛으로서의 성능을 떨어뜨리거나 전력전송 효율을 급격하게 떨어뜨리는 문제가 발생된다.
따라서, 무선전력 송신모듈(10)의 영구자석에 의해 자기포화가 이루어지는 것을 차단할 필요가 있다. 이러한 이유로, 비정질 합금 및 나노 결정립 합금 중 1종 이상을 포함하는 리본시트가 100~300kHz의 주파수 대역에서 페라이트 시트보다 상대적으로 큰 포화자기장을 갖기 때문에 상기 무선전력 수신용 안테나(114)의 상부측에 배치되는 상기 제1시트(121)는 무선 충전이 이루어지는 100~300kHz의 주파수 대역에서 영구자석에 의한 자화를 방지함으로써 원활한 무선 충전이 이루어질 수 있게 된다.
더불어, 100~300kHz의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖더라도 상기 제1시트(121)의 투자손실률이 상기 제2시트(122)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비되면 결과적으로 무선 충전 작동시 투자손실률에 의한 투자율의 손실이 줄어들게 된다. 이에 따라, 무선전력 송신모듈로부터 전송되는 100~300kHz 주파수의 전력 전송에 따라 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제1시트(121)측으로 유도됨으로써 상기 제1시트(121) 측에 배치된 무선전력 수신용 안테나(114)측으로 무선 전력신호가 높은 효율로 수신될 수 있도록 유도할 수 있게 된다.
한편, 상기 제2시트(122)는 고주파인 13.56MHz에서 상기 제1시트보다 상대적으로 높은 투자율을 갖도록 구비될 수 있고, 13.56MHz의 주파수 대역에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖는 경우 상기 제2시트(122)의 투자손실률이 상기 제1시트(121)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비될 수 있다.
일례로, 상기 제1시트(121)는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 사용될 수 있으며, 상기 제2시트(122)는 페라이트 시트가 사용될 수 있다. 여기서, 상기 제1시트(121)는 13.56MHz에서 상기 제2시트(122)의 투자율보다 더 낮은 투자율을 갖도록 구비될 수 있다.
이에 따라, 상기 제2시트(122)가 13.56MHz의 주파수 대역에서 상기 제1시트(121)보다 상대적으로 높은 투자율을 갖기 때문에 근거리 무선통신(NFC)이 이루어지는 경우 RF리더기에 설치된 안테나로부터 발생된 13.56MHz 고주파 신호에 의해 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제2시트(122) 측으로 유도됨으로써 상기 제2시트(122) 측에 배치된 NFC용 안테나(116) 측으로 고주파신호가 높은 효율로 수신될 수 있도록 유도할 수 있게 된다.
또한, 13.56MHz의 주파수에서 상기 제1시트(121) 및 제2시트(122)가 서로 동일한 투자율을 갖더라도 상기 제2시트(122)의 투자손실률이 상기 제1시트(121)의 투자손실률보다 상대적으로 작은 값을 갖도록 구비되면 결과적으로 근거리 무선통신(NFC)시 투자손실률에 의한 투자율의 손실이 줄어들게 된다. 이에 따라, RF 리더기에서 발생되는 13.56MHz 고주파 신호에 의해 생성되는 교류 자기장이 상대적으로 높은 투자율을 갖는 제2시트(122) 측으로 유도됨으로써 상기 제2시트(122) 측에 배치된 NFC용 안테나(116) 측으로 고주파신호가 높은 효율로 수신될 수 있도록 유도할 수 있게 된다.
여기서, 상기 제1시트(121)로서 비정질 합금 및 나노결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 사용되고, 상기 제2시트(122)로서 페라이트 시트가 사용되는 것으로 설명하였지만 이에 한정하는 것은 아니며, 투자율, 포화자기장 및 투자손실률이 해당 주파수 대역에서 서로의 시트에 대하여 상대적인 조건을 만족하기만 하면 상기 제1시트(121) 및 제2시트(122)의 재질은 다양하게 변경될 수 있음을 밝혀둔다.
일례로, 상기 제1시트(121) 및 제2시트(122)는 100~300kHz의 주파수 대역 및/또는 13.56MHz의 주파수에서 서로 다른 투자율을 갖는 동일한 재질로 이루어질 수도 있으며, 상기 제1시트(121)로서 페라이트 시트가 사용될 수도 있고 상기 제2시트(122)로서 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 사용될 수도 있다. 이는, 동일한 재질로 이루어지더라도 열처리 온도, 적층 수 등과 같은 여러가지 조건의 변화를 통해 서로 다른 특성(투자율, 포화자기장, 투자손실률 등)을 갖도록 제조될 수 있기 때문이다.
상술한 본 발명의 일실시예에 따른 무선전력 수신모듈(100,200)은 Qi 방식에 적용될 수도 있고, PMA 방식의 무선충전에 적용될 수도 있음을 밝혀둔다. 더불어, 상기 안테나유닛(110,210)은 자기유도 방식으로 작동하는 무선전력 수신용 안테나(114)와 더불어 자기공진 방식으로 작동하는 A4WP 방식의 안테나가 다른 안테나에 포함될 수도 있음을 밝혀둔다. 또한, 상기 무선전력 수신모듈(100,200)은 휴대단말기와 같은 휴대용 전자기기 본체(90)의 백커버 또는 리어 케이스(92)에 부착되는 형태로 구비될 수도 있음을 밝혀둔다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (17)

  1. 적어도 하나의 무선전력 송신용 안테나 및 영구자석을 포함하는 무선전력 송신모듈과 상호작용하는 무선전력 수신모듈에 있어서,
    패턴부의 중앙부에 소정의 면적을 갖는 중공부가 형성되는 무선전력 수신용 안테나를 포함하는 안테나유닛; 및
    상기 안테나유닛의 일면에 배치되어 자기장을 차폐하는 차폐유닛;을 포함하고,
    상기 패턴부 중 서로 마주하는 내측 사이의 최단길이는 상기 영구자석의 직경과 동일하거나 더 긴 길이를 갖도록 구비되는 무선전력 수신모듈.
  2. 제 1항에 있어서,
    상기 무선전력 수신용 안테나를 구성하는 패턴부 중 서로 마주하는 내측 사이의 최단길이는 상기 무선전력 송신용 안테나를 구성하는 패턴부 중 서로 마주하는 내측 사이의 최단길이와 동일하거나 더 짧은 길이를 갖도록 구비되는 무선전력 수신모듈.
  3. 제 1항에 있어서,
    상기 최단길이는 상기 중공부의 중심점을 지나는 직선인 무선전력 수신모듈.
  4. 제 1항에 있어서,
    상기 무선전력 수신용 안테나는 도전성부재가 복수 회 권선된 평판형 코일이거나, 회로기판의 일면에 인쇄 패턴으로 형성되는 무선전력 수신모듈.
  5. 제 1항에 있어서,
    상기 무선전력 수신모듈이 무선전력 송신모듈 측으로의 접근시 상기 영구자석에서 발생하는 자기력선의 일부를 유도하여 자속의 경로를 변경시키는 자성체를 포함하고, 상기 자성체는 상기 중공부에 배치되는 무선전력 수신모듈.
  6. 제 1항에 있어서,
    상기 영구자석의 직경이 15.5mm인 경우 상기 차폐유닛의 총두께는 0.10 내지 0.16mm인 무선전력 수신모듈.
  7. 제 1항에 있어서,
    상기 안테나유닛은 상기 무선전력 수신용 안테나와 다른 주파수 대역을 사용하는 적어도 하나의 다른 안테나를 더 포함하는 무선전력 수신모듈.
  8. 제 7항에 있어서,
    상기 다른 안테나는 MST용 안테나 및 NFC용 안테나 중 하나 이상을 포함하는 무선전력 수신모듈.
  9. 제 7항에 있어서,
    상기 차폐유닛은 소정의 주파수 대역에서 서로 다른 특성을 갖는 제1시트 및 제2시트를 포함하는 무선전력 수신모듈.
  10. 제 9항에 있어서,
    상기 제1시트는 상기 무선전력 수신용 안테나와 대응되는 영역에 배치되고, 상기 제2시트는 상기 다른 안테나와 대응되는 영역에 배치되는 무선전력 수신모듈.
  11. 제 9항에 있어서,
    상기 제1시트는 100~300kHz의 주파수 대역에서 상기 제2시트보다 상대적으로 높은 투자율을 가지는 무선전력 수신모듈.
  12. 제 9항에 있어서,
    상기 제1시트는 100~300kHz의 주파수 대역에서 상기 제2시트와 동일한 투자율을 갖는 경우 상기 제1시트의 투자손실률이 상기 제2시트의 투자손실률보다 상대적으로 작은 값을 가지는 무선전력 수신모듈.
  13. 제 9항에 있어서,
    상기 제2시트는 13.56MHz의 주파수에서 상기 제1시트보다 상대적으로 높은 투자율을 가지는 무선전력 수신모듈.
  14. 제 9항에 있어서,
    상기 제2시트는 13.56MHz의 주파수에서 상기 제1시트와 동일한 투자율을 갖는 경우 상기 제2시트의 투자손실률이 상기 제1시트의 투자손실률보다 상대적으로 작은 값을 가지는 무선전력 수신모듈.
  15. 제 9항 내지 제 14항 중 어느 한 항에 있어서,
    상기 제1시트는 비정질 합금 및 나노 결정립 합금 중 1종 이상을 포함하는 리본시트이고, 상기 제2시트는 페라이트 시트인 무선전력 수신모듈.
  16. 제 1항에 있어서,
    상기 차폐유닛은 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트, 페라이트 시트 또는 폴리머 시트 중 어느 하나를 포함하는 무선전력 수신모듈.
  17. 제 1항에 있어서,
    상기 차폐유닛은 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 복수 개로 구비되어 다층으로 적층되는 무선전력 수신모듈.
PCT/KR2016/005483 2015-05-26 2016-05-24 무선전력 수신모듈 WO2016190649A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680030459.3A CN107980166B (zh) 2015-05-26 2016-05-24 无线电能接收模块
US15/575,566 US10475571B2 (en) 2015-05-26 2016-05-24 Wireless power reception module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0073170 2015-05-26
KR20150073170 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016190649A1 true WO2016190649A1 (ko) 2016-12-01

Family

ID=57394099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005483 WO2016190649A1 (ko) 2015-05-26 2016-05-24 무선전력 수신모듈

Country Status (4)

Country Link
US (1) US10475571B2 (ko)
KR (1) KR101810001B1 (ko)
CN (1) CN107980166B (ko)
WO (1) WO2016190649A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288298A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd. Electronic device including antenna
CN108962570A (zh) * 2018-04-16 2018-12-07 深圳市信维通信股份有限公司 一种无线充电模组结构
CN110576765A (zh) * 2019-08-30 2019-12-17 维沃移动通信有限公司 一种无线充电方法及相关设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405446B1 (ko) 2015-08-10 2022-06-08 삼성전자주식회사 안테나 장치 및 전자 장치
KR102503650B1 (ko) * 2017-05-23 2023-02-27 주식회사 아모센스 무선전력 송신모듈
CN108695930A (zh) * 2018-05-29 2018-10-23 信维通信(江苏)有限公司 一种无线充电模组用屏蔽片及无线充电模组
US11355281B2 (en) * 2018-06-28 2022-06-07 Lg Electronics Inc. Wireless power reception apparatus and method therefor
CN108711946A (zh) * 2018-08-02 2018-10-26 宁波微鹅电子科技有限公司 一种电能发射装置、充电系统、及充电套装
CN211556140U (zh) * 2019-06-18 2020-09-22 阿莫先恩电子电器有限公司 磁场屏蔽片、无线电力接收模块及其便携终端设备
US20220224167A1 (en) * 2019-06-26 2022-07-14 AMOSENSE Co.,Ltd. Magnetic shielding sheet for charging cradle, wireless power reception module for charging cradle, and charging cradle for wireless earphones including the same
KR20210002004A (ko) * 2019-06-26 2021-01-06 주식회사 아모센스 충전 크래들용 자기장 차폐시트, 이를 포함하는 충전 크래들용 무선전력 수신모듈 및 무선 이어폰용 충전 크래들
CN211556142U (zh) * 2019-07-22 2020-09-22 阿莫先恩电子电器有限公司 磁场屏蔽片、无线电力接收模块及其便携终端设备
WO2021015550A1 (ko) * 2019-07-22 2021-01-28 주식회사 아모센스 자기장 차폐시트
US11881720B2 (en) * 2019-09-12 2024-01-23 Spark Connected LLC Electronic device, wireless charger and wireless charging system
KR20210035479A (ko) 2019-09-24 2021-04-01 삼성전자주식회사 전력 공유를 지원하는 코일들을 선택적으로 사용하기 위한 전자 장치
US11303011B2 (en) 2019-11-27 2022-04-12 AQ Corporation Smartphone antenna in flexible PCB
US11239899B2 (en) * 2019-12-13 2022-02-01 Disney Enterprises, Inc. Near field communication antenna system for a playset
US11918928B2 (en) 2019-12-17 2024-03-05 Disney Enterprises, Inc. Virtual presentation of a playset
KR20210096451A (ko) * 2020-01-28 2021-08-05 에스케이씨 주식회사 무선충전 패드, 무선충전 장치, 및 이를 포함하는 전기 자동차
KR102325622B1 (ko) * 2020-02-03 2021-11-12 주식회사 위츠 코일 모듈 및 이를 포함하는 전자 기기
KR20210111032A (ko) 2020-03-02 2021-09-10 삼성전자주식회사 무선 충전을 위한 정렬 상태를 표시하는 전자 장치
US11754650B2 (en) * 2020-04-10 2023-09-12 Howmedica Osteonics Corp. MRI shield
KR102442546B1 (ko) * 2020-09-28 2022-09-13 에스케이씨 주식회사 무선충전 장치 및 이를 포함하는 이동 수단
US20220336143A1 (en) * 2021-04-16 2022-10-20 Apple Inc. Hybrid ferromagnetic core

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156483A (ja) * 2011-09-22 2012-08-16 Panasonic Corp 受信側非接触充電モジュール及び受信側非接触充電機器
JP2014110594A (ja) * 2012-12-04 2014-06-12 Dexerials Corp コイルモジュール
KR20140109336A (ko) * 2013-03-05 2014-09-15 주식회사 아모센스 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
JP2014187724A (ja) * 2011-07-20 2014-10-02 Sanyo Electric Co Ltd 二次側受電機器及び充電台と二次側受電機器
KR20140130837A (ko) * 2013-05-02 2014-11-12 엘지이노텍 주식회사 무선전력 수신장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US222426A (en) * 1879-12-09 Improvement in hay gathering and cocking machines
CN1950914A (zh) * 2004-05-04 2007-04-18 皇家飞利浦电子股份有限公司 无线供电设备,可激励负载,无线系统以及用于无线能量传递的方法
US7605496B2 (en) * 2004-05-11 2009-10-20 Access Business Group International Llc Controlling inductive power transfer systems
WO2013095036A1 (ko) * 2011-12-21 2013-06-27 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
US9590444B2 (en) * 2009-11-30 2017-03-07 Broadcom Corporation Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency
TW201145753A (en) * 2010-01-05 2011-12-16 Access Business Group Int Llc Integrated wireless power system
US8482250B2 (en) * 2010-08-06 2013-07-09 Cynetic Designs Ltd. Inductive transmission of power and data through ceramic armor panels
US9161484B2 (en) * 2010-09-26 2015-10-13 Access Business Group International Llc Selectively controllable electromagnetic shielding
KR101188808B1 (ko) * 2011-03-03 2012-10-09 (주)엠에이피테크 단말기의 무선 충전장치
WO2013042224A1 (ja) * 2011-09-21 2013-03-28 パイオニア株式会社 非接触電力送電装置、非接触電力受電装置、及び非接触給電システム
KR20130076067A (ko) * 2011-12-28 2013-07-08 (주) 씨아이디티 무접점충전 및 근거리무선통신이 가능한 이동통신단말기
US9362776B2 (en) * 2012-11-27 2016-06-07 Qualcomm Incorporated Wireless charging systems and methods
KR102008808B1 (ko) * 2012-12-13 2019-10-21 엘지이노텍 주식회사 무선전력 수신장치 및 그의 제어 방법
KR20140001094U (ko) 2014-01-02 2014-02-19 권태경 자석식 홀더를 갖는 휴대용단말기의 무선충전장치
US20150311724A1 (en) * 2014-03-31 2015-10-29 Evatran Group, Inc. Ac inductive power transfer system
WO2015173890A1 (ja) * 2014-05-13 2015-11-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
JP6038386B1 (ja) * 2015-03-23 2016-12-07 三菱電機株式会社 双方向非接触給電装置および双方向非接触給電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187724A (ja) * 2011-07-20 2014-10-02 Sanyo Electric Co Ltd 二次側受電機器及び充電台と二次側受電機器
JP2012156483A (ja) * 2011-09-22 2012-08-16 Panasonic Corp 受信側非接触充電モジュール及び受信側非接触充電機器
JP2014110594A (ja) * 2012-12-04 2014-06-12 Dexerials Corp コイルモジュール
KR20140109336A (ko) * 2013-03-05 2014-09-15 주식회사 아모센스 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
KR20140130837A (ko) * 2013-05-02 2014-11-12 엘지이노텍 주식회사 무선전력 수신장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288298A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd. Electronic device including antenna
US10700414B2 (en) * 2016-03-31 2020-06-30 Samsung Electronics Co., Ltd Electronic device including antenna
CN108962570A (zh) * 2018-04-16 2018-12-07 深圳市信维通信股份有限公司 一种无线充电模组结构
CN110576765A (zh) * 2019-08-30 2019-12-17 维沃移动通信有限公司 一种无线充电方法及相关设备

Also Published As

Publication number Publication date
KR20160138909A (ko) 2016-12-06
KR101810001B1 (ko) 2017-12-18
US10475571B2 (en) 2019-11-12
CN107980166B (zh) 2020-02-14
CN107980166A (zh) 2018-05-01
US20180137971A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2016190649A1 (ko) 무선전력 수신모듈
WO2017135687A1 (ko) 무선전력 전송모듈용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2016186443A1 (ko) 콤보 안테나유닛 및 이를 포함하는 무선전력 수신모듈
WO2017030289A1 (ko) 안테나유닛 및 이를 포함하는 무선전력 전송모듈
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2016159551A1 (ko) 무선 충전용 방열유닛 및 이를 포함하는 무선전력 충전모듈
WO2016186444A1 (ko) 무선충전용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2017209481A1 (ko) 자기차폐용 하이브리드 메탈시트 및 이를 포함하는 무선전력 전송모듈
WO2017074104A1 (ko) 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
WO2017078481A1 (ko) 콤보형 안테나 모듈
WO2013180399A1 (en) Flexible printed circuit board for dual mode antennas, dual mode antenna and user device
WO2016072779A1 (ko) 무선충전기용 송신장치
WO2013180367A1 (ko) 전자파흡수시트를 포함하는 무선인식 및 무선충전 겸용 무선안테나, 그것의 제조방법
WO2017082553A1 (ko) 복합 페라이트 자기장 차폐시트, 이의 제조방법 및 이를 이용한 안테나 모듈
WO2019172595A1 (ko) 무선전력 송신장치
WO2019151746A1 (ko) 차폐층을 포함하는 안테나 모듈 및 무선 전력 수신 장치
WO2019151693A1 (ko) 안테나 성능을 개선시키는 무선 충전 수신기
WO2017014464A1 (ko) 콤보 안테나모듈 및 이를 포함하는 휴대용 전자장치
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
KR102359780B1 (ko) 무선전력 전송모듈용 차폐유닛 및 이를 구비한 무선전력 전송모듈
WO2016190708A1 (ko) 무선전력 전송용 안테나유닛 및 이를 포함하는 무선전력 송신모듈
WO2020262976A2 (ko) 충전 크래들용 자기장 차폐시트, 이를 포함하는 충전 크래들용 무선전력 수신모듈 및 무선 이어폰용 충전 크래들
WO2017142350A1 (ko) 휴대단말기용 백커버 및 이를 포함하는 백커버 일체형 안테나모듈
WO2014208913A1 (ko) 수신 안테나 및 이를 포함하는 무선 전력 수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575566

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800288

Country of ref document: EP

Kind code of ref document: A1