WO2017022573A1 - Conductive substrate - Google Patents

Conductive substrate Download PDF

Info

Publication number
WO2017022573A1
WO2017022573A1 PCT/JP2016/071891 JP2016071891W WO2017022573A1 WO 2017022573 A1 WO2017022573 A1 WO 2017022573A1 JP 2016071891 W JP2016071891 W JP 2016071891W WO 2017022573 A1 WO2017022573 A1 WO 2017022573A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
metal
organic
conductive substrate
Prior art date
Application number
PCT/JP2016/071891
Other languages
French (fr)
Japanese (ja)
Inventor
智治 渡邊
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020187002597A priority Critical patent/KR102629297B1/en
Priority to CN201680043507.2A priority patent/CN107850966B/en
Priority to JP2017532519A priority patent/JP6973076B2/en
Publication of WO2017022573A1 publication Critical patent/WO2017022573A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to a conductive substrate.
  • the capacitive touch panel converts information on the position of an adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object adjacent to the panel surface. Since the conductive substrate used for the capacitive touch panel is installed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have low reflectance and be difficult to be visually recognized.
  • a material for the conductive layer used for the capacitive touch panel a material having low reflectivity and not easily visible is used, and wiring is formed on a transparent substrate or a transparent film.
  • Patent Document 1 discloses a transparent conductive film including a polymer film and a transparent conductive film made of a metal oxide provided thereon by a vapor deposition method, and the transparent conductive film made of a metal oxide. Is made of a transparent conductive film made of the first metal oxide and a transparent conductive film made of the second metal oxide provided thereon, and the transparent conductive film made of the second metal oxide is the first A transparent conductive film characterized by being formed under conditions different from the film forming conditions of a transparent conductive film made of a metal oxide is disclosed. It is also disclosed that the transparent conductive film made of a metal oxide is an indium oxide-tin oxide (ITO) film.
  • ITO indium oxide-tin oxide
  • Patent Document 2 discloses a film-like touch panel sensor that includes a striped copper wiring on each of the portions that need to be seen through on the front and back surfaces of the film, and has a black copper oxide film on the side where the copper wiring on the front and back sides is visually recognized. It is disclosed.
  • the inventors of the present invention studied to form an organic layer by performing a rust prevention treatment for forming an organic layer on the surface of the metal layer.
  • a conductive substrate in which an organic layer is formed between a metal layer and a blackened layer, and the blackened layer is prevented from peeling off.
  • the purpose is to do.
  • An insulating substrate A metal layer formed on at least one surface of the insulating substrate; An organic layer containing nitrogen-based organic matter formed on the metal layer; A blackening layer formed on the organic layer,
  • the metal layer has a plurality of granular protrusions on the surface on which the organic layer is formed, An average height of the plurality of granular protrusions is 8.00 nm or more;
  • the metal layer provides a conductive substrate having 70/10 ⁇ m or more of the plurality of granular protrusions on a surface on which the organic layer is formed.
  • a conductive substrate in which an organic layer is formed between a metal layer and a blackened layer, and the blackened layer is prevented from peeling off.
  • substrate which concerns on embodiment of this invention Sectional drawing of the electroconductive board
  • Sectional drawing in the AA 'line of FIG. Explanatory drawing of the cut line formed when performing the adhesiveness test in an Example and a comparative example.
  • the conductive substrate of the present embodiment includes an insulating substrate, a metal layer formed on at least one surface of the insulating substrate, and an organic material layer containing a nitrogen-based organic material formed on the metal layer. And a blackening layer formed on the organic material layer.
  • the metal layer can have a plurality of granular protrusions on the surface on which the organic layer is formed.
  • the average height of the plurality of granular projections can be 8.00 nm or more.
  • the metal layer can have a plurality of granular protrusions of 70/10 ⁇ m or more on the surface on which the organic layer is formed.
  • the conductive substrate in this embodiment is a pattern in which a substrate having a metal layer, an organic material layer, and a blackened layer on the surface of the insulating base before patterning the metal layer, and the metal layer is patterned.
  • a substrate that is, a wiring substrate.
  • the insulating substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used.
  • the resin substrate material that transmits visible light is preferably a resin such as a polyamide resin, a polyethylene terephthalate resin, a polyethylene naphthalate resin, a cycloolefin resin, a polyimide resin, a polycarbonate resin, or an acetyl cellulose resin.
  • a resin such as a polyamide resin, a polyethylene terephthalate resin, a polyethylene naphthalate resin, a cycloolefin resin, a polyimide resin, a polycarbonate resin, or an acetyl cellulose resin.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PEN polyethylene naphthalate
  • polyimide polyamide
  • polycarbonate polycarbonate
  • TAC triacetyl cellulose
  • the thickness of the insulating base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate.
  • the thickness of the insulating substrate can be, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the insulating substrate is preferably 20 ⁇ m or more and 120 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the insulating substrate is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the total light transmittance of the insulating base material is preferably higher.
  • the total light transmittance is preferably 30% or more, and more preferably 60% or more.
  • the visibility of the display can be sufficiently ensured when used for, for example, a touch panel.
  • the total light transmittance of the insulating substrate can be evaluated by the method specified in JIS K 7361-1.
  • the material which comprises a metal layer is not specifically limited, The material which has the electrical conductivity according to the application can be selected,
  • the material which comprises a metal layer is Cu, Ni, Mo, Ta, Ti, V, Cr , Fe, Mn, Co and W are preferably a copper alloy with at least one metal selected from W, or a material containing copper.
  • the metal layer can be a copper layer made of copper.
  • the method for forming the metal layer on the insulating substrate is not particularly limited, but it is preferable not to place an adhesive between the insulating substrate and the metal layer in order not to reduce the light transmittance. That is, the metal layer is preferably formed directly on at least one surface of the insulating substrate. In addition, when arrange
  • the metal layer preferably has a metal thin film layer.
  • the metal layer may have a metal thin film layer and a metal plating layer.
  • a metal thin film layer can be formed on an insulating substrate by a dry plating method, and the metal thin film layer can be used as a metal layer.
  • a metal layer can be directly formed on an insulating substrate without using an adhesive.
  • a dry plating method for example, a sputtering method, a vapor deposition method, an ion plating method, or the like can be preferably used.
  • the metal thin film layer and the metal plating layer are formed by forming the metal plating layer by electroplating, which is a kind of wet plating method, using the metal thin film layer as a power feeding layer. It can also be a metal layer. Since the metal layer has the metal thin film layer and the metal plating layer, the metal layer can be directly formed on the insulating base material without using an adhesive.
  • the conductive substrate of this embodiment can have a plurality of granular protrusions on the surface on which the organic layer of the metal layer is formed.
  • the adhesion between the blackened layer and the metal layer on which the organic layer is formed is reduced. In some cases, the chemical layer peeled off. Accordingly, the inventors of the present invention have made extensive studies on a method for suppressing the peeling of the blackened layer in the conductive substrate in which the organic layer is formed between the metal layer and the blackened layer. As a result, a plurality of granular protrusions having an average height of 8.00 nm or more (hereinafter also simply referred to as “a plurality of granular protrusions”) were formed on the surface of the metal layer on which the organic material layer was formed. It has been found that by forming 10 ⁇ m or more, the adhesion of the blackened layer to the organic material layer and the metal layer can be improved and peeling can be suppressed.
  • the average height of the plurality of granular protrusions is preferably 8.0 nm or more, and more preferably 8.5 nm or more.
  • the upper limit of the average height of the plurality of granular projections is not particularly limited, but is preferably 15.0 nm or less, and more preferably 14.0 nm or less. This is because when the average height of the plurality of granular protrusions exceeds 15.0 nm, the surface roughness of the surface of the blackened layer is reduced when the organic material layer and the blackened layer are formed on the metal layer. This is because it increases, affects the color of the surface of the blackened layer, and may affect the function of the blackened layer.
  • the surface of the metal layer on which the organic layer is formed is preferably formed with a plurality of granular projections of 70/10 ⁇ m or more, more preferably 80/10 ⁇ m or more. This indicates the number of granular protrusions from the line profile measured at an arbitrary position on the surface of the metal layer on which the organic layer is formed, that is, the number of granular protrusions included per unit length. .
  • the average height and the number per unit length of the plurality of granular protrusions are calculated from the measurement results obtained by, for example, measuring the surface of the metal layer on which the organic layer is formed using an AFM (atomic force microscope). can do.
  • AFM atomic force microscope
  • a predetermined length for example, a length of 10 ⁇ m
  • the surface profile can be measured linearly by AFM.
  • the average height and the number of granular protrusions existing in the measurement range can be calculated from the measured line profile result.
  • the average height of the granular projections on the surface of the metal layer on which the organic layer is formed and the number of units per unit length are measured and calculated by AFM after forming the metal layer and before forming the organic layer.
  • the surface of the metal layer may be oxidized by oxygen in the atmosphere and may not be evaluated accurately. For this reason, it is preferable to measure and evaluate by AFM after forming a metal layer and further forming an organic layer.
  • the organic material layer can be formed by supplying, applying and drying a liquid containing a nitrogen-based organic material on the metal layer, and the surface of the organic material layer reflects the state of the surface of the metal layer. Become. For this reason, it is because the measurement result on the surface of an organic substance layer corresponds with the measurement result on the surface of a metal layer.
  • the measurement of the average height of the plurality of granular projections and the number per unit length and the calculation method in the description of the calculation method should be read as the surface of the organic layer. Can do.
  • a result reflecting the state of a plurality of granular protrusions existing on the surface of the metal layer on which the organic layer is formed can be obtained.
  • the material of the plurality of granular protrusions is not particularly limited, but it is preferable that the plurality of granular protrusions are made of the same material as the metal layer.
  • the method for forming a plurality of granular protrusions on the surface of the metal layer on which the organic material layer is formed is not particularly limited, and examples thereof include a method of surface-treating the surface of the metal layer after forming the metal layer. As a specific example, there is a method in which after the metal layer is formed, the surface of the metal layer is subjected to etching treatment or sand blast treatment.
  • a method of adjusting film forming conditions when forming the metal layer For example, there is a method of changing the current density (Dk value) when forming the metal plating layer by electroplating during the formation of the metal plating layer.
  • Dk value current density
  • the metal plating layer is formed at a predetermined current density Dk1, and the current density is reduced to a current density Dk2 for a certain period of time before the end of the formation of the metal plating layer.
  • Dk1 a predetermined current density
  • Dk2 a current density of granular protrusions
  • the metal layer is a copper layer
  • a copper plating layer which is a metal plating layer can be formed.
  • a plurality of metal plating layers are formed on the surface of the metal layer by reducing the current density to the current density Dk2 for a predetermined time of 7 seconds or more and 30 seconds or less before the completion of the copper plating layer formation.
  • Granular projections can be formed.
  • the current density Dk1 is preferably 1 A / dm 2 or more and 2 A / dm 2 or less.
  • the current density Dk2 is more preferably preferably at most 0.1 A / dm 2 or more 0.2 A / dm 2, at 0.1 A / dm 2 or more 0.15 A / dm 2 or less.
  • the time for performing electroplating as the current density Dk2 is 30 seconds or less before the end of the formation of the metal plating layer.
  • the time for performing electroplating within the range of the current density Dk2 should be 7 seconds or more before the end of the formation of the metal plating layer. Is preferred.
  • the plurality of granular protrusions are formed on the surface of the metal layer by adjusting the film formation conditions when forming the metal layer.
  • the method of forming is preferable from the viewpoint of suppressing an increase in the number of manufacturing steps of the conductive substrate.
  • Dk value current density
  • the SAD (Surface Area Differentiate) value calculated by the following equation (1) is calculated from the projected area S1 of the surface of the metal layer forming the organic material layer and the surface area S2 of the surface of the metal layer forming the organic material layer. It is preferably 5% or more.
  • SAD 100 ⁇ (S2-S1) / S1 (1)
  • the SAD value calculated by the above formula is obtained by calculating the difference between the surface area of the surface of the metal layer forming the organic material layer, that is, the measured area S2 of the surface of the metal layer forming the organic material layer, and the projected area S1 by The value is divided. Accordingly, the SAD value increases as the size of the plurality of granular projections and the number of the plurality of granular projections per unit area increase.
  • the SAD value is 5% or more
  • the surface area S2 of the surface on which the organic layer of the metal layer for calculating the SAD value can be measured using, for example, AFM. Further, the projected area S1 can be calculated from the size of the metal layer.
  • the upper limit value of the SAD value is not particularly limited, but is preferably 20% or less, for example.
  • the surface roughness Ra of the surface on which the organic layer of the metal layer is formed is preferably less than 20.0 nm.
  • a plurality of granular protrusions are formed on the surface of the metal layer on which the organic layer is formed.
  • the surface roughness Ra is defined as an arithmetic average roughness in JIS B 0601 (2013).
  • a measuring method of the surface roughness Ra it can be evaluated by a stylus method or an optical method. Specifically, for example, it can be evaluated by an AFM (atomic force microscope).
  • the lower limit of the surface roughness Ra is not particularly limited, but is preferably 15.0 nm or more, for example, and more preferably 18.0 nm or more.
  • the thickness of the metal layer is not particularly limited, and when the metal layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like.
  • the thickness of the metal layer is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the metal layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and 150 nm. More preferably, it is the above.
  • a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
  • the plurality of granular protrusions can be made of the same material as the metal layer.
  • the thickness of the metal layer includes the height of the plurality of granular projections.
  • the thickness of the metal thin film layer is not particularly limited. The following is preferable.
  • the metal layer can be used as a wiring by patterning it into a desired wiring pattern, for example. And since a metal layer can make an electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of an electroconductive board
  • substrate can be made small by providing a metal layer.
  • the organic layer can be formed on the surface of the metal layer facing the blackening layer described later. Therefore, when a conductive substrate is used, it can be disposed between the metal layer and the blackened layer.
  • the organic material layer can contain a nitrogen-based organic material.
  • the nitrogen-based organic material included in the organic layer is not particularly limited, and can be arbitrarily selected from organic compounds containing nitrogen.
  • the nitrogen-based organic substance for example, it is preferable to contain 1,2,3-benzotriazole or a derivative thereof. More specifically, for example, 1,2,3-benzotriazole, 5-methyl-1H benzotriazole and the like can be contained as the nitrogen-based organic substance.
  • the method for forming the organic material layer is not particularly limited, and examples thereof include a method of supplying, applying, and drying a solution containing a nitrogen-based organic material on the surface of the metal layer on which the organic material layer is formed.
  • a rust preventive for copper containing nitrogen-based organic material can be preferably used.
  • a commercially available copper anticorrosive treatment agent for example, an OPC defender (trade name, Okuno Pharmaceutical Co., Ltd.) or the like can be preferably used.
  • the aqueous solution containing nitrogen-type organic substance can be used preferably, for example.
  • Examples of a method for supplying and applying a solution containing a nitrogen-based organic material on the metal layer of the base material forming the organic material layer include a spray method, a pouring method, and an immersion method.
  • the spray method is a method of supplying a solution containing a nitrogen-based organic material to the surface of the metal layer of the base material on which the organic material layer is formed using a spray.
  • a solution containing a nitrogenous organic substance is flowed from the top to the bottom to form a film-like flow, and the flow of the solution containing the nitrogenous organic substance and the base metal for forming the organic matter layer It refers to a method of transporting a base material that forms an organic layer so that the surface of the layer is substantially parallel to and in contact with the surface of the layer.
  • the dipping method refers to a method of dipping a base material for forming an organic material layer in a solution containing a nitrogenous organic material.
  • the base material which forms the organic substance layer by description so far means the base material which formed the metal layer or the contact
  • the blackening layer can be formed on the upper surface of the organic layer.
  • the material of the blackening layer is not particularly limited, and any material that can suppress the reflection of light on the surface of the metal layer can be suitably used.
  • the blackening layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Further, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • the blackening layer may contain a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Good. Also in this case, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used.
  • a Ni—Cr alloy or a Ni—Cu alloy can be used more preferably.
  • the method for forming the blackened layer is not particularly limited, and can be formed by any method, for example, by a dry method or a wet method.
  • the specific method is not particularly limited, but for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used.
  • a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method
  • it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer.
  • a reactive sputtering method can be more preferably used.
  • a target containing a metal species constituting the blackened layer can be used as the target.
  • the blackened layer contains an alloy
  • a target may be used for each metal species contained in the blackened layer, and the alloy may be formed on the surface of the film-deposited body such as a substrate, and is included in the blackened layer in advance. It is also possible to use a target obtained by alloying a metal.
  • the blackened layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen
  • these are added to the atmosphere when the blackened layer is formed, so that the blackened layer Can be added inside.
  • carbon monoxide gas and / or carbon dioxide gas is used
  • oxygen, oxygen gas is used
  • hydrogen, hydrogen gas and / or water is used.
  • nitrogen gas can be added to the atmosphere during sputtering.
  • One or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackening layer by adding these gases to the inert gas when forming the blackening layer.
  • Argon can be preferably used as the inert gas.
  • the blackened layer When the blackened layer is formed by a wet method, it can be formed by, for example, an electroplating method using a plating solution corresponding to the material of the blackened layer.
  • the blackened layer can be formed by either a dry method or a wet method.
  • the nitrogen-based organic matter contained in the organic layer is dissolved in the plating solution. Incorporation into the blackened layer may affect the color tone and other characteristics of the blackened layer. Therefore, it is preferable to form a film by a dry method.
  • the thickness of the blackening layer is not particularly limited, but is preferably 5 nm or more, for example, and more preferably 15 nm or more. This is because when the thickness of the blackened layer is thin, reflection of light on the surface of the metal layer may not be sufficiently suppressed. Therefore, the thickness of the blackened layer is set to 5 nm or more as described above. This is because it is preferable to configure so that reflection of light on the surface of the layer can be particularly suppressed.
  • the upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the blackened layer is preferably 50 nm or less, and more preferably 30 nm or less.
  • the conductive substrate can be provided with any layer other than the above-mentioned insulating base material, metal layer, organic material layer, and blackening layer.
  • an adhesion layer can be provided.
  • the metal layer can be formed on the insulating substrate, but when the metal layer is directly formed on the insulating substrate, the adhesion between the insulating substrate and the metal layer is not sufficient. There is a case. For this reason, when a metal layer is directly formed on the upper surface of the insulating substrate, the metal layer may be peeled off from the insulating substrate during the manufacturing process or use.
  • an adhesion layer can be disposed on the insulating substrate in order to improve the adhesion between the insulating substrate and the metal layer.
  • the adhesion layer between the insulating substrate and the metal layer By disposing the adhesion layer between the insulating substrate and the metal layer, the adhesion between the insulating substrate and the metal layer can be improved, and the metal layer can be prevented from peeling off from the insulating substrate.
  • the adhesion layer can function as a blackening layer. For this reason, it becomes possible to suppress the reflection of the light of the metal layer by the light from the lower surface side of the metal layer, that is, the insulating base material side.
  • the material constituting the adhesion layer is not particularly limited, the adhesion strength between the insulating base and the metal layer, the degree of suppression of light reflection on the surface of the required metal layer, and the conductive substrate. It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity and temperature) to be used.
  • the adhesion layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • the adhesion layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • the adhesion layer can also include a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further include one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used.
  • a Ni—Cr alloy or a Ni—Cu alloy can be used more preferably.
  • the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used.
  • a sputtering method it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, a reactive sputtering method can be more preferably used.
  • the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen in the atmosphere when forming the adhesion layer Can be added to the adhesion layer.
  • carbon monoxide gas and / or carbon dioxide gas when adding oxygen, oxygen gas, when adding hydrogen, hydrogen gas and / or water
  • nitrogen gas can be added to the atmosphere when dry plating is performed.
  • a gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas during dry plating.
  • an inert gas For example, argon can be used preferably.
  • the adhesion layer By forming the adhesion layer by dry plating as described above, the adhesion between the insulating substrate and the adhesion layer can be enhanced. And since an adhesion layer can contain a metal as a main component, for example, its adhesiveness with a metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange
  • the thickness of the adhesion layer is not particularly limited, but is preferably, for example, 5 nm to 50 nm, more preferably 5 nm to 35 nm, and still more preferably 5 nm to 33 nm.
  • the thickness of the adhesion layer is preferably 5 nm or more as described above.
  • the upper limit value of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the adhesion layer is preferably 50 nm or less as described above, more preferably 35 nm or less, and further preferably 33 nm or less.
  • the conductive substrate of the present embodiment can have an insulating base, a metal layer, an organic layer, and a blackening layer. Further, a layer such as an adhesion layer can be optionally provided.
  • FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B show examples of cross-sectional views in the plane parallel to the stacking direction of the insulating substrate, metal layer, organic layer, and blackening layer of the conductive substrate of this embodiment. ing.
  • the conductive substrate of this embodiment has, for example, a structure in which a metal layer, an organic layer, and a blackening layer are laminated in that order from the insulating base side on at least one surface of the insulating base. Can do.
  • the metal layer 12, the organic material layer 13, and the blackening layer 14 are formed one by one on the one surface 11a side of the insulating base material 11. They can be stacked in that order.
  • a metal layer, an organic material layer, and a blackening layer are formed on one surface of the insulating base and on the other surface facing the one surface, respectively. It can also be set as the structure formed in that order. Specifically, for example, it can be configured as shown in FIG. 1B or FIG. 2B described later.
  • the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B can be stacked in this order on the surface 11b.
  • the metal layer, the organic material layer, and the blackening layer can be formed one by one as shown in FIG. 1B, for example.
  • an adhesion layer may be provided.
  • a structure in which an adhesion layer, a metal layer, an organic material layer, and a blackening layer are formed in that order from the insulating substrate side on at least one surface of the insulating substrate can be employed.
  • the adhesion layer 15, the metal layer 12, the organic layer 13, and the blackening layer 14 are formed on one surface 11a side of the insulating base material 11. Can be stacked in that order.
  • an adhesion layer, a metal layer, an organic material layer, and a blackening layer are laminated on both surfaces of the insulating substrate 11
  • 12B, organic layers 13A and 13B, and blackening layers 14A and 14B can be stacked in that order.
  • the insulating base material 11 is laminated on the upper and lower sides of the insulating base material 11 with the symmetrical surface.
  • positioned so that the layer which became symmetrical may be shown, it is not limited to the form which concerns.
  • the configuration on the one surface 11a side of the insulating substrate 11 is similar to the configuration of FIG. 1B, without providing the adhesion layer 15A, the metal layer 12A, the organic layer 13A, and the blackening layer 14A. It is good also as a form laminated
  • reflection of the light by a metal layer is suppressed by providing a metal layer, an organic substance layer, and a blackening layer on an insulating base material, and reflection of an electroconductive board
  • the rate can be suppressed.
  • the degree of reflectivity of the conductive substrate of the present embodiment is not particularly limited.
  • the reflectivity is lower. Is good.
  • the average reflectance of light having a wavelength of 400 nm to 700 nm is preferably 20% or less, more preferably 17% or less, and particularly preferably 15% or less.
  • the reflectance can be measured by irradiating the blackened layer of the conductive substrate with light.
  • the blackened layer 14 is irradiated with light.
  • the surface A of the blackened layer 14 can be irradiated with light and measured.
  • light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 14 of the conductive substrate, for example, at a wavelength of 1 nm as described above, and the average value of the measured values is used as the reflectance of the conductive substrate. be able to.
  • the conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel.
  • the conductive substrate can be configured to have mesh-like wiring.
  • the conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer, the organic material layer, and the blackening layer of the conductive substrate of the present embodiment described so far.
  • a mesh-like wiring can be formed by two-layer wiring.
  • FIG. 3 shows a view of the conductive substrate 30 provided with mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like.
  • the insulating substrate 11 and the metal layer Layers other than the wirings 31A and 31B formed by patterning are omitted.
  • a wiring 31B that can be seen through the insulating substrate 11 is also shown.
  • the conductive substrate 30 shown in FIG. 3 has an insulating base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and wirings 31B parallel to the X-axis direction.
  • the wirings 31A and 31B are formed by etching a metal layer, and an organic material layer and a blackening layer (not shown) are formed on the upper surface and / or the lower surface of the wirings 31A and 31B.
  • the organic material layer and the blackened layer are etched in the same shape as the wirings 31A and 31B.
  • the arrangement of the insulating base 11 and the wirings 31A and 31B is not particularly limited.
  • a configuration example of the arrangement of the insulating base material 11 and the wiring is shown in FIGS. 4A and 4B.
  • 4A and 4B are cross-sectional views taken along line AA ′ of FIG.
  • wirings 31A and 31B may be disposed on the upper and lower surfaces of the insulating base material 11, respectively.
  • organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surface of the wiring 31A and the lower surface of 31B.
  • FIG. 4B a pair of insulating base materials 11 is used, wirings 31A and 31B are arranged on the upper and lower surfaces with one insulating base material 11 interposed therebetween, and one wiring 31B is insulated. May be disposed between the conductive substrates 11. Also in this case, organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surfaces of the wirings 31A and 31B. As described above, an adhesion layer can be provided in addition to the metal layer, the organic material layer, and the blackening layer. Therefore, in either case of FIG. 4A or FIG.
  • an adhesion layer can be provided between the wiring 31 ⁇ / b> A and / or the wiring 31 ⁇ / b> B and the insulating substrate 11.
  • the adhesion layer is also etched in the same shape as the wirings 31A and 31B.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is, for example, a metal layer 12A, 12B, an organic layer 13A, 13B, and a blackening layer on both sides of the insulating base 11 as shown in FIG. 1B.
  • 14A and 14B can be formed from a conductive substrate.
  • the metal layer 12A, the organic layer 13A, and the blackening layer 14A on the one surface 11a side of the insulating base 11 are shown in FIG. 1B.
  • Etching is performed so that a plurality of linear patterns parallel to the Y-axis direction are arranged at predetermined intervals along the X-axis direction.
  • the X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer.
  • the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
  • a plurality of linear patterns parallel to the X-axis direction in FIG. 1B are spaced apart from each other on the metal layer 12B, the organic material layer 13B, and the blackening layer 14B on the other surface 11b side of the insulating substrate 11 by a predetermined interval. Etching is performed so as to be arranged along the Y-axis direction.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A can be formed.
  • the etching of both surfaces of the insulating substrate 11 can be performed simultaneously. That is, the etching of the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B may be performed simultaneously.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is the conductive substrate shown in FIG. 2B. It can be produced by etching in the same manner.
  • FIG. 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A.
  • the metal layer 12, the organic material layer 13, and the blackening layer 14 are respectively formed on the X axis. Etching is performed so that a plurality of linear patterns parallel to the direction are arranged along the Y-axis direction at predetermined intervals. Then, the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to.
  • the surface to be bonded when the two conductive substrates are bonded is not particularly limited.
  • the surface A in FIG. 1A in which the metal layer 12 or the like is laminated and the other surface 11b in FIG. 1A in which the metal layer 12 or the like is not laminated are bonded together so that the structure shown in FIG. 4B is obtained. You can also.
  • the other surfaces 11b in FIG. 1A where the metal layer 12 or the like of the insulating base material 11 is not laminated can be bonded together so that the cross section has the structure shown in FIG. 4A.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is shown in FIG. 1A. It can be manufactured by using the conductive substrate shown in FIG. 2A instead of the conductive substrate.
  • the width of the wiring and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIG. 3, FIG. 4A and FIG. 4B are not particularly limited. You can choose.
  • 4 ⁇ / b> A, and 4 ⁇ / b> B show examples in which a mesh-like wiring (wiring pattern) is formed by combining linear wirings, but the present invention is not limited to such a form.
  • the wiring that constitutes can be of any shape.
  • the shape of the wiring constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display.
  • a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
  • the organic material layer containing the nitrogen-based organic material and the blackening layer are stacked on the metal layer formed on at least one surface of the insulating base material. It has a structure. A plurality of granular protrusions having a predetermined average height are formed on the surface of the metal layer on which the organic material layer is formed so that a predetermined number per unit length. For this reason, even when the organic material layer is formed, the blackened layer can be prevented from peeling off, and a conductive substrate having high quality stability can be obtained.
  • the blackened layer which suppressed peeling is provided in the conductive substrate of this embodiment, reflection of light on the surface of the metal layer is more reliably suppressed, and a conductive substrate with reduced reflectance is obtained. be able to. For this reason, when it uses for uses, such as a touch panel, for example, the visibility of a display can be improved. (Method for producing conductive substrate) Next, a configuration example of the method for manufacturing the conductive substrate according to this embodiment will be described.
  • the manufacturing method of the conductive substrate of this embodiment can have the following processes.
  • the metal layer formed in the metal layer forming step can have a plurality of granular protrusions on the surface on which the organic layer is formed. And the average height of a some granular protrusion can be 8.00 nm or more. Further, the metal layer can have a plurality of granular protrusions of 70/10 ⁇ m or more on the surface on which the organic layer is formed.
  • substrate can be suitably manufactured with the manufacturing method of the electroconductive board
  • the insulating base material used for the metal layer forming step can be prepared in advance.
  • a transparent base material such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used as described above.
  • the insulating base material can be cut into an arbitrary size in advance if necessary.
  • the metal layer preferably has a metal thin film layer as described above.
  • the metal layer can also have a metal thin film layer and a metal plating layer.
  • a metal layer formation process can have a process of forming a metal thin film layer, for example by a dry-type plating method.
  • the metal layer forming step includes a step of forming a metal thin film layer by a dry plating method, a step of forming a metal plating layer by an electroplating method which is a kind of wet plating method, using the metal thin film layer as a power feeding layer, You may have.
  • the dry plating method used in the step of forming the metal thin film layer is not particularly limited, and for example, an evaporation method, a sputtering method, an ion plating method, or the like can be used.
  • a vapor deposition method a vacuum vapor deposition method can be used preferably.
  • the dry plating method used in the step of forming the metal thin film layer it is preferable to use a sputtering method because the film thickness can be easily controlled.
  • the conditions in the step of forming the metal plating layer by the wet plating method that is, the conditions for the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted.
  • a metal plating layer can be formed by supplying a base material on which a metal thin film layer is formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base material.
  • the conductive substrate of the present embodiment can have a plurality of granular protrusions on the surface on which the organic layer of the metal layer is formed.
  • the method for forming a plurality of granular protrusions related to the surface of the metal layer on which the organic layer is to be formed is not particularly limited, and examples thereof include a method for surface-treating the surface of the metal layer after the metal layer is formed.
  • a method for surface-treating the surface of the metal layer after the metal layer is formed As a specific example, there is a method in which after the metal layer is formed, the surface of the metal layer is subjected to etching treatment or sand blast treatment. For this reason, after forming a metal thin film layer, or a metal thin film layer and a metal plating layer, the process which performs the etching process and the sandblasting process about the surface which forms the organic substance layer of a metal layer can also be provided.
  • a method of adjusting film forming conditions when forming the metal layer For example, there is a method of changing the current density (Dk value) when forming the metal plating layer by electroplating during the formation of the metal plating layer. For this reason, when forming a some granular protrusion on the surface which forms the organic substance layer of a metal layer by the method which concerns, a current density can be changed in the process of forming a metal plating layer. Since the specific control example of the current density has already been described, the description thereof is omitted here.
  • an organic material layer containing a nitrogen-based organic material can be formed on the metal layer.
  • the method for forming the organic material layer is not particularly limited.
  • the organic material layer may be formed by supplying, applying, and drying a solution containing a nitrogen-based organic material, for example, an aqueous solution containing the nitrogen-based organic material, on the metal layer. it can.
  • the method for supplying and applying a solution containing a nitrogenous organic substance on the metal layer is not particularly limited, and any method can be used.
  • any method can be used.
  • the spray method, the pouring method, the dipping method, etc. are mentioned. Since each method has already been described, a description thereof will be omitted.
  • the method for forming the blackened layer is not particularly limited, and can be formed by any method.
  • a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used.
  • the sputtering method is more preferable because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
  • the blackened layer can be formed by a wet method such as an electroplating method.
  • the nitrogen-based organic matter contained in the organic layer starts to dissolve in the plating solution and is taken into the blackened layer, affecting the color tone and other characteristics of the blackened layer. Since there is a fear, it is preferable to form a film by a dry method.
  • an optional step can be further performed in addition to the above-described steps.
  • an adhesion layer forming step of forming an adhesion layer on the surface of the insulating substrate on which the metal layer is formed can be performed.
  • the metal layer forming step can be carried out after the adhesion layer forming step, and in the metal layer forming step, the substrate having the adhesion layer formed on the insulating substrate in this step.
  • a metal thin film layer can be formed.
  • the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, the reactive sputtering method can be more preferably used.
  • the conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment can be used for various applications such as a touch panel. And when using for various uses, it is preferable that the metal layer, organic substance layer, and blackening layer which are contained in the electroconductive board
  • the metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be patterned in accordance with, for example, a desired wiring pattern, and the metal layer, the organic material layer, and the blackening layer, and in some cases, further adhesion.
  • the layers are preferably patterned in the same shape.
  • the manufacturing method of the conductive substrate of the present embodiment can include a patterning step of patterning the metal layer, the organic material layer, and the blackening layer.
  • the patterning step can be a step of patterning the adhesion layer, the metal layer, the organic material layer, and the blackening layer.
  • the specific procedure of the patterning step is not particularly limited, and can be performed by an arbitrary procedure.
  • a desired pattern is formed on the surface A on the blackening layer 14.
  • a mask placement step of placing a mask having it can be performed.
  • an etching step of supplying an etching solution to the surface A on the blackened layer 14, that is, the side on which the mask is disposed can be performed.
  • the etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the material constituting the layer to be etched.
  • the etching solution can be changed for each layer, and the metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be etched simultaneously with the same etching solution.
  • the conductive substrate 10B in which the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B are stacked on the one surface 11a and the other surface 11b of the insulating base 11 is also used.
  • a patterning process for patterning can be performed.
  • a mask placement step of placing a mask having a desired pattern on the surface A and the surface B on the blackening layers 14A and 14B can be performed.
  • an etching step of supplying an etching solution to the surface A and the surface B on the blackening layers 14A and 14B, that is, the surface side where the mask is disposed can be performed.
  • the pattern formed in the etching step is not particularly limited, and can be an arbitrary shape.
  • the metal layer 12, the organic material layer 13, and the blackened layer 14 include a plurality of straight lines or jagged lines (zigzag straight lines). A pattern can be formed.
  • a pattern can be formed by the metal layer 12A and the metal layer 12B so as to form a mesh-like wiring.
  • the organic material layer 13A and the blackening layer 14A may be patterned to have the same shape as the metal layer 12A, and the organic material layer 13B and the blackening layer 14B may be patterned to have the same shape as the metal layer 12B. preferable.
  • a lamination step of laminating two or more patterned conductive substrates may be performed.
  • laminating for example, by laminating so that the pattern of the metal layer of each conductive substrate intersects, a laminated conductive substrate provided with mesh-like wiring can be obtained.
  • the method of fixing two or more laminated conductive substrates is not particularly limited, but can be fixed by, for example, an adhesive.
  • the conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment described above includes an organic material layer containing a nitrogen-based organic material on a metal layer formed on at least one surface of an insulating base, and a black And a laminated structure.
  • a plurality of granular protrusions having a predetermined average height are formed on the surface of the metal layer on which the organic material layer is formed so that a predetermined number per unit length. For this reason, even when the organic material layer is formed, the blackened layer can be prevented from peeling off, and a conductive substrate having high quality stability can be obtained.
  • the blackening layer which suppressed peeling is provided, reflection of the light in the metal layer surface is suppressed more reliably, and reflection It can be set as the electroconductive board
  • the measurement is performed by measuring the surface profile in a linear shape having a length of 10 ⁇ m at an arbitrary location on the surface of the organic material layer.
  • the height, the number of granular projections from the line profile, and the surface roughness of the metal layer surface were calculated. Further, the SAD value was also calculated from the measurement result using AFM.
  • the SAD value was calculated by the following formula (1), and the value measured by AFM was used as the surface area S2 of the surface of the metal layer on which the organic layer is formed.
  • 11 horizontal cutting lines 51b having a length of 20 mm are formed in parallel with each other at intervals of 1.0 mm so as to be orthogonal to the previously formed vertical cutting lines 51a.
  • an adhesive strength evaluation tape (Elcometer 99 tape manufactured by Elcomometer Co., Ltd.) is applied so as to cover the grid-like cuts, and then sufficiently rubbed.
  • Example 1 Adhesion layer forming process
  • An adhesion layer was formed on one surface of an insulating base made of polyethylene terephthalate resin (PET) having a length of 500 mm ⁇ width of 500 mm and a thickness of 50 ⁇ m. Note that the total light transmittance of the insulating base material made of polyethylene terephthalate resin used as the insulating base material was evaluated by the method prescribed in JIS K 7361-1, and found to be 97%.
  • PET polyethylene terephthalate resin
  • a Ni—Cu alloy layer containing oxygen was formed as an adhesion layer using a sputtering apparatus equipped with a Ni-17 wt% Cu alloy target. The procedure for forming the adhesion layer will be described below.
  • the above-mentioned insulating base material which was previously heated to 60 ° C. to remove moisture, was placed in the chamber of the sputtering apparatus.
  • Metal layer forming process In the metal layer forming step, a metal thin film layer forming step and a metal plating layer forming step were performed.
  • a copper thin film layer was formed as a metal thin film layer on the adhesion layer using a substrate in which the adhesion layer was formed on the insulating substrate in the adhesion layer forming step.
  • the metal thin film layer is a sputtering apparatus as in the case of the adhesion layer except that a copper target is used and the inside of the chamber in which the substrate is set is evacuated and then an argon gas is supplied to form an argon atmosphere. Was formed.
  • the copper thin film layer which is a metal thin film layer, was formed to a thickness of 80 nm.
  • a copper plating layer was formed as the metal plating layer.
  • the copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.5 ⁇ m.
  • the current density (Dk value) is 1 A / dm 2 at the start of the metal plating layer forming step, and the current density (Dk value) is 0.1 A for 7 seconds before the end of the metal plating layer forming step. / Dm 2 .
  • the plating time before the end of the metal layer forming step is hereinafter referred to as the final plating time.
  • Organic layer formation process In the organic layer forming step, an organic layer was formed on the metal layer of the laminate in which the adhesion layer and the metal layer were formed on the insulating base material.
  • the above laminate was immersed in an OPC diffuser (Okuno Pharmaceutical Co., Ltd.) solution containing 1,2,3-benzotriazole as a nitrogen-based organic material for 7 seconds.
  • OPC diffuser Omni Pharmaceutical Co., Ltd.
  • the OPC diffuser solution used was adjusted in advance so that the concentration of 1,2,3-benzotriazole was 3 mL / L.
  • the organic material layer was formed on the metal layer by removing the solution adhering to the surface other than the upper surface of the metal layer, that is, the surface opposite to the surface opposite to the adhesion layer of the metal layer, and then drying.
  • the average height of the granular protrusions, the number of granular protrusions from the line profile, the surface roughness of the metal layer surface, and the SAD value were evaluated.
  • Blackening layer forming process In the blackened layer forming step, a Ni—Cu layer was formed as a blackened layer by sputtering on the organic layer formed in the organic layer forming step.
  • a Ni—Cu alloy layer was formed as a blackening layer by a sputtering apparatus equipped with a Ni-35 wt% Cu alloy target. The procedure for forming the blackened layer will be described below.
  • a laminated body in which an adhesion layer, a metal layer, and an organic layer were laminated on an insulating substrate was set in a chamber of a sputtering apparatus.
  • a blackening layer is formed on the upper surface of the metal layer, that is, the surface opposite to the surface facing the adhesion layer of the metal layer through the organic material layer, and the adhesion layer, the metal is formed on the insulating substrate.
  • a conductive substrate in which a layer, an organic material layer, and a blackening layer were laminated in that order was obtained.
  • Example 2 A conductive substrate was prepared and evaluated in the same manner as in Example 1 except that the final plating time was the time shown in Table 1.
  • the average height of the plurality of granular projections formed on the surface of the metal layer is 8.00 nm or more, and the granularity from the line profile on the surface of the metal layer on which the organic layer is formed is It was confirmed that Examples 1 to 3 in which the number of protrusions was 70/10 ⁇ m or more were evaluated as “good” in the adhesion test.

Abstract

Provided is a conductive substrate which includes: an insulating base material; a metal layer formed on at least one surface of the insulating base material; an organic substance layer which is formed on the metal layer and contains a nitrogen-containing organic substance; and a blackened layer formed on the organic substance layer. The metal layer has multiple granular protrusions on a surface thereof where the organic substance layer is formed, the average height of the multiple granular protrusions being 8.00 nm or greater. The metal layer has 70 pieces or more/10 μm of the multiple granular protrusions on the surface where the organic substance layer is formed.

Description

導電性基板Conductive substrate
 本発明は、導電性基板に関する。 The present invention relates to a conductive substrate.
 静電容量式タッチパネルは、パネル表面に近接する物体により引き起こされる静電容量の変化を検出することにより、パネル表面上での近接する物体の位置の情報を電気信号に変換する。静電容量式タッチパネルに用いられる導電性基板は、ディスプレイの表面に設置されるため、導電性基板の導電層の材料には反射率が低く、視認されにくいことが要求されている。 The capacitive touch panel converts information on the position of an adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object adjacent to the panel surface. Since the conductive substrate used for the capacitive touch panel is installed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have low reflectance and be difficult to be visually recognized.
 そこで、静電容量式タッチパネルに用いられる導電層の材料としては、反射率が低く、視認されにくい材料が用いられ、透明基板または透明なフィルム上に配線が形成されている。 Therefore, as a material for the conductive layer used for the capacitive touch panel, a material having low reflectivity and not easily visible is used, and wiring is formed on a transparent substrate or a transparent film.
 例えば、特許文献1には、高分子フィルムおよびその上に気相成膜法により設けられた金属酸化物からなる透明導電膜を含む透明導電性フィルムであって、金属酸化物からなる透明導電膜が、第一の金属酸化物からなる透明導電膜およびその上に設けられた第二の金属酸化物からなる透明導電膜からなり、かつ第二の金属酸化物からなる透明導電膜が第一の金属酸化物からなる透明導電膜の成膜条件と異なる条件で形成されていることを特徴とする透明導電性フィルムが開示されている。そして、金属酸化物からなる透明導電膜が酸化インジウム-酸化スズ(ITO)膜であることも開示されている。 For example, Patent Document 1 discloses a transparent conductive film including a polymer film and a transparent conductive film made of a metal oxide provided thereon by a vapor deposition method, and the transparent conductive film made of a metal oxide. Is made of a transparent conductive film made of the first metal oxide and a transparent conductive film made of the second metal oxide provided thereon, and the transparent conductive film made of the second metal oxide is the first A transparent conductive film characterized by being formed under conditions different from the film forming conditions of a transparent conductive film made of a metal oxide is disclosed. It is also disclosed that the transparent conductive film made of a metal oxide is an indium oxide-tin oxide (ITO) film.
 ところで、近年タッチパネルを備えたディスプレイの大画面化が進んでおり、これに対応してタッチパネル用の導電性基板についても大面積化が求められている。しかし、ITOは電気抵抗値が高く信号の劣化を生じるため、ITOを用いた導電性基板は大型パネルには不向きという問題があった。 By the way, in recent years, a display having a touch panel has been enlarged, and in response to this, a conductive substrate for the touch panel is required to have a large area. However, since ITO has a high electric resistance value and causes signal deterioration, there is a problem that a conductive substrate using ITO is not suitable for a large panel.
 そこで、導電性基板の電気抵抗を抑制するため、導電層の材料としてITOにかえて銅等の金属を用いることが検討されている。ただし、金属は金属光沢を有しているため、反射によりディスプレイの視認性が低下するという問題がある。このため、銅等の金属と共に、黒色の材料により構成される層を形成した導電性基板が検討されている。 Therefore, in order to suppress the electrical resistance of the conductive substrate, it has been studied to use a metal such as copper instead of ITO as the material of the conductive layer. However, since the metal has a metallic luster, there is a problem that the visibility of the display decreases due to reflection. For this reason, a conductive substrate in which a layer composed of a black material is formed together with a metal such as copper has been studied.
 例えば特許文献2には、フィルム表面と裏面の透視が必要な部分のそれぞれに、ストライプ状銅配線を備え、表裏の銅配線の視認される側に黒色の酸化銅皮膜を有するフィルム状タッチパネルセンサーが開示されている。 For example, Patent Document 2 discloses a film-like touch panel sensor that includes a striped copper wiring on each of the portions that need to be seen through on the front and back surfaces of the film, and has a black copper oxide film on the side where the copper wiring on the front and back sides is visually recognized. It is disclosed.
日本国特開2003-151358号公報Japanese Unexamined Patent Publication No. 2003-151358 日本国特開2013-206315号公報Japanese Unexamined Patent Publication No. 2013-206315
 ところで、導電性基板において、例えば金属層と黒化層とを別の装置で成膜する場合など、金属層を形成後、その上面に黒化層を形成するまでの間に金属層の表面に錆等が生じることを防止することが求められる場合があった。そこで、本発明の発明者らは、金属層表面に有機物層を形成する防錆処理を行い、有機物層を形成することを検討した。 By the way, in the conductive substrate, for example, when the metal layer and the blackened layer are formed by different apparatuses, after the metal layer is formed and before the blackened layer is formed on the upper surface, the surface of the metal layer is formed. In some cases, it was required to prevent rust and the like from occurring. Therefore, the inventors of the present invention studied to form an organic layer by performing a rust prevention treatment for forming an organic layer on the surface of the metal layer.
 しかしながら、金属層の防錆処理を行った面に黒化層を成膜すると、黒化層と金属層との密着性が低下し、黒化層が剥離する場合があるという問題があった。 However, when a blackened layer is formed on the surface of the metal layer which has been subjected to rust prevention treatment, there is a problem in that the adhesion between the blackened layer and the metal layer is lowered, and the blackened layer may peel off.
 上記従来技術の問題に鑑み、本発明の一側面では、金属層と黒化層との間に有機物層を形成した導電性基板において、黒化層が剥離することを抑制した導電性基板を提供することを目的とする。 In view of the above-described problems of the prior art, according to one aspect of the present invention, there is provided a conductive substrate in which an organic layer is formed between a metal layer and a blackened layer, and the blackened layer is prevented from peeling off. The purpose is to do.
 上記課題を解決するため本発明の一側面では、
 絶縁性基材と、
 前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
 前記金属層上に形成された、窒素系有機物を含有する有機物層と、
 前記有機物層上に形成された黒化層と、を有しており、
 前記金属層は、前記有機物層を形成する面に、複数の粒状の突起物を有しており、
 前記複数の粒状の突起物の平均高さが8.00nm以上であり、
 前記金属層は、前記有機物層を形成する面に、前記複数の粒状の突起物を70個/10μm以上有する導電性基板を提供する。
In order to solve the above problems, in one aspect of the present invention,
An insulating substrate;
A metal layer formed on at least one surface of the insulating substrate;
An organic layer containing nitrogen-based organic matter formed on the metal layer;
A blackening layer formed on the organic layer,
The metal layer has a plurality of granular protrusions on the surface on which the organic layer is formed,
An average height of the plurality of granular protrusions is 8.00 nm or more;
The metal layer provides a conductive substrate having 70/10 μm or more of the plurality of granular protrusions on a surface on which the organic layer is formed.
 本発明の一側面によれば、金属層と黒化層との間に有機物層を形成した導電性基板において、黒化層が剥離することを抑制した導電性基板を提供することができる。 According to one aspect of the present invention, it is possible to provide a conductive substrate in which an organic layer is formed between a metal layer and a blackened layer, and the blackened layer is prevented from peeling off.
本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。The top view of the electroconductive board | substrate provided with the mesh-shaped wiring which concerns on embodiment of this invention. 図3のA-A´線における断面図。Sectional drawing in the AA 'line of FIG. 図3のA-A´線における断面図。Sectional drawing in the AA 'line of FIG. 実施例、比較例における密着性試験を行う際に形成する切込み線の説明図。Explanatory drawing of the cut line formed when performing the adhesiveness test in an Example and a comparative example.
 以下、本発明の導電性基板、及び導電性基板の製造方法の一実施形態について説明する。
(導電性基板)
 本実施形態の導電性基板は、絶縁性基材と、絶縁性基材の少なくとも一方の面上に形成された金属層と、金属層上に形成された、窒素系有機物を含有する有機物層と、有機物層上に形成された黒化層と、を有することができる。 
 そして、金属層は、有機物層を形成する面に、複数の粒状の突起物を有することができる。複数の粒状の突起物の平均高さは8.00nm以上とすることができる。また、金属層は、有機物層を形成する面に、複数の粒状の突起物を70個/10μm以上有することができる。
Hereinafter, an embodiment of a conductive substrate and a method for manufacturing the conductive substrate of the present invention will be described.
(Conductive substrate)
The conductive substrate of the present embodiment includes an insulating substrate, a metal layer formed on at least one surface of the insulating substrate, and an organic material layer containing a nitrogen-based organic material formed on the metal layer. And a blackening layer formed on the organic material layer.
The metal layer can have a plurality of granular protrusions on the surface on which the organic layer is formed. The average height of the plurality of granular projections can be 8.00 nm or more. Further, the metal layer can have a plurality of granular protrusions of 70/10 μm or more on the surface on which the organic layer is formed.
 なお、本実施形態における導電性基板とは、金属層等をパターニングする前の、絶縁性基材の表面に金属層、有機物層、及び黒化層を有する基板と、金属層等をパターン化した基板、すなわち、配線基板と、を含む。 Note that the conductive substrate in this embodiment is a pattern in which a substrate having a metal layer, an organic material layer, and a blackened layer on the surface of the insulating base before patterning the metal layer, and the metal layer is patterned. A substrate, that is, a wiring substrate.
 ここでまず、導電性基板に含まれる各部材について以下に説明する。 Here, first, each member included in the conductive substrate will be described below.
 絶縁性基材としては特に限定されるものではなく、可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。 The insulating substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used.
 可視光を透過する樹脂基板の材料としては例えば、ポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、アセチルセルロース系樹脂等の樹脂を好ましく用いることができる。特に、可視光を透過する樹脂基板の材料として、PET(ポリエチレンテレフタレート)、COP(シクロオレフィンポリマー)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリアミド、ポリカーボネート、TAC(トリアセチルセルロース)等をより好ましく用いることができる。 The resin substrate material that transmits visible light is preferably a resin such as a polyamide resin, a polyethylene terephthalate resin, a polyethylene naphthalate resin, a cycloolefin resin, a polyimide resin, a polycarbonate resin, or an acetyl cellulose resin. Can be used. In particular, PET (polyethylene terephthalate), COP (cycloolefin polymer), PEN (polyethylene naphthalate), polyimide, polyamide, polycarbonate, TAC (triacetyl cellulose), and the like are more preferably used as the material for the resin substrate that transmits visible light. be able to.
 絶縁性基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や静電容量、光の透過率等に応じて任意に選択することができる。絶縁性基材の厚さとしては例えば10μm以上200μm以下とすることができる。特にタッチパネルの用途に用いる場合、絶縁性基材の厚さは20μm以上120μm以下とすることが好ましく、20μm以上100μm以下とすることがより好ましい。タッチパネルの用途に用いる場合で、例えば特にディスプレイ全体の厚さを薄くすることが求められる用途においては、絶縁性基材の厚さは20μm以上50μm以下であることが好ましい。 The thickness of the insulating base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate. The thickness of the insulating substrate can be, for example, 10 μm or more and 200 μm or less. In particular, when used for touch panel applications, the thickness of the insulating substrate is preferably 20 μm or more and 120 μm or less, and more preferably 20 μm or more and 100 μm or less. In the case of use for touch panel applications, for example, particularly in applications where it is required to reduce the thickness of the entire display, the thickness of the insulating substrate is preferably 20 μm or more and 50 μm or less.
 絶縁性基材の全光線透過率は高い方が好ましく、例えば全光線透過率は30%以上であることが好ましく、60%以上であることがより好ましい。絶縁性基材の全光線透過率が上記範囲であることにより、例えばタッチパネルの用途に用いた場合にディスプレイの視認性を十分に確保することができる。 The total light transmittance of the insulating base material is preferably higher. For example, the total light transmittance is preferably 30% or more, and more preferably 60% or more. When the total light transmittance of the insulating substrate is in the above range, the visibility of the display can be sufficiently ensured when used for, for example, a touch panel.
 なお絶縁性基材の全光線透過率はJIS K 7361-1に規定される方法により評価することができる。 The total light transmittance of the insulating substrate can be evaluated by the method specified in JIS K 7361-1.
 次に、金属層について説明する。 Next, the metal layer will be described.
 金属層を構成する材料は特に限定されず用途にあった電気伝導率を有する材料を選択できるが、例えば、金属層を構成する材料は、Cuと、Ni,Mo,Ta,Ti,V,Cr,Fe,Mn,Co,Wから選ばれる少なくとも1種以上の金属との銅合金、または銅を含む材料であることが好ましい。また、金属層は銅から構成される銅層とすることもできる。 Although the material which comprises a metal layer is not specifically limited, The material which has the electrical conductivity according to the application can be selected, For example, the material which comprises a metal layer is Cu, Ni, Mo, Ta, Ti, V, Cr , Fe, Mn, Co and W are preferably a copper alloy with at least one metal selected from W, or a material containing copper. The metal layer can be a copper layer made of copper.
 絶縁性基材上に金属層を形成する方法は特に限定されないが、光の透過率を低減させないため、絶縁性基材と金属層との間に接着剤を配置しないことが好ましい。すなわち金属層は、絶縁性基材の少なくとも一方の面上に直接形成されていることが好ましい。なお、後述のように絶縁性基材と金属層との間に密着層を配置する場合には、金属層は密着層の上面に直接形成されていることが好ましい。 The method for forming the metal layer on the insulating substrate is not particularly limited, but it is preferable not to place an adhesive between the insulating substrate and the metal layer in order not to reduce the light transmittance. That is, the metal layer is preferably formed directly on at least one surface of the insulating substrate. In addition, when arrange | positioning an adhesion layer between an insulating base material and a metal layer as mentioned later, it is preferable that the metal layer is directly formed on the upper surface of the adhesion layer.
 絶縁性基材の上面に金属層を直接形成するため、金属層は金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有していてもよい。 In order to directly form the metal layer on the upper surface of the insulating substrate, the metal layer preferably has a metal thin film layer. Moreover, the metal layer may have a metal thin film layer and a metal plating layer.
 例えば絶縁性基材上に、乾式めっき法により金属薄膜層を形成し該金属薄膜層を金属層とすることができる。これにより、絶縁性基材上に接着剤を介さずに直接金属層を形成できる。なお、乾式めっき法としては、例えばスパッタリング法や蒸着法、イオンプレーティング法等を好ましく用いることができる。 For example, a metal thin film layer can be formed on an insulating substrate by a dry plating method, and the metal thin film layer can be used as a metal layer. Thereby, a metal layer can be directly formed on an insulating substrate without using an adhesive. As the dry plating method, for example, a sputtering method, a vapor deposition method, an ion plating method, or the like can be preferably used.
 また、金属層の膜厚を厚くする場合には、金属薄膜層を給電層として湿式めっき法の一種である電気めっき法により金属めっき層を形成することにより、金属薄膜層と金属めっき層とを有する金属層とすることもできる。金属層が金属薄膜層と金属めっき層とを有することにより、この場合も絶縁性基材上に接着剤を介さずに直接金属層を形成できる。 In addition, when increasing the thickness of the metal layer, the metal thin film layer and the metal plating layer are formed by forming the metal plating layer by electroplating, which is a kind of wet plating method, using the metal thin film layer as a power feeding layer. It can also be a metal layer. Since the metal layer has the metal thin film layer and the metal plating layer, the metal layer can be directly formed on the insulating base material without using an adhesive.
 そして、本実施形態の導電性基板は、金属層の有機物層を形成する面に、複数の粒状の突起物を有することができる。 The conductive substrate of this embodiment can have a plurality of granular protrusions on the surface on which the organic layer of the metal layer is formed.
 既述のように、金属層の表面に有機物層を形成し、該有機物層上に黒化層を形成すると、黒化層と、有機物層を形成した金属層との密着性が低下し、黒化層が剥離する場合があった。そこで、本発明の発明者らは、金属層と黒化層との間に有機物層を形成した導電性基板において、黒化層が剥離することを抑制する方法について、鋭意検討を行った。その結果、金属層の有機物層を形成する面に、平均高さが8.00nm以上の複数の粒状の突起物(以下、単に「複数の粒状の突起物」とも記載する)を、70個/10μm以上形成することで、黒化層の有機物層、及び金属層への密着性を高め、剥離を抑制できることを見出した。 As described above, when an organic layer is formed on the surface of the metal layer and a blackened layer is formed on the organic layer, the adhesion between the blackened layer and the metal layer on which the organic layer is formed is reduced. In some cases, the chemical layer peeled off. Accordingly, the inventors of the present invention have made extensive studies on a method for suppressing the peeling of the blackened layer in the conductive substrate in which the organic layer is formed between the metal layer and the blackened layer. As a result, a plurality of granular protrusions having an average height of 8.00 nm or more (hereinafter also simply referred to as “a plurality of granular protrusions”) were formed on the surface of the metal layer on which the organic material layer was formed. It has been found that by forming 10 μm or more, the adhesion of the blackened layer to the organic material layer and the metal layer can be improved and peeling can be suppressed.
 複数の粒状の突起物の平均高さは、8.0nm以上であることが好ましく、8.5nm以上であることがより好ましい。 The average height of the plurality of granular protrusions is preferably 8.0 nm or more, and more preferably 8.5 nm or more.
 これは、上述の様に、本発明の発明者らの検討によると、複数の粒状の突起物の平均高さを8.0nm以上とすることで、黒化層が剥離することを抑制できるからである。 This is because, as described above, according to the study of the inventors of the present invention, it is possible to prevent the blackened layer from peeling by setting the average height of the plurality of granular projections to 8.0 nm or more. It is.
 複数の粒状の突起物の平均高さの上限値は特に限定されないが、15.0nm以下であることが好ましく、14.0nm以下であることがより好ましい。これは、複数の粒状の突起物の平均高さが15.0nmを超えた場合、金属層上に有機物層、及び黒化層を成膜した際に、黒化層の表面の表面粗さが高くなり、黒化層表面の色味に影響を与え、黒化層の機能に影響を与える場合があるためである。 The upper limit of the average height of the plurality of granular projections is not particularly limited, but is preferably 15.0 nm or less, and more preferably 14.0 nm or less. This is because when the average height of the plurality of granular protrusions exceeds 15.0 nm, the surface roughness of the surface of the blackened layer is reduced when the organic material layer and the blackened layer are formed on the metal layer. This is because it increases, affects the color of the surface of the blackened layer, and may affect the function of the blackened layer.
 金属層の有機物層を形成する面には、複数の粒状の突起物を70個/10μm以上形成することが好ましく、80個/10μm以上形成することがより好ましい。なお、これは、金属層の有機物層を形成する面において、任意の場所で測定した線プロファイルからの粒状の突起物の粒数、すなわち単位長さあたりに含まれる粒状の突起物の数を示している。 The surface of the metal layer on which the organic layer is formed is preferably formed with a plurality of granular projections of 70/10 μm or more, more preferably 80/10 μm or more. This indicates the number of granular protrusions from the line profile measured at an arbitrary position on the surface of the metal layer on which the organic layer is formed, that is, the number of granular protrusions included per unit length. .
 これは、金属層の有機物層を形成する面に、複数の粒状の突起物を70個/10μm以上形成することで、黒化層と、有機物層を形成した金属層との密着性を高め、黒化層が剥離することを抑制できるためである。 This is to increase the adhesion between the blackened layer and the metal layer on which the organic material layer is formed by forming a plurality of granular projections on the surface of the metal layer on which the organic material layer is formed by 70/10 μm or more. It is because it can suppress that a blackening layer peels.
 なお、複数の粒状の突起物の平均高さ、及び単位長さあたりの個数は、例えば金属層の有機物層を形成する面についてAFM(原子間力顕微鏡)を用いて測定し、測定結果から算出することができる。複数の粒状突起物の平均高さ、及び単位長さあたりの個数の測定、算出に当たっては、まず金属層の有機物層を形成する面の任意の場所で、所定の長さ、例えば長さ10μmの線状にAFMにより表面のプロファイルを測定することができる。そして、測定した線プロファイルの結果から平均高さ、及び該測定範囲内に存在する粒状突起物の数を算出できる。 The average height and the number per unit length of the plurality of granular protrusions are calculated from the measurement results obtained by, for example, measuring the surface of the metal layer on which the organic layer is formed using an AFM (atomic force microscope). can do. In measuring and calculating the average height of the plurality of granular protrusions and the number per unit length, first, a predetermined length, for example, a length of 10 μm, is formed at an arbitrary position on the surface of the metal layer on which the organic layer is formed. The surface profile can be measured linearly by AFM. Then, the average height and the number of granular protrusions existing in the measurement range can be calculated from the measured line profile result.
 ただし、金属層の有機物層を形成する面における粒状の突起物の平均高さ、及び単位長さあたりの個数の測定、算出は、金属層を成膜後、有機物層を形成する前にAFMにより評価を行おうとすると、金属層の表面が大気中の酸素により酸化され、正確に評価できない恐れがある。このため、金属層を成膜後、さらに有機物層を成膜してからAFMによる測定、評価を行うことが好ましい。有機物層については後述のように、窒素系有機物を含有する液体を金属層上に供給、塗布し、乾燥することで形成することができ、有機物層表面は金属層表面の状態を反映することとなる。このため、有機物層表面での測定結果は、金属層表面での測定結果と一致するためである。 However, the average height of the granular projections on the surface of the metal layer on which the organic layer is formed and the number of units per unit length are measured and calculated by AFM after forming the metal layer and before forming the organic layer. If the evaluation is to be performed, the surface of the metal layer may be oxidized by oxygen in the atmosphere and may not be evaluated accurately. For this reason, it is preferable to measure and evaluate by AFM after forming a metal layer and further forming an organic layer. As described later, the organic material layer can be formed by supplying, applying and drying a liquid containing a nitrogen-based organic material on the metal layer, and the surface of the organic material layer reflects the state of the surface of the metal layer. Become. For this reason, it is because the measurement result on the surface of an organic substance layer corresponds with the measurement result on the surface of a metal layer.
 従って、上述の複数の粒状の突起物の平均高さ、及び単位長さあたりの個数の測定、算出方法の説明における、金属層の有機物層を形成する面とは、有機物層の表面と読み替えることができる。このように、有機物層の任意の場所で有機物層表面の線プロファイルを測定し、その結果を用いて、複数の粒状突起物の平均高さ、及び単位長さあたりの個数を算出することで、金属層の有機物層を形成する面に存在する複数の粒状突起物の状態を反映した結果を得ることができる。 Therefore, the measurement of the average height of the plurality of granular projections and the number per unit length and the calculation method in the description of the calculation method should be read as the surface of the organic layer. Can do. Thus, by measuring the line profile on the surface of the organic material layer at an arbitrary location of the organic material layer, by using the result, calculating the average height of the plurality of granular projections, and the number per unit length, A result reflecting the state of a plurality of granular protrusions existing on the surface of the metal layer on which the organic layer is formed can be obtained.
 複数の粒状の突起物の材料は特に限定されるものではないが、金属層と同じ材料により構成することが好ましい。 The material of the plurality of granular protrusions is not particularly limited, but it is preferable that the plurality of granular protrusions are made of the same material as the metal layer.
 金属層の有機物層を形成する面に、複数の粒状の突起物を形成する方法としては特に限定されるものではないが、例えば金属層形成後に金属層表面を表面処理する方法が挙げられる。具体的な例としては、金属層を形成した後、金属層表面に対してエッチング処理や、サンドブラスト処理を施す方法が挙げられる。 The method for forming a plurality of granular protrusions on the surface of the metal layer on which the organic material layer is formed is not particularly limited, and examples thereof include a method of surface-treating the surface of the metal layer after forming the metal layer. As a specific example, there is a method in which after the metal layer is formed, the surface of the metal layer is subjected to etching treatment or sand blast treatment.
 また、金属層の有機物層を形成する面に、複数の粒状の突起物を形成する他の方法として、金属層を成膜する際の成膜条件を調整する方法が挙げられる。例えば、金属めっき層を電気めっき法により成膜する際の電流密度(Dk値)を、金属めっき層の成膜中に変化させる方法が挙げられる。 Further, as another method of forming a plurality of granular protrusions on the surface of the metal layer on which the organic material layer is formed, there is a method of adjusting film forming conditions when forming the metal layer. For example, there is a method of changing the current density (Dk value) when forming the metal plating layer by electroplating during the formation of the metal plating layer.
 より具体的には例えば、金属めっき層の成膜開始後、所定の電流密度Dk1で金属めっき層の成膜を行い、金属めっき層の成膜終了前の一定時間だけ電流密度Dk2へ低下させることで、金属層の有機物層を形成する面に複数の粒状の突起物を形成できる。なお、Dk1>Dk2の関係にある。 More specifically, for example, after starting the formation of the metal plating layer, the metal plating layer is formed at a predetermined current density Dk1, and the current density is reduced to a current density Dk2 for a certain period of time before the end of the formation of the metal plating layer. Thus, a plurality of granular protrusions can be formed on the surface of the metal layer on which the organic layer is formed. Note that Dk1> Dk2.
 金属層が銅層の場合を例に説明すると、まず電流密度Dk1として、金属めっき層である銅めっき層の成膜を行うことができる。そして、銅めっき層の成膜終了前7秒以上30秒以下の所定の時間の間だけ、電流密度を電流密度Dk2に下げて金属めっき層の成膜を行うことで、金属層の表面に複数の粒状の突起物を形成できる。なお、電流密度Dk1は1A/dm以上2A/dm以下であることが好ましい。また、電流密度Dk2は0.1A/dm以上0.2A/dm以下であることが好ましく、0.1A/dm以上0.15A/dm以下であることがより好ましい。 The case where the metal layer is a copper layer will be described as an example. First, as the current density Dk1, a copper plating layer which is a metal plating layer can be formed. A plurality of metal plating layers are formed on the surface of the metal layer by reducing the current density to the current density Dk2 for a predetermined time of 7 seconds or more and 30 seconds or less before the completion of the copper plating layer formation. Granular projections can be formed. The current density Dk1 is preferably 1 A / dm 2 or more and 2 A / dm 2 or less. The current density Dk2 is more preferably preferably at most 0.1 A / dm 2 or more 0.2 A / dm 2, at 0.1 A / dm 2 or more 0.15 A / dm 2 or less.
 これは銅めっき層の成膜終了直前の電流密度Dk2を0.1A/dm以上0.2A/dm以下として、それまで銅めっき層を成膜していた時の電流密度Dk1よりも電流密度を小さくすることで、めっき面に粒状物を析出させることができるためである。 This film formation immediately before the end of the current density Dk2 of the copper plating layer as a 0.1 A / dm 2 or more 0.2 A / dm 2 or less, current than the current density Dk1 when the copper plating layer was deposited up to that It is because a granular material can be deposited on the plating surface by reducing the density.
 ただし、金属めっき層を成膜する間の電流密度を継続してDk2とすると、金属めっき層の密度が低下する場合があり好ましくない。このため、電流密度Dk2として電気めっきを行う時間を、金属めっき層の成膜終了前の30秒以下とすることが好ましい。また、金属層の表面に所望の密度で複数の粒状の突起物を形成するため、電流密度Dk2の範囲により電気めっきを行う時間を、金属めっき層の成膜終了前の7秒以上とすることが好ましい。 However, if the current density during the formation of the metal plating layer is continuously set to Dk2, the density of the metal plating layer may decrease, which is not preferable. For this reason, it is preferable that the time for performing electroplating as the current density Dk2 is 30 seconds or less before the end of the formation of the metal plating layer. In addition, in order to form a plurality of granular projections with a desired density on the surface of the metal layer, the time for performing electroplating within the range of the current density Dk2 should be 7 seconds or more before the end of the formation of the metal plating layer. Is preferred.
 ここまで説明した金属層の表面に複数の粒状の突起物を形成する方法のうち、金属層を成膜する際の成膜条件を調整することで金属層の表面に複数の粒状の突起物を形成する方法が、導電性基板の製造工程数の増加を抑制する観点から好ましい。中でも、上述した金属めっき層を電気めっき法により成膜する際の電流密度(Dk値)を、金属めっき層の成膜中に変化させる方法によれば、電流密度を変化させるだけで金属層の表面に複数の粒状の突起物を形成できることからより好ましい。 Of the methods for forming a plurality of granular protrusions on the surface of the metal layer described so far, the plurality of granular protrusions are formed on the surface of the metal layer by adjusting the film formation conditions when forming the metal layer. The method of forming is preferable from the viewpoint of suppressing an increase in the number of manufacturing steps of the conductive substrate. In particular, according to the method of changing the current density (Dk value) when the metal plating layer is formed by the electroplating method described above during the formation of the metal plating layer, it is only necessary to change the current density. It is more preferable because a plurality of granular protrusions can be formed on the surface.
 また、金属層の有機物層を形成する面の投影面積S1と、金属層の有機物層を形成する面の表面積S2とから、以下の式(1)により算出されるSAD(Surface Area Different)値が5%以上であることが好ましい。 Further, the SAD (Surface Area Differentiate) value calculated by the following equation (1) is calculated from the projected area S1 of the surface of the metal layer forming the organic material layer and the surface area S2 of the surface of the metal layer forming the organic material layer. It is preferably 5% or more.
    SAD=100×(S2-S1)/S1  ・・・(1)
 上記式で算出されるSAD値は、金属層の有機物層を形成する面の表面積、すなわち金属層の有機物層を形成する面の実測面積S2と、投影面積S1との差を、投影面積S1で除した値となっている。従って、複数の粒状の突起物の大きさ、及び複数の粒状の突起物の単位面積当たりの個数が増加するのに応じてSAD値は大きくなる。そして、本発明の発明者らの検討によると、SAD値が5%以上の場合には金属層の有機物層を形成する面に形成された複数の粒状の突起物の大きさ、及び単位面積当たりの個数が、黒化層の密着性を高めるために十分な大きさになっており好ましい。
SAD = 100 × (S2-S1) / S1 (1)
The SAD value calculated by the above formula is obtained by calculating the difference between the surface area of the surface of the metal layer forming the organic material layer, that is, the measured area S2 of the surface of the metal layer forming the organic material layer, and the projected area S1 by The value is divided. Accordingly, the SAD value increases as the size of the plurality of granular projections and the number of the plurality of granular projections per unit area increase. According to the study of the inventors of the present invention, when the SAD value is 5% or more, the size of the plurality of granular protrusions formed on the surface of the metal layer on which the organic layer is formed, and the unit area Is preferably large enough to increase the adhesion of the blackened layer.
 SAD値を算出するための金属層の有機物層を形成する面の表面積S2は、例えばAFMを用いて測定することができる。また、投影面積S1については金属層のサイズから算出することができる。 The surface area S2 of the surface on which the organic layer of the metal layer for calculating the SAD value can be measured using, for example, AFM. Further, the projected area S1 can be calculated from the size of the metal layer.
 SAD値の上限値は特に限定されるものではないが、例えば20%以下であることが好ましい。 The upper limit value of the SAD value is not particularly limited, but is preferably 20% or less, for example.
 また、金属層の有機物層を形成する面の表面粗さRaは、20.0nm未満であることが好ましい。既述のように、本実施形態の導電性基板において、金属層の有機物層を形成する面には、複数の粒状の突起物が形成されている。そして、複数の粒状の突起物が形成されていることで、有機物層を設けた場合でも黒化層の剥離を抑制することが可能になる。 Further, the surface roughness Ra of the surface on which the organic layer of the metal layer is formed is preferably less than 20.0 nm. As described above, in the conductive substrate of this embodiment, a plurality of granular protrusions are formed on the surface of the metal layer on which the organic layer is formed. In addition, since a plurality of granular protrusions are formed, it is possible to suppress the peeling of the blackened layer even when an organic layer is provided.
 しかしながら、金属層の有機物層を形成する面の表面粗さが大きくなりすぎると、複数の粒状の突起物を設けた効果が小さくなり、複数の粒状の突起物による黒化層の密着性を高める効果を低減する場合がある。このため、金属層の有機物層を形成する面の表面粗さRaは20.0nm未満であることが好ましい。 However, if the surface roughness of the surface on which the organic layer of the metal layer is formed becomes too large, the effect of providing a plurality of granular projections is reduced, and the adhesion of the blackened layer by the plurality of granular projections is increased. The effect may be reduced. For this reason, it is preferable that surface roughness Ra of the surface which forms the organic substance layer of a metal layer is less than 20.0 nm.
 なお、表面粗さRaはJIS B 0601(2013)に算術平均粗さとして規定されている。表面粗さRaの測定方法としては、触針法もしくは光学的方法等により評価することができ、具体的には例えばAFM(原子間力顕微鏡)により評価することができる。 The surface roughness Ra is defined as an arithmetic average roughness in JIS B 0601 (2013). As a measuring method of the surface roughness Ra, it can be evaluated by a stylus method or an optical method. Specifically, for example, it can be evaluated by an AFM (atomic force microscope).
 表面粗さRaの下限値は特に限定されるものではないが、例えば15.0nm以上であることが好ましく、18.0nm以上であることがより好ましい。 The lower limit of the surface roughness Ra is not particularly limited, but is preferably 15.0 nm or more, for example, and more preferably 18.0 nm or more.
 金属層の厚さは特に限定されるものではなく、金属層を配線として用いた場合に、該配線に供給する電流の大きさや配線幅等に応じて任意に選択することができる。 The thickness of the metal layer is not particularly limited, and when the metal layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like.
 ただし、金属層が厚くなると、配線パターンを形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチが生じ易くなり、細線が形成しにくくなる等の問題を生じる場合がある。このため、金属層の厚さは5μm以下であることが好ましく、3μm以下であることがより好ましい。 However, if the metal layer is thick, it takes time to perform etching to form a wiring pattern, so that side etching is likely to occur, and it may be difficult to form fine lines. For this reason, the thickness of the metal layer is preferably 5 μm or less, and more preferably 3 μm or less.
 また、特に導電性基板の抵抗値を低くし、十分に電流を供給できるようにする観点から、例えば金属層は厚さが50nm以上であることが好ましく、60nm以上であることがより好ましく、150nm以上であることがさらに好ましい。 In particular, from the viewpoint of reducing the resistance value of the conductive substrate and supplying a sufficient current, for example, the metal layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and 150 nm. More preferably, it is the above.
 なお、金属層が上述のように金属薄膜層と、金属めっき層を有する場合には、金属薄膜層の厚さと、金属めっき層の厚さとの合計が上記範囲であることが好ましい。 In addition, when a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
 また、既述のように複数の粒状の突起物は、金属層と同じ材料により構成することができる。そして、複数の粒状の突起物と金属層とが同じ材料により構成される場合、金属層の厚さには、複数の粒状の突起物の高さも含まれる。 Also, as described above, the plurality of granular protrusions can be made of the same material as the metal layer. When the plurality of granular projections and the metal layer are made of the same material, the thickness of the metal layer includes the height of the plurality of granular projections.
 金属層が金属薄膜層により構成される場合、または金属薄膜層と金属めっき層とを有する場合のいずれの場合でも、金属薄膜層の厚さは特に限定されるものではないが、例えば50nm以上500nm以下とすることが好ましい。 In any case where the metal layer is composed of a metal thin film layer or has a metal thin film layer and a metal plating layer, the thickness of the metal thin film layer is not particularly limited. The following is preferable.
 金属層は後述するように例えば所望の配線パターンにパターニングすることにより配線として用いることができる。そして、金属層は従来透明導電膜として用いられていたITOよりも電気抵抗値を低くすることができるから、金属層を設けることにより導電性基板の電気抵抗値を小さくできる。 As described later, the metal layer can be used as a wiring by patterning it into a desired wiring pattern, for example. And since a metal layer can make an electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of an electroconductive board | substrate can be made small by providing a metal layer.
 次に有機物層について説明する。 Next, the organic layer will be described.
 有機物層は金属層の後述する黒化層と対向する面に形成することができる。従って、導電性基板とした場合に、金属層と黒化層との間に配置することができる。有機物層は窒素系有機物を含有することができる。 The organic layer can be formed on the surface of the metal layer facing the blackening layer described later. Therefore, when a conductive substrate is used, it can be disposed between the metal layer and the blackened layer. The organic material layer can contain a nitrogen-based organic material.
 有機物層が含む窒素系有機物としては特に限定されるものではなく、窒素を含む有機化合物から任意に選択して用いることができる。窒素系有機物としては例えば、1,2,3-ベンゾトリアゾール、またはその誘導体を含有することが好ましい。窒素系有機物として、より具体的には例えば、1,2,3-ベンゾトリアゾールや、5-メチル-1Hベンゾトリアゾール等を含有することができる。 The nitrogen-based organic material included in the organic layer is not particularly limited, and can be arbitrarily selected from organic compounds containing nitrogen. As the nitrogen-based organic substance, for example, it is preferable to contain 1,2,3-benzotriazole or a derivative thereof. More specifically, for example, 1,2,3-benzotriazole, 5-methyl-1H benzotriazole and the like can be contained as the nitrogen-based organic substance.
 有機物層を形成する方法は特に限定されるものではないが、例えば窒素系有機物を含有する溶液を、金属層の有機物層を形成する面に供給、塗布し、乾燥する方法が挙げられる。 The method for forming the organic material layer is not particularly limited, and examples thereof include a method of supplying, applying, and drying a solution containing a nitrogen-based organic material on the surface of the metal layer on which the organic material layer is formed.
 窒素系有機物を含有する溶液としては例えば、窒素系有機物を含有する銅用の防錆処理剤を好ましく用いることができる。市販されている銅用の防錆処理剤としては例えばOPCディフェンサー(商品名、奥野製薬工業株式会社)等を好ましく用いることができる。なお、窒素系有機物を含有する溶液としては、例えば窒素系有機物を含有する水溶液を好ましく用いることができる。 As the solution containing nitrogen-based organic material, for example, a rust preventive for copper containing nitrogen-based organic material can be preferably used. As a commercially available copper anticorrosive treatment agent, for example, an OPC defender (trade name, Okuno Pharmaceutical Co., Ltd.) or the like can be preferably used. In addition, as a solution containing nitrogen-type organic substance, the aqueous solution containing nitrogen-type organic substance can be used preferably, for example.
 窒素系有機物を含有する溶液を有機物層を形成する基材の金属層上に供給、塗布する方法としては、例えばスプレー法や、かけ流し法、浸漬法等が挙げられる。 Examples of a method for supplying and applying a solution containing a nitrogen-based organic material on the metal layer of the base material forming the organic material layer include a spray method, a pouring method, and an immersion method.
 スプレー法とは、スプレーを用いて有機物層を形成する基材の金属層表面に窒素系有機物を含有する溶液を供給する方法である。 The spray method is a method of supplying a solution containing a nitrogen-based organic material to the surface of the metal layer of the base material on which the organic material layer is formed using a spray.
 かけ流し法とは、窒素系有機物を含有する溶液を上方から下方へと流して膜状の流れを形成し、該窒素系有機物を含有する溶液の流れと、有機物層を形成する基材の金属層の表面とが略平行、かつ接するようにして有機物層を形成する基材を搬送する方法を指す。 In the pouring method, a solution containing a nitrogenous organic substance is flowed from the top to the bottom to form a film-like flow, and the flow of the solution containing the nitrogenous organic substance and the base metal for forming the organic matter layer It refers to a method of transporting a base material that forms an organic layer so that the surface of the layer is substantially parallel to and in contact with the surface of the layer.
 また、浸漬法とは有機物層を形成する基材を、窒素系有機物を含有する溶液に浸漬する方法を指す。なお、ここまでの説明での有機物層を形成する基材とは、透明基材上に金属層、または密着層と金属層とを形成した基材のことを意味する。 Also, the dipping method refers to a method of dipping a base material for forming an organic material layer in a solution containing a nitrogenous organic material. In addition, the base material which forms the organic substance layer by description so far means the base material which formed the metal layer or the contact | adherence layer and the metal layer on the transparent base material.
 次に黒化層について説明する。 Next, the blackened layer will be described.
 黒化層は、有機物層の上面に形成することができる。 The blackening layer can be formed on the upper surface of the organic layer.
 黒化層の材料は特に限定されるものではなく、金属層表面における光の反射を抑制できる材料であれば好適に用いることができる。 The material of the blackening layer is not particularly limited, and any material that can suppress the reflection of light on the surface of the metal layer can be suitably used.
 黒化層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種以上の金属を含むことが好ましい。また、黒化層は、炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。 The blackening layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Further, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
 なお、黒化層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金を含んでいてもよい。この場合についても、黒化層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。特にNi-Cr合金、またはNi-Cu合金をより好ましく用いることができる。 The blackening layer may contain a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Good. Also in this case, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used. In addition, a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used. In particular, a Ni—Cr alloy or a Ni—Cu alloy can be used more preferably.
 黒化層の形成方法は特に限定されるものではなく、任意の方法により形成することができ、例えば乾式法、または湿式法により成膜することができる。 The method for forming the blackened layer is not particularly limited, and can be formed by any method, for example, by a dry method or a wet method.
 黒化層を乾式法により成膜する場合、その具体的な方法は特に限定されるものではないが、例えばスパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を好ましく用いることができる。黒化層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、黒化層には上述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 When the blackening layer is formed by a dry method, the specific method is not particularly limited, but for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used. When the blackening layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled. Note that, as described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer. In this case, a reactive sputtering method can be more preferably used.
 反応性スパッタリング法により黒化層を成膜する場合、ターゲットとしては、黒化層を構成する金属種を含むターゲットを用いることができる。黒化層が合金を含む場合には、黒化層に含まれる金属種毎にターゲットを用い、基材等の被成膜体の表面で合金を形成してもよく、予め黒化層に含まれる金属を合金化したターゲットを用いることもできる。 When forming the blackened layer by the reactive sputtering method, a target containing a metal species constituting the blackened layer can be used as the target. When the blackened layer contains an alloy, a target may be used for each metal species contained in the blackened layer, and the alloy may be formed on the surface of the film-deposited body such as a substrate, and is included in the blackened layer in advance. It is also possible to use a target obtained by alloying a metal.
 また、黒化層に炭素、酸素、水素、窒素から選ばれる1種以上の元素が含まれる場合、これらは黒化層を成膜する際の雰囲気中に添加しておくことにより、黒化層中に添加することができる。例えば、黒化層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、スパッタリングを行う際の雰囲気中に添加しておくことができる。黒化層を成膜する際の不活性ガス中にこれらのガスを添加することにより、炭素、酸素、水素、窒素から選ばれる1種以上の元素を黒化層中に添加することができる。なお、不活性ガスとしてはアルゴンを好ましく用いることができる。 Further, when the blackened layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen, these are added to the atmosphere when the blackened layer is formed, so that the blackened layer Can be added inside. For example, when adding carbon to the blackening layer, carbon monoxide gas and / or carbon dioxide gas is used, when adding oxygen, oxygen gas is used, and when adding hydrogen, hydrogen gas and / or water is used. In the case of adding nitrogen, nitrogen gas can be added to the atmosphere during sputtering. One or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackening layer by adding these gases to the inert gas when forming the blackening layer. Argon can be preferably used as the inert gas.
 黒化層を湿式法により成膜する場合には、黒化層の材料に応じためっき液を用い、例えば電気めっき法により成膜することができる。 When the blackened layer is formed by a wet method, it can be formed by, for example, an electroplating method using a plating solution corresponding to the material of the blackened layer.
 上述の様に黒化層は、乾式法、湿式法のいずれの方法でも形成することができるが、黒化層を形成する際に、有機物層に含まれる窒素系有機物が、めっき液中に溶けだし、黒化層中に取り込まれることで、黒化層の色調や他の特性に影響を及ぼす恐れがあるため、乾式法により成膜することが好ましい。 As described above, the blackened layer can be formed by either a dry method or a wet method. However, when forming the blackened layer, the nitrogen-based organic matter contained in the organic layer is dissolved in the plating solution. Incorporation into the blackened layer may affect the color tone and other characteristics of the blackened layer. Therefore, it is preferable to form a film by a dry method.
 黒化層の厚さは特に限定されるものではないが、例えば5nm以上であることが好ましく、15nm以上であることがより好ましい。これは、黒化層の厚さが薄い場合には、金属層表面における光の反射を十分に抑制できない場合があるため、上述のように黒化層の厚さを5nm以上とすることにより金属層表面における光の反射を特に抑制できるように構成することが好ましいためである。 The thickness of the blackening layer is not particularly limited, but is preferably 5 nm or more, for example, and more preferably 15 nm or more. This is because when the thickness of the blackened layer is thin, reflection of light on the surface of the metal layer may not be sufficiently suppressed. Therefore, the thickness of the blackened layer is set to 5 nm or more as described above. This is because it is preferable to configure so that reflection of light on the surface of the layer can be particularly suppressed.
 黒化層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、黒化層の厚さは50nm以下とすることが好ましく、30nm以下とすることがより好ましい。 The upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited. For this reason, the thickness of the blackened layer is preferably 50 nm or less, and more preferably 30 nm or less.
 また、導電性基板は上述の絶縁性基材、金属層、有機物層、黒化層以外に任意の層を設けることもできる。例えば密着層を設けることができる。 Also, the conductive substrate can be provided with any layer other than the above-mentioned insulating base material, metal layer, organic material layer, and blackening layer. For example, an adhesion layer can be provided.
 密着層の構成例について説明する。 A configuration example of the adhesion layer will be described.
 上述のように金属層は絶縁性基材上に形成することができるが、絶縁性基材上に金属層を直接形成した場合に、絶縁性基材と金属層との密着性が十分ではない場合がある。このため、絶縁性基材の上面に直接金属層を形成した場合、製造過程、または、使用時に絶縁性基材から金属層が剥離する場合がある。 As described above, the metal layer can be formed on the insulating substrate, but when the metal layer is directly formed on the insulating substrate, the adhesion between the insulating substrate and the metal layer is not sufficient. There is a case. For this reason, when a metal layer is directly formed on the upper surface of the insulating substrate, the metal layer may be peeled off from the insulating substrate during the manufacturing process or use.
 そこで、本実施形態の導電性基板においては、絶縁性基材と金属層との密着性を高めるため、絶縁性基材上に密着層を配置することができる。 Therefore, in the conductive substrate of the present embodiment, an adhesion layer can be disposed on the insulating substrate in order to improve the adhesion between the insulating substrate and the metal layer.
 絶縁性基材と金属層との間に密着層を配置することにより、絶縁性基材と金属層との密着性を高め、絶縁性基材から金属層が剥離することを抑制できる。 By disposing the adhesion layer between the insulating substrate and the metal layer, the adhesion between the insulating substrate and the metal layer can be improved, and the metal layer can be prevented from peeling off from the insulating substrate.
 また、密着層は黒化層としても機能させることができる。このため、金属層の下面側、すなわち絶縁性基材側からの光による金属層の光の反射も抑制することが可能になる。 Also, the adhesion layer can function as a blackening layer. For this reason, it becomes possible to suppress the reflection of the light of the metal layer by the light from the lower surface side of the metal layer, that is, the insulating base material side.
 密着層を構成する材料は特に限定されるものではなく、絶縁性基材及び金属層との密着力や、要求される金属層表面での光の反射の抑制の程度、また、導電性基板を使用する環境(例えば湿度や、温度)に対する安定性の程度等に応じて任意に選択することができる。 The material constituting the adhesion layer is not particularly limited, the adhesion strength between the insulating base and the metal layer, the degree of suppression of light reflection on the surface of the required metal layer, and the conductive substrate. It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity and temperature) to be used.
 密着層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種以上の金属を含むことが好ましい。また、密着層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。 The adhesion layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. The adhesion layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
 なお、密着層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金を含むこともできる。この場合についても、密着層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。特にNi-Cr合金、またはNi-Cu合金をより好ましく用いることができる。 The adhesion layer can also include a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further include one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used. In addition, a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used. In particular, a Ni—Cr alloy or a Ni—Cu alloy can be used more preferably.
 密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には上述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 The method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled. Note that, as described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, a reactive sputtering method can be more preferably used.
 密着層が炭素、酸素、水素、窒素から選ばれる1種以上の元素を含む場合には、密着層を成膜する際の雰囲気中に炭素、酸素、水素、窒素から選ばれる1種以上の元素を含有するガスを添加しておくことにより、密着層中に添加することができる。例えば、密着層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、乾式めっきを行う際の雰囲気中に添加しておくことができる。 When the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen in the atmosphere when forming the adhesion layer Can be added to the adhesion layer. For example, when adding carbon to the adhesion layer, carbon monoxide gas and / or carbon dioxide gas, when adding oxygen, oxygen gas, when adding hydrogen, hydrogen gas and / or water, In the case of adding nitrogen, nitrogen gas can be added to the atmosphere when dry plating is performed.
 炭素、酸素、水素、窒素から選ばれる1種以上の元素を含有するガスは、不活性ガスに添加し、乾式めっきの際の雰囲気ガスとすることが好ましい。不活性ガスとしては特に限定されないが、例えばアルゴンを好ましく用いることができる。 A gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas during dry plating. Although it does not specifically limit as an inert gas, For example, argon can be used preferably.
 密着層を上述のように乾式めっき法により成膜することにより、絶縁性基材と密着層との密着性を高めることができる。そして、密着層は例えば金属を主成分として含むことができるため金属層との密着性も高い。このため、絶縁性基材と金属層との間に密着層を配置することにより、金属層の剥離を抑制することができる。 By forming the adhesion layer by dry plating as described above, the adhesion between the insulating substrate and the adhesion layer can be enhanced. And since an adhesion layer can contain a metal as a main component, for example, its adhesiveness with a metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange | positioning an adhesion layer between an insulating base material and a metal layer.
 密着層の厚さは特に限定されるものではないが、例えば5nm以上50nm以下とすることが好ましく、5nm以上35nm以下とすることがより好ましく、5nm以上33nm以下とすることがさらに好ましい。 The thickness of the adhesion layer is not particularly limited, but is preferably, for example, 5 nm to 50 nm, more preferably 5 nm to 35 nm, and still more preferably 5 nm to 33 nm.
 密着層についても黒化層として機能させる場合、すなわち金属層における光の反射を抑制する場合、密着層の厚さを上述のように5nm以上とすることが好ましい。 When the adhesion layer also functions as a blackening layer, that is, when light reflection in the metal layer is suppressed, the thickness of the adhesion layer is preferably 5 nm or more as described above.
 密着層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、密着層の厚さは上述のように50nm以下とすることが好ましく、35nm以下とすることがより好ましく、33nm以下とすることがさらに好ましい。 The upper limit value of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited. For this reason, the thickness of the adhesion layer is preferably 50 nm or less as described above, more preferably 35 nm or less, and further preferably 33 nm or less.
 次に、導電性基板の構成例について説明する。 Next, a configuration example of the conductive substrate will be described.
 上述のように、本実施形態の導電性基板は絶縁性基材と、金属層と、有機物層と、黒化層と、を有することができる。また、任意に密着層等の層を設けることもできる。 As described above, the conductive substrate of the present embodiment can have an insulating base, a metal layer, an organic layer, and a blackening layer. Further, a layer such as an adhesion layer can be optionally provided.
 具体的な構成例について、図1A、図1B、図2A、図2Bを用いて以下に説明する。図1A、図1B、図2A、図2Bは、本実施形態の導電性基板の、絶縁性基材、金属層、有機物層、黒化層の積層方向と平行な面における断面図の例を示している。 Specific configuration examples will be described below with reference to FIGS. 1A, 1B, 2A, and 2B. FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B show examples of cross-sectional views in the plane parallel to the stacking direction of the insulating substrate, metal layer, organic layer, and blackening layer of the conductive substrate of this embodiment. ing.
 本実施形態の導電性基板は、例えば絶縁性基材の少なくとも一方の面上に、絶縁性基材側から金属層と、有機物層と、黒化層とがその順に積層された構造を有することができる。 The conductive substrate of this embodiment has, for example, a structure in which a metal layer, an organic layer, and a blackening layer are laminated in that order from the insulating base side on at least one surface of the insulating base. Can do.
 具体的には例えば、図1Aに示した導電性基板10Aのように、絶縁性基材11の一方の面11a側に金属層12と、有機物層13と、黒化層14と、を一層ずつその順に積層することができる。 Specifically, for example, like the conductive substrate 10A shown in FIG. 1A, the metal layer 12, the organic material layer 13, and the blackening layer 14 are formed one by one on the one surface 11a side of the insulating base material 11. They can be stacked in that order.
 また、本実施形態の導電性基板については、絶縁性基材の一方の面上と、一方の面と対向する他方の面上とにそれぞれ、金属層と、有機物層と、黒化層とがその順に形成された構成とすることもできる。具体的には例えば、図1Bや、後述する図2Bのように構成することができる。例えば図1Bに示した導電性基板10Bの場合であれば、絶縁性基材11の一方の面11a上と、一方の面11aと対向する、すなわち反対側に位置するもう一方の面(他方の面)11b上と、にそれぞれ金属層12A、12Bと、有機物層13A、13Bと、黒化層14A、14Bと、をその順に積層することができる。なお、金属層、有機物層、黒化層は、例えば図1Bに示したように一層ずつ形成することができる。 In addition, for the conductive substrate of the present embodiment, a metal layer, an organic material layer, and a blackening layer are formed on one surface of the insulating base and on the other surface facing the one surface, respectively. It can also be set as the structure formed in that order. Specifically, for example, it can be configured as shown in FIG. 1B or FIG. 2B described later. For example, in the case of the conductive substrate 10B shown in FIG. 1B, the other surface (the other surface) on one surface 11a of the insulating base 11 and opposite to the one surface 11a, that is, on the opposite side. The metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B can be stacked in this order on the surface 11b. The metal layer, the organic material layer, and the blackening layer can be formed one by one as shown in FIG. 1B, for example.
 また、さらに任意の層として、例えば密着層を設けた構成とすることもできる。この場合例えば、絶縁性基材の少なくとも一方の面上に、絶縁性基材側から密着層と、金属層と、有機物層と、黒化層とがその順に形成された構造とすることができる。 Further, as an optional layer, for example, an adhesion layer may be provided. In this case, for example, a structure in which an adhesion layer, a metal layer, an organic material layer, and a blackening layer are formed in that order from the insulating substrate side on at least one surface of the insulating substrate can be employed. .
 具体的には例えば図2Aに示した導電性基板20Aのように、絶縁性基材11の一方の面11a側に、密着層15と、金属層12と、有機物層13と、黒化層14と、をその順に積層することができる。 Specifically, for example, like the conductive substrate 20A shown in FIG. 2A, the adhesion layer 15, the metal layer 12, the organic layer 13, and the blackening layer 14 are formed on one surface 11a side of the insulating base material 11. Can be stacked in that order.
 この場合も絶縁性基材11の両面に密着層、金属層、有機物層、黒化層を積層した構成とすることもできる。具体的には図2Bに示した導電性基板20Bのように、絶縁性基材11の一方の面11a側と、他方の面11b側と、にそれぞれ密着層15A、15Bと、金属層12A、12Bと、有機物層13A、13Bと、黒化層14A、14Bとをその順に積層できる。 In this case as well, a structure in which an adhesion layer, a metal layer, an organic material layer, and a blackening layer are laminated on both surfaces of the insulating substrate 11 can be employed. Specifically, as in the conductive substrate 20B shown in FIG. 2B, the adhesion layers 15A and 15B and the metal layer 12A on the one surface 11a side and the other surface 11b side of the insulating base material 11, respectively. 12B, organic layers 13A and 13B, and blackening layers 14A and 14B can be stacked in that order.
 なお、図1B、図2Bにおいて、絶縁性基材の両面に金属層、有機物層、黒化層等を積層した場合において、絶縁性基材11を対称面として絶縁性基材11の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。例えば、図2Bにおいて、絶縁性基材11の一方の面11a側の構成を図1Bの構成と同様に、密着層15Aを設けずに金属層12Aと、有機物層13Aと、黒化層14Aとをその順に積層した形態とし、絶縁性基材11の上下に積層した層を非対称な構成としてもよい。 In FIG. 1B and FIG. 2B, when a metal layer, an organic material layer, a blackening layer, etc. are laminated on both surfaces of the insulating base material, the insulating base material 11 is laminated on the upper and lower sides of the insulating base material 11 with the symmetrical surface. Although the example which arrange | positioned so that the layer which became symmetrical may be shown, it is not limited to the form which concerns. For example, in FIG. 2B, the configuration on the one surface 11a side of the insulating substrate 11 is similar to the configuration of FIG. 1B, without providing the adhesion layer 15A, the metal layer 12A, the organic layer 13A, and the blackening layer 14A. It is good also as a form laminated | stacked in that order, and it is good also as an asymmetrical structure the layer laminated | stacked on the upper and lower sides of the insulating base material 11.
 ところで、本実施形態の導電性基板においては、絶縁性基材上に金属層と、有機物層と、黒化層とを設けることで、金属層による光の反射を抑制し、導電性基板の反射率を抑制することができる。 By the way, in the electroconductive board | substrate of this embodiment, reflection of the light by a metal layer is suppressed by providing a metal layer, an organic substance layer, and a blackening layer on an insulating base material, and reflection of an electroconductive board | substrate. The rate can be suppressed.
 本実施形態の導電性基板の反射率の程度については特に限定されるものではないが、例えばタッチパネル用の導電性基板として用いた場合のディスプレイの視認性を高めるためには、反射率は低い方が良い。例えば、波長400nm以上700nm以下の光の平均反射率が20%以下であることが好ましく、17%以下であることがより好ましく、15%以下であることが特に好ましい。 The degree of reflectivity of the conductive substrate of the present embodiment is not particularly limited. For example, in order to increase the visibility of a display when used as a conductive substrate for a touch panel, the reflectivity is lower. Is good. For example, the average reflectance of light having a wavelength of 400 nm to 700 nm is preferably 20% or less, more preferably 17% or less, and particularly preferably 15% or less.
 反射率の測定は、導電性基板の黒化層に光を照射するようにして測定を行うことができる。具体的には例えば図1Aのように絶縁性基材11の一方の面11a側に金属層12、有機物層13、黒化層14の順に積層した場合、黒化層14に光を照射するように黒化層14の表面Aに対して光を照射し、測定できる。測定に当たっては波長400nm以上700nm以下の光を例えば波長1nm間隔で上述のように導電性基板の黒化層14に対して照射し、測定した値の平均値を該導電性基板の反射率とすることができる。 The reflectance can be measured by irradiating the blackened layer of the conductive substrate with light. Specifically, for example, when the metal layer 12, the organic material layer 13, and the blackened layer 14 are laminated in this order on one surface 11a side of the insulating base material 11 as shown in FIG. 1A, the blackened layer 14 is irradiated with light. The surface A of the blackened layer 14 can be irradiated with light and measured. In the measurement, light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 14 of the conductive substrate, for example, at a wavelength of 1 nm as described above, and the average value of the measured values is used as the reflectance of the conductive substrate. be able to.
 本実施形態の導電性基板はタッチパネル用の導電性基板として好ましく用いることができる。この場合導電性基板はメッシュ状の配線を備えた構成とすることができる。 The conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel. In this case, the conductive substrate can be configured to have mesh-like wiring.
 メッシュ状の配線を備えた導電性基板は、ここまで説明した本実施形態の導電性基板の金属層、有機物層、及び黒化層をエッチングすることにより得ることができる。 The conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer, the organic material layer, and the blackening layer of the conductive substrate of the present embodiment described so far.
 例えば、二層の配線によりメッシュ状の配線とすることができる。具体的な構成例を図3に示す。図3はメッシュ状の配線を備えた導電性基板30を金属層等の積層方向の上面側から見た図を示しており、配線パターンが分かり易いように、絶縁性基材11、及び金属層をパターニングして形成した配線31A、31B以外の層は記載を省略している。また、絶縁性基材11を透過して見える配線31Bも示している。 For example, a mesh-like wiring can be formed by two-layer wiring. A specific configuration example is shown in FIG. FIG. 3 shows a view of the conductive substrate 30 provided with mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like. In order to make the wiring pattern easy to understand, the insulating substrate 11 and the metal layer Layers other than the wirings 31A and 31B formed by patterning are omitted. In addition, a wiring 31B that can be seen through the insulating substrate 11 is also shown.
 図3に示した導電性基板30は、絶縁性基材11と、図中Y軸方向に平行な複数の配線31Aと、X軸方向に平行な配線31Bとを有している。なお、配線31A、31Bは金属層をエッチングして形成されており、該配線31A、31Bの上面および/または下面には図示しない有機物層、及び黒化層が形成されている。また、有機物層、及び黒化層は配線31A、31Bと同じ形状にエッチングされている。 The conductive substrate 30 shown in FIG. 3 has an insulating base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and wirings 31B parallel to the X-axis direction. The wirings 31A and 31B are formed by etching a metal layer, and an organic material layer and a blackening layer (not shown) are formed on the upper surface and / or the lower surface of the wirings 31A and 31B. The organic material layer and the blackened layer are etched in the same shape as the wirings 31A and 31B.
 絶縁性基材11と配線31A、31Bとの配置は特に限定されない。絶縁性基材11と配線との配置の構成例を図4A、図4Bに示す。図4A、図4Bは図3のA-A´線での断面図に当たる。 The arrangement of the insulating base 11 and the wirings 31A and 31B is not particularly limited. A configuration example of the arrangement of the insulating base material 11 and the wiring is shown in FIGS. 4A and 4B. 4A and 4B are cross-sectional views taken along line AA ′ of FIG.
 まず、図4Aに示したように、絶縁性基材11の上下面にそれぞれ配線31A、31Bが配置されていてもよい。なお、図4Aでは配線31Aの上面、及び31Bの下面には、配線と同じ形状にエッチングされた有機物層32A、32B、黒化層33A、33Bが配置されている。 First, as shown in FIG. 4A, wirings 31A and 31B may be disposed on the upper and lower surfaces of the insulating base material 11, respectively. In FIG. 4A, organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surface of the wiring 31A and the lower surface of 31B.
 また、図4Bに示したように、1組の絶縁性基材11を用い、一方の絶縁性基材11を挟んで上下面に配線31A、31Bを配置し、かつ、一方の配線31Bは絶縁性基材11間に配置されてもよい。この場合も、配線31A、31Bの上面には配線と同じ形状にエッチングされた有機物層32A、32B、黒化層33A、33Bが配置されている。なお、既述のように、金属層、有機物層、黒化層以外に密着層を設けることもできる。このため、図4A、図4Bいずれの場合でも、例えば配線31Aおよび/または配線31Bと絶縁性基材11との間に密着層を設けることもできる。密着層を設ける場合、密着層も配線31A、31Bと同じ形状にエッチングされていることが好ましい。 Further, as shown in FIG. 4B, a pair of insulating base materials 11 is used, wirings 31A and 31B are arranged on the upper and lower surfaces with one insulating base material 11 interposed therebetween, and one wiring 31B is insulated. May be disposed between the conductive substrates 11. Also in this case, organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surfaces of the wirings 31A and 31B. As described above, an adhesion layer can be provided in addition to the metal layer, the organic material layer, and the blackening layer. Therefore, in either case of FIG. 4A or FIG. 4B, for example, an adhesion layer can be provided between the wiring 31 </ b> A and / or the wiring 31 </ b> B and the insulating substrate 11. When the adhesion layer is provided, it is preferable that the adhesion layer is also etched in the same shape as the wirings 31A and 31B.
 図3及び図4Aに示したメッシュ状の配線を有する導電性基板は例えば、図1Bのように絶縁性基材11の両面に金属層12A、12Bと、有機物層13A、13Bと、黒化層14A、14Bとを備えた導電性基板から形成することができる。 The conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is, for example, a metal layer 12A, 12B, an organic layer 13A, 13B, and a blackening layer on both sides of the insulating base 11 as shown in FIG. 1B. 14A and 14B can be formed from a conductive substrate.
 図1Bの導電性基板を用いて形成した場合を例に説明すると、まず、絶縁性基材11の一方の面11a側の金属層12A、有機物層13A、及び黒化層14Aを、図1B中Y軸方向に平行な複数の線状のパターンがX軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。なお、図1B中のX軸方向は、各層の幅方向と平行な方向を意味している。また、図1B中のY軸方向とは、図1B中の紙面と垂直な方向を意味している。 The case where it is formed using the conductive substrate of FIG. 1B will be described as an example. First, the metal layer 12A, the organic layer 13A, and the blackening layer 14A on the one surface 11a side of the insulating base 11 are shown in FIG. 1B. Etching is performed so that a plurality of linear patterns parallel to the Y-axis direction are arranged at predetermined intervals along the X-axis direction. In addition, the X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer. Further, the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
 そして、絶縁性基材11の他方の面11b側の金属層12B、有機物層13B、及び黒化層14Bを図1B中X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。 A plurality of linear patterns parallel to the X-axis direction in FIG. 1B are spaced apart from each other on the metal layer 12B, the organic material layer 13B, and the blackening layer 14B on the other surface 11b side of the insulating substrate 11 by a predetermined interval. Etching is performed so as to be arranged along the Y-axis direction.
 以上の操作により図3、図4Aに示したメッシュ状の配線を有する導電性基板を形成することができる。なお、絶縁性基材11の両面のエッチングは同時に行うこともできる。すなわち、金属層12A、12B、有機物層13A、13B、黒化層14A、14Bのエッチングは同時に行ってもよい。また、図4Aにおいて、配線31A、31Bと、絶縁性基材11との間にさらに配線31A、31Bと同じ形状にパターニングされた密着層を有する導電性基板は、図2Bに示した導電性基板を用いて同様にエッチングを行うことで作製できる。 By the above operation, the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A can be formed. In addition, the etching of both surfaces of the insulating substrate 11 can be performed simultaneously. That is, the etching of the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B may be performed simultaneously. 4A, the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is the conductive substrate shown in FIG. 2B. It can be produced by etching in the same manner.
 図3に示したメッシュ状の配線を有する導電性基板は、図1Aまたは図2Aに示した導電性基板を2枚用いることにより形成することもできる。図1Aの導電性基板を2枚用いて形成した場合を例に説明すると、図1Aに示した導電性基板2枚についてそれぞれ、金属層12、有機物層13、及び黒化層14を、X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではない。例えば、金属層12等が積層された図1Aにおける表面Aと、金属層12等が積層されていない図1Aにおける他方の面11bとを貼り合せて、図4Bに示した構造となるようにすることもできる。 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A. A case where the two conductive substrates shown in FIG. 1A are used will be described as an example. For the two conductive substrates shown in FIG. 1A, the metal layer 12, the organic material layer 13, and the blackening layer 14 are respectively formed on the X axis. Etching is performed so that a plurality of linear patterns parallel to the direction are arranged along the Y-axis direction at predetermined intervals. Then, the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to. The surface to be bonded when the two conductive substrates are bonded is not particularly limited. For example, the surface A in FIG. 1A in which the metal layer 12 or the like is laminated and the other surface 11b in FIG. 1A in which the metal layer 12 or the like is not laminated are bonded together so that the structure shown in FIG. 4B is obtained. You can also.
 また、例えば絶縁性基材11の金属層12等が積層されていない図1Aにおける他方の面11b同士を貼り合せて断面が図4Aに示した構造となるようにすることもできる。 Further, for example, the other surfaces 11b in FIG. 1A where the metal layer 12 or the like of the insulating base material 11 is not laminated can be bonded together so that the cross section has the structure shown in FIG. 4A.
 なお、図4A、図4Bにおいて、配線31A、31Bと、絶縁性基材11との間にさらに配線31A、31Bと同じ形状にパターニングされた密着層を有する導電性基板は、図1Aに示した導電性基板にかえて図2Aに示した導電性基板を用いることで作製できる。 4A and 4B, the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is shown in FIG. 1A. It can be manufactured by using the conductive substrate shown in FIG. 2A instead of the conductive substrate.
 図3、図4A、図4Bに示したメッシュ状の配線を有する導電性基板における配線の幅や、配線間の距離は特に限定されるものではなく、例えば、配線に流す電流量等に応じて選択することができる。 The width of the wiring and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIG. 3, FIG. 4A and FIG. 4B are not particularly limited. You can choose.
 また、図3、図4A、図4Bにおいては、直線形状の配線を組み合わせてメッシュ状の配線(配線パターン)を形成した例を示しているが、係る形態に限定されるものではなく、配線パターンを構成する配線は任意の形状とすることができる。例えばディスプレイの画像との間でモアレ(干渉縞)が発生しないようメッシュ状の配線パターンを構成する配線の形状をそれぞれ、ぎざぎざに屈曲した線(ジグザグ直線)等の各種形状にすることもできる。 3, 4 </ b> A, and 4 </ b> B show examples in which a mesh-like wiring (wiring pattern) is formed by combining linear wirings, but the present invention is not limited to such a form. The wiring that constitutes can be of any shape. For example, the shape of the wiring constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display.
 このように2層の配線から構成されるメッシュ状の配線を有する導電性基板は、例えば投影型静電容量方式のタッチパネル用の導電性基板として好ましく用いることができる。 Thus, a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
 以上の本実施形態の導電性基板によれば、絶縁性基材の少なくとも一方の面上に形成された金属層上に、窒素系有機物を含有する有機物層と、黒化層と、を積層した構造を有している。そして、金属層の有機物層を形成する面には、所定の平均高さを有する複数の粒状の突起物が、単位長さ当たりに所定の個数となるように形成されている。このため、有機物層を形成した場合でも黒化層が剥離することを抑制することができ、高い品質安定性を有する導電性基板とすることができる。 According to the conductive substrate of the present embodiment as described above, the organic material layer containing the nitrogen-based organic material and the blackening layer are stacked on the metal layer formed on at least one surface of the insulating base material. It has a structure. A plurality of granular protrusions having a predetermined average height are formed on the surface of the metal layer on which the organic material layer is formed so that a predetermined number per unit length. For this reason, even when the organic material layer is formed, the blackened layer can be prevented from peeling off, and a conductive substrate having high quality stability can be obtained.
 さらに、本実施形態の導電性基板においては剥離することを抑制した黒化層を設けているため、金属層表面における光の反射をより確実に抑制し、反射率を抑制した導電性基板とすることができる。このため、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。
(導電性基板の製造方法)
 次に本実施形態の導電性基板の製造方法の一構成例について説明する。
Furthermore, since the blackened layer which suppressed peeling is provided in the conductive substrate of this embodiment, reflection of light on the surface of the metal layer is more reliably suppressed, and a conductive substrate with reduced reflectance is obtained. be able to. For this reason, when it uses for uses, such as a touch panel, for example, the visibility of a display can be improved.
(Method for producing conductive substrate)
Next, a configuration example of the method for manufacturing the conductive substrate according to this embodiment will be described.
 本実施形態の導電性基板の製造方法は、以下の工程を有することができる。 
 絶縁性基材の少なくとも一方の面上に金属層を形成する金属層形成工程。 
 金属層上に窒素系有機物を含有する有機物層を形成する有機物層形成工程。 
 有機物層上に黒化層を形成する黒化層形成工程。
The manufacturing method of the conductive substrate of this embodiment can have the following processes.
A metal layer forming step of forming a metal layer on at least one surface of the insulating substrate.
An organic material layer forming step of forming an organic material layer containing a nitrogen-based organic material on the metal layer.
A blackened layer forming step of forming a blackened layer on the organic material layer.
 金属層形成工程で形成した金属層は、有機物層を形成する面に、複数の粒状の突起物を有することができる。そして、複数の粒状の突起物の平均高さは8.00nm以上とすることができる。また、金属層は、有機物層を形成する面に、複数の粒状の突起物を70個/10μm以上有することができる。 The metal layer formed in the metal layer forming step can have a plurality of granular protrusions on the surface on which the organic layer is formed. And the average height of a some granular protrusion can be 8.00 nm or more. Further, the metal layer can have a plurality of granular protrusions of 70/10 μm or more on the surface on which the organic layer is formed.
 以下に本実施形態の導電性基板の製造方法について具体的に説明する。 Hereinafter, the manufacturing method of the conductive substrate of the present embodiment will be specifically described.
 なお、本実施形態の導電性基板の製造方法により上述の導電性基板を好適に製造することができる。このため、以下に説明する点以外については上述の導電性基板の場合と同様の構成とすることができるため説明を一部省略する。 In addition, the above-mentioned electroconductive board | substrate can be suitably manufactured with the manufacturing method of the electroconductive board | substrate of this embodiment. For this reason, since it can be set as the structure similar to the case of the above-mentioned electroconductive board | substrate except the point demonstrated below, description is abbreviate | omitted partially.
 金属層形成工程に供する絶縁性基材は予め準備しておくことができる。用いる絶縁性基材の種類は特に限定されるものではないが、既述のように可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。絶縁性基材は必要に応じて予め任意のサイズに切断等行っておくこともできる。 The insulating base material used for the metal layer forming step can be prepared in advance. Although the kind of insulating base material to be used is not particularly limited, a transparent base material such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used as described above. The insulating base material can be cut into an arbitrary size in advance if necessary.
 そして、金属層は既述のように、金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有することもできる。このため、金属層形成工程は、例えば乾式めっき法により金属薄膜層を形成する工程を有することができる。また、金属層形成工程は、乾式めっき法により金属薄膜層を形成する工程と、該金属薄膜層を給電層として、湿式めっき法の一種である電気めっき法により金属めっき層を形成する工程と、を有していてもよい。 The metal layer preferably has a metal thin film layer as described above. The metal layer can also have a metal thin film layer and a metal plating layer. For this reason, a metal layer formation process can have a process of forming a metal thin film layer, for example by a dry-type plating method. The metal layer forming step includes a step of forming a metal thin film layer by a dry plating method, a step of forming a metal plating layer by an electroplating method which is a kind of wet plating method, using the metal thin film layer as a power feeding layer, You may have.
 金属薄膜層を形成する工程で用いる乾式めっき法としては、特に限定されるものではなく、例えば、蒸着法、スパッタリング法、又はイオンプレーティング法等を用いることができる。なお、蒸着法としては真空蒸着法を好ましく用いることができる。金属薄膜層を形成する工程で用いる乾式めっき法としては、特に膜厚の制御が容易であることから、スパッタリング法を用いることが好ましい。 The dry plating method used in the step of forming the metal thin film layer is not particularly limited, and for example, an evaporation method, a sputtering method, an ion plating method, or the like can be used. In addition, as a vapor deposition method, a vacuum vapor deposition method can be used preferably. As the dry plating method used in the step of forming the metal thin film layer, it is preferable to use a sputtering method because the film thickness can be easily controlled.
 次に金属めっき層を形成する工程について説明する。湿式めっき法により金属めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、金属めっき液を入れためっき槽に金属薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、金属めっき層を形成できる。 Next, the process for forming the metal plating layer will be described. The conditions in the step of forming the metal plating layer by the wet plating method, that is, the conditions for the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted. For example, a metal plating layer can be formed by supplying a base material on which a metal thin film layer is formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base material.
 本実施形態の導電性基板については、金属層の有機物層を形成する面に複数の粒状の突起物を有することができる。 The conductive substrate of the present embodiment can have a plurality of granular protrusions on the surface on which the organic layer of the metal layer is formed.
 金属層の有機物層を形成する面に係る複数の粒状の突起物を形成する方法としては特に限定されるものではないが、例えば金属層形成後に金属層表面を表面処理する方法が挙げられる。具体的な例としては、金属層を形成した後、金属層表面に対してエッチング処理や、サンドブラスト処理を施す方法が挙げられる。このため、金属薄膜層、または金属薄膜層と金属めっき層とを形成した後、金属層の有機物層を形成する面についてエッチング処理や、サンドブラスト処理を施す工程を設けることもできる。 The method for forming a plurality of granular protrusions related to the surface of the metal layer on which the organic layer is to be formed is not particularly limited, and examples thereof include a method for surface-treating the surface of the metal layer after the metal layer is formed. As a specific example, there is a method in which after the metal layer is formed, the surface of the metal layer is subjected to etching treatment or sand blast treatment. For this reason, after forming a metal thin film layer, or a metal thin film layer and a metal plating layer, the process which performs the etching process and the sandblasting process about the surface which forms the organic substance layer of a metal layer can also be provided.
 また、金属層の有機物層を形成する面に係る複数の粒状の突起物を形成する他の方法として、金属層を成膜する際の成膜条件を調整する方法が挙げられる。例えば金属めっき層を電気めっき法により成膜する際の電流密度(Dk値)を、金属めっき層の成膜中に変化させる方法が挙げられる。このため、係る方法により金属層の有機物層を形成する面に複数の粒状の突起物を形成する場合には、金属めっき層を形成する工程において電流密度を変化させることができる。電流密度の具体的な制御例については既述のため、ここでは説明を省略する。 Further, as another method of forming a plurality of granular protrusions related to the surface of the metal layer on which the organic material layer is formed, there is a method of adjusting film forming conditions when forming the metal layer. For example, there is a method of changing the current density (Dk value) when forming the metal plating layer by electroplating during the formation of the metal plating layer. For this reason, when forming a some granular protrusion on the surface which forms the organic substance layer of a metal layer by the method which concerns, a current density can be changed in the process of forming a metal plating layer. Since the specific control example of the current density has already been described, the description thereof is omitted here.
 次に、有機物層形成工程について説明する。 Next, the organic layer forming process will be described.
 有機物層形成工程においては、金属層上に窒素系有機物を含有する有機物層を形成することができる。 In the organic material layer forming step, an organic material layer containing a nitrogen-based organic material can be formed on the metal layer.
 有機物層の形成方法は特に限定されるものではないが、例えば窒素系有機物を含有する溶液、例えば窒素系有機物を含有する水溶液を金属層上に供給、塗布し、乾燥することにより形成することができる。 The method for forming the organic material layer is not particularly limited. For example, the organic material layer may be formed by supplying, applying, and drying a solution containing a nitrogen-based organic material, for example, an aqueous solution containing the nitrogen-based organic material, on the metal layer. it can.
 金属層上に窒素系有機物を含有する溶液を供給、塗布する方法としては特に限定されるものではなく、任意の方法を用いることができる。例えばスプレー法や、かけ流し法、浸漬法等が挙げられる。それぞれの方法については既述のため、説明を省略する。 The method for supplying and applying a solution containing a nitrogenous organic substance on the metal layer is not particularly limited, and any method can be used. For example, the spray method, the pouring method, the dipping method, etc. are mentioned. Since each method has already been described, a description thereof will be omitted.
 なお、窒素系有機物溶液を塗布後、付着した余剰の窒素系有機物溶液を除去するため、窒素系有機物溶液を塗布した基材を水により洗浄する水洗を実施することもできる。 In addition, in order to remove the adhering excess nitrogen-based organic matter solution after applying the nitrogen-based organic matter solution, it is possible to perform water washing in which the base material coated with the nitrogen-based organic matter solution is washed with water.
 次に、黒化層形成工程について説明する。 Next, the blackening layer forming process will be described.
 黒化層形成工程において、黒化層を形成する方法は特に限定されるものではなく、任意の方法により形成することができる。 In the blackened layer forming step, the method for forming the blackened layer is not particularly limited, and can be formed by any method.
 黒化層形成工程において黒化層を成膜する方法としては、例えばスパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を好ましく用いることができる。特に、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、黒化層には既述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 As a method for forming the blackened layer in the blackened layer forming step, for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used. In particular, the sputtering method is more preferable because the film thickness can be easily controlled. As described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
 また、既述のように黒化層は電気めっき法等の湿式法により成膜することもできる。 Further, as described above, the blackened layer can be formed by a wet method such as an electroplating method.
 ただし、黒化層を形成する際に、有機物層に含まれる窒素系有機物が、めっき液中に溶けだし、黒化層中に取り込まれることで、黒化層の色調や他の特性に影響を及ぼす恐れがあるため、乾式法により成膜することが好ましい。 However, when forming the blackened layer, the nitrogen-based organic matter contained in the organic layer starts to dissolve in the plating solution and is taken into the blackened layer, affecting the color tone and other characteristics of the blackened layer. Since there is a fear, it is preferable to form a film by a dry method.
 本実施形態の導電性基板の製造方法においては、上述の工程に加えてさらに任意の工程を実施することもできる。 In the method for manufacturing a conductive substrate according to the present embodiment, an optional step can be further performed in addition to the above-described steps.
 例えば絶縁性基材と金属層との間に密着層を形成する場合、絶縁性基材の金属層を形成する面上に密着層を形成する密着層形成工程を実施することができる。密着層形成工程を実施する場合、金属層形成工程は、密着層形成工程の後に実施することができ、金属層形成工程では、本工程で絶縁性基材上に密着層を形成した基材に金属薄膜層を形成できる。 For example, when forming an adhesion layer between an insulating substrate and a metal layer, an adhesion layer forming step of forming an adhesion layer on the surface of the insulating substrate on which the metal layer is formed can be performed. When carrying out the adhesion layer forming step, the metal layer forming step can be carried out after the adhesion layer forming step, and in the metal layer forming step, the substrate having the adhesion layer formed on the insulating substrate in this step. A metal thin film layer can be formed.
 密着層形成工程において、密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には既述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 In the adhesion layer forming step, the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled. As described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, the reactive sputtering method can be more preferably used.
 本実施形態の導電性基板の製造方法で得られる導電性基板は例えばタッチパネル等の各種用途に用いることができる。そして、各種用途に用いる場合には、本実施形態の導電性基板に含まれる金属層、有機物層、及び黒化層がパターン化されていることが好ましい。なお、密着層を設ける場合は、密着層についてもパターン化されていることが好ましい。金属層、有機物層、及び黒化層、場合によってはさらに密着層は、例えば所望の配線パターンにあわせてパターン化することができ、金属層、有機物層、及び黒化層、場合によってはさらに密着層は同じ形状にパターン化されていることが好ましい。 The conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment can be used for various applications such as a touch panel. And when using for various uses, it is preferable that the metal layer, organic substance layer, and blackening layer which are contained in the electroconductive board | substrate of this embodiment are patterned. In addition, when providing an adhesion layer, it is preferable that the adhesion layer is also patterned. The metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be patterned in accordance with, for example, a desired wiring pattern, and the metal layer, the organic material layer, and the blackening layer, and in some cases, further adhesion. The layers are preferably patterned in the same shape.
 このため、本実施形態の導電性基板の製造方法は、金属層、有機物層及び黒化層をパターニングするパターニング工程を有することができる。なお、密着層を形成した場合には、パターニング工程は、密着層、金属層、有機物層、及び黒化層をパターニングする工程とすることができる。 For this reason, the manufacturing method of the conductive substrate of the present embodiment can include a patterning step of patterning the metal layer, the organic material layer, and the blackening layer. When the adhesion layer is formed, the patterning step can be a step of patterning the adhesion layer, the metal layer, the organic material layer, and the blackening layer.
 パターニング工程の具体的手順は特に限定されるものではなく、任意の手順により実施することができる。例えば図1Aのように絶縁性基材11上に金属層12、有機物層13、黒化層14が積層された導電性基板10Aの場合、まず黒化層14上の表面Aに所望のパターンを有するマスクを配置するマスク配置ステップを実施することができる。次いで、黒化層14の上の表面A、すなわち、マスクを配置した面側にエッチング液を供給するエッチングステップを実施できる。 The specific procedure of the patterning step is not particularly limited, and can be performed by an arbitrary procedure. For example, in the case of the conductive substrate 10A in which the metal layer 12, the organic material layer 13, and the blackening layer 14 are laminated on the insulating base 11 as shown in FIG. 1A, first, a desired pattern is formed on the surface A on the blackening layer 14. A mask placement step of placing a mask having it can be performed. Next, an etching step of supplying an etching solution to the surface A on the blackened layer 14, that is, the side on which the mask is disposed can be performed.
 エッチングステップにおいて用いるエッチング液は特に限定されるものではなく、エッチングを行う層を構成する材料に応じて任意に選択することができる。例えば、層毎にエッチング液を変えることもでき、また、同じエッチング液により同時に金属層、有機物層、及び黒化層、場合によってはさらに密着層をエッチングすることもできる。 The etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the material constituting the layer to be etched. For example, the etching solution can be changed for each layer, and the metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be etched simultaneously with the same etching solution.
 また、図1Bのように絶縁性基材11の一方の面11a、他方の面11bに金属層12A、12B、有機物層13A、13B、黒化層14A、14Bを積層した導電性基板10Bについてもパターニングするパターニング工程を実施できる。この場合例えば黒化層14A、14B上の表面A、及び表面Bに所望のパターンを有するマスクを配置するマスク配置ステップを実施できる。次いで、黒化層14A、14B上の表面A、及び表面B、すなわち、マスクを配置した面側にエッチング液を供給するエッチングステップを実施できる。 Further, as shown in FIG. 1B, the conductive substrate 10B in which the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B are stacked on the one surface 11a and the other surface 11b of the insulating base 11 is also used. A patterning process for patterning can be performed. In this case, for example, a mask placement step of placing a mask having a desired pattern on the surface A and the surface B on the blackening layers 14A and 14B can be performed. Next, an etching step of supplying an etching solution to the surface A and the surface B on the blackening layers 14A and 14B, that is, the surface side where the mask is disposed can be performed.
 エッチングステップで形成するパターンについては特に限定されるものではなく、任意の形状とすることができる。例えば図1Aに示した導電性基板10Aの場合、既述のように金属層12、有機物層13、及び黒化層14を複数の直線や、ぎざぎざに屈曲した線(ジグザグ直線)を含むようにパターンを形成することができる。 The pattern formed in the etching step is not particularly limited, and can be an arbitrary shape. For example, in the case of the conductive substrate 10A shown in FIG. 1A, as described above, the metal layer 12, the organic material layer 13, and the blackened layer 14 include a plurality of straight lines or jagged lines (zigzag straight lines). A pattern can be formed.
 また、図1Bに示した導電性基板10Bの場合、金属層12Aと、金属層12Bとでメッシュ状の配線となるようにパターンを形成することができる。この場合、有機物層13A、及び黒化層14Aは、金属層12Aと同様の形状に、有機物層13B、及び黒化層14Bは金属層12Bと同様の形状になるようにそれぞれパターニングを行うことが好ましい。 Further, in the case of the conductive substrate 10B shown in FIG. 1B, a pattern can be formed by the metal layer 12A and the metal layer 12B so as to form a mesh-like wiring. In this case, the organic material layer 13A and the blackening layer 14A may be patterned to have the same shape as the metal layer 12A, and the organic material layer 13B and the blackening layer 14B may be patterned to have the same shape as the metal layer 12B. preferable.
 また、例えばパターニング工程で上述の導電性基板10Aについて金属層12等をパターン化した後、パターン化した2枚以上の導電性基板を積層する積層工程を実施することもできる。積層する際、例えば各導電性基板の金属層のパターンが交差するように積層することにより、メッシュ状の配線を備えた積層導電性基板を得ることもできる。 Further, for example, after the metal layer 12 and the like are patterned on the above-described conductive substrate 10A in the patterning step, a lamination step of laminating two or more patterned conductive substrates may be performed. When laminating, for example, by laminating so that the pattern of the metal layer of each conductive substrate intersects, a laminated conductive substrate provided with mesh-like wiring can be obtained.
 積層した2枚以上の導電性基板を固定する方法は特に限定されるものではないが、例えば接着剤等により固定することができる。 The method of fixing two or more laminated conductive substrates is not particularly limited, but can be fixed by, for example, an adhesive.
 以上の本実施形態の導電性基板の製造方法により得られる導電性基板は、絶縁性基材の少なくとも一方の面上に形成された金属層上に、窒素系有機物を含有する有機物層と、黒化層と、を積層した構造を有している。そして、金属層の有機物層を形成する面には、所定の平均高さを有する複数の粒状の突起物が、単位長さ当たりに所定の個数となるように形成されている。このため、有機物層を形成した場合でも黒化層が剥離することを抑制することができ、高い品質安定性を有する導電性基板とすることができる。 The conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment described above includes an organic material layer containing a nitrogen-based organic material on a metal layer formed on at least one surface of an insulating base, and a black And a laminated structure. A plurality of granular protrusions having a predetermined average height are formed on the surface of the metal layer on which the organic material layer is formed so that a predetermined number per unit length. For this reason, even when the organic material layer is formed, the blackened layer can be prevented from peeling off, and a conductive substrate having high quality stability can be obtained.
 さらに、本実施形態の導電性基板の製造方法により得られる導電性基板においては剥離することを抑制した黒化層を設けているため、金属層表面における光の反射をより確実に抑制し、反射率を抑制した導電性基板とすることができる。このため、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。 Furthermore, in the conductive substrate obtained by the manufacturing method of the conductive substrate of this embodiment, since the blackening layer which suppressed peeling is provided, reflection of the light in the metal layer surface is suppressed more reliably, and reflection It can be set as the electroconductive board | substrate which suppressed the rate. For this reason, when it uses for uses, such as a touch panel, for example, the visibility of a display can be improved.
 以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、得られた導電性基板の評価方法について説明する。
(1)粒状の突起物の平均高さ、線プロファイルからの粒状の突起物の粒数、金属層表面の表面粗さ、SAD値
 以下の実施例、比較例において、絶縁性基材上に、密着層、金属層、及び有機物層を形成後、有機物層表面についてAFM(Bruker AXS社製 商品名:Dimension Icon,nanoScope V)を用いて、有機物層を形成後の金属層表面状態の測定を行った。なお、測定は、有機物層形成直後に、有機物層表面の任意の場所において、長さ10μmの線状に表面のプロファイルを測定し、測定値から、金属層表面の複数の粒状の突起物の平均高さ、線プロファイルからの粒状の突起物の粒数、金属層表面の表面粗さを算出した。また、AFMを用いた測定結果からSAD値についても算出した。
Specific examples and comparative examples will be described below, but the present invention is not limited to these examples.
(Evaluation methods)
First, a method for evaluating the obtained conductive substrate will be described.
(1) The average height of granular protrusions, the number of granular protrusions from the line profile, the surface roughness of the metal layer surface, the SAD value In the following examples and comparative examples, on the insulating substrate, After forming the adhesion layer, the metal layer, and the organic layer, the surface of the organic layer is measured using AFM (trade name: Dimension Icon, nanoScope V, manufactured by Bruker AXS), and the surface state of the metal layer after the formation of the organic layer is measured. It was. In addition, immediately after the formation of the organic material layer, the measurement is performed by measuring the surface profile in a linear shape having a length of 10 μm at an arbitrary location on the surface of the organic material layer. The height, the number of granular projections from the line profile, and the surface roughness of the metal layer surface were calculated. Further, the SAD value was also calculated from the measurement result using AFM.
 なお、SAD値は以下の式(1)により算出しており、金属層の有機物層を形成する面の表面積S2として、AFMにより測定した値を用いた。 The SAD value was calculated by the following formula (1), and the value measured by AFM was used as the surface area S2 of the surface of the metal layer on which the organic layer is formed.
    SAD=100×(S2-S1)/S1  ・・・(1)
 金属層の有機物層を形成する面の投影面積:S1
 金属層の有機物層を形成する面の表面積:S2
(2)黒化層の密着性試験
 黒化層の密着性試験はASTM D3359に基づいて、具体的には以下の手順に従って実施した。
SAD = 100 × (S2-S1) / S1 (1)
Projected area of the surface on which the organic layer of the metal layer is formed: S1
Surface area of the surface on which the organic layer of the metal layer is formed: S2
(2) Adhesion test of blackened layer The blackened layer adhesion test was carried out based on ASTM D3359, specifically according to the following procedure.
 図5に示すように、黒化層まで形成した導電性基板の黒化層に対して、切込み工具(Precision Gate&Tool Company社製 Cross Cut Kit 1.0MM)を用いて、長さ20mmの縦切り込み線51aを1.0mm間隔で互いに平行になるように11本形成する。 As shown in FIG. 5, using a cutting tool (Cross Cut Kit 1.0MM manufactured by Precision Gate & Tool Company) for the blackened layer of the conductive substrate formed up to the blackened layer, a vertical cut line having a length of 20 mm. Eleven pieces of 51a are formed parallel to each other at intervals of 1.0 mm.
 次いで同じ切込み工具を用いて、先に形成した縦切込み線51aと直交するように、長さ20mmの横切り込み線51bを1.0mm間隔で互いに平行になるように11本形成する。 Next, using the same cutting tool, 11 horizontal cutting lines 51b having a length of 20 mm are formed in parallel with each other at intervals of 1.0 mm so as to be orthogonal to the previously formed vertical cutting lines 51a.
 以上の工程により、図5に示すように黒化層に縦方向、横方向それぞれ11本の切込み線により、格子状の切込みが形成される。 Through the above steps, a grid-like cut is formed in the blackened layer by 11 cut lines in the vertical and horizontal directions as shown in FIG.
 次いで、格子状の切込みを覆うように密着力評価用テープ(エルコメーター社製 Elcometer99テープ)を貼り付けた後、十分に擦り付ける。 Next, an adhesive strength evaluation tape (Elcometer 99 tape manufactured by Elcomometer Co., Ltd.) is applied so as to cover the grid-like cuts, and then sufficiently rubbed.
 密着力評価用テープを貼り付けてから30秒経過後に測定面に対して可能な限り180°の方向に素早く密着力評価用テープを剥がす。 ¡After adhering the adhesive strength evaluation tape, 30 seconds later, peel the adhesive strength evaluation tape as quickly as possible in the direction of 180 ° to the measurement surface.
 密着力評価用テープを剥がした後、格子状の縦切込み線51a、及び横切込み線51bとで囲まれた、図5中の評価領域52内で黒化層の下に形成した金属層(有機物層)が露出した面積により密着性の評価を行った。 After peeling off the adhesion evaluation tape, a metal layer (organic matter) formed under the blackened layer in the evaluation region 52 in FIG. 5 surrounded by the grid-like vertical cut lines 51a and the horizontal cut lines 51b. The adhesion was evaluated based on the exposed area of the layer.
 評価領域内の金属層の露出面積が0%の場合を5B、0%より多く5%未満の場合を4B、5%以上15%未満の場合を3B、15%以上35%未満の場合を2B、35%以上65%未満の場合を1B、65%以上の場合を0Bと評価した。係る評価について0Bが最も黒化層の密着性が低く、5Bが黒化層の密着性が最も高くなる。 5B when the exposed area of the metal layer in the evaluation region is 0%, 4B when it is more than 0% and less than 5%, 3B when it is 5% or more and less than 15%, and 2B when it is 15% or more and less than 35% The case of 35% or more and less than 65% was evaluated as 1B, and the case of 65% or more was evaluated as 0B. For such evaluation, 0B has the lowest adhesion of the blackened layer, and 5B has the highest adhesion of the blackened layer.
 密着性試験の結果、5Bの場合について密着性の評価を〇とし、それ以外の場合には×と評価した。
(試料の作製条件)
 実施例、比較例として、以下に説明する条件で導電性基板を作製し、上述の評価方法により評価を行った。
[実施例1]
(密着層形成工程)
 縦500mm×横500mm、厚さ50μmのポリエチレンテレフタレート樹脂(PET)製の絶縁性基材の一方の面上に密着層を成膜した。なお、絶縁性基材として用いたポリエチレンテレフタレート樹脂製の絶縁性基材について、全光線透過率をJIS K 7361-1に規定された方法により評価を行ったところ97%であった。
As a result of the adhesion test, the evaluation of adhesion was evaluated as ◯ in the case of 5B, and x was evaluated in other cases.
(Sample preparation conditions)
As examples and comparative examples, conductive substrates were produced under the conditions described below and evaluated by the above-described evaluation method.
[Example 1]
(Adhesion layer forming process)
An adhesion layer was formed on one surface of an insulating base made of polyethylene terephthalate resin (PET) having a length of 500 mm × width of 500 mm and a thickness of 50 μm. Note that the total light transmittance of the insulating base material made of polyethylene terephthalate resin used as the insulating base material was evaluated by the method prescribed in JIS K 7361-1, and found to be 97%.
 密着層形成工程では、Ni-17重量%Cu合金のターゲットを装着したスパッタリング装置により、密着層として酸素を含有するNi-Cu合金層を成膜した。以下に密着層の成膜手順について説明する。 In the adhesion layer forming step, a Ni—Cu alloy layer containing oxygen was formed as an adhesion layer using a sputtering apparatus equipped with a Ni-17 wt% Cu alloy target. The procedure for forming the adhesion layer will be described below.
 予め60℃まで加熱して水分を除去した上述の絶縁性基材を、スパッタリング装置のチャンバー内に設置した。 The above-mentioned insulating base material, which was previously heated to 60 ° C. to remove moisture, was placed in the chamber of the sputtering apparatus.
 次に、チャンバー内を1×10-3Paまで排気した後、アルゴンガスと酸素ガスとを導入し、チャンバー内の圧力を1.3Paとした。なお、この際チャンバー内の雰囲気は体積比で30%が酸素、残部がアルゴンとしている。 Next, after evacuating the chamber to 1 × 10 −3 Pa, argon gas and oxygen gas were introduced, and the pressure in the chamber was set to 1.3 Pa. At this time, the atmosphere in the chamber is 30% oxygen by volume, and the remainder is argon.
 そして係る雰囲気下でターゲットに電力を供給し、絶縁性基材の一方の面上に密着層を厚さが20nmになるように成膜した。
(金属層形成工程)
 金属層形成工程では、金属薄膜層形成工程と、金属めっき層形成工程と、を実施した。
Then, electric power was supplied to the target in such an atmosphere, and an adhesion layer was formed on one surface of the insulating base so as to have a thickness of 20 nm.
(Metal layer forming process)
In the metal layer forming step, a metal thin film layer forming step and a metal plating layer forming step were performed.
 まず、金属薄膜層形成工程について説明する。 First, the metal thin film layer forming process will be described.
 金属薄膜層形成工程では、基材として密着層形成工程で絶縁性基材上に密着層を成膜したものを用い、密着層上に金属薄膜層として銅薄膜層を形成した。 In the metal thin film layer forming step, a copper thin film layer was formed as a metal thin film layer on the adhesion layer using a substrate in which the adhesion layer was formed on the insulating substrate in the adhesion layer forming step.
 金属薄膜層は、銅のターゲットを用いた点と、基材をセットしたチャンバー内を排気した後、アルゴンガスを供給してアルゴン雰囲気とした点以外は、密着層の場合と同様にしてスパッタリング装置により成膜した。 The metal thin film layer is a sputtering apparatus as in the case of the adhesion layer except that a copper target is used and the inside of the chamber in which the substrate is set is evacuated and then an argon gas is supplied to form an argon atmosphere. Was formed.
 金属薄膜層である銅薄膜層は膜厚が80nmとなるように成膜した。 The copper thin film layer, which is a metal thin film layer, was formed to a thickness of 80 nm.
 次に、金属めっき層形成工程においては、金属めっき層として銅めっき層を形成した。銅めっき層は、電気めっき法により銅めっき層の厚さが0.5μmになるように成膜した。 Next, in the metal plating layer forming step, a copper plating layer was formed as the metal plating layer. The copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.5 μm.
 金属めっき層形成工程においては、金属めっき層形成工程開始時には電流密度(Dk値)を1A/dmとし、金属めっき層形成工程終了前の7秒間については電流密度(Dk値)を0.1A/dmとした。なお、金属層形成工程終了前のめっき時間については以下、最終のめっき時間と記載する。
(有機物層形成工程)
 有機物層形成工程では、絶縁性基材上に、密着層と、金属層とが形成された積層体の金属層上に有機物層を形成した。
In the metal plating layer forming step, the current density (Dk value) is 1 A / dm 2 at the start of the metal plating layer forming step, and the current density (Dk value) is 0.1 A for 7 seconds before the end of the metal plating layer forming step. / Dm 2 . The plating time before the end of the metal layer forming step is hereinafter referred to as the final plating time.
(Organic layer formation process)
In the organic layer forming step, an organic layer was formed on the metal layer of the laminate in which the adhesion layer and the metal layer were formed on the insulating base material.
 有機物層形成工程ではまず、上述の積層体を窒素系有機物として1,2,3-ベンゾトリアゾールを含有するOPCディフューザー(奥野製薬工業株式会社製)溶液に7秒間浸漬した。なお、用いたOPCディフューザー溶液は、1,2,3-ベンゾトリアゾールの濃度が3mL/Lとなるように予め調整して用いた。 In the organic material layer forming step, first, the above laminate was immersed in an OPC diffuser (Okuno Pharmaceutical Co., Ltd.) solution containing 1,2,3-benzotriazole as a nitrogen-based organic material for 7 seconds. The OPC diffuser solution used was adjusted in advance so that the concentration of 1,2,3-benzotriazole was 3 mL / L.
 そして、金属層の上面以外、すなわち金属層の密着層と対向する面と反対側の面以外に付着した溶液を除去した後、乾燥することで、金属層上に有機物層を形成した。 Then, the organic material layer was formed on the metal layer by removing the solution adhering to the surface other than the upper surface of the metal layer, that is, the surface opposite to the surface opposite to the adhesion layer of the metal layer, and then drying.
 有機物層形成後、粒状の突起物の平均高さ、線プロファイルからの粒状の突起物の粒数、金属層表面の表面粗さ、SAD値の評価を実施した。
(黒化層形成工程)
 黒化層形成工程では、有機物層形成工程で形成した有機物層上に、スパッタリング法により黒化層としてNi-Cu層を形成した。
After the organic layer was formed, the average height of the granular protrusions, the number of granular protrusions from the line profile, the surface roughness of the metal layer surface, and the SAD value were evaluated.
(Blackening layer forming process)
In the blackened layer forming step, a Ni—Cu layer was formed as a blackened layer by sputtering on the organic layer formed in the organic layer forming step.
 黒化層形成工程では、Ni-35重量%Cu合金のターゲットを装着したスパッタリング装置により、黒化層としてNi-Cu合金層を成膜した。以下に黒化層の成膜手順について説明する。 In the blackening layer forming step, a Ni—Cu alloy layer was formed as a blackening layer by a sputtering apparatus equipped with a Ni-35 wt% Cu alloy target. The procedure for forming the blackened layer will be described below.
 まず、絶縁性基材上に、密着層と、金属層と、有機物層と、を積層した積層体をスパッタリング装置のチャンバー内にセットした。 First, a laminated body in which an adhesion layer, a metal layer, and an organic layer were laminated on an insulating substrate was set in a chamber of a sputtering apparatus.
 次にチャンバー内を1×10-3Paまで排気した後、アルゴンガスを導入し、チャンバー内の圧力を1.3Paとした。 Next, after evacuating the inside of the chamber to 1 × 10 −3 Pa, argon gas was introduced, and the pressure in the chamber was set to 1.3 Pa.
 そして係る雰囲気下でターゲットに電力を供給し、有機物層上に厚さ20nmになるように黒化層を成膜した。 Then, power was supplied to the target in such an atmosphere, and a blackening layer was formed on the organic layer so as to have a thickness of 20 nm.
 以上の工程により、金属層の上面、すなわち、金属層の密着層と対向する面と反対側の面に有機物層を介して黒化層を形成し、絶縁性基材上に、密着層、金属層、有機物層、黒化層がその順で積層された導電性基板が得られた。 Through the above steps, a blackening layer is formed on the upper surface of the metal layer, that is, the surface opposite to the surface facing the adhesion layer of the metal layer through the organic material layer, and the adhesion layer, the metal is formed on the insulating substrate. A conductive substrate in which a layer, an organic material layer, and a blackening layer were laminated in that order was obtained.
 得られた導電性基板について、上述の密着性試験を実施した。 The above-described adhesion test was performed on the obtained conductive substrate.
 結果を表1に示す。
[実施例2、実施例3]
 最終のめっき時間を表1に示した時間とした点以外は実施例1と同様にして導電性基板の作製、評価を行った。
The results are shown in Table 1.
[Example 2 and Example 3]
A conductive substrate was prepared and evaluated in the same manner as in Example 1 except that the final plating time was the time shown in Table 1.
 結果を表1に示す。
[比較例1、2]
 最終のめっき時間を表1に示した時間とした点以外は実施例1と同様にして導電性基板の作製、評価を行った。
The results are shown in Table 1.
[Comparative Examples 1 and 2]
A conductive substrate was prepared and evaluated in the same manner as in Example 1 except that the final plating time was the time shown in Table 1.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果によると、金属層表面に形成した複数の粒状の突起物の平均高さが8.00nm以上であり、金属層の有機物層を形成する面における、線プロファイルからの粒状の突起物の粒数が70個/10μm以上である実施例1~3は密着性試験の評価が〇になることを確認できた。
Figure JPOXMLDOC01-appb-T000001
According to the results shown in Table 1, the average height of the plurality of granular projections formed on the surface of the metal layer is 8.00 nm or more, and the granularity from the line profile on the surface of the metal layer on which the organic layer is formed is It was confirmed that Examples 1 to 3 in which the number of protrusions was 70/10 μm or more were evaluated as “good” in the adhesion test.
 これに対して、金属層の表面に形成した複数の粒状の突起物の平均高さ、および/または線プロファイルからの粒状の突起物の粒数が上記範囲を満たさない比較例1、2については、密着性試験の評価が×となり、黒化層の剥離が観察されることが確認できた。 On the other hand, for Comparative Examples 1 and 2 in which the average height of the plurality of granular protrusions formed on the surface of the metal layer and / or the number of granular protrusions from the line profile does not satisfy the above range It was confirmed that the adhesion test was evaluated as x and peeling of the blackened layer was observed.
 以上に導電性基板を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the conductive substrate has been described in the embodiment and examples, the present invention is not limited to the above-described embodiment and examples. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.
 本出願は、2015年7月31日に日本国特許庁に出願された特願2015-152898号に基づく優先権を主張するものであり、特願2015-152898号の全内容を本国際出願に援用する。 This application claims priority based on Japanese Patent Application No. 2015-152898 filed with the Japan Patent Office on July 31, 2015. The entire contents of Japanese Patent Application No. 2015-152898 are incorporated herein by reference. Incorporate.
10A、10B、20A、20B、30 導電性基板
11                 絶縁性基材
12、12A、12B         金属層
13、13A、13B、32A、32B 有機物層
14、14A、14B、33A、33B 黒化層
10A, 10B, 20A, 20B, 30 Conductive substrate 11 Insulating substrate 12, 12A, 12B Metal layer 13, 13A, 13B, 32A, 32B Organic layer 14, 14A, 14B, 33A, 33B Blackening layer

Claims (4)

  1.  絶縁性基材と、
     前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
     前記金属層上に形成された、窒素系有機物を含有する有機物層と、
     前記有機物層上に形成された黒化層と、を有しており、
     前記金属層は、前記有機物層を形成する面に、複数の粒状の突起物を有しており、
     前記複数の粒状の突起物の平均高さが8.00nm以上であり、
     前記金属層は、前記有機物層を形成する面に、前記複数の粒状の突起物を70個/10μm以上有する導電性基板。
    An insulating substrate;
    A metal layer formed on at least one surface of the insulating substrate;
    An organic layer containing nitrogen-based organic matter formed on the metal layer;
    A blackening layer formed on the organic layer,
    The metal layer has a plurality of granular protrusions on the surface on which the organic layer is formed,
    An average height of the plurality of granular protrusions is 8.00 nm or more;
    The metal layer is a conductive substrate having the plurality of granular protrusions of 70/10 μm or more on a surface on which the organic layer is formed.
  2.  前記金属層の前記有機物層を形成する面の投影面積S1と、前記金属層の前記有機物層を形成する面の表面積S2とから、以下の式(1)により算出されるSAD(Surface Area Different)値が5%以上である請求項1に記載の導電性基板。
        SAD=100×(S2-S1)/S1  ・・・(1)
    From the projected area S1 of the surface of the metal layer on which the organic material layer is formed and the surface area S2 of the surface of the metal layer on which the organic material layer is formed, SAD (Surface Area Different) calculated by the following equation (1) The conductive substrate according to claim 1, wherein the value is 5% or more.
    SAD = 100 × (S2-S1) / S1 (1)
  3.  前記窒素系有機物が1,2,3-ベンゾトリアゾール、またはその誘導体を含有する請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, wherein the nitrogen-based organic substance contains 1,2,3-benzotriazole, or a derivative thereof.
  4.  前記絶縁性基材の一方の面上と、前記一方の面と対向する他方の面上とにそれぞれ、
     前記金属層と、前記有機物層と、前記黒化層とが、その順に形成された請求項1乃至3のいずれか一項に記載の導電性基板。
    On one surface of the insulating substrate and on the other surface facing the one surface,
    The conductive substrate according to any one of claims 1 to 3, wherein the metal layer, the organic material layer, and the blackening layer are formed in that order.
PCT/JP2016/071891 2015-07-31 2016-07-26 Conductive substrate WO2017022573A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187002597A KR102629297B1 (en) 2015-07-31 2016-07-26 conductive substrate
CN201680043507.2A CN107850966B (en) 2015-07-31 2016-07-26 Conductive substrate
JP2017532519A JP6973076B2 (en) 2015-07-31 2016-07-26 Conductive substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015152898 2015-07-31
JP2015-152898 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017022573A1 true WO2017022573A1 (en) 2017-02-09

Family

ID=57944149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071891 WO2017022573A1 (en) 2015-07-31 2016-07-26 Conductive substrate

Country Status (5)

Country Link
JP (1) JP6973076B2 (en)
KR (1) KR102629297B1 (en)
CN (1) CN107850966B (en)
TW (1) TWI707255B (en)
WO (1) WO2017022573A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309612A (en) * 2020-10-27 2021-02-02 江西慧光微电子有限公司 Metal conductive film, touch panel and electronic product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228986A (en) * 2012-04-24 2013-11-07 Samsung Electro-Mechanics Co Ltd Touch panel
JP2014219963A (en) * 2013-04-12 2014-11-20 信越ポリマー株式会社 Sheet for sensor sheet production, method for producing the same, sensor sheet for touchpad, and method for producing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086132B2 (en) 2001-11-16 2008-05-14 株式会社ブリヂストン Transparent conductive film and touch panel
KR101067993B1 (en) * 2006-03-15 2011-09-26 니혼 파커라이징 가부시키가이샤 Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member
CN101523513B (en) * 2006-10-17 2012-01-11 日立化成工业株式会社 Coated particle and method for producing the same, composition and adhesive film formed therefor
US8753933B2 (en) 2008-11-19 2014-06-17 Micron Technology, Inc. Methods for forming a conductive material, methods for selectively forming a conductive material, methods for forming platinum, and methods for forming conductive structures
JPWO2011061969A1 (en) * 2009-11-18 2013-04-04 株式会社フジクラ Partial multilayer wiring board and manufacturing method thereof
JP5440165B2 (en) * 2009-12-28 2014-03-12 デクセリアルズ株式会社 Conductive optical element, touch panel, and liquid crystal display device
TWI425530B (en) * 2010-09-30 2014-02-01 Far Eastern New Century Corp Transparent conductive film having high optical transmittance and method for manufacturing the same
JP5775494B2 (en) * 2012-02-28 2015-09-09 富士フイルム株式会社 Silver ion diffusion suppression layer forming composition, silver ion diffusion suppression layer film, wiring board, electronic device, conductive film laminate, and touch panel
JP2013206315A (en) 2012-03-29 2013-10-07 Toppan Printing Co Ltd Film-shaped touch panel sensor and method for manufacturing the same
CN102621736A (en) * 2012-04-09 2012-08-01 友达光电股份有限公司 Method for patterning black matrix in touch control panel
JP6047713B2 (en) 2012-05-11 2016-12-21 石原ケミカル株式会社 Electroless copper plating method
JP5224203B1 (en) * 2012-07-11 2013-07-03 大日本印刷株式会社 Touch panel sensor, touch panel device, and display device
KR101496567B1 (en) * 2012-08-31 2015-02-25 주식회사 엘지화학 Conductive structure body and method for manufacturing the same
KR101408572B1 (en) * 2012-08-31 2014-06-17 주식회사 엘지화학 Conductive structure body and method for manufacturing the same
JP6155537B2 (en) * 2013-03-22 2017-07-05 エルジー・ケム・リミテッド CONDUCTIVE PATTERN LAMINATE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE AND TOUCH SCREEN CONTAINING CONDUCTIVE PATTERN LAMINATE
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
JP5743237B2 (en) * 2013-09-25 2015-07-01 大日本印刷株式会社 Touch panel sensor, touch panel device, and display device
KR102170097B1 (en) * 2013-10-31 2020-10-26 스미토모 긴조쿠 고잔 가부시키가이샤 Electrically conductive substrate and method for manufacturing electrically conductive substrate
TWM490025U (en) * 2014-06-20 2014-11-11 Koatech Tech Corporation Display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228986A (en) * 2012-04-24 2013-11-07 Samsung Electro-Mechanics Co Ltd Touch panel
JP2014219963A (en) * 2013-04-12 2014-11-20 信越ポリマー株式会社 Sheet for sensor sheet production, method for producing the same, sensor sheet for touchpad, and method for producing the same

Also Published As

Publication number Publication date
TW201719362A (en) 2017-06-01
CN107850966B (en) 2021-02-26
JP6973076B2 (en) 2021-11-24
JPWO2017022573A1 (en) 2018-05-24
KR102629297B1 (en) 2024-01-24
CN107850966A (en) 2018-03-27
TWI707255B (en) 2020-10-11
KR20180035811A (en) 2018-04-06

Similar Documents

Publication Publication Date Title
JP6497391B2 (en) Conductive substrate for touch panel, manufacturing method of conductive substrate for touch panel
WO2015115528A1 (en) Conductive substrate, conductive substrate laminate, method for producing conductive substrate, and method for producing conductive substrate laminate
WO2017022573A1 (en) Conductive substrate
JP6500746B2 (en) Method of manufacturing conductive substrate
WO2017022596A1 (en) Conductive substrate, and method for manufacturing conductive substrate
JP6597139B2 (en) Blackening plating solution, conductive substrate
JPWO2017130865A1 (en) Blackening plating solution, manufacturing method of conductive substrate
JP6432684B2 (en) Conductive substrate, method for manufacturing conductive substrate
JP6103375B2 (en) Laminated body and laminated body manufacturing method used for manufacturing electronic parts, touch panel device including film sensor and film sensor, and film forming method for forming concentration gradient type metal layer
JPWO2016190224A1 (en) Blackening plating solution, conductive substrate
WO2017130869A1 (en) Blackening plating solution and method for manufacturing conductive substrate
WO2018193940A1 (en) Conductive substrate
JP6428942B2 (en) Conductive substrate, method for manufacturing conductive substrate
JP6439628B2 (en) Method for manufacturing conductive substrate
JP6848243B2 (en) Manufacturing method of conductive substrate
WO2017057374A1 (en) Method for manufacturing organic coating, method for manufacturing conductive substrate, and device for manufacturing organic coating
WO2017130867A1 (en) Conductive substrate
JPWO2017130866A1 (en) Blackening plating solution, manufacturing method of conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187002597

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832852

Country of ref document: EP

Kind code of ref document: A1