WO2017022122A1 - Receiver - Google Patents

Receiver Download PDF

Info

Publication number
WO2017022122A1
WO2017022122A1 PCT/JP2015/072364 JP2015072364W WO2017022122A1 WO 2017022122 A1 WO2017022122 A1 WO 2017022122A1 JP 2015072364 W JP2015072364 W JP 2015072364W WO 2017022122 A1 WO2017022122 A1 WO 2017022122A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
signal
amplifier
variable gain
output
Prior art date
Application number
PCT/JP2015/072364
Other languages
French (fr)
Japanese (ja)
Inventor
圭佑 中村
暁人 平井
正信 平峰
田島 賢一
檜枝 護重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017532338A priority Critical patent/JP6260746B2/en
Priority to PCT/JP2015/072364 priority patent/WO2017022122A1/en
Publication of WO2017022122A1 publication Critical patent/WO2017022122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a receiver that receives a modulated signal.
  • an RSSI (Received Signal Strength Indication) detector is widely used as a receiver circuit of an ASK modulated signal receiver.
  • an envelope of the ASK modulation signal is obtained as an output of the RSSI detector, and the output is used as a baseband signal and demodulated by a demodulator at the subsequent stage.
  • the RSSI detector described in Non-Patent Document 1 As the RSSI detector, the RSSI detector described in Non-Patent Document 1 is disclosed.
  • a combination of an amplifier and a detector connected to the amplifier is connected in five stages, and five detectors are connected to a current adder. .
  • a current-voltage converter is connected after the current adder.
  • the RF signal input to the conventional RSSI detector is amplified by each amplifier having a fixed gain Gv.
  • the detector loaded after the first stage amplifier detects the RF signal output from the first stage amplifier and outputs a direct current according to the signal amplitude output from the amplifier.
  • the second-stage amplifier further amplifies the RF signal.
  • the detector loaded after the second-stage amplifier detects the RF signal output from the second-stage amplifier and outputs a direct current, in the same manner as the first-stage amplifier detector.
  • the subsequent amplifier and detector perform the same operation, and the current adder adds the output currents of the respective detectors, and outputs the sum of the output currents of the detectors to the current converter.
  • the current-voltage converter converts the sum of the output currents of the detector into a voltage and outputs it from the RSSI detector.
  • the detection characteristic of the RSSI detector shows a linear characteristic with respect to the input RF signal, and the detection of the conventional RSSI detector is performed.
  • the range is determined by the sum of the gains of the amplifiers. In the above example, since five amplifiers are connected, the detection range is 5 Gv.
  • An object of the present invention is made in view of such a situation, and is to obtain a receiver capable of detecting a received signal even when an RSSI detector having a saturation region within the detection range is used.
  • the receiver of the present invention switches a gain by a control signal, a variable gain amplifier that amplifies the modulated reception signal, and a dynamic gain that is smaller than the gain of the variable gain amplifier and detects the reception signal amplified by the variable gain amplifier.
  • the saturation region of the first detector is the linear region
  • a controller for outputting a control signal for switching the gain of the variable gain amplifier discontinuously.
  • FIG. 1 is a block diagram showing a configuration example of a receiver according to Embodiment 1 of the present invention.
  • the receiver includes an antenna 1, an RSSI detector 2, a controller 3 (an example of a controller), and a demodulation circuit 4.
  • Antenna 1 is an antenna that receives an ASK modulated signal.
  • a dipole antenna, an aperture antenna, a phased array antenna, or the like is used as the antenna 1.
  • the RSSI detector 2 is a detector that amplifies and detects the ASK modulation signal input from the antenna 1 and outputs the detection signal to the controller 3.
  • the RSSI detector 2 includes a variable gain amplifier 20 (an example of a variable gain amplifier), an amplifier 21 (an example of an amplifier), amplifiers 22 to 24 (an example of a first detector), and detectors 25 to 27 (a second detector). 1), a voltage adder 28 (an example of a voltage adder), and an LPF 29 (an example of a Low Pass Filter low pass filter).
  • the variable gain amplifier 20 is located in the first stage of the RSSI detector 2 and is a variable gain amplifier that switches the gain according to the gain control signal from the controller 3 and amplifies the received signal received by the antenna 1.
  • the input terminal of the variable gain amplifier 20 is connected to the antenna 1, and the output terminal of the variable gain amplifier 20 is connected to the input terminal of the amplifier 21 and the input terminal of the detector 24.
  • the control terminal of the variable gain amplifier 20 is connected to the output terminal of the determination circuit 33 in the controller 3.
  • FIG. 2 is a configuration diagram showing a configuration example of the variable gain amplifier 20 according to the first embodiment of the present invention.
  • the variable gain amplifier 20 includes a differential amplifier 201, a resistor 202, a resistor 203, a capacitor 204, a switch 205, a switch 206, a capacitor 207, a switch 208, a switch 209, and an inverter 210.
  • the differential output terminal pair of the differential amplifier 201 is connected to the input terminals of the resistor 202 and the resistor 203.
  • the output terminals of the resistor 202 and the resistor 203 are a differential output terminal pair of the variable gain amplifier 20.
  • the output terminal of the resistor 202 is connected to one end of the switch 205, the other end of the switch 205 is connected to one end of the capacitor 204, one end of the switch 206 is connected to the other end of the capacitor 204, and the other end of the switch 206. Is connected to the output terminal of the resistor 203.
  • the switch 208, the capacitor 207, and the switch 209 are connected to the differential output terminal pair of the variable gain amplifier 20 in the same connection relationship as the switch 205, the capacitor 204, and the switch 206.
  • the switches 205 and 206 are switches that receive a gain control signal from the control terminal and change the state of the switch.
  • the gain control signal is “H”
  • the switch 205 and the switch 206 are short-circuited
  • the gain control signal is “L”
  • the switch 205 and the switch 206 are open.
  • “H” is a logic signal whose voltage indicates a high level
  • “L” is a logic signal whose voltage indicates a low level.
  • the switch 208 and the switch 209 receive the gain control signal via the inverter 210 and change the state of the switch. Since the inverter 210 is used, when the gain control signal is “H”, the switch 208 and the switch 209 are opened, and when the gain control signal is “L”, they are short-circuited.
  • variable gain amplifier 20 is configured as described above, and the gain is switched by switching the cut-off frequency of the RC circuit composed of the resistors 202 and 203 and the capacitor 204 or the capacitor 207.
  • FIG. 3 is a gain frequency characteristic diagram of the variable gain amplifier 20 according to the first embodiment of the present invention.
  • the vertical axis is gain, and the horizontal axis is frequency.
  • fc1 is a cutoff frequency before gain control (when the gain control signal is “L”)
  • fc2 is a cutoff frequency after gain control (when the gain control signal is “H”).
  • f 0 is the center frequency of the input ASK modulation signal.
  • the gain control signal changes from “L” to “H”
  • the capacitor of the RC circuit is switched from the capacitor 207 to the capacitor 204, and the cutoff frequency of the variable gain amplifier 20 is switched from fc1 to fc2.
  • the gain of the variable gain amplifier 20 is switched from Gv to Gv / 2.
  • the amplifier 21 is an amplifier that further amplifies the signal output from the variable gain amplifier 20.
  • the input terminal of the amplifier 21 is connected to the output terminal of the variable gain amplifier 20, and the output terminal of the amplifier 21 is connected to the input terminal of the amplifier 22 and the input terminal of the detector 25.
  • the reception signal input from the output terminal of the amplifier 20 is amplified by a gain Gv and output to the input terminal of the amplifier 22 and the input terminal of the detector 25.
  • the amplifier 21 is a differential amplifier mounted on an IC using a process such as CMOS (Complementary Metal Oxide Semiconductor).
  • the amplifier 22, the amplifier 23, and the amplifier 24 are amplifiers having the same configuration as the amplifier 21 and further amplifying the signal amplified by the amplifier 21.
  • the detector 24 is a detector that detects the signal output from the variable gain amplifier 20.
  • the input terminal of the detector 24 is connected to the output terminal of the variable gain amplifier 20, and the output terminal of the detector 24 is connected to the input terminal of the voltage adder 28.
  • the detector 24 detects the received signal amplified by the variable gain amplifier 20 and outputs an output voltage corresponding to the logarithm value of the input power to the input terminal of the voltage adder 28.
  • the detector 24 holds a threshold value with respect to the input power, and has a characteristic of being saturated at a predetermined voltage when power exceeding the threshold value is input.
  • FIG. 4 is a detection characteristic diagram of the detector 24 according to the first embodiment of the present invention.
  • the vertical axis is the detection voltage (Vdet), and the horizontal axis is the input voltage (Vin).
  • Vin_min is the minimum input voltage that can be detected by the detector 24, and Vin_max is the maximum input voltage at which the detector 24 is not saturated.
  • Vlim is a detection voltage at Vin_max. Between Vin_min and Vin_max, the linear area
  • the linear region refers to a region where the output voltage is linearly proportional to the input power, that is, a region where the first-order differential coefficient of the detection characteristic is larger than other higher-order differential coefficients.
  • the difference between Vin_max and Vin_min corresponds to the dynamic range of the detector 24.
  • the slope of the detection characteristic is determined by the mutual conductance (gm) of the transistors constituting the detector 24.
  • the detector 24 may be a detector or a diode detector configured with a transistor and a resistor mounted on an IC (Integrated Circuit) using a process such as CMOS.
  • the detectors 25 to 27 have the same configuration as the detector 24 and are connected to the output terminals of the amplifiers 21 to 23, respectively.
  • the voltage adder 28 is a voltage adder that adds the detection voltages output from the detector 24, the detector 25, the detector 26, and the detector 27, respectively.
  • the input terminal of the voltage adder 28 is connected to the output terminals of the detector 24, the detector 25, the detector 26, and the detector 27, and the output terminal of the voltage adder 28 is connected to the input terminal of the LPF 29.
  • the voltage adder 28 adds the voltages input from the detectors and outputs the added voltage to the LPF 29.
  • the voltage adder 28 is an operational amplifier mounted on an IC using a process such as CMOS.
  • the LPF 29 is a low-pass filter that blocks unnecessary signals and allows a desired received signal to pass by passing a signal having a frequency equal to or lower than its own cutoff frequency from the detection voltage added by the voltage adder 28.
  • the input terminal of the LPF 29 is connected to the output terminal of the voltage adder 28, and the output terminal of the LPF 29 is connected to the input terminal of the comparator 34 built in the controller 3 and the input terminal of the smoothing circuit 37.
  • the LPF 29 has a cut-off frequency and cuts a frequency component higher than its own cut-off frequency to limit the band of the input signal.
  • the LPF 29 is mounted with a resistor, a capacitor, or the like mounted on an IC using a process such as CMOS.
  • the RSSI detector 2 amplifies the reception signal received by the antenna 1 with the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23, and also includes the detector 24, the detector 25, the detector 26, The detector 27 detects the output signal of each amplifier.
  • the RSSI detector 2 outputs the amplified reception signal to the detector 31 in the controller 3 and outputs the detection signal to the comparator 34 and the smoothing circuit 37.
  • the RSSI detector 2 changes the gain of the variable gain amplifier 20 according to the gain control signal from the controller 3.
  • FIG. 5 is a detection characteristic diagram of the RSSI detector 2 according to the first embodiment of the present invention.
  • the vertical axis is the detection voltage
  • the horizontal axis is the input power.
  • DR is a dynamic range of the detector 24, the detector 25, the detector 26, and the detector 27, and is a linear region.
  • Gv is the gain of the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23.
  • Det1, det2, det3, and det4 are detection ranges of the detector 24, the detector 25, the detector 26, and the detector 27, respectively.
  • the controller 3 determines whether or not at least one of the detectors 24 to 27 is saturated from the detection signal output from the RSSI detector 2, and when at least one of the detectors 24 to 27 is saturated
  • the controller outputs a gain control signal for switching the gain of the variable gain amplifier 20 to the variable gain amplifier 20.
  • the controller 3 includes a detector 31, a comparator 32, a determination circuit 33, a comparator 34 (an example of a comparator), a preamble detector 35, a reference voltage source 36, and a smoothing circuit 37 (an example of a smoothing circuit).
  • the detector 31 is a detector that detects the signal output from the amplifier 23.
  • the input terminal of the detector 31 is connected to the output terminal of the amplifier 23, and the output terminal of the detector 31 is connected to the input terminal of the comparator 32.
  • the detector 31 detects the reception signal amplified by the amplifier 23 and outputs an output voltage corresponding to the logarithmic value of the input power to the input terminal of the comparator 32.
  • the detector 31 may be a detector composed of a transistor and a resistor mounted on an IC using a process such as CMOS, a diode detector, or the like.
  • the comparator 32 is a comparator that compares the detection signal output from the detector 31 with a reference voltage in order to determine whether the received signal input to the RSSI detector 2 is greater than the minimum input power that can be detected. is there.
  • the first input terminal of the comparator 32 is connected to the output terminal of the detector 31, and the second input terminal is connected to the output terminal of the reference voltage source 36.
  • the output terminal of the comparator 32 is connected to the input terminal of the determination circuit 33.
  • the comparator 32 compares the detection voltage of the received signal output from the detector 31 with the reference voltage output from the reference voltage source 36. When the detection voltage is larger than the reference voltage source, the comparator 32 is the lowest that the RSSI detector 2 can detect.
  • the comparator 32 is an operational amplifier mounted on an IC using a process such as CMOS.
  • the determination circuit 33 determines whether the detector in the RSSI detector 2 is saturated within the detection range of the RSSI detector 2 based on the preamble detection signal output from the preamble detector 35 and the detection signal output from the comparator 32. Is a determination circuit that outputs a gain control signal for switching the gain of the variable gain amplifier 20 to the control terminal of the RSSI detector 2.
  • the first input terminal of the determination circuit 33 is connected to the output terminal of the comparator 32, the second input terminal of the determination circuit 33 is connected to the output terminal of the preamble detector 35, and the output terminal of the determination circuit 33 is
  • the RSSI detector 2 is connected to the control terminal of the variable gain amplifier 20 incorporated therein.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FIG. 6 is a configuration diagram showing a configuration example of the determination circuit 33 according to the first embodiment of the present invention.
  • the determination circuit 33 includes a control circuit 331 and a memory 332.
  • the control circuit 331 is a control circuit that controls a gain control signal output to the RSSI detector 2.
  • the first input terminal of the control circuit 331 is the first input terminal of the determination circuit 33, and the second input terminal of the control circuit 331 is the second input terminal of the determination circuit 33.
  • a memory terminal of the control circuit 331 is connected to the memory 332.
  • the control circuit 331 is a logic circuit mounted on an ASIC or FPGA.
  • the memory 332 is a memory that stores the initial state of the variable gain amplifier 20.
  • the memory 332 stores a gain control signal indicating whether each switch in the variable gain amplifier 20 is open or short before the gain control of the variable gain amplifier 20 is performed.
  • the memory 332 stores that the initial state of the switch 205 and the switch 206 is open, the initial state of the switch 208 and the switch 209 is a short circuit state, and the state is “L” as the gain control signal.
  • the memory 332 is connected to the control circuit 331 and outputs an initial value to the control circuit 331.
  • the memory 332 is a non-volatile memory mounted on an ASIC or FPGA.
  • FIG. 7 is a flowchart of the determination circuit 33 according to the first embodiment of the present invention.
  • the control circuit 331 determines whether or not the RSSI detector 2 can detect the reception signal from the detection signal output from the comparator 31.
  • the detection signal output from the comparator 31 is “H”
  • the control circuit 331 determines that a received signal having a minimum input power that can be detected is input to the RSSI detector 2, and proceeds to step S103.
  • the detection signal output from the comparator 31 is “L”
  • the control circuit 331 receives a received signal less than the minimum input power that can be detected by the RSSI detector 2, and the RSSI detector 2 receives the received signal. It is determined that detection has not been performed, and the process proceeds to step S102.
  • step S102 the control circuit 331 outputs a control signal indicating the initial state of the variable gain amplifier 20 stored in the memory 332 to the variable gain amplifier 20, and returns the gain of the variable gain amplifier 20 to the initial state.
  • step S103 the control circuit 331 determines whether or not a preamble signal has been detected from the preamble detection signal output by the preamble detector 35. If the preamble detection signal is “H”, it is determined that the preamble signal has been detected, and the process proceeds to step S104. On the other hand, when the preamble detection signal is “L”, it is determined that the preamble signal has been detected, and the process proceeds to step S105.
  • step S104 the control circuit 331 holds the content of the gain control signal output to the variable gain amplifier 20, and outputs the same gain control signal as before the gain control. For example, when “L” is output as the gain control signal, the control circuit 331 outputs the gain control signal “L” to the variable gain amplifier 20.
  • step 105 the control circuit 331 changes the content of the gain control signal output to the variable gain amplifier 20 and outputs it to the variable gain amplifier 20. For example, when “L” is output as a gain control signal to the variable gain amplifier 20, the control circuit 331 outputs a gain control signal of “H” to the variable gain amplifier 20.
  • the comparator 34 is a comparator that compares the instantaneous value of the detection voltage of the RSSI detector 2 with the time average value of the detection voltage of the RSSI detector 2 output from the smoothing circuit 37 and outputs a comparison result.
  • the first input terminal of the comparator 34 is connected to the LPF 29 built in the RSSI detector 2, and the second input terminal is connected to the output terminal of the smoothing circuit 37.
  • the output terminal of the comparator 34 is connected to the input terminal of the preamble detector 35 and the input terminal of the demodulation circuit 4.
  • the comparator 34 compares the instantaneous value of the detection signal output from the LPF 29 with the time average voltage of the detection signal output from the smoothing circuit 37.
  • the comparator 34 compares "H". If it is smaller than the voltage, “L” is output as a baseband signal to the input terminal of the preamble detector 35 and the input terminal of the demodulation circuit 4.
  • the comparator 34 is an operational amplifier mounted on an IC using a process such as CMOS.
  • the baseband signal is a signal obtained by digitizing the detection signal output from the RSSI detector 2.
  • the preamble detector 35 is a detector that detects a preamble signal included in the baseband signal output from the comparator 34.
  • the input terminal of the preamble detector 35 is connected to the output terminal of the comparator 34, and the output terminal of the preamble detector 35 is connected to the input terminal of the determination circuit 33 and the input terminal of the demodulation circuit 4.
  • the preamble detector 35 extracts a preamble signal from the baseband signal output from the comparator 34 using an internal clock extraction circuit, and the extracted preamble signal matches the data pattern of the preamble signal stored therein.
  • “H” is output to the determination circuit 33 and the demodulation circuit 4 as a preamble detection signal.
  • “L” is output to the determination circuit 33 and the demodulation circuit 4 as the preamble detection signal.
  • the preamble detector 35 is configured by ASIC or FPGA.
  • FIG. 8 is a configuration diagram showing a configuration example of the preamble detector 35 according to the first embodiment of the present invention.
  • the preamble detector 35 includes a clock extraction circuit 351, a shift register 352, a memory 353, and a comparator 354.
  • the clock extraction circuit 351 is a clock extraction circuit that extracts a baseband signal clock based on the edge of the baseband signal output from the comparator 34.
  • the input terminal of the clock extraction circuit 351 is connected to the input terminal of the preamble detector 35, and the output terminal of the clock extraction circuit 351 is connected to the clock terminal of the shift register 352.
  • the clock extraction circuit 351 is configured by a logic circuit on an ASIC or FPGA.
  • the shift register 352 uses the clock signal output from the clock extraction circuit 351 to sample and hold the baseband signal output from the comparator 34 bit by bit, and outputs the sampled and held result in parallel to the comparator 354 bit by bit. Shift register.
  • the input terminal of the shift register 352 is connected to the input terminal of the preamble detector 35, and the clock terminal of the shift register 352 is connected to the output terminal of the clock extraction circuit 351.
  • the shift register 352 includes an N-bit output terminal, and the N-bit output terminal is connected to the input terminal of the comparator 354.
  • the memory 353 is a memory in which preamble data included in the received signal is stored in advance.
  • the memory 353 has N-bit output terminals, and these output terminals are connected to the comparator 354 input terminal.
  • the memory 353 stores binary preamble data, and outputs the preamble data to the comparator 354 in parallel in 1-bit units.
  • the comparator 354 is a comparator that compares the preamble data stored in the memory 353 and the sample hold result of the baseband signal output from the shift register 352.
  • the comparator 354 has a 2 ⁇ N (N is a natural number) bit input terminal, one N-bit input terminal is connected to the memory 353, and the other N-bit input terminal is a shift register 352. Is connected to the output terminal.
  • the comparator 354 performs exclusive OR operation on the N-bit preamble data output from the memory 353 and the sample-and-hold result of the N-bit baseband signal output from the shift register 351 one bit at a time. Judge whether or not. When N bits match, “H” is output to the determination circuit 33, and when they do not match, “L” is output to the determination circuit 33.
  • the reference voltage source 36 is a reference voltage source that outputs a reference voltage to the comparator 32.
  • the output terminal of the reference voltage source 36 is connected to the input terminal of the comparator 32.
  • the reference voltage source 36 is set in advance so as to output a voltage equal to the detection voltage output by the detector 31 when the RSSI detector 2 receives the signal of the lowest input power, and the voltage is compared with the comparator. 32.
  • the reference voltage source 36 is configured using a fixed current source and a resistor mounted on an IC using a process such as CMOS.
  • the smoothing circuit 37 is a smoothing circuit that averages the detection signal of the RSSI detector 2 output from the LPF 29 with a predetermined time constant for smoothing.
  • the input terminal of the smoothing circuit 37 is connected to the LPF 29 built in the RSSI detector 2, and the output terminal of the smoothing circuit 37 is connected to the input terminal of the comparator 34.
  • the smoothing circuit 37 time averages the detection signal with a predetermined time constant by passing a signal in a frequency band lower in frequency than the ASK modulation signal component in the detection signal among the signals output from the LPF 29.
  • the detection signal is output to the comparator 34.
  • the time constant of the smoothing circuit 37 corresponds to the reciprocal of the cutoff frequency of the smoothing circuit 37.
  • the smoothing circuit 37 is configured by a low-pass filter using a resistor and a capacitor.
  • the ASK modulation signal input to this receiver is composed of a preamble signal and a communication data signal.
  • the preamble signal is a signal that is ASK-modulated with predetermined N-bit pattern data.
  • the communication data signal is a signal obtained by ASK modulation of data to be communicated, and is transmitted after the preamble signal.
  • the antenna 1 receives the ASK modulated signal and outputs the received ASK modulated signal to the RSSI detector 2.
  • the RSSI detector 2 outputs the ASK modulation signal amplified by the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23 to the detector 31.
  • the detector 31 detects the ASK modulation signal and outputs a detection voltage to the comparator 32.
  • the comparator 32 compares the detection voltage output from the detector 31 with the reference voltage output from the reference voltage source 36.
  • the reference voltage output from the reference voltage source 36 is the lowest received voltage of the RSSI detector 2.
  • the comparator 32 outputs “H” to the determination circuit 33 when the detection voltage is higher than the minimum reception voltage, and “L” when the detection voltage is lower than the minimum reception voltage.
  • the RSSI detector 2 outputs a detection signal to the comparator 34 and the smoothing circuit 34 of the controller 3.
  • the variable gain amplifier 20 in the RSSI detector 2 amplifies the ASK modulation signal output from the antenna 1 and outputs the amplified ASK modulation signal to the amplifier 21.
  • the logic of the control terminal of the variable gain amplifier 20 is “L”
  • the switches 205 and 206 built in the amplifier 20 are open, and the switches 208 and 209 are short-circuited.
  • the RC circuit composed of the resistors 202 and 203 and the capacitor 207 determines the frequency characteristics of the amplifier 20, and the cut-off frequency is set so that the gain in the frequency band of the ASK modulation signal becomes Gv.
  • the ASK modulation signal amplified by the variable gain amplifier 20 is further amplified by the amplifier 21, the amplifier 22 and the amplifier 23 to be amplified to the power at which the detector 27 reacts.
  • the power of the received signal input to the RSSI detector 2 is the lowest input power of the RSSI detector 2, the detector 24, the detector 25, and the detector 26 do not react because the input power is small, and each detector The output of the device is 0V. Therefore, the output voltage of the detector 27 is input to the voltage adder 28, and the voltage adder 28 outputs the output voltage to the LPF 29 as it is.
  • the LPF 29 blocks unnecessary components from the voltage signal output from the voltage adder 28 and allows the signal components to pass therethrough.
  • the LPF 29 outputs the band-limited signal to the comparator 34 and the smoothing circuit 37.
  • the smoothing circuit 37 cuts off a signal having a frequency higher than the cut-off frequency of the smoothing circuit 37 and passes a signal having a frequency lower than the cut-off frequency, thereby averaging and smoothing the signal output from the LPF 29.
  • the smoothing circuit 37 outputs the smoothed signal to the comparator 34.
  • the comparator 34 compares the instantaneous voltage of the detection signal output from the LPF 29 with the time average voltage of the detection signal output from the smoothing circuit 37, and if it is higher than the average voltage, "H” is used, and if it is lower, "L” is used as the baseband.
  • the signal is output to the preamble detector 35 and the demodulation circuit 4 as a signal.
  • the preamble detector 35 extracts a clock from the baseband signal output from the comparator 34, and samples and holds the baseband signal using the clock.
  • the preamble detector 35 compares the result of the sample and hold with the pattern data of the preamble signal read from the built-in memory, and determines whether or not the preamble signal is included in the baseband signal. When there is no interference wave, the result of the sample hold matches the pattern data of the preamble signal read from the memory, so the preamble detector 35 outputs “H” as the preamble detection signal to the demodulation circuit 4 and the determination circuit 33. To do.
  • the demodulation circuit 4 starts when the preamble detection signal is input, and then demodulates the baseband signal input at a predetermined time.
  • the determination circuit 33 receives the signal “H” output from the comparator 32 and the signal “H” output from the preamble detector 35. Based on the two signals, the determination circuit 33 determines whether or not a signal equal to or higher than the lowest received signal is input to the RSSI detector 2 and whether or not a preamble signal can be detected, and determines the gain control signal as a variable gain. Output to the amplifier 20. Since the signal output from the comparator 32 is “H” and the signal output from the preamble detector 35 is “H”, the determination circuit 33 receives a signal equal to or higher than the lowest received signal in the RSSI detector 2. Therefore, the preamble detector 35 determines that the preamble signal can be detected without the influence of the interference wave, and holds the content of the gain control signal. Therefore, the determination circuit 33 outputs a gain control signal “L” that does not change the gain to the variable gain amplifier 20. It is assumed that the variable gain amplifier 20 has a configuration corresponding to the gain control signal “L” in the initial state.
  • the antenna 1 receives the interference wave together with the ASK modulation signal, and outputs the received signal to the RSSI detector 2.
  • FIG. 9 is a diagram showing detection characteristics and operating points of the RSSI detector 2 according to Embodiment 1 of the present invention.
  • the vertical axis is the detection voltage, and the horizontal axis is the input power.
  • the dotted line is the detection characteristic before gain control, and the solid line is the detection characteristic after gain control.
  • a portion surrounded by a dotted line is a saturation region before gain control, and a hatched portion is a saturation region after gain control.
  • DR is the dynamic range of the detector 24, the detector 25, the detector 26, and the detector 27, and Gv is the gain of the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23.
  • DET4, DET3, DET2, and DET1 correspond to the detector 24, the detector 25, the detector 26, and the detector 27, respectively.
  • Point A indicates the operating point of the RSSI detector 2. Note that the power of the received signal at point A is the sum of the power of the ASK modulated signal and the power of the interference wave.
  • the detector 27 When the RSSI detector 2 is operating at the point A on the dotted line in FIG. 9, the detector 27 is saturated. This occurs because the dynamic range of the detector 27 is smaller than the gain of the variable gain amplifier 20. When the detector 27 in the RSSI detector 2 operates in the saturation region, detection is performed in a region where the nonlinearity of the detector 27 is strong, so that the detection signal includes intermodulation distortion. A detection signal including distortion is output to the voltage adder 28.
  • the voltage adder 28 adds the detection signals of the detector 24, the detector 25, the detector 26, and the detector 27, but only the detector 27 detects the received power at the point A in FIG.
  • the adder 28 outputs the detection signal of the detector 27 to the LPF 29 as it is.
  • the LPF 29 blocks a component having a frequency higher than its own cutoff frequency, but intermodulation distortion having a frequency lower than the cutoff frequency passes through the LPF 29 and is output to the comparator 34 and the smoothing circuit 37.
  • the output signal of the LPF 29 includes an interference wave and a detection signal of the ASK modulation signal.
  • the smoothing circuit 37 averages and smoothes the detection signal that has passed through the LPF 29.
  • the smoothing circuit 37 outputs the time averaged detection signal to the comparator 34. Since the smoothing circuit 37 passes a frequency lower than its own cutoff frequency, if the frequency of the interference wave detection signal is lower than the cutoff frequency, the interference wave detection signal is output to the comparator 34.
  • the cutoff frequency of the smoothing circuit 37 is lower than the frequency of the detection signal of the ASK modulation signal and higher than the frequency of the detection signal of the interference wave. Therefore, the output signal of the smoothing circuit 37 does not include the detection signal of the ASK modulation signal, but includes the detection signal of the interference wave.
  • the comparator 34 compares the instantaneous voltage of the detection signal output from the LPF 29 with the time average voltage of the detection signal output from the smoothing circuit 37. If the instantaneous voltage is higher than the time average voltage, the comparator 34 compares "H". "Is output to the preamble detector 35 and the demodulation circuit 4 as a baseband signal. The comparator 34 compares the ASK modulation signal and the interference wave detection signal output from the LPF 29 with the interference wave detection signal output from the smoothing circuit 37. Therefore, the output signal of the comparator 34 includes an interference wave component. Not included. That is, if the interference wave is CW (Continus Wave) or a modulation signal narrower than the modulation band of the ASK modulation signal, the interference wave component is not output to the comparator 34 and thereafter.
  • CW Continuous Wave
  • the baseband signal output from the comparator 34 includes not only an ASK modulation signal component but also an intermodulation distortion component. Therefore, chattering due to intermodulation distortion is observed in the time waveform of the input baseband signal in the preamble detector 35. Due to this chattering, the preamble detector 35 samples and holds erroneous data when the baseband signal is sampled and held. The preamble detector 35 compares the preamble signal obtained as a result of the sample and hold with the pattern data of the preamble signal stored in the memory. Here, since an interference wave exists and the RSSI detector 2 operates in the saturation region and the two do not match, the preamble detector 35 outputs the preamble detection signal “L” to the determination circuit 33 and the demodulation circuit 4. To do.
  • the RSSI detector 2 outputs the amplified ASK modulation signal to the detector 27 and outputs the amplified ASK modulation signal to the detector 31.
  • the detector 31 detects the ASK modulation signal and outputs a detection voltage to the comparator 32.
  • the comparator 32 compares the detection voltage output from the detector 31 with the reference voltage output from the reference voltage source 36. Since the point A in FIG. 9 is higher than the minimum reception voltage of the RSSI detector 2, the comparator 32 outputs “H” to the determination circuit 33.
  • the determination circuit 33 receives “H” from the comparator 32 and “L” from the preamble detector 35. According to the flow of FIG. 7, the determination circuit 33 determines that the input power of the RSSI detector 2 has been detected in step S101, and proceeds to step S103. In step S103, the determination circuit 33 determines that the preamble signal has not been detected because the output signal of the preamble detector 35 is "L", and proceeds to step S105. In step S ⁇ b> 105, the determination circuit 33 changes the content of the gain control signal from “L” to “H” and outputs it to the variable gain amplifier 20.
  • the variable gain amplifier 20 changes the switch state according to the gain control signal and changes the gain. Since the gain control signal is changed from “L” to “H”, the switch 205 and the switch 206 incorporated in the variable gain amplifier 20 change from the open state to the short-circuit state. Similarly, the switch 208 and the switch 209 change from the short-circuit end state to the open state. As a result, the output circuit of the differential amplifier 201 is changed from the RC circuit configured by the resistor 202, the resistor 203, and the capacitor 207 to the RC circuit configured by the resistor 202, the resistor 203, and the capacitor 204. The gain of the variable gain amplifier 20 changes. Here, the capacitor 207 and the capacitor 204 have different capacities.
  • the gain of the variable gain amplifier 20 changes from Gv to Gv / 2 at the frequency of the ASK modulation signal.
  • the detection characteristic of the RSSI detector 2 changes as shown in FIG.
  • the RSSI detector 2 shifts the saturation region of the RSSI detector 2 to be a linear region by changing the gain of the variable gain amplifier 20 that is the first stage amplifier of the RSSI detector 2.
  • the point A in FIG. 9 is the saturation region before the gain control, but changes to the linear region after the gain control.
  • the RSSI detector 2 can detect the received signal without being saturated at the point A, and no intermodulation distortion occurs in the detected signal.
  • the detector 27 of the RSSI detector 2 outputs a detection signal to the voltage adder 28.
  • the subsequent operation is the same as the operation when there is no interference wave. Since chattering observed in the time waveform of the baseband signal is alleviated, the preamble detector 35 can detect the preamble signal, and the demodulation circuit 4 can demodulate the baseband signal.
  • the determination circuit 33 determines whether the RSSI detector 2 is saturated from the detection signal output by the preamble detector 35, and determines that it is saturated. In this case, since the gain of the variable gain amplifier 20 in the RSSI detector 2 is changed, even if the RSSI detector 2 is saturated within the detection range due to the interference wave, the RSSI detector 2 shifts the saturation region and receives the received signal. Can receive. For this reason, the receiver of Embodiment 1 can be used as a detector of a receiver even with an RSSI detector having a dynamic range of the detector smaller than the gain of the amplifier. Therefore, it is not necessary to use a detector with large power consumption in order to widen the dynamic range of the detector, and the power consumption of the RSSI detector 2 and the receiver can be reduced.
  • the gain change amount of the variable gain amplifier 20 is set to Gv / 2. However, if the gain change amount is greater than or equal to Gv-DR and less than or equal to Gv, the received signal can be received by shifting the saturation region. If the gain change amount is Gv-DR, the detection characteristic is shifted by the saturation region, so the portion that was the saturation region before gain control is replaced with the linear region after gain control, and the received signal is detected in the linear region. Can do.
  • the gain of the variable gain amplifier 20 in the frequency band of the ASK modulation signal is controlled, but the gain of the variable gain amplifier 20 in the frequency band of the interference wave may be controlled.
  • the controller 3 When the frequency of the interference wave that affects the system is specified and the power of the interference wave is larger than the ASK modulation signal, it is effective for the controller 3 to control the gain at the frequency of the interference wave. Thereby, even if the operating point of the detector 27 is determined not by the power of the ASK modulation signal but by the power of the interference wave, the detector 27 can detect by shifting the saturation region.
  • the gain control in the frequency band of the interference wave is effective when the power of the interference wave is large when the gain in the frequency band of the ASK modulation signal of the variable gain amplifier 20 is different from the gain in the frequency band of the interference wave.
  • FIG. 10 is a diagram showing an example of gain control during intermittent operation according to Embodiment 1 of the present invention.
  • the solid line is the gain characteristic of the receiver of the present invention, and the broken line is the gain characteristic of the receiver using an AGC (Automatic Gain Control) circuit.
  • AGC Automatic Gain Control
  • the polling signal is a signal having periodicity generated based on a highly accurate clock signal, and is used for the purpose of reducing power consumption.
  • An accurate clock signal is generated by, for example, a crystal oscillator.
  • the gain of the variable gain amplifier 20 is changed to a gain that can detect the preamble signal while continuously changing the gain.
  • the AGC circuit since the AGC circuit has a time constant in the built-in feedback circuit, it takes time to converge the gain control amount. Therefore, if a data signal is transmitted while the gain control amount is converged, the data signal cannot be received with a gain that does not saturate the detector in the receiver, and the data signal cannot be demodulated. That is, in a system that performs intermittent operation, the AGC circuit cannot cope with intermittent operation, and it takes time to receive a data signal.
  • the receiver inverts the logic of the gain control signal, and does not require a convergence operation by feedback control, and switches the gain of the variable gain amplifier 20 discontinuously.
  • the detection region of the detector is switched from the saturation region to the linear region.
  • the receiver does not need to wait for a convergence response and can receive a signal within a predetermined period.
  • switching the gain discontinuously means switching the gain to a predetermined value when a certain condition is satisfied.
  • This receiver does not continuously switch the gain corresponding to the magnitude of a certain observation signal (for example, a signal indicating the power level of the interference wave) like an AGC circuit, but a threshold value with a magnitude of the observation signal.
  • the gain of the variable gain amplifier 20 is switched to a predetermined value.
  • the variable amplifier 20 is an amplifier whose gain can be controlled by a digital signal
  • the control signal output from the controller 3 indicates the gain of the variable amplifier 20
  • the controller 3 determines that the variable amplifier 20 has been determined in advance.
  • a control signal indicating the gain may be output.
  • Embodiment 2 In the receiver according to the first embodiment of the present invention, by comparing the preamble pattern of the preamble signal included in the detection signal of the RSSI detector 2 with the pattern stored in advance, the detector in the RSSI detector 2 is It was determined whether or not it was in the saturation region. In the receiver according to the second embodiment of the present invention, it is determined whether or not the detector in the RSSI detector 2 is in the saturation region by detecting the intermodulation distortion included in the detection signal of the RSSI detector 2. Thereby, it is not necessary to detect a preamble pattern, and it can be determined whether the detector is in a saturated state at high speed.
  • FIG. 11 is a block diagram showing a configuration example of a receiver according to Embodiment 2 of the present invention. 11, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the comparator 34 outputs the output signal not only to the preamble detector 35 but also to the interference wave detector 38.
  • the interference wave detector 38 outputs an output signal to the determination circuit 33, and the determination circuit 33 outputs a gain control signal based on the output signal of the interference wave detector 38.
  • the variable gain amplifier 40 is loaded instead of the variable gain amplifier 20, and the detector 30 is connected to the input stage of the variable gain amplifier 40.
  • the interference wave detector 38 is a detector that detects intermodulation distortion of the detector from the baseband signal output from the comparator 34.
  • the input terminal of the interference wave detector 38 is connected to the output terminal of the comparator 34, and the output terminal of the interference wave detector is connected to the input terminal of the determination circuit 33.
  • FIG. 12 is a configuration diagram showing a configuration example of the interference wave detector 38 according to Embodiment 2 of the present invention.
  • the interference wave detector 38 includes an HPF (High Pass Filter) 381, a detector 382, a reference voltage source 383, and a comparator 384.
  • the input terminal of the HPF 381 is an input terminal of the interference wave detector, and the output terminal of the HPF 381 is connected to the input terminal of the detector 382.
  • the output terminal of the detector 382 is connected to the first input terminal of the comparator 384.
  • the second input terminal of the comparator 384 is connected to the output terminal of the reference voltage source 383.
  • the output terminal of the comparator 384 is connected to the output terminal of the interference wave detector 38.
  • the HPF 381 blocks the signal component of the baseband signal output from the comparator 34, passes the intermodulation distortion component, and outputs the signal to the detector 382.
  • the detector 382 detects intermodulation distortion from the signal output from the HPF 381 and outputs the detected signal to the comparator 384 at the subsequent stage.
  • the reference voltage source 383 outputs to the comparator 384 a voltage indicating the level of intermodulation distortion that does not affect the demodulation. That is, the reference voltage source 383 outputs a voltage indicating a reference that can be demodulated even if intermodulation distortion exists if the voltage is equal to or lower than this voltage.
  • the comparator 384 compares the intermodulation distortion detection signal output from the detector 382 with the reference voltage output from the reference voltage source 383. If the detection signal is higher than the reference voltage, the comparator 384 indicates “H”, and the detection signal indicates the reference voltage. If it is lower, “L” is output to the determination circuit 33.
  • the comparator 384 uses an operational amplifier mounted on an IC using a process such as CMOS.
  • the variable gain amplifier 40 is a variable gain amplifier that switches the gain according to the gain control signal from the determination circuit 33.
  • FIG. 13 is a configuration diagram showing a configuration example of the variable gain amplifier 40 according to the second embodiment of the present invention.
  • the variable gain amplifier 40 includes a differential amplifier 401, an attenuator 402, a switch 403, a switch 404, a switch 405, a switch 406, and an inverter 407.
  • the input terminal pair of the differential amplifier 401 is connected to the output terminal pair of the switch 404.
  • An output terminal pair of the differential amplifier 401 is an output terminal of the variable gain amplifier 40.
  • the input terminal pair of the switch 404 is connected to the output terminal pair of the attenuator 402, and the control terminal of the switch 404 is connected to the control terminal of the variable gain amplifier 40.
  • the input terminal pair of the attenuator 402 is connected to the switch 403 output terminal pair, and the output terminal pair of the attenuator 402 is connected to the input terminal pair of the switch 404.
  • the attenuator 402 attenuates the input signal and outputs it to the differential amplifier 401.
  • the attenuation amount of the attenuator 402 is 1/3 ⁇ Gv.
  • the switch 403 output terminal pair is connected to the input terminal pair of the attenuator 402.
  • the switch 403 input terminal pair is an input terminal of the variable amplifier 40.
  • the control terminal of the switch 403 is connected to the control terminal of the variable gain amplifier 40.
  • the switch 405 and the switch 406 are connected in series.
  • the input terminal pair and the output terminal pair of the switches 405 and 406 connected in series are connected to the input terminal pair of the switch 402 and the differential amplifier 401 so as to bypass the switch 403, the attenuator 402, and the switch 404, respectively. Connected to the input terminal pair.
  • the input terminal of the inverter 407 is connected to the control terminal of the variable gain amplifier 40, and the output terminal of the inverter 407 is connected to the control terminals of the switch 405 and the switch 406.
  • the switch 405 and the switch 406 are short-circuited because the inverter 407 inverts the logic, and the switch 403 and the switch 404 are opened. Therefore, the signal input to the variable gain amplifier 40 is input to the differential amplifier 401 without passing through the attenuator 402, amplified by the differential amplifier 401, and the amplified signal is output.
  • the switch 405 and the switch 406 are opened, and the switch 403 and the switch 404 are short-circuited. Therefore, the signal input to the variable gain amplifier 40 passes through the attenuator 402, is input to the differential amplifier 401, is amplified by the differential amplifier 401, and the amplified signal is output. Since the signal passes through the attenuator 402, the gain of the variable gain amplifier 40 becomes lower than when the gain control signal is “L”.
  • FIG. 14 is a gain frequency characteristic diagram of the variable gain amplifier 20 according to the second embodiment of the present invention.
  • the vertical axis is gain, and the horizontal axis is frequency.
  • the dotted line indicates the gain before gain control, and the solid line indicates the gain after gain control.
  • the variable gain amplifier 40 switches the gain from Gv to 2/3 ⁇ Gv by switching the signal path according to the gain control signal input to the control terminal.
  • Embodiment 2 The operation of the receiver according to Embodiment 2 will be described. A description of the same parts as those in the first embodiment will be omitted, and a description will be made mainly on parts having different operations.
  • FIG. 15 is a detection characteristic diagram of the RSSI detector 2 according to Embodiment 2 of the present invention.
  • the vertical axis is the detection voltage, and the horizontal axis is the input power.
  • the detector 30 is added to the input terminal of the variable gain amplifier 40, so that in FIG. 15, the detection range of the RSSI detector 2 is larger by the area of DET 0 than in FIG. 2.
  • DET 0 corresponds to the dynamic range of the detector 30.
  • the antenna 1 outputs the input ASK modulation signal and interference wave to the variable gain amplifier 40 of the RSSI detector 2.
  • the logic of the control input terminal of the amplifier 40 is “L”, and the gain is Gv.
  • a signal of power indicated by a point A in FIG. 15 is input from the antenna 1 to the RSSI detector 2.
  • the ASK modulation signal amplified by the variable gain amplifier 40 is amplified by the amplifier 21, the amplifier 22, and the amplifier 23 in the subsequent stage.
  • the final stage amplifier 23 outputs the amplified signal to the detector 27 and the detector 31. Since the operation of the detector 31, the reference voltage source 36, and the comparator 32 is the same as that of the first embodiment, the description thereof is omitted.
  • the detector 27 detects the signal output from the amplifier 23 and outputs the detection signal to the voltage adder 28. Since only the detector 27 (DET4) reacts at the point A in FIG. 15, nothing is added by the voltage adder 28, and the detection signal of the detector 27 is output to the LPF 29 as it is.
  • the LPF 29 blocks a signal having a frequency higher than its cut-off frequency from the detection signal, and outputs the band-limited detection signal to the comparator 34 and the smoothing circuit 37.
  • the smoothing circuit 37 time averages the output signal of the LPF 29 and outputs the time averaged signal to the comparator 34.
  • the comparator 34 compares the output signal of the LPF 29 and the output signal of the smoothing circuit 37. If the output signal of the LPF 29 is higher than the output signal of the smoothing circuit 37, the comparator 34 outputs “H”. If it is lower than the signal, “L” is output as a baseband signal to the interference wave detector 38, the preamble detector 35 and the demodulation circuit 4.
  • the baseband signal output from the comparator 34 includes the intermodulation distortion of the detector 27.
  • the interference wave detector 38 detects the intermodulation distortion from the output signal of the comparator 34, and determines whether or not the level affects the demodulation. When the detected level of intermodulation distortion is higher than the output voltage of the reference voltage source 383, the interference wave detector 38 outputs “H” to the determination circuit 33.
  • the determination circuit 33 determines the gain control signal output to the variable gain amplifier 40 based on the signal output from the comparator 32 and the output signal from the interference wave detector 38. Basically, the determination circuit 33 determines the gain control signal according to the flowchart shown in FIG. 7, but in the second embodiment, in step 103 of FIG. 7, “detect the preamble signal” to “detect the intermodulation distortion”. To read and execute. Since the signal output from the comparator 32 is “H” and the output signal from the interference wave detector 38 is “H”, the gain control signal “H” is output to the variable gain amplifier 40.
  • the variable gain amplifier 40 switches the path through which the signal passes in accordance with the gain control signal “H”, and lowers the gain.
  • the gain control signal changes from “L” to “H”
  • the input signal passes through the attenuator 402, so that the gain of the variable gain amplifier 40 changes from Gv to 2/3 ⁇ Gv.
  • the RSSI detector 2 detects the received signal in the linear region with the saturation region shifted as shown in FIG. Thereby, since the RSSI detector 2 detects a signal in a linear region, the generation amount of intermodulation distortion can be reduced.
  • the subsequent operation is the same as that of the first embodiment, the description thereof is omitted. Since the RSSI detector 2 can detect the received signal while suppressing the intermodulation distortion caused by the interference wave, the receiver can demodulate the detected signal while suppressing the adverse effect due to the intermodulation distortion.
  • the interference wave detector 38 detects the intermodulation distortion included in the detection signal, and the determination circuit 33 determines the saturation state of the RSSI detector 2 from the detection signal, and is saturated. In this state, the gain of the variable gain amplifier 40 is switched, and the saturation region of the detection characteristic in the RSSI detector 2 is shifted to the linear region. Therefore, even if an interference wave is included in the received signal, the gain region has a good detection characteristic. The received signal can be detected. As a result, the receiver of the second embodiment can be used as a detector for a receiver even if it is an RSSI detector whose dynamic range is lower than the gain of the amplifier. Further, the receiver of the second embodiment can determine the saturation state of the detector even if the received signal does not include a preamble signal.
  • variable gain amplifier 40 switches the gain depending on whether or not the attenuator 402 is bypassed, the gain can be changed while the frequency characteristic of the gain is flat. That is, the variable gain amplifier 40 does not change the difference between the gain for the frequency of the ASK modulated signal and the gain for the frequency of the interference wave before and after gain control.
  • the gain with respect to the frequency of the interference wave is controlled. After the gain control, the gain with respect to the frequency of the ASK modulation signal increases, Even if the operating point of the detector is determined by the electric power and the gain is controlled, there is a problem that it enters the saturation region.
  • variable gain amplifier 40 does not change the frequency characteristic of the gain before and after gain control, the problem can be avoided. Further, since the variable gain amplifier 40 can switch the gain while the frequency characteristic is flat, the operating point of the detector is appropriately moved even for an interference wave whose frequency does not change and the frequency changes with time. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

A problem with receivers that use conventional RSSI wave detectors is that it is not possible for both an enlargement of the wave detection range and a decrease in power consumption to be achieved simultaneously. A receiver according to the present invention is provided with: a variable gain amplifier that changes a gain in accordance with a control signal and amplifies a modulated reception signal; a first wave detector that has a dynamic range smaller than the gain of the variable gain amplifier and that detects the reception signal amplified by the variable gain amplifier; and a controller that determines a saturation state of the first wave detector from the detected wave signal from the first wave detector, and that, if the first wave detector is in a state of saturation, outputs the control signal to cause the gain of the variable gain amplifier to be changed in a discrete manner so that a saturation region of the first wave detector is replaced with a linear region.

Description

受信機Receiving machine
 本発明は、変調信号を受信する受信機に関するものである。 The present invention relates to a receiver that receives a modulated signal.
 ASK(Amplitude Shift Keying)変調信号を用いる通信では、通信距離の確保のため、広大なダイナミックレンジが要求される。このため、ASK変調信号の受信機の受信回路は、RSSI(Recieved Signal Strength Indication)検波器が広く用いられている。ASK変調信号を入力とした場合は、ASK変調信号の包絡線がRSSI検波器の出力として得られ、その出力をベースバンド信号として後段の復調器で復調を行う。 In communication using an ASK (Amplitude Shift Keying) modulation signal, a wide dynamic range is required to secure a communication distance. For this reason, an RSSI (Received Signal Strength Indication) detector is widely used as a receiver circuit of an ASK modulated signal receiver. When an ASK modulation signal is input, an envelope of the ASK modulation signal is obtained as an output of the RSSI detector, and the output is used as a baseband signal and demodulated by a demodulator at the subsequent stage.
 RSSI検波器としては、非特許文献1に記載されているRSSI検波器が開示されている。非特許文献1記載された従来のRSSI検波器は、増幅器と増幅器に接続される検波器との組合せが5段従属に接続されており、5個の検波器が電流加算器に接続されている。そして、電流加算器の後段に電流電圧変換器が接続されている。 As the RSSI detector, the RSSI detector described in Non-Patent Document 1 is disclosed. In the conventional RSSI detector described in Non-Patent Document 1, a combination of an amplifier and a detector connected to the amplifier is connected in five stages, and five detectors are connected to a current adder. . A current-voltage converter is connected after the current adder.
 従来のRSSI検波器に入力されたRF信号は、固定利得Gvをもつ各増幅器で増幅される。初段増幅器の後段に装荷された検波器は、初段増幅器が出力するRF信号を検波し、増幅器の出力する信号振幅に応じて直流電流を出力する。2段目の増幅器では、さらにRF信号を増幅する。2段目の増幅器の後段に装荷された検波器は、初段増幅器用の検波器と同様に、2段目の増幅器が出力するRF信号を検波し、直流電流を出力する。後段の増幅器及び検波器も同様の動作を行い、電流加算器は、それぞれの検波器の出力電流を加算し、検波器の出力電流の総和を電流変換器に出力する。電流電圧変換器は、検波器の出力電流の総和を電圧に変換しRSSI検波器から出力する。 The RF signal input to the conventional RSSI detector is amplified by each amplifier having a fixed gain Gv. The detector loaded after the first stage amplifier detects the RF signal output from the first stage amplifier and outputs a direct current according to the signal amplitude output from the amplifier. The second-stage amplifier further amplifies the RF signal. The detector loaded after the second-stage amplifier detects the RF signal output from the second-stage amplifier and outputs a direct current, in the same manner as the first-stage amplifier detector. The subsequent amplifier and detector perform the same operation, and the current adder adds the output currents of the respective detectors, and outputs the sum of the output currents of the detectors to the current converter. The current-voltage converter converts the sum of the output currents of the detector into a voltage and outputs it from the RSSI detector.
 従来のRSSI検波器では、各増幅器の利得と検波器のダイナミックレンジは等しいので、RSSI検波器の検波特性は、入力されるRF信号に対して線形の特性を示し、従来のRSSI検波器の検波範囲は、増幅器の利得の総和で決定される。上記の例では、増幅器が5段接続されるので、検波範囲は5Gvである。 In the conventional RSSI detector, since the gain of each amplifier and the dynamic range of the detector are equal, the detection characteristic of the RSSI detector shows a linear characteristic with respect to the input RF signal, and the detection of the conventional RSSI detector is performed. The range is determined by the sum of the gains of the amplifiers. In the above example, since five amplifiers are connected, the detection range is 5 Gv.
 従来のRSSI検波器では、検波範囲を大きくしようとすると、増幅器の利得を大きくする必要がある。しかし、検波器のダイナミックレンジより増幅器の利得を大きくすると、増幅器よりも先に検波器が飽和していまい、検波特性が劣化してしまう。検波特性の劣化を抑えるためには、検波器のダイナミックレンジを増幅器の利得に合わせて大きくすることが考えられるが、検波器の消費電力が大きくなるため、低消費電力化を図ることができない。 In conventional RSSI detectors, it is necessary to increase the gain of the amplifier in order to increase the detection range. However, if the gain of the amplifier is made larger than the dynamic range of the detector, the detector will be saturated before the amplifier, and the detection characteristics will deteriorate. In order to suppress the deterioration of the detection characteristic, it is conceivable to increase the dynamic range of the detector in accordance with the gain of the amplifier. However, since the power consumption of the detector increases, it is not possible to reduce the power consumption.
 本発明の目的は、このような状況を鑑みてなされたもので、検波範囲内に飽和領域が存在するRSSI検波器を用いても、受信信号を検波できる受信機を得るところにある。 An object of the present invention is made in view of such a situation, and is to obtain a receiver capable of detecting a received signal even when an RSSI detector having a saturation region within the detection range is used.
本発明の受信機は、制御信号によって利得を切り替え、変調された受信信号を増幅する可変利得増幅器と、可変利得増幅器の利得よりダイナミックレンジが小さく、可変利得増幅器が増幅した受信信号を検波する第1の検波器と、第1の検波器の検波信号から第1の検波器の飽和状態を判別し、第1の検波器が飽和している場合、第1の検波器の飽和領域が線形領域に置き換わるように、可変利得増幅器の利得を不連続に切り替える制御信号を出力する制御器とを備える。 The receiver of the present invention switches a gain by a control signal, a variable gain amplifier that amplifies the modulated reception signal, and a dynamic gain that is smaller than the gain of the variable gain amplifier and detects the reception signal amplified by the variable gain amplifier. When the first detector is saturated from the first detector and the detection signal of the first detector, and the first detector is saturated, the saturation region of the first detector is the linear region And a controller for outputting a control signal for switching the gain of the variable gain amplifier discontinuously.
本発明によれば、RSSI検波器の検波範囲の拡大と低消費電力化を両立できるという効果がある。 According to the present invention, there is an effect that it is possible to achieve both expansion of the detection range of the RSSI detector and low power consumption.
この発明の実施の形態1に係る受信機の一構成例を示す構成図である。It is a block diagram which shows one structural example of the receiver which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る可変利得増幅器20の一構成例を示す構成図である。It is a block diagram which shows one structural example of the variable gain amplifier 20 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る可変利得増幅器20の利得周波数特性図である。It is a gain frequency characteristic diagram of the variable gain amplifier 20 according to the first embodiment of the present invention. この発明の実施の形態1に係る検波器24の検波特性図である。It is a detection characteristic figure of the detector 24 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るRSSI検波器2の検波特性図である。It is a detection characteristic figure of RSSI detector 2 concerning Embodiment 1 of this invention. この発明の実施の形態1に係る判定回路33の一構成例を示す構成図である。It is a block diagram which shows one structural example of the determination circuit 33 concerning Embodiment 1 of this invention. この発明の実施の形態1に係る判定回路33のフローチャート図である。It is a flowchart figure of the determination circuit 33 concerning Embodiment 1 of this invention. この発明の実施の形態1に係るプリアンブル検出器35の一構成例を示す構成図である。It is a block diagram which shows one structural example of the preamble detector 35 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るRSSI検波器2の検波特性及び動作点を示す図である。It is a figure which shows the detection characteristic and operating point of the RSSI detector 2 which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る間欠動作時の利得制御の一例を示す図である。It is a figure which shows an example of the gain control at the time of the intermittent operation | movement which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る受信機の一構成例を示す構成図である。It is a block diagram which shows one structural example of the receiver which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る干渉波検出器38の一構成例を示す構成図である。It is a block diagram which shows the example of 1 structure of the interference wave detector 38 which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る可変利得増幅器40の一構成例を示す構成図である。It is a block diagram which shows one structural example of the variable gain amplifier 40 concerning Embodiment 2 of this invention. この発明の実施の形態2に係る可変利得増幅器20の利得周波数特性図である。It is a gain frequency characteristic figure of the variable gain amplifier 20 concerning Embodiment 2 of this invention. この発明の実施の形態2に係るRSSI検波器2の検波特性図である。It is a detection characteristic figure of RSSI detector 2 concerning Embodiment 2 of this invention.
実施の形態1
 図1は、この発明の実施の形態1に係る受信機の一構成例を示す構成図である。
 本受信機は、アンテナ1、RSSI検波器2、制御器3(制御器の一例)、復調回路4を備える。
Embodiment 1
FIG. 1 is a block diagram showing a configuration example of a receiver according to Embodiment 1 of the present invention.
The receiver includes an antenna 1, an RSSI detector 2, a controller 3 (an example of a controller), and a demodulation circuit 4.
 アンテナ1は、ASK変調信号を受信するアンテナである。例えば、アンテナ1には、ダイポールアンテナ、開口面アンテナ、フェーズドアレイアンテナなどが用いられる。 Antenna 1 is an antenna that receives an ASK modulated signal. For example, a dipole antenna, an aperture antenna, a phased array antenna, or the like is used as the antenna 1.
 RSSI検波器2は、アンテナ1より入力されるASK変調信号を増幅するとともに検波して、検波信号を制御器3へ出力する検波器である。RSSI検波器2は、可変利得増幅器20(可変利得増幅器の一例)、増幅器21(増幅器の一例)、増幅器22~24(第1の検波器の一例)、検波器25~27(第2の検波器の一例)、電圧加算器28(電圧加算器の一例)、LPF29(Low Pass Filter ローパスフィルタの一例)を備える。 The RSSI detector 2 is a detector that amplifies and detects the ASK modulation signal input from the antenna 1 and outputs the detection signal to the controller 3. The RSSI detector 2 includes a variable gain amplifier 20 (an example of a variable gain amplifier), an amplifier 21 (an example of an amplifier), amplifiers 22 to 24 (an example of a first detector), and detectors 25 to 27 (a second detector). 1), a voltage adder 28 (an example of a voltage adder), and an LPF 29 (an example of a Low Pass Filter low pass filter).
 可変利得増幅器20は、RSSI検波器2の初段に位置し、制御器3からの利得制御信号にしたがって利得を切り替え、アンテナ1が受信した受信信号を増幅する可変利得増幅器である。可変利得増幅器20の入力端子は、アンテナ1に接続され、可変利得増幅器20の出力端子は、増幅器21の入力端子及び検波器24の入力端子に接続される。可変利得増幅器20の制御端子は、制御器3内の判定回路33の出力端子に接続される。 The variable gain amplifier 20 is located in the first stage of the RSSI detector 2 and is a variable gain amplifier that switches the gain according to the gain control signal from the controller 3 and amplifies the received signal received by the antenna 1. The input terminal of the variable gain amplifier 20 is connected to the antenna 1, and the output terminal of the variable gain amplifier 20 is connected to the input terminal of the amplifier 21 and the input terminal of the detector 24. The control terminal of the variable gain amplifier 20 is connected to the output terminal of the determination circuit 33 in the controller 3.
 図2は、この発明の実施の形態1に係る可変利得増幅器20の一構成例を示す構成図である。可変利得増幅器20は、差動増幅器201、抵抗202、抵抗203、キャパシタ204、スイッチ205、スイッチ206、キャパシタ207、スイッチ208、スイッチ209、インバータ210を備える。 FIG. 2 is a configuration diagram showing a configuration example of the variable gain amplifier 20 according to the first embodiment of the present invention. The variable gain amplifier 20 includes a differential amplifier 201, a resistor 202, a resistor 203, a capacitor 204, a switch 205, a switch 206, a capacitor 207, a switch 208, a switch 209, and an inverter 210.
 可変利得増幅器20において、差動増幅器201の差動出力端子対は、抵抗202及び抵抗203の入力端子に接続される。抵抗202及び抵抗203の出力端子は、可変利得増幅器20の差動出力端子対である。抵抗202の出力端子は、スイッチ205の一端に接続され、スイッチ205の他端は、キャパシタ204の一端に接続され、スイッチ206の一端は、キャパシタ204の他端に接続され、スイッチ206の他端は、抵抗203の出力端子に接続される。スイッチ208、キャパシタ207、及びスイッチ209は、スイッチ205、キャパシタ204、及びスイッチ206と同様の接続関係で、可変利得増幅器20の差動出力端子対に接続される。 In the variable gain amplifier 20, the differential output terminal pair of the differential amplifier 201 is connected to the input terminals of the resistor 202 and the resistor 203. The output terminals of the resistor 202 and the resistor 203 are a differential output terminal pair of the variable gain amplifier 20. The output terminal of the resistor 202 is connected to one end of the switch 205, the other end of the switch 205 is connected to one end of the capacitor 204, one end of the switch 206 is connected to the other end of the capacitor 204, and the other end of the switch 206. Is connected to the output terminal of the resistor 203. The switch 208, the capacitor 207, and the switch 209 are connected to the differential output terminal pair of the variable gain amplifier 20 in the same connection relationship as the switch 205, the capacitor 204, and the switch 206.
 スイッチ205及びスイッチ206は、制御端子から利得制御信号を受け、スイッチの状態を変化させるスイッチである。利得制御信号が”H”の場合、スイッチ205及びスイッチ206は、短絡状態となり、利得制御信号が”L”の場合、開放状態となる。ここで、”H”とは電圧がHighレベルを示す論理信号であり、”L”とは電圧がLowレベルを示す論理信号である。これに対して、スイッチ208及びスイッチ209は、インバータ210を介して利得制御信号を受け、スイッチの状態を変化させる。インバータ210を介しているので、利得制御信号が”H”の場合、スイッチ208及びスイッチ209は、開放状態となり、利得制御信号が”L”の場合、短絡状態となる。 The switches 205 and 206 are switches that receive a gain control signal from the control terminal and change the state of the switch. When the gain control signal is “H”, the switch 205 and the switch 206 are short-circuited, and when the gain control signal is “L”, the switch 205 and the switch 206 are open. Here, “H” is a logic signal whose voltage indicates a high level, and “L” is a logic signal whose voltage indicates a low level. On the other hand, the switch 208 and the switch 209 receive the gain control signal via the inverter 210 and change the state of the switch. Since the inverter 210 is used, when the gain control signal is “H”, the switch 208 and the switch 209 are opened, and when the gain control signal is “L”, they are short-circuited.
 可変利得増幅器20は、以上のように構成されており、抵抗202及び203とキャパシタ204またはキャパシタ207とで構成されるRC回路のカットオフ周波数を切り替えるによって、利得を切り替える。 The variable gain amplifier 20 is configured as described above, and the gain is switched by switching the cut-off frequency of the RC circuit composed of the resistors 202 and 203 and the capacitor 204 or the capacitor 207.
 図3は、この発明の実施の形態1に係る可変利得増幅器20の利得周波数特性図である。
 縦軸が利得であり、横軸は周波数である。fc1は、利得制御前(利得制御信号が”L”の場合)のカットオフ周波数であり、fc2は、利得制御後(利得制御信号が”H”の場合)のカットオフ周波数である。fは、入力されるASK変調信号の中心周波数である。例えば、利得制御信号が”L”から”H”に変化することにより、RC回路のキャパシタはキャパシタ207からキャパシタ204に切り替わり、可変利得増幅器20のカットオフ周波数はfc1からfc2に切り替わる。これにより、可変利得増幅器20の利得は、GvからGv/2に切り替わる。
FIG. 3 is a gain frequency characteristic diagram of the variable gain amplifier 20 according to the first embodiment of the present invention.
The vertical axis is gain, and the horizontal axis is frequency. fc1 is a cutoff frequency before gain control (when the gain control signal is “L”), and fc2 is a cutoff frequency after gain control (when the gain control signal is “H”). f 0 is the center frequency of the input ASK modulation signal. For example, when the gain control signal changes from “L” to “H”, the capacitor of the RC circuit is switched from the capacitor 207 to the capacitor 204, and the cutoff frequency of the variable gain amplifier 20 is switched from fc1 to fc2. Thereby, the gain of the variable gain amplifier 20 is switched from Gv to Gv / 2.
 増幅器21は、可変利得増幅器20が出力した信号をさらに増幅する増幅器である。増幅器21の入力端子は、可変利得増幅器20の出力端子と接続され、増幅器21の出力端子は、増幅器22の入力端子、検波器25の入力端子と接続される。増幅器20の出力端子から入力される受信信号を利得Gvだけ増幅し、増幅器22の入力端子、検波器25の入力端子へ出力する。例えば、増幅器21はCMOS(Complementary Metal Oxide Semiconductor)等のプロセスを用いてICに実装された差動増幅器が用いられる。 The amplifier 21 is an amplifier that further amplifies the signal output from the variable gain amplifier 20. The input terminal of the amplifier 21 is connected to the output terminal of the variable gain amplifier 20, and the output terminal of the amplifier 21 is connected to the input terminal of the amplifier 22 and the input terminal of the detector 25. The reception signal input from the output terminal of the amplifier 20 is amplified by a gain Gv and output to the input terminal of the amplifier 22 and the input terminal of the detector 25. For example, the amplifier 21 is a differential amplifier mounted on an IC using a process such as CMOS (Complementary Metal Oxide Semiconductor).
 増幅器22、増幅器23、増幅器24は、増幅器21と同様の構成をもち、増幅器21が増幅した信号をさらに増幅する増幅器である。 The amplifier 22, the amplifier 23, and the amplifier 24 are amplifiers having the same configuration as the amplifier 21 and further amplifying the signal amplified by the amplifier 21.
 検波器24は、可変利得増幅器20が出力した信号を検波する検波器である。検波器24の入力端子は、可変利得増幅器20の出力端子に接続され、検波器24の出力端子は、電圧加算器28の入力端子と接続される。検波器24は、可変利得増幅器20で増幅した受信信号を検波し、入力電力の対数値に応じた出力電圧を電圧加算器28の入力端子に出力する。また、検波器24は、入力電力に対して閾値を保持しており、この閾値を超過する電力が入力された場合には、所定の電圧で飽和する特性を持つ。 The detector 24 is a detector that detects the signal output from the variable gain amplifier 20. The input terminal of the detector 24 is connected to the output terminal of the variable gain amplifier 20, and the output terminal of the detector 24 is connected to the input terminal of the voltage adder 28. The detector 24 detects the received signal amplified by the variable gain amplifier 20 and outputs an output voltage corresponding to the logarithm value of the input power to the input terminal of the voltage adder 28. The detector 24 holds a threshold value with respect to the input power, and has a characteristic of being saturated at a predetermined voltage when power exceeding the threshold value is input.
 図4は、この発明の実施の形態1に係る検波器24の検波特性図である。縦軸が検波電圧(Vdet)であり、横軸が入力電圧(Vin)である。Vin_minは、検波器24が検波できる最小入力電圧であり、Vin_maxは、検波器24が飽和しない最大入力電圧である。Vlimは、Vin_maxにおける検波電圧である。Vin_minとVin_maxとの間が、検波器24が検波可能な線形領域を示し、Vin_maxより大きい領域が、飽和領域(非線形領域とも言う)を示す。ここで、線形領域とは、入力電力に対して出力電圧が直線的に比例する領域、つまり、検波特性の1次の微分係数が、他の高次の微分係数より大きい領域を言う。Vin_maxとVin_minとの差が、検波器24のダイナミックレンジに相当する。検波特性の傾きは、検波器24を構成するトランジスタの相互コンダクタンス(gm)によって決定される。例えば、検波器24は、CMOS等のプロセスを用いてIC(Integrated Circuit)に実装されたトランジスタと抵抗で構成された検波器またはダイオード検波器などが用いられる。 FIG. 4 is a detection characteristic diagram of the detector 24 according to the first embodiment of the present invention. The vertical axis is the detection voltage (Vdet), and the horizontal axis is the input voltage (Vin). Vin_min is the minimum input voltage that can be detected by the detector 24, and Vin_max is the maximum input voltage at which the detector 24 is not saturated. Vlim is a detection voltage at Vin_max. Between Vin_min and Vin_max, the linear area | region which the detector 24 can detect is shown, and the area | region larger than Vin_max shows a saturation area | region (it is also called a nonlinear area | region). Here, the linear region refers to a region where the output voltage is linearly proportional to the input power, that is, a region where the first-order differential coefficient of the detection characteristic is larger than other higher-order differential coefficients. The difference between Vin_max and Vin_min corresponds to the dynamic range of the detector 24. The slope of the detection characteristic is determined by the mutual conductance (gm) of the transistors constituting the detector 24. For example, the detector 24 may be a detector or a diode detector configured with a transistor and a resistor mounted on an IC (Integrated Circuit) using a process such as CMOS.
 検波器25~27は、検波器24と同様の構成を持ち、それぞれ増幅器21~23の出力端子に接続される。 The detectors 25 to 27 have the same configuration as the detector 24 and are connected to the output terminals of the amplifiers 21 to 23, respectively.
 電圧加算器28は、検波器24、検波器25、検波器26、及び検波器27がそれぞれ出力する検波電圧を加算する電圧加算器である。電圧加算器28の入力端子は、検波器24、検波器25、検波器26、及び検波器27の出力端子に接続され、電圧加算器28の出力端子は、LPF29の入力端子に接続される。電圧加算器28は、各検波器から入力された電圧を加算し、加算した電圧をLPF29に出力する。例えば、電圧加算器28は、CMOS等のプロセスを用いてICに実装されたオペアンプが用いられる。 The voltage adder 28 is a voltage adder that adds the detection voltages output from the detector 24, the detector 25, the detector 26, and the detector 27, respectively. The input terminal of the voltage adder 28 is connected to the output terminals of the detector 24, the detector 25, the detector 26, and the detector 27, and the output terminal of the voltage adder 28 is connected to the input terminal of the LPF 29. The voltage adder 28 adds the voltages input from the detectors and outputs the added voltage to the LPF 29. For example, the voltage adder 28 is an operational amplifier mounted on an IC using a process such as CMOS.
 LPF29は、電圧加算器28が加算した検波電圧から、自身のカットオフ周波数以下の信号を通過させることで、不要信号を遮断し、所望の受信信号を通過させるローパスフィルタである。LPF29の入力端子は、電圧加算器28の出力端子に接続され、LPF29の出力端子は、制御器3に内蔵する比較器34の入力端子と、平滑回路37の入力端子とに接続される。LPF29は、カットオフ周波数を有し、自身のカットオフ周波数より高い周波数成分を遮断することで、入力された信号の帯域制限を行う。例えば、LPF29は、CMOS等のプロセスを用いてICに実装された抵抗、キャパシタ等で実装される。 The LPF 29 is a low-pass filter that blocks unnecessary signals and allows a desired received signal to pass by passing a signal having a frequency equal to or lower than its own cutoff frequency from the detection voltage added by the voltage adder 28. The input terminal of the LPF 29 is connected to the output terminal of the voltage adder 28, and the output terminal of the LPF 29 is connected to the input terminal of the comparator 34 built in the controller 3 and the input terminal of the smoothing circuit 37. The LPF 29 has a cut-off frequency and cuts a frequency component higher than its own cut-off frequency to limit the band of the input signal. For example, the LPF 29 is mounted with a resistor, a capacitor, or the like mounted on an IC using a process such as CMOS.
 以上のように、RSSI検波器2は、アンテナ1が受信した受信信号を、可変利得増幅器20、増幅器21、増幅器22及び増幅器23で増幅するとともに、検波器24、検波器25、検波器26、検波器27で各増幅器の出力信号を検波する。RSSI検波器2は、増幅した受信信号を制御器3内の検波器31に出力するとともに、検波信号を比較器34及び平滑回路37に出力する。また、RSSI検波器2は、制御器3からの利得制御信号により可変利得増幅器20の利得を変化させる。 As described above, the RSSI detector 2 amplifies the reception signal received by the antenna 1 with the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23, and also includes the detector 24, the detector 25, the detector 26, The detector 27 detects the output signal of each amplifier. The RSSI detector 2 outputs the amplified reception signal to the detector 31 in the controller 3 and outputs the detection signal to the comparator 34 and the smoothing circuit 37. The RSSI detector 2 changes the gain of the variable gain amplifier 20 according to the gain control signal from the controller 3.
 図5は、この発明の実施の形態1に係るRSSI検波器2の検波特性図である。
 縦軸が検波電圧であり、横軸が入力電力である。DRは、検波器24、検波器25、検波器26、及び検波器27のダイナミックレンジであり、線形領域である。Gvは、可変利得増幅器20、増幅器21、増幅器22、増幅器23の利得である。det1、det2、det3、det4は、それぞれ検波器24、検波器25、検波器26、及び検波器27の検波範囲である。
FIG. 5 is a detection characteristic diagram of the RSSI detector 2 according to the first embodiment of the present invention.
The vertical axis is the detection voltage, and the horizontal axis is the input power. DR is a dynamic range of the detector 24, the detector 25, the detector 26, and the detector 27, and is a linear region. Gv is the gain of the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23. Det1, det2, det3, and det4 are detection ranges of the detector 24, the detector 25, the detector 26, and the detector 27, respectively.
 制御器3は、RSSI検波器2が出力する検波信号から検波器24~27のうち少なくとも1つが飽和しているか否かを判別し、検波器24~27のうち少なくとも1つが飽和している場合、可変利得増幅器20の利得を切り替える利得制御信号を可変利得増幅器20に出力する制御器である。制御器3は、検波器31、比較器32、判定回路33、比較器34(比較器の一例)、プリアンブル検出器35、基準電圧源36及び平滑回路37(平滑回路の一例)を備える。 The controller 3 determines whether or not at least one of the detectors 24 to 27 is saturated from the detection signal output from the RSSI detector 2, and when at least one of the detectors 24 to 27 is saturated The controller outputs a gain control signal for switching the gain of the variable gain amplifier 20 to the variable gain amplifier 20. The controller 3 includes a detector 31, a comparator 32, a determination circuit 33, a comparator 34 (an example of a comparator), a preamble detector 35, a reference voltage source 36, and a smoothing circuit 37 (an example of a smoothing circuit).
 検波器31は、増幅器23が出力した信号を検波する検波器である。検波器31の入力端子は増幅器23の出力端子と接続され、検波器31の出力端子は比較器32の入力端子と接続される。検波器31は、増幅器23が増幅した受信信号を検波し、入力電力の対数値に応じた出力電圧を比較器32の入力端子に出力する。例えば、検波器31は、CMOS等のプロセスを用いてICに実装されたトランジスタと抵抗で構成された検波器、ダイオード検波器などが用いられる。 The detector 31 is a detector that detects the signal output from the amplifier 23. The input terminal of the detector 31 is connected to the output terminal of the amplifier 23, and the output terminal of the detector 31 is connected to the input terminal of the comparator 32. The detector 31 detects the reception signal amplified by the amplifier 23 and outputs an output voltage corresponding to the logarithmic value of the input power to the input terminal of the comparator 32. For example, the detector 31 may be a detector composed of a transistor and a resistor mounted on an IC using a process such as CMOS, a diode detector, or the like.
 比較器32は、RSSI検波器2に入力される受信信号が検波できる最低入力電力より大きいか否かを判別するために、検波器31が出力した検波信号と基準電圧とを比較する比較器である。比較器32の第1の入力端子は、検波器31の出力端子に接続され、第2の入力端子は、基準電圧源36の出力端子に接続される。比較器32の出力端子は、判定回路33の入力端子に接続される。比較器32は、検波器31が出力した受信信号の検波電圧と基準電圧源36が出力する基準電圧とを比較し、基準電圧源より検波電圧が大きい場合に、RSSI検波器2が検波できる最低入力電力以上がRSSI検波器2に入力されているものと判断し、検出信号として”H”を判定回路33へ出力する。基準電圧源より検波電圧が小さい場合は、検出信号として”L”を判定回路33へ出力する。例えば、比較器32は、CMOS等のプロセスを用いてICに実装されたオペアンプが用いられる。 The comparator 32 is a comparator that compares the detection signal output from the detector 31 with a reference voltage in order to determine whether the received signal input to the RSSI detector 2 is greater than the minimum input power that can be detected. is there. The first input terminal of the comparator 32 is connected to the output terminal of the detector 31, and the second input terminal is connected to the output terminal of the reference voltage source 36. The output terminal of the comparator 32 is connected to the input terminal of the determination circuit 33. The comparator 32 compares the detection voltage of the received signal output from the detector 31 with the reference voltage output from the reference voltage source 36. When the detection voltage is larger than the reference voltage source, the comparator 32 is the lowest that the RSSI detector 2 can detect. It is determined that more than the input power is input to the RSSI detector 2, and “H” is output to the determination circuit 33 as a detection signal. When the detection voltage is smaller than the reference voltage source, “L” is output to the determination circuit 33 as a detection signal. For example, the comparator 32 is an operational amplifier mounted on an IC using a process such as CMOS.
 判定回路33は、プリアンブル検出器35が出力するプリアンブル検出信号及び比較器32が出力する検出信号から、RSSI検波器2の検波範囲内でRSSI検波器2内の検波器が飽和しているか否かを判定し、飽和している場合、RSSI検波器2の制御端子に可変利得増幅器20の利得を切り替える利得制御信号を出力する判定回路である。判定回路33の第1の入力端子は、比較器32の出力端子に接続され、判定回路33の第2の入力端子は、プリアンブル検出器35の出力端子に接続され、判定回路33の出力端子は、RSSI検波器2が内蔵する可変利得増幅器20の制御端子に接続される。例えば、判定回路33は、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)が用いられる。 The determination circuit 33 determines whether the detector in the RSSI detector 2 is saturated within the detection range of the RSSI detector 2 based on the preamble detection signal output from the preamble detector 35 and the detection signal output from the comparator 32. Is a determination circuit that outputs a gain control signal for switching the gain of the variable gain amplifier 20 to the control terminal of the RSSI detector 2. The first input terminal of the determination circuit 33 is connected to the output terminal of the comparator 32, the second input terminal of the determination circuit 33 is connected to the output terminal of the preamble detector 35, and the output terminal of the determination circuit 33 is The RSSI detector 2 is connected to the control terminal of the variable gain amplifier 20 incorporated therein. For example, as the determination circuit 33, ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array) is used.
 図6は、この発明の実施の形態1に係る判定回路33の一構成例を示す構成図である。
 判定回路33は、制御回路331及びメモリ332を備える。
FIG. 6 is a configuration diagram showing a configuration example of the determination circuit 33 according to the first embodiment of the present invention.
The determination circuit 33 includes a control circuit 331 and a memory 332.
 制御回路331は、RSSI検波器2に出力する利得制御信号を制御する制御回路である。制御回路331の第1の入力端子は、判定回路33の第1の入力端子であり、制御回路331の第2の入力端子は、判定回路33の第2の入力端子である。制御回路331のメモリ端子は、メモリ332に接続される。例えば、制御回路331は、ASICまたはFPGA上に実装された論理回路である。 The control circuit 331 is a control circuit that controls a gain control signal output to the RSSI detector 2. The first input terminal of the control circuit 331 is the first input terminal of the determination circuit 33, and the second input terminal of the control circuit 331 is the second input terminal of the determination circuit 33. A memory terminal of the control circuit 331 is connected to the memory 332. For example, the control circuit 331 is a logic circuit mounted on an ASIC or FPGA.
 メモリ332は、可変利得増幅器20の初期状態を記憶しているメモリである。メモリ332は、可変利得増幅器20の利得制御をかける前に、可変利得増幅器20内の各スイッチが開放であるか短絡であるかを示す利得制御信号を記憶している。例えば、メモリ332は、スイッチ205及びスイッチ206の初期状態は開放であり、スイッチ208及びスイッチ209の初期状態は短絡状態であり、その状態が利得制御信号としては”L”であることを記憶している。メモリ332は、制御回路331と接続されており、制御回路331に初期値を出力している。例えば、メモリ332は、ASICまたはFPGA上に実装された不揮発メモリが用いられる。 The memory 332 is a memory that stores the initial state of the variable gain amplifier 20. The memory 332 stores a gain control signal indicating whether each switch in the variable gain amplifier 20 is open or short before the gain control of the variable gain amplifier 20 is performed. For example, the memory 332 stores that the initial state of the switch 205 and the switch 206 is open, the initial state of the switch 208 and the switch 209 is a short circuit state, and the state is “L” as the gain control signal. ing. The memory 332 is connected to the control circuit 331 and outputs an initial value to the control circuit 331. For example, the memory 332 is a non-volatile memory mounted on an ASIC or FPGA.
図7は、この発明の実施の形態1に係る判定回路33のフローチャート図である。
まず、ステップS101において、制御回路331は、比較器31が出力する検出信号から、RSSI検波器2が受信信号を検波できているか否かを判定する。比較器31が出力する検出信号が”H”の場合、制御回路331は、RSSI検波器2に検波できる最低入力電力以上の受信信号が入力されていると判断し、ステップS103に進む。一方、比較器31が出力する検出信号が”L”の場合、制御回路331は、RSSI検波器2に検波できる最低入力電力未満の受信信号が入力されており、RSSI検波器2は受信信号を検波できていないと判断し、ステップS102に進む。
FIG. 7 is a flowchart of the determination circuit 33 according to the first embodiment of the present invention.
First, in step S101, the control circuit 331 determines whether or not the RSSI detector 2 can detect the reception signal from the detection signal output from the comparator 31. When the detection signal output from the comparator 31 is “H”, the control circuit 331 determines that a received signal having a minimum input power that can be detected is input to the RSSI detector 2, and proceeds to step S103. On the other hand, when the detection signal output from the comparator 31 is “L”, the control circuit 331 receives a received signal less than the minimum input power that can be detected by the RSSI detector 2, and the RSSI detector 2 receives the received signal. It is determined that detection has not been performed, and the process proceeds to step S102.
次に、ステップS102において、制御回路331は、メモリ332が記憶している可変利得増幅器20の初期状態を表す制御信号を可変利得増幅器20に出力し、可変利得増幅器20の利得を初期状態に戻す。 Next, in step S102, the control circuit 331 outputs a control signal indicating the initial state of the variable gain amplifier 20 stored in the memory 332 to the variable gain amplifier 20, and returns the gain of the variable gain amplifier 20 to the initial state. .
次に、ステップS103において、制御回路331は、プリアンブル検出器35が出力するプリアンブル検出信号から、プリアンブル信号が検出されているか否かを判断する。プリアンブル検出信号が”H”の場合、プリアンブル信号が検出できていると判断し、ステップS104に進む。一方、プリアンブル検出信号が”L”の場合、プリアンブル信号が検出できていると判断し、ステップS105に進む。 Next, in step S103, the control circuit 331 determines whether or not a preamble signal has been detected from the preamble detection signal output by the preamble detector 35. If the preamble detection signal is “H”, it is determined that the preamble signal has been detected, and the process proceeds to step S104. On the other hand, when the preamble detection signal is “L”, it is determined that the preamble signal has been detected, and the process proceeds to step S105.
 次に、ステップS104において、制御回路331は、可変利得増幅器20に出力する利得制御信号の内容を保持し、利得制御前と同じ利得制御信号を出力する。例えば、制御回路331は、利得制御信号として”L”を出力していた場合、利得制御信号”L”を可変利得増幅器20に出力する。 Next, in step S104, the control circuit 331 holds the content of the gain control signal output to the variable gain amplifier 20, and outputs the same gain control signal as before the gain control. For example, when “L” is output as the gain control signal, the control circuit 331 outputs the gain control signal “L” to the variable gain amplifier 20.
 次に、ステップ105において、制御回路331は、可変利得増幅器20に出力する利得制御信号の内容を変更し、可変利得増幅器20に出力する。例えば、制御回路331は、可変利得増幅器20に利得制御信号として”L”を出力していた場合、”H”の利得制御信号を可変利得増幅器20に出力する。 Next, in step 105, the control circuit 331 changes the content of the gain control signal output to the variable gain amplifier 20 and outputs it to the variable gain amplifier 20. For example, when “L” is output as a gain control signal to the variable gain amplifier 20, the control circuit 331 outputs a gain control signal of “H” to the variable gain amplifier 20.
 図1の受信機の構成の説明に戻る。
 比較器34は、RSSI検波器2の検波電圧の瞬時値と平滑回路37から出力されたRSSI検波器2の検波電圧の時間平均値とを比較し、比較結果を出力する比較器である。比較器34の第1の入力端子は、RSSI検波器2に内蔵されるLPF29と接続され、第2の入力端子は、平滑回路37の出力端子に接続される。比較器34の出力端子は、プリアンブル検出器35の入力端子と復調回路4の入力端子と接続される。比較器34は、LPF29が出力した検波信号の瞬時値と平滑回路37が出力した検波信号の時間平均電圧とを比較し、瞬時電圧が平均電圧より大きい場合は”H”を、瞬時電圧が平均電圧より小さい場合は”L”をベースバンド信号として、プリアンブル検出器35の入力端子及び復調回路4の入力端子に出力する。例えば、比較器34は、CMOS等のプロセスを用いてICに実装されたオペアンプが用いられる。ベースバンド信号とは、RSSI検波器2が出力する検波信号をデジタル化した信号である。
Returning to the description of the configuration of the receiver in FIG.
The comparator 34 is a comparator that compares the instantaneous value of the detection voltage of the RSSI detector 2 with the time average value of the detection voltage of the RSSI detector 2 output from the smoothing circuit 37 and outputs a comparison result. The first input terminal of the comparator 34 is connected to the LPF 29 built in the RSSI detector 2, and the second input terminal is connected to the output terminal of the smoothing circuit 37. The output terminal of the comparator 34 is connected to the input terminal of the preamble detector 35 and the input terminal of the demodulation circuit 4. The comparator 34 compares the instantaneous value of the detection signal output from the LPF 29 with the time average voltage of the detection signal output from the smoothing circuit 37. If the instantaneous voltage is greater than the average voltage, the comparator 34 compares "H". If it is smaller than the voltage, “L” is output as a baseband signal to the input terminal of the preamble detector 35 and the input terminal of the demodulation circuit 4. For example, the comparator 34 is an operational amplifier mounted on an IC using a process such as CMOS. The baseband signal is a signal obtained by digitizing the detection signal output from the RSSI detector 2.
 プリアンブル検出器35は、比較器34が出力するベースバンド信号に含まれるプリアンブル信号を検出する検出器である。プリアンブル検出器35の入力端子は、比較器34の出力端子に接続され、プリアンブル検出器35の出力端子は、判定回路33の入力端子及び復調回路4の入力端子に接続される。プリアンブル検出器35は、比較器34が出力したベースバンド信号から、内部のクロック抽出回路を用いてプリアンブル信号を抽出し、抽出したプリアンブル信号が自身の記憶しているプリアンブル信号のデータパターンと一致する場合には、プリアンブル検出信号として”H”を判定回路33及び復調回路4に出力する。自身の記憶しているプリアンブル信号のデータパターンと一致しない場合は、プリアンブル検出信号として”L”を判定回路33及び復調回路4に出力する。例えば、プリアンブル検出器35は、ASICまたはFPGAで構成される。 The preamble detector 35 is a detector that detects a preamble signal included in the baseband signal output from the comparator 34. The input terminal of the preamble detector 35 is connected to the output terminal of the comparator 34, and the output terminal of the preamble detector 35 is connected to the input terminal of the determination circuit 33 and the input terminal of the demodulation circuit 4. The preamble detector 35 extracts a preamble signal from the baseband signal output from the comparator 34 using an internal clock extraction circuit, and the extracted preamble signal matches the data pattern of the preamble signal stored therein. In this case, “H” is output to the determination circuit 33 and the demodulation circuit 4 as a preamble detection signal. When the data pattern of the preamble signal stored therein does not match, “L” is output to the determination circuit 33 and the demodulation circuit 4 as the preamble detection signal. For example, the preamble detector 35 is configured by ASIC or FPGA.
 図8は、この発明の実施の形態1に係るプリアンブル検出器35の一構成例を示す構成図である。
 プリアンブル検出器35は、クロック抽出回路351、シフトレジスタ352、メモリ353、比較器354を備える。
FIG. 8 is a configuration diagram showing a configuration example of the preamble detector 35 according to the first embodiment of the present invention.
The preamble detector 35 includes a clock extraction circuit 351, a shift register 352, a memory 353, and a comparator 354.
 クロック抽出回路351は、比較器34が出力したベースバンド信号のエッジに基づいてベースバンド信号のクロックを抽出するクロック抽出回路である。クロック抽出回路351の入力端子は、プリアンブル検出器35の入力端子に接続され、クロック抽出回路351の出力端子はシフトレジスタ352のクロック端子に接続される。例えば、クロック抽出回路351は、ASICまたはFPGA上の論理回路で構成される。 The clock extraction circuit 351 is a clock extraction circuit that extracts a baseband signal clock based on the edge of the baseband signal output from the comparator 34. The input terminal of the clock extraction circuit 351 is connected to the input terminal of the preamble detector 35, and the output terminal of the clock extraction circuit 351 is connected to the clock terminal of the shift register 352. For example, the clock extraction circuit 351 is configured by a logic circuit on an ASIC or FPGA.
 シフトレジスタ352は、クロック抽出回路351が出力するクロック信号を用いて、比較器34が出力したベースバンド信号を1ビットずつサンプルホールドし、サンプルホールドした結果を1ビットずつパラレルに比較器354へ出力するシフトレジスタである。シフトレジスタ352の入力端子は、プリアンブル検出器35の入力端子に接続され、シフトレジスタ352のクロック端子は、クロック抽出回路351の出力端子に接続される。また、シフトレジスタ352は、Nビットの出力端子を備え、Nビットの出力端子は、比較器354の入力端子に接続される。 The shift register 352 uses the clock signal output from the clock extraction circuit 351 to sample and hold the baseband signal output from the comparator 34 bit by bit, and outputs the sampled and held result in parallel to the comparator 354 bit by bit. Shift register. The input terminal of the shift register 352 is connected to the input terminal of the preamble detector 35, and the clock terminal of the shift register 352 is connected to the output terminal of the clock extraction circuit 351. The shift register 352 includes an N-bit output terminal, and the N-bit output terminal is connected to the input terminal of the comparator 354.
 メモリ353は、受信信号に含まれるプリアンブルデータが予め記憶されたメモリである。メモリ353は、Nビットの出力端子を備え、それらの出力端子は比較器354入力端子に接続される。メモリ353は、2進数のプリアンブルデータを格納しており、プリアンブルデータを1ビット単位でパラレルに比較器354に出力する。 The memory 353 is a memory in which preamble data included in the received signal is stored in advance. The memory 353 has N-bit output terminals, and these output terminals are connected to the comparator 354 input terminal. The memory 353 stores binary preamble data, and outputs the preamble data to the comparator 354 in parallel in 1-bit units.
 比較器354は、メモリ353が記憶しているプリアンブルデータとシフトレジスタ352が出力するベースバンド信号のサンプルホールド結果とを比較する比較器である。比較器354は、2×N(Nは自然数)ビットの入力端子を備え、一方のNビットの入力端子は、メモリ353に接続されており、もう一方のNビットの入力端子は、シフトレジスタ352の出力端子に接続されている。比較器354は、メモリ353が出力したNビットのプリアンブルデータとシフトレジスタ351が出力したNビットのベースバンド信号のサンプルホールド結果とに対して、1ビットずつ排他論理和を取り、一致しているかどうかの判定を行う。Nビット一致していた場合に”H”を判定回路33に出力し、一致していない場合は”L”を判定回路33に出力する。 The comparator 354 is a comparator that compares the preamble data stored in the memory 353 and the sample hold result of the baseband signal output from the shift register 352. The comparator 354 has a 2 × N (N is a natural number) bit input terminal, one N-bit input terminal is connected to the memory 353, and the other N-bit input terminal is a shift register 352. Is connected to the output terminal. The comparator 354 performs exclusive OR operation on the N-bit preamble data output from the memory 353 and the sample-and-hold result of the N-bit baseband signal output from the shift register 351 one bit at a time. Judge whether or not. When N bits match, “H” is output to the determination circuit 33, and when they do not match, “L” is output to the determination circuit 33.
 図1の受信機の構成の説明に戻る。
 基準電圧源36は、比較器32に基準電圧を出力する基準電圧源である。基準電圧源36の出力端子は、比較器32の入力端子に接続される。基準電圧源36は、RSSI検波器2が最低入力電力の信号を受信しているときに検波器31が出力する検波電圧と等しい電圧を出力するように予め設定されており、その電圧を比較器32に出力する。例えば、基準電圧源36はCMOS等のプロセスを用いてICに実装された固定電流源と抵抗を用いて構成される。
Returning to the description of the configuration of the receiver in FIG.
The reference voltage source 36 is a reference voltage source that outputs a reference voltage to the comparator 32. The output terminal of the reference voltage source 36 is connected to the input terminal of the comparator 32. The reference voltage source 36 is set in advance so as to output a voltage equal to the detection voltage output by the detector 31 when the RSSI detector 2 receives the signal of the lowest input power, and the voltage is compared with the comparator. 32. For example, the reference voltage source 36 is configured using a fixed current source and a resistor mounted on an IC using a process such as CMOS.
 平滑回路37は、LPF29が出力したRSSI検波器2の検波信号を所定の時定数で時間平均し、平滑化する平滑回路である。平滑回路37の入力端子は、RSSI検波器2に内蔵されるLPF29に接続されており、平滑回路37の出力端子は、比較器34の入力端子に接続される。平滑回路37は、LPF29が出力する信号のうち、検波信号中のASK変調信号成分より周波数の低い周波数帯の信号を通過させることで、所定の時定数で検波信号を時間平均し、時間平均した検波信号を比較器34に出力する。平滑回路37の時定数は、平滑回路37のカットオフ周波数の逆数に対応する。例えば、平滑回路37は、抵抗及びキャパシタを用いたローパスフィルタで構成される。 The smoothing circuit 37 is a smoothing circuit that averages the detection signal of the RSSI detector 2 output from the LPF 29 with a predetermined time constant for smoothing. The input terminal of the smoothing circuit 37 is connected to the LPF 29 built in the RSSI detector 2, and the output terminal of the smoothing circuit 37 is connected to the input terminal of the comparator 34. The smoothing circuit 37 time averages the detection signal with a predetermined time constant by passing a signal in a frequency band lower in frequency than the ASK modulation signal component in the detection signal among the signals output from the LPF 29. The detection signal is output to the comparator 34. The time constant of the smoothing circuit 37 corresponds to the reciprocal of the cutoff frequency of the smoothing circuit 37. For example, the smoothing circuit 37 is configured by a low-pass filter using a resistor and a capacitor.
 次に、実施の形態1に係る受信機の動作について述べる。まず、干渉波がなく、ASK変調信号(以下、所望信号ともいう)が入力されている場合を説明する。 Next, the operation of the receiver according to the first embodiment will be described. First, a case where there is no interference wave and an ASK modulated signal (hereinafter also referred to as a desired signal) is input will be described.
 本受信機に入力されるASK変調信号は、プリアンブル信号と通信用データ信号とから構成されている。プリアンブル信号は、予め定められたNビットのパターンデータでASK変調された信号である。また、通信用データ信号は、通信するデータをASK変調した信号であり、プリアンブル信号の後に送信される。 The ASK modulation signal input to this receiver is composed of a preamble signal and a communication data signal. The preamble signal is a signal that is ASK-modulated with predetermined N-bit pattern data. The communication data signal is a signal obtained by ASK modulation of data to be communicated, and is transmitted after the preamble signal.
 アンテナ1は、ASK変調信号を受信し、受信したASK変調信号をRSSI検波器2に出力する。 The antenna 1 receives the ASK modulated signal and outputs the received ASK modulated signal to the RSSI detector 2.
 RSSI検波器2は、可変利得増幅器20、増幅器21、増幅器22、及び増幅器23で増幅したASK変調信号を検波器31に出力する。 The RSSI detector 2 outputs the ASK modulation signal amplified by the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23 to the detector 31.
 検波器31は、ASK変調信号を検波し、検波電圧を比較器32に出力する。比較器32は、検波器31が出力した検波電圧と基準電圧源36が出力する基準電圧とを比較する。ここで、基準電圧源36が出力する基準電圧は、RSSI検波器2の最低受信電圧である。比較器32は、検波電圧が最低受信電圧より高い場合に”H”を、検波電圧が最低受信電圧より低い場合には”L”を判定回路33に出力する。 The detector 31 detects the ASK modulation signal and outputs a detection voltage to the comparator 32. The comparator 32 compares the detection voltage output from the detector 31 with the reference voltage output from the reference voltage source 36. Here, the reference voltage output from the reference voltage source 36 is the lowest received voltage of the RSSI detector 2. The comparator 32 outputs “H” to the determination circuit 33 when the detection voltage is higher than the minimum reception voltage, and “L” when the detection voltage is lower than the minimum reception voltage.
 また、RSSI検波器2は、検波信号を制御器3の比較器34及び平滑回路34に出力する。RSSI検波器2内の可変利得増幅器20は、アンテナ1が出力したASK変調信号を増幅し、増幅したASK変調信号を増幅器21に出力する。このとき、可変利得増幅器20の制御端子の論理は”L”であり、増幅器20に内蔵されるスイッチ205、206は開放であり、スイッチ208、209は短絡である。この場合、抵抗202、203とキャパシタ207で構成されるRC回路によって増幅器20の周波数特性が決定され、ASK変調信号の周波数帯での利得がGvとなるようにカットオフ周波数が設定される。 Also, the RSSI detector 2 outputs a detection signal to the comparator 34 and the smoothing circuit 34 of the controller 3. The variable gain amplifier 20 in the RSSI detector 2 amplifies the ASK modulation signal output from the antenna 1 and outputs the amplified ASK modulation signal to the amplifier 21. At this time, the logic of the control terminal of the variable gain amplifier 20 is “L”, the switches 205 and 206 built in the amplifier 20 are open, and the switches 208 and 209 are short-circuited. In this case, the RC circuit composed of the resistors 202 and 203 and the capacitor 207 determines the frequency characteristics of the amplifier 20, and the cut-off frequency is set so that the gain in the frequency band of the ASK modulation signal becomes Gv.
 可変利得増幅器20が増幅したASK変調信号は、さらに、増幅器21、増幅器22、増幅器23にて増幅され検波器27が反応する電力まで増幅される。RSSI検波器2に入力される受信信号の電力がRSSI検波器2の最低入力電力である場合、検波器24、検波器25、検波器26は、入力電力が小さいため反応せず、それぞれの検波器の出力は0Vとなる。したがって、検波器27の出力電圧が電圧加算器28に入力され、電圧加算器28は、その出力電圧をそのままLPF29に出力する。LPF29は、電圧加算器28が出力した電圧信号のうち、不要成分を遮断し、信号成分を通過させる。LPF29は、帯域制限した信号を比較器34及び平滑回路37に出力する。 The ASK modulation signal amplified by the variable gain amplifier 20 is further amplified by the amplifier 21, the amplifier 22 and the amplifier 23 to be amplified to the power at which the detector 27 reacts. When the power of the received signal input to the RSSI detector 2 is the lowest input power of the RSSI detector 2, the detector 24, the detector 25, and the detector 26 do not react because the input power is small, and each detector The output of the device is 0V. Therefore, the output voltage of the detector 27 is input to the voltage adder 28, and the voltage adder 28 outputs the output voltage to the LPF 29 as it is. The LPF 29 blocks unnecessary components from the voltage signal output from the voltage adder 28 and allows the signal components to pass therethrough. The LPF 29 outputs the band-limited signal to the comparator 34 and the smoothing circuit 37.
 平滑回路37は、平滑回路37のカットオフ周波数より高い周波数の信号を遮断し、カットオフ周波数より低い周波数の信号を通過させることで、LPF29が出力した信号を時間平均し、平滑化する。平滑回路37は、平滑化した信号を比較器34に出力する。 The smoothing circuit 37 cuts off a signal having a frequency higher than the cut-off frequency of the smoothing circuit 37 and passes a signal having a frequency lower than the cut-off frequency, thereby averaging and smoothing the signal output from the LPF 29. The smoothing circuit 37 outputs the smoothed signal to the comparator 34.
 比較器34は、LPF29が出力した検波信号の瞬時電圧と平滑回路37が出力した検波信号の時間平均電圧とを比較し、平均電圧より高ければ"H"を、低ければ"L"をベースバンド信号としてプリアンブル検出器35及び復調回路4に出力する。 The comparator 34 compares the instantaneous voltage of the detection signal output from the LPF 29 with the time average voltage of the detection signal output from the smoothing circuit 37, and if it is higher than the average voltage, "H" is used, and if it is lower, "L" is used as the baseband. The signal is output to the preamble detector 35 and the demodulation circuit 4 as a signal.
 プリアンブル検出器35は、比較器34が出力したベースバンド信号からクロック抽出を行い、そのクロックを用いて、ベースバンド信号をサンプルホールドする。プリアンブル検出器35は、サンプルホールドした結果と内蔵するメモリから読みだしたプリアンブル信号のパターンデータとを比較し、ベースバンド信号にプリアンブル信号が含まれているか否かを判別する。干渉波がない場合、サンプルホールドした結果とメモリから読みだしたプリアンブル信号のパターンデータとは一致するので、プリアンブル検出器35は、プリアンブル検出信号として”H”を復調回路4及び判定回路33に出力する。 The preamble detector 35 extracts a clock from the baseband signal output from the comparator 34, and samples and holds the baseband signal using the clock. The preamble detector 35 compares the result of the sample and hold with the pattern data of the preamble signal read from the built-in memory, and determines whether or not the preamble signal is included in the baseband signal. When there is no interference wave, the result of the sample hold matches the pattern data of the preamble signal read from the memory, so the preamble detector 35 outputs “H” as the preamble detection signal to the demodulation circuit 4 and the determination circuit 33. To do.
 復調回路4は、プリアンブル検出信号が入力された時点で起動を始め、その後所定の時間に入力されたベースバンド信号を復調する。 The demodulation circuit 4 starts when the preamble detection signal is input, and then demodulates the baseband signal input at a predetermined time.
 判定回路33には、比較器32が出力する信号”H”及びプリアンブル検出器35が出力する信号”H”が入力される。判定回路33は、2つの信号に基づいて、RSSI検波器2に最低受信信号以上の信号が入力されているか否か及びプリアンブル信号が検出できているか否かを判定し、利得制御信号を可変利得増幅器20に出力する。比較器32が出力する信号は”H”であり、プリアンブル検出器35が出力する信号は”H”であるので、判定回路33は、RSSI検波器2には最低受信信号以上の信号が入力されており、プリアンブル検出器35は干渉波の影響がなくプリアンブル信号を検出できていると判定し、利得制御信号の内容を保持する。よって、判定回路33は、可変利得増幅器20に利得を変更しない利得制御信号”L”を出力する。可変利得増幅器20は、初期状態において利得制御信号”L”に対応する構成であったとする。 The determination circuit 33 receives the signal “H” output from the comparator 32 and the signal “H” output from the preamble detector 35. Based on the two signals, the determination circuit 33 determines whether or not a signal equal to or higher than the lowest received signal is input to the RSSI detector 2 and whether or not a preamble signal can be detected, and determines the gain control signal as a variable gain. Output to the amplifier 20. Since the signal output from the comparator 32 is “H” and the signal output from the preamble detector 35 is “H”, the determination circuit 33 receives a signal equal to or higher than the lowest received signal in the RSSI detector 2. Therefore, the preamble detector 35 determines that the preamble signal can be detected without the influence of the interference wave, and holds the content of the gain control signal. Therefore, the determination circuit 33 outputs a gain control signal “L” that does not change the gain to the variable gain amplifier 20. It is assumed that the variable gain amplifier 20 has a configuration corresponding to the gain control signal “L” in the initial state.
 次に、ASK変調信号とともに干渉波が入力されている場合の本受信機の動作について述べる。 Next, the operation of this receiver when an interference wave is input together with the ASK modulation signal will be described.
 アンテナ1が、ASK変調信号とともに干渉波を受信し、受信した信号をRSSI検波器2に出力する。 The antenna 1 receives the interference wave together with the ASK modulation signal, and outputs the received signal to the RSSI detector 2.
 図9は、この発明の実施の形態1に係るRSSI検波器2の検波特性及び動作点を示す図である。
 縦軸が検波電圧であり、横軸が入力電力である。点線が利得制御前の検波特性であり、実線が利得制御後の検波特性である。点線で囲まれた部分が利得制御前の飽和領域であり、斜線部分が利得制御後の飽和領域である。図9において、DRは、検波器24、検波器25、検波器26及び検波器27のダイナミックレンジであり、Gvは、可変利得増幅器20、増幅器21、増幅器22及び増幅器23の利得である。DET4、DET3、DET2及びDET1は、それぞれ検波器24、検波器25、検波器26及び検波器27に対応する。点Aは、RSSI検波器2の動作点を示す。なお、点Aにおける受信信号の電力は、ASK変調信号の電力と干渉波の電力の和である。
FIG. 9 is a diagram showing detection characteristics and operating points of the RSSI detector 2 according to Embodiment 1 of the present invention.
The vertical axis is the detection voltage, and the horizontal axis is the input power. The dotted line is the detection characteristic before gain control, and the solid line is the detection characteristic after gain control. A portion surrounded by a dotted line is a saturation region before gain control, and a hatched portion is a saturation region after gain control. In FIG. 9, DR is the dynamic range of the detector 24, the detector 25, the detector 26, and the detector 27, and Gv is the gain of the variable gain amplifier 20, the amplifier 21, the amplifier 22, and the amplifier 23. DET4, DET3, DET2, and DET1 correspond to the detector 24, the detector 25, the detector 26, and the detector 27, respectively. Point A indicates the operating point of the RSSI detector 2. Note that the power of the received signal at point A is the sum of the power of the ASK modulated signal and the power of the interference wave.
 図9の点線における点AでRSSI検波器2が動作している場合、検波器27は飽和している。これは、可変利得増幅器20の利得より検波器27のダイナミックレンジが小さいため生じる。RSSI検波器2内の検波器27が飽和領域で動作している場合、検波器27の非線形性が強い領域で検波するため、検波信号に相互変調歪みが含まれ、検波器27は、相互変調歪みを含む検波信号を電圧加算器28に出力する。 When the RSSI detector 2 is operating at the point A on the dotted line in FIG. 9, the detector 27 is saturated. This occurs because the dynamic range of the detector 27 is smaller than the gain of the variable gain amplifier 20. When the detector 27 in the RSSI detector 2 operates in the saturation region, detection is performed in a region where the nonlinearity of the detector 27 is strong, so that the detection signal includes intermodulation distortion. A detection signal including distortion is output to the voltage adder 28.
 電圧加算器28は、検波器24、検波器25、検波器26及び検波器27の検波信号を加算するが、図9の点Aの受信電力では検波器27だけが検波しているため、電圧加算器28は、検波器27の検波信号をそのままLPF29に出力する。 The voltage adder 28 adds the detection signals of the detector 24, the detector 25, the detector 26, and the detector 27, but only the detector 27 detects the received power at the point A in FIG. The adder 28 outputs the detection signal of the detector 27 to the LPF 29 as it is.
 LPF29は、自身のカットオフ周波数より周波数が高い成分を遮断するが、カットオフ周波数より低い周波数をもつ相互変調歪みはLPF29を通過し、比較器34及び平滑回路37に出力される。LPF29の出力信号には、干渉波及びASK変調信号の検波信号が含まれる。 The LPF 29 blocks a component having a frequency higher than its own cutoff frequency, but intermodulation distortion having a frequency lower than the cutoff frequency passes through the LPF 29 and is output to the comparator 34 and the smoothing circuit 37. The output signal of the LPF 29 includes an interference wave and a detection signal of the ASK modulation signal.
 平滑回路37は、LPF29を通過した検波信号を時間平均し、平滑化する。平滑回路37は、時間平均した検波信号を比較器34に出力する。平滑回路37は、自身のカットオフ周波数より低い周波数を通過させるので、干渉波の検波信号の周波数がカットオフ周波数より低ければ、干渉波の検波信号は比較器34に出力される。ここで、平滑回路37のカットオフ周波数は、ASK変調信号の検波信号の周波数より低く、干渉波の検波信号の周波数より高いとする。したがって、平滑回路37の出力信号には、ASK変調信号の検波信号は含まれないが、干渉波の検波信号が含まれる。 The smoothing circuit 37 averages and smoothes the detection signal that has passed through the LPF 29. The smoothing circuit 37 outputs the time averaged detection signal to the comparator 34. Since the smoothing circuit 37 passes a frequency lower than its own cutoff frequency, if the frequency of the interference wave detection signal is lower than the cutoff frequency, the interference wave detection signal is output to the comparator 34. Here, it is assumed that the cutoff frequency of the smoothing circuit 37 is lower than the frequency of the detection signal of the ASK modulation signal and higher than the frequency of the detection signal of the interference wave. Therefore, the output signal of the smoothing circuit 37 does not include the detection signal of the ASK modulation signal, but includes the detection signal of the interference wave.
 比較器34は、LPF29が出力した検波信号の瞬時電圧と平滑回路37が出力した検波信号の時間平均電圧とを比較し、瞬時電圧が時間平均電圧より高ければ"H"を、低ければ"L"をベースバンド信号としてプリアンブル検出器35及び復調回路4に出力する。比較器34は、LPF29が出力するASK変調信号及び干渉波の検波信号と、平滑回路37が出力する干渉波の検波信号とを比較するので、比較器34の出力信号には、干渉波成分が含まれていない。つまり、干渉波がCW(Continus Wave)であるか、またはASK変調信号の変調帯域より狭帯域な変調信号であれば、比較器34以降へは干渉波成分が出力されない。 The comparator 34 compares the instantaneous voltage of the detection signal output from the LPF 29 with the time average voltage of the detection signal output from the smoothing circuit 37. If the instantaneous voltage is higher than the time average voltage, the comparator 34 compares "H". "Is output to the preamble detector 35 and the demodulation circuit 4 as a baseband signal. The comparator 34 compares the ASK modulation signal and the interference wave detection signal output from the LPF 29 with the interference wave detection signal output from the smoothing circuit 37. Therefore, the output signal of the comparator 34 includes an interference wave component. Not included. That is, if the interference wave is CW (Continus Wave) or a modulation signal narrower than the modulation band of the ASK modulation signal, the interference wave component is not output to the comparator 34 and thereafter.
 RSSI検波器2が飽和領域で動作をしている場合、比較器34が出力するベースバンド信号には、ASK変調信号成分だけでなく、相互変調歪み成分が含まれる。したがって、プリアンブル検出器35は、入力されるベースバンド信号の時間波形に相互変調歪みによるチャタリングが観測される。このチャタリングが原因となり、プリアンブル検出器35はベースバンド信号をサンプルホールドする際に誤ったデータをサンプルホールドする。プリアンブル検出器35は、サンプルホールドされた結果のプリアンブル信号とメモリに記憶されているプリアンブル信号のパターンデータとを比較する。ここでは、干渉波が存在しRSSI検波器2が飽和領域で動作をしており、両者は一致しないので、プリアンブル検出器35は、プリアンブル検出信号”L”を判定回路33及び復調回路4に出力する。 When the RSSI detector 2 is operating in the saturation region, the baseband signal output from the comparator 34 includes not only an ASK modulation signal component but also an intermodulation distortion component. Therefore, chattering due to intermodulation distortion is observed in the time waveform of the input baseband signal in the preamble detector 35. Due to this chattering, the preamble detector 35 samples and holds erroneous data when the baseband signal is sampled and held. The preamble detector 35 compares the preamble signal obtained as a result of the sample and hold with the pattern data of the preamble signal stored in the memory. Here, since an interference wave exists and the RSSI detector 2 operates in the saturation region and the two do not match, the preamble detector 35 outputs the preamble detection signal “L” to the determination circuit 33 and the demodulation circuit 4. To do.
 RSSI検波器2は、増幅したASK変調信号を検波器27に出力するとともに、増幅したASK変調信号を検波器31に出力する。検波器31は、ASK変調信号を検波し、検波電圧を比較器32に出力する。比較器32は、検波器31が出力した検波電圧と基準電圧源36が出力する基準電圧とを比較する。図9の点AはRSSI検波器2の最低受信電圧より高いので、比較器32は、”H”を判定回路33に出力する。 The RSSI detector 2 outputs the amplified ASK modulation signal to the detector 27 and outputs the amplified ASK modulation signal to the detector 31. The detector 31 detects the ASK modulation signal and outputs a detection voltage to the comparator 32. The comparator 32 compares the detection voltage output from the detector 31 with the reference voltage output from the reference voltage source 36. Since the point A in FIG. 9 is higher than the minimum reception voltage of the RSSI detector 2, the comparator 32 outputs “H” to the determination circuit 33.
 判定回路33には、比較器32から”H”が入力され プリアンブル検出器35から”L”が入力される。図7のフローにしたがい、判定回路33は、ステップS101においてRSSI検波器2の入力電力を検出できていると判別し、ステップS103に進む。判定回路33は、ステップS103において、プリアンブル検出器35の出力信号が”L”なので、プリアンブル信号を検出できていないと判断し、ステップS105に進む。判定回路33は、ステップS105において、利得制御信号の内容を”L”から”H”に変更して、可変利得増幅器20に出力する。 The determination circuit 33 receives “H” from the comparator 32 and “L” from the preamble detector 35. According to the flow of FIG. 7, the determination circuit 33 determines that the input power of the RSSI detector 2 has been detected in step S101, and proceeds to step S103. In step S103, the determination circuit 33 determines that the preamble signal has not been detected because the output signal of the preamble detector 35 is "L", and proceeds to step S105. In step S <b> 105, the determination circuit 33 changes the content of the gain control signal from “L” to “H” and outputs it to the variable gain amplifier 20.
 可変利得増幅器20は、利得制御信号にしたがいスイッチの状態を変更し、利得を変化させる。利得制御信号は”L”から”H”に変更されたので、可変利得増幅器20に内蔵されるスイッチ205及びスイッチ206は開放状態から短絡状態に変化する。同様に、スイッチ208及びスイッチ209は短絡端状態から開放状態に変化する。これにより、差動増幅器201の出力回路は抵抗202及び抵抗203とキャパシタ207とで構成されていたRC回路から、抵抗202及び抵抗203とキャパシタ204とで構成されるRC回路に変更されるので、可変利得増幅器20の利得は変化する。ここで、キャパシタ207とキャパシタ204とは異なる容量である。 The variable gain amplifier 20 changes the switch state according to the gain control signal and changes the gain. Since the gain control signal is changed from “L” to “H”, the switch 205 and the switch 206 incorporated in the variable gain amplifier 20 change from the open state to the short-circuit state. Similarly, the switch 208 and the switch 209 change from the short-circuit end state to the open state. As a result, the output circuit of the differential amplifier 201 is changed from the RC circuit configured by the resistor 202, the resistor 203, and the capacitor 207 to the RC circuit configured by the resistor 202, the resistor 203, and the capacitor 204. The gain of the variable gain amplifier 20 changes. Here, the capacitor 207 and the capacitor 204 have different capacities.
 図3に示すように、可変利得増幅器20の利得は、ASK変調信号の周波数において、GvからGv/2に変化する。 As shown in FIG. 3, the gain of the variable gain amplifier 20 changes from Gv to Gv / 2 at the frequency of the ASK modulation signal.
 この利得制御によって、RSSI検波器2の検波特性は、図9に示すように変化する。RSSI検波器2は、RSSI検波器2の初段増幅器である可変利得増幅器20の利得を変化させることにより、RSSI検波器2の飽和領域が線形領域になるようにシフトさせる。これにより、図9の点Aは、利得制御前では飽和領域であったが、利得制御後では線形領域に変化する。 に よ っ て By this gain control, the detection characteristic of the RSSI detector 2 changes as shown in FIG. The RSSI detector 2 shifts the saturation region of the RSSI detector 2 to be a linear region by changing the gain of the variable gain amplifier 20 that is the first stage amplifier of the RSSI detector 2. As a result, the point A in FIG. 9 is the saturation region before the gain control, but changes to the linear region after the gain control.
 よって、RSSI検波器2は点Aにおいて飽和せずに、受信信号を検波でき、検波信号に相互変調歪みも生じない。RSSI検波器2の検波器27は、検波信号を電圧加算器28に出力する。この後の動作は、干渉波がない場合の動作と同じである。ベースバンド信号の時間波形に観測されていたチャタリングが緩和されるので、プリアンブル検出器35は、プリアンブル信号の検出が可能となり、復調回路4は、ベースバンド信号の復調処理が可能となる。  Therefore, the RSSI detector 2 can detect the received signal without being saturated at the point A, and no intermodulation distortion occurs in the detected signal. The detector 27 of the RSSI detector 2 outputs a detection signal to the voltage adder 28. The subsequent operation is the same as the operation when there is no interference wave. Since chattering observed in the time waveform of the baseband signal is alleviated, the preamble detector 35 can detect the preamble signal, and the demodulation circuit 4 can demodulate the baseband signal.
 以上の通り、実施の形態1によれば、判定回路33は、プリアンブル検出器35が出力する検出信号から、RSSI検波器2が飽和しているか否かを判別し、飽和していると判別した場合、RSSI検波器2内の可変利得増幅器20の利得を変化させるので、干渉波によりRSSI検波器2が検波範囲内で飽和していても、RSSI検波器2は飽和領域をずらして受信信号を受信できる。このため、実施の形態1の受信機は、増幅器の利得より検波器のダイナミックレンジが小さいRSSI検波器でも受信機の検波器として利用できる。よって、検波器のダイナミックレンジを広げるために、消費電力が大きい検波器を使用する必要がなくなり、RSSI検波器2及び受信機の低消費電力化が図れる。 As described above, according to the first embodiment, the determination circuit 33 determines whether the RSSI detector 2 is saturated from the detection signal output by the preamble detector 35, and determines that it is saturated. In this case, since the gain of the variable gain amplifier 20 in the RSSI detector 2 is changed, even if the RSSI detector 2 is saturated within the detection range due to the interference wave, the RSSI detector 2 shifts the saturation region and receives the received signal. Can receive. For this reason, the receiver of Embodiment 1 can be used as a detector of a receiver even with an RSSI detector having a dynamic range of the detector smaller than the gain of the amplifier. Therefore, it is not necessary to use a detector with large power consumption in order to widen the dynamic range of the detector, and the power consumption of the RSSI detector 2 and the receiver can be reduced.
 本実施の形態では、可変利得増幅器20の利得変化量としてGv/2としたが、利得変化量はGv-DR以上でGv以下であれば飽和領域をずらして受信信号を受信できる。利得変化量をGv-DRとすると、検波特性が、飽和領域分シフトするので、利得制御前では飽和領域であった部分が利得制御後では線形領域に置き換わり、受信信号を線形領域で検波することができる。 In this embodiment, the gain change amount of the variable gain amplifier 20 is set to Gv / 2. However, if the gain change amount is greater than or equal to Gv-DR and less than or equal to Gv, the received signal can be received by shifting the saturation region. If the gain change amount is Gv-DR, the detection characteristic is shifted by the saturation region, so the portion that was the saturation region before gain control is replaced with the linear region after gain control, and the received signal is detected in the linear region. Can do.
 本実施の形態では、ASK変調信号の周波数帯における可変利得増幅器20の利得を制御しているが、干渉波の周波数帯における可変利得増幅器20の利得を制御しても良い。システムに影響を与える干渉波の周波数が特定できており、その干渉波の電力がASK変調信号より大きい場合、制御器3は、干渉波の周波数における利得を制御することが有効である。これにより、ASK変調信号の電力ではなく干渉波の電力で検波器27の動作点が決まっていても、検波器27は、飽和領域をずらして検波できる。干渉波の周波数帯における利得制御は、可変利得増幅器20のASK変調信号の周波数帯の利得と干渉波の周波数帯の利得とが異なる場合において、干渉波の電力が大きい場合に有効である。 In this embodiment, the gain of the variable gain amplifier 20 in the frequency band of the ASK modulation signal is controlled, but the gain of the variable gain amplifier 20 in the frequency band of the interference wave may be controlled. When the frequency of the interference wave that affects the system is specified and the power of the interference wave is larger than the ASK modulation signal, it is effective for the controller 3 to control the gain at the frequency of the interference wave. Thereby, even if the operating point of the detector 27 is determined not by the power of the ASK modulation signal but by the power of the interference wave, the detector 27 can detect by shifting the saturation region. The gain control in the frequency band of the interference wave is effective when the power of the interference wave is large when the gain in the frequency band of the ASK modulation signal of the variable gain amplifier 20 is different from the gain in the frequency band of the interference wave.
 なお、本実施の形態に係る受信機は、間欠動作をするようなシステムで特に有効である。
 図10は、この発明の実施の形態1に係る間欠動作時の利得制御の一例を示す図である。実線が本発明の受信機の利得特性であり、破線がAGC(Automatic Gain Control)回路を用いた受信機の利得特性である。
The receiver according to the present embodiment is particularly effective in a system that performs intermittent operation.
FIG. 10 is a diagram showing an example of gain control during intermittent operation according to Embodiment 1 of the present invention. The solid line is the gain characteristic of the receiver of the present invention, and the broken line is the gain characteristic of the receiver using an AGC (Automatic Gain Control) circuit.
 まず、受信機は、t=t1においてポーリング信号に同期して電源が投入され、受信信号を受信し始める。ポーリング信号とは、精度の良いクロック信号を基に生成される周期性を持つ信号であり、消費電力を低減させる目的で使用される。精度の良いクロック信号は、例えば、水晶発振器等で生成される。このポーリング信号に同期して受信機の電源がON、OFFされることにより、常時連続して動作する場合に比べて、消費電力の低減が可能となる。次に、受信機は、t=t2において受信信号に含まれるプリアンブル信号を検出し、プリアンブル信号中のプリアンブルパターンが予め記憶されたパターンと一致するか否かを判断する。プリアンブルパターンが一致しない場合、受信機は、t=t3において、利得制御信号の論理を切り替えることにより可変利得増幅器20の利得を不連続に切り替える。次に、受信機は、切り替えた利得で、t=t4においてプリアンブル信号を受信し、プリアンブルパターンが予め記憶されたパターンと一致することを確認する。そして、受信機は、t=t5において、データ信号を受信し、受信したデータ信号を復調する。このように、本受信機は、ポーリング信号に同期して間欠動作する場合であっても、間欠動作に対応してデータ信号を受信機内の検波器が飽和しない利得で受信できる。 First, the receiver is turned on in synchronization with the polling signal at t = t1, and starts receiving the received signal. The polling signal is a signal having periodicity generated based on a highly accurate clock signal, and is used for the purpose of reducing power consumption. An accurate clock signal is generated by, for example, a crystal oscillator. By turning on and off the power supply of the receiver in synchronization with this polling signal, it is possible to reduce power consumption compared to the case where the receiver operates continuously all the time. Next, the receiver detects a preamble signal included in the received signal at t = t2, and determines whether or not the preamble pattern in the preamble signal matches a previously stored pattern. If the preamble patterns do not match, the receiver switches the gain of the variable gain amplifier 20 discontinuously by switching the logic of the gain control signal at t = t3. Next, the receiver receives the preamble signal at t = t4 with the switched gain, and confirms that the preamble pattern matches the prestored pattern. The receiver receives the data signal at t = t5 and demodulates the received data signal. Thus, even when the receiver operates intermittently in synchronization with the polling signal, the receiver can receive the data signal with a gain that does not saturate the detector in the receiver in response to the intermittent operation.
 一方、AGC回路では、プリアンブルパターンが一致しない場合、可変利得増幅器20の利得を連続的に変化させながら、プリアンブル信号が検出できる利得に変化させる。しかし、AGC回路は、内蔵するフィードバック回路に時定数が存在するため、利得制御量の収束に時間を要する。したがって、利得制御量を収束させる間にデータ信号が送信されると、データ信号を受信機内の検波器が飽和しない利得で受信できず、データ信号を復調できない。つまり、間欠動作をするようなシステムでは、AGC回路は間欠動作に対応できず、データ信号を受信するまでに時間がかかる。 On the other hand, in the AGC circuit, when the preamble patterns do not match, the gain of the variable gain amplifier 20 is changed to a gain that can detect the preamble signal while continuously changing the gain. However, since the AGC circuit has a time constant in the built-in feedback circuit, it takes time to converge the gain control amount. Therefore, if a data signal is transmitted while the gain control amount is converged, the data signal cannot be received with a gain that does not saturate the detector in the receiver, and the data signal cannot be demodulated. That is, in a system that performs intermittent operation, the AGC circuit cannot cope with intermittent operation, and it takes time to receive a data signal.
 このように、本受信機は、プリアンブル信号が検出できなかった場合に、利得制御信号の論理を反転させ、フィードバック制御による収束動作を要さず、可変利得増幅器20の利得を不連続に切り替えることによって、検波器の検波領域を飽和領域から線形領域に切り替える。これにより、本受信機は、収束の応答を待つ必要がなく、定められた期間内に信号を受信できる。ここで、利得を不連続に切り替えるというのは、一定の条件を満たすときに、利得を予め決められた値に切り替えることを言う。本受信機は、AGC回路のようにある観測信号(例えば、干渉波の電力レベルを示す信号)の大きさに対応して連続的に利得を切り替えるのではなく、観測信号の大きさがある閾値以上のときに、可変利得増幅器20の利得を予め決められた値に切り替える。なお、可変増幅器20が、デジタル信号によって利得を制御できる増幅器であって、制御器3が出力する制御信号が、可変増幅器20の利得を示す場合、制御器3は、予め決められた可変増幅器20の利得を示す制御信号を出力するようにしても良い。 As described above, when the preamble signal cannot be detected, the receiver inverts the logic of the gain control signal, and does not require a convergence operation by feedback control, and switches the gain of the variable gain amplifier 20 discontinuously. Thus, the detection region of the detector is switched from the saturation region to the linear region. Thus, the receiver does not need to wait for a convergence response and can receive a signal within a predetermined period. Here, switching the gain discontinuously means switching the gain to a predetermined value when a certain condition is satisfied. This receiver does not continuously switch the gain corresponding to the magnitude of a certain observation signal (for example, a signal indicating the power level of the interference wave) like an AGC circuit, but a threshold value with a magnitude of the observation signal. At the above time, the gain of the variable gain amplifier 20 is switched to a predetermined value. When the variable amplifier 20 is an amplifier whose gain can be controlled by a digital signal, and the control signal output from the controller 3 indicates the gain of the variable amplifier 20, the controller 3 determines that the variable amplifier 20 has been determined in advance. A control signal indicating the gain may be output.
実施の形態2
この発明の実施の形態1の受信機では、RSSI検波器2の検波信号に含まれるプリアンブル信号のプリアンブルパターンと予め記憶しているパターンとを比較することで、RSSI検波器2内の検波器が飽和領域にいるか否かを判別していた。
この発明の実施の形態2の受信機では、RSSI検波器2の検波信号に含まれる相互変調歪みを検出することにより、RSSI検波器2内の検波器が飽和領域にいるか否かを判別する。これにより、プリアンブルパターンを検出する必要がなく、高速に検波器が飽和状態にいるか否かを判別できる。
Embodiment 2
In the receiver according to the first embodiment of the present invention, by comparing the preamble pattern of the preamble signal included in the detection signal of the RSSI detector 2 with the pattern stored in advance, the detector in the RSSI detector 2 is It was determined whether or not it was in the saturation region.
In the receiver according to the second embodiment of the present invention, it is determined whether or not the detector in the RSSI detector 2 is in the saturation region by detecting the intermodulation distortion included in the detection signal of the RSSI detector 2. Thereby, it is not necessary to detect a preamble pattern, and it can be determined whether the detector is in a saturated state at high speed.
 本実施の形態で述べるRSSI検波器2も実施の形態1同様、各検波器のダイナミックレンジをDRとし、増幅器利得Gvを3/2×DRとする。線形性を高めるためにGv=DRとした場合に比べ、増幅器及び検波器の段数が2/3であるため、低消費電力化が図れている。 As with the first embodiment, the RSSI detector 2 described in the present embodiment also has a dynamic range of each detector as DR and an amplifier gain Gv of 3/2 × DR. Compared with the case where Gv = DR is set to increase linearity, the number of stages of amplifiers and detectors is 2/3, so that power consumption can be reduced.
 図11は、この発明の実施の形態2に係る受信機の一構成例を示す構成図である。
 図11において図1と同一の符号は、同一または相当の部分を示している。実施の形態2の受信機では、比較器34は出力信号をプリアンブル検出器35だけでなく干渉波検出器38にも出力する。そして、干渉波検出器38は出力信号を判定回路33に出力し、干渉波検出器38の出力信号に基づいて判定回路33が利得制御信号を出力する。また、実施の形態2に係るRSSI検波器2では、可変利得増幅器20の代わりに可変利得増幅器40が装荷されており、可変利得増幅器40の入力段に検波器30が接続されている。
FIG. 11 is a block diagram showing a configuration example of a receiver according to Embodiment 2 of the present invention.
11, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. In the receiver according to the second embodiment, the comparator 34 outputs the output signal not only to the preamble detector 35 but also to the interference wave detector 38. The interference wave detector 38 outputs an output signal to the determination circuit 33, and the determination circuit 33 outputs a gain control signal based on the output signal of the interference wave detector 38. In the RSSI detector 2 according to the second embodiment, the variable gain amplifier 40 is loaded instead of the variable gain amplifier 20, and the detector 30 is connected to the input stage of the variable gain amplifier 40.
 干渉波検出器38は、比較器34が出力するベースバンド信号から検波器の相互変調歪みを検出する検出器である。干渉波検出器38の入力端子は、比較器34の出力端子に接続され、干渉波検出器の出力端子は、判定回路33の入力端子に接続される。 The interference wave detector 38 is a detector that detects intermodulation distortion of the detector from the baseband signal output from the comparator 34. The input terminal of the interference wave detector 38 is connected to the output terminal of the comparator 34, and the output terminal of the interference wave detector is connected to the input terminal of the determination circuit 33.
 図12は、この発明の実施の形態2に係る干渉波検出器38の一構成例を示す構成図である。
 干渉波検出器38は、HPF(High Pass Filter)381、検波器382、基準電圧源383及び比較器384を備える。HPF381の入力端子は、干渉波検出器の入力端子であり、HPF381の出力端子は検波器382の入力端子に接続される。検波器382の出力端子は、比較器384の第1の入力端子に接続さる。比較器384の第2の入力端子は、基準電圧源383の出力端子に接続される。比較器384の出力端子は、干渉波検出器38の出力端子に接続される。
FIG. 12 is a configuration diagram showing a configuration example of the interference wave detector 38 according to Embodiment 2 of the present invention.
The interference wave detector 38 includes an HPF (High Pass Filter) 381, a detector 382, a reference voltage source 383, and a comparator 384. The input terminal of the HPF 381 is an input terminal of the interference wave detector, and the output terminal of the HPF 381 is connected to the input terminal of the detector 382. The output terminal of the detector 382 is connected to the first input terminal of the comparator 384. The second input terminal of the comparator 384 is connected to the output terminal of the reference voltage source 383. The output terminal of the comparator 384 is connected to the output terminal of the interference wave detector 38.
 HPF381は、比較器34が出力するベースバンド信号のうち、信号成分を遮断し、相互変調歪み成分を通過させ、検波器382へ出力する。 The HPF 381 blocks the signal component of the baseband signal output from the comparator 34, passes the intermodulation distortion component, and outputs the signal to the detector 382.
 検波器382は、HPF381が出力する信号から相互変調歪みを検波し、検波した信号を後段の比較器384に出力する。 The detector 382 detects intermodulation distortion from the signal output from the HPF 381 and outputs the detected signal to the comparator 384 at the subsequent stage.
 基準電圧源383は、復調に対して影響がない相互変調歪みのレベルを示す電圧を比較器384に出力する。つまり、基準電圧源383は、この電圧以下であれば、相互変調歪みが存在しても復調できるという基準を示す電圧を出力する。 The reference voltage source 383 outputs to the comparator 384 a voltage indicating the level of intermodulation distortion that does not affect the demodulation. That is, the reference voltage source 383 outputs a voltage indicating a reference that can be demodulated even if intermodulation distortion exists if the voltage is equal to or lower than this voltage.
 比較器384は、検波器382が出力する相互変調歪みの検波信号と基準電圧源383が出力する基準電圧とを比較し、検波信号が基準電圧より高ければ”H”を、検波信号が基準電圧より低ければ”L”を判定回路33に出力する。例えば、比較器384は、CMOS等のプロセスを用いてICに実装されたオペアンプを用いる。 The comparator 384 compares the intermodulation distortion detection signal output from the detector 382 with the reference voltage output from the reference voltage source 383. If the detection signal is higher than the reference voltage, the comparator 384 indicates “H”, and the detection signal indicates the reference voltage. If it is lower, “L” is output to the determination circuit 33. For example, the comparator 384 uses an operational amplifier mounted on an IC using a process such as CMOS.
 可変利得増幅器40は、判定回路33からの利得制御信号にしたがって利得を切り替える可変利得増幅器である。
 図13は、この発明の実施の形態2に係る可変利得増幅器40の一構成例を示す構成図である。
 可変利得増幅器40は、差動増幅器401、減衰器402、スイッチ403、スイッチ404、スイッチ405、スイッチ406及びインバータ407を備える。
The variable gain amplifier 40 is a variable gain amplifier that switches the gain according to the gain control signal from the determination circuit 33.
FIG. 13 is a configuration diagram showing a configuration example of the variable gain amplifier 40 according to the second embodiment of the present invention.
The variable gain amplifier 40 includes a differential amplifier 401, an attenuator 402, a switch 403, a switch 404, a switch 405, a switch 406, and an inverter 407.
 差動増幅器401の入力端子対は、スイッチ404の出力端子対に接続される。差動増幅器401の出力端子対は、可変利得増幅器40の出力端子である。スイッチ404の入力端子対は、減衰器402の出力端子対が接続され、スイッチ404の制御端子は、可変利得増幅器40の制御端子に接続される。 The input terminal pair of the differential amplifier 401 is connected to the output terminal pair of the switch 404. An output terminal pair of the differential amplifier 401 is an output terminal of the variable gain amplifier 40. The input terminal pair of the switch 404 is connected to the output terminal pair of the attenuator 402, and the control terminal of the switch 404 is connected to the control terminal of the variable gain amplifier 40.
 減衰器402の入力端子対は、スイッチ403出力端子対に接続され、減衰器402の出力端子対はスイッチ404の入力端子対に接続される。減衰器402は、入力される信号を減衰させて、差動増幅器401に出力する。例えば、減衰器402の減衰量は、1/3×Gvである。 The input terminal pair of the attenuator 402 is connected to the switch 403 output terminal pair, and the output terminal pair of the attenuator 402 is connected to the input terminal pair of the switch 404. The attenuator 402 attenuates the input signal and outputs it to the differential amplifier 401. For example, the attenuation amount of the attenuator 402 is 1/3 × Gv.
 スイッチ403出力端子対は、減衰器402の入力端子対に接続される。スイッチ403入力端子対は、可変増幅器40の入力端子である。スイッチ403の制御端子は、可変利得増幅器40の制御端子に接続される。 The switch 403 output terminal pair is connected to the input terminal pair of the attenuator 402. The switch 403 input terminal pair is an input terminal of the variable amplifier 40. The control terminal of the switch 403 is connected to the control terminal of the variable gain amplifier 40.
 スイッチ405とスイッチ406とは直列に接続される。直列に接続されたスイッチ405及びスイッチ406の入力端子対と出力端子対とは、スイッチ403、減衰器402、及びスイッチ404をバイパスするように、それぞれスイッチ402の入力端子対と差動増幅器401の入力端子対とに接続される。 The switch 405 and the switch 406 are connected in series. The input terminal pair and the output terminal pair of the switches 405 and 406 connected in series are connected to the input terminal pair of the switch 402 and the differential amplifier 401 so as to bypass the switch 403, the attenuator 402, and the switch 404, respectively. Connected to the input terminal pair.
 インバータ407の入力端子は、可変利得増幅器40の制御端子と接続され、インバータ407の出力端子は、スイッチ405及びスイッチ406の制御端子に接続される。 The input terminal of the inverter 407 is connected to the control terminal of the variable gain amplifier 40, and the output terminal of the inverter 407 is connected to the control terminals of the switch 405 and the switch 406.
 可変利得増幅器40の制御端子に入力される信号が”L”の場合、スイッチ405及びスイッチ406は、インバータ407が論理を反転させるので、短絡になり、スイッチ403及びスイッチ404は、開放となる。したがって、可変利得増幅器40に入力される信号は、減衰器402を通過せずに差動増幅器401に入力され、差動増幅器401で増幅され、増幅された信号は出力される。 When the signal input to the control terminal of the variable gain amplifier 40 is “L”, the switch 405 and the switch 406 are short-circuited because the inverter 407 inverts the logic, and the switch 403 and the switch 404 are opened. Therefore, the signal input to the variable gain amplifier 40 is input to the differential amplifier 401 without passing through the attenuator 402, amplified by the differential amplifier 401, and the amplified signal is output.
 可変利得増幅器40の制御端子に入力される信号が”H”の場合、スイッチ405及びスイッチ406は、開放になり、スイッチ403及びスイッチ404は短絡となる。したがって、可変利得増幅器40に入力される信号は、減衰器402を通過して、差動増幅器401に入力され、差動増幅器401で増幅され、増幅された信号は出力される。減衰器402を通過するため、利得制御信号が”L”のときと比べて、可変利得増幅器40の利得は低くなる。 When the signal input to the control terminal of the variable gain amplifier 40 is “H”, the switch 405 and the switch 406 are opened, and the switch 403 and the switch 404 are short-circuited. Therefore, the signal input to the variable gain amplifier 40 passes through the attenuator 402, is input to the differential amplifier 401, is amplified by the differential amplifier 401, and the amplified signal is output. Since the signal passes through the attenuator 402, the gain of the variable gain amplifier 40 becomes lower than when the gain control signal is “L”.
 図14は、この発明の実施の形態2に係る可変利得増幅器20の利得周波数特性図である。
 縦軸は利得であり、横軸は周波数である。点線が、利得制御前の利得を示し、実線が、利得制御後の利得を示す。可変利得増幅器40は、制御端子に入力される利得制御信号にしたがって、信号経路を切り替えることにより、利得をGvから2/3・Gvに切り替える。
FIG. 14 is a gain frequency characteristic diagram of the variable gain amplifier 20 according to the second embodiment of the present invention.
The vertical axis is gain, and the horizontal axis is frequency. The dotted line indicates the gain before gain control, and the solid line indicates the gain after gain control. The variable gain amplifier 40 switches the gain from Gv to 2/3 · Gv by switching the signal path according to the gain control signal input to the control terminal.
 実施の形態2に係る受信機の動作について説明する。実施の形態1と重複する部分の説明は省略し、動作の異なる部分を中心に説明する。 The operation of the receiver according to Embodiment 2 will be described. A description of the same parts as those in the first embodiment will be omitted, and a description will be made mainly on parts having different operations.
 図15は、この発明の実施の形態2に係るRSSI検波器2の検波特性図である。
 縦軸が検波電圧、横軸が入力電力である。RSSI検波器2は、可変利得増幅器40の入力端子に検波器30を追加したことによって、図2に比べて図15では、RSSI検波器2の検波範囲が、DET0の領域分大きくなっている。DET0は、検波器30のダイナミックレンジに対応する。
FIG. 15 is a detection characteristic diagram of the RSSI detector 2 according to Embodiment 2 of the present invention.
The vertical axis is the detection voltage, and the horizontal axis is the input power. In the RSSI detector 2, the detector 30 is added to the input terminal of the variable gain amplifier 40, so that in FIG. 15, the detection range of the RSSI detector 2 is larger by the area of DET 0 than in FIG. 2. DET 0 corresponds to the dynamic range of the detector 30.
 アンテナ1は、入力されたASK変調信号及び干渉波をRSSI検波器2の可変利得増幅器40に出力する。このとき、増幅器40の制御入力端子の論理は”L”であり、利得がGvである。ここでは、アンテナ1からRSSI検波器2には、図15の点Aに示す電力の信号が入力される。 The antenna 1 outputs the input ASK modulation signal and interference wave to the variable gain amplifier 40 of the RSSI detector 2. At this time, the logic of the control input terminal of the amplifier 40 is “L”, and the gain is Gv. Here, a signal of power indicated by a point A in FIG. 15 is input from the antenna 1 to the RSSI detector 2.
 可変利得増幅器40が増幅したASK変調信号は、後段の増幅器21、増幅器22、及び増幅器23で増幅される。最終段の増幅器23は、増幅した信号を検波器27及び検波器31に出力する。検波器31、基準電圧源36、及び比較器32の動作は実施の形態1と同じなので説明を省略する。 The ASK modulation signal amplified by the variable gain amplifier 40 is amplified by the amplifier 21, the amplifier 22, and the amplifier 23 in the subsequent stage. The final stage amplifier 23 outputs the amplified signal to the detector 27 and the detector 31. Since the operation of the detector 31, the reference voltage source 36, and the comparator 32 is the same as that of the first embodiment, the description thereof is omitted.
 検波器27は、増幅器23が出力した信号を検波し、検波信号を電圧加算器28に出力する。図15の点Aにおいて反応する検波器は検波器27(DET4)のみであるため、電圧加算器28では何も加算されず、検波器27の検波信号がそのままLPF29に出力される。 The detector 27 detects the signal output from the amplifier 23 and outputs the detection signal to the voltage adder 28. Since only the detector 27 (DET4) reacts at the point A in FIG. 15, nothing is added by the voltage adder 28, and the detection signal of the detector 27 is output to the LPF 29 as it is.
 LPF29は、検波信号のうち自身のカットオフ周波数より高い周波数の信号を遮断し、帯域制限した検波信号を比較器34及び平滑回路37に出力する。 The LPF 29 blocks a signal having a frequency higher than its cut-off frequency from the detection signal, and outputs the band-limited detection signal to the comparator 34 and the smoothing circuit 37.
 平滑回路37は、LPF29の出力信号を時間平均し、時間平均した信号を比較器34に出力する。 The smoothing circuit 37 time averages the output signal of the LPF 29 and outputs the time averaged signal to the comparator 34.
 比較器34は、LPF29の出力信号と平滑回路37の出力信号とを比較し、LPF29の出力信号が平滑回路37の出力信号より高ければ"H"を、PF29の出力信号が平滑回路37の出力信号より低ければ"L"をベースバンド信号として、干渉波検出器38、プリアンブル検出器35及び復調回路4に出力する。比較器34が出力するベースバンド信号には、検波器27の相互変調歪みが含まれる。 The comparator 34 compares the output signal of the LPF 29 and the output signal of the smoothing circuit 37. If the output signal of the LPF 29 is higher than the output signal of the smoothing circuit 37, the comparator 34 outputs “H”. If it is lower than the signal, “L” is output as a baseband signal to the interference wave detector 38, the preamble detector 35 and the demodulation circuit 4. The baseband signal output from the comparator 34 includes the intermodulation distortion of the detector 27.
 プリアンブル検出器35及び復調器4の動作は実施の形態1と同じであるため、説明を省略する。 Since the operations of the preamble detector 35 and the demodulator 4 are the same as those in the first embodiment, description thereof is omitted.
 干渉波検出器38は、比較器34の出力信号から相互変調歪みを検出し、そのレベルが復調に影響を与えるレベルであるか否かを判別する。検出した相互変調歪みのレベルが、基準電圧源383の出力電圧より高い場合、干渉波検出器38は、判定回路33に”H”を出力する。 The interference wave detector 38 detects the intermodulation distortion from the output signal of the comparator 34, and determines whether or not the level affects the demodulation. When the detected level of intermodulation distortion is higher than the output voltage of the reference voltage source 383, the interference wave detector 38 outputs “H” to the determination circuit 33.
 判定回路33は、比較器32が出力する信号及び干渉波検出器38が出力信号に基づいて、可変利得増幅器40に出力する利得制御信号を決定する。基本的に図7に示すフローチャートにしたがって、判定回路33は、利得制御信号を決定するが、実施の形態2では、図7のステップ103において「プリアンブル信号を検出」から「相互変調歪みを検出」と読み替えて実行する。比較器32が出力する信号は”H”であり、干渉波検出器38の出力信号は”H”であるので、可変利得増幅器40に利得制御信号”H”を出力する。 The determination circuit 33 determines the gain control signal output to the variable gain amplifier 40 based on the signal output from the comparator 32 and the output signal from the interference wave detector 38. Basically, the determination circuit 33 determines the gain control signal according to the flowchart shown in FIG. 7, but in the second embodiment, in step 103 of FIG. 7, “detect the preamble signal” to “detect the intermodulation distortion”. To read and execute. Since the signal output from the comparator 32 is “H” and the output signal from the interference wave detector 38 is “H”, the gain control signal “H” is output to the variable gain amplifier 40.
 可変利得増幅器40は、利得制御信号”H”にしたがい、信号の通過する経路を切り替え、利得を低下させる。利得制御信号が”L”から”H”に変化することで、入力される信号が、減衰器402を通過するので、可変利得増幅器40の利得はGvから2/3・Gvに変化する。 The variable gain amplifier 40 switches the path through which the signal passes in accordance with the gain control signal “H”, and lowers the gain. When the gain control signal changes from “L” to “H”, the input signal passes through the attenuator 402, so that the gain of the variable gain amplifier 40 changes from Gv to 2/3 · Gv.
 可変利得増幅器40の利得が2/3・Gvに変化することで、図15に示すように、RSSI検波器2は、飽和領域がずれて、線形領域で受信信号を検波する。これにより、RSSI検波器2は、線形領域で信号を検波するので、相互変調歪みの発生量を小さくできる。 As the gain of the variable gain amplifier 40 changes to 2/3 · Gv, the RSSI detector 2 detects the received signal in the linear region with the saturation region shifted as shown in FIG. Thereby, since the RSSI detector 2 detects a signal in a linear region, the generation amount of intermodulation distortion can be reduced.
 これ以降の動作は、実施の形態1の動作と同様であるので説明を省略する。RSSI検波器2は、干渉波により生じる相互変調歪みを抑えて受信信号を検波できるので、本受信機は、相互変調歪みによる悪影響を抑えて検波信号を復調できる。 Since the subsequent operation is the same as that of the first embodiment, the description thereof is omitted. Since the RSSI detector 2 can detect the received signal while suppressing the intermodulation distortion caused by the interference wave, the receiver can demodulate the detected signal while suppressing the adverse effect due to the intermodulation distortion.
 以上の通り、実施の形態2によれば、干渉波検出器38が検波信号に含まれる相互変調歪みを検出し、判定回路33がその検出信号からRSSI検波器2の飽和状態を判断し、飽和状態である場合、可変利得増幅器40の利得を切り替え、RSSI検波器2における検波特性の飽和領域を線形領域にずらすので、受信信号に干渉波が含まれていても、検波特性の良い線形領域で、受信信号を検波できる。これにより、実施の形態2の受信機は、増幅器の利得より検波器のダイナミックレンジが低いRSSI検波器であっても、受信機の検波器として利用できる。また、実施の形態2の受信機は、受信信号にプリアンブル信号が含まれない信号であっても、検波器の飽和状態を判断できる。 As described above, according to the second embodiment, the interference wave detector 38 detects the intermodulation distortion included in the detection signal, and the determination circuit 33 determines the saturation state of the RSSI detector 2 from the detection signal, and is saturated. In this state, the gain of the variable gain amplifier 40 is switched, and the saturation region of the detection characteristic in the RSSI detector 2 is shifted to the linear region. Therefore, even if an interference wave is included in the received signal, the gain region has a good detection characteristic. The received signal can be detected. As a result, the receiver of the second embodiment can be used as a detector for a receiver even if it is an RSSI detector whose dynamic range is lower than the gain of the amplifier. Further, the receiver of the second embodiment can determine the saturation state of the detector even if the received signal does not include a preamble signal.
 さらに、可変利得増幅器40は、減衰器402をバイパスするか否かによって利得を切り替えているので、利得の周波数特性は平坦のまま、利得を変化させることができる。つまり、可変利得増幅器40は、利得制御の前後で、ASK変調信号の周波数に対する利得と干渉波の周波数に対する利得との差が変化しない。干渉波の電力で検波器の動作点が決定している場合、干渉波の周波数に対する利得を制御することになるが、利得制御後、ASK変調信号の周波数に対する利得が大きくなり、ASK変調信号の電力で検波器の動作点が決定され、利得を制御してもまた、飽和領域に入ってしまうという問題が生じる。しかし、可変利得増幅器40は、利得制御の前後において利得の周波数特性が変化しないので、その問題を避けることができる。また、可変利得増幅器40は、周波数特性が平坦のまま利得を切り替えられるので、電力レベルが変化せず時間に対して周波数が変わる干渉波に対しても、検波器の動作点を適切に移動させることができる。 Furthermore, since the variable gain amplifier 40 switches the gain depending on whether or not the attenuator 402 is bypassed, the gain can be changed while the frequency characteristic of the gain is flat. That is, the variable gain amplifier 40 does not change the difference between the gain for the frequency of the ASK modulated signal and the gain for the frequency of the interference wave before and after gain control. When the operating point of the detector is determined by the power of the interference wave, the gain with respect to the frequency of the interference wave is controlled. After the gain control, the gain with respect to the frequency of the ASK modulation signal increases, Even if the operating point of the detector is determined by the electric power and the gain is controlled, there is a problem that it enters the saturation region. However, since the variable gain amplifier 40 does not change the frequency characteristic of the gain before and after gain control, the problem can be avoided. Further, since the variable gain amplifier 40 can switch the gain while the frequency characteristic is flat, the operating point of the detector is appropriately moved even for an interference wave whose frequency does not change and the frequency changes with time. be able to.
1 アンテナ、2 RSSI検波器、3 制御器、4 復調回路、20 40 可変利得増幅器、21 22 23 増幅器、24 25 26 27 30 31 382 検波器、28 電圧加算器、29 LPF、32 34 354 384 比較器、33 判定回路、35 プリアンブル検出器、36 383 基準電圧源、37 平滑回路、38 干渉波検出器、40 可変利得増幅器、201 401 差動増幅器、202 203 抵抗、204 207 キャパシタ、205 206 208 209 403 404 405 406 スイッチ、210 407 インバータ、351 クロック抽出回路、352 シフトレジスタ、353 メモリ、381 HPF、402 減衰器。 1 antenna, 2 RSSI detector, 3 controller, 4 demodulator, 20 40 variable gain amplifier, 21 22 23 amplifier, 24 25 26 27 30 31 382 detector, 28 voltage adder, 29 LPF, 32 34 354 384 comparison , 33 determination circuit, 35 preamble detector, 36 383 reference voltage source, 37 smoothing circuit, 38 interference wave detector, 40 variable gain amplifier, 201 401 differential amplifier, 202 203 resistor, 204 207 capacitor, 205 206 208 209 403 404 405 406 switch, 210 407 inverter, 351 clock extraction circuit, 352 shift register, 353 memory, 381 HPF, 402 attenuator.

Claims (8)

  1. 制御信号によって利得を切り替え、変調された受信信号を増幅する可変利得増幅器と、
     前記可変利得増幅器の利得よりダイナミックレンジが小さく、前記可変利得増幅器が増幅した前記受信信号を検波する第1の検波器と、
     前記第1の検波器の検波信号から前記第1の検波器の飽和状態を判別し、前記第1の検波器が飽和している場合、前記第1の検波器の飽和領域が線形領域に置き換わるように、前記可変利得増幅器の利得を不連続に切り替える前記制御信号を出力する制御器と、
    を備えた受信機。
    A variable gain amplifier that switches the gain according to the control signal and amplifies the modulated received signal;
    A first detector for detecting the received signal amplified by the variable gain amplifier, having a dynamic range smaller than the gain of the variable gain amplifier;
    When the saturation state of the first detector is determined from the detection signal of the first detector and the first detector is saturated, the saturation region of the first detector is replaced with a linear region. A controller for outputting the control signal to discontinuously switch the gain of the variable gain amplifier,
    With receiver.
  2.  前記可変利得増幅器の利得変化量が前記可変利得増幅器の利得と前記第1の検波器のダイナミックレンジとの差以上であって前記可変利得増幅器の利得以下であることを特徴とする請求項1記載の受信機。 2. The gain change amount of the variable gain amplifier is greater than or equal to a difference between a gain of the variable gain amplifier and a dynamic range of the first detector and less than or equal to the gain of the variable gain amplifier. Receiver.
  3.  前記受信信号はプリアンブル信号を含んでおり、
     前記制御器は、前記プリアンブル信号に対する前記第1の検波器の検波信号の波形パターンと予め記憶された波形パターンとを比較し、両者が一致しない場合、前記第1の検波器は飽和していると判別することを特徴とする請求項1または請求項2に記載の受信機。
    The received signal includes a preamble signal;
    The controller compares the waveform pattern of the detection signal of the first detector with respect to the preamble signal and a waveform pattern stored in advance, and if the two do not match, the first detector is saturated. The receiver according to claim 1, wherein the receiver is discriminated.
  4. 前記制御器は、前記第1の検波器の検波信号の相互変調歪みを検出し、検出した前記相互変調歪みの電圧が予め定められた閾値より大きい場合、前記第1の検波器は飽和していると判別することを特徴とする請求項1または請求項2に記載の受信機。 The controller detects the intermodulation distortion of the detection signal of the first detector, and when the detected voltage of the intermodulation distortion is larger than a predetermined threshold, the first detector is saturated. The receiver according to claim 1, wherein it is determined that the receiver is present.
  5.  前記可変利得増幅器が増幅した前記受信信号を増幅する増幅器と、
     前記増幅器が増幅した前記受信信号を検波する第2の検波器と、
     前記第1の検波器の検波信号と前記第2の検波器の検波信号とを加算する電圧加算器とを備え、
     前記制御器は、前記電圧加算器が加算した検波信号の波形パターンから、前記第1の検波器または前記第2の検波器の少なくとも1つが飽和しているか否かを判別することを特徴とする請求項1に記載の受信機。
    An amplifier for amplifying the received signal amplified by the variable gain amplifier;
    A second detector for detecting the received signal amplified by the amplifier;
    A voltage adder for adding the detection signal of the first detector and the detection signal of the second detector;
    The controller determines whether at least one of the first detector or the second detector is saturated from a waveform pattern of the detection signal added by the voltage adder. The receiver according to claim 1.
  6.  前記電圧加算器が加算した検波信号のうち、カットオフ周波数以上の周波数成分を遮断し、前記電圧加算器が加算した検波信号の帯域制限を行うローパスフィルタと、
     前記ローパスフィルタが帯域制限した検波信号を平滑化する平滑回路と、
     前記ローパスフィルタが帯域制限した検波信号と前記平滑化回路が平滑化した検波信号とを比較し、前記ローパスフィルタが帯域制限した検波信号の信号成分を出力する比較器とを備え、
     前記制御器は、前記比較器が出力した信号の波形パターンから、前記第1の検波器または前記第2の検波器の少なくとも1つが飽和しているか否かを判別することを特徴とする請求項5に記載の受信機。
    Among the detection signals added by the voltage adder, a low-pass filter that cuts off a frequency component equal to or higher than a cutoff frequency and performs band limitation of the detection signal added by the voltage adder;
    A smoothing circuit for smoothing the detection signal band-limited by the low-pass filter;
    Comparing the detection signal band-limited by the low-pass filter and the detection signal smoothed by the smoothing circuit, and a comparator that outputs the signal component of the detection signal band-limited by the low-pass filter,
    The controller determines whether at least one of the first detector or the second detector is saturated from a waveform pattern of a signal output from the comparator. 5. The receiver according to 5.
  7.  前記可変利得増幅器は、出力回路にキャパシタと抵抗を有し、前記制御信号にしたがって、前記キャパシタ及び前記抵抗から決定されるカットオフ周波数を切り替えることにより、利得を切り替えることを特徴とする請求項1に記載の受信機。 The variable gain amplifier includes a capacitor and a resistor in an output circuit, and switches a gain by switching a cutoff frequency determined from the capacitor and the resistor in accordance with the control signal. As described in the receiver.
  8.  前記可変利得増幅器は、信号を減衰させる減衰器を有し、前記制御信号にしたがって前記減衰器をバイパスすることにより利得を切り替える請求項1に記載の受信機。 The receiver according to claim 1, wherein the variable gain amplifier includes an attenuator for attenuating a signal, and the gain is switched by bypassing the attenuator according to the control signal.
PCT/JP2015/072364 2015-08-06 2015-08-06 Receiver WO2017022122A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017532338A JP6260746B2 (en) 2015-08-06 2015-08-06 Receiving machine
PCT/JP2015/072364 WO2017022122A1 (en) 2015-08-06 2015-08-06 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072364 WO2017022122A1 (en) 2015-08-06 2015-08-06 Receiver

Publications (1)

Publication Number Publication Date
WO2017022122A1 true WO2017022122A1 (en) 2017-02-09

Family

ID=57942580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072364 WO2017022122A1 (en) 2015-08-06 2015-08-06 Receiver

Country Status (2)

Country Link
JP (1) JP6260746B2 (en)
WO (1) WO2017022122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222228A (en) * 2017-07-18 2017-09-29 上海东软载波微电子有限公司 Automatic gain control circuit and its control method, receiver
CN114221668A (en) * 2021-12-20 2022-03-22 湖南迈克森伟电子科技有限公司 Adaptive power gain control method and receiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621980A (en) * 1992-07-03 1994-01-28 Fujitsu Ltd Optical signal demodulating system
JP2001211125A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Detector circuit
WO2003084059A1 (en) * 2002-03-28 2003-10-09 Thine Electronics, Inc. Semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621980A (en) * 1992-07-03 1994-01-28 Fujitsu Ltd Optical signal demodulating system
JP2001211125A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Detector circuit
WO2003084059A1 (en) * 2002-03-28 2003-10-09 Thine Electronics, Inc. Semiconductor integrated circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUNG-WEN LIN ET AL.: "A Low- IF AGC Amplifier for DSRC Receiver", SOC DESIGN CONFERENCE(ISOCC), 2014 INTERNATIONAL, November 2014 (2014-11-01), pages 5 - 6, XP032764439 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222228A (en) * 2017-07-18 2017-09-29 上海东软载波微电子有限公司 Automatic gain control circuit and its control method, receiver
CN114221668A (en) * 2021-12-20 2022-03-22 湖南迈克森伟电子科技有限公司 Adaptive power gain control method and receiver

Also Published As

Publication number Publication date
JPWO2017022122A1 (en) 2017-11-02
JP6260746B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
CN109428617B (en) System, apparatus and method for performing automatic gain control in a receiver
US7692486B2 (en) Configurable feedback for an amplifier
US8660221B2 (en) Fast and robust AGC apparatus and method using the same
US11177988B2 (en) Receiver circuits with blocker attenuating mixer
US6356746B1 (en) Direct converting receiver
US9800277B2 (en) Interference detection and mitigation in radio frequency receivers
JP4731569B2 (en) Image suppression receiver
JP6260746B2 (en) Receiving machine
US7373125B2 (en) Off-channel signal detector with programmable hysteresis
JP2010263430A (en) Receiving apparatus
JP4444174B2 (en) Frequency converter and radio
JP6812816B2 (en) Receiver, receiving method, program
US11824508B2 (en) Integrated circuit devices with receiver chain peak detectors
JP2004153718A (en) Agc circuit and agc amplifier control method
KR100651493B1 (en) Apparatus and method for controllin gain in receiver
CN111478705B (en) Gain control method, device and circuit based on receiver and receiver
CN110011678B (en) Automatic gain control system and method suitable for superheterodyne receiver of abrupt channel
JP2009177568A (en) Receiver, and electronic apparatus using the same
JP5772087B2 (en) Receiving device and program
JP2015201890A (en) Receiver, radio wave reception method, and program
JP7060069B2 (en) DC component fluctuation suppression device, DC component fluctuation suppression method, program
JP2005295517A (en) Mixer circuit and receiver circuit using the same
JP7464881B2 (en) Wireless Receiver Circuit
JP2001024535A (en) Receiver
JP2015126365A (en) Receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900433

Country of ref document: EP

Kind code of ref document: A1